1 //===------ PPCGCodeGeneration.cpp - Polly Accelerator Code Generation. ---===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Take a scop created by ScopInfo and map it to GPU code using the ppcg 11 // GPU mapping strategy. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "polly/CodeGen/PPCGCodeGeneration.h" 16 #include "polly/CodeGen/CodeGeneration.h" 17 #include "polly/CodeGen/IslAst.h" 18 #include "polly/CodeGen/IslNodeBuilder.h" 19 #include "polly/CodeGen/PerfMonitor.h" 20 #include "polly/CodeGen/Utils.h" 21 #include "polly/DependenceInfo.h" 22 #include "polly/LinkAllPasses.h" 23 #include "polly/Options.h" 24 #include "polly/ScopDetection.h" 25 #include "polly/ScopInfo.h" 26 #include "polly/Support/SCEVValidator.h" 27 #include "llvm/ADT/PostOrderIterator.h" 28 #include "llvm/Analysis/AliasAnalysis.h" 29 #include "llvm/Analysis/BasicAliasAnalysis.h" 30 #include "llvm/Analysis/GlobalsModRef.h" 31 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" 32 #include "llvm/Analysis/TargetLibraryInfo.h" 33 #include "llvm/Analysis/TargetTransformInfo.h" 34 #include "llvm/IR/LegacyPassManager.h" 35 #include "llvm/IR/Verifier.h" 36 #include "llvm/IRReader/IRReader.h" 37 #include "llvm/Linker/Linker.h" 38 #include "llvm/Support/TargetRegistry.h" 39 #include "llvm/Support/TargetSelect.h" 40 #include "llvm/Target/TargetMachine.h" 41 #include "llvm/Transforms/IPO/PassManagerBuilder.h" 42 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 43 44 #include "isl/union_map.h" 45 46 extern "C" { 47 #include "ppcg/cuda.h" 48 #include "ppcg/gpu.h" 49 #include "ppcg/gpu_print.h" 50 #include "ppcg/ppcg.h" 51 #include "ppcg/schedule.h" 52 } 53 54 #include "llvm/Support/Debug.h" 55 56 using namespace polly; 57 using namespace llvm; 58 59 #define DEBUG_TYPE "polly-codegen-ppcg" 60 61 static cl::opt<bool> DumpSchedule("polly-acc-dump-schedule", 62 cl::desc("Dump the computed GPU Schedule"), 63 cl::Hidden, cl::init(false), cl::ZeroOrMore, 64 cl::cat(PollyCategory)); 65 66 static cl::opt<bool> 67 DumpCode("polly-acc-dump-code", 68 cl::desc("Dump C code describing the GPU mapping"), cl::Hidden, 69 cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory)); 70 71 static cl::opt<bool> DumpKernelIR("polly-acc-dump-kernel-ir", 72 cl::desc("Dump the kernel LLVM-IR"), 73 cl::Hidden, cl::init(false), cl::ZeroOrMore, 74 cl::cat(PollyCategory)); 75 76 static cl::opt<bool> DumpKernelASM("polly-acc-dump-kernel-asm", 77 cl::desc("Dump the kernel assembly code"), 78 cl::Hidden, cl::init(false), cl::ZeroOrMore, 79 cl::cat(PollyCategory)); 80 81 static cl::opt<bool> FastMath("polly-acc-fastmath", 82 cl::desc("Allow unsafe math optimizations"), 83 cl::Hidden, cl::init(false), cl::ZeroOrMore, 84 cl::cat(PollyCategory)); 85 static cl::opt<bool> SharedMemory("polly-acc-use-shared", 86 cl::desc("Use shared memory"), cl::Hidden, 87 cl::init(false), cl::ZeroOrMore, 88 cl::cat(PollyCategory)); 89 static cl::opt<bool> PrivateMemory("polly-acc-use-private", 90 cl::desc("Use private memory"), cl::Hidden, 91 cl::init(false), cl::ZeroOrMore, 92 cl::cat(PollyCategory)); 93 94 bool polly::PollyManagedMemory; 95 static cl::opt<bool, true> 96 XManagedMemory("polly-acc-codegen-managed-memory", 97 cl::desc("Generate Host kernel code assuming" 98 " that all memory has been" 99 " declared as managed memory"), 100 cl::location(PollyManagedMemory), cl::Hidden, 101 cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory)); 102 103 static cl::opt<bool> 104 FailOnVerifyModuleFailure("polly-acc-fail-on-verify-module-failure", 105 cl::desc("Fail and generate a backtrace if" 106 " verifyModule fails on the GPU " 107 " kernel module."), 108 cl::Hidden, cl::init(false), cl::ZeroOrMore, 109 cl::cat(PollyCategory)); 110 111 static cl::opt<std::string> CUDALibDevice( 112 "polly-acc-libdevice", cl::desc("Path to CUDA libdevice"), cl::Hidden, 113 cl::init("/usr/local/cuda/nvvm/libdevice/libdevice.compute_20.10.ll"), 114 cl::ZeroOrMore, cl::cat(PollyCategory)); 115 116 static cl::opt<std::string> 117 CudaVersion("polly-acc-cuda-version", 118 cl::desc("The CUDA version to compile for"), cl::Hidden, 119 cl::init("sm_30"), cl::ZeroOrMore, cl::cat(PollyCategory)); 120 121 static cl::opt<int> 122 MinCompute("polly-acc-mincompute", 123 cl::desc("Minimal number of compute statements to run on GPU."), 124 cl::Hidden, cl::init(10 * 512 * 512)); 125 126 extern bool polly::PerfMonitoring; 127 128 /// Return a unique name for a Scop, which is the scop region with the 129 /// function name. 130 std::string getUniqueScopName(const Scop *S) { 131 return "Scop Region: " + S->getNameStr() + 132 " | Function: " + std::string(S->getFunction().getName()); 133 } 134 135 /// Used to store information PPCG wants for kills. This information is 136 /// used by live range reordering. 137 /// 138 /// @see computeLiveRangeReordering 139 /// @see GPUNodeBuilder::createPPCGScop 140 /// @see GPUNodeBuilder::createPPCGProg 141 struct MustKillsInfo { 142 /// Collection of all kill statements that will be sequenced at the end of 143 /// PPCGScop->schedule. 144 /// 145 /// The nodes in `KillsSchedule` will be merged using `isl_schedule_set` 146 /// which merges schedules in *arbitrary* order. 147 /// (we don't care about the order of the kills anyway). 148 isl::schedule KillsSchedule; 149 /// Map from kill statement instances to scalars that need to be 150 /// killed. 151 /// 152 /// We currently derive kill information for: 153 /// 1. phi nodes. PHI nodes are not alive outside the scop and can 154 /// consequently all be killed. 155 /// 2. Scalar arrays that are not used outside the Scop. This is 156 /// checked by `isScalarUsesContainedInScop`. 157 /// [params] -> { [Stmt_phantom[] -> ref_phantom[]] -> scalar_to_kill[] } 158 isl::union_map TaggedMustKills; 159 160 /// Tagged must kills stripped of the tags. 161 /// [params] -> { Stmt_phantom[] -> scalar_to_kill[] } 162 isl::union_map MustKills; 163 164 MustKillsInfo() : KillsSchedule(nullptr) {} 165 }; 166 167 /// Check if SAI's uses are entirely contained within Scop S. 168 /// If a scalar is used only with a Scop, we are free to kill it, as no data 169 /// can flow in/out of the value any more. 170 /// @see computeMustKillsInfo 171 static bool isScalarUsesContainedInScop(const Scop &S, 172 const ScopArrayInfo *SAI) { 173 assert(SAI->isValueKind() && "this function only deals with scalars." 174 " Dealing with arrays required alias analysis"); 175 176 const Region &R = S.getRegion(); 177 for (User *U : SAI->getBasePtr()->users()) { 178 Instruction *I = dyn_cast<Instruction>(U); 179 assert(I && "invalid user of scop array info"); 180 if (!R.contains(I)) 181 return false; 182 } 183 return true; 184 } 185 186 /// Compute must-kills needed to enable live range reordering with PPCG. 187 /// 188 /// @params S The Scop to compute live range reordering information 189 /// @returns live range reordering information that can be used to setup 190 /// PPCG. 191 static MustKillsInfo computeMustKillsInfo(const Scop &S) { 192 const isl::space ParamSpace = S.getParamSpace(); 193 MustKillsInfo Info; 194 195 // 1. Collect all ScopArrayInfo that satisfy *any* of the criteria: 196 // 1.1 phi nodes in scop. 197 // 1.2 scalars that are only used within the scop 198 SmallVector<isl::id, 4> KillMemIds; 199 for (ScopArrayInfo *SAI : S.arrays()) { 200 if (SAI->isPHIKind() || 201 (SAI->isValueKind() && isScalarUsesContainedInScop(S, SAI))) 202 KillMemIds.push_back(isl::manage(SAI->getBasePtrId().release())); 203 } 204 205 Info.TaggedMustKills = isl::union_map::empty(ParamSpace); 206 Info.MustKills = isl::union_map::empty(ParamSpace); 207 208 // Initialising KillsSchedule to `isl_set_empty` creates an empty node in the 209 // schedule: 210 // - filter: "[control] -> { }" 211 // So, we choose to not create this to keep the output a little nicer, 212 // at the cost of some code complexity. 213 Info.KillsSchedule = nullptr; 214 215 for (isl::id &ToKillId : KillMemIds) { 216 isl::id KillStmtId = isl::id::alloc( 217 S.getIslCtx(), 218 std::string("SKill_phantom_").append(ToKillId.get_name()), nullptr); 219 220 // NOTE: construction of tagged_must_kill: 221 // 2. We need to construct a map: 222 // [param] -> { [Stmt_phantom[] -> ref_phantom[]] -> scalar_to_kill[] } 223 // To construct this, we use `isl_map_domain_product` on 2 maps`: 224 // 2a. StmtToScalar: 225 // [param] -> { Stmt_phantom[] -> scalar_to_kill[] } 226 // 2b. PhantomRefToScalar: 227 // [param] -> { ref_phantom[] -> scalar_to_kill[] } 228 // 229 // Combining these with `isl_map_domain_product` gives us 230 // TaggedMustKill: 231 // [param] -> { [Stmt[] -> phantom_ref[]] -> scalar_to_kill[] } 232 233 // 2a. [param] -> { Stmt[] -> scalar_to_kill[] } 234 isl::map StmtToScalar = isl::map::universe(ParamSpace); 235 StmtToScalar = StmtToScalar.set_tuple_id(isl::dim::in, isl::id(KillStmtId)); 236 StmtToScalar = StmtToScalar.set_tuple_id(isl::dim::out, isl::id(ToKillId)); 237 238 isl::id PhantomRefId = isl::id::alloc( 239 S.getIslCtx(), std::string("ref_phantom") + ToKillId.get_name(), 240 nullptr); 241 242 // 2b. [param] -> { phantom_ref[] -> scalar_to_kill[] } 243 isl::map PhantomRefToScalar = isl::map::universe(ParamSpace); 244 PhantomRefToScalar = 245 PhantomRefToScalar.set_tuple_id(isl::dim::in, PhantomRefId); 246 PhantomRefToScalar = 247 PhantomRefToScalar.set_tuple_id(isl::dim::out, ToKillId); 248 249 // 2. [param] -> { [Stmt[] -> phantom_ref[]] -> scalar_to_kill[] } 250 isl::map TaggedMustKill = StmtToScalar.domain_product(PhantomRefToScalar); 251 Info.TaggedMustKills = Info.TaggedMustKills.unite(TaggedMustKill); 252 253 // 2. [param] -> { Stmt[] -> scalar_to_kill[] } 254 Info.MustKills = Info.TaggedMustKills.domain_factor_domain(); 255 256 // 3. Create the kill schedule of the form: 257 // "[param] -> { Stmt_phantom[] }" 258 // Then add this to Info.KillsSchedule. 259 isl::space KillStmtSpace = ParamSpace; 260 KillStmtSpace = KillStmtSpace.set_tuple_id(isl::dim::set, KillStmtId); 261 isl::union_set KillStmtDomain = isl::set::universe(KillStmtSpace); 262 263 isl::schedule KillSchedule = isl::schedule::from_domain(KillStmtDomain); 264 if (Info.KillsSchedule) 265 Info.KillsSchedule = Info.KillsSchedule.set(KillSchedule); 266 else 267 Info.KillsSchedule = KillSchedule; 268 } 269 270 return Info; 271 } 272 273 /// Create the ast expressions for a ScopStmt. 274 /// 275 /// This function is a callback for to generate the ast expressions for each 276 /// of the scheduled ScopStmts. 277 static __isl_give isl_id_to_ast_expr *pollyBuildAstExprForStmt( 278 void *StmtT, __isl_take isl_ast_build *Build_C, 279 isl_multi_pw_aff *(*FunctionIndex)(__isl_take isl_multi_pw_aff *MPA, 280 isl_id *Id, void *User), 281 void *UserIndex, 282 isl_ast_expr *(*FunctionExpr)(isl_ast_expr *Expr, isl_id *Id, void *User), 283 void *UserExpr) { 284 285 ScopStmt *Stmt = (ScopStmt *)StmtT; 286 287 if (!Stmt || !Build_C) 288 return NULL; 289 290 isl::ast_build Build = isl::manage(isl_ast_build_copy(Build_C)); 291 isl::ctx Ctx = Build.get_ctx(); 292 isl::id_to_ast_expr RefToExpr = isl::id_to_ast_expr::alloc(Ctx, 0); 293 294 Stmt->setAstBuild(Build); 295 296 for (MemoryAccess *Acc : *Stmt) { 297 isl::map AddrFunc = Acc->getAddressFunction(); 298 AddrFunc = AddrFunc.intersect_domain(Stmt->getDomain()); 299 300 isl::id RefId = Acc->getId(); 301 isl::pw_multi_aff PMA = isl::pw_multi_aff::from_map(AddrFunc); 302 303 isl::multi_pw_aff MPA = isl::multi_pw_aff(PMA); 304 MPA = MPA.coalesce(); 305 MPA = isl::manage(FunctionIndex(MPA.release(), RefId.get(), UserIndex)); 306 307 isl::ast_expr Access = Build.access_from(MPA); 308 Access = isl::manage(FunctionExpr(Access.release(), RefId.get(), UserExpr)); 309 RefToExpr = RefToExpr.set(RefId, Access); 310 } 311 312 return RefToExpr.release(); 313 } 314 315 /// Given a LLVM Type, compute its size in bytes, 316 static int computeSizeInBytes(const Type *T) { 317 int bytes = T->getPrimitiveSizeInBits() / 8; 318 if (bytes == 0) 319 bytes = T->getScalarSizeInBits() / 8; 320 return bytes; 321 } 322 323 /// Generate code for a GPU specific isl AST. 324 /// 325 /// The GPUNodeBuilder augments the general existing IslNodeBuilder, which 326 /// generates code for general-purpose AST nodes, with special functionality 327 /// for generating GPU specific user nodes. 328 /// 329 /// @see GPUNodeBuilder::createUser 330 class GPUNodeBuilder : public IslNodeBuilder { 331 public: 332 GPUNodeBuilder(PollyIRBuilder &Builder, ScopAnnotator &Annotator, 333 const DataLayout &DL, LoopInfo &LI, ScalarEvolution &SE, 334 DominatorTree &DT, Scop &S, BasicBlock *StartBlock, 335 gpu_prog *Prog, GPURuntime Runtime, GPUArch Arch) 336 : IslNodeBuilder(Builder, Annotator, DL, LI, SE, DT, S, StartBlock), 337 Prog(Prog), Runtime(Runtime), Arch(Arch) { 338 getExprBuilder().setIDToSAI(&IDToSAI); 339 } 340 341 /// Create after-run-time-check initialization code. 342 void initializeAfterRTH(); 343 344 /// Finalize the generated scop. 345 virtual void finalize(); 346 347 /// Track if the full build process was successful. 348 /// 349 /// This value is set to false, if throughout the build process an error 350 /// occurred which prevents us from generating valid GPU code. 351 bool BuildSuccessful = true; 352 353 /// The maximal number of loops surrounding a sequential kernel. 354 unsigned DeepestSequential = 0; 355 356 /// The maximal number of loops surrounding a parallel kernel. 357 unsigned DeepestParallel = 0; 358 359 /// Return the name to set for the ptx_kernel. 360 std::string getKernelFuncName(int Kernel_id); 361 362 private: 363 /// A vector of array base pointers for which a new ScopArrayInfo was created. 364 /// 365 /// This vector is used to delete the ScopArrayInfo when it is not needed any 366 /// more. 367 std::vector<Value *> LocalArrays; 368 369 /// A map from ScopArrays to their corresponding device allocations. 370 std::map<ScopArrayInfo *, Value *> DeviceAllocations; 371 372 /// The current GPU context. 373 Value *GPUContext; 374 375 /// The set of isl_ids allocated in the kernel 376 std::vector<isl_id *> KernelIds; 377 378 /// A module containing GPU code. 379 /// 380 /// This pointer is only set in case we are currently generating GPU code. 381 std::unique_ptr<Module> GPUModule; 382 383 /// The GPU program we generate code for. 384 gpu_prog *Prog; 385 386 /// The GPU Runtime implementation to use (OpenCL or CUDA). 387 GPURuntime Runtime; 388 389 /// The GPU Architecture to target. 390 GPUArch Arch; 391 392 /// Class to free isl_ids. 393 class IslIdDeleter { 394 public: 395 void operator()(__isl_take isl_id *Id) { isl_id_free(Id); }; 396 }; 397 398 /// A set containing all isl_ids allocated in a GPU kernel. 