1 //===------ PPCGCodeGeneration.cpp - Polly Accelerator Code Generation. ---===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Take a scop created by ScopInfo and map it to GPU code using the ppcg 11 // GPU mapping strategy. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "polly/CodeGen/IslNodeBuilder.h" 16 #include "polly/CodeGen/Utils.h" 17 #include "polly/DependenceInfo.h" 18 #include "polly/LinkAllPasses.h" 19 #include "polly/Options.h" 20 #include "polly/ScopInfo.h" 21 #include "polly/Support/SCEVValidator.h" 22 #include "llvm/ADT/PostOrderIterator.h" 23 #include "llvm/Analysis/AliasAnalysis.h" 24 #include "llvm/Analysis/BasicAliasAnalysis.h" 25 #include "llvm/Analysis/GlobalsModRef.h" 26 #include "llvm/Analysis/PostDominators.h" 27 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" 28 #include "llvm/Analysis/TargetLibraryInfo.h" 29 #include "llvm/Analysis/TargetTransformInfo.h" 30 #include "llvm/IR/LegacyPassManager.h" 31 #include "llvm/IR/Verifier.h" 32 #include "llvm/Support/TargetRegistry.h" 33 #include "llvm/Support/TargetSelect.h" 34 #include "llvm/Target/TargetMachine.h" 35 #include "llvm/Transforms/IPO/PassManagerBuilder.h" 36 37 #include "isl/union_map.h" 38 39 extern "C" { 40 #include "ppcg/cuda.h" 41 #include "ppcg/gpu.h" 42 #include "ppcg/gpu_print.h" 43 #include "ppcg/ppcg.h" 44 #include "ppcg/schedule.h" 45 } 46 47 #include "llvm/Support/Debug.h" 48 49 using namespace polly; 50 using namespace llvm; 51 52 #define DEBUG_TYPE "polly-codegen-ppcg" 53 54 static cl::opt<bool> DumpSchedule("polly-acc-dump-schedule", 55 cl::desc("Dump the computed GPU Schedule"), 56 cl::Hidden, cl::init(false), cl::ZeroOrMore, 57 cl::cat(PollyCategory)); 58 59 static cl::opt<bool> 60 DumpCode("polly-acc-dump-code", 61 cl::desc("Dump C code describing the GPU mapping"), cl::Hidden, 62 cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory)); 63 64 static cl::opt<bool> DumpKernelIR("polly-acc-dump-kernel-ir", 65 cl::desc("Dump the kernel LLVM-IR"), 66 cl::Hidden, cl::init(false), cl::ZeroOrMore, 67 cl::cat(PollyCategory)); 68 69 static cl::opt<bool> DumpKernelASM("polly-acc-dump-kernel-asm", 70 cl::desc("Dump the kernel assembly code"), 71 cl::Hidden, cl::init(false), cl::ZeroOrMore, 72 cl::cat(PollyCategory)); 73 74 static cl::opt<bool> FastMath("polly-acc-fastmath", 75 cl::desc("Allow unsafe math optimizations"), 76 cl::Hidden, cl::init(false), cl::ZeroOrMore, 77 cl::cat(PollyCategory)); 78 79 static cl::opt<std::string> 80 CudaVersion("polly-acc-cuda-version", 81 cl::desc("The CUDA version to compile for"), cl::Hidden, 82 cl::init("sm_30"), cl::ZeroOrMore, cl::cat(PollyCategory)); 83 84 /// Create the ast expressions for a ScopStmt. 85 /// 86 /// This function is a callback for to generate the ast expressions for each 87 /// of the scheduled ScopStmts. 88 static __isl_give isl_id_to_ast_expr *pollyBuildAstExprForStmt( 89 void *StmtT, isl_ast_build *Build, 90 isl_multi_pw_aff *(*FunctionIndex)(__isl_take isl_multi_pw_aff *MPA, 91 isl_id *Id, void *User), 92 void *UserIndex, 93 isl_ast_expr *(*FunctionExpr)(isl_ast_expr *Expr, isl_id *Id, void *User), 94 void *UserExpr) { 95 96 ScopStmt *Stmt = (ScopStmt *)StmtT; 97 98 isl_ctx *Ctx; 99 100 if (!Stmt || !Build) 101 return NULL; 102 103 Ctx = isl_ast_build_get_ctx(Build); 104 isl_id_to_ast_expr *RefToExpr = isl_id_to_ast_expr_alloc(Ctx, 0); 105 106 for (MemoryAccess *Acc : *Stmt) { 107 isl_map *AddrFunc = Acc->getAddressFunction(); 108 AddrFunc = isl_map_intersect_domain(AddrFunc, Stmt->getDomain()); 109 isl_id *RefId = Acc->getId(); 110 isl_pw_multi_aff *PMA = isl_pw_multi_aff_from_map(AddrFunc); 111 isl_multi_pw_aff *MPA = isl_multi_pw_aff_from_pw_multi_aff(PMA); 112 MPA = isl_multi_pw_aff_coalesce(MPA); 113 MPA = FunctionIndex(MPA, RefId, UserIndex); 114 isl_ast_expr *Access = isl_ast_build_access_from_multi_pw_aff(Build, MPA); 115 Access = FunctionExpr(Access, RefId, UserExpr); 116 RefToExpr = isl_id_to_ast_expr_set(RefToExpr, RefId, Access); 117 } 118 119 return RefToExpr; 120 } 121 122 /// Generate code for a GPU specific isl AST. 123 /// 124 /// The GPUNodeBuilder augments the general existing IslNodeBuilder, which 125 /// generates code for general-prupose AST nodes, with special functionality 126 /// for generating GPU specific user nodes. 127 /// 128 /// @see GPUNodeBuilder::createUser 129 class GPUNodeBuilder : public IslNodeBuilder { 130 public: 131 GPUNodeBuilder(PollyIRBuilder &Builder, ScopAnnotator &Annotator, Pass *P, 132 const DataLayout &DL, LoopInfo &LI, ScalarEvolution &SE, 133 DominatorTree &DT, Scop &S, gpu_prog *Prog) 134 : IslNodeBuilder(Builder, Annotator, P, DL, LI, SE, DT, S), Prog(Prog) { 135 getExprBuilder().setIDToSAI(&IDToSAI); 136 } 137 138 /// Create after-run-time-check initialization code. 139 void initializeAfterRTH(); 140 141 /// Finalize the generated scop. 142 virtual void finalize(); 143 144 private: 145 /// A vector of array base pointers for which a new ScopArrayInfo was created. 146 /// 147 /// This vector is used to delete the ScopArrayInfo when it is not needed any 148 /// more. 149 std::vector<Value *> LocalArrays; 150 151 /// A map from ScopArrays to their corresponding device allocations. 152 std::map<ScopArrayInfo *, Value *> DeviceAllocations; 153 154 /// The current GPU context. 155 Value *GPUContext; 156 157 /// A module containing GPU code. 158 /// 159 /// This pointer is only set in case we are currently generating GPU code. 160 std::unique_ptr<Module> GPUModule; 161 162 /// The GPU program we generate code for. 163 gpu_prog *Prog; 164 165 /// Class to free isl_ids. 166 class IslIdDeleter { 167 public: 168 void operator()(__isl_take isl_id *Id) { isl_id_free(Id); }; 169 }; 170 171 /// A set containing all isl_ids allocated in a GPU kernel. 172 /// 173 /// By releasing this set all isl_ids will be freed. 174 std::set<std::unique_ptr<isl_id, IslIdDeleter>> KernelIDs; 175 176 IslExprBuilder::IDToScopArrayInfoTy IDToSAI; 177 178 /// Create code for user-defined AST nodes. 179 /// 180 /// These AST nodes can be of type: 181 /// 182 /// - ScopStmt: A computational statement (TODO) 183 /// - Kernel: A GPU kernel call (TODO) 184 /// - Data-Transfer: A GPU <-> CPU data-transfer 185 /// - In-kernel synchronization 186 /// - In-kernel memory copy statement 187 /// 188 /// @param UserStmt The ast node to generate code for. 189 virtual void createUser(__isl_take isl_ast_node *UserStmt); 190 191 enum DataDirection { HOST_TO_DEVICE, DEVICE_TO_HOST }; 192 193 /// Create code for a data transfer statement 194 /// 195 /// @param TransferStmt The data transfer statement. 196 /// @param Direction The direction in which to transfer data. 197 void createDataTransfer(__isl_take isl_ast_node *TransferStmt, 198 enum DataDirection Direction); 199 200 /// Find llvm::Values referenced in GPU kernel. 201 /// 202 /// @param Kernel The kernel to scan for llvm::Values 203 /// 204 /// @returns A set of values referenced by the kernel. 205 SetVector<Value *> getReferencesInKernel(ppcg_kernel *Kernel); 206 207 /// Create GPU kernel. 208 /// 209 /// Code generate the kernel described by @p KernelStmt. 