1 //===------ PPCGCodeGeneration.cpp - Polly Accelerator Code Generation. ---===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Take a scop created by ScopInfo and map it to GPU code using the ppcg 11 // GPU mapping strategy. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "polly/CodeGen/IslNodeBuilder.h" 16 #include "polly/CodeGen/Utils.h" 17 #include "polly/DependenceInfo.h" 18 #include "polly/LinkAllPasses.h" 19 #include "polly/Options.h" 20 #include "polly/ScopDetection.h" 21 #include "polly/ScopInfo.h" 22 #include "polly/Support/SCEVValidator.h" 23 #include "llvm/ADT/PostOrderIterator.h" 24 #include "llvm/Analysis/AliasAnalysis.h" 25 #include "llvm/Analysis/BasicAliasAnalysis.h" 26 #include "llvm/Analysis/GlobalsModRef.h" 27 #include "llvm/Analysis/PostDominators.h" 28 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" 29 #include "llvm/Analysis/TargetLibraryInfo.h" 30 #include "llvm/Analysis/TargetTransformInfo.h" 31 #include "llvm/IR/LegacyPassManager.h" 32 #include "llvm/IR/Verifier.h" 33 #include "llvm/Support/TargetRegistry.h" 34 #include "llvm/Support/TargetSelect.h" 35 #include "llvm/Target/TargetMachine.h" 36 #include "llvm/Transforms/IPO/PassManagerBuilder.h" 37 38 #include "isl/union_map.h" 39 40 extern "C" { 41 #include "ppcg/cuda.h" 42 #include "ppcg/gpu.h" 43 #include "ppcg/gpu_print.h" 44 #include "ppcg/ppcg.h" 45 #include "ppcg/schedule.h" 46 } 47 48 #include "llvm/Support/Debug.h" 49 50 using namespace polly; 51 using namespace llvm; 52 53 #define DEBUG_TYPE "polly-codegen-ppcg" 54 55 static cl::opt<bool> DumpSchedule("polly-acc-dump-schedule", 56 cl::desc("Dump the computed GPU Schedule"), 57 cl::Hidden, cl::init(false), cl::ZeroOrMore, 58 cl::cat(PollyCategory)); 59 60 static cl::opt<bool> 61 DumpCode("polly-acc-dump-code", 62 cl::desc("Dump C code describing the GPU mapping"), cl::Hidden, 63 cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory)); 64 65 static cl::opt<bool> DumpKernelIR("polly-acc-dump-kernel-ir", 66 cl::desc("Dump the kernel LLVM-IR"), 67 cl::Hidden, cl::init(false), cl::ZeroOrMore, 68 cl::cat(PollyCategory)); 69 70 static cl::opt<bool> DumpKernelASM("polly-acc-dump-kernel-asm", 71 cl::desc("Dump the kernel assembly code"), 72 cl::Hidden, cl::init(false), cl::ZeroOrMore, 73 cl::cat(PollyCategory)); 74 75 static cl::opt<bool> FastMath("polly-acc-fastmath", 76 cl::desc("Allow unsafe math optimizations"), 77 cl::Hidden, cl::init(false), cl::ZeroOrMore, 78 cl::cat(PollyCategory)); 79 static cl::opt<bool> SharedMemory("polly-acc-use-shared", 80 cl::desc("Use shared memory"), cl::Hidden, 81 cl::init(false), cl::ZeroOrMore, 82 cl::cat(PollyCategory)); 83 static cl::opt<bool> PrivateMemory("polly-acc-use-private", 84 cl::desc("Use private memory"), cl::Hidden, 85 cl::init(false), cl::ZeroOrMore, 86 cl::cat(PollyCategory)); 87 88 static cl::opt<std::string> 89 CudaVersion("polly-acc-cuda-version", 90 cl::desc("The CUDA version to compile for"), cl::Hidden, 91 cl::init("sm_30"), cl::ZeroOrMore, cl::cat(PollyCategory)); 92 93 /// Create the ast expressions for a ScopStmt. 94 /// 95 /// This function is a callback for to generate the ast expressions for each 96 /// of the scheduled ScopStmts. 97 static __isl_give isl_id_to_ast_expr *pollyBuildAstExprForStmt( 98 void *StmtT, isl_ast_build *Build, 99 isl_multi_pw_aff *(*FunctionIndex)(__isl_take isl_multi_pw_aff *MPA, 100 isl_id *Id, void *User), 101 void *UserIndex, 102 isl_ast_expr *(*FunctionExpr)(isl_ast_expr *Expr, isl_id *Id, void *User), 103 void *UserExpr) { 104 105 ScopStmt *Stmt = (ScopStmt *)StmtT; 106 107 isl_ctx *Ctx; 108 109 if (!Stmt || !Build) 110 return NULL; 111 112 Ctx = isl_ast_build_get_ctx(Build); 113 isl_id_to_ast_expr *RefToExpr = isl_id_to_ast_expr_alloc(Ctx, 0); 114 115 for (MemoryAccess *Acc : *Stmt) { 116 isl_map *AddrFunc = Acc->getAddressFunction(); 117 AddrFunc = isl_map_intersect_domain(AddrFunc, Stmt->getDomain()); 118 isl_id *RefId = Acc->getId(); 119 isl_pw_multi_aff *PMA = isl_pw_multi_aff_from_map(AddrFunc); 120 isl_multi_pw_aff *MPA = isl_multi_pw_aff_from_pw_multi_aff(PMA); 121 MPA = isl_multi_pw_aff_coalesce(MPA); 122 MPA = FunctionIndex(MPA, RefId, UserIndex); 123 isl_ast_expr *Access = isl_ast_build_access_from_multi_pw_aff(Build, MPA); 124 Access = FunctionExpr(Access, RefId, UserExpr); 125 RefToExpr = isl_id_to_ast_expr_set(RefToExpr, RefId, Access); 126 } 127 128 return RefToExpr; 129 } 130 131 /// Generate code for a GPU specific isl AST. 132 /// 133 /// The GPUNodeBuilder augments the general existing IslNodeBuilder, which 134 /// generates code for general-prupose AST nodes, with special functionality 135 /// for generating GPU specific user nodes. 136 /// 137 /// @see GPUNodeBuilder::createUser 138 class GPUNodeBuilder : public IslNodeBuilder { 139 public: 140 GPUNodeBuilder(PollyIRBuilder &Builder, ScopAnnotator &Annotator, Pass *P, 141 const DataLayout &DL, LoopInfo &LI, ScalarEvolution &SE, 142 DominatorTree &DT, Scop &S, gpu_prog *Prog) 143 : IslNodeBuilder(Builder, Annotator, P, DL, LI, SE, DT, S), Prog(Prog) { 144 getExprBuilder().setIDToSAI(&IDToSAI); 145 } 146 147 /// Create after-run-time-check initialization code. 148 void initializeAfterRTH(); 149 150 /// Finalize the generated scop. 151 virtual void finalize(); 152 153 private: 154 /// A vector of array base pointers for which a new ScopArrayInfo was created. 155 /// 156 /// This vector is used to delete the ScopArrayInfo when it is not needed any 157 /// more. 158 std::vector<Value *> LocalArrays; 159 160 /// A map from ScopArrays to their corresponding device allocations. 161 std::map<ScopArrayInfo *, Value *> DeviceAllocations; 162 163 /// The current GPU context. 164 Value *GPUContext; 165 166 /// The set of isl_ids allocated in the kernel 167 std::vector<isl_id *> KernelIds; 168 169 /// A module containing GPU code. 170 /// 171 /// This pointer is only set in case we are currently generating GPU code. 172 std::unique_ptr<Module> GPUModule; 173 174 /// The GPU program we generate code for. 175 gpu_prog *Prog; 176 177 /// Class to free isl_ids. 178 class IslIdDeleter { 179 public: 180 void operator()(__isl_take isl_id *Id) { isl_id_free(Id); }; 181 }; 182 183 /// A set containing all isl_ids allocated in a GPU kernel. 184 /// 185 /// By releasing this set all isl_ids will be freed. 186 std::set<std::unique_ptr<isl_id, IslIdDeleter>> KernelIDs; 187 188 IslExprBuilder::IDToScopArrayInfoTy IDToSAI; 189 190 /// Create code for user-defined AST nodes. 191 /// 192 /// These AST nodes can be of type: 193 /// 194 /// - ScopStmt: A computational statement (TODO) 195 /// - Kernel: A GPU kernel call (TODO) 196 /// - Data-Transfer: A GPU <-> CPU data-transfer 197 /// - In-kernel synchronization 198 /// - In-kernel memory copy statement 199 /// 200 /// @param UserStmt The ast node to generate code for. 201 virtual void createUser(__isl_take isl_ast_node *UserStmt); 202 203 enum DataDirection { HOST_TO_DEVICE, DEVICE_TO_HOST }; 204 205 /// Create code for a data transfer statement 206 /// 207 /// @param TransferStmt The data transfer statement. 208 /// @param Direction The direction in which to transfer data. 209 void createDataTransfer(__isl_take isl_ast_node *TransferStmt, 210 enum DataDirection Direction); 211 212 /// Find llvm::Values referenced in GPU kernel. 213 /// 214 /// @param Kernel The kernel to scan for llvm::Values 215 /// 216 /// @returns A set of values referenced by the kernel. 217 SetVector<Value *> getReferencesInKernel(ppcg_kernel *Kernel); 218 219 /// Compute the sizes of the execution grid for a given kernel. 220 /// 221 /// @param Kernel The kernel to compute grid sizes for. 222 /// 223 /// @returns A tuple with grid sizes for X and Y dimension 224 std::tuple<Value *, Value *> getGridSizes(ppcg_kernel *Kernel); 225 226 /// Compute the sizes of the thread blocks for a given kernel. 227 /// 228 /// @param Kernel The kernel to compute thread block sizes for. 229 /// 230 /// @returns A tuple with thread block sizes for X, Y, and Z dimensions. 231 std::tuple<Value *, Value *, Value *> getBlockSizes(ppcg_kernel *Kernel); 232 233 /// Create kernel launch parameters. 234 /// 235 /// @param Kernel The kernel to create parameters for. 236 /// @param F The kernel function that has been created. 237 /// @param SubtreeValues The set of llvm::Values referenced by this kernel. 238 /// 239 /// @returns A stack allocated array with pointers to the parameter 240 /// values that are passed to the kernel. 241 Value *createLaunchParameters(ppcg_kernel *Kernel, Function *F, 242 SetVector<Value *> SubtreeValues); 243 244 /// Create declarations for kernel variable. 245 /// 246 /// This includes shared memory declarations. 247 /// 248 /// @param Kernel The kernel definition to create variables for. 249 /// @param FN The function into which to generate the variables. 250 void createKernelVariables(ppcg_kernel *Kernel, Function *FN); 251 252 /// Create GPU kernel. 253 /// 254 /// Code generate the kernel described by @p KernelStmt. 255 /// 256 /// @param KernelStmt The ast node to generate kernel code for. 257 void createKernel(__isl_take isl_ast_node *KernelStmt); 258 259 /// Generate code that computes the size of an array. 