399 /// 400 /// By releasing this set all isl_ids will be freed. 401 std::set<std::unique_ptr<isl_id, IslIdDeleter>> KernelIDs; 402 403 IslExprBuilder::IDToScopArrayInfoTy IDToSAI; 404 405 /// Create code for user-defined AST nodes. 406 /// 407 /// These AST nodes can be of type: 408 /// 409 /// - ScopStmt: A computational statement (TODO) 410 /// - Kernel: A GPU kernel call (TODO) 411 /// - Data-Transfer: A GPU <-> CPU data-transfer 412 /// - In-kernel synchronization 413 /// - In-kernel memory copy statement 414 /// 415 /// @param UserStmt The ast node to generate code for. 416 virtual void createUser(__isl_take isl_ast_node *UserStmt); 417 418 enum DataDirection { HOST_TO_DEVICE, DEVICE_TO_HOST }; 419 420 /// Create code for a data transfer statement 421 /// 422 /// @param TransferStmt The data transfer statement. 423 /// @param Direction The direction in which to transfer data. 424 void createDataTransfer(__isl_take isl_ast_node *TransferStmt, 425 enum DataDirection Direction); 426 427 /// Find llvm::Values referenced in GPU kernel. 428 /// 429 /// @param Kernel The kernel to scan for llvm::Values 430 /// 431 /// @returns A tuple, whose: 432 /// - First element contains the set of values referenced by the 433 /// kernel 434 /// - Second element contains the set of functions referenced by the 435 /// kernel. All functions in the set satisfy 436 /// `isValidFunctionInKernel`. 437 /// - Third element contains loops that have induction variables 438 /// which are used in the kernel, *and* these loops are *neither* 439 /// in the scop, nor do they immediately surroung the Scop. 440 /// See [Code generation of induction variables of loops outside 441 /// Scops] 442 std::tuple<SetVector<Value *>, SetVector<Function *>, SetVector<const Loop *>, 443 isl::space> 444 getReferencesInKernel(ppcg_kernel *Kernel); 445 446 /// Compute the sizes of the execution grid for a given kernel. 447 /// 448 /// @param Kernel The kernel to compute grid sizes for. 449 /// 450 /// @returns A tuple with grid sizes for X and Y dimension 451 std::tuple<Value *, Value *> getGridSizes(ppcg_kernel *Kernel); 452 453 /// Get the managed array pointer for sending host pointers to the device. 454 /// \note 455 /// This is to be used only with managed memory 456 Value *getManagedDeviceArray(gpu_array_info *Array, ScopArrayInfo *ArrayInfo); 457 458 /// Compute the sizes of the thread blocks for a given kernel. 459 /// 460 /// @param Kernel The kernel to compute thread block sizes for. 461 /// 462 /// @returns A tuple with thread block sizes for X, Y, and Z dimensions. 463 std::tuple<Value *, Value *, Value *> getBlockSizes(ppcg_kernel *Kernel); 464 465 /// Store a specific kernel launch parameter in the array of kernel launch 466 /// parameters. 467 /// 468 /// @param Parameters The list of parameters in which to store. 469 /// @param Param The kernel launch parameter to store. 470 /// @param Index The index in the parameter list, at which to store the 471 /// parameter. 472 void insertStoreParameter(Instruction *Parameters, Instruction *Param, 473 int Index); 474 475 /// Create kernel launch parameters. 476 /// 477 /// @param Kernel The kernel to create parameters for. 478 /// @param F The kernel function that has been created. 479 /// @param SubtreeValues The set of llvm::Values referenced by this kernel. 480 /// 481 /// @returns A stack allocated array with pointers to the parameter 482 /// values that are passed to the kernel. 483 Value *createLaunchParameters(ppcg_kernel *Kernel, Function *F, 484 SetVector<Value *> SubtreeValues); 485 486 /// Create declarations for kernel variable. 487 /// 488 /// This includes shared memory declarations. 489 /// 490 /// @param Kernel The kernel definition to create variables for. 491 /// @param FN The function into which to generate the variables. 492 void createKernelVariables(ppcg_kernel *Kernel, Function *FN); 493 494 /// Add CUDA annotations to module. 495 /// 496 /// Add a set of CUDA annotations that declares the maximal block dimensions 497 /// that will be used to execute the CUDA kernel. This allows the NVIDIA 498 /// PTX compiler to bound the number of allocated registers to ensure the 499 /// resulting kernel is known to run with up to as many block dimensions 500 /// as specified here. 501 /// 502 /// @param M The module to add the annotations to. 503 /// @param BlockDimX The size of block dimension X. 504 /// @param BlockDimY The size of block dimension Y. 505 /// @param BlockDimZ The size of block dimension Z. 506 void addCUDAAnnotations(Module *M, Value *BlockDimX, Value *BlockDimY, 507 Value *BlockDimZ); 508 509 /// Create GPU kernel. 510 /// 511 /// Code generate the kernel described by @p KernelStmt. 512 /// 513 /// @param KernelStmt The ast node to generate kernel code for. 514 void createKernel(__isl_take isl_ast_node *KernelStmt); 515 516 /// Generate code that computes the size of an array. 517 /// 518 /// @param Array The array for which to compute a size. 519 Value *getArraySize(gpu_array_info *Array); 520 521 /// Generate code to compute the minimal offset at which an array is accessed. 522 /// 523 /// The offset of an array is the minimal array location accessed in a scop. 524 /// 525 /// Example: 526 /// 527 /// for (long i = 0; i < 100; i++) 528 /// A[i + 42] += ... 529 /// 530 /// getArrayOffset(A) results in 42. 531 /// 532 /// @param Array The array for which to compute the offset. 533 /// @returns An llvm::Value that contains the offset of the array. 534 Value *getArrayOffset(gpu_array_info *Array); 535 536 /// Prepare the kernel arguments for kernel code generation 537 /// 538 /// @param Kernel The kernel to generate code for. 539 /// @param FN The function created for the kernel. 540 void prepareKernelArguments(ppcg_kernel *Kernel, Function *FN); 541 542 /// Create kernel function. 543 /// 544 /// Create a kernel function located in a newly created module that can serve 545 /// as target for device code generation. Set the Builder to point to the 546 /// start block of this newly created function. 547 /// 548 /// @param Kernel The kernel to generate code for. 549 /// @param SubtreeValues The set of llvm::Values referenced by this kernel. 550 /// @param SubtreeFunctions The set of llvm::Functions referenced by this 551 /// kernel. 552 void createKernelFunction(ppcg_kernel *Kernel, 553 SetVector<Value *> &SubtreeValues, 554 SetVector<Function *> &SubtreeFunctions); 555 556 /// Create the declaration of a kernel function. 557 /// 558 /// The kernel function takes as arguments: 559 /// 560 /// - One i8 pointer for each external array reference used in the kernel. 561 /// - Host iterators 562 /// - Parameters 563 /// - Other LLVM Value references (TODO) 564 /// 565 /// @param Kernel The kernel to generate the function declaration for. 566 /// @param SubtreeValues The set of llvm::Values referenced by this kernel. 567 /// 568 /// @returns The newly declared function. 569 Function *createKernelFunctionDecl(ppcg_kernel *Kernel, 570 SetVector<Value *> &SubtreeValues); 571 572 /// Insert intrinsic functions to obtain thread and block ids. 573 /// 574 /// @param The kernel to generate the intrinsic functions for. 575 void insertKernelIntrinsics(ppcg_kernel *Kernel); 576 577 /// Insert function calls to retrieve the SPIR group/local ids. 578 /// 579 /// @param The kernel to generate the function calls for. 580 void insertKernelCallsSPIR(ppcg_kernel *Kernel); 581 582 /// Setup the creation of functions referenced by the GPU kernel. 583 /// 584 /// 1. Create new function declarations in GPUModule which are the same as 585 /// SubtreeFunctions. 586 /// 587 /// 2. Populate IslNodeBuilder::ValueMap with mappings from 588 /// old functions (that come from the original module) to new functions 589 /// (that are created within GPUModule). That way, we generate references 590 /// to the correct function (in GPUModule) in BlockGenerator. 591 /// 592 /// @see IslNodeBuilder::ValueMap 593 /// @see BlockGenerator::GlobalMap 594 /// @see BlockGenerator::getNewValue 595 /// @see GPUNodeBuilder::getReferencesInKernel. 596 /// 597 /// @param SubtreeFunctions The set of llvm::Functions referenced by 598 /// this kernel. 599 void setupKernelSubtreeFunctions(SetVector<Function *> SubtreeFunctions); 600 601 /// Create a global-to-shared or shared-to-global copy statement. 602 /// 603 /// @param CopyStmt The copy statement to generate code for 604 void createKernelCopy(ppcg_kernel_stmt *CopyStmt); 605 606 /// Create code for a ScopStmt called in @p Expr. 607 /// 608 /// @param Expr The expression containing the call. 609 /// @param KernelStmt The kernel statement referenced in the call. 610 void createScopStmt(isl_ast_expr *Expr, ppcg_kernel_stmt *KernelStmt); 611 612 /// Create an in-kernel synchronization call. 613 void createKernelSync(); 614 615 /// Create a PTX assembly string for the current GPU kernel. 616 /// 617 /// @returns A string containing the corresponding PTX assembly code. 618 std::string createKernelASM(); 619 620 /// Remove references from the dominator tree to the kernel function @p F. 621 /// 622 /// @param F The function to remove references to. 623 void clearDominators(Function *F); 624 625 /// Remove references from scalar evolution to the kernel function @p F. 626 /// 627 /// @param F The function to remove references to. 628 void clearScalarEvolution(Function *F); 629 630 /// Remove references from loop info to the kernel function @p F. 631 /// 632 /// @param F The function to remove references to. 633 void clearLoops(Function *F); 634 635 /// Check if the scop requires to be linked with CUDA's libdevice. 636 bool requiresCUDALibDevice(); 637 638 /// Link with the NVIDIA libdevice library (if needed and available). 639 void addCUDALibDevice(); 640 641 /// Finalize the generation of the kernel function. 642 /// 643 /// Free the LLVM-IR module corresponding to the kernel and -- if requested -- 644 /// dump its IR to stderr. 645 /// 646 /// @returns The Assembly string of the kernel. 647 std::string finalizeKernelFunction(); 648 649 /// Finalize the generation of the kernel arguments. 650 /// 651 /// This function ensures that not-read-only scalars used in a kernel are 652 /// stored back to the global memory location they are backed with before 653 /// the kernel terminates. 654 /// 655 /// @params Kernel The kernel to finalize kernel arguments for. 656 void finalizeKernelArguments(ppcg_kernel *Kernel); 657 658 /// Create code that allocates memory to store arrays on device. 659 void allocateDeviceArrays(); 660 661 /// Create code to prepare the managed device pointers. 662 void prepareManagedDeviceArrays(); 663 664 /// Free all allocated device arrays. 665 void freeDeviceArrays(); 666 667 /// Create a call to initialize the GPU context. 668 /// 669 /// @returns A pointer to the newly initialized context. 670 Value *createCallInitContext(); 671 672 /// Create a call to get the device pointer for a kernel allocation. 673 /// 674 /// @param Allocation The Polly GPU allocation 675 /// 676 /// @returns The device parameter corresponding to this allocation. 677 Value *createCallGetDevicePtr(Value *Allocation); 678 679 /// Create a call to free the GPU context. 680 /// 681 /// @param Context A pointer to an initialized GPU context. 682 void createCallFreeContext(Value *Context); 683 684 /// Create a call to allocate memory on the device. 685 /// 686 /// @param Size The size of memory to allocate 687 /// 688 /// @returns A pointer that identifies this allocation. 689 Value *createCallAllocateMemoryForDevice(Value *Size); 690 691 /// Create a call to free a device array. 692 /// 693 /// @param Array The device array to free. 694 void createCallFreeDeviceMemory(Value *Array); 695 696 /// Create a call to copy data from host to device. 697 /// 698 /// @param HostPtr A pointer to the host data that should be copied. 699 /// @param DevicePtr A device pointer specifying the location to copy to. 700 void createCallCopyFromHostToDevice(Value *HostPtr, Value *DevicePtr, 701 Value *Size); 702 703 /// Create a call to copy data from device to host. 704 /// 705 /// @param DevicePtr A pointer to the device data that should be copied. 706 /// @param HostPtr A host pointer specifying the location to copy to. 707 void createCallCopyFromDeviceToHost(Value *DevicePtr, Value *HostPtr, 708 Value *Size); 709 710 /// Create a call to synchronize Host & Device. 711 /// \note 712 /// This is to be used only with managed memory. 713 void createCallSynchronizeDevice(); 714 715 /// Create a call to get a kernel from an assembly string. 716 /// 717 /// @param Buffer The string describing the kernel. 718 /// @param Entry The name of the kernel function to call. 719 /// 720 /// @returns A pointer to a kernel object 721 Value *createCallGetKernel(Value *Buffer, Value *Entry); 722 723 /// Create a call to free a GPU kernel. 724 /// 725 /// @param GPUKernel THe kernel to free. 726 void createCallFreeKernel(Value *GPUKernel); 727 728 /// Create a call to launch a GPU kernel. 729 /// 730 /// @param GPUKernel The kernel to launch. 731 /// @param GridDimX The size of the first grid dimension. 732 /// @param GridDimY The size of the second grid dimension. 733 /// @param GridBlockX The size of the first block dimension. 734 /// @param GridBlockY The size of the second block dimension. 735 /// @param GridBlockZ The size of the third block dimension. 736 /// @param Parameters A pointer to an array that contains itself pointers to 737 /// the parameter values passed for each kernel argument. 738 void createCallLaunchKernel(Value *GPUKernel, Value *GridDimX, 739 Value *GridDimY, Value *BlockDimX, 740 Value *BlockDimY, Value *BlockDimZ, 741 Value *Parameters); 742 }; 743 744 std::string GPUNodeBuilder::getKernelFuncName(int Kernel_id) { 745 return "FUNC_" + S.getFunction().getName().str() + "_SCOP_" + 746 std::to_string(S.getID()) + "_KERNEL_" + std::to_string(Kernel_id); 747 } 748 749 void GPUNodeBuilder::initializeAfterRTH() { 750 BasicBlock *NewBB = SplitBlock(Builder.GetInsertBlock(), 751 &*Builder.GetInsertPoint(), &DT, &LI); 752 NewBB->setName("polly.acc.initialize"); 753 Builder.SetInsertPoint(&NewBB->front()); 754 755 GPUContext = createCallInitContext(); 756 757 if (!PollyManagedMemory) 758 allocateDeviceArrays(); 759 else 760 prepareManagedDeviceArrays(); 761 } 762 763 void GPUNodeBuilder::finalize() { 764 if (!PollyManagedMemory) 765 freeDeviceArrays(); 766 767 createCallFreeContext(GPUContext); 768 IslNodeBuilder::finalize(); 769 } 770 771 void GPUNodeBuilder::allocateDeviceArrays() { 772 assert(!PollyManagedMemory && 773 "Managed memory will directly send host pointers " 774 "to the kernel. There is no need for device arrays"); 775 isl_ast_build *Build = isl_ast_build_from_context(S.getContext().release()); 776 777 for (int i = 0; i < Prog->n_array; ++i) { 778 gpu_array_info *Array = &Prog->array[i]; 779 auto *ScopArray = (ScopArrayInfo *)Array->user; 780 std::string DevArrayName("p_dev_array_"); 781 DevArrayName.append(Array->name); 782 783 Value *ArraySize = getArraySize(Array); 784 Value *Offset = getArrayOffset(Array); 785 if (Offset) 786 ArraySize = Builder.CreateSub( 787 ArraySize, 788 Builder.CreateMul(Offset, 789 Builder.getInt64(ScopArray->getElemSizeInBytes()))); 790 const SCEV *SizeSCEV = SE.getSCEV(ArraySize); 791 // It makes no sense to have an array of size 0. The CUDA API will 792 // throw an error anyway if we invoke `cuMallocManaged` with size `0`. We 793 // choose to be defensive and catch this at the compile phase. It is 794 // most likely that we are doing something wrong with size computation. 