210 /// 211 /// @param KernelStmt The ast node to generate kernel code for. 212 void createKernel(__isl_take isl_ast_node *KernelStmt); 213 214 /// Generate code that computes the size of an array. 215 /// 216 /// @param Array The array for which to compute a size. 217 Value *getArraySize(gpu_array_info *Array); 218 219 /// Create kernel function. 220 /// 221 /// Create a kernel function located in a newly created module that can serve 222 /// as target for device code generation. Set the Builder to point to the 223 /// start block of this newly created function. 224 /// 225 /// @param Kernel The kernel to generate code for. 226 /// @param SubtreeValues The set of llvm::Values referenced by this kernel. 227 void createKernelFunction(ppcg_kernel *Kernel, 228 SetVector<Value *> &SubtreeValues); 229 230 /// Create the declaration of a kernel function. 231 /// 232 /// The kernel function takes as arguments: 233 /// 234 /// - One i8 pointer for each external array reference used in the kernel. 235 /// - Host iterators 236 /// - Parameters 237 /// - Other LLVM Value references (TODO) 238 /// 239 /// @param Kernel The kernel to generate the function declaration for. 240 /// @param SubtreeValues The set of llvm::Values referenced by this kernel. 241 /// 242 /// @returns The newly declared function. 243 Function *createKernelFunctionDecl(ppcg_kernel *Kernel, 244 SetVector<Value *> &SubtreeValues); 245 246 /// Insert intrinsic functions to obtain thread and block ids. 247 /// 248 /// @param The kernel to generate the intrinsic functions for. 249 void insertKernelIntrinsics(ppcg_kernel *Kernel); 250 251 /// Create code for a ScopStmt called in @p Expr. 252 /// 253 /// @param Expr The expression containing the call. 254 /// @param KernelStmt The kernel statement referenced in the call. 255 void createScopStmt(isl_ast_expr *Expr, ppcg_kernel_stmt *KernelStmt); 256 257 /// Create an in-kernel synchronization call. 258 void createKernelSync(); 259 260 /// Create a PTX assembly string for the current GPU kernel. 261 /// 262 /// @returns A string containing the corresponding PTX assembly code. 263 std::string createKernelASM(); 264 265 /// Remove references from the dominator tree to the kernel function @p F. 266 /// 267 /// @param F The function to remove references to. 268 void clearDominators(Function *F); 269 270 /// Remove references from scalar evolution to the kernel function @p F. 271 /// 272 /// @param F The function to remove references to. 273 void clearScalarEvolution(Function *F); 274 275 /// Remove references from loop info to the kernel function @p F. 276 /// 277 /// @param F The function to remove references to. 278 void clearLoops(Function *F); 279 280 /// Finalize the generation of the kernel function. 281 /// 282 /// Free the LLVM-IR module corresponding to the kernel and -- if requested -- 283 /// dump its IR to stderr. 284 void finalizeKernelFunction(); 285 286 /// Create code that allocates memory to store arrays on device. 287 void allocateDeviceArrays(); 288 289 /// Free all allocated device arrays. 290 void freeDeviceArrays(); 291 292 /// Create a call to initialize the GPU context. 293 /// 294 /// @returns A pointer to the newly initialized context. 295 Value *createCallInitContext(); 296 297 /// Create a call to free the GPU context. 298 /// 299 /// @param Context A pointer to an initialized GPU context. 300 void createCallFreeContext(Value *Context); 301 302 /// Create a call to allocate memory on the device. 303 /// 304 /// @param Size The size of memory to allocate 305 /// 306 /// @returns A pointer that identifies this allocation. 307 Value *createCallAllocateMemoryForDevice(Value *Size); 308 309 /// Create a call to free a device array. 310 /// 311 /// @param Array The device array to free. 312 void createCallFreeDeviceMemory(Value *Array); 313 314 /// Create a call to copy data from host to device. 315 /// 316 /// @param HostPtr A pointer to the host data that should be copied. 317 /// @param DevicePtr A device pointer specifying the location to copy to. 318 void createCallCopyFromHostToDevice(Value *HostPtr, Value *DevicePtr, 319 Value *Size); 320 321 /// Create a call to copy data from device to host. 322 /// 323 /// @param DevicePtr A pointer to the device data that should be copied. 324 /// @param HostPtr A host pointer specifying the location to copy to. 325 void createCallCopyFromDeviceToHost(Value *DevicePtr, Value *HostPtr, 326 Value *Size); 327 }; 328 329 void GPUNodeBuilder::initializeAfterRTH() { 330 GPUContext = createCallInitContext(); 331 allocateDeviceArrays(); 332 } 333 334 void GPUNodeBuilder::finalize() { 335 freeDeviceArrays(); 336 createCallFreeContext(GPUContext); 337 IslNodeBuilder::finalize(); 338 } 339 340 void GPUNodeBuilder::allocateDeviceArrays() { 341 isl_ast_build *Build = isl_ast_build_from_context(S.getContext()); 342 343 for (int i = 0; i < Prog->n_array; ++i) { 344 gpu_array_info *Array = &Prog->array[i]; 345 auto *ScopArray = (ScopArrayInfo *)Array->user; 346 std::string DevArrayName("p_dev_array_"); 347 DevArrayName.append(Array->name); 348 349 Value *ArraySize = getArraySize(Array); 350 Value *DevArray = createCallAllocateMemoryForDevice(ArraySize); 351 DevArray->setName(DevArrayName); 352 DeviceAllocations[ScopArray] = DevArray; 353 } 354 355 isl_ast_build_free(Build); 356 } 357 358 void GPUNodeBuilder::freeDeviceArrays() { 359 for (auto &Array : DeviceAllocations) 360 createCallFreeDeviceMemory(Array.second); 361 } 362 363 void GPUNodeBuilder::createCallFreeDeviceMemory(Value *Array) { 364 const char *Name = "polly_freeDeviceMemory"; 365 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 366 Function *F = M->getFunction(Name); 367 368 // If F is not available, declare it. 369 if (!F) { 370 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 371 std::vector<Type *> Args; 372 Args.push_back(Builder.getInt8PtrTy()); 373 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false); 374 F = Function::Create(Ty, Linkage, Name, M); 375 } 376 377 Builder.CreateCall(F, {Array}); 378 } 379 380 Value *GPUNodeBuilder::createCallAllocateMemoryForDevice(Value *Size) { 381 const char *Name = "polly_allocateMemoryForDevice"; 382 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 383 Function *F = M->getFunction(Name); 384 385 // If F is not available, declare it. 386 if (!F) { 387 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 388 std::vector<Type *> Args; 389 Args.push_back(Builder.getInt64Ty()); 390 FunctionType *Ty = FunctionType::get(Builder.getInt8PtrTy(), Args, false); 391 F = Function::Create(Ty, Linkage, Name, M); 392 } 393 394 return Builder.CreateCall(F, {Size}); 395 } 396 397 void GPUNodeBuilder::createCallCopyFromHostToDevice(Value *HostData, 398 Value *DeviceData, 399 Value *Size) { 400 const char *Name = "polly_copyFromHostToDevice"; 401 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 402 Function *F = M->getFunction(Name); 403 404 // If F is not available, declare it. 405 if (!F) { 406 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 407 std::vector<Type *> Args; 408 Args.push_back(Builder.getInt8PtrTy()); 409 Args.push_back(Builder.getInt8PtrTy()); 410 Args.push_back(Builder.getInt64Ty()); 411 