260 /// 261 /// @param Array The array for which to compute a size. 262 Value *getArraySize(gpu_array_info *Array); 263 264 /// Prepare the kernel arguments for kernel code generation 265 /// 266 /// @param Kernel The kernel to generate code for. 267 /// @param FN The function created for the kernel. 268 void prepareKernelArguments(ppcg_kernel *Kernel, Function *FN); 269 270 /// Create kernel function. 271 /// 272 /// Create a kernel function located in a newly created module that can serve 273 /// as target for device code generation. Set the Builder to point to the 274 /// start block of this newly created function. 275 /// 276 /// @param Kernel The kernel to generate code for. 277 /// @param SubtreeValues The set of llvm::Values referenced by this kernel. 278 void createKernelFunction(ppcg_kernel *Kernel, 279 SetVector<Value *> &SubtreeValues); 280 281 /// Create the declaration of a kernel function. 282 /// 283 /// The kernel function takes as arguments: 284 /// 285 /// - One i8 pointer for each external array reference used in the kernel. 286 /// - Host iterators 287 /// - Parameters 288 /// - Other LLVM Value references (TODO) 289 /// 290 /// @param Kernel The kernel to generate the function declaration for. 291 /// @param SubtreeValues The set of llvm::Values referenced by this kernel. 292 /// 293 /// @returns The newly declared function. 294 Function *createKernelFunctionDecl(ppcg_kernel *Kernel, 295 SetVector<Value *> &SubtreeValues); 296 297 /// Insert intrinsic functions to obtain thread and block ids. 298 /// 299 /// @param The kernel to generate the intrinsic functions for. 300 void insertKernelIntrinsics(ppcg_kernel *Kernel); 301 302 /// Create a global-to-shared or shared-to-global copy statement. 303 /// 304 /// @param CopyStmt The copy statement to generate code for 305 void createKernelCopy(ppcg_kernel_stmt *CopyStmt); 306 307 /// Create code for a ScopStmt called in @p Expr. 308 /// 309 /// @param Expr The expression containing the call. 310 /// @param KernelStmt The kernel statement referenced in the call. 311 void createScopStmt(isl_ast_expr *Expr, ppcg_kernel_stmt *KernelStmt); 312 313 /// Create an in-kernel synchronization call. 314 void createKernelSync(); 315 316 /// Create a PTX assembly string for the current GPU kernel. 317 /// 318 /// @returns A string containing the corresponding PTX assembly code. 319 std::string createKernelASM(); 320 321 /// Remove references from the dominator tree to the kernel function @p F. 322 /// 323 /// @param F The function to remove references to. 324 void clearDominators(Function *F); 325 326 /// Remove references from scalar evolution to the kernel function @p F. 327 /// 328 /// @param F The function to remove references to. 329 void clearScalarEvolution(Function *F); 330 331 /// Remove references from loop info to the kernel function @p F. 332 /// 333 /// @param F The function to remove references to. 334 void clearLoops(Function *F); 335 336 /// Finalize the generation of the kernel function. 337 /// 338 /// Free the LLVM-IR module corresponding to the kernel and -- if requested -- 339 /// dump its IR to stderr. 340 /// 341 /// @returns The Assembly string of the kernel. 342 std::string finalizeKernelFunction(); 343 344 /// Create code that allocates memory to store arrays on device. 345 void allocateDeviceArrays(); 346 347 /// Free all allocated device arrays. 348 void freeDeviceArrays(); 349 350 /// Create a call to initialize the GPU context. 351 /// 352 /// @returns A pointer to the newly initialized context. 353 Value *createCallInitContext(); 354 355 /// Create a call to get the device pointer for a kernel allocation. 356 /// 357 /// @param Allocation The Polly GPU allocation 358 /// 359 /// @returns The device parameter corresponding to this allocation. 360 Value *createCallGetDevicePtr(Value *Allocation); 361 362 /// Create a call to free the GPU context. 363 /// 364 /// @param Context A pointer to an initialized GPU context. 365 void createCallFreeContext(Value *Context); 366 367 /// Create a call to allocate memory on the device. 368 /// 369 /// @param Size The size of memory to allocate 370 /// 371 /// @returns A pointer that identifies this allocation. 372 Value *createCallAllocateMemoryForDevice(Value *Size); 373 374 /// Create a call to free a device array. 375 /// 376 /// @param Array The device array to free. 377 void createCallFreeDeviceMemory(Value *Array); 378 379 /// Create a call to copy data from host to device. 380 /// 381 /// @param HostPtr A pointer to the host data that should be copied. 382 /// @param DevicePtr A device pointer specifying the location to copy to. 383 void createCallCopyFromHostToDevice(Value *HostPtr, Value *DevicePtr, 384 Value *Size); 385 386 /// Create a call to copy data from device to host. 387 /// 388 /// @param DevicePtr A pointer to the device data that should be copied. 389 /// @param HostPtr A host pointer specifying the location to copy to. 390 void createCallCopyFromDeviceToHost(Value *DevicePtr, Value *HostPtr, 391 Value *Size); 392 393 /// Create a call to get a kernel from an assembly string. 394 /// 395 /// @param Buffer The string describing the kernel. 396 /// @param Entry The name of the kernel function to call. 397 /// 398 /// @returns A pointer to a kernel object 399 Value *createCallGetKernel(Value *Buffer, Value *Entry); 400 401 /// Create a call to free a GPU kernel. 402 /// 403 /// @param GPUKernel THe kernel to free. 404 void createCallFreeKernel(Value *GPUKernel); 405 406 /// Create a call to launch a GPU kernel. 407 /// 408 /// @param GPUKernel The kernel to launch. 409 /// @param GridDimX The size of the first grid dimension. 410 /// @param GridDimY The size of the second grid dimension. 411 /// @param GridBlockX The size of the first block dimension. 412 /// @param GridBlockY The size of the second block dimension. 413 /// @param GridBlockZ The size of the third block dimension. 414 /// @param Paramters A pointer to an array that contains itself pointers to 415 /// the parameter values passed for each kernel argument. 416 void createCallLaunchKernel(Value *GPUKernel, Value *GridDimX, 417 Value *GridDimY, Value *BlockDimX, 418 Value *BlockDimY, Value *BlockDimZ, 419 Value *Parameters); 420 }; 421 422 void GPUNodeBuilder::initializeAfterRTH() { 423 GPUContext = createCallInitContext(); 424 allocateDeviceArrays(); 425 } 426 427 void GPUNodeBuilder::finalize() { 428 freeDeviceArrays(); 429 createCallFreeContext(GPUContext); 430 IslNodeBuilder::finalize(); 431 } 432 433 void GPUNodeBuilder::allocateDeviceArrays() { 434 isl_ast_build *Build = isl_ast_build_from_context(S.getContext()); 435 436 for (int i = 0; i < Prog->n_array; ++i) { 437 gpu_array_info *Array = &Prog->array[i]; 438 auto *ScopArray = (ScopArrayInfo *)Array->user; 439 std::string DevArrayName("p_dev_array_"); 440 DevArrayName.append(Array->name); 441 442 Value *ArraySize = getArraySize(Array); 443 Value *DevArray = createCallAllocateMemoryForDevice(ArraySize); 444 DevArray->setName(DevArrayName); 445 DeviceAllocations[ScopArray] = DevArray; 446 } 447 448 isl_ast_build_free(Build); 449 } 450 451 void GPUNodeBuilder::freeDeviceArrays() { 452 for (auto &Array : DeviceAllocations) 453 createCallFreeDeviceMemory(Array.second); 454 } 455 456 Value *GPUNodeBuilder::createCallGetKernel(Value *Buffer, Value *Entry) { 457 const char *Name = "polly_getKernel"; 458 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 459 Function *F = M->getFunction(Name); 460 461 // If F is not available, declare it. 462 if (!F) { 463 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 464 std::vector<Type *> Args; 465 Args.push_back(Builder.getInt8PtrTy()); 466 Args.push_back(Builder.getInt8PtrTy()); 467 FunctionType *Ty = FunctionType::get(Builder.getInt8PtrTy(), Args, false); 468 F = Function::Create(Ty, Linkage, Name, M); 469 } 470 471 return Builder.CreateCall(F, {Buffer, Entry}); 472 } 473 474 Value *GPUNodeBuilder::createCallGetDevicePtr(Value *Allocation) { 475 const char *Name = "polly_getDevicePtr"; 476 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 477 Function *F = M->getFunction(Name); 478 479 // If F is not available, declare it. 480 if (!F) { 481 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 482 std::vector<Type *> Args; 483 Args.push_back(Builder.getInt8PtrTy()); 484 FunctionType *Ty = FunctionType::get(Builder.getInt8PtrTy(), Args, false); 485 F = Function::Create(Ty, Linkage, Name, M); 486 } 487 488 return Builder.CreateCall(F, {Allocation}); 489 } 490 491 void GPUNodeBuilder::createCallLaunchKernel(Value *GPUKernel, Value *GridDimX, 492 Value *GridDimY, Value *BlockDimX, 493 Value *BlockDimY, Value *BlockDimZ, 494 Value *Parameters) { 495 const char *Name = "polly_launchKernel"; 496 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 497 Function *F = M->getFunction(Name); 498 499 // If F is not available, declare it. 500 if (!F) { 501 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 502 std::vector<Type *> Args; 503 Args.push_back(Builder.getInt8PtrTy()); 504 Args.push_back(Builder.getInt32Ty()); 505 Args.push_back(Builder.getInt32Ty()); 506 Args.push_back(Builder.getInt32Ty()); 507 