795 if (SizeSCEV->isZero()) { 796 errs() << getUniqueScopName(&S) 797 << " has computed array size 0: " << *ArraySize 798 << " | for array: " << *(ScopArray->getBasePtr()) 799 << ". This is illegal, exiting.\n"; 800 report_fatal_error("array size was computed to be 0"); 801 } 802 803 Value *DevArray = createCallAllocateMemoryForDevice(ArraySize); 804 DevArray->setName(DevArrayName); 805 DeviceAllocations[ScopArray] = DevArray; 806 } 807 808 isl_ast_build_free(Build); 809 } 810 811 void GPUNodeBuilder::prepareManagedDeviceArrays() { 812 assert(PollyManagedMemory && 813 "Device array most only be prepared in managed-memory mode"); 814 for (int i = 0; i < Prog->n_array; ++i) { 815 gpu_array_info *Array = &Prog->array[i]; 816 ScopArrayInfo *ScopArray = (ScopArrayInfo *)Array->user; 817 Value *HostPtr; 818 819 if (gpu_array_is_scalar(Array)) 820 HostPtr = BlockGen.getOrCreateAlloca(ScopArray); 821 else 822 HostPtr = ScopArray->getBasePtr(); 823 HostPtr = getLatestValue(HostPtr); 824 825 Value *Offset = getArrayOffset(Array); 826 if (Offset) { 827 HostPtr = Builder.CreatePointerCast( 828 HostPtr, ScopArray->getElementType()->getPointerTo()); 829 HostPtr = Builder.CreateGEP(HostPtr, Offset); 830 } 831 832 HostPtr = Builder.CreatePointerCast(HostPtr, Builder.getInt8PtrTy()); 833 DeviceAllocations[ScopArray] = HostPtr; 834 } 835 } 836 837 void GPUNodeBuilder::addCUDAAnnotations(Module *M, Value *BlockDimX, 838 Value *BlockDimY, Value *BlockDimZ) { 839 auto AnnotationNode = M->getOrInsertNamedMetadata("nvvm.annotations"); 840 841 for (auto &F : *M) { 842 if (F.getCallingConv() != CallingConv::PTX_Kernel) 843 continue; 844 845 Value *V[] = {BlockDimX, BlockDimY, BlockDimZ}; 846 847 Metadata *Elements[] = { 848 ValueAsMetadata::get(&F), MDString::get(M->getContext(), "maxntidx"), 849 ValueAsMetadata::get(V[0]), MDString::get(M->getContext(), "maxntidy"), 850 ValueAsMetadata::get(V[1]), MDString::get(M->getContext(), "maxntidz"), 851 ValueAsMetadata::get(V[2]), 852 }; 853 MDNode *Node = MDNode::get(M->getContext(), Elements); 854 AnnotationNode->addOperand(Node); 855 } 856 } 857 858 void GPUNodeBuilder::freeDeviceArrays() { 859 assert(!PollyManagedMemory && "Managed memory does not use device arrays"); 860 for (auto &Array : DeviceAllocations) 861 createCallFreeDeviceMemory(Array.second); 862 } 863 864 Value *GPUNodeBuilder::createCallGetKernel(Value *Buffer, Value *Entry) { 865 const char *Name = "polly_getKernel"; 866 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 867 Function *F = M->getFunction(Name); 868 869 // If F is not available, declare it. 870 if (!F) { 871 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 872 std::vector<Type *> Args; 873 Args.push_back(Builder.getInt8PtrTy()); 874 Args.push_back(Builder.getInt8PtrTy()); 875 FunctionType *Ty = FunctionType::get(Builder.getInt8PtrTy(), Args, false); 876 F = Function::Create(Ty, Linkage, Name, M); 877 } 878 879 return Builder.CreateCall(F, {Buffer, Entry}); 880 } 881 882 Value *GPUNodeBuilder::createCallGetDevicePtr(Value *Allocation) { 883 const char *Name = "polly_getDevicePtr"; 884 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 885 Function *F = M->getFunction(Name); 886 887 // If F is not available, declare it. 888 if (!F) { 889 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 890 std::vector<Type *> Args; 891 Args.push_back(Builder.getInt8PtrTy()); 892 FunctionType *Ty = FunctionType::get(Builder.getInt8PtrTy(), Args, false); 893 F = Function::Create(Ty, Linkage, Name, M); 894 } 895 896 return Builder.CreateCall(F, {Allocation}); 897 } 898 899 void GPUNodeBuilder::createCallLaunchKernel(Value *GPUKernel, Value *GridDimX, 900 Value *GridDimY, Value *BlockDimX, 901 Value *BlockDimY, Value *BlockDimZ, 902 Value *Parameters) { 903 const char *Name = "polly_launchKernel"; 904 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 905 Function *F = M->getFunction(Name); 906 907 // If F is not available, declare it. 908 if (!F) { 909 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 910 std::vector<Type *> Args; 911 Args.push_back(Builder.getInt8PtrTy()); 912 Args.push_back(Builder.getInt32Ty()); 913 Args.push_back(Builder.getInt32Ty()); 914 Args.push_back(Builder.getInt32Ty()); 915 Args.push_back(Builder.getInt32Ty()); 916 Args.push_back(Builder.getInt32Ty()); 917 Args.push_back(Builder.getInt8PtrTy()); 918 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false); 919 F = Function::Create(Ty, Linkage, Name, M); 920 } 921 922 Builder.CreateCall(F, {GPUKernel, GridDimX, GridDimY, BlockDimX, BlockDimY, 923 BlockDimZ, Parameters}); 924 } 925 926 void GPUNodeBuilder::createCallFreeKernel(Value *GPUKernel) { 927 const char *Name = "polly_freeKernel"; 928 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 929 Function *F = M->getFunction(Name); 930 931 // If F is not available, declare it. 932 if (!F) { 933 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 934 std::vector<Type *> Args; 935 Args.push_back(Builder.getInt8PtrTy()); 936 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false); 937 F = Function::Create(Ty, Linkage, Name, M); 938 } 939 940 Builder.CreateCall(F, {GPUKernel}); 941 } 942 943 void GPUNodeBuilder::createCallFreeDeviceMemory(Value *Array) { 944 assert(!PollyManagedMemory && 945 "Managed memory does not allocate or free memory " 946 "for device"); 947 const char *Name = "polly_freeDeviceMemory"; 948 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 949 Function *F = M->getFunction(Name); 950 951 // If F is not available, declare it. 952 if (!F) { 953 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 954 std::vector<Type *> Args; 955 Args.push_back(Builder.getInt8PtrTy()); 956 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false); 957 F = Function::Create(Ty, Linkage, Name, M); 958 } 959 960 Builder.CreateCall(F, {Array}); 961 } 962 963 Value *GPUNodeBuilder::createCallAllocateMemoryForDevice(Value *Size) { 964 assert(!PollyManagedMemory && 965 "Managed memory does not allocate or free memory " 966 "for device"); 967 const char *Name = "polly_allocateMemoryForDevice"; 968 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 969 Function *F = M->getFunction(Name); 970 971 // If F is not available, declare it. 972 if (!F) { 973 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 974 std::vector<Type *> Args; 975 Args.push_back(Builder.getInt64Ty()); 976 FunctionType *Ty = FunctionType::get(Builder.getInt8PtrTy(), Args, false); 977 F = Function::Create(Ty, Linkage, Name, M); 978 } 979 980 return Builder.CreateCall(F, {Size}); 981 } 982 983 void GPUNodeBuilder::createCallCopyFromHostToDevice(Value *HostData, 984 Value *DeviceData, 985 Value *Size) { 986 assert(!PollyManagedMemory && 987 "Managed memory does not transfer memory between " 988 "device and host"); 989 const char *Name = "polly_copyFromHostToDevice"; 990 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 991 Function *F = M->getFunction(Name); 992 993 // If F is not available, declare it. 994 if (!F) { 995 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 996 std::vector<Type *> Args; 997 Args.push_back(Builder.getInt8PtrTy()); 998 Args.push_back(Builder.getInt8PtrTy()); 999 Args.push_back(Builder.getInt64Ty()); 1000 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false); 1001 F = Function::Create(Ty, Linkage, Name, M); 1002 } 1003 1004 Builder.CreateCall(F, {HostData, DeviceData, Size}); 1005 } 1006 1007 void GPUNodeBuilder::createCallCopyFromDeviceToHost(Value *DeviceData, 1008 Value *HostData, 1009 Value *Size) { 1010 assert(!PollyManagedMemory && 1011 "Managed memory does not transfer memory between " 1012 "device and host"); 1013 const char *Name = "polly_copyFromDeviceToHost"; 1014 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 1015 Function *F = M->getFunction(Name); 1016 1017 // If F is not available, declare it. 1018 if (!F) { 1019 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 1020 std::vector<Type *> Args; 1021 Args.push_back(Builder.getInt8PtrTy()); 1022 Args.push_back(Builder.getInt8PtrTy()); 1023 Args.push_back(Builder.getInt64Ty()); 1024 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false); 1025 F = Function::Create(Ty, Linkage, Name, M); 1026 } 1027 1028 Builder.CreateCall(F, {DeviceData, HostData, Size}); 1029 } 1030 1031 void GPUNodeBuilder::createCallSynchronizeDevice() { 1032 assert(PollyManagedMemory && "explicit synchronization is only necessary for " 1033 "managed memory"); 1034 const char *Name = "polly_synchronizeDevice"; 1035 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 1036 Function *F = M->getFunction(Name); 1037 1038 // If F is not available, declare it. 1039 if (!F) { 1040 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 1041 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), false); 1042 F = Function::Create(Ty, Linkage, Name, M); 1043 } 1044 1045 Builder.CreateCall(F); 1046 } 1047 1048 Value *GPUNodeBuilder::createCallInitContext() { 1049 const char *Name; 1050 1051 switch (Runtime) { 1052 case GPURuntime::CUDA: 1053 Name = "polly_initContextCUDA"; 1054 break; 1055 case GPURuntime::OpenCL: 1056 Name = "polly_initContextCL"; 1057 break; 1058 } 1059 1060 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 1061 Function *F = M->getFunction(Name); 1062 1063 // If F is not available, declare it. 1064 if (!F) { 1065 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 1066 std::vector<Type *> Args; 1067 FunctionType *Ty = FunctionType::get(Builder.getInt8PtrTy(), Args, false); 1068 F = Function::Create(Ty, Linkage, Name, M); 1069 } 1070 1071 return Builder.CreateCall(F, {}); 1072 } 1073 1074 void GPUNodeBuilder::createCallFreeContext(Value *Context) { 1075 const char *Name = "polly_freeContext"; 1076 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 1077 Function *F = M->getFunction(Name); 1078 1079 // If F is not available, declare it. 1080 if (!F) { 1081 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 1082 std::vector<Type *> Args; 1083 Args.push_back(Builder.getInt8PtrTy()); 1084 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false); 1085 F = Function::Create(Ty, Linkage, Name, M); 1086 } 1087 1088 Builder.CreateCall(F, {Context}); 1089 } 1090 1091 /// Check if one string is a prefix of another. 1092 /// 1093 /// @param String The string in which to look for the prefix. 1094 /// @param Prefix The prefix to look for. 1095 static bool isPrefix(std::string String, std::string Prefix) { 1096 return String.find(Prefix) == 0; 1097 } 1098 1099 Value *GPUNodeBuilder::getArraySize(gpu_array_info *Array) { 1100 isl::ast_build Build = isl::ast_build::from_context(S.getContext()); 1101 Value *ArraySize = ConstantInt::get(Builder.getInt64Ty(), Array->size); 1102 1103 if (!gpu_array_is_scalar(Array)) { 1104 isl::multi_pw_aff ArrayBound = 1105 isl::manage(isl_multi_pw_aff_copy(Array->bound)); 1106 1107 isl::pw_aff OffsetDimZero = ArrayBound.get_pw_aff(0); 1108 isl::ast_expr Res = Build.expr_from(OffsetDimZero); 1109 1110 for (unsigned int i = 1; i < Array->n_index; i++) { 1111 isl::pw_aff Bound_I = ArrayBound.get_pw_aff(i); 1112 isl::ast_expr Expr = Build.expr_from(Bound_I); 1113 Res = Res.mul(Expr); 1114 } 1115 1116 Value *NumElements = ExprBuilder.create(Res.release()); 1117 if (NumElements->getType() != ArraySize->getType()) 1118 NumElements = Builder.CreateSExt(NumElements, ArraySize->getType()); 1119 ArraySize = Builder.CreateMul(ArraySize, NumElements); 1120 } 1121 return ArraySize; 1122 } 1123 1124 Value *GPUNodeBuilder::getArrayOffset(gpu_array_info *Array) { 1125 if (gpu_array_is_scalar(Array)) 1126 return nullptr; 1127 1128 isl::ast_build Build = isl::ast_build::from_context(S.getContext()); 1129 1130 isl::set Min = isl::manage(isl_set_copy(Array->extent)).lexmin(); 1131 1132 isl::set ZeroSet = isl::set::universe(Min.get_space()); 1133 1134 for (long i = 0, n = Min.dim(isl::dim::set); i < n; i++) 1135 ZeroSet = ZeroSet.fix_si(isl::dim::set, i, 0); 1136 1137 if (Min.is_subset(ZeroSet)) { 1138 return nullptr; 1139 } 1140 1141 isl::ast_expr Result = isl::ast_expr::from_val(isl::val(Min.get_ctx(), 0)); 1142 1143 for (long i = 0, n = Min.dim(isl::dim::set); i < n; i++) { 1144 if (i > 0) { 1145 isl::pw_aff Bound_I = 1146 isl::manage(isl_multi_pw_aff_get_pw_aff(Array->bound, i - 1)); 1147 isl::ast_expr BExpr = Build.expr_from(Bound_I); 1148 Result = Result.mul(BExpr); 1149 } 1150 isl::pw_aff DimMin = Min.dim_min(i); 1151 isl::ast_expr MExpr = Build.expr_from(DimMin); 1152 Result = Result.add(MExpr); 1153 } 1154 1155 return ExprBuilder.create(Result.release()); 1156 } 1157 1158 Value *GPUNodeBuilder::getManagedDeviceArray(gpu_array_info *Array, 1159 ScopArrayInfo *ArrayInfo) { 1160 assert(PollyManagedMemory && "Only used when you wish to get a host " 1161 "pointer for sending data to the kernel, " 1162 "with managed memory"); 1163 std::map<ScopArrayInfo *, Value *>::iterator it; 1164 it = DeviceAllocations.find(ArrayInfo); 1165 assert(it != DeviceAllocations.end() && 1166 "Device array expected to be available"); 1167 return it->second; 1168 } 1169 1170 void GPUNodeBuilder::createDataTransfer(__isl_take isl_ast_node *TransferStmt, 1171 enum DataDirection Direction) { 1172 assert(!PollyManagedMemory && "Managed memory needs no data transfers"); 1173 isl_ast_expr *Expr = isl_ast_node_user_get_expr(TransferStmt); 1174 isl_ast_expr *Arg = isl_ast_expr_get_op_arg(Expr, 0); 1175 isl_id *Id = isl_ast_expr_get_id(Arg); 1176 auto Array = (gpu_array_info *)isl_id_get_user(Id); 1177 auto ScopArray = (ScopArrayInfo *)(Array->user); 1178 1179 Value *Size = getArraySize(Array); 1180 Value *Offset = getArrayOffset(Array); 1181 Value *DevPtr = DeviceAllocations[ScopArray]; 