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false); 412 F = Function::Create(Ty, Linkage, Name, M); 413 } 414 415 Builder.CreateCall(F, {HostData, DeviceData, Size}); 416 } 417 418 void GPUNodeBuilder::createCallCopyFromDeviceToHost(Value *DeviceData, 419 Value *HostData, 420 Value *Size) { 421 const char *Name = "polly_copyFromDeviceToHost"; 422 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 423 Function *F = M->getFunction(Name); 424 425 // If F is not available, declare it. 426 if (!F) { 427 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 428 std::vector<Type *> Args; 429 Args.push_back(Builder.getInt8PtrTy()); 430 Args.push_back(Builder.getInt8PtrTy()); 431 Args.push_back(Builder.getInt64Ty()); 432 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false); 433 F = Function::Create(Ty, Linkage, Name, M); 434 } 435 436 Builder.CreateCall(F, {DeviceData, HostData, Size}); 437 } 438 439 Value *GPUNodeBuilder::createCallInitContext() { 440 const char *Name = "polly_initContext"; 441 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 442 Function *F = M->getFunction(Name); 443 444 // If F is not available, declare it. 445 if (!F) { 446 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 447 std::vector<Type *> Args; 448 FunctionType *Ty = FunctionType::get(Builder.getInt8PtrTy(), Args, false); 449 F = Function::Create(Ty, Linkage, Name, M); 450 } 451 452 return Builder.CreateCall(F, {}); 453 } 454 455 void GPUNodeBuilder::createCallFreeContext(Value *Context) { 456 const char *Name = "polly_freeContext"; 457 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 458 Function *F = M->getFunction(Name); 459 460 // If F is not available, declare it. 461 if (!F) { 462 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 463 std::vector<Type *> Args; 464 Args.push_back(Builder.getInt8PtrTy()); 465 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false); 466 F = Function::Create(Ty, Linkage, Name, M); 467 } 468 469 Builder.CreateCall(F, {Context}); 470 } 471 472 /// Check if one string is a prefix of another. 473 /// 474 /// @param String The string in which to look for the prefix. 475 /// @param Prefix The prefix to look for. 476 static bool isPrefix(std::string String, std::string Prefix) { 477 return String.find(Prefix) == 0; 478 } 479 480 Value *GPUNodeBuilder::getArraySize(gpu_array_info *Array) { 481 isl_ast_build *Build = isl_ast_build_from_context(S.getContext()); 482 Value *ArraySize = ConstantInt::get(Builder.getInt64Ty(), Array->size); 483 484 if (!gpu_array_is_scalar(Array)) { 485 auto OffsetDimZero = isl_pw_aff_copy(Array->bound[0]); 486 isl_ast_expr *Res = isl_ast_build_expr_from_pw_aff(Build, OffsetDimZero); 487 488 for (unsigned int i = 1; i < Array->n_index; i++) { 489 isl_pw_aff *Bound_I = isl_pw_aff_copy(Array->bound[i]); 490 isl_ast_expr *Expr = isl_ast_build_expr_from_pw_aff(Build, Bound_I); 491 Res = isl_ast_expr_mul(Res, Expr); 492 } 493 494 Value *NumElements = ExprBuilder.create(Res); 495 ArraySize = Builder.CreateMul(ArraySize, NumElements); 496 } 497 isl_ast_build_free(Build); 498 return ArraySize; 499 } 500 501 void GPUNodeBuilder::createDataTransfer(__isl_take isl_ast_node *TransferStmt, 502 enum DataDirection Direction) { 503 isl_ast_expr *Expr = isl_ast_node_user_get_expr(TransferStmt); 504 isl_ast_expr *Arg = isl_ast_expr_get_op_arg(Expr, 0); 505 isl_id *Id = isl_ast_expr_get_id(Arg); 506 auto Array = (gpu_array_info *)isl_id_get_user(Id); 507 auto ScopArray = (ScopArrayInfo *)(Array->user); 508 509 Value *Size = getArraySize(Array); 510 Value *HostPtr = ScopArray->getBasePtr(); 511 512 Value *DevPtr = DeviceAllocations[ScopArray]; 513 514 if (gpu_array_is_scalar(Array)) { 515 HostPtr = Builder.CreateAlloca(ScopArray->getElementType()); 516 Builder.CreateStore(ScopArray->getBasePtr(), HostPtr); 517 } 518 519 HostPtr = Builder.CreatePointerCast(HostPtr, Builder.getInt8PtrTy()); 520 521 if (Direction == HOST_TO_DEVICE) 522 createCallCopyFromHostToDevice(HostPtr, DevPtr, Size); 523 else 524 createCallCopyFromDeviceToHost(DevPtr, HostPtr, Size); 525 526 isl_id_free(Id); 527 isl_ast_expr_free(Arg); 528 isl_ast_expr_free(Expr); 529 isl_ast_node_free(TransferStmt); 530 } 531 532 void GPUNodeBuilder::createUser(__isl_take isl_ast_node *UserStmt) { 533 isl_ast_expr *Expr = isl_ast_node_user_get_expr(UserStmt); 534 isl_ast_expr *StmtExpr = isl_ast_expr_get_op_arg(Expr, 0); 535 isl_id *Id = isl_ast_expr_get_id(StmtExpr); 536 isl_id_free(Id); 537 isl_ast_expr_free(StmtExpr); 538 539 const char *Str = isl_id_get_name(Id); 540 if (!strcmp(Str, "kernel")) { 541 createKernel(UserStmt); 542 isl_ast_expr_free(Expr); 543 return; 544 } 545 546 if (isPrefix(Str, "to_device")) { 547 createDataTransfer(UserStmt, HOST_TO_DEVICE); 548 isl_ast_expr_free(Expr); 549 return; 550 } 551 552 if (isPrefix(Str, "from_device")) { 553 createDataTransfer(UserStmt, DEVICE_TO_HOST); 554 isl_ast_expr_free(Expr); 555 return; 556 } 557 558 isl_id *Anno = isl_ast_node_get_annotation(UserStmt); 559 struct ppcg_kernel_stmt *KernelStmt = 560 (struct ppcg_kernel_stmt *)isl_id_get_user(Anno); 561 isl_id_free(Anno); 562 563 switch (KernelStmt->type) { 564 case ppcg_kernel_domain: 565 createScopStmt(Expr, KernelStmt); 566 isl_ast_node_free(UserStmt); 567 return; 568 case ppcg_kernel_copy: 569 // TODO: Create kernel copy stmt 570 isl_ast_expr_free(Expr); 571 isl_ast_node_free(UserStmt); 572 return; 573 case ppcg_kernel_sync: 574 createKernelSync(); 575 isl_ast_expr_free(Expr); 576 isl_ast_node_free(UserStmt); 577 return; 578 } 579 580 isl_ast_expr_free(Expr); 581 isl_ast_node_free(UserStmt); 582 return; 583 } 584 585 void GPUNodeBuilder::createScopStmt(isl_ast_expr *Expr, 586 ppcg_kernel_stmt *KernelStmt) { 587 auto Stmt = (ScopStmt *)KernelStmt->u.d.stmt->stmt; 588 isl_id_to_ast_expr *Indexes = KernelStmt->u.d.ref2expr; 589 590 LoopToScevMapT LTS; 591 LTS.insert(OutsideLoopIterations.begin(), OutsideLoopIterations.end()); 592 593 createSubstitutions(Expr, Stmt, LTS); 594 595 if (Stmt->isBlockStmt()) 596 BlockGen.copyStmt(*Stmt, LTS, Indexes); 597 else 598 assert(0 && "Region statement not supported\n"); 599 } 600 601 void GPUNodeBuilder::createKernelSync() { 602 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 603 auto *Sync = Intrinsic::getDeclaration(M, Intrinsic::nvvm_barrier0); 604 Builder.CreateCall(Sync, {}); 605 } 606 607 /// Collect llvm::Values referenced from @p Node 608 /// 609 /// This function only applies to isl_ast_nodes that are user_nodes referring 610 /// to a ScopStmt. All other node types are ignore. 611 /// 612 /// @param Node The node to collect references for. 613 /// @param User A user pointer used as storage for the data that is collected. 614 /// 615 /// @returns isl_bool_true if data could be collected successfully. 