Args.push_back(Builder.getInt32Ty()); 508 Args.push_back(Builder.getInt32Ty()); 509 Args.push_back(Builder.getInt8PtrTy()); 510 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false); 511 F = Function::Create(Ty, Linkage, Name, M); 512 } 513 514 Builder.CreateCall(F, {GPUKernel, GridDimX, GridDimY, BlockDimX, BlockDimY, 515 BlockDimZ, Parameters}); 516 } 517 518 void GPUNodeBuilder::createCallFreeKernel(Value *GPUKernel) { 519 const char *Name = "polly_freeKernel"; 520 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 521 Function *F = M->getFunction(Name); 522 523 // If F is not available, declare it. 524 if (!F) { 525 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 526 std::vector<Type *> Args; 527 Args.push_back(Builder.getInt8PtrTy()); 528 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false); 529 F = Function::Create(Ty, Linkage, Name, M); 530 } 531 532 Builder.CreateCall(F, {GPUKernel}); 533 } 534 535 void GPUNodeBuilder::createCallFreeDeviceMemory(Value *Array) { 536 const char *Name = "polly_freeDeviceMemory"; 537 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 538 Function *F = M->getFunction(Name); 539 540 // If F is not available, declare it. 541 if (!F) { 542 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 543 std::vector<Type *> Args; 544 Args.push_back(Builder.getInt8PtrTy()); 545 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false); 546 F = Function::Create(Ty, Linkage, Name, M); 547 } 548 549 Builder.CreateCall(F, {Array}); 550 } 551 552 Value *GPUNodeBuilder::createCallAllocateMemoryForDevice(Value *Size) { 553 const char *Name = "polly_allocateMemoryForDevice"; 554 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 555 Function *F = M->getFunction(Name); 556 557 // If F is not available, declare it. 558 if (!F) { 559 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 560 std::vector<Type *> Args; 561 Args.push_back(Builder.getInt64Ty()); 562 FunctionType *Ty = FunctionType::get(Builder.getInt8PtrTy(), Args, false); 563 F = Function::Create(Ty, Linkage, Name, M); 564 } 565 566 return Builder.CreateCall(F, {Size}); 567 } 568 569 void GPUNodeBuilder::createCallCopyFromHostToDevice(Value *HostData, 570 Value *DeviceData, 571 Value *Size) { 572 const char *Name = "polly_copyFromHostToDevice"; 573 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 574 Function *F = M->getFunction(Name); 575 576 // If F is not available, declare it. 577 if (!F) { 578 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 579 std::vector<Type *> Args; 580 Args.push_back(Builder.getInt8PtrTy()); 581 Args.push_back(Builder.getInt8PtrTy()); 582 Args.push_back(Builder.getInt64Ty()); 583 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false); 584 F = Function::Create(Ty, Linkage, Name, M); 585 } 586 587 Builder.CreateCall(F, {HostData, DeviceData, Size}); 588 } 589 590 void GPUNodeBuilder::createCallCopyFromDeviceToHost(Value *DeviceData, 591 Value *HostData, 592 Value *Size) { 593 const char *Name = "polly_copyFromDeviceToHost"; 594 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 595 Function *F = M->getFunction(Name); 596 597 // If F is not available, declare it. 598 if (!F) { 599 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 600 std::vector<Type *> Args; 601 Args.push_back(Builder.getInt8PtrTy()); 602 Args.push_back(Builder.getInt8PtrTy()); 603 Args.push_back(Builder.getInt64Ty()); 604 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false); 605 F = Function::Create(Ty, Linkage, Name, M); 606 } 607 608 Builder.CreateCall(F, {DeviceData, HostData, Size}); 609 } 610 611 Value *GPUNodeBuilder::createCallInitContext() { 612 const char *Name = "polly_initContext"; 613 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 614 Function *F = M->getFunction(Name); 615 616 // If F is not available, declare it. 617 if (!F) { 618 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 619 std::vector<Type *> Args; 620 FunctionType *Ty = FunctionType::get(Builder.getInt8PtrTy(), Args, false); 621 F = Function::Create(Ty, Linkage, Name, M); 622 } 623 624 return Builder.CreateCall(F, {}); 625 } 626 627 void GPUNodeBuilder::createCallFreeContext(Value *Context) { 628 const char *Name = "polly_freeContext"; 629 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 630 Function *F = M->getFunction(Name); 631 632 // If F is not available, declare it. 633 if (!F) { 634 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 635 std::vector<Type *> Args; 636 Args.push_back(Builder.getInt8PtrTy()); 637 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false); 638 F = Function::Create(Ty, Linkage, Name, M); 639 } 640 641 Builder.CreateCall(F, {Context}); 642 } 643 644 /// Check if one string is a prefix of another. 645 /// 646 /// @param String The string in which to look for the prefix. 647 /// @param Prefix The prefix to look for. 648 static bool isPrefix(std::string String, std::string Prefix) { 649 return String.find(Prefix) == 0; 650 } 651 652 Value *GPUNodeBuilder::getArraySize(gpu_array_info *Array) { 653 isl_ast_build *Build = isl_ast_build_from_context(S.getContext()); 654 Value *ArraySize = ConstantInt::get(Builder.getInt64Ty(), Array->size); 655 656 if (!gpu_array_is_scalar(Array)) { 657 auto OffsetDimZero = isl_pw_aff_copy(Array->bound[0]); 658 isl_ast_expr *Res = isl_ast_build_expr_from_pw_aff(Build, OffsetDimZero); 659 660 for (unsigned int i = 1; i < Array->n_index; i++) { 661 isl_pw_aff *Bound_I = isl_pw_aff_copy(Array->bound[i]); 662 isl_ast_expr *Expr = isl_ast_build_expr_from_pw_aff(Build, Bound_I); 663 Res = isl_ast_expr_mul(Res, Expr); 664 } 665 666 Value *NumElements = ExprBuilder.create(Res); 667 ArraySize = Builder.CreateMul(ArraySize, NumElements); 668 } 669 isl_ast_build_free(Build); 670 return ArraySize; 671 } 672 673 void GPUNodeBuilder::createDataTransfer(__isl_take isl_ast_node *TransferStmt, 674 enum DataDirection Direction) { 675 isl_ast_expr *Expr = isl_ast_node_user_get_expr(TransferStmt); 676 isl_ast_expr *Arg = isl_ast_expr_get_op_arg(Expr, 0); 677 isl_id *Id = isl_ast_expr_get_id(Arg); 678 auto Array = (gpu_array_info *)isl_id_get_user(Id); 679 auto ScopArray = (ScopArrayInfo *)(Array->user); 680 681 Value *Size = getArraySize(Array); 682 Value *HostPtr = ScopArray->getBasePtr(); 683 684 Value *DevPtr = DeviceAllocations[ScopArray]; 685 686 if (gpu_array_is_scalar(Array)) { 687 HostPtr = Builder.CreateAlloca(ScopArray->getElementType()); 688 Builder.CreateStore(ScopArray->getBasePtr(), HostPtr); 689 } 690 691 HostPtr = Builder.CreatePointerCast(HostPtr, Builder.getInt8PtrTy()); 692 693 if (Direction == HOST_TO_DEVICE) 694 createCallCopyFromHostToDevice(HostPtr, DevPtr, Size); 695 else 696 createCallCopyFromDeviceToHost(DevPtr, HostPtr, Size); 697 698 isl_id_free(Id); 699 isl_ast_expr_free(Arg); 700 isl_ast_expr_free(Expr); 701 isl_ast_node_free(TransferStmt); 702 } 703 704 void GPUNodeBuilder::createUser(__isl_take isl_ast_node *UserStmt) { 705 isl_ast_expr *Expr = isl_ast_node_user_get_expr(UserStmt); 706 isl_ast_expr *StmtExpr = isl_ast_expr_get_op_arg(Expr, 0); 707 isl_id *Id = isl_ast_expr_get_id(StmtExpr); 708 isl_id_free(Id); 709 isl_ast_expr_free(StmtExpr); 710 711 const char *Str = isl_id_get_name(Id); 712 if (!strcmp(Str, "kernel")) { 713 createKernel(UserStmt); 714 isl_ast_expr_free(Expr); 715 return; 716 } 717 718 if (isPrefix(Str, "to_device")) { 719 createDataTransfer(UserStmt, HOST_TO_DEVICE); 720 isl_ast_expr_free(Expr); 721 return; 722 } 723 724 if (isPrefix(Str, "from_device")) { 725 createDataTransfer(UserStmt, DEVICE_TO_HOST); 726 isl_ast_expr_free(Expr); 727 return; 728 } 729 730 isl_id *Anno = isl_ast_node_get_annotation(UserStmt); 731 struct ppcg_kernel_stmt *KernelStmt = 732 (struct ppcg_kernel_stmt *)isl_id_get_user(Anno); 733 isl_id_free(Anno); 734 735 switch (KernelStmt->type) { 736 case ppcg_kernel_domain: 737 createScopStmt(Expr, KernelStmt); 738 isl_ast_node_free(UserStmt); 739 return; 740 case ppcg_kernel_copy: 741 createKernelCopy(KernelStmt); 742 isl_ast_expr_free(Expr); 743 isl_ast_node_free(UserStmt); 744 return; 745 case ppcg_kernel_sync: 746 createKernelSync(); 747 isl_ast_expr_free(Expr); 748 isl_ast_node_free(UserStmt); 749 return; 750 } 751 752 isl_ast_expr_free(Expr); 753 isl_ast_node_free(UserStmt); 754 return; 755 } 756 void GPUNodeBuilder::createKernelCopy(ppcg_kernel_stmt *KernelStmt) { 757 isl_ast_expr *LocalIndex = isl_ast_expr_copy(KernelStmt->u.c.local_index); 758 LocalIndex = isl_ast_expr_address_of(LocalIndex); 759 Value *LocalAddr = ExprBuilder.create(LocalIndex); 760 isl_ast_expr *Index = isl_ast_expr_copy(KernelStmt->u.c.index); 761 Index = isl_ast_expr_address_of(Index); 762 Value *GlobalAddr = ExprBuilder.create(Index); 763 764 if (KernelStmt->u.c.read) { 765 LoadInst *Load = Builder.CreateLoad(GlobalAddr, "shared.read"); 766 Builder.CreateStore(Load, LocalAddr); 767 } else { 768 LoadInst *Load = Builder.CreateLoad(LocalAddr, "shared.write"); 769 Builder.CreateStore(Load, GlobalAddr); 770 } 771 } 772 773 void GPUNodeBuilder::createScopStmt(isl_ast_expr *Expr, 774 ppcg_kernel_stmt *KernelStmt) { 775 auto Stmt = (ScopStmt *)KernelStmt->u.d.stmt->stmt; 776 isl_id_to_ast_expr *Indexes = KernelStmt->u.d.ref2expr; 777 778 LoopToScevMapT LTS; 779 LTS.insert(OutsideLoopIterations.begin(), OutsideLoopIterations.end()); 780 781 createSubstitutions(Expr, Stmt, LTS); 782 783 if (Stmt->isBlockStmt()) 784 BlockGen.copyStmt(*Stmt, LTS, Indexes); 785 else 786 assert(0 && "Region statement not supported\n"); 787 } 788 789 void GPUNodeBuilder::createKernelSync() { 790 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 791 auto *Sync = Intrinsic::getDeclaration(M, Intrinsic::nvvm_barrier0); 792 Builder.CreateCall(Sync, {}); 793 } 794 795 /// Collect llvm::Values referenced from @p Node 796 /// 797 /// This function only applies to isl_ast_nodes that are user_nodes referring 798 /// to a ScopStmt. All other node types are ignore. 