1182 1183 Value *HostPtr; 1184 1185 if (gpu_array_is_scalar(Array)) 1186 HostPtr = BlockGen.getOrCreateAlloca(ScopArray); 1187 else 1188 HostPtr = ScopArray->getBasePtr(); 1189 HostPtr = getLatestValue(HostPtr); 1190 1191 if (Offset) { 1192 HostPtr = Builder.CreatePointerCast( 1193 HostPtr, ScopArray->getElementType()->getPointerTo()); 1194 HostPtr = Builder.CreateGEP(HostPtr, Offset); 1195 } 1196 1197 HostPtr = Builder.CreatePointerCast(HostPtr, Builder.getInt8PtrTy()); 1198 1199 if (Offset) { 1200 Size = Builder.CreateSub( 1201 Size, Builder.CreateMul( 1202 Offset, Builder.getInt64(ScopArray->getElemSizeInBytes()))); 1203 } 1204 1205 if (Direction == HOST_TO_DEVICE) 1206 createCallCopyFromHostToDevice(HostPtr, DevPtr, Size); 1207 else 1208 createCallCopyFromDeviceToHost(DevPtr, HostPtr, Size); 1209 1210 isl_id_free(Id); 1211 isl_ast_expr_free(Arg); 1212 isl_ast_expr_free(Expr); 1213 isl_ast_node_free(TransferStmt); 1214 } 1215 1216 void GPUNodeBuilder::createUser(__isl_take isl_ast_node *UserStmt) { 1217 isl_ast_expr *Expr = isl_ast_node_user_get_expr(UserStmt); 1218 isl_ast_expr *StmtExpr = isl_ast_expr_get_op_arg(Expr, 0); 1219 isl_id *Id = isl_ast_expr_get_id(StmtExpr); 1220 isl_id_free(Id); 1221 isl_ast_expr_free(StmtExpr); 1222 1223 const char *Str = isl_id_get_name(Id); 1224 if (!strcmp(Str, "kernel")) { 1225 createKernel(UserStmt); 1226 if (PollyManagedMemory) 1227 createCallSynchronizeDevice(); 1228 isl_ast_expr_free(Expr); 1229 return; 1230 } 1231 if (!strcmp(Str, "init_device")) { 1232 initializeAfterRTH(); 1233 isl_ast_node_free(UserStmt); 1234 isl_ast_expr_free(Expr); 1235 return; 1236 } 1237 if (!strcmp(Str, "clear_device")) { 1238 finalize(); 1239 isl_ast_node_free(UserStmt); 1240 isl_ast_expr_free(Expr); 1241 return; 1242 } 1243 if (isPrefix(Str, "to_device")) { 1244 if (!PollyManagedMemory) 1245 createDataTransfer(UserStmt, HOST_TO_DEVICE); 1246 else 1247 isl_ast_node_free(UserStmt); 1248 1249 isl_ast_expr_free(Expr); 1250 return; 1251 } 1252 1253 if (isPrefix(Str, "from_device")) { 1254 if (!PollyManagedMemory) { 1255 createDataTransfer(UserStmt, DEVICE_TO_HOST); 1256 } else { 1257 isl_ast_node_free(UserStmt); 1258 } 1259 isl_ast_expr_free(Expr); 1260 return; 1261 } 1262 1263 isl_id *Anno = isl_ast_node_get_annotation(UserStmt); 1264 struct ppcg_kernel_stmt *KernelStmt = 1265 (struct ppcg_kernel_stmt *)isl_id_get_user(Anno); 1266 isl_id_free(Anno); 1267 1268 switch (KernelStmt->type) { 1269 case ppcg_kernel_domain: 1270 createScopStmt(Expr, KernelStmt); 1271 isl_ast_node_free(UserStmt); 1272 return; 1273 case ppcg_kernel_copy: 1274 createKernelCopy(KernelStmt); 1275 isl_ast_expr_free(Expr); 1276 isl_ast_node_free(UserStmt); 1277 return; 1278 case ppcg_kernel_sync: 1279 createKernelSync(); 1280 isl_ast_expr_free(Expr); 1281 isl_ast_node_free(UserStmt); 1282 return; 1283 } 1284 1285 isl_ast_expr_free(Expr); 1286 isl_ast_node_free(UserStmt); 1287 return; 1288 } 1289 void GPUNodeBuilder::createKernelCopy(ppcg_kernel_stmt *KernelStmt) { 1290 isl_ast_expr *LocalIndex = isl_ast_expr_copy(KernelStmt->u.c.local_index); 1291 LocalIndex = isl_ast_expr_address_of(LocalIndex); 1292 Value *LocalAddr = ExprBuilder.create(LocalIndex); 1293 isl_ast_expr *Index = isl_ast_expr_copy(KernelStmt->u.c.index); 1294 Index = isl_ast_expr_address_of(Index); 1295 Value *GlobalAddr = ExprBuilder.create(Index); 1296 1297 if (KernelStmt->u.c.read) { 1298 LoadInst *Load = Builder.CreateLoad(GlobalAddr, "shared.read"); 1299 Builder.CreateStore(Load, LocalAddr); 1300 } else { 1301 LoadInst *Load = Builder.CreateLoad(LocalAddr, "shared.write"); 1302 Builder.CreateStore(Load, GlobalAddr); 1303 } 1304 } 1305 1306 void GPUNodeBuilder::createScopStmt(isl_ast_expr *Expr, 1307 ppcg_kernel_stmt *KernelStmt) { 1308 auto Stmt = (ScopStmt *)KernelStmt->u.d.stmt->stmt; 1309 isl_id_to_ast_expr *Indexes = KernelStmt->u.d.ref2expr; 1310 1311 LoopToScevMapT LTS; 1312 LTS.insert(OutsideLoopIterations.begin(), OutsideLoopIterations.end()); 1313 1314 createSubstitutions(Expr, Stmt, LTS); 1315 1316 if (Stmt->isBlockStmt()) 1317 BlockGen.copyStmt(*Stmt, LTS, Indexes); 1318 else 1319 RegionGen.copyStmt(*Stmt, LTS, Indexes); 1320 } 1321 1322 void GPUNodeBuilder::createKernelSync() { 1323 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 1324 const char *SpirName = "__gen_ocl_barrier_global"; 1325 1326 Function *Sync; 1327 1328 switch (Arch) { 1329 case GPUArch::SPIR64: 1330 case GPUArch::SPIR32: 1331 Sync = M->getFunction(SpirName); 1332 1333 // If Sync is not available, declare it. 1334 if (!Sync) { 1335 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 1336 std::vector<Type *> Args; 1337 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false); 1338 Sync = Function::Create(Ty, Linkage, SpirName, M); 1339 Sync->setCallingConv(CallingConv::SPIR_FUNC); 1340 } 1341 break; 1342 case GPUArch::NVPTX64: 1343 Sync = Intrinsic::getDeclaration(M, Intrinsic::nvvm_barrier0); 1344 break; 1345 } 1346 1347 Builder.CreateCall(Sync, {}); 1348 } 1349 1350 /// Collect llvm::Values referenced from @p Node 1351 /// 1352 /// This function only applies to isl_ast_nodes that are user_nodes referring 1353 /// to a ScopStmt. All other node types are ignore. 1354 /// 1355 /// @param Node The node to collect references for. 1356 /// @param User A user pointer used as storage for the data that is collected. 1357 /// 1358 /// @returns isl_bool_true if data could be collected successfully. 1359 isl_bool collectReferencesInGPUStmt(__isl_keep isl_ast_node *Node, void *User) { 1360 if (isl_ast_node_get_type(Node) != isl_ast_node_user) 1361 return isl_bool_true; 1362 1363 isl_ast_expr *Expr = isl_ast_node_user_get_expr(Node); 1364 isl_ast_expr *StmtExpr = isl_ast_expr_get_op_arg(Expr, 0); 1365 isl_id *Id = isl_ast_expr_get_id(StmtExpr); 1366 const char *Str = isl_id_get_name(Id); 1367 isl_id_free(Id); 1368 isl_ast_expr_free(StmtExpr); 1369 isl_ast_expr_free(Expr); 1370 1371 if (!isPrefix(Str, "Stmt")) 1372 return isl_bool_true; 1373 1374 Id = isl_ast_node_get_annotation(Node); 1375 auto *KernelStmt = (ppcg_kernel_stmt *)isl_id_get_user(Id); 1376 auto Stmt = (ScopStmt *)KernelStmt->u.d.stmt->stmt; 1377 isl_id_free(Id); 1378 1379 addReferencesFromStmt(Stmt, User, false /* CreateScalarRefs */); 1380 1381 return isl_bool_true; 1382 } 1383 1384 /// A list of functions that are available in NVIDIA's libdevice. 1385 const std::set<std::string> CUDALibDeviceFunctions = { 1386 "exp", "expf", "expl", "cos", "cosf", "sqrt", "sqrtf", 1387 "copysign", "copysignf", "copysignl", "log", "logf", "powi", "powif"}; 1388 1389 // A map from intrinsics to their corresponding libdevice functions. 1390 const std::map<std::string, std::string> IntrinsicToLibdeviceFunc = { 1391 {"llvm.exp.f64", "exp"}, 1392 {"llvm.exp.f32", "expf"}, 1393 {"llvm.powi.f64", "powi"}, 1394 {"llvm.powi.f32", "powif"}}; 1395 1396 /// Return the corresponding CUDA libdevice function name for @p F. 1397 /// Note that this function will try to convert instrinsics in the list 1398 /// IntrinsicToLibdeviceFunc into libdevice functions. 1399 /// This is because some intrinsics such as `exp` 1400 /// are not supported by the NVPTX backend. 1401 /// If this restriction of the backend is lifted, we should refactor our code 1402 /// so that we use intrinsics whenever possible. 1403 /// 1404 /// Return "" if we are not compiling for CUDA. 1405 std::string getCUDALibDeviceFuntion(Function *F) { 1406 const std::string FnName = [&] { 1407 auto It = IntrinsicToLibdeviceFunc.find(F->getName()); 1408 if (It != IntrinsicToLibdeviceFunc.end()) 1409 return It->second; 1410 1411 return std::string(F->getName()); 1412 }(); 1413 1414 if (CUDALibDeviceFunctions.count(FnName)) 1415 return "__nv_" + FnName; 1416 1417 return ""; 1418 } 1419 1420 /// Check if F is a function that we can code-generate in a GPU kernel. 1421 static bool isValidFunctionInKernel(llvm::Function *F, bool AllowLibDevice) { 1422 assert(F && "F is an invalid pointer"); 1423 // We string compare against the name of the function to allow 1424 // all variants of the intrinsic "llvm.sqrt.*", "llvm.fabs", and 1425 // "llvm.copysign". 1426 const StringRef Name = F->getName(); 1427 1428 if (AllowLibDevice && getCUDALibDeviceFuntion(F).length() > 0) 1429 return true; 1430 1431 return F->isIntrinsic() && 1432 (Name.startswith("llvm.sqrt") || Name.startswith("llvm.fabs") || 1433 Name.startswith("llvm.copysign")); 1434 } 1435 1436 /// Do not take `Function` as a subtree value. 1437 /// 1438 /// We try to take the reference of all subtree values and pass them along 1439 /// to the kernel from the host. Taking an address of any function and 1440 /// trying to pass along is nonsensical. Only allow `Value`s that are not 1441 /// `Function`s. 1442 static bool isValidSubtreeValue(llvm::Value *V) { return !isa<Function>(V); } 1443 1444 /// Return `Function`s from `RawSubtreeValues`. 1445 static SetVector<Function *> 1446 getFunctionsFromRawSubtreeValues(SetVector<Value *> RawSubtreeValues, 1447 bool AllowCUDALibDevice) { 1448 SetVector<Function *> SubtreeFunctions; 1449 for (Value *It : RawSubtreeValues) { 1450 Function *F = dyn_cast<Function>(It); 1451 if (F) { 1452 assert(isValidFunctionInKernel(F, AllowCUDALibDevice) && 1453 "Code should have bailed out by " 1454 "this point if an invalid function " 1455 "were present in a kernel."); 1456 SubtreeFunctions.insert(F); 1457 } 1458 } 1459 return SubtreeFunctions; 1460 } 1461 1462 std::tuple<SetVector<Value *>, SetVector<Function *>, SetVector<const Loop *>, 1463 isl::space> 1464 GPUNodeBuilder::getReferencesInKernel(ppcg_kernel *Kernel) { 1465 SetVector<Value *> SubtreeValues; 1466 SetVector<const SCEV *> SCEVs; 1467 SetVector<const Loop *> Loops; 1468 isl::space ParamSpace = isl::space(S.getIslCtx(), 0, 0).params(); 1469 SubtreeReferences References = { 1470 LI, SE, S, ValueMap, SubtreeValues, SCEVs, getBlockGenerator(), 1471 &ParamSpace}; 1472 1473 for (const auto &I : IDToValue) 1474 SubtreeValues.insert(I.second); 1475 1476 // NOTE: this is populated in IslNodeBuilder::addParameters 1477 // See [Code generation of induction variables of loops outside Scops]. 1478 for (const auto &I : OutsideLoopIterations) 1479 SubtreeValues.insert(cast<SCEVUnknown>(I.second)->getValue()); 1480 1481 isl_ast_node_foreach_descendant_top_down( 1482 Kernel->tree, collectReferencesInGPUStmt, &References); 1483 1484 for (const SCEV *Expr : SCEVs) { 1485 findValues(Expr, SE, SubtreeValues); 1486 findLoops(Expr, Loops); 1487 } 1488 1489 Loops.remove_if([this](const Loop *L) { 1490 return S.contains(L) || L->contains(S.getEntry()); 1491 }); 1492 1493 for (auto &SAI : S.arrays()) 1494 SubtreeValues.remove(SAI->getBasePtr()); 1495 1496 isl_space *Space = S.getParamSpace().release(); 1497 for (long i = 0, n = isl_space_dim(Space, isl_dim_param); i < n; i++) { 1498 isl_id *Id = isl_space_get_dim_id(Space, isl_dim_param, i); 1499 assert(IDToValue.count(Id)); 1500 Value *Val = IDToValue[Id]; 1501 SubtreeValues.remove(Val); 1502 isl_id_free(Id); 1503 } 1504 isl_space_free(Space); 1505 1506 for (long i = 0, n = isl_space_dim(Kernel->space, isl_dim_set); i < n; i++) { 1507 isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_set, i); 1508 assert(IDToValue.count(Id)); 1509 Value *Val = IDToValue[Id]; 1510 SubtreeValues.remove(Val); 1511 isl_id_free(Id); 1512 } 1513 1514 // Note: { ValidSubtreeValues, ValidSubtreeFunctions } partitions 1515 // SubtreeValues. This is important, because we should not lose any 1516 // SubtreeValues in the process of constructing the 1517 // "ValidSubtree{Values, Functions} sets. Nor should the set 1518 // ValidSubtree{Values, Functions} have any common element. 1519 auto ValidSubtreeValuesIt = 1520 make_filter_range(SubtreeValues, isValidSubtreeValue); 1521 SetVector<Value *> ValidSubtreeValues(ValidSubtreeValuesIt.begin(), 1522 ValidSubtreeValuesIt.end()); 1523 1524 bool AllowCUDALibDevice = Arch == GPUArch::NVPTX64; 1525 1526 SetVector<Function *> ValidSubtreeFunctions( 1527 getFunctionsFromRawSubtreeValues(SubtreeValues, AllowCUDALibDevice)); 1528 1529 // @see IslNodeBuilder::getReferencesInSubtree 1530 SetVector<Value *> ReplacedValues; 1531 for (Value *V : ValidSubtreeValues) { 1532 auto It = ValueMap.find(V); 1533 if (It == ValueMap.end()) 1534 ReplacedValues.insert(V); 1535 else 1536 ReplacedValues.insert(It->second); 1537 } 1538 return std::make_tuple(ReplacedValues, ValidSubtreeFunctions, Loops, 1539 ParamSpace); 1540 } 1541 1542 void GPUNodeBuilder::clearDominators(Function *F) { 1543 DomTreeNode *N = DT.getNode(&F->getEntryBlock()); 1544 std::vector<BasicBlock *> Nodes; 1545 for (po_iterator<DomTreeNode *> I = po_begin(N), E = po_end(N); I != E; ++I) 1546 Nodes.push_back(I->getBlock()); 1547 1548 for (BasicBlock *BB : Nodes) 1549 DT.eraseNode(BB); 1550 } 1551 1552 void GPUNodeBuilder::clearScalarEvolution(Function *F) { 1553 for (BasicBlock &BB : *F) { 1554 Loop *L = LI.getLoopFor(&BB); 1555 if (L) 1556 SE.forgetLoop(L); 1557 } 1558 } 1559 1560 void GPUNodeBuilder::clearLoops(Function *F) { 1561 for (BasicBlock &BB : *F) { 1562 Loop *L = LI.getLoopFor(&BB); 1563 if (L) 1564 SE.forgetLoop(L); 1565 LI.removeBlock(&BB); 1566 } 1567 } 1568 1569 std::tuple<Value *, Value *> GPUNodeBuilder::getGridSizes(ppcg_kernel *Kernel) { 1570 std::vector<Value *> Sizes; 1571 isl::ast_build Context = isl::ast_build::from_context(S.getContext()); 1572 1573 isl::multi_pw_aff GridSizePwAffs = 1574 isl::manage(isl_multi_pw_aff_copy(Kernel->grid_size)); 1575 for (long i = 0; i < Kernel->n_grid; i++) { 1576 isl::pw_aff Size = GridSizePwAffs.get_pw_aff(i); 1577 isl::ast_expr GridSize = Context.expr_from(Size); 1578 Value *Res = ExprBuilder.create(GridSize.release()); 1579 Res = Builder.CreateTrunc(Res, Builder.getInt32Ty()); 1580 Sizes.push_back(Res); 1581 } 1582 1583 for (long i = Kernel->n_grid; i < 3; i++) 1584 Sizes.push_back(ConstantInt::get(Builder.getInt32Ty(), 1)); 1585 1586 return std::make_tuple(Sizes[0], Sizes[1]); 1587 } 1588 1589 std::tuple<Value *, Value *, Value *> 1590 GPUNodeBuilder::getBlockSizes(ppcg_kernel *Kernel) { 1591 std::vector<Value *> Sizes; 1592 1593 for (long i = 0; i < Kernel->n_block; i++) { 1594 Value *Res = ConstantInt::get(Builder.getInt32Ty(), Kernel->block_dim[i]); 1595 Sizes.push_back(Res); 1596 } 1597 1598 for (long i = Kernel->n_block; i < 3; i++) 1599 Sizes.push_back(ConstantInt::get(Builder.getInt32Ty(), 1)); 1600 1601 return std::make_tuple(Sizes[0], Sizes[1], Sizes[2]); 1602 } 1603 1604 void GPUNodeBuilder::insertStoreParameter(Instruction *Parameters, 1605 Instruction *Param, int Index) { 1606 Value *Slot = Builder.CreateGEP( 1607 Parameters, {Builder.getInt64(0), Builder.getInt64(Index)}); 