616 isl_bool collectReferencesInGPUStmt(__isl_keep isl_ast_node *Node, void *User) { 617 if (isl_ast_node_get_type(Node) != isl_ast_node_user) 618 return isl_bool_true; 619 620 isl_ast_expr *Expr = isl_ast_node_user_get_expr(Node); 621 isl_ast_expr *StmtExpr = isl_ast_expr_get_op_arg(Expr, 0); 622 isl_id *Id = isl_ast_expr_get_id(StmtExpr); 623 const char *Str = isl_id_get_name(Id); 624 isl_id_free(Id); 625 isl_ast_expr_free(StmtExpr); 626 isl_ast_expr_free(Expr); 627 628 if (!isPrefix(Str, "Stmt")) 629 return isl_bool_true; 630 631 Id = isl_ast_node_get_annotation(Node); 632 auto *KernelStmt = (ppcg_kernel_stmt *)isl_id_get_user(Id); 633 auto Stmt = (ScopStmt *)KernelStmt->u.d.stmt->stmt; 634 isl_id_free(Id); 635 636 addReferencesFromStmt(Stmt, User); 637 638 return isl_bool_true; 639 } 640 641 SetVector<Value *> GPUNodeBuilder::getReferencesInKernel(ppcg_kernel *Kernel) { 642 SetVector<Value *> SubtreeValues; 643 SetVector<const SCEV *> SCEVs; 644 SetVector<const Loop *> Loops; 645 SubtreeReferences References = { 646 LI, SE, S, ValueMap, SubtreeValues, SCEVs, getBlockGenerator()}; 647 648 for (const auto &I : IDToValue) 649 SubtreeValues.insert(I.second); 650 651 isl_ast_node_foreach_descendant_top_down( 652 Kernel->tree, collectReferencesInGPUStmt, &References); 653 654 for (const SCEV *Expr : SCEVs) 655 findValues(Expr, SE, SubtreeValues); 656 657 for (auto &SAI : S.arrays()) 658 SubtreeValues.remove(SAI.second->getBasePtr()); 659 660 isl_space *Space = S.getParamSpace(); 661 for (long i = 0; i < isl_space_dim(Space, isl_dim_param); i++) { 662 isl_id *Id = isl_space_get_dim_id(Space, isl_dim_param, i); 663 assert(IDToValue.count(Id)); 664 Value *Val = IDToValue[Id]; 665 SubtreeValues.remove(Val); 666 isl_id_free(Id); 667 } 668 isl_space_free(Space); 669 670 for (long i = 0; i < isl_space_dim(Kernel->space, isl_dim_set); i++) { 671 isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_set, i); 672 assert(IDToValue.count(Id)); 673 Value *Val = IDToValue[Id]; 674 SubtreeValues.remove(Val); 675 isl_id_free(Id); 676 } 677 678 return SubtreeValues; 679 } 680 681 void GPUNodeBuilder::clearDominators(Function *F) { 682 DomTreeNode *N = DT.getNode(&F->getEntryBlock()); 683 std::vector<BasicBlock *> Nodes; 684 for (po_iterator<DomTreeNode *> I = po_begin(N), E = po_end(N); I != E; ++I) 685 Nodes.push_back(I->getBlock()); 686 687 for (BasicBlock *BB : Nodes) 688 DT.eraseNode(BB); 689 } 690 691 void GPUNodeBuilder::clearScalarEvolution(Function *F) { 692 for (BasicBlock &BB : *F) { 693 Loop *L = LI.getLoopFor(&BB); 694 if (L) 695 SE.forgetLoop(L); 696 } 697 } 698 699 void GPUNodeBuilder::clearLoops(Function *F) { 700 for (BasicBlock &BB : *F) { 701 Loop *L = LI.getLoopFor(&BB); 702 if (L) 703 SE.forgetLoop(L); 704 LI.removeBlock(&BB); 705 } 706 } 707 708 void GPUNodeBuilder::createKernel(__isl_take isl_ast_node *KernelStmt) { 709 isl_id *Id = isl_ast_node_get_annotation(KernelStmt); 710 ppcg_kernel *Kernel = (ppcg_kernel *)isl_id_get_user(Id); 711 isl_id_free(Id); 712 isl_ast_node_free(KernelStmt); 713 714 SetVector<Value *> SubtreeValues = getReferencesInKernel(Kernel); 715 716 assert(Kernel->tree && "Device AST of kernel node is empty"); 717 718 Instruction &HostInsertPoint = *Builder.GetInsertPoint(); 719 IslExprBuilder::IDToValueTy HostIDs = IDToValue; 720 ValueMapT HostValueMap = ValueMap; 721 722 SetVector<const Loop *> Loops; 723 724 // Create for all loops we depend on values that contain the current loop 725 // iteration. These values are necessary to generate code for SCEVs that 726 // depend on such loops. As a result we need to pass them to the subfunction. 727 for (const Loop *L : Loops) { 728 const SCEV *OuterLIV = SE.getAddRecExpr(SE.getUnknown(Builder.getInt64(0)), 729 SE.getUnknown(Builder.getInt64(1)), 730 L, SCEV::FlagAnyWrap); 731 Value *V = generateSCEV(OuterLIV); 732 OutsideLoopIterations[L] = SE.getUnknown(V); 733 SubtreeValues.insert(V); 734 } 735 736 createKernelFunction(Kernel, SubtreeValues); 737 738 create(isl_ast_node_copy(Kernel->tree)); 739 740 Function *F = Builder.GetInsertBlock()->getParent(); 741 clearDominators(F); 742 clearScalarEvolution(F); 743 clearLoops(F); 744 745 Builder.SetInsertPoint(&HostInsertPoint); 746 IDToValue = HostIDs; 747 748 ValueMap = HostValueMap; 749 ScalarMap.clear(); 750 PHIOpMap.clear(); 751 EscapeMap.clear(); 752 IDToSAI.clear(); 753 Annotator.resetAlternativeAliasBases(); 754 for (auto &BasePtr : LocalArrays) 755 S.invalidateScopArrayInfo(BasePtr, ScopArrayInfo::MK_Array); 756 LocalArrays.clear(); 757 758 finalizeKernelFunction(); 759 } 760 761 /// Compute the DataLayout string for the NVPTX backend. 762 /// 763 /// @param is64Bit Are we looking for a 64 bit architecture? 764 static std::string computeNVPTXDataLayout(bool is64Bit) { 765 std::string Ret = "e"; 766 767 if (!is64Bit) 768 Ret += "-p:32:32"; 769 770 Ret += "-i64:64-v16:16-v32:32-n16:32:64"; 771 772 return Ret; 773 } 774 775 Function * 776 GPUNodeBuilder::createKernelFunctionDecl(ppcg_kernel *Kernel, 777 SetVector<Value *> &SubtreeValues) { 778 std::vector<Type *> Args; 779 std::string Identifier = "kernel_" + std::to_string(Kernel->id); 780 781 for (long i = 0; i < Prog->n_array; i++) { 782 if (!ppcg_kernel_requires_array_argument(Kernel, i)) 783 continue; 784 785 Args.push_back(Builder.getInt8PtrTy()); 786 } 787 788 int NumHostIters = isl_space_dim(Kernel->space, isl_dim_set); 789 790 for (long i = 0; i < NumHostIters; i++) 791 Args.push_back(Builder.getInt64Ty()); 792 793 int NumVars = isl_space_dim(Kernel->space, isl_dim_param); 794 795 for (long i = 0; i < NumVars; i++) 796 Args.push_back(Builder.getInt64Ty()); 797 798 for (auto *V : SubtreeValues) 799 Args.push_back(V->getType()); 800 801 auto *FT = FunctionType::get(Builder.getVoidTy(), Args, false); 802 auto *FN = Function::Create(FT, Function::ExternalLinkage, Identifier, 803 GPUModule.get()); 804 FN->setCallingConv(CallingConv::PTX_Kernel); 805 806 auto Arg = FN->arg_begin(); 807 for (long i = 0; i < Kernel->n_array; i++) { 808 if (!ppcg_kernel_requires_array_argument(Kernel, i)) 809 continue; 810 811 Arg->setName(Kernel->array[i].array->name); 812 813 isl_id *Id = isl_space_get_tuple_id(Prog->array[i].space, isl_dim_set); 814 const ScopArrayInfo *SAI = ScopArrayInfo::getFromId(isl_id_copy(Id)); 815 Type *EleTy = SAI->getElementType(); 816 Value *Val = &*Arg; 817 SmallVector<const SCEV *, 4> Sizes; 818 isl_ast_build *Build = 819 isl_ast_build_from_context(isl_set_copy(Prog->context)); 820 for (long j = 1; j < Kernel->array[i].array->n_index; j++) { 821 isl_ast_expr *DimSize = isl_ast_build_expr_from_pw_aff( 822 Build, isl_pw_aff_copy(Kernel->array[i].array->bound[j])); 823 auto V = ExprBuilder.create(DimSize); 824 Sizes.push_back(SE.getSCEV(V)); 825 } 826 const ScopArrayInfo *SAIRep = 827 S.getOrCreateScopArrayInfo(Val, EleTy, Sizes, ScopArrayInfo::MK_Array); 828 LocalArrays.push_back(Val); 829 830 isl_ast_build_free(Build); 831 isl_id_free(Id); 832 IDToSAI[Id] = SAIRep; 833 Arg++; 834 } 835 836 for (long i = 0; i < NumHostIters; i++) { 837 isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_set, i); 838 Arg->setName(isl_id_get_name(Id)); 839 IDToValue[Id] = &*Arg; 840 KernelIDs.insert(std::unique_ptr<isl_id, IslIdDeleter>(Id)); 841 Arg++; 842 } 843 844 for (long i = 0; i < NumVars; i++) { 845 isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_param, i); 846 Arg->setName(isl_id_get_name(Id)); 847 IDToValue[Id] = &*Arg; 848 KernelIDs.insert(std::unique_ptr<isl_id, IslIdDeleter>(Id)); 849 Arg++; 850 } 851 852 for (auto *V : SubtreeValues) { 853 Arg->setName(V->getName()); 854 ValueMap[V] = &*Arg; 855 Arg++; 856 } 857 858 return FN; 859 } 860 861 void GPUNodeBuilder::insertKernelIntrinsics(ppcg_kernel *Kernel) { 862 Intrinsic::ID IntrinsicsBID[] = {Intrinsic::nvvm_read_ptx_sreg_ctaid_x, 863 Intrinsic::nvvm_read_ptx_sreg_ctaid_y}; 864 865 Intrinsic::ID IntrinsicsTID[] = {Intrinsic::nvvm_read_ptx_sreg_tid_x, 866 Intrinsic::nvvm_read_ptx_sreg_tid_y, 867 Intrinsic::nvvm_read_ptx_sreg_tid_z}; 868 869 auto addId = [this](__isl_take isl_id *Id, Intrinsic::ID Intr) mutable { 870 std::string Name = isl_id_get_name(Id); 871 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 872 Function *IntrinsicFn = Intrinsic::getDeclaration(M, Intr); 873 Value *Val = Builder.CreateCall(IntrinsicFn, {}); 874 Val = Builder.CreateIntCast(Val, Builder.getInt64Ty(), false, Name); 875 IDToValue[Id] = Val; 876 KernelIDs.insert(std::unique_ptr<isl_id, IslIdDeleter>(Id)); 877 }; 878 879 for (int i = 0; i < Kernel->n_grid; ++i) { 880 isl_id *Id = isl_id_list_get_id(Kernel->block_ids, i); 881 addId(Id, IntrinsicsBID[i]); 882 } 883 884 for (int i = 0; i < Kernel->n_block; ++i) { 885 isl_id *Id = isl_id_list_get_id(Kernel->thread_ids, i); 886 addId(Id, IntrinsicsTID[i]); 887 } 888 } 889 890 void GPUNodeBuilder::createKernelFunction(ppcg_kernel *Kernel, 891 SetVector<Value *> &SubtreeValues) { 892 893 std::string Identifier = "kernel_" + std::to_string(Kernel->id); 894 GPUModule.reset(new Module(Identifier, Builder.getContext())); 895 GPUModule->setTargetTriple(Triple::normalize("nvptx64-nvidia-cuda")); 896 GPUModule->setDataLayout(computeNVPTXDataLayout(true /* is64Bit */)); 897 898 Function *FN = createKernelFunctionDecl(Kernel, SubtreeValues); 899 900 BasicBlock *PrevBlock = Builder.GetInsertBlock(); 901 auto EntryBlock = BasicBlock::Create(Builder.getContext(), "entry", FN); 902 903 DominatorTree &DT = P->getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 904 DT.addNewBlock(EntryBlock, PrevBlock); 905 906 Builder.SetInsertPoint(EntryBlock); 907 Builder.CreateRetVoid(); 908 Builder.SetInsertPoint(EntryBlock, EntryBlock->begin()); 909 910 insertKernelIntrinsics(Kernel); 911 } 912 913 std::string GPUNodeBuilder::createKernelASM() { 914 llvm::Triple GPUTriple(Triple::normalize("nvptx64-nvidia-cuda")); 915 std::string ErrMsg; 916 auto GPUTarget = TargetRegistry::lookupTarget(GPUTriple.getTriple(), ErrMsg); 917 918 if (!GPUTarget) { 919 errs() << ErrMsg << "\n"; 920 return ""; 921 } 922 923 TargetOptions Options; 924 Options.UnsafeFPMath = FastMath; 925 std::unique_ptr<TargetMachine> TargetM( 926 GPUTarget->createTargetMachine(GPUTriple.getTriple(), CudaVersion, "", 927 Options, Optional<Reloc::Model>())); 928 929 SmallString<0> ASMString; 930 raw_svector_ostream ASMStream(ASMString); 931 llvm::legacy::PassManager PM; 932 933 PM.add(createTargetTransformInfoWrapperPass(TargetM->getTargetIRAnalysis())); 934 935 if (TargetM->addPassesToEmitFile( 936 PM, ASMStream, TargetMachine::CGFT_AssemblyFile, true /* verify */)) { 937 errs() << "The target does not support generation of this file type!\n"; 938 return ""; 939 } 940 941 PM.run(*GPUModule); 942 943 return ASMStream.str(); 944 } 945 946 void GPUNodeBuilder::finalizeKernelFunction() { 947 // Verify module. 948 llvm::legacy::PassManager Passes; 949 Passes.add(createVerifierPass()); 950 Passes.run(*GPUModule); 951 952 if (DumpKernelIR) 953 outs() << *GPUModule << "\n"; 954 955 // Optimize module. 956 llvm::legacy::PassManager OptPasses; 957 PassManagerBuilder PassBuilder; 958 PassBuilder.OptLevel = 3; 959 PassBuilder.SizeLevel = 0; 960 PassBuilder.populateModulePassManager(OptPasses); 961 OptPasses.run(*GPUModule); 962 963 std::string Assembly = createKernelASM(); 964 965 if (DumpKernelASM) 966 outs() << Assembly << "\n"; 967 968 GPUModule.release(); 969 KernelIDs.clear(); 970 } 971 972 namespace { 973 class PPCGCodeGeneration : public ScopPass { 974 public: 975 static char ID; 976 977 /// The scop that is currently processed. 978 Scop *S; 979 980 LoopInfo *LI; 981 DominatorTree *DT; 982 ScalarEvolution *SE; 983 const DataLayout *DL; 984 RegionInfo *RI; 985 986 PPCGCodeGeneration() : ScopPass(ID) {} 987 988 /// Construct compilation options for PPCG. 989 /// 990 /// @returns The compilation options. 991 ppcg_options *createPPCGOptions() { 992 auto DebugOptions = 993 (ppcg_debug_options *)malloc(sizeof(ppcg_debug_options)); 994 auto Options = (ppcg_options *)malloc(sizeof(ppcg_options)); 995 996 DebugOptions->dump_schedule_constraints = false; 997 DebugOptions->dump_schedule = false; 998 DebugOptions->dump_final_schedule = false; 999 DebugOptions->dump_sizes = false; 1000 1001 Options->debug = DebugOptions; 1002 1003 Options->reschedule = true; 1004 Options->scale_tile_loops = false; 1005 Options->wrap = false; 1006 1007 Options->non_negative_parameters = false; 1008 Options->ctx = nullptr; 1009 Options->sizes = nullptr; 1010 1011 Options->tile_size = 32; 1012 1013 Options->use_private_memory = false; 1014 Options->use_shared_memory = false; 1015 Options->max_shared_memory = 0; 1016 1017 Options->target = PPCG_TARGET_CUDA; 1018 Options->openmp = false; 1019 Options->linearize_device_arrays = true; 1020 Options->live_range_reordering = false; 1021 1022 Options->opencl_compiler_options = nullptr; 1023 Options->opencl_use_gpu = false; 1024 Options->opencl_n_include_file = 0; 1025 Options->opencl_include_files = nullptr; 1026 Options->opencl_print_kernel_types = false; 1027 Options->opencl_embed_kernel_code = false; 1028 1029 Options->save_schedule_file = nullptr; 1030 Options->load_schedule_file = nullptr; 1031 1032 return Options; 1033 } 1034 1035 /// Get a tagged access relation containing all accesses of type @p AccessTy. 1036 /// 1037 /// Instead of a normal access of the form: 1038 /// 1039 /// Stmt[i,j,k] -> Array[f_0(i,j,k), f_1(i,j,k)] 1040 /// 1041 /// a tagged access has the form 1042 /// 1043 /// [Stmt[i,j,k] -> id[]] -> Array[f_0(i,j,k), f_1(i,j,k)] 1044 /// 1045 /// where 'id' is an additional space that references the memory access that 1046 /// triggered the access. 1047 /// 1048 /// @param AccessTy The type of the memory accesses to collect. 1049 /// 1050 /// @return The relation describing all tagged memory accesses. 