799 /// 800 /// @param Node The node to collect references for. 801 /// @param User A user pointer used as storage for the data that is collected. 802 /// 803 /// @returns isl_bool_true if data could be collected successfully. 804 isl_bool collectReferencesInGPUStmt(__isl_keep isl_ast_node *Node, void *User) { 805 if (isl_ast_node_get_type(Node) != isl_ast_node_user) 806 return isl_bool_true; 807 808 isl_ast_expr *Expr = isl_ast_node_user_get_expr(Node); 809 isl_ast_expr *StmtExpr = isl_ast_expr_get_op_arg(Expr, 0); 810 isl_id *Id = isl_ast_expr_get_id(StmtExpr); 811 const char *Str = isl_id_get_name(Id); 812 isl_id_free(Id); 813 isl_ast_expr_free(StmtExpr); 814 isl_ast_expr_free(Expr); 815 816 if (!isPrefix(Str, "Stmt")) 817 return isl_bool_true; 818 819 Id = isl_ast_node_get_annotation(Node); 820 auto *KernelStmt = (ppcg_kernel_stmt *)isl_id_get_user(Id); 821 auto Stmt = (ScopStmt *)KernelStmt->u.d.stmt->stmt; 822 isl_id_free(Id); 823 824 addReferencesFromStmt(Stmt, User, false /* CreateScalarRefs */); 825 826 return isl_bool_true; 827 } 828 829 SetVector<Value *> GPUNodeBuilder::getReferencesInKernel(ppcg_kernel *Kernel) { 830 SetVector<Value *> SubtreeValues; 831 SetVector<const SCEV *> SCEVs; 832 SetVector<const Loop *> Loops; 833 SubtreeReferences References = { 834 LI, SE, S, ValueMap, SubtreeValues, SCEVs, getBlockGenerator()}; 835 836 for (const auto &I : IDToValue) 837 SubtreeValues.insert(I.second); 838 839 isl_ast_node_foreach_descendant_top_down( 840 Kernel->tree, collectReferencesInGPUStmt, &References); 841 842 for (const SCEV *Expr : SCEVs) 843 findValues(Expr, SE, SubtreeValues); 844 845 for (auto &SAI : S.arrays()) 846 SubtreeValues.remove(SAI->getBasePtr()); 847 848 isl_space *Space = S.getParamSpace(); 849 for (long i = 0; i < isl_space_dim(Space, isl_dim_param); i++) { 850 isl_id *Id = isl_space_get_dim_id(Space, isl_dim_param, i); 851 assert(IDToValue.count(Id)); 852 Value *Val = IDToValue[Id]; 853 SubtreeValues.remove(Val); 854 isl_id_free(Id); 855 } 856 isl_space_free(Space); 857 858 for (long i = 0; i < isl_space_dim(Kernel->space, isl_dim_set); i++) { 859 isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_set, i); 860 assert(IDToValue.count(Id)); 861 Value *Val = IDToValue[Id]; 862 SubtreeValues.remove(Val); 863 isl_id_free(Id); 864 } 865 866 return SubtreeValues; 867 } 868 869 void GPUNodeBuilder::clearDominators(Function *F) { 870 DomTreeNode *N = DT.getNode(&F->getEntryBlock()); 871 std::vector<BasicBlock *> Nodes; 872 for (po_iterator<DomTreeNode *> I = po_begin(N), E = po_end(N); I != E; ++I) 873 Nodes.push_back(I->getBlock()); 874 875 for (BasicBlock *BB : Nodes) 876 DT.eraseNode(BB); 877 } 878 879 void GPUNodeBuilder::clearScalarEvolution(Function *F) { 880 for (BasicBlock &BB : *F) { 881 Loop *L = LI.getLoopFor(&BB); 882 if (L) 883 SE.forgetLoop(L); 884 } 885 } 886 887 void GPUNodeBuilder::clearLoops(Function *F) { 888 for (BasicBlock &BB : *F) { 889 Loop *L = LI.getLoopFor(&BB); 890 if (L) 891 SE.forgetLoop(L); 892 LI.removeBlock(&BB); 893 } 894 } 895 896 std::tuple<Value *, Value *> GPUNodeBuilder::getGridSizes(ppcg_kernel *Kernel) { 897 std::vector<Value *> Sizes; 898 isl_ast_build *Context = isl_ast_build_from_context(S.getContext()); 899 900 for (long i = 0; i < Kernel->n_grid; i++) { 901 isl_pw_aff *Size = isl_multi_pw_aff_get_pw_aff(Kernel->grid_size, i); 902 isl_ast_expr *GridSize = isl_ast_build_expr_from_pw_aff(Context, Size); 903 Value *Res = ExprBuilder.create(GridSize); 904 Res = Builder.CreateTrunc(Res, Builder.getInt32Ty()); 905 Sizes.push_back(Res); 906 } 907 isl_ast_build_free(Context); 908 909 for (long i = Kernel->n_grid; i < 3; i++) 910 Sizes.push_back(ConstantInt::get(Builder.getInt32Ty(), 1)); 911 912 return std::make_tuple(Sizes[0], Sizes[1]); 913 } 914 915 std::tuple<Value *, Value *, Value *> 916 GPUNodeBuilder::getBlockSizes(ppcg_kernel *Kernel) { 917 std::vector<Value *> Sizes; 918 919 for (long i = 0; i < Kernel->n_block; i++) { 920 Value *Res = ConstantInt::get(Builder.getInt32Ty(), Kernel->block_dim[i]); 921 Sizes.push_back(Res); 922 } 923 924 for (long i = Kernel->n_block; i < 3; i++) 925 Sizes.push_back(ConstantInt::get(Builder.getInt32Ty(), 1)); 926 927 return std::make_tuple(Sizes[0], Sizes[1], Sizes[2]); 928 } 929 930 Value * 931 GPUNodeBuilder::createLaunchParameters(ppcg_kernel *Kernel, Function *F, 932 SetVector<Value *> SubtreeValues) { 933 Type *ArrayTy = ArrayType::get(Builder.getInt8PtrTy(), 934 std::distance(F->arg_begin(), F->arg_end())); 935 936 BasicBlock *EntryBlock = 937 &Builder.GetInsertBlock()->getParent()->getEntryBlock(); 938 std::string Launch = "polly_launch_" + std::to_string(Kernel->id); 939 Instruction *Parameters = 940 new AllocaInst(ArrayTy, Launch + "_params", EntryBlock->getTerminator()); 941 942 int Index = 0; 943 for (long i = 0; i < Prog->n_array; i++) { 944 if (!ppcg_kernel_requires_array_argument(Kernel, i)) 945 continue; 946 947 isl_id *Id = isl_space_get_tuple_id(Prog->array[i].space, isl_dim_set); 948 const ScopArrayInfo *SAI = ScopArrayInfo::getFromId(Id); 949 950 Value *DevArray = DeviceAllocations[(ScopArrayInfo *)SAI]; 951 DevArray = createCallGetDevicePtr(DevArray); 952 Instruction *Param = new AllocaInst( 953 Builder.getInt8PtrTy(), Launch + "_param_" + std::to_string(Index), 954 EntryBlock->getTerminator()); 955 Builder.CreateStore(DevArray, Param); 956 Value *Slot = Builder.CreateGEP( 957 Parameters, {Builder.getInt64(0), Builder.getInt64(Index)}); 958 Value *ParamTyped = 959 Builder.CreatePointerCast(Param, Builder.getInt8PtrTy()); 960 Builder.CreateStore(ParamTyped, Slot); 961 Index++; 962 } 963 964 int NumHostIters = isl_space_dim(Kernel->space, isl_dim_set); 965 966 for (long i = 0; i < NumHostIters; i++) { 967 isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_set, i); 968 Value *Val = IDToValue[Id]; 969 isl_id_free(Id); 970 Instruction *Param = new AllocaInst( 971 Val->getType(), Launch + "_param_" + std::to_string(Index), 972 EntryBlock->getTerminator()); 973 Builder.CreateStore(Val, Param); 974 Value *Slot = Builder.CreateGEP( 975 Parameters, {Builder.getInt64(0), Builder.getInt64(Index)}); 976 Value *ParamTyped = 977 Builder.CreatePointerCast(Param, Builder.getInt8PtrTy()); 978 Builder.CreateStore(ParamTyped, Slot); 979 Index++; 980 } 981 982 int NumVars = isl_space_dim(Kernel->space, isl_dim_param); 983 984 for (long i = 0; i < NumVars; i++) { 985 isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_param, i); 986 Value *Val = IDToValue[Id]; 987 isl_id_free(Id); 988 Instruction *Param = new AllocaInst( 989 Val->getType(), Launch + "_param_" + std::to_string(Index), 990 EntryBlock->getTerminator()); 991 Builder.CreateStore(Val, Param); 992 Value *Slot = Builder.CreateGEP( 993 Parameters, {Builder.getInt64(0), Builder.getInt64(Index)}); 994 Value *ParamTyped = 995 Builder.CreatePointerCast(Param, Builder.getInt8PtrTy()); 996 Builder.CreateStore(ParamTyped, Slot); 997 Index++; 998 } 999 1000 for (auto Val : SubtreeValues) { 1001 Instruction *Param = new AllocaInst( 1002 Val->getType(), Launch + "_param_" + std::to_string(Index), 1003 EntryBlock->getTerminator()); 1004 Builder.CreateStore(Val, Param); 1005 Value *Slot = Builder.CreateGEP( 1006 Parameters, {Builder.getInt64(0), Builder.getInt64(Index)}); 1007 Value *ParamTyped = 1008 Builder.CreatePointerCast(Param, Builder.getInt8PtrTy()); 1009 Builder.CreateStore(ParamTyped, Slot); 1010 Index++; 1011 } 1012 1013 auto Location = EntryBlock->getTerminator(); 1014 return new BitCastInst(Parameters, Builder.getInt8PtrTy(), 1015 Launch + "_params_i8ptr", Location); 1016 } 1017 1018 void GPUNodeBuilder::createKernel(__isl_take isl_ast_node *KernelStmt) { 1019 isl_id *Id = isl_ast_node_get_annotation(KernelStmt); 1020 ppcg_kernel *Kernel = (ppcg_kernel *)isl_id_get_user(Id); 1021 isl_id_free(Id); 1022 isl_ast_node_free(KernelStmt); 1023 1024 SetVector<Value *> SubtreeValues = getReferencesInKernel(Kernel); 1025 1026 assert(Kernel->tree && "Device AST of kernel node is empty"); 1027 1028 Instruction &HostInsertPoint = *Builder.GetInsertPoint(); 1029 IslExprBuilder::IDToValueTy HostIDs = IDToValue; 1030 ValueMapT HostValueMap = ValueMap; 1031 1032 SetVector<const Loop *> Loops; 1033 1034 // Create for all loops we depend on values that contain the current loop 1035 // iteration. These values are necessary to generate code for SCEVs that 1036 // depend on such loops. As a result we need to pass them to the subfunction. 