1608 Value *ParamTyped = Builder.CreatePointerCast(Param, Builder.getInt8PtrTy()); 1609 Builder.CreateStore(ParamTyped, Slot); 1610 } 1611 1612 Value * 1613 GPUNodeBuilder::createLaunchParameters(ppcg_kernel *Kernel, Function *F, 1614 SetVector<Value *> SubtreeValues) { 1615 const int NumArgs = F->arg_size(); 1616 std::vector<int> ArgSizes(NumArgs); 1617 1618 // If we are using the OpenCL Runtime, we need to add the kernel argument 1619 // sizes to the end of the launch-parameter list, so OpenCL can determine 1620 // how big the respective kernel arguments are. 1621 // Here we need to reserve adequate space for that. 1622 Type *ArrayTy; 1623 if (Runtime == GPURuntime::OpenCL) 1624 ArrayTy = ArrayType::get(Builder.getInt8PtrTy(), 2 * NumArgs); 1625 else 1626 ArrayTy = ArrayType::get(Builder.getInt8PtrTy(), NumArgs); 1627 1628 BasicBlock *EntryBlock = 1629 &Builder.GetInsertBlock()->getParent()->getEntryBlock(); 1630 auto AddressSpace = F->getParent()->getDataLayout().getAllocaAddrSpace(); 1631 std::string Launch = "polly_launch_" + std::to_string(Kernel->id); 1632 Instruction *Parameters = new AllocaInst( 1633 ArrayTy, AddressSpace, Launch + "_params", EntryBlock->getTerminator()); 1634 1635 int Index = 0; 1636 for (long i = 0; i < Prog->n_array; i++) { 1637 if (!ppcg_kernel_requires_array_argument(Kernel, i)) 1638 continue; 1639 1640 isl_id *Id = isl_space_get_tuple_id(Prog->array[i].space, isl_dim_set); 1641 const ScopArrayInfo *SAI = ScopArrayInfo::getFromId(isl::manage(Id)); 1642 1643 if (Runtime == GPURuntime::OpenCL) 1644 ArgSizes[Index] = SAI->getElemSizeInBytes(); 1645 1646 Value *DevArray = nullptr; 1647 if (PollyManagedMemory) { 1648 DevArray = getManagedDeviceArray(&Prog->array[i], 1649 const_cast<ScopArrayInfo *>(SAI)); 1650 } else { 1651 DevArray = DeviceAllocations[const_cast<ScopArrayInfo *>(SAI)]; 1652 DevArray = createCallGetDevicePtr(DevArray); 1653 } 1654 assert(DevArray != nullptr && "Array to be offloaded to device not " 1655 "initialized"); 1656 Value *Offset = getArrayOffset(&Prog->array[i]); 1657 1658 if (Offset) { 1659 DevArray = Builder.CreatePointerCast( 1660 DevArray, SAI->getElementType()->getPointerTo()); 1661 DevArray = Builder.CreateGEP(DevArray, Builder.CreateNeg(Offset)); 1662 DevArray = Builder.CreatePointerCast(DevArray, Builder.getInt8PtrTy()); 1663 } 1664 Value *Slot = Builder.CreateGEP( 1665 Parameters, {Builder.getInt64(0), Builder.getInt64(Index)}); 1666 1667 if (gpu_array_is_read_only_scalar(&Prog->array[i])) { 1668 Value *ValPtr = nullptr; 1669 if (PollyManagedMemory) 1670 ValPtr = DevArray; 1671 else 1672 ValPtr = BlockGen.getOrCreateAlloca(SAI); 1673 1674 assert(ValPtr != nullptr && "ValPtr that should point to a valid object" 1675 " to be stored into Parameters"); 1676 Value *ValPtrCast = 1677 Builder.CreatePointerCast(ValPtr, Builder.getInt8PtrTy()); 1678 Builder.CreateStore(ValPtrCast, Slot); 1679 } else { 1680 Instruction *Param = 1681 new AllocaInst(Builder.getInt8PtrTy(), AddressSpace, 1682 Launch + "_param_" + std::to_string(Index), 1683 EntryBlock->getTerminator()); 1684 Builder.CreateStore(DevArray, Param); 1685 Value *ParamTyped = 1686 Builder.CreatePointerCast(Param, Builder.getInt8PtrTy()); 1687 Builder.CreateStore(ParamTyped, Slot); 1688 } 1689 Index++; 1690 } 1691 1692 int NumHostIters = isl_space_dim(Kernel->space, isl_dim_set); 1693 1694 for (long i = 0; i < NumHostIters; i++) { 1695 isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_set, i); 1696 Value *Val = IDToValue[Id]; 1697 isl_id_free(Id); 1698 1699 if (Runtime == GPURuntime::OpenCL) 1700 ArgSizes[Index] = computeSizeInBytes(Val->getType()); 1701 1702 Instruction *Param = 1703 new AllocaInst(Val->getType(), AddressSpace, 1704 Launch + "_param_" + std::to_string(Index), 1705 EntryBlock->getTerminator()); 1706 Builder.CreateStore(Val, Param); 1707 insertStoreParameter(Parameters, Param, Index); 1708 Index++; 1709 } 1710 1711 int NumVars = isl_space_dim(Kernel->space, isl_dim_param); 1712 1713 for (long i = 0; i < NumVars; i++) { 1714 isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_param, i); 1715 Value *Val = IDToValue[Id]; 1716 if (ValueMap.count(Val)) 1717 Val = ValueMap[Val]; 1718 isl_id_free(Id); 1719 1720 if (Runtime == GPURuntime::OpenCL) 1721 ArgSizes[Index] = computeSizeInBytes(Val->getType()); 1722 1723 Instruction *Param = 1724 new AllocaInst(Val->getType(), AddressSpace, 1725 Launch + "_param_" + std::to_string(Index), 1726 EntryBlock->getTerminator()); 1727 Builder.CreateStore(Val, Param); 1728 insertStoreParameter(Parameters, Param, Index); 1729 Index++; 1730 } 1731 1732 for (auto Val : SubtreeValues) { 1733 if (Runtime == GPURuntime::OpenCL) 1734 ArgSizes[Index] = computeSizeInBytes(Val->getType()); 1735 1736 Instruction *Param = 1737 new AllocaInst(Val->getType(), AddressSpace, 1738 Launch + "_param_" + std::to_string(Index), 1739 EntryBlock->getTerminator()); 1740 Builder.CreateStore(Val, Param); 1741 insertStoreParameter(Parameters, Param, Index); 1742 Index++; 1743 } 1744 1745 if (Runtime == GPURuntime::OpenCL) { 1746 for (int i = 0; i < NumArgs; i++) { 1747 Value *Val = ConstantInt::get(Builder.getInt32Ty(), ArgSizes[i]); 1748 Instruction *Param = 1749 new AllocaInst(Builder.getInt32Ty(), AddressSpace, 1750 Launch + "_param_size_" + std::to_string(i), 1751 EntryBlock->getTerminator()); 1752 Builder.CreateStore(Val, Param); 1753 insertStoreParameter(Parameters, Param, Index); 1754 Index++; 1755 } 1756 } 1757 1758 auto Location = EntryBlock->getTerminator(); 1759 return new BitCastInst(Parameters, Builder.getInt8PtrTy(), 1760 Launch + "_params_i8ptr", Location); 1761 } 1762 1763 void GPUNodeBuilder::setupKernelSubtreeFunctions( 1764 SetVector<Function *> SubtreeFunctions) { 1765 for (auto Fn : SubtreeFunctions) { 1766 const std::string ClonedFnName = Fn->getName(); 1767 Function *Clone = GPUModule->getFunction(ClonedFnName); 1768 if (!Clone) 1769 Clone = 1770 Function::Create(Fn->getFunctionType(), GlobalValue::ExternalLinkage, 1771 ClonedFnName, GPUModule.get()); 1772 assert(Clone && "Expected cloned function to be initialized."); 1773 assert(ValueMap.find(Fn) == ValueMap.end() && 1774 "Fn already present in ValueMap"); 1775 ValueMap[Fn] = Clone; 1776 } 1777 } 1778 void GPUNodeBuilder::createKernel(__isl_take isl_ast_node *KernelStmt) { 1779 isl_id *Id = isl_ast_node_get_annotation(KernelStmt); 1780 ppcg_kernel *Kernel = (ppcg_kernel *)isl_id_get_user(Id); 1781 isl_id_free(Id); 1782 isl_ast_node_free(KernelStmt); 1783 1784 if (Kernel->n_grid > 1) 1785 DeepestParallel = 1786 std::max(DeepestParallel, isl_space_dim(Kernel->space, isl_dim_set)); 1787 else 1788 DeepestSequential = 1789 std::max(DeepestSequential, isl_space_dim(Kernel->space, isl_dim_set)); 1790 1791 Value *BlockDimX, *BlockDimY, *BlockDimZ; 1792 std::tie(BlockDimX, BlockDimY, BlockDimZ) = getBlockSizes(Kernel); 1793 1794 SetVector<Value *> SubtreeValues; 1795 SetVector<Function *> SubtreeFunctions; 1796 SetVector<const Loop *> Loops; 1797 isl::space ParamSpace; 1798 std::tie(SubtreeValues, SubtreeFunctions, Loops, ParamSpace) = 1799 getReferencesInKernel(Kernel); 1800 1801 // Add parameters that appear only in the access function to the kernel 1802 // space. This is important to make sure that all isl_ids are passed as 1803 // parameters to the kernel, even though we may not have all parameters 1804 // in the context to improve compile time. 1805 Kernel->space = isl_space_align_params(Kernel->space, ParamSpace.release()); 1806 1807 assert(Kernel->tree && "Device AST of kernel node is empty"); 1808 1809 Instruction &HostInsertPoint = *Builder.GetInsertPoint(); 1810 IslExprBuilder::IDToValueTy HostIDs = IDToValue; 1811 ValueMapT HostValueMap = ValueMap; 1812 BlockGenerator::AllocaMapTy HostScalarMap = ScalarMap; 1813 ScalarMap.clear(); 1814 1815 // Create for all loops we depend on values that contain the current loop 1816 // iteration. These values are necessary to generate code for SCEVs that 1817 // depend on such loops. As a result we need to pass them to the subfunction. 1818 for (const Loop *L : Loops) { 1819 const SCEV *OuterLIV = SE.getAddRecExpr(SE.getUnknown(Builder.getInt64(0)), 1820 SE.getUnknown(Builder.getInt64(1)), 1821 L, SCEV::FlagAnyWrap); 1822 Value *V = generateSCEV(OuterLIV); 1823 OutsideLoopIterations[L] = SE.getUnknown(V); 1824 SubtreeValues.insert(V); 1825 } 1826 1827 createKernelFunction(Kernel, SubtreeValues, SubtreeFunctions); 1828 setupKernelSubtreeFunctions(SubtreeFunctions); 1829 1830 create(isl_ast_node_copy(Kernel->tree)); 1831 1832 finalizeKernelArguments(Kernel); 1833 Function *F = Builder.GetInsertBlock()->getParent(); 1834 if (Arch == GPUArch::NVPTX64) 1835 addCUDAAnnotations(F->getParent(), BlockDimX, BlockDimY, BlockDimZ); 1836 clearDominators(F); 1837 clearScalarEvolution(F); 1838 clearLoops(F); 1839 1840 IDToValue = HostIDs; 1841 1842 ValueMap = std::move(HostValueMap); 1843 ScalarMap = std::move(HostScalarMap); 1844 EscapeMap.clear(); 1845 IDToSAI.clear(); 1846 Annotator.resetAlternativeAliasBases(); 1847 for (auto &BasePtr : LocalArrays) 1848 S.invalidateScopArrayInfo(BasePtr, MemoryKind::Array); 1849 LocalArrays.clear(); 1850 1851 std::string ASMString = finalizeKernelFunction(); 1852 Builder.SetInsertPoint(&HostInsertPoint); 1853 Value *Parameters = createLaunchParameters(Kernel, F, SubtreeValues); 1854 1855 std::string Name = getKernelFuncName(Kernel->id); 1856 Value *KernelString = Builder.CreateGlobalStringPtr(ASMString, Name); 1857 Value *NameString = Builder.CreateGlobalStringPtr(Name, Name + "_name"); 1858 Value *GPUKernel = createCallGetKernel(KernelString, NameString); 1859 1860 Value *GridDimX, *GridDimY; 1861 std::tie(GridDimX, GridDimY) = getGridSizes(Kernel); 1862 1863 createCallLaunchKernel(GPUKernel, GridDimX, GridDimY, BlockDimX, BlockDimY, 1864 BlockDimZ, Parameters); 1865 createCallFreeKernel(GPUKernel); 1866 1867 for (auto Id : KernelIds) 1868 isl_id_free(Id); 1869 1870 KernelIds.clear(); 1871 } 1872 1873 /// Compute the DataLayout string for the NVPTX backend. 1874 /// 1875 /// @param is64Bit Are we looking for a 64 bit architecture? 1876 static std::string computeNVPTXDataLayout(bool is64Bit) { 1877 std::string Ret = ""; 1878 1879 if (!is64Bit) { 1880 Ret += "e-p:32:32:32-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:" 1881 "64-i128:128:128-f32:32:32-f64:64:64-v16:16:16-v32:32:32-v64:64:" 1882 "64-v128:128:128-n16:32:64"; 1883 } else { 1884 Ret += "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:" 1885 "64-i128:128:128-f32:32:32-f64:64:64-v16:16:16-v32:32:32-v64:64:" 1886 "64-v128:128:128-n16:32:64"; 1887 } 1888 1889 return Ret; 1890 } 1891 1892 /// Compute the DataLayout string for a SPIR kernel. 1893 /// 1894 /// @param is64Bit Are we looking for a 64 bit architecture? 1895 static std::string computeSPIRDataLayout(bool is64Bit) { 1896 std::string Ret = ""; 1897 1898 if (!is64Bit) { 1899 Ret += "e-p:32:32:32-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:" 1900 "64-i128:128:128-f32:32:32-f64:64:64-v16:16:16-v24:32:32-v32:32:" 1901 "32-v48:64:64-v64:64:64-v96:128:128-v128:128:128-v192:" 1902 "256:256-v256:256:256-v512:512:512-v1024:1024:1024"; 1903 } else { 1904 Ret += "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:" 1905 "64-i128:128:128-f32:32:32-f64:64:64-v16:16:16-v24:32:32-v32:32:" 1906 "32-v48:64:64-v64:64:64-v96:128:128-v128:128:128-v192:" 1907 "256:256-v256:256:256-v512:512:512-v1024:1024:1024"; 1908 } 1909 1910 return Ret; 1911 } 1912 1913 Function * 1914 GPUNodeBuilder::createKernelFunctionDecl(ppcg_kernel *Kernel, 1915 SetVector<Value *> &SubtreeValues) { 1916 std::vector<Type *> Args; 1917 std::string Identifier = getKernelFuncName(Kernel->id); 1918 1919 std::vector<Metadata *> MemoryType; 1920 1921 for (long i = 0; i < Prog->n_array; i++) { 1922 if (!ppcg_kernel_requires_array_argument(Kernel, i)) 1923 continue; 1924 1925 if (gpu_array_is_read_only_scalar(&Prog->array[i])) { 1926 isl_id *Id = isl_space_get_tuple_id(Prog->array[i].space, isl_dim_set); 1927 const ScopArrayInfo *SAI = ScopArrayInfo::getFromId(isl::manage(Id)); 1928 Args.push_back(SAI->getElementType()); 1929 MemoryType.push_back( 1930 ConstantAsMetadata::get(ConstantInt::get(Builder.getInt32Ty(), 0))); 1931 } else { 1932 static const int UseGlobalMemory = 1; 1933 Args.push_back(Builder.getInt8PtrTy(UseGlobalMemory)); 1934 MemoryType.push_back( 1935 ConstantAsMetadata::get(ConstantInt::get(Builder.getInt32Ty(), 1))); 1936 } 1937 } 1938 1939 int NumHostIters = isl_space_dim(Kernel->space, isl_dim_set); 1940 1941 for (long i = 0; i < NumHostIters; i++) { 1942 Args.push_back(Builder.getInt64Ty()); 1943 MemoryType.push_back( 1944 ConstantAsMetadata::get(ConstantInt::get(Builder.getInt32Ty(), 0))); 1945 } 1946 1947 int NumVars = isl_space_dim(Kernel->space, isl_dim_param); 1948 1949 for (long i = 0; i < NumVars; i++) { 1950 isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_param, i); 1951 Value *Val = IDToValue[Id]; 1952 isl_id_free(Id); 1953 Args.push_back(Val->getType()); 1954 MemoryType.push_back( 1955 ConstantAsMetadata::get(ConstantInt::get(Builder.getInt32Ty(), 0))); 1956 } 1957 1958 for (auto *V : SubtreeValues) { 1959 Args.push_back(V->getType()); 1960 MemoryType.push_back( 1961 ConstantAsMetadata::get(ConstantInt::get(Builder.getInt32Ty(), 0))); 1962 } 1963 1964 auto *FT = FunctionType::get(Builder.getVoidTy(), Args, false); 1965 auto *FN = Function::Create(FT, Function::ExternalLinkage, Identifier, 1966 GPUModule.get()); 1967 1968 std::vector<Metadata *> EmptyStrings; 1969 1970 for (unsigned int i = 0; i < MemoryType.size(); i++) { 1971 EmptyStrings.push_back(MDString::get(FN->getContext(), "")); 1972 } 1973 1974 if (Arch == GPUArch::SPIR32 || Arch == GPUArch::SPIR64) { 1975 FN->setMetadata("kernel_arg_addr_space", 1976 MDNode::get(FN->getContext(), MemoryType)); 1977 FN->setMetadata("kernel_arg_name", 1978 MDNode::get(FN->getContext(), EmptyStrings)); 1979 FN->setMetadata("kernel_arg_access_qual", 1980 MDNode::get(FN->getContext(), EmptyStrings)); 1981 FN->setMetadata("kernel_arg_type", 1982 MDNode::get(FN->getContext(), EmptyStrings)); 1983 FN->setMetadata("kernel_arg_type_qual", 1984 MDNode::get(FN->getContext(), EmptyStrings)); 1985 FN->setMetadata("kernel_arg_base_type", 1986 MDNode::get(FN->getContext(), EmptyStrings)); 1987 } 1988 1989 switch (Arch) { 1990 case GPUArch::NVPTX64: 1991 FN->setCallingConv(CallingConv::PTX_Kernel); 1992 break; 1993 case GPUArch::SPIR32: 1994 case GPUArch::SPIR64: 1995 FN->setCallingConv(CallingConv::SPIR_KERNEL); 1996 break; 1997 } 1998 1999 auto Arg = FN->arg_begin(); 2000 for (long i = 0; i < Kernel->n_array; i++) { 