1051 isl_union_map *getTaggedAccesses(enum MemoryAccess::AccessType AccessTy) { 1052 isl_union_map *Accesses = isl_union_map_empty(S->getParamSpace()); 1053 1054 for (auto &Stmt : *S) 1055 for (auto &Acc : Stmt) 1056 if (Acc->getType() == AccessTy) { 1057 isl_map *Relation = Acc->getAccessRelation(); 1058 Relation = isl_map_intersect_domain(Relation, Stmt.getDomain()); 1059 1060 isl_space *Space = isl_map_get_space(Relation); 1061 Space = isl_space_range(Space); 1062 Space = isl_space_from_range(Space); 1063 Space = isl_space_set_tuple_id(Space, isl_dim_in, Acc->getId()); 1064 isl_map *Universe = isl_map_universe(Space); 1065 Relation = isl_map_domain_product(Relation, Universe); 1066 Accesses = isl_union_map_add_map(Accesses, Relation); 1067 } 1068 1069 return Accesses; 1070 } 1071 1072 /// Get the set of all read accesses, tagged with the access id. 1073 /// 1074 /// @see getTaggedAccesses 1075 isl_union_map *getTaggedReads() { 1076 return getTaggedAccesses(MemoryAccess::READ); 1077 } 1078 1079 /// Get the set of all may (and must) accesses, tagged with the access id. 1080 /// 1081 /// @see getTaggedAccesses 1082 isl_union_map *getTaggedMayWrites() { 1083 return isl_union_map_union(getTaggedAccesses(MemoryAccess::MAY_WRITE), 1084 getTaggedAccesses(MemoryAccess::MUST_WRITE)); 1085 } 1086 1087 /// Get the set of all must accesses, tagged with the access id. 1088 /// 1089 /// @see getTaggedAccesses 1090 isl_union_map *getTaggedMustWrites() { 1091 return getTaggedAccesses(MemoryAccess::MUST_WRITE); 1092 } 1093 1094 /// Collect parameter and array names as isl_ids. 1095 /// 1096 /// To reason about the different parameters and arrays used, ppcg requires 1097 /// a list of all isl_ids in use. As PPCG traditionally performs 1098 /// source-to-source compilation each of these isl_ids is mapped to the 1099 /// expression that represents it. As we do not have a corresponding 1100 /// expression in Polly, we just map each id to a 'zero' expression to match 1101 /// the data format that ppcg expects. 1102 /// 1103 /// @returns Retun a map from collected ids to 'zero' ast expressions. 1104 __isl_give isl_id_to_ast_expr *getNames() { 1105 auto *Names = isl_id_to_ast_expr_alloc( 1106 S->getIslCtx(), 1107 S->getNumParams() + std::distance(S->array_begin(), S->array_end())); 1108 auto *Zero = isl_ast_expr_from_val(isl_val_zero(S->getIslCtx())); 1109 auto *Space = S->getParamSpace(); 1110 1111 for (int I = 0, E = S->getNumParams(); I < E; ++I) { 1112 isl_id *Id = isl_space_get_dim_id(Space, isl_dim_param, I); 1113 Names = isl_id_to_ast_expr_set(Names, Id, isl_ast_expr_copy(Zero)); 1114 } 1115 1116 for (auto &Array : S->arrays()) { 1117 auto Id = Array.second->getBasePtrId(); 1118 Names = isl_id_to_ast_expr_set(Names, Id, isl_ast_expr_copy(Zero)); 1119 } 1120 1121 isl_space_free(Space); 1122 isl_ast_expr_free(Zero); 1123 1124 return Names; 1125 } 1126 1127 /// Create a new PPCG scop from the current scop. 1128 /// 1129 /// The PPCG scop is initialized with data from the current polly::Scop. From 1130 /// this initial data, the data-dependences in the PPCG scop are initialized. 1131 /// We do not use Polly's dependence analysis for now, to ensure we match 1132 /// the PPCG default behaviour more closely. 1133 /// 1134 /// @returns A new ppcg scop. 1135 ppcg_scop *createPPCGScop() { 1136 auto PPCGScop = (ppcg_scop *)malloc(sizeof(ppcg_scop)); 1137 1138 PPCGScop->options = createPPCGOptions(); 1139 1140 PPCGScop->start = 0; 1141 PPCGScop->end = 0; 1142 1143 PPCGScop->context = S->getContext(); 1144 PPCGScop->domain = S->getDomains(); 1145 PPCGScop->call = nullptr; 1146 PPCGScop->tagged_reads = getTaggedReads(); 1147 PPCGScop->reads = S->getReads(); 1148 PPCGScop->live_in = nullptr; 1149 PPCGScop->tagged_may_writes = getTaggedMayWrites(); 1150 PPCGScop->may_writes = S->getWrites(); 1151 PPCGScop->tagged_must_writes = getTaggedMustWrites(); 1152 PPCGScop->must_writes = S->getMustWrites(); 1153 PPCGScop->live_out = nullptr; 1154 PPCGScop->tagged_must_kills = isl_union_map_empty(S->getParamSpace()); 1155 PPCGScop->tagger = nullptr; 1156 1157 PPCGScop->independence = nullptr; 1158 PPCGScop->dep_flow = nullptr; 1159 PPCGScop->tagged_dep_flow = nullptr; 1160 PPCGScop->dep_false = nullptr; 1161 PPCGScop->dep_forced = nullptr; 1162 PPCGScop->dep_order = nullptr; 1163 PPCGScop->tagged_dep_order = nullptr; 1164 1165 PPCGScop->schedule = S->getScheduleTree(); 1166 PPCGScop->names = getNames(); 1167 1168 PPCGScop->pet = nullptr; 1169 1170 compute_tagger(PPCGScop); 1171 compute_dependences(PPCGScop); 1172 1173 return PPCGScop; 1174 } 1175 1176 /// Collect the array acesses in a statement. 1177 /// 1178 /// @param Stmt The statement for which to collect the accesses. 1179 /// 1180 /// @returns A list of array accesses. 1181 gpu_stmt_access *getStmtAccesses(ScopStmt &Stmt) { 1182 gpu_stmt_access *Accesses = nullptr; 1183 1184 for (MemoryAccess *Acc : Stmt) { 1185 auto Access = isl_alloc_type(S->getIslCtx(), struct gpu_stmt_access); 1186 Access->read = Acc->isRead(); 1187 Access->write = Acc->isWrite(); 1188 Access->access = Acc->getAccessRelation(); 1189 isl_space *Space = isl_map_get_space(Access->access); 1190 Space = isl_space_range(Space); 1191 Space = isl_space_from_range(Space); 1192 Space = isl_space_set_tuple_id(Space, isl_dim_in, Acc->getId()); 1193 isl_map *Universe = isl_map_universe(Space); 1194 Access->tagged_access = 1195 isl_map_domain_product(Acc->getAccessRelation(), Universe); 1196 Access->exact_write = Acc->isWrite(); 1197 Access->ref_id = Acc->getId(); 1198 Access->next = Accesses; 1199 Accesses = Access; 1200 } 1201 1202 return Accesses; 1203 } 1204 1205 /// Collect the list of GPU statements. 1206 /// 1207 /// Each statement has an id, a pointer to the underlying data structure, 1208 /// as well as a list with all memory accesses. 1209 /// 1210 /// TODO: Initialize the list of memory accesses. 1211 /// 1212 /// @returns A linked-list of statements. 1213 gpu_stmt *getStatements() { 1214 gpu_stmt *Stmts = isl_calloc_array(S->getIslCtx(), struct gpu_stmt, 1215 std::distance(S->begin(), S->end())); 1216 1217 int i = 0; 1218 for (auto &Stmt : *S) { 1219 gpu_stmt *GPUStmt = &Stmts[i]; 1220 1221 GPUStmt->id = Stmt.getDomainId(); 1222 1223 // We use the pet stmt pointer to keep track of the Polly statements. 1224 GPUStmt->stmt = (pet_stmt *)&Stmt; 1225 GPUStmt->accesses = getStmtAccesses(Stmt); 1226 i++; 1227 } 1228 1229 return Stmts; 1230 } 1231 1232 /// Derive the extent of an array. 1233 /// 1234 /// The extent of an array is defined by the set of memory locations for 1235 /// which a memory access in the iteration domain exists. 1236 /// 1237 /// @param Array The array to derive the extent for. 1238 /// 1239 /// @returns An isl_set describing the extent of the array. 1240 __isl_give isl_set *getExtent(ScopArrayInfo *Array) { 1241 isl_union_map *Accesses = S->getAccesses(); 1242 Accesses = isl_union_map_intersect_domain(Accesses, S->getDomains()); 1243 isl_union_set *AccessUSet = isl_union_map_range(Accesses); 1244 isl_set *AccessSet = 1245 isl_union_set_extract_set(AccessUSet, Array->getSpace()); 1246 isl_union_set_free(AccessUSet); 1247 1248 return AccessSet; 1249 } 1250 1251 /// Derive the bounds of an array. 1252 /// 1253 /// For the first dimension we derive the bound of the array from the extent 1254 /// of this dimension. For inner dimensions we obtain their size directly from 1255 /// ScopArrayInfo. 1256 /// 1257 /// @param PPCGArray The array to compute bounds for. 1258 /// @param Array The polly array from which to take the information. 