1037 for (const Loop *L : Loops) { 1038 const SCEV *OuterLIV = SE.getAddRecExpr(SE.getUnknown(Builder.getInt64(0)), 1039 SE.getUnknown(Builder.getInt64(1)), 1040 L, SCEV::FlagAnyWrap); 1041 Value *V = generateSCEV(OuterLIV); 1042 OutsideLoopIterations[L] = SE.getUnknown(V); 1043 SubtreeValues.insert(V); 1044 } 1045 1046 createKernelFunction(Kernel, SubtreeValues); 1047 1048 create(isl_ast_node_copy(Kernel->tree)); 1049 1050 Function *F = Builder.GetInsertBlock()->getParent(); 1051 clearDominators(F); 1052 clearScalarEvolution(F); 1053 clearLoops(F); 1054 1055 Builder.SetInsertPoint(&HostInsertPoint); 1056 IDToValue = HostIDs; 1057 1058 ValueMap = HostValueMap; 1059 ScalarMap.clear(); 1060 PHIOpMap.clear(); 1061 EscapeMap.clear(); 1062 IDToSAI.clear(); 1063 Annotator.resetAlternativeAliasBases(); 1064 for (auto &BasePtr : LocalArrays) 1065 S.invalidateScopArrayInfo(BasePtr, ScopArrayInfo::MK_Array); 1066 LocalArrays.clear(); 1067 1068 Value *Parameters = createLaunchParameters(Kernel, F, SubtreeValues); 1069 1070 std::string ASMString = finalizeKernelFunction(); 1071 std::string Name = "kernel_" + std::to_string(Kernel->id); 1072 Value *KernelString = Builder.CreateGlobalStringPtr(ASMString, Name); 1073 Value *NameString = Builder.CreateGlobalStringPtr(Name, Name + "_name"); 1074 Value *GPUKernel = createCallGetKernel(KernelString, NameString); 1075 1076 Value *GridDimX, *GridDimY; 1077 std::tie(GridDimX, GridDimY) = getGridSizes(Kernel); 1078 1079 Value *BlockDimX, *BlockDimY, *BlockDimZ; 1080 std::tie(BlockDimX, BlockDimY, BlockDimZ) = getBlockSizes(Kernel); 1081 1082 createCallLaunchKernel(GPUKernel, GridDimX, GridDimY, BlockDimX, BlockDimY, 1083 BlockDimZ, Parameters); 1084 createCallFreeKernel(GPUKernel); 1085 1086 for (auto Id : KernelIds) 1087 isl_id_free(Id); 1088 1089 KernelIds.clear(); 1090 } 1091 1092 /// Compute the DataLayout string for the NVPTX backend. 1093 /// 1094 /// @param is64Bit Are we looking for a 64 bit architecture? 1095 static std::string computeNVPTXDataLayout(bool is64Bit) { 1096 std::string Ret = "e"; 1097 1098 if (!is64Bit) 1099 Ret += "-p:32:32"; 1100 1101 Ret += "-i64:64-v16:16-v32:32-n16:32:64"; 1102 1103 return Ret; 1104 } 1105 1106 Function * 1107 GPUNodeBuilder::createKernelFunctionDecl(ppcg_kernel *Kernel, 1108 SetVector<Value *> &SubtreeValues) { 1109 std::vector<Type *> Args; 1110 std::string Identifier = "kernel_" + std::to_string(Kernel->id); 1111 1112 for (long i = 0; i < Prog->n_array; i++) { 1113 if (!ppcg_kernel_requires_array_argument(Kernel, i)) 1114 continue; 1115 1116 Args.push_back(Builder.getInt8PtrTy()); 1117 } 1118 1119 int NumHostIters = isl_space_dim(Kernel->space, isl_dim_set); 1120 1121 for (long i = 0; i < NumHostIters; i++) 1122 Args.push_back(Builder.getInt64Ty()); 1123 1124 int NumVars = isl_space_dim(Kernel->space, isl_dim_param); 1125 1126 for (long i = 0; i < NumVars; i++) 1127 Args.push_back(Builder.getInt64Ty()); 1128 1129 for (auto *V : SubtreeValues) 1130 Args.push_back(V->getType()); 1131 1132 auto *FT = FunctionType::get(Builder.getVoidTy(), Args, false); 1133 auto *FN = Function::Create(FT, Function::ExternalLinkage, Identifier, 1134 GPUModule.get()); 1135 FN->setCallingConv(CallingConv::PTX_Kernel); 1136 1137 auto Arg = FN->arg_begin(); 1138 for (long i = 0; i < Kernel->n_array; i++) { 1139 if (!ppcg_kernel_requires_array_argument(Kernel, i)) 1140 continue; 1141 1142 Arg->setName(Kernel->array[i].array->name); 1143 1144 isl_id *Id = isl_space_get_tuple_id(Prog->array[i].space, isl_dim_set); 1145 const ScopArrayInfo *SAI = ScopArrayInfo::getFromId(isl_id_copy(Id)); 1146 Type *EleTy = SAI->getElementType(); 1147 Value *Val = &*Arg; 1148 SmallVector<const SCEV *, 4> Sizes; 1149 isl_ast_build *Build = 1150 isl_ast_build_from_context(isl_set_copy(Prog->context)); 1151 for (long j = 1; j < Kernel->array[i].array->n_index; j++) { 1152 isl_ast_expr *DimSize = isl_ast_build_expr_from_pw_aff( 1153 Build, isl_pw_aff_copy(Kernel->array[i].array->bound[j])); 1154 auto V = ExprBuilder.create(DimSize); 1155 Sizes.push_back(SE.getSCEV(V)); 1156 } 1157 const ScopArrayInfo *SAIRep = 1158 S.getOrCreateScopArrayInfo(Val, EleTy, Sizes, ScopArrayInfo::MK_Array); 1159 LocalArrays.push_back(Val); 1160 1161 isl_ast_build_free(Build); 1162 KernelIds.push_back(Id); 1163 IDToSAI[Id] = SAIRep; 1164 Arg++; 1165 } 1166 1167 for (long i = 0; i < NumHostIters; i++) { 1168 isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_set, i); 1169 Arg->setName(isl_id_get_name(Id)); 1170 IDToValue[Id] = &*Arg; 1171 KernelIDs.insert(std::unique_ptr<isl_id, IslIdDeleter>(Id)); 1172 Arg++; 1173 } 1174 1175 for (long i = 0; i < NumVars; i++) { 1176 isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_param, i); 1177 Arg->setName(isl_id_get_name(Id)); 1178 IDToValue[Id] = &*Arg; 1179 KernelIDs.insert(std::unique_ptr<isl_id, IslIdDeleter>(Id)); 1180 Arg++; 1181 } 1182 1183 for (auto *V : SubtreeValues) { 1184 Arg->setName(V->getName()); 1185 ValueMap[V] = &*Arg; 1186 Arg++; 1187 } 1188 1189 return FN; 1190 } 1191 1192 void GPUNodeBuilder::insertKernelIntrinsics(ppcg_kernel *Kernel) { 1193 Intrinsic::ID IntrinsicsBID[] = {Intrinsic::nvvm_read_ptx_sreg_ctaid_x, 1194 Intrinsic::nvvm_read_ptx_sreg_ctaid_y}; 1195 1196 Intrinsic::ID IntrinsicsTID[] = {Intrinsic::nvvm_read_ptx_sreg_tid_x, 1197 Intrinsic::nvvm_read_ptx_sreg_tid_y, 1198 Intrinsic::nvvm_read_ptx_sreg_tid_z}; 1199 1200 auto addId = [this](__isl_take isl_id *Id, Intrinsic::ID Intr) mutable { 1201 std::string Name = isl_id_get_name(Id); 1202 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 1203 Function *IntrinsicFn = Intrinsic::getDeclaration(M, Intr); 1204 Value *Val = Builder.CreateCall(IntrinsicFn, {}); 1205 Val = Builder.CreateIntCast(Val, Builder.getInt64Ty(), false, Name); 1206 IDToValue[Id] = Val; 1207 KernelIDs.insert(std::unique_ptr<isl_id, IslIdDeleter>(Id)); 1208 }; 1209 1210 for (int i = 0; i < Kernel->n_grid; ++i) { 1211 isl_id *Id = isl_id_list_get_id(Kernel->block_ids, i); 1212 addId(Id, IntrinsicsBID[i]); 1213 } 1214 1215 for (int i = 0; i < Kernel->n_block; ++i) { 1216 isl_id *Id = isl_id_list_get_id(Kernel->thread_ids, i); 1217 addId(Id, IntrinsicsTID[i]); 1218 } 1219 } 1220 1221 void GPUNodeBuilder::prepareKernelArguments(ppcg_kernel *Kernel, Function *FN) { 1222 auto Arg = FN->arg_begin(); 1223 for (long i = 0; i < Kernel->n_array; i++) { 1224 if (!ppcg_kernel_requires_array_argument(Kernel, i)) 1225 continue; 1226 1227 isl_id *Id = isl_space_get_tuple_id(Prog->array[i].space, isl_dim_set); 1228 const ScopArrayInfo *SAI = ScopArrayInfo::getFromId(isl_id_copy(Id)); 1229 isl_id_free(Id); 1230 1231 if (SAI->getNumberOfDimensions() > 0) { 1232 Arg++; 1233 continue; 1234 } 1235 1236 Value *Alloca = BlockGen.getOrCreateScalarAlloca(SAI->getBasePtr()); 1237 Value *ArgPtr = &*Arg; 1238 Type *TypePtr = SAI->getElementType()->getPointerTo(); 1239 Value *TypedArgPtr = Builder.CreatePointerCast(ArgPtr, TypePtr); 1240 Value *Val = Builder.CreateLoad(TypedArgPtr); 1241 Builder.CreateStore(Val, Alloca); 1242 1243 Arg++; 1244 } 1245 } 1246 1247 void GPUNodeBuilder::createKernelVariables(ppcg_kernel *Kernel, Function *FN) { 1248 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 1249 1250 for (int i = 0; i < Kernel->n_var; ++i) { 1251 struct ppcg_kernel_var &Var = Kernel->var[i]; 1252 isl_id *Id = isl_space_get_tuple_id(Var.array->space, isl_dim_set); 1253 Type *EleTy = ScopArrayInfo::getFromId(Id)->getElementType(); 1254 1255 SmallVector<const SCEV *, 4> Sizes; 1256 isl_val *V0 = isl_vec_get_element_val(Var.size, 0); 1257 long Bound = isl_val_get_num_si(V0); 1258 isl_val_free(V0); 1259 Sizes.push_back(S.getSE()->getConstant(Builder.getInt64Ty(), Bound)); 1260 1261 ArrayType *ArrayTy = ArrayType::get(EleTy, Bound); 1262 for (unsigned int j = 1; j < Var.array->n_index; ++j) { 1263 isl_val *Val = isl_vec_get_element_val(Var.size, j); 1264 Bound = isl_val_get_num_si(Val); 1265 isl_val_free(Val); 1266 Sizes.push_back(S.getSE()->getConstant(Builder.getInt64Ty(), Bound)); 1267 ArrayTy = ArrayType::get(ArrayTy, Bound); 1268 } 1269 1270 const ScopArrayInfo *SAI; 1271 Value *Allocation; 1272 if (Var.type == ppcg_access_shared) { 1273 auto GlobalVar = new GlobalVariable( 1274 *M, ArrayTy, false, GlobalValue::InternalLinkage, 0, Var.name, 1275 nullptr, GlobalValue::ThreadLocalMode::NotThreadLocal, 3); 1276 GlobalVar->setAlignment(EleTy->getPrimitiveSizeInBits() / 8); 1277 ConstantAggregateZero *Zero = ConstantAggregateZero::get(ArrayTy); 1278 GlobalVar->setInitializer(Zero); 1279 Allocation = GlobalVar; 1280 } else if (Var.type == ppcg_access_private) { 1281 Allocation = Builder.CreateAlloca(ArrayTy, 0, "private_array"); 1282 } else { 1283 llvm_unreachable("unknown variable type"); 1284 } 1285 Builder.GetInsertBlock()->dump(); 1286 SAI = S.getOrCreateScopArrayInfo(Allocation, EleTy, Sizes, 1287 ScopArrayInfo::MK_Array); 1288 Id = isl_id_alloc(S.getIslCtx(), Var.name, nullptr); 1289 IDToValue[Id] = Allocation; 1290 LocalArrays.push_back(Allocation); 1291 KernelIds.push_back(Id); 1292 IDToSAI[Id] = SAI; 1293 } 1294 } 1295 1296 void GPUNodeBuilder::createKernelFunction(ppcg_kernel *Kernel, 1297 SetVector<Value *> &SubtreeValues) { 