2001 if (!ppcg_kernel_requires_array_argument(Kernel, i)) 2002 continue; 2003 2004 Arg->setName(Kernel->array[i].array->name); 2005 2006 isl_id *Id = isl_space_get_tuple_id(Prog->array[i].space, isl_dim_set); 2007 const ScopArrayInfo *SAI = 2008 ScopArrayInfo::getFromId(isl::manage(isl_id_copy(Id))); 2009 Type *EleTy = SAI->getElementType(); 2010 Value *Val = &*Arg; 2011 SmallVector<const SCEV *, 4> Sizes; 2012 isl_ast_build *Build = 2013 isl_ast_build_from_context(isl_set_copy(Prog->context)); 2014 Sizes.push_back(nullptr); 2015 for (long j = 1, n = Kernel->array[i].array->n_index; j < n; j++) { 2016 isl_ast_expr *DimSize = isl_ast_build_expr_from_pw_aff( 2017 Build, isl_multi_pw_aff_get_pw_aff(Kernel->array[i].array->bound, j)); 2018 auto V = ExprBuilder.create(DimSize); 2019 Sizes.push_back(SE.getSCEV(V)); 2020 } 2021 const ScopArrayInfo *SAIRep = 2022 S.getOrCreateScopArrayInfo(Val, EleTy, Sizes, MemoryKind::Array); 2023 LocalArrays.push_back(Val); 2024 2025 isl_ast_build_free(Build); 2026 KernelIds.push_back(Id); 2027 IDToSAI[Id] = SAIRep; 2028 Arg++; 2029 } 2030 2031 for (long i = 0; i < NumHostIters; i++) { 2032 isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_set, i); 2033 Arg->setName(isl_id_get_name(Id)); 2034 IDToValue[Id] = &*Arg; 2035 KernelIDs.insert(std::unique_ptr<isl_id, IslIdDeleter>(Id)); 2036 Arg++; 2037 } 2038 2039 for (long i = 0; i < NumVars; i++) { 2040 isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_param, i); 2041 Arg->setName(isl_id_get_name(Id)); 2042 Value *Val = IDToValue[Id]; 2043 ValueMap[Val] = &*Arg; 2044 IDToValue[Id] = &*Arg; 2045 KernelIDs.insert(std::unique_ptr<isl_id, IslIdDeleter>(Id)); 2046 Arg++; 2047 } 2048 2049 for (auto *V : SubtreeValues) { 2050 Arg->setName(V->getName()); 2051 ValueMap[V] = &*Arg; 2052 Arg++; 2053 } 2054 2055 return FN; 2056 } 2057 2058 void GPUNodeBuilder::insertKernelIntrinsics(ppcg_kernel *Kernel) { 2059 Intrinsic::ID IntrinsicsBID[2]; 2060 Intrinsic::ID IntrinsicsTID[3]; 2061 2062 switch (Arch) { 2063 case GPUArch::SPIR64: 2064 case GPUArch::SPIR32: 2065 llvm_unreachable("Cannot generate NVVM intrinsics for SPIR"); 2066 case GPUArch::NVPTX64: 2067 IntrinsicsBID[0] = Intrinsic::nvvm_read_ptx_sreg_ctaid_x; 2068 IntrinsicsBID[1] = Intrinsic::nvvm_read_ptx_sreg_ctaid_y; 2069 2070 IntrinsicsTID[0] = Intrinsic::nvvm_read_ptx_sreg_tid_x; 2071 IntrinsicsTID[1] = Intrinsic::nvvm_read_ptx_sreg_tid_y; 2072 IntrinsicsTID[2] = Intrinsic::nvvm_read_ptx_sreg_tid_z; 2073 break; 2074 } 2075 2076 auto addId = [this](__isl_take isl_id *Id, Intrinsic::ID Intr) mutable { 2077 std::string Name = isl_id_get_name(Id); 2078 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 2079 Function *IntrinsicFn = Intrinsic::getDeclaration(M, Intr); 2080 Value *Val = Builder.CreateCall(IntrinsicFn, {}); 2081 Val = Builder.CreateIntCast(Val, Builder.getInt64Ty(), false, Name); 2082 IDToValue[Id] = Val; 2083 KernelIDs.insert(std::unique_ptr<isl_id, IslIdDeleter>(Id)); 2084 }; 2085 2086 for (int i = 0; i < Kernel->n_grid; ++i) { 2087 isl_id *Id = isl_id_list_get_id(Kernel->block_ids, i); 2088 addId(Id, IntrinsicsBID[i]); 2089 } 2090 2091 for (int i = 0; i < Kernel->n_block; ++i) { 2092 isl_id *Id = isl_id_list_get_id(Kernel->thread_ids, i); 2093 addId(Id, IntrinsicsTID[i]); 2094 } 2095 } 2096 2097 void GPUNodeBuilder::insertKernelCallsSPIR(ppcg_kernel *Kernel) { 2098 const char *GroupName[3] = {"__gen_ocl_get_group_id0", 2099 "__gen_ocl_get_group_id1", 2100 "__gen_ocl_get_group_id2"}; 2101 2102 const char *LocalName[3] = {"__gen_ocl_get_local_id0", 2103 "__gen_ocl_get_local_id1", 2104 "__gen_ocl_get_local_id2"}; 2105 2106 auto createFunc = [this](const char *Name, __isl_take isl_id *Id) mutable { 2107 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 2108 Function *FN = M->getFunction(Name); 2109 2110 // If FN is not available, declare it. 2111 if (!FN) { 2112 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 2113 std::vector<Type *> Args; 2114 FunctionType *Ty = FunctionType::get(Builder.getInt32Ty(), Args, false); 2115 FN = Function::Create(Ty, Linkage, Name, M); 2116 FN->setCallingConv(CallingConv::SPIR_FUNC); 2117 } 2118 2119 Value *Val = Builder.CreateCall(FN, {}); 2120 Val = Builder.CreateIntCast(Val, Builder.getInt64Ty(), false, Name); 2121 IDToValue[Id] = Val; 2122 KernelIDs.insert(std::unique_ptr<isl_id, IslIdDeleter>(Id)); 2123 }; 2124 2125 for (int i = 0; i < Kernel->n_grid; ++i) 2126 createFunc(GroupName[i], isl_id_list_get_id(Kernel->block_ids, i)); 2127 2128 for (int i = 0; i < Kernel->n_block; ++i) 2129 createFunc(LocalName[i], isl_id_list_get_id(Kernel->thread_ids, i)); 2130 } 2131 2132 void GPUNodeBuilder::prepareKernelArguments(ppcg_kernel *Kernel, Function *FN) { 2133 auto Arg = FN->arg_begin(); 2134 for (long i = 0; i < Kernel->n_array; i++) { 2135 if (!ppcg_kernel_requires_array_argument(Kernel, i)) 2136 continue; 2137 2138 isl_id *Id = isl_space_get_tuple_id(Prog->array[i].space, isl_dim_set); 2139 const ScopArrayInfo *SAI = 2140 ScopArrayInfo::getFromId(isl::manage(isl_id_copy(Id))); 2141 isl_id_free(Id); 2142 2143 if (SAI->getNumberOfDimensions() > 0) { 2144 Arg++; 2145 continue; 2146 } 2147 2148 Value *Val = &*Arg; 2149 2150 if (!gpu_array_is_read_only_scalar(&Prog->array[i])) { 2151 Type *TypePtr = SAI->getElementType()->getPointerTo(); 2152 Value *TypedArgPtr = Builder.CreatePointerCast(Val, TypePtr); 2153 Val = Builder.CreateLoad(TypedArgPtr); 2154 } 2155 2156 Value *Alloca = BlockGen.getOrCreateAlloca(SAI); 2157 Builder.CreateStore(Val, Alloca); 2158 2159 Arg++; 2160 } 2161 } 2162 2163 void GPUNodeBuilder::finalizeKernelArguments(ppcg_kernel *Kernel) { 2164 auto *FN = Builder.GetInsertBlock()->getParent(); 2165 auto Arg = FN->arg_begin(); 2166 2167 bool StoredScalar = false; 2168 for (long i = 0; i < Kernel->n_array; i++) { 2169 if (!ppcg_kernel_requires_array_argument(Kernel, i)) 2170 continue; 2171 2172 isl_id *Id = isl_space_get_tuple_id(Prog->array[i].space, isl_dim_set); 2173 const ScopArrayInfo *SAI = 2174 ScopArrayInfo::getFromId(isl::manage(isl_id_copy(Id))); 2175 isl_id_free(Id); 2176 2177 if (SAI->getNumberOfDimensions() > 0) { 2178 Arg++; 2179 continue; 2180 } 2181 2182 if (gpu_array_is_read_only_scalar(&Prog->array[i])) { 2183 Arg++; 2184 continue; 2185 } 2186 2187 Value *Alloca = BlockGen.getOrCreateAlloca(SAI); 2188 Value *ArgPtr = &*Arg; 2189 Type *TypePtr = SAI->getElementType()->getPointerTo(); 2190 Value *TypedArgPtr = Builder.CreatePointerCast(ArgPtr, TypePtr); 2191 Value *Val = Builder.CreateLoad(Alloca); 2192 Builder.CreateStore(Val, TypedArgPtr); 2193 StoredScalar = true; 2194 2195 Arg++; 2196 } 2197 2198 if (StoredScalar) { 2199 /// In case more than one thread contains scalar stores, the generated 2200 /// code might be incorrect, if we only store at the end of the kernel. 2201 /// To support this case we need to store these scalars back at each 2202 /// memory store or at least before each kernel barrier. 2203 if (Kernel->n_block != 0 || Kernel->n_grid != 0) { 2204 BuildSuccessful = 0; 2205 DEBUG( 2206 dbgs() << getUniqueScopName(&S) 2207 << " has a store to a scalar value that" 2208 " would be undefined to run in parallel. Bailing out.\n";); 2209 } 2210 } 2211 } 2212 2213 void GPUNodeBuilder::createKernelVariables(ppcg_kernel *Kernel, Function *FN) { 2214 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 2215 2216 for (int i = 0; i < Kernel->n_var; ++i) { 2217 struct ppcg_kernel_var &Var = Kernel->var[i]; 2218 isl_id *Id = isl_space_get_tuple_id(Var.array->space, isl_dim_set); 2219 Type *EleTy = ScopArrayInfo::getFromId(isl::manage(Id))->getElementType(); 2220 2221 Type *ArrayTy = EleTy; 2222 SmallVector<const SCEV *, 4> Sizes; 2223 2224 Sizes.push_back(nullptr); 2225 for (unsigned int j = 1; j < Var.array->n_index; ++j) { 2226 isl_val *Val = isl_vec_get_element_val(Var.size, j); 2227 long Bound = isl_val_get_num_si(Val); 2228 isl_val_free(Val); 2229 Sizes.push_back(S.getSE()->getConstant(Builder.getInt64Ty(), Bound)); 2230 } 2231 2232 for (int j = Var.array->n_index - 1; j >= 0; --j) { 2233 isl_val *Val = isl_vec_get_element_val(Var.size, j); 2234 long Bound = isl_val_get_num_si(Val); 2235 isl_val_free(Val); 2236 ArrayTy = ArrayType::get(ArrayTy, Bound); 2237 } 2238 2239 const ScopArrayInfo *SAI; 2240 Value *Allocation; 2241 if (Var.type == ppcg_access_shared) { 2242 auto GlobalVar = new GlobalVariable( 2243 *M, ArrayTy, false, GlobalValue::InternalLinkage, 0, Var.name, 2244 nullptr, GlobalValue::ThreadLocalMode::NotThreadLocal, 3); 2245 GlobalVar->setAlignment(EleTy->getPrimitiveSizeInBits() / 8); 2246 GlobalVar->setInitializer(Constant::getNullValue(ArrayTy)); 2247 2248 Allocation = GlobalVar; 2249 } else if (Var.type == ppcg_access_private) { 2250 Allocation = Builder.CreateAlloca(ArrayTy, 0, "private_array"); 2251 } else { 2252 llvm_unreachable("unknown variable type"); 2253 } 2254 SAI = 2255 S.getOrCreateScopArrayInfo(Allocation, EleTy, Sizes, MemoryKind::Array); 2256 Id = isl_id_alloc(S.getIslCtx(), Var.name, nullptr); 2257 IDToValue[Id] = Allocation; 2258 LocalArrays.push_back(Allocation); 2259 KernelIds.push_back(Id); 2260 IDToSAI[Id] = SAI; 2261 } 2262 } 2263 2264 void GPUNodeBuilder::createKernelFunction( 2265 ppcg_kernel *Kernel, SetVector<Value *> &SubtreeValues, 2266 SetVector<Function *> &SubtreeFunctions) { 2267 std::string Identifier = getKernelFuncName(Kernel->id); 2268 GPUModule.reset(new Module(Identifier, Builder.getContext())); 2269 2270 switch (Arch) { 2271 case GPUArch::NVPTX64: 2272 if (Runtime == GPURuntime::CUDA) 2273 GPUModule->setTargetTriple(Triple::normalize("nvptx64-nvidia-cuda")); 2274 else if (Runtime == GPURuntime::OpenCL) 2275 GPUModule->setTargetTriple(Triple::normalize("nvptx64-nvidia-nvcl")); 2276 GPUModule->setDataLayout(computeNVPTXDataLayout(true /* is64Bit */)); 2277 break; 2278 case GPUArch::SPIR32: 2279 GPUModule->setTargetTriple(Triple::normalize("spir-unknown-unknown")); 2280 GPUModule->setDataLayout(computeSPIRDataLayout(false /* is64Bit */)); 2281 break; 2282 case GPUArch::SPIR64: 2283 GPUModule->setTargetTriple(Triple::normalize("spir64-unknown-unknown")); 2284 GPUModule->setDataLayout(computeSPIRDataLayout(true /* is64Bit */)); 2285 break; 2286 } 2287 2288 Function *FN = createKernelFunctionDecl(Kernel, SubtreeValues); 2289 2290 BasicBlock *PrevBlock = Builder.GetInsertBlock(); 2291 auto EntryBlock = BasicBlock::Create(Builder.getContext(), "entry", FN); 2292 2293 DT.addNewBlock(EntryBlock, PrevBlock); 2294 2295 Builder.SetInsertPoint(EntryBlock); 2296 Builder.CreateRetVoid(); 2297 Builder.SetInsertPoint(EntryBlock, EntryBlock->begin()); 2298 2299 ScopDetection::markFunctionAsInvalid(FN); 2300 2301 prepareKernelArguments(Kernel, FN); 2302 createKernelVariables(Kernel, FN); 2303 2304 switch (Arch) { 2305 case GPUArch::NVPTX64: 2306 insertKernelIntrinsics(Kernel); 2307 break; 2308 case GPUArch::SPIR32: 2309 case GPUArch::SPIR64: 2310 insertKernelCallsSPIR(Kernel); 2311 break; 2312 } 2313 } 2314 2315 std::string GPUNodeBuilder::createKernelASM() { 2316 llvm::Triple GPUTriple; 2317 2318 switch (Arch) { 2319 case GPUArch::NVPTX64: 2320 switch (Runtime) { 2321 case GPURuntime::CUDA: 2322 GPUTriple = llvm::Triple(Triple::normalize("nvptx64-nvidia-cuda")); 2323 break; 2324 case GPURuntime::OpenCL: 2325 GPUTriple = llvm::Triple(Triple::normalize("nvptx64-nvidia-nvcl")); 2326 break; 2327 } 2328 break; 2329 case GPUArch::SPIR64: 2330 case GPUArch::SPIR32: 2331 std::string SPIRAssembly; 2332 raw_string_ostream IROstream(SPIRAssembly); 2333 IROstream << *GPUModule; 2334 IROstream.flush(); 2335 return SPIRAssembly; 2336 } 2337 2338 std::string ErrMsg; 2339 auto GPUTarget = TargetRegistry::lookupTarget(GPUTriple.getTriple(), ErrMsg); 2340 2341 if (!GPUTarget) { 2342 errs() << ErrMsg << "\n"; 2343 return ""; 2344 } 2345 2346 TargetOptions Options; 2347 Options.UnsafeFPMath = FastMath; 2348 2349 std::string subtarget; 2350 2351 switch (Arch) { 2352 case GPUArch::NVPTX64: 2353 subtarget = CudaVersion; 2354 break; 2355 case GPUArch::SPIR32: 2356 case GPUArch::SPIR64: 2357 llvm_unreachable("No subtarget for SPIR architecture"); 2358 } 2359 2360 std::unique_ptr<TargetMachine> TargetM(GPUTarget->createTargetMachine( 2361 GPUTriple.getTriple(), subtarget, "", Options, Optional<Reloc::Model>())); 2362 2363 SmallString<0> ASMString; 2364 raw_svector_ostream ASMStream(ASMString); 2365 llvm::legacy::PassManager PM; 2366 2367 PM.add(createTargetTransformInfoWrapperPass(TargetM->getTargetIRAnalysis())); 2368 2369 if (TargetM->addPassesToEmitFile( 2370 PM, ASMStream, TargetMachine::CGFT_AssemblyFile, true /* verify */)) { 2371 errs() << "The target does not support generation of this file type!\n"; 2372 return ""; 2373 } 2374 2375 PM.run(*GPUModule); 2376 2377 return ASMStream.str(); 2378 } 2379 2380 bool GPUNodeBuilder::requiresCUDALibDevice() { 2381 bool RequiresLibDevice = false; 2382 for (Function &F : GPUModule->functions()) { 2383 if (!F.isDeclaration()) 2384 continue; 2385 2386 const std::string CUDALibDeviceFunc = getCUDALibDeviceFuntion(&F); 2387 if (CUDALibDeviceFunc.length() != 0) { 2388 // We need to handle the case where a module looks like this: 2389 // @expf(..) 2390 // @llvm.exp.f64(..) 2391 // Both of these functions would be renamed to `__nv_expf`. 2392 // 2393 // So, we must first check for the existence of the libdevice function. 2394 // If this exists, we replace our current function with it. 2395 // 2396 // If it does not exist, we rename the current function to the 2397 // libdevice functiono name. 2398 if (Function *Replacement = F.getParent()->getFunction(CUDALibDeviceFunc)) 2399 F.replaceAllUsesWith(Replacement); 2400 else 2401 F.setName(CUDALibDeviceFunc); 2402 RequiresLibDevice = true; 2403 } 2404 } 2405 2406 return RequiresLibDevice; 2407 } 2408 2409 void GPUNodeBuilder::addCUDALibDevice() { 2410 if (Arch != GPUArch::NVPTX64) 2411 return; 2412 2413 if (requiresCUDALibDevice()) { 2414 SMDiagnostic Error; 2415 2416 errs() << CUDALibDevice << "\n"; 2417 auto LibDeviceModule = 2418 parseIRFile(CUDALibDevice, Error, GPUModule->getContext()); 2419 2420 if (!LibDeviceModule) { 2421 BuildSuccessful = false; 2422 report_fatal_error("Could not find or load libdevice. Skipping GPU " 2423 "kernel generation. Please set -polly-acc-libdevice " 2424 "accordingly.\n"); 2425 return; 2426 } 2427 2428 Linker L(*GPUModule); 2429 2430 // Set an nvptx64 target triple to avoid linker warnings. The original 2431 // triple of the libdevice files are nvptx-unknown-unknown. 