1259 void setArrayBounds(gpu_array_info &PPCGArray, ScopArrayInfo *Array) { 1260 if (PPCGArray.n_index > 0) { 1261 isl_set *Dom = isl_set_copy(PPCGArray.extent); 1262 Dom = isl_set_project_out(Dom, isl_dim_set, 1, PPCGArray.n_index - 1); 1263 isl_pw_aff *Bound = isl_set_dim_max(isl_set_copy(Dom), 0); 1264 isl_set_free(Dom); 1265 Dom = isl_pw_aff_domain(isl_pw_aff_copy(Bound)); 1266 isl_local_space *LS = isl_local_space_from_space(isl_set_get_space(Dom)); 1267 isl_aff *One = isl_aff_zero_on_domain(LS); 1268 One = isl_aff_add_constant_si(One, 1); 1269 Bound = isl_pw_aff_add(Bound, isl_pw_aff_alloc(Dom, One)); 1270 Bound = isl_pw_aff_gist(Bound, S->getContext()); 1271 PPCGArray.bound[0] = Bound; 1272 } 1273 1274 for (unsigned i = 1; i < PPCGArray.n_index; ++i) { 1275 isl_pw_aff *Bound = Array->getDimensionSizePw(i); 1276 auto LS = isl_pw_aff_get_domain_space(Bound); 1277 auto Aff = isl_multi_aff_zero(LS); 1278 Bound = isl_pw_aff_pullback_multi_aff(Bound, Aff); 1279 PPCGArray.bound[i] = Bound; 1280 } 1281 } 1282 1283 /// Create the arrays for @p PPCGProg. 1284 /// 1285 /// @param PPCGProg The program to compute the arrays for. 1286 void createArrays(gpu_prog *PPCGProg) { 1287 int i = 0; 1288 for (auto &Element : S->arrays()) { 1289 ScopArrayInfo *Array = Element.second.get(); 1290 1291 std::string TypeName; 1292 raw_string_ostream OS(TypeName); 1293 1294 OS << *Array->getElementType(); 1295 TypeName = OS.str(); 1296 1297 gpu_array_info &PPCGArray = PPCGProg->array[i]; 1298 1299 PPCGArray.space = Array->getSpace(); 1300 PPCGArray.type = strdup(TypeName.c_str()); 1301 PPCGArray.size = Array->getElementType()->getPrimitiveSizeInBits() / 8; 1302 PPCGArray.name = strdup(Array->getName().c_str()); 1303 PPCGArray.extent = nullptr; 1304 PPCGArray.n_index = Array->getNumberOfDimensions(); 1305 PPCGArray.bound = 1306 isl_alloc_array(S->getIslCtx(), isl_pw_aff *, PPCGArray.n_index); 1307 PPCGArray.extent = getExtent(Array); 1308 PPCGArray.n_ref = 0; 1309 PPCGArray.refs = nullptr; 1310 PPCGArray.accessed = true; 1311 PPCGArray.read_only_scalar = false; 1312 PPCGArray.has_compound_element = false; 1313 PPCGArray.local = false; 1314 PPCGArray.declare_local = false; 1315 PPCGArray.global = false; 1316 PPCGArray.linearize = false; 1317 PPCGArray.dep_order = nullptr; 1318 PPCGArray.user = Array; 1319 1320 setArrayBounds(PPCGArray, Array); 1321 i++; 1322 1323 collect_references(PPCGProg, &PPCGArray); 1324 } 1325 } 1326 1327 /// Create an identity map between the arrays in the scop. 1328 /// 1329 /// @returns An identity map between the arrays in the scop. 1330 isl_union_map *getArrayIdentity() { 1331 isl_union_map *Maps = isl_union_map_empty(S->getParamSpace()); 1332 1333 for (auto &Item : S->arrays()) { 1334 ScopArrayInfo *Array = Item.second.get(); 1335 isl_space *Space = Array->getSpace(); 1336 Space = isl_space_map_from_set(Space); 1337 isl_map *Identity = isl_map_identity(Space); 1338 Maps = isl_union_map_add_map(Maps, Identity); 1339 } 1340 1341 return Maps; 1342 } 1343 1344 /// Create a default-initialized PPCG GPU program. 1345 /// 1346 /// @returns A new gpu grogram description. 1347 gpu_prog *createPPCGProg(ppcg_scop *PPCGScop) { 1348 1349 if (!PPCGScop) 1350 return nullptr; 1351 1352 auto PPCGProg = isl_calloc_type(S->getIslCtx(), struct gpu_prog); 1353 1354 PPCGProg->ctx = S->getIslCtx(); 1355 PPCGProg->scop = PPCGScop; 1356 PPCGProg->context = isl_set_copy(PPCGScop->context); 1357 PPCGProg->read = isl_union_map_copy(PPCGScop->reads); 1358 PPCGProg->may_write = isl_union_map_copy(PPCGScop->may_writes); 1359 PPCGProg->must_write = isl_union_map_copy(PPCGScop->must_writes); 1360 PPCGProg->tagged_must_kill = 1361 isl_union_map_copy(PPCGScop->tagged_must_kills); 1362 PPCGProg->to_inner = getArrayIdentity(); 1363 PPCGProg->to_outer = getArrayIdentity(); 1364 PPCGProg->may_persist = compute_may_persist(PPCGProg); 1365 PPCGProg->any_to_outer = nullptr; 1366 PPCGProg->array_order = nullptr; 1367 PPCGProg->n_stmts = std::distance(S->begin(), S->end()); 1368 PPCGProg->stmts = getStatements(); 1369 PPCGProg->n_array = std::distance(S->array_begin(), S->array_end()); 1370 PPCGProg->array = isl_calloc_array(S->getIslCtx(), struct gpu_array_info, 1371 PPCGProg->n_array); 1372 1373 createArrays(PPCGProg); 1374 1375 return PPCGProg; 1376 } 1377 1378 struct PrintGPUUserData { 1379 struct cuda_info *CudaInfo; 1380 struct gpu_prog *PPCGProg; 1381 std::vector<ppcg_kernel *> Kernels; 1382 }; 1383 1384 /// Print a user statement node in the host code. 1385 /// 1386 /// We use ppcg's printing facilities to print the actual statement and 1387 /// additionally build up a list of all kernels that are encountered in the 1388 /// host ast. 1389 /// 1390 /// @param P The printer to print to 1391 /// @param Options The printing options to use 1392 /// @param Node The node to print 1393 /// @param User A user pointer to carry additional data. This pointer is 1394 /// expected to be of type PrintGPUUserData. 1395 /// 1396 /// @returns A printer to which the output has been printed. 1397 static __isl_give isl_printer * 1398 printHostUser(__isl_take isl_printer *P, 1399 __isl_take isl_ast_print_options *Options, 1400 __isl_take isl_ast_node *Node, void *User) { 1401 auto Data = (struct PrintGPUUserData *)User; 1402 auto Id = isl_ast_node_get_annotation(Node); 1403 1404 if (Id) { 1405 bool IsUser = !strcmp(isl_id_get_name(Id), "user"); 1406 1407 // If this is a user statement, format it ourselves as ppcg would 1408 // otherwise try to call pet functionality that is not available in 1409 // Polly. 1410 if (IsUser) { 1411 P = isl_printer_start_line(P); 1412 P = isl_printer_print_ast_node(P, Node); 1413 P = isl_printer_end_line(P); 1414 isl_id_free(Id); 1415 isl_ast_print_options_free(Options); 1416 return P; 1417 } 1418 1419 auto Kernel = (struct ppcg_kernel *)isl_id_get_user(Id); 1420 isl_id_free(Id); 1421 Data->Kernels.push_back(Kernel); 1422 } 1423 1424 return print_host_user(P, Options, Node, User); 1425 } 1426 1427 /// Print C code corresponding to the control flow in @p Kernel. 1428 /// 1429 /// @param Kernel The kernel to print 1430 void printKernel(ppcg_kernel *Kernel) { 1431 auto *P = isl_printer_to_str(S->getIslCtx()); 1432 P = isl_printer_set_output_format(P, ISL_FORMAT_C); 1433 auto *Options = isl_ast_print_options_alloc(S->getIslCtx()); 1434 P = isl_ast_node_print(Kernel->tree, P, Options); 1435 char *String = isl_printer_get_str(P); 1436 printf("%s\n", String); 1437 free(String); 1438 isl_printer_free(P); 1439 } 1440 1441 /// Print C code corresponding to the GPU code described by @p Tree. 1442 /// 1443 /// @param Tree An AST describing GPU code 1444 /// @param PPCGProg The PPCG program from which @Tree has been constructed. 1445 void printGPUTree(isl_ast_node *Tree, gpu_prog *PPCGProg) { 1446 auto *P = isl_printer_to_str(S->getIslCtx()); 1447 P = isl_printer_set_output_format(P, ISL_FORMAT_C); 1448 1449 PrintGPUUserData Data; 1450 Data.PPCGProg = PPCGProg; 1451 1452 auto *Options = isl_ast_print_options_alloc(S->getIslCtx()); 1453 Options = 1454 isl_ast_print_options_set_print_user(Options, printHostUser, &Data); 1455 P = isl_ast_node_print(Tree, P, Options); 1456 char *String = isl_printer_get_str(P); 1457 printf("# host\n"); 1458 printf("%s\n", String); 1459 free(String); 1460 isl_printer_free(P); 1461 1462 for (auto Kernel : Data.Kernels) { 1463 printf("# kernel%d\n", Kernel->id); 1464 printKernel(Kernel); 1465 } 1466 } 1467 1468 // Generate a GPU program using PPCG. 1469 // 1470 // GPU mapping consists of multiple steps: 1471 // 1472 // 1) Compute new schedule for the program. 