1298 1299 std::string Identifier = "kernel_" + std::to_string(Kernel->id); 1300 GPUModule.reset(new Module(Identifier, Builder.getContext())); 1301 GPUModule->setTargetTriple(Triple::normalize("nvptx64-nvidia-cuda")); 1302 GPUModule->setDataLayout(computeNVPTXDataLayout(true /* is64Bit */)); 1303 1304 Function *FN = createKernelFunctionDecl(Kernel, SubtreeValues); 1305 1306 BasicBlock *PrevBlock = Builder.GetInsertBlock(); 1307 auto EntryBlock = BasicBlock::Create(Builder.getContext(), "entry", FN); 1308 1309 DominatorTree &DT = P->getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1310 DT.addNewBlock(EntryBlock, PrevBlock); 1311 1312 Builder.SetInsertPoint(EntryBlock); 1313 Builder.CreateRetVoid(); 1314 Builder.SetInsertPoint(EntryBlock, EntryBlock->begin()); 1315 1316 ScopDetection::markFunctionAsInvalid(FN); 1317 1318 prepareKernelArguments(Kernel, FN); 1319 createKernelVariables(Kernel, FN); 1320 insertKernelIntrinsics(Kernel); 1321 } 1322 1323 std::string GPUNodeBuilder::createKernelASM() { 1324 llvm::Triple GPUTriple(Triple::normalize("nvptx64-nvidia-cuda")); 1325 std::string ErrMsg; 1326 auto GPUTarget = TargetRegistry::lookupTarget(GPUTriple.getTriple(), ErrMsg); 1327 1328 if (!GPUTarget) { 1329 errs() << ErrMsg << "\n"; 1330 return ""; 1331 } 1332 1333 TargetOptions Options; 1334 Options.UnsafeFPMath = FastMath; 1335 std::unique_ptr<TargetMachine> TargetM( 1336 GPUTarget->createTargetMachine(GPUTriple.getTriple(), CudaVersion, "", 1337 Options, Optional<Reloc::Model>())); 1338 1339 SmallString<0> ASMString; 1340 raw_svector_ostream ASMStream(ASMString); 1341 llvm::legacy::PassManager PM; 1342 1343 PM.add(createTargetTransformInfoWrapperPass(TargetM->getTargetIRAnalysis())); 1344 1345 if (TargetM->addPassesToEmitFile( 1346 PM, ASMStream, TargetMachine::CGFT_AssemblyFile, true /* verify */)) { 1347 errs() << "The target does not support generation of this file type!\n"; 1348 return ""; 1349 } 1350 1351 PM.run(*GPUModule); 1352 1353 return ASMStream.str(); 1354 } 1355 1356 std::string GPUNodeBuilder::finalizeKernelFunction() { 1357 // Verify module. 1358 llvm::legacy::PassManager Passes; 1359 Passes.add(createVerifierPass()); 1360 Passes.run(*GPUModule); 1361 1362 if (DumpKernelIR) 1363 outs() << *GPUModule << "\n"; 1364 1365 // Optimize module. 1366 llvm::legacy::PassManager OptPasses; 1367 PassManagerBuilder PassBuilder; 1368 PassBuilder.OptLevel = 3; 1369 PassBuilder.SizeLevel = 0; 1370 PassBuilder.populateModulePassManager(OptPasses); 1371 OptPasses.run(*GPUModule); 1372 1373 std::string Assembly = createKernelASM(); 1374 1375 if (DumpKernelASM) 1376 outs() << Assembly << "\n"; 1377 1378 GPUModule.release(); 1379 KernelIDs.clear(); 1380 1381 return Assembly; 1382 } 1383 1384 namespace { 1385 class PPCGCodeGeneration : public ScopPass { 1386 public: 1387 static char ID; 1388 1389 /// The scop that is currently processed. 1390 Scop *S; 1391 1392 LoopInfo *LI; 1393 DominatorTree *DT; 1394 ScalarEvolution *SE; 1395 const DataLayout *DL; 1396 RegionInfo *RI; 1397 1398 PPCGCodeGeneration() : ScopPass(ID) {} 1399 1400 /// Construct compilation options for PPCG. 1401 /// 1402 /// @returns The compilation options. 1403 ppcg_options *createPPCGOptions() { 1404 auto DebugOptions = 1405 (ppcg_debug_options *)malloc(sizeof(ppcg_debug_options)); 1406 auto Options = (ppcg_options *)malloc(sizeof(ppcg_options)); 1407 1408 DebugOptions->dump_schedule_constraints = false; 1409 DebugOptions->dump_schedule = false; 1410 DebugOptions->dump_final_schedule = false; 1411 DebugOptions->dump_sizes = false; 1412 1413 Options->debug = DebugOptions; 1414 1415 Options->reschedule = true; 1416 Options->scale_tile_loops = false; 1417 Options->wrap = false; 1418 1419 Options->non_negative_parameters = false; 1420 Options->ctx = nullptr; 1421 Options->sizes = nullptr; 1422 1423 Options->tile_size = 32; 1424 1425 Options->use_private_memory = PrivateMemory; 1426 Options->use_shared_memory = SharedMemory; 1427 Options->max_shared_memory = 48 * 1024; 1428 1429 Options->target = PPCG_TARGET_CUDA; 1430 Options->openmp = false; 1431 Options->linearize_device_arrays = true; 1432 Options->live_range_reordering = false; 1433 1434 Options->opencl_compiler_options = nullptr; 1435 Options->opencl_use_gpu = false; 1436 Options->opencl_n_include_file = 0; 1437 Options->opencl_include_files = nullptr; 1438 Options->opencl_print_kernel_types = false; 1439 Options->opencl_embed_kernel_code = false; 1440 1441 Options->save_schedule_file = nullptr; 1442 Options->load_schedule_file = nullptr; 1443 1444 return Options; 1445 } 1446 1447 /// Get a tagged access relation containing all accesses of type @p AccessTy. 1448 /// 1449 /// Instead of a normal access of the form: 1450 /// 1451 /// Stmt[i,j,k] -> Array[f_0(i,j,k), f_1(i,j,k)] 1452 /// 1453 /// a tagged access has the form 1454 /// 1455 /// [Stmt[i,j,k] -> id[]] -> Array[f_0(i,j,k), f_1(i,j,k)] 1456 /// 1457 /// where 'id' is an additional space that references the memory access that 1458 /// triggered the access. 1459 /// 1460 /// @param AccessTy The type of the memory accesses to collect. 1461 /// 1462 /// @return The relation describing all tagged memory accesses. 1463 isl_union_map *getTaggedAccesses(enum MemoryAccess::AccessType AccessTy) { 1464 isl_union_map *Accesses = isl_union_map_empty(S->getParamSpace()); 1465 1466 for (auto &Stmt : *S) 1467 for (auto &Acc : Stmt) 1468 if (Acc->getType() == AccessTy) { 1469 isl_map *Relation = Acc->getAccessRelation(); 1470 Relation = isl_map_intersect_domain(Relation, Stmt.getDomain()); 1471 1472 isl_space *Space = isl_map_get_space(Relation); 1473 Space = isl_space_range(Space); 1474 Space = isl_space_from_range(Space); 1475 Space = isl_space_set_tuple_id(Space, isl_dim_in, Acc->getId()); 1476 isl_map *Universe = isl_map_universe(Space); 1477 Relation = isl_map_domain_product(Relation, Universe); 1478 Accesses = isl_union_map_add_map(Accesses, Relation); 1479 } 1480 1481 return Accesses; 1482 } 1483 1484 /// Get the set of all read accesses, tagged with the access id. 1485 /// 1486 /// @see getTaggedAccesses 1487 isl_union_map *getTaggedReads() { 1488 return getTaggedAccesses(MemoryAccess::READ); 1489 } 1490 1491 /// Get the set of all may (and must) accesses, tagged with the access id. 1492 /// 1493 /// @see getTaggedAccesses 1494 isl_union_map *getTaggedMayWrites() { 1495 return isl_union_map_union(getTaggedAccesses(MemoryAccess::MAY_WRITE), 1496 getTaggedAccesses(MemoryAccess::MUST_WRITE)); 1497 } 1498 1499 /// Get the set of all must accesses, tagged with the access id. 1500 /// 1501 /// @see getTaggedAccesses 1502 isl_union_map *getTaggedMustWrites() { 1503 return getTaggedAccesses(MemoryAccess::MUST_WRITE); 1504 } 1505 1506 /// Collect parameter and array names as isl_ids. 1507 /// 1508 /// To reason about the different parameters and arrays used, ppcg requires 1509 /// a list of all isl_ids in use. As PPCG traditionally performs 1510 /// source-to-source compilation each of these isl_ids is mapped to the 1511 /// expression that represents it. As we do not have a corresponding 1512 /// expression in Polly, we just map each id to a 'zero' expression to match 1513 /// the data format that ppcg expects. 1514 /// 1515 /// @returns Retun a map from collected ids to 'zero' ast expressions. 1516 __isl_give isl_id_to_ast_expr *getNames() { 1517 auto *Names = isl_id_to_ast_expr_alloc( 1518 S->getIslCtx(), 1519 S->getNumParams() + std::distance(S->array_begin(), S->array_end())); 1520 auto *Zero = isl_ast_expr_from_val(isl_val_zero(S->getIslCtx())); 1521 auto *Space = S->getParamSpace(); 1522 1523 for (int I = 0, E = S->getNumParams(); I < E; ++I) { 1524 isl_id *Id = isl_space_get_dim_id(Space, isl_dim_param, I); 1525 Names = isl_id_to_ast_expr_set(Names, Id, isl_ast_expr_copy(Zero)); 1526 } 1527 1528 for (auto &Array : S->arrays()) { 1529 auto Id = Array->getBasePtrId(); 1530 Names = isl_id_to_ast_expr_set(Names, Id, isl_ast_expr_copy(Zero)); 1531 } 1532 1533 isl_space_free(Space); 1534 isl_ast_expr_free(Zero); 1535 1536 return Names; 1537 } 1538 1539 /// Create a new PPCG scop from the current scop. 1540 /// 1541 /// The PPCG scop is initialized with data from the current polly::Scop. From 1542 /// this initial data, the data-dependences in the PPCG scop are initialized. 1543 /// We do not use Polly's dependence analysis for now, to ensure we match 1544 /// the PPCG default behaviour more closely. 1545 /// 1546 /// @returns A new ppcg scop. 1547 ppcg_scop *createPPCGScop() { 1548 auto PPCGScop = (ppcg_scop *)malloc(sizeof(ppcg_scop)); 1549 1550 PPCGScop->options = createPPCGOptions(); 1551 1552 PPCGScop->start = 0; 1553 PPCGScop->end = 0; 1554 1555 PPCGScop->context = S->getContext(); 1556 PPCGScop->domain = S->getDomains(); 1557 PPCGScop->call = nullptr; 1558 PPCGScop->tagged_reads = getTaggedReads(); 1559 PPCGScop->reads = S->getReads(); 1560 PPCGScop->live_in = nullptr; 1561 PPCGScop->tagged_may_writes = getTaggedMayWrites(); 1562 PPCGScop->may_writes = S->getWrites(); 1563 PPCGScop->tagged_must_writes = getTaggedMustWrites(); 1564 PPCGScop->must_writes = S->getMustWrites(); 1565 PPCGScop->live_out = nullptr; 1566 PPCGScop->tagged_must_kills = isl_union_map_empty(S->getParamSpace()); 1567 PPCGScop->tagger = nullptr; 1568 1569 PPCGScop->independence = nullptr; 1570 PPCGScop->dep_flow = nullptr; 1571 PPCGScop->tagged_dep_flow = nullptr; 1572 PPCGScop->dep_false = nullptr; 1573 PPCGScop->dep_forced = nullptr; 1574 PPCGScop->dep_order = nullptr; 1575 PPCGScop->tagged_dep_order = nullptr; 1576 1577 PPCGScop->schedule = S->getScheduleTree(); 1578 PPCGScop->names = getNames(); 1579 1580 PPCGScop->pet = nullptr; 1581 1582 compute_tagger(PPCGScop); 1583 compute_dependences(PPCGScop); 1584 1585 return PPCGScop; 1586 } 1587 1588 /// Collect the array acesses in a statement. 