2432 LibDeviceModule->setTargetTriple(Triple::normalize("nvptx64-nvidia-cuda")); 2433 L.linkInModule(std::move(LibDeviceModule), Linker::LinkOnlyNeeded); 2434 } 2435 } 2436 2437 std::string GPUNodeBuilder::finalizeKernelFunction() { 2438 2439 if (verifyModule(*GPUModule)) { 2440 DEBUG(dbgs() << "verifyModule failed on module:\n"; 2441 GPUModule->print(dbgs(), nullptr); dbgs() << "\n";); 2442 DEBUG(dbgs() << "verifyModule Error:\n"; 2443 verifyModule(*GPUModule, &dbgs());); 2444 2445 if (FailOnVerifyModuleFailure) 2446 llvm_unreachable("VerifyModule failed."); 2447 2448 BuildSuccessful = false; 2449 return ""; 2450 } 2451 2452 addCUDALibDevice(); 2453 2454 if (DumpKernelIR) 2455 outs() << *GPUModule << "\n"; 2456 2457 if (Arch != GPUArch::SPIR32 && Arch != GPUArch::SPIR64) { 2458 // Optimize module. 2459 llvm::legacy::PassManager OptPasses; 2460 PassManagerBuilder PassBuilder; 2461 PassBuilder.OptLevel = 3; 2462 PassBuilder.SizeLevel = 0; 2463 PassBuilder.populateModulePassManager(OptPasses); 2464 OptPasses.run(*GPUModule); 2465 } 2466 2467 std::string Assembly = createKernelASM(); 2468 2469 if (DumpKernelASM) 2470 outs() << Assembly << "\n"; 2471 2472 GPUModule.release(); 2473 KernelIDs.clear(); 2474 2475 return Assembly; 2476 } 2477 /// Construct an `isl_pw_aff_list` from a vector of `isl_pw_aff` 2478 /// @param PwAffs The list of piecewise affine functions to create an 2479 /// `isl_pw_aff_list` from. We expect an rvalue ref because 2480 /// all the isl_pw_aff are used up by this function. 2481 /// 2482 /// @returns The `isl_pw_aff_list`. 2483 __isl_give isl_pw_aff_list * 2484 createPwAffList(isl_ctx *Context, 2485 const std::vector<__isl_take isl_pw_aff *> &&PwAffs) { 2486 isl_pw_aff_list *List = isl_pw_aff_list_alloc(Context, PwAffs.size()); 2487 2488 for (unsigned i = 0; i < PwAffs.size(); i++) { 2489 List = isl_pw_aff_list_insert(List, i, PwAffs[i]); 2490 } 2491 return List; 2492 } 2493 2494 /// Align all the `PwAffs` such that they have the same parameter dimensions. 2495 /// 2496 /// We loop over all `pw_aff` and align all of their spaces together to 2497 /// create a common space for all the `pw_aff`. This common space is the 2498 /// `AlignSpace`. We then align all the `pw_aff` to this space. We start 2499 /// with the given `SeedSpace`. 2500 /// @param PwAffs The list of piecewise affine functions we want to align. 2501 /// This is an rvalue reference because the entire vector is 2502 /// used up by the end of the operation. 2503 /// @param SeedSpace The space to start the alignment process with. 2504 /// @returns A std::pair, whose first element is the aligned space, 2505 /// whose second element is the vector of aligned piecewise 2506 /// affines. 2507 static std::pair<__isl_give isl_space *, std::vector<__isl_give isl_pw_aff *>> 2508 alignPwAffs(const std::vector<__isl_take isl_pw_aff *> &&PwAffs, 2509 __isl_take isl_space *SeedSpace) { 2510 assert(SeedSpace && "Invalid seed space given."); 2511 2512 isl_space *AlignSpace = SeedSpace; 2513 for (isl_pw_aff *PwAff : PwAffs) { 2514 isl_space *PwAffSpace = isl_pw_aff_get_domain_space(PwAff); 2515 AlignSpace = isl_space_align_params(AlignSpace, PwAffSpace); 2516 } 2517 std::vector<isl_pw_aff *> AdjustedPwAffs; 2518 2519 for (unsigned i = 0; i < PwAffs.size(); i++) { 2520 isl_pw_aff *Adjusted = PwAffs[i]; 2521 assert(Adjusted && "Invalid pw_aff given."); 2522 Adjusted = isl_pw_aff_align_params(Adjusted, isl_space_copy(AlignSpace)); 2523 AdjustedPwAffs.push_back(Adjusted); 2524 } 2525 return std::make_pair(AlignSpace, AdjustedPwAffs); 2526 } 2527 2528 namespace { 2529 class PPCGCodeGeneration : public ScopPass { 2530 public: 2531 static char ID; 2532 2533 GPURuntime Runtime = GPURuntime::CUDA; 2534 2535 GPUArch Architecture = GPUArch::NVPTX64; 2536 2537 /// The scop that is currently processed. 2538 Scop *S; 2539 2540 LoopInfo *LI; 2541 DominatorTree *DT; 2542 ScalarEvolution *SE; 2543 const DataLayout *DL; 2544 RegionInfo *RI; 2545 2546 PPCGCodeGeneration() : ScopPass(ID) {} 2547 2548 /// Construct compilation options for PPCG. 2549 /// 2550 /// @returns The compilation options. 2551 ppcg_options *createPPCGOptions() { 2552 auto DebugOptions = 2553 (ppcg_debug_options *)malloc(sizeof(ppcg_debug_options)); 2554 auto Options = (ppcg_options *)malloc(sizeof(ppcg_options)); 2555 2556 DebugOptions->dump_schedule_constraints = false; 2557 DebugOptions->dump_schedule = false; 2558 DebugOptions->dump_final_schedule = false; 2559 DebugOptions->dump_sizes = false; 2560 DebugOptions->verbose = false; 2561 2562 Options->debug = DebugOptions; 2563 2564 Options->group_chains = false; 2565 Options->reschedule = true; 2566 Options->scale_tile_loops = false; 2567 Options->wrap = false; 2568 2569 Options->non_negative_parameters = false; 2570 Options->ctx = nullptr; 2571 Options->sizes = nullptr; 2572 2573 Options->tile = true; 2574 Options->tile_size = 32; 2575 2576 Options->isolate_full_tiles = false; 2577 2578 Options->use_private_memory = PrivateMemory; 2579 Options->use_shared_memory = SharedMemory; 2580 Options->max_shared_memory = 48 * 1024; 2581 2582 Options->target = PPCG_TARGET_CUDA; 2583 Options->openmp = false; 2584 Options->linearize_device_arrays = true; 2585 Options->allow_gnu_extensions = false; 2586 2587 Options->unroll_copy_shared = false; 2588 Options->unroll_gpu_tile = false; 2589 Options->live_range_reordering = true; 2590 2591 Options->live_range_reordering = true; 2592 Options->hybrid = false; 2593 Options->opencl_compiler_options = nullptr; 2594 Options->opencl_use_gpu = false; 2595 Options->opencl_n_include_file = 0; 2596 Options->opencl_include_files = nullptr; 2597 Options->opencl_print_kernel_types = false; 2598 Options->opencl_embed_kernel_code = false; 2599 2600 Options->save_schedule_file = nullptr; 2601 Options->load_schedule_file = nullptr; 2602 2603 return Options; 2604 } 2605 2606 /// Get a tagged access relation containing all accesses of type @p AccessTy. 2607 /// 2608 /// Instead of a normal access of the form: 2609 /// 2610 /// Stmt[i,j,k] -> Array[f_0(i,j,k), f_1(i,j,k)] 2611 /// 2612 /// a tagged access has the form 2613 /// 2614 /// [Stmt[i,j,k] -> id[]] -> Array[f_0(i,j,k), f_1(i,j,k)] 2615 /// 2616 /// where 'id' is an additional space that references the memory access that 2617 /// triggered the access. 2618 /// 2619 /// @param AccessTy The type of the memory accesses to collect. 2620 /// 2621 /// @return The relation describing all tagged memory accesses. 2622 isl_union_map *getTaggedAccesses(enum MemoryAccess::AccessType AccessTy) { 2623 isl_union_map *Accesses = isl_union_map_empty(S->getParamSpace().release()); 2624 2625 for (auto &Stmt : *S) 2626 for (auto &Acc : Stmt) 2627 if (Acc->getType() == AccessTy) { 2628 isl_map *Relation = Acc->getAccessRelation().release(); 2629 Relation = 2630 isl_map_intersect_domain(Relation, Stmt.getDomain().release()); 2631 2632 isl_space *Space = isl_map_get_space(Relation); 2633 Space = isl_space_range(Space); 2634 Space = isl_space_from_range(Space); 2635 Space = 2636 isl_space_set_tuple_id(Space, isl_dim_in, Acc->getId().release()); 2637 isl_map *Universe = isl_map_universe(Space); 2638 Relation = isl_map_domain_product(Relation, Universe); 2639 Accesses = isl_union_map_add_map(Accesses, Relation); 2640 } 2641 2642 return Accesses; 2643 } 2644 2645 /// Get the set of all read accesses, tagged with the access id. 2646 /// 2647 /// @see getTaggedAccesses 2648 isl_union_map *getTaggedReads() { 2649 return getTaggedAccesses(MemoryAccess::READ); 2650 } 2651 2652 /// Get the set of all may (and must) accesses, tagged with the access id. 2653 /// 2654 /// @see getTaggedAccesses 2655 isl_union_map *getTaggedMayWrites() { 2656 return isl_union_map_union(getTaggedAccesses(MemoryAccess::MAY_WRITE), 2657 getTaggedAccesses(MemoryAccess::MUST_WRITE)); 2658 } 2659 2660 /// Get the set of all must accesses, tagged with the access id. 2661 /// 2662 /// @see getTaggedAccesses 2663 isl_union_map *getTaggedMustWrites() { 2664 return getTaggedAccesses(MemoryAccess::MUST_WRITE); 2665 } 2666 2667 /// Collect parameter and array names as isl_ids. 2668 /// 2669 /// To reason about the different parameters and arrays used, ppcg requires 2670 /// a list of all isl_ids in use. As PPCG traditionally performs 2671 /// source-to-source compilation each of these isl_ids is mapped to the 2672 /// expression that represents it. As we do not have a corresponding 2673 /// expression in Polly, we just map each id to a 'zero' expression to match 2674 /// the data format that ppcg expects. 2675 /// 2676 /// @returns Retun a map from collected ids to 'zero' ast expressions. 2677 __isl_give isl_id_to_ast_expr *getNames() { 2678 auto *Names = isl_id_to_ast_expr_alloc( 2679 S->getIslCtx(), 2680 S->getNumParams() + std::distance(S->array_begin(), S->array_end())); 2681 auto *Zero = isl_ast_expr_from_val(isl_val_zero(S->getIslCtx())); 2682 2683 for (const SCEV *P : S->parameters()) { 2684 isl_id *Id = S->getIdForParam(P).release(); 2685 Names = isl_id_to_ast_expr_set(Names, Id, isl_ast_expr_copy(Zero)); 2686 } 2687 2688 for (auto &Array : S->arrays()) { 2689 auto Id = Array->getBasePtrId().release(); 2690 Names = isl_id_to_ast_expr_set(Names, Id, isl_ast_expr_copy(Zero)); 2691 } 2692 2693 isl_ast_expr_free(Zero); 2694 2695 return Names; 2696 } 2697 2698 /// Create a new PPCG scop from the current scop. 2699 /// 2700 /// The PPCG scop is initialized with data from the current polly::Scop. From 2701 /// this initial data, the data-dependences in the PPCG scop are initialized. 2702 /// We do not use Polly's dependence analysis for now, to ensure we match 2703 /// the PPCG default behaviour more closely. 2704 /// 2705 /// @returns A new ppcg scop. 2706 ppcg_scop *createPPCGScop() { 2707 MustKillsInfo KillsInfo = computeMustKillsInfo(*S); 2708 2709 auto PPCGScop = (ppcg_scop *)malloc(sizeof(ppcg_scop)); 2710 2711 PPCGScop->options = createPPCGOptions(); 2712 // enable live range reordering 2713 PPCGScop->options->live_range_reordering = 1; 2714 2715 PPCGScop->start = 0; 2716 PPCGScop->end = 0; 2717 2718 PPCGScop->context = S->getContext().release(); 2719 PPCGScop->domain = S->getDomains().release(); 2720 // TODO: investigate this further. PPCG calls collect_call_domains. 2721 PPCGScop->call = isl_union_set_from_set(S->getContext().release()); 2722 PPCGScop->tagged_reads = getTaggedReads(); 2723 PPCGScop->reads = S->getReads().release(); 2724 PPCGScop->live_in = nullptr; 2725 PPCGScop->tagged_may_writes = getTaggedMayWrites(); 2726 PPCGScop->may_writes = S->getWrites().release(); 2727 PPCGScop->tagged_must_writes = getTaggedMustWrites(); 2728 PPCGScop->must_writes = S->getMustWrites().release(); 2729 PPCGScop->live_out = nullptr; 2730 PPCGScop->tagged_must_kills = KillsInfo.TaggedMustKills.take(); 2731 PPCGScop->must_kills = KillsInfo.MustKills.take(); 2732 2733 PPCGScop->tagger = nullptr; 2734 PPCGScop->independence = 2735 isl_union_map_empty(isl_set_get_space(PPCGScop->context)); 2736 PPCGScop->dep_flow = nullptr; 2737 PPCGScop->tagged_dep_flow = nullptr; 2738 PPCGScop->dep_false = nullptr; 2739 PPCGScop->dep_forced = nullptr; 2740 PPCGScop->dep_order = nullptr; 2741 PPCGScop->tagged_dep_order = nullptr; 2742 2743 PPCGScop->schedule = S->getScheduleTree().release(); 2744 // If we have something non-trivial to kill, add it to the schedule 2745 if (KillsInfo.KillsSchedule.get()) 2746 PPCGScop->schedule = isl_schedule_sequence( 2747 PPCGScop->schedule, KillsInfo.KillsSchedule.take()); 2748 2749 PPCGScop->names = getNames(); 2750 PPCGScop->pet = nullptr; 2751 2752 compute_tagger(PPCGScop); 2753 compute_dependences(PPCGScop); 2754 eliminate_dead_code(PPCGScop); 2755 2756 return PPCGScop; 2757 } 2758 2759 /// Collect the array accesses in a statement. 2760 /// 2761 /// @param Stmt The statement for which to collect the accesses. 2762 /// 2763 /// @returns A list of array accesses. 2764 gpu_stmt_access *getStmtAccesses(ScopStmt &Stmt) { 2765 gpu_stmt_access *Accesses = nullptr; 2766 2767 for (MemoryAccess *Acc : Stmt) { 2768 auto Access = isl_alloc_type(S->getIslCtx(), struct gpu_stmt_access); 2769 Access->read = Acc->isRead(); 2770 Access->write = Acc->isWrite(); 2771 Access->access = Acc->getAccessRelation().release(); 2772 isl_space *Space = isl_map_get_space(Access->access); 2773 Space = isl_space_range(Space); 2774 Space = isl_space_from_range(Space); 2775 Space = isl_space_set_tuple_id(Space, isl_dim_in, Acc->getId().release()); 2776 isl_map *Universe = isl_map_universe(Space); 2777 Access->tagged_access = 2778 isl_map_domain_product(Acc->getAccessRelation().release(), Universe); 2779 Access->exact_write = !Acc->isMayWrite(); 2780 Access->ref_id = Acc->getId().release(); 2781 Access->next = Accesses; 2782 Access->n_index = Acc->getScopArrayInfo()->getNumberOfDimensions(); 2783 // TODO: Also mark one-element accesses to arrays as fixed-element. 2784 Access->fixed_element = 2785 Acc->isLatestScalarKind() ? isl_bool_true : isl_bool_false; 2786 Accesses = Access; 2787 } 2788 2789 return Accesses; 2790 } 2791 2792 /// Collect the list of GPU statements. 2793 /// 2794 /// Each statement has an id, a pointer to the underlying data structure, 2795 /// as well as a list with all memory accesses. 2796 /// 2797 /// TODO: Initialize the list of memory accesses. 2798 /// 2799 /// @returns A linked-list of statements. 2800 gpu_stmt *getStatements() { 2801 gpu_stmt *Stmts = isl_calloc_array(S->getIslCtx(), struct gpu_stmt, 2802 std::distance(S->begin(), S->end())); 2803 2804 int i = 0; 2805 for (auto &Stmt : *S) { 2806 gpu_stmt *GPUStmt = &Stmts[i]; 2807 2808 GPUStmt->id = Stmt.getDomainId().release(); 2809 2810 // We use the pet stmt pointer to keep track of the Polly statements. 2811 GPUStmt->stmt = (pet_stmt *)&Stmt; 2812 GPUStmt->accesses = getStmtAccesses(Stmt); 2813 i++; 2814 } 2815 2816 return Stmts; 2817 } 2818 2819 /// Derive the extent of an array. 2820 /// 2821 /// The extent of an array is the set of elements that are within the 2822 /// accessed array. For the inner dimensions, the extent constraints are 2823 /// 0 and the size of the corresponding array dimension. For the first 2824 /// (outermost) dimension, the extent constraints are the minimal and maximal 2825 /// subscript value for the first dimension. 2826 /// 2827 /// @param Array The array to derive the extent for. 2828 /// 2829 /// @returns An isl_set describing the extent of the array. 