1473 // 2) Map schedule to GPU (TODO) 1474 // 3) Generate code for new schedule (TODO) 1475 // 1476 // We do not use here the Polly ScheduleOptimizer, as the schedule optimizer 1477 // is mostly CPU specific. Instead, we use PPCG's GPU code generation 1478 // strategy directly from this pass. 1479 gpu_gen *generateGPU(ppcg_scop *PPCGScop, gpu_prog *PPCGProg) { 1480 1481 auto PPCGGen = isl_calloc_type(S->getIslCtx(), struct gpu_gen); 1482 1483 PPCGGen->ctx = S->getIslCtx(); 1484 PPCGGen->options = PPCGScop->options; 1485 PPCGGen->print = nullptr; 1486 PPCGGen->print_user = nullptr; 1487 PPCGGen->build_ast_expr = &pollyBuildAstExprForStmt; 1488 PPCGGen->prog = PPCGProg; 1489 PPCGGen->tree = nullptr; 1490 PPCGGen->types.n = 0; 1491 PPCGGen->types.name = nullptr; 1492 PPCGGen->sizes = nullptr; 1493 PPCGGen->used_sizes = nullptr; 1494 PPCGGen->kernel_id = 0; 1495 1496 // Set scheduling strategy to same strategy PPCG is using. 1497 isl_options_set_schedule_outer_coincidence(PPCGGen->ctx, true); 1498 isl_options_set_schedule_maximize_band_depth(PPCGGen->ctx, true); 1499 isl_options_set_schedule_whole_component(PPCGGen->ctx, false); 1500 1501 isl_schedule *Schedule = get_schedule(PPCGGen); 1502 1503 int has_permutable = has_any_permutable_node(Schedule); 1504 1505 if (!has_permutable || has_permutable < 0) { 1506 Schedule = isl_schedule_free(Schedule); 1507 } else { 1508 Schedule = map_to_device(PPCGGen, Schedule); 1509 PPCGGen->tree = generate_code(PPCGGen, isl_schedule_copy(Schedule)); 1510 } 1511 1512 if (DumpSchedule) { 1513 isl_printer *P = isl_printer_to_str(S->getIslCtx()); 1514 P = isl_printer_set_yaml_style(P, ISL_YAML_STYLE_BLOCK); 1515 P = isl_printer_print_str(P, "Schedule\n"); 1516 P = isl_printer_print_str(P, "========\n"); 1517 if (Schedule) 1518 P = isl_printer_print_schedule(P, Schedule); 1519 else 1520 P = isl_printer_print_str(P, "No schedule found\n"); 1521 1522 printf("%s\n", isl_printer_get_str(P)); 1523 isl_printer_free(P); 1524 } 1525 1526 if (DumpCode) { 1527 printf("Code\n"); 1528 printf("====\n"); 1529 if (PPCGGen->tree) 1530 printGPUTree(PPCGGen->tree, PPCGProg); 1531 else 1532 printf("No code generated\n"); 1533 } 1534 1535 isl_schedule_free(Schedule); 1536 1537 return PPCGGen; 1538 } 1539 1540 /// Free gpu_gen structure. 1541 /// 1542 /// @param PPCGGen The ppcg_gen object to free. 1543 void freePPCGGen(gpu_gen *PPCGGen) { 1544 isl_ast_node_free(PPCGGen->tree); 1545 isl_union_map_free(PPCGGen->sizes); 1546 isl_union_map_free(PPCGGen->used_sizes); 1547 free(PPCGGen); 1548 } 1549 1550 /// Free the options in the ppcg scop structure. 1551 /// 1552 /// ppcg is not freeing these options for us. To avoid leaks we do this 1553 /// ourselves. 1554 /// 1555 /// @param PPCGScop The scop referencing the options to free. 1556 void freeOptions(ppcg_scop *PPCGScop) { 1557 free(PPCGScop->options->debug); 1558 PPCGScop->options->debug = nullptr; 1559 free(PPCGScop->options); 1560 PPCGScop->options = nullptr; 1561 } 1562 1563 /// Generate code for a given GPU AST described by @p Root. 1564 /// 1565 /// @param Root An isl_ast_node pointing to the root of the GPU AST. 1566 /// @param Prog The GPU Program to generate code for. 1567 void generateCode(__isl_take isl_ast_node *Root, gpu_prog *Prog) { 1568 ScopAnnotator Annotator; 1569 Annotator.buildAliasScopes(*S); 1570 1571 Region *R = &S->getRegion(); 1572 1573 simplifyRegion(R, DT, LI, RI); 1574 1575 BasicBlock *EnteringBB = R->getEnteringBlock(); 1576 1577 PollyIRBuilder Builder = createPollyIRBuilder(EnteringBB, Annotator); 1578 1579 GPUNodeBuilder NodeBuilder(Builder, Annotator, this, *DL, *LI, *SE, *DT, *S, 1580 Prog); 1581 1582 // Only build the run-time condition and parameters _after_ having 1583 // introduced the conditional branch. This is important as the conditional 1584 // branch will guard the original scop from new induction variables that 1585 // the SCEVExpander may introduce while code generating the parameters and 1586 // which may introduce scalar dependences that prevent us from correctly 1587 // code generating this scop. 1588 BasicBlock *StartBlock = 1589 executeScopConditionally(*S, this, Builder.getTrue()); 1590 1591 // TODO: Handle LICM 1592 // TODO: Verify run-time checks 1593 auto SplitBlock = StartBlock->getSinglePredecessor(); 1594 Builder.SetInsertPoint(SplitBlock->getTerminator()); 1595 NodeBuilder.addParameters(S->getContext()); 1596 Builder.SetInsertPoint(&*StartBlock->begin()); 1597 1598 NodeBuilder.initializeAfterRTH(); 1599 NodeBuilder.create(Root); 1600 NodeBuilder.finalize(); 1601 } 1602 1603 bool runOnScop(Scop &CurrentScop) override { 1604 S = &CurrentScop; 1605 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 1606 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1607 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 1608 DL = &S->getRegion().getEntry()->getParent()->getParent()->getDataLayout(); 1609 RI = &getAnalysis<RegionInfoPass>().getRegionInfo(); 1610 1611 // We currently do not support scops with invariant loads. 1612 if (S->hasInvariantAccesses()) 1613 return false; 1614 1615 auto PPCGScop = createPPCGScop(); 1616 auto PPCGProg = createPPCGProg(PPCGScop); 1617 auto PPCGGen = generateGPU(PPCGScop, PPCGProg); 1618 1619 if (PPCGGen->tree) 1620 generateCode(isl_ast_node_copy(PPCGGen->tree), PPCGProg); 1621 1622 freeOptions(PPCGScop); 1623 freePPCGGen(PPCGGen); 1624 gpu_prog_free(PPCGProg); 1625 ppcg_scop_free(PPCGScop); 1626 1627 return true; 1628 } 1629 1630 void printScop(raw_ostream &, Scop &) const override {} 1631 1632 void getAnalysisUsage(AnalysisUsage &AU) const override { 1633 AU.addRequired<DominatorTreeWrapperPass>(); 1634 AU.addRequired<RegionInfoPass>(); 1635 AU.addRequired<ScalarEvolutionWrapperPass>(); 1636 AU.addRequired<ScopDetection>(); 1637 AU.addRequired<ScopInfoRegionPass>(); 1638 AU.addRequired<LoopInfoWrapperPass>(); 1639 1640 AU.addPreserved<AAResultsWrapperPass>(); 1641 AU.addPreserved<BasicAAWrapperPass>(); 1642 AU.addPreserved<LoopInfoWrapperPass>(); 1643 AU.addPreserved<DominatorTreeWrapperPass>(); 1644 AU.addPreserved<GlobalsAAWrapperPass>(); 1645 AU.addPreserved<PostDominatorTreeWrapperPass>(); 1646 AU.addPreserved<ScopDetection>(); 1647 AU.addPreserved<ScalarEvolutionWrapperPass>(); 1648 AU.addPreserved<SCEVAAWrapperPass>(); 1649 1650 // FIXME: We do not yet add regions for the newly generated code to the 1651 // region tree. 1652 AU.addPreserved<RegionInfoPass>(); 1653 AU.addPreserved<ScopInfoRegionPass>(); 1654 } 1655 }; 1656 } 1657 1658 char PPCGCodeGeneration::ID = 1; 1659 1660 Pass *polly::createPPCGCodeGenerationPass() { return new PPCGCodeGeneration(); } 1661 1662 INITIALIZE_PASS_BEGIN(PPCGCodeGeneration, "polly-codegen-ppcg", 1663 "Polly - Apply PPCG translation to SCOP", false, false) 1664 INITIALIZE_PASS_DEPENDENCY(DependenceInfo); 1665 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass); 1666 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass); 1667 INITIALIZE_PASS_DEPENDENCY(RegionInfoPass); 1668 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass); 1669 INITIALIZE_PASS_DEPENDENCY(ScopDetection); 1670 INITIALIZE_PASS_END(PPCGCodeGeneration, "polly-codegen-ppcg", 1671 "Polly - Apply PPCG translation to SCOP", false, false) 1672