1589 /// 1590 /// @param Stmt The statement for which to collect the accesses. 1591 /// 1592 /// @returns A list of array accesses. 1593 gpu_stmt_access *getStmtAccesses(ScopStmt &Stmt) { 1594 gpu_stmt_access *Accesses = nullptr; 1595 1596 for (MemoryAccess *Acc : Stmt) { 1597 auto Access = isl_alloc_type(S->getIslCtx(), struct gpu_stmt_access); 1598 Access->read = Acc->isRead(); 1599 Access->write = Acc->isWrite(); 1600 Access->access = Acc->getAccessRelation(); 1601 isl_space *Space = isl_map_get_space(Access->access); 1602 Space = isl_space_range(Space); 1603 Space = isl_space_from_range(Space); 1604 Space = isl_space_set_tuple_id(Space, isl_dim_in, Acc->getId()); 1605 isl_map *Universe = isl_map_universe(Space); 1606 Access->tagged_access = 1607 isl_map_domain_product(Acc->getAccessRelation(), Universe); 1608 Access->exact_write = !Acc->isMayWrite(); 1609 Access->ref_id = Acc->getId(); 1610 Access->next = Accesses; 1611 Access->n_index = Acc->getScopArrayInfo()->getNumberOfDimensions(); 1612 Accesses = Access; 1613 } 1614 1615 return Accesses; 1616 } 1617 1618 /// Collect the list of GPU statements. 1619 /// 1620 /// Each statement has an id, a pointer to the underlying data structure, 1621 /// as well as a list with all memory accesses. 1622 /// 1623 /// TODO: Initialize the list of memory accesses. 1624 /// 1625 /// @returns A linked-list of statements. 1626 gpu_stmt *getStatements() { 1627 gpu_stmt *Stmts = isl_calloc_array(S->getIslCtx(), struct gpu_stmt, 1628 std::distance(S->begin(), S->end())); 1629 1630 int i = 0; 1631 for (auto &Stmt : *S) { 1632 gpu_stmt *GPUStmt = &Stmts[i]; 1633 1634 GPUStmt->id = Stmt.getDomainId(); 1635 1636 // We use the pet stmt pointer to keep track of the Polly statements. 1637 GPUStmt->stmt = (pet_stmt *)&Stmt; 1638 GPUStmt->accesses = getStmtAccesses(Stmt); 1639 i++; 1640 } 1641 1642 return Stmts; 1643 } 1644 1645 /// Derive the extent of an array. 1646 /// 1647 /// The extent of an array is defined by the set of memory locations for 1648 /// which a memory access in the iteration domain exists. 1649 /// 1650 /// @param Array The array to derive the extent for. 1651 /// 1652 /// @returns An isl_set describing the extent of the array. 1653 __isl_give isl_set *getExtent(ScopArrayInfo *Array) { 1654 isl_union_map *Accesses = S->getAccesses(); 1655 Accesses = isl_union_map_intersect_domain(Accesses, S->getDomains()); 1656 isl_union_set *AccessUSet = isl_union_map_range(Accesses); 1657 isl_set *AccessSet = 1658 isl_union_set_extract_set(AccessUSet, Array->getSpace()); 1659 isl_union_set_free(AccessUSet); 1660 1661 return AccessSet; 1662 } 1663 1664 /// Derive the bounds of an array. 1665 /// 1666 /// For the first dimension we derive the bound of the array from the extent 1667 /// of this dimension. For inner dimensions we obtain their size directly from 1668 /// ScopArrayInfo. 1669 /// 1670 /// @param PPCGArray The array to compute bounds for. 1671 /// @param Array The polly array from which to take the information. 1672 void setArrayBounds(gpu_array_info &PPCGArray, ScopArrayInfo *Array) { 1673 if (PPCGArray.n_index > 0) { 1674 isl_set *Dom = isl_set_copy(PPCGArray.extent); 1675 Dom = isl_set_project_out(Dom, isl_dim_set, 1, PPCGArray.n_index - 1); 1676 isl_pw_aff *Bound = isl_set_dim_max(isl_set_copy(Dom), 0); 1677 isl_set_free(Dom); 1678 Dom = isl_pw_aff_domain(isl_pw_aff_copy(Bound)); 1679 isl_local_space *LS = isl_local_space_from_space(isl_set_get_space(Dom)); 1680 isl_aff *One = isl_aff_zero_on_domain(LS); 1681 One = isl_aff_add_constant_si(One, 1); 1682 Bound = isl_pw_aff_add(Bound, isl_pw_aff_alloc(Dom, One)); 1683 Bound = isl_pw_aff_gist(Bound, S->getContext()); 1684 PPCGArray.bound[0] = Bound; 1685 } 1686 1687 for (unsigned i = 1; i < PPCGArray.n_index; ++i) { 1688 isl_pw_aff *Bound = Array->getDimensionSizePw(i); 1689 auto LS = isl_pw_aff_get_domain_space(Bound); 1690 auto Aff = isl_multi_aff_zero(LS); 1691 Bound = isl_pw_aff_pullback_multi_aff(Bound, Aff); 1692 PPCGArray.bound[i] = Bound; 1693 } 1694 } 1695 1696 /// Create the arrays for @p PPCGProg. 1697 /// 1698 /// @param PPCGProg The program to compute the arrays for. 1699 void createArrays(gpu_prog *PPCGProg) { 1700 int i = 0; 1701 for (auto &Array : S->arrays()) { 1702 std::string TypeName; 1703 raw_string_ostream OS(TypeName); 1704 1705 OS << *Array->getElementType(); 1706 TypeName = OS.str(); 1707 1708 gpu_array_info &PPCGArray = PPCGProg->array[i]; 1709 1710 PPCGArray.space = Array->getSpace(); 1711 PPCGArray.type = strdup(TypeName.c_str()); 1712 PPCGArray.size = Array->getElementType()->getPrimitiveSizeInBits() / 8; 1713 PPCGArray.name = strdup(Array->getName().c_str()); 1714 PPCGArray.extent = nullptr; 1715 PPCGArray.n_index = Array->getNumberOfDimensions(); 1716 PPCGArray.bound = 1717 isl_alloc_array(S->getIslCtx(), isl_pw_aff *, PPCGArray.n_index); 1718 PPCGArray.extent = getExtent(Array); 1719 PPCGArray.n_ref = 0; 1720 PPCGArray.refs = nullptr; 1721 PPCGArray.accessed = true; 1722 PPCGArray.read_only_scalar = false; 1723 PPCGArray.has_compound_element = false; 1724 PPCGArray.local = false; 1725 PPCGArray.declare_local = false; 1726 PPCGArray.global = false; 1727 PPCGArray.linearize = false; 1728 PPCGArray.dep_order = nullptr; 1729 PPCGArray.user = Array; 1730 1731 setArrayBounds(PPCGArray, Array); 1732 i++; 1733 1734 collect_references(PPCGProg, &PPCGArray); 1735 } 1736 } 1737 1738 /// Create an identity map between the arrays in the scop. 1739 /// 1740 /// @returns An identity map between the arrays in the scop. 1741 isl_union_map *getArrayIdentity() { 1742 isl_union_map *Maps = isl_union_map_empty(S->getParamSpace()); 1743 1744 for (auto &Array : S->arrays()) { 1745 isl_space *Space = Array->getSpace(); 1746 Space = isl_space_map_from_set(Space); 1747 isl_map *Identity = isl_map_identity(Space); 1748 Maps = isl_union_map_add_map(Maps, Identity); 1749 } 1750 1751 return Maps; 1752 } 1753 1754 /// Create a default-initialized PPCG GPU program. 1755 /// 1756 /// @returns A new gpu grogram description. 1757 gpu_prog *createPPCGProg(ppcg_scop *PPCGScop) { 1758 1759 if (!PPCGScop) 1760 return nullptr; 1761 1762 auto PPCGProg = isl_calloc_type(S->getIslCtx(), struct gpu_prog); 1763 1764 PPCGProg->ctx = S->getIslCtx(); 1765 PPCGProg->scop = PPCGScop; 1766 PPCGProg->context = isl_set_copy(PPCGScop->context); 1767 PPCGProg->read = isl_union_map_copy(PPCGScop->reads); 1768 PPCGProg->may_write = isl_union_map_copy(PPCGScop->may_writes); 1769 PPCGProg->must_write = isl_union_map_copy(PPCGScop->must_writes); 1770 PPCGProg->tagged_must_kill = 1771 isl_union_map_copy(PPCGScop->tagged_must_kills); 1772 PPCGProg->to_inner = getArrayIdentity(); 1773 PPCGProg->to_outer = getArrayIdentity(); 1774 PPCGProg->may_persist = compute_may_persist(PPCGProg); 1775 PPCGProg->any_to_outer = nullptr; 1776 PPCGProg->array_order = nullptr; 1777 PPCGProg->n_stmts = std::distance(S->begin(), S->end()); 1778 PPCGProg->stmts = getStatements(); 1779 PPCGProg->n_array = std::distance(S->array_begin(), S->array_end()); 1780 PPCGProg->array = isl_calloc_array(S->getIslCtx(), struct gpu_array_info, 1781 PPCGProg->n_array); 1782 1783 createArrays(PPCGProg); 1784 1785 return PPCGProg; 1786 } 1787 1788 struct PrintGPUUserData { 1789 struct cuda_info *CudaInfo; 1790 struct gpu_prog *PPCGProg; 1791 std::vector<ppcg_kernel *> Kernels; 1792 }; 1793 1794 /// Print a user statement node in the host code. 1795 /// 1796 /// We use ppcg's printing facilities to print the actual statement and 1797 /// additionally build up a list of all kernels that are encountered in the 1798 /// host ast. 1799 /// 1800 /// @param P The printer to print to 1801 /// @param Options The printing options to use 1802 /// @param Node The node to print 1803 /// @param User A user pointer to carry additional data. This pointer is 1804 /// expected to be of type PrintGPUUserData. 1805 /// 1806 /// @returns A printer to which the output has been printed. 1807 static __isl_give isl_printer * 1808 printHostUser(__isl_take isl_printer *P, 1809 __isl_take isl_ast_print_options *Options, 1810 __isl_take isl_ast_node *Node, void *User) { 1811 auto Data = (struct PrintGPUUserData *)User; 1812 auto Id = isl_ast_node_get_annotation(Node); 1813 1814 if (Id) { 1815 bool IsUser = !strcmp(isl_id_get_name(Id), "user"); 1816 1817 // If this is a user statement, format it ourselves as ppcg would 1818 // otherwise try to call pet functionality that is not available in 1819 // Polly. 1820 if (IsUser) { 1821 P = isl_printer_start_line(P); 1822 P = isl_printer_print_ast_node(P, Node); 1823 P = isl_printer_end_line(P); 1824 isl_id_free(Id); 1825 isl_ast_print_options_free(Options); 1826 return P; 1827 } 1828 1829 auto Kernel = (struct ppcg_kernel *)isl_id_get_user(Id); 1830 isl_id_free(Id); 1831 Data->Kernels.push_back(Kernel); 1832 } 1833 1834 return print_host_user(P, Options, Node, User); 1835 } 1836 1837 /// Print C code corresponding to the control flow in @p Kernel. 1838 /// 1839 /// @param Kernel The kernel to print 1840 void printKernel(ppcg_kernel *Kernel) { 1841 auto *P = isl_printer_to_str(S->getIslCtx()); 1842 P = isl_printer_set_output_format(P, ISL_FORMAT_C); 1843 auto *Options = isl_ast_print_options_alloc(S->getIslCtx()); 1844 P = isl_ast_node_print(Kernel->tree, P, Options); 1845 char *String = isl_printer_get_str(P); 1846 printf("%s\n", String); 1847 free(String); 1848 isl_printer_free(P); 1849 } 1850 1851 /// Print C code corresponding to the GPU code described by @p Tree. 1852 /// 1853 /// @param Tree An AST describing GPU code 1854 /// @param PPCGProg The PPCG program from which @Tree has been constructed. 1855 void printGPUTree(isl_ast_node *Tree, gpu_prog *PPCGProg) { 1856 auto *P = isl_printer_to_str(S->getIslCtx()); 1857 P = isl_printer_set_output_format(P, ISL_FORMAT_C); 1858 1859 PrintGPUUserData Data; 1860 Data.PPCGProg = PPCGProg; 1861 1862 auto *Options = isl_ast_print_options_alloc(S->getIslCtx()); 1863 Options = 1864 isl_ast_print_options_set_print_user(Options, printHostUser, &Data); 1865 P = isl_ast_node_print(Tree, P, Options); 1866 char *String = isl_printer_get_str(P); 1867 printf("# host\n"); 1868 printf("%s\n", String); 1869 free(String); 1870 isl_printer_free(P); 1871 1872 for (auto Kernel : Data.Kernels) { 1873 printf("# kernel%d\n", Kernel->id); 1874 printKernel(Kernel); 1875 } 1876 } 1877 1878 // Generate a GPU program using PPCG. 1879 // 1880 // GPU mapping consists of multiple steps: 1881 // 1882 // 1) Compute new schedule for the program. 1883 // 2) Map schedule to GPU (TODO) 1884 // 3) Generate code for new schedule (TODO) 1885 // 1886 // We do not use here the Polly ScheduleOptimizer, as the schedule optimizer 1887 // is mostly CPU specific. Instead, we use PPCG's GPU code generation 1888 // strategy directly from this pass. 1889 gpu_gen *generateGPU(ppcg_scop *PPCGScop, gpu_prog *PPCGProg) { 1890 1891 auto PPCGGen = isl_calloc_type(S->getIslCtx(), struct gpu_gen); 1892 1893 PPCGGen->ctx = S->getIslCtx(); 1894 PPCGGen->options = PPCGScop->options; 1895 PPCGGen->print = nullptr; 1896 PPCGGen->print_user = nullptr; 1897 PPCGGen->build_ast_expr = &pollyBuildAstExprForStmt; 1898 PPCGGen->prog = PPCGProg; 1899 PPCGGen->tree = nullptr; 1900 PPCGGen->types.n = 0; 1901 PPCGGen->types.name = nullptr; 1902 PPCGGen->sizes = nullptr; 1903 PPCGGen->used_sizes = nullptr; 1904 PPCGGen->kernel_id = 0; 1905 1906 // Set scheduling strategy to same strategy PPCG is using. 1907 isl_options_set_schedule_outer_coincidence(PPCGGen->ctx, true); 1908 isl_options_set_schedule_maximize_band_depth(PPCGGen->ctx, true); 1909 isl_options_set_schedule_whole_component(PPCGGen->ctx, false); 1910 1911 isl_schedule *Schedule = get_schedule(PPCGGen); 1912 1913 int has_permutable = has_any_permutable_node(Schedule); 1914 1915 if (!has_permutable || has_permutable < 0) { 1916 Schedule = isl_schedule_free(Schedule); 1917 } else { 1918 Schedule = map_to_device(PPCGGen, Schedule); 1919 PPCGGen->tree = generate_code(PPCGGen, isl_schedule_copy(Schedule)); 1920 } 1921 1922 if (DumpSchedule) { 1923 isl_printer *P = isl_printer_to_str(S->getIslCtx()); 1924 P = isl_printer_set_yaml_style(P, ISL_YAML_STYLE_BLOCK); 1925 P = isl_printer_print_str(P, "Schedule\n"); 1926 P = isl_printer_print_str(P, "========\n"); 1927 if (Schedule) 1928 P = isl_printer_print_schedule(P, Schedule); 1929 else 1930 P = isl_printer_print_str(P, "No schedule found\n"); 1931 1932 printf("%s\n", isl_printer_get_str(P)); 1933 isl_printer_free(P); 1934 } 1935 1936 if (DumpCode) { 1937 printf("Code\n"); 1938 printf("====\n"); 1939 if (PPCGGen->tree) 1940 printGPUTree(PPCGGen->tree, PPCGProg); 1941 else 1942 printf("No code generated\n"); 1943 } 1944 1945 isl_schedule_free(Schedule); 1946 1947 return PPCGGen; 1948 } 1949 1950 /// Free gpu_gen structure. 1951 /// 1952 /// @param PPCGGen The ppcg_gen object to free. 1953 void freePPCGGen(gpu_gen *PPCGGen) { 1954 isl_ast_node_free(PPCGGen->tree); 1955 isl_union_map_free(PPCGGen->sizes); 1956 isl_union_map_free(PPCGGen->used_sizes); 1957 free(PPCGGen); 1958 } 1959 1960 /// Free the options in the ppcg scop structure. 1961 /// 1962 /// ppcg is not freeing these options for us. To avoid leaks we do this 1963 /// ourselves. 1964 /// 1965 /// @param PPCGScop The scop referencing the options to free. 1966 void freeOptions(ppcg_scop *PPCGScop) { 1967 free(PPCGScop->options->debug); 1968 PPCGScop->options->debug = nullptr; 1969 free(PPCGScop->options); 1970 PPCGScop->options = nullptr; 1971 } 1972 1973 /// Generate code for a given GPU AST described by @p Root. 1974 /// 1975 /// @param Root An isl_ast_node pointing to the root of the GPU AST. 1976 /// @param Prog The GPU Program to generate code for. 1977 void generateCode(__isl_take isl_ast_node *Root, gpu_prog *Prog) { 1978 ScopAnnotator Annotator; 1979 Annotator.buildAliasScopes(*S); 1980 1981 Region *R = &S->getRegion(); 1982 1983 simplifyRegion(R, DT, LI, RI); 1984 1985 BasicBlock *EnteringBB = R->getEnteringBlock(); 1986 1987 PollyIRBuilder Builder = createPollyIRBuilder(EnteringBB, Annotator); 1988 1989 GPUNodeBuilder NodeBuilder(Builder, Annotator, this, *DL, *LI, *SE, *DT, *S, 1990 Prog); 1991 1992 // Only build the run-time condition and parameters _after_ having 1993 // introduced the conditional branch. This is important as the conditional 1994 // branch will guard the original scop from new induction variables that 1995 // the SCEVExpander may introduce while code generating the parameters and 1996 // which may introduce scalar dependences that prevent us from correctly 1997 // code generating this scop. 1998 BasicBlock *StartBlock = 1999 executeScopConditionally(*S, this, Builder.getTrue()); 2000 2001 // TODO: Handle LICM 2002 // TODO: Verify run-time checks 2003 auto SplitBlock = StartBlock->getSinglePredecessor(); 2004 Builder.SetInsertPoint(SplitBlock->getTerminator()); 2005 NodeBuilder.addParameters(S->getContext()); 2006 Builder.SetInsertPoint(&*StartBlock->begin()); 2007 2008 NodeBuilder.initializeAfterRTH(); 2009 NodeBuilder.create(Root); 2010 NodeBuilder.finalize(); 2011 } 2012 2013 bool runOnScop(Scop &CurrentScop) override { 2014 S = &CurrentScop; 2015 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 2016 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2017 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 2018 DL = &S->getRegion().getEntry()->getParent()->getParent()->getDataLayout(); 2019 RI = &getAnalysis<RegionInfoPass>().getRegionInfo(); 2020 2021 // We currently do not support scops with invariant loads. 2022 if (S->hasInvariantAccesses()) 2023 return false; 2024 2025 auto PPCGScop = createPPCGScop(); 2026 auto PPCGProg = createPPCGProg(PPCGScop); 2027 auto PPCGGen = generateGPU(PPCGScop, PPCGProg); 2028 2029 if (PPCGGen->tree) 2030 generateCode(isl_ast_node_copy(PPCGGen->tree), PPCGProg); 2031 2032 freeOptions(PPCGScop); 2033 freePPCGGen(PPCGGen); 2034 gpu_prog_free(PPCGProg); 2035 ppcg_scop_free(PPCGScop); 2036 2037 return true; 2038 } 2039 2040 void printScop(raw_ostream &, Scop &) const override {} 2041 2042 void getAnalysisUsage(AnalysisUsage &AU) const override { 2043 AU.addRequired<DominatorTreeWrapperPass>(); 2044 AU.addRequired<RegionInfoPass>(); 2045 AU.addRequired<ScalarEvolutionWrapperPass>(); 2046 AU.addRequired<ScopDetection>(); 2047 AU.addRequired<ScopInfoRegionPass>(); 2048 AU.addRequired<LoopInfoWrapperPass>(); 2049 2050 AU.addPreserved<AAResultsWrapperPass>(); 2051 AU.addPreserved<BasicAAWrapperPass>(); 2052 AU.addPreserved<LoopInfoWrapperPass>(); 2053 AU.addPreserved<DominatorTreeWrapperPass>(); 2054 AU.addPreserved<GlobalsAAWrapperPass>(); 2055 AU.addPreserved<PostDominatorTreeWrapperPass>(); 2056 AU.addPreserved<ScopDetection>(); 2057 AU.addPreserved<ScalarEvolutionWrapperPass>(); 2058 AU.addPreserved<SCEVAAWrapperPass>(); 2059 2060 // FIXME: We do not yet add regions for the newly generated code to the 2061 // region tree. 2062 AU.addPreserved<RegionInfoPass>(); 2063 AU.addPreserved<ScopInfoRegionPass>(); 2064 } 2065 }; 2066 } 2067 2068 char PPCGCodeGeneration::ID = 1; 2069 2070 Pass *polly::createPPCGCodeGenerationPass() { return new PPCGCodeGeneration(); } 2071 2072 INITIALIZE_PASS_BEGIN(PPCGCodeGeneration, "polly-codegen-ppcg", 2073 "Polly - Apply PPCG translation to SCOP", false, false) 2074 INITIALIZE_PASS_DEPENDENCY(DependenceInfo); 2075 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass); 2076 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass); 2077 INITIALIZE_PASS_DEPENDENCY(RegionInfoPass); 2078 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass); 2079 INITIALIZE_PASS_DEPENDENCY(ScopDetection); 2080 INITIALIZE_PASS_END(PPCGCodeGeneration, "polly-codegen-ppcg", 2081 "Polly - Apply PPCG translation to SCOP", false, false) 2082