2830 isl::set getExtent(ScopArrayInfo *Array) { 2831 unsigned NumDims = Array->getNumberOfDimensions(); 2832 2833 if (Array->getNumberOfDimensions() == 0) 2834 return isl::set::universe(Array->getSpace()); 2835 2836 isl::union_map Accesses = S->getAccesses(Array); 2837 isl::union_set AccessUSet = Accesses.range(); 2838 AccessUSet = AccessUSet.coalesce(); 2839 AccessUSet = AccessUSet.detect_equalities(); 2840 AccessUSet = AccessUSet.coalesce(); 2841 2842 if (AccessUSet.is_empty()) 2843 return isl::set::empty(Array->getSpace()); 2844 2845 isl::set AccessSet = AccessUSet.extract_set(Array->getSpace()); 2846 2847 isl::local_space LS = isl::local_space(Array->getSpace()); 2848 2849 isl::pw_aff Val = isl::aff::var_on_domain(LS, isl::dim::set, 0); 2850 isl::pw_aff OuterMin = AccessSet.dim_min(0); 2851 isl::pw_aff OuterMax = AccessSet.dim_max(0); 2852 OuterMin = OuterMin.add_dims(isl::dim::in, Val.dim(isl::dim::in)); 2853 OuterMax = OuterMax.add_dims(isl::dim::in, Val.dim(isl::dim::in)); 2854 OuterMin = OuterMin.set_tuple_id(isl::dim::in, Array->getBasePtrId()); 2855 OuterMax = OuterMax.set_tuple_id(isl::dim::in, Array->getBasePtrId()); 2856 2857 isl::set Extent = isl::set::universe(Array->getSpace()); 2858 2859 Extent = Extent.intersect(OuterMin.le_set(Val)); 2860 Extent = Extent.intersect(OuterMax.ge_set(Val)); 2861 2862 for (unsigned i = 1; i < NumDims; ++i) 2863 Extent = Extent.lower_bound_si(isl::dim::set, i, 0); 2864 2865 for (unsigned i = 0; i < NumDims; ++i) { 2866 isl::pw_aff PwAff = Array->getDimensionSizePw(i); 2867 2868 // isl_pw_aff can be NULL for zero dimension. Only in the case of a 2869 // Fortran array will we have a legitimate dimension. 2870 if (PwAff.is_null()) { 2871 assert(i == 0 && "invalid dimension isl_pw_aff for nonzero dimension"); 2872 continue; 2873 } 2874 2875 isl::pw_aff Val = isl::aff::var_on_domain( 2876 isl::local_space(Array->getSpace()), isl::dim::set, i); 2877 PwAff = PwAff.add_dims(isl::dim::in, Val.dim(isl::dim::in)); 2878 PwAff = PwAff.set_tuple_id(isl::dim::in, Val.get_tuple_id(isl::dim::in)); 2879 isl::set Set = PwAff.gt_set(Val); 2880 Extent = Set.intersect(Extent); 2881 } 2882 2883 return Extent; 2884 } 2885 2886 /// Derive the bounds of an array. 2887 /// 2888 /// For the first dimension we derive the bound of the array from the extent 2889 /// of this dimension. For inner dimensions we obtain their size directly from 2890 /// ScopArrayInfo. 2891 /// 2892 /// @param PPCGArray The array to compute bounds for. 2893 /// @param Array The polly array from which to take the information. 2894 void setArrayBounds(gpu_array_info &PPCGArray, ScopArrayInfo *Array) { 2895 std::vector<isl_pw_aff *> Bounds; 2896 2897 if (PPCGArray.n_index > 0) { 2898 if (isl_set_is_empty(PPCGArray.extent)) { 2899 isl_set *Dom = isl_set_copy(PPCGArray.extent); 2900 isl_local_space *LS = isl_local_space_from_space( 2901 isl_space_params(isl_set_get_space(Dom))); 2902 isl_set_free(Dom); 2903 isl_pw_aff *Zero = isl_pw_aff_from_aff(isl_aff_zero_on_domain(LS)); 2904 Bounds.push_back(Zero); 2905 } else { 2906 isl_set *Dom = isl_set_copy(PPCGArray.extent); 2907 Dom = isl_set_project_out(Dom, isl_dim_set, 1, PPCGArray.n_index - 1); 2908 isl_pw_aff *Bound = isl_set_dim_max(isl_set_copy(Dom), 0); 2909 isl_set_free(Dom); 2910 Dom = isl_pw_aff_domain(isl_pw_aff_copy(Bound)); 2911 isl_local_space *LS = 2912 isl_local_space_from_space(isl_set_get_space(Dom)); 2913 isl_aff *One = isl_aff_zero_on_domain(LS); 2914 One = isl_aff_add_constant_si(One, 1); 2915 Bound = isl_pw_aff_add(Bound, isl_pw_aff_alloc(Dom, One)); 2916 Bound = isl_pw_aff_gist(Bound, S->getContext().release()); 2917 Bounds.push_back(Bound); 2918 } 2919 } 2920 2921 for (unsigned i = 1; i < PPCGArray.n_index; ++i) { 2922 isl_pw_aff *Bound = Array->getDimensionSizePw(i).release(); 2923 auto LS = isl_pw_aff_get_domain_space(Bound); 2924 auto Aff = isl_multi_aff_zero(LS); 2925 Bound = isl_pw_aff_pullback_multi_aff(Bound, Aff); 2926 Bounds.push_back(Bound); 2927 } 2928 2929 /// To construct a `isl_multi_pw_aff`, we need all the indivisual `pw_aff` 2930 /// to have the same parameter dimensions. So, we need to align them to an 2931 /// appropriate space. 2932 /// Scop::Context is _not_ an appropriate space, because when we have 2933 /// `-polly-ignore-parameter-bounds` enabled, the Scop::Context does not 2934 /// contain all parameter dimensions. 2935 /// So, use the helper `alignPwAffs` to align all the `isl_pw_aff` together. 2936 isl_space *SeedAlignSpace = S->getParamSpace().release(); 2937 SeedAlignSpace = isl_space_add_dims(SeedAlignSpace, isl_dim_set, 1); 2938 2939 isl_space *AlignSpace = nullptr; 2940 std::vector<isl_pw_aff *> AlignedBounds; 2941 std::tie(AlignSpace, AlignedBounds) = 2942 alignPwAffs(std::move(Bounds), SeedAlignSpace); 2943 2944 assert(AlignSpace && "alignPwAffs did not initialise AlignSpace"); 2945 2946 isl_pw_aff_list *BoundsList = 2947 createPwAffList(S->getIslCtx(), std::move(AlignedBounds)); 2948 2949 isl_space *BoundsSpace = isl_set_get_space(PPCGArray.extent); 2950 BoundsSpace = isl_space_align_params(BoundsSpace, AlignSpace); 2951 2952 assert(BoundsSpace && "Unable to access space of array."); 2953 assert(BoundsList && "Unable to access list of bounds."); 2954 2955 PPCGArray.bound = 2956 isl_multi_pw_aff_from_pw_aff_list(BoundsSpace, BoundsList); 2957 assert(PPCGArray.bound && "PPCGArray.bound was not constructed correctly."); 2958 } 2959 2960 /// Create the arrays for @p PPCGProg. 2961 /// 2962 /// @param PPCGProg The program to compute the arrays for. 2963 void createArrays(gpu_prog *PPCGProg, 2964 const SmallVector<ScopArrayInfo *, 4> &ValidSAIs) { 2965 int i = 0; 2966 for (auto &Array : ValidSAIs) { 2967 std::string TypeName; 2968 raw_string_ostream OS(TypeName); 2969 2970 OS << *Array->getElementType(); 2971 TypeName = OS.str(); 2972 2973 gpu_array_info &PPCGArray = PPCGProg->array[i]; 2974 2975 PPCGArray.space = Array->getSpace().release(); 2976 PPCGArray.type = strdup(TypeName.c_str()); 2977 PPCGArray.size = DL->getTypeAllocSize(Array->getElementType()); 2978 PPCGArray.name = strdup(Array->getName().c_str()); 2979 PPCGArray.extent = nullptr; 2980 PPCGArray.n_index = Array->getNumberOfDimensions(); 2981 PPCGArray.extent = getExtent(Array).release(); 2982 PPCGArray.n_ref = 0; 2983 PPCGArray.refs = nullptr; 2984 PPCGArray.accessed = true; 2985 PPCGArray.read_only_scalar = 2986 Array->isReadOnly() && Array->getNumberOfDimensions() == 0; 2987 PPCGArray.has_compound_element = false; 2988 PPCGArray.local = false; 2989 PPCGArray.declare_local = false; 2990 PPCGArray.global = false; 2991 PPCGArray.linearize = false; 2992 PPCGArray.dep_order = nullptr; 2993 PPCGArray.user = Array; 2994 2995 PPCGArray.bound = nullptr; 2996 setArrayBounds(PPCGArray, Array); 2997 i++; 2998 2999 collect_references(PPCGProg, &PPCGArray); 3000 PPCGArray.only_fixed_element = only_fixed_element_accessed(&PPCGArray); 3001 } 3002 } 3003 3004 /// Create an identity map between the arrays in the scop. 3005 /// 3006 /// @returns An identity map between the arrays in the scop. 3007 isl_union_map *getArrayIdentity() { 3008 isl_union_map *Maps = isl_union_map_empty(S->getParamSpace().release()); 3009 3010 for (auto &Array : S->arrays()) { 3011 isl_space *Space = Array->getSpace().release(); 3012 Space = isl_space_map_from_set(Space); 3013 isl_map *Identity = isl_map_identity(Space); 3014 Maps = isl_union_map_add_map(Maps, Identity); 3015 } 3016 3017 return Maps; 3018 } 3019 3020 /// Create a default-initialized PPCG GPU program. 3021 /// 3022 /// @returns A new gpu program description. 3023 gpu_prog *createPPCGProg(ppcg_scop *PPCGScop) { 3024 3025 if (!PPCGScop) 3026 return nullptr; 3027 3028 auto PPCGProg = isl_calloc_type(S->getIslCtx(), struct gpu_prog); 3029 3030 PPCGProg->ctx = S->getIslCtx(); 3031 PPCGProg->scop = PPCGScop; 3032 PPCGProg->context = isl_set_copy(PPCGScop->context); 3033 PPCGProg->read = isl_union_map_copy(PPCGScop->reads); 3034 PPCGProg->may_write = isl_union_map_copy(PPCGScop->may_writes); 3035 PPCGProg->must_write = isl_union_map_copy(PPCGScop->must_writes); 3036 PPCGProg->tagged_must_kill = 3037 isl_union_map_copy(PPCGScop->tagged_must_kills); 3038 PPCGProg->to_inner = getArrayIdentity(); 3039 PPCGProg->to_outer = getArrayIdentity(); 3040 // TODO: verify that this assignment is correct. 3041 PPCGProg->any_to_outer = nullptr; 3042 PPCGProg->n_stmts = std::distance(S->begin(), S->end()); 3043 PPCGProg->stmts = getStatements(); 3044 3045 // Only consider arrays that have a non-empty extent. 3046 // Otherwise, this will cause us to consider the following kinds of 3047 // empty arrays: 3048 // 1. Invariant loads that are represented by SAI objects. 3049 // 2. Arrays with statically known zero size. 3050 auto ValidSAIsRange = 3051 make_filter_range(S->arrays(), [this](ScopArrayInfo *SAI) -> bool { 3052 return !getExtent(SAI).is_empty(); 3053 }); 3054 SmallVector<ScopArrayInfo *, 4> ValidSAIs(ValidSAIsRange.begin(), 3055 ValidSAIsRange.end()); 3056 3057 PPCGProg->n_array = 3058 ValidSAIs.size(); // std::distance(S->array_begin(), S->array_end()); 3059 PPCGProg->array = isl_calloc_array(S->getIslCtx(), struct gpu_array_info, 3060 PPCGProg->n_array); 3061 3062 createArrays(PPCGProg, ValidSAIs); 3063 3064 PPCGProg->array_order = nullptr; 3065 collect_order_dependences(PPCGProg); 3066 3067 PPCGProg->may_persist = compute_may_persist(PPCGProg); 3068 return PPCGProg; 3069 } 3070 3071 struct PrintGPUUserData { 3072 struct cuda_info *CudaInfo; 3073 struct gpu_prog *PPCGProg; 3074 std::vector<ppcg_kernel *> Kernels; 3075 }; 3076 3077 /// Print a user statement node in the host code. 3078 /// 3079 /// We use ppcg's printing facilities to print the actual statement and 3080 /// additionally build up a list of all kernels that are encountered in the 3081 /// host ast. 3082 /// 3083 /// @param P The printer to print to 3084 /// @param Options The printing options to use 3085 /// @param Node The node to print 3086 /// @param User A user pointer to carry additional data. This pointer is 3087 /// expected to be of type PrintGPUUserData. 3088 /// 3089 /// @returns A printer to which the output has been printed. 3090 static __isl_give isl_printer * 3091 printHostUser(__isl_take isl_printer *P, 3092 __isl_take isl_ast_print_options *Options, 3093 __isl_take isl_ast_node *Node, void *User) { 3094 auto Data = (struct PrintGPUUserData *)User; 3095 auto Id = isl_ast_node_get_annotation(Node); 3096 3097 if (Id) { 3098 bool IsUser = !strcmp(isl_id_get_name(Id), "user"); 3099 3100 // If this is a user statement, format it ourselves as ppcg would 3101 // otherwise try to call pet functionality that is not available in 3102 // Polly. 3103 if (IsUser) { 3104 P = isl_printer_start_line(P); 3105 P = isl_printer_print_ast_node(P, Node); 3106 P = isl_printer_end_line(P); 3107 isl_id_free(Id); 3108 isl_ast_print_options_free(Options); 3109 return P; 3110 } 3111 3112 auto Kernel = (struct ppcg_kernel *)isl_id_get_user(Id); 3113 isl_id_free(Id); 3114 Data->Kernels.push_back(Kernel); 3115 } 3116 3117 return print_host_user(P, Options, Node, User); 3118 } 3119 3120 /// Print C code corresponding to the control flow in @p Kernel. 3121 /// 3122 /// @param Kernel The kernel to print 3123 void printKernel(ppcg_kernel *Kernel) { 3124 auto *P = isl_printer_to_str(S->getIslCtx()); 3125 P = isl_printer_set_output_format(P, ISL_FORMAT_C); 3126 auto *Options = isl_ast_print_options_alloc(S->getIslCtx()); 3127 P = isl_ast_node_print(Kernel->tree, P, Options); 3128 char *String = isl_printer_get_str(P); 3129 printf("%s\n", String); 3130 free(String); 3131 isl_printer_free(P); 3132 } 3133 3134 /// Print C code corresponding to the GPU code described by @p Tree. 3135 /// 3136 /// @param Tree An AST describing GPU code 3137 /// @param PPCGProg The PPCG program from which @Tree has been constructed. 3138 void printGPUTree(isl_ast_node *Tree, gpu_prog *PPCGProg) { 3139 auto *P = isl_printer_to_str(S->getIslCtx()); 3140 P = isl_printer_set_output_format(P, ISL_FORMAT_C); 3141 3142 PrintGPUUserData Data; 3143 Data.PPCGProg = PPCGProg; 3144 3145 auto *Options = isl_ast_print_options_alloc(S->getIslCtx()); 3146 Options = 3147 isl_ast_print_options_set_print_user(Options, printHostUser, &Data); 3148 P = isl_ast_node_print(Tree, P, Options); 3149 char *String = isl_printer_get_str(P); 3150 printf("# host\n"); 3151 printf("%s\n", String); 3152 free(String); 3153 isl_printer_free(P); 3154 3155 for (auto Kernel : Data.Kernels) { 3156 printf("# kernel%d\n", Kernel->id); 3157 printKernel(Kernel); 3158 } 3159 } 3160 3161 // Generate a GPU program using PPCG. 3162 // 3163 // GPU mapping consists of multiple steps: 3164 // 3165 // 1) Compute new schedule for the program. 3166 // 2) Map schedule to GPU (TODO) 3167 // 3) Generate code for new schedule (TODO) 3168 // 3169 // We do not use here the Polly ScheduleOptimizer, as the schedule optimizer 3170 // is mostly CPU specific. Instead, we use PPCG's GPU code generation 3171 // strategy directly from this pass. 3172 gpu_gen *generateGPU(ppcg_scop *PPCGScop, gpu_prog *PPCGProg) { 3173 3174 auto PPCGGen = isl_calloc_type(S->getIslCtx(), struct gpu_gen); 3175 3176 PPCGGen->ctx = S->getIslCtx(); 3177 PPCGGen->options = PPCGScop->options; 3178 PPCGGen->print = nullptr; 3179 PPCGGen->print_user = nullptr; 3180 PPCGGen->build_ast_expr = &pollyBuildAstExprForStmt; 3181 PPCGGen->prog = PPCGProg; 3182 PPCGGen->tree = nullptr; 3183 PPCGGen->types.n = 0; 3184 PPCGGen->types.name = nullptr; 3185 PPCGGen->sizes = nullptr; 3186 PPCGGen->used_sizes = nullptr; 3187 PPCGGen->kernel_id = 0; 3188 3189 // Set scheduling strategy to same strategy PPCG is using. 3190 isl_options_set_schedule_outer_coincidence(PPCGGen->ctx, true); 3191 isl_options_set_schedule_maximize_band_depth(PPCGGen->ctx, true); 3192 isl_options_set_schedule_whole_component(PPCGGen->ctx, false); 3193 3194 isl_schedule *Schedule = get_schedule(PPCGGen); 3195 3196 int has_permutable = has_any_permutable_node(Schedule); 3197 3198 Schedule = 3199 isl_schedule_align_params(Schedule, S->getFullParamSpace().release()); 3200 3201 if (!has_permutable || has_permutable < 0) { 3202 Schedule = isl_schedule_free(Schedule); 3203 DEBUG(dbgs() << getUniqueScopName(S) 3204 << " does not have permutable bands. Bailing out\n";); 3205 } else { 3206 const bool CreateTransferToFromDevice = !PollyManagedMemory; 3207 Schedule = map_to_device(PPCGGen, Schedule, CreateTransferToFromDevice); 3208 PPCGGen->tree = generate_code(PPCGGen, isl_schedule_copy(Schedule)); 3209 } 3210 3211 if (DumpSchedule) { 3212 isl_printer *P = isl_printer_to_str(S->getIslCtx()); 3213 P = isl_printer_set_yaml_style(P, ISL_YAML_STYLE_BLOCK); 3214 P = isl_printer_print_str(P, "Schedule\n"); 3215 P = isl_printer_print_str(P, "========\n"); 3216 if (Schedule) 3217 P = isl_printer_print_schedule(P, Schedule); 3218 else 3219 P = isl_printer_print_str(P, "No schedule found\n"); 3220 3221 printf("%s\n", isl_printer_get_str(P)); 3222 isl_printer_free(P); 3223 } 3224 3225 if (DumpCode) { 3226 printf("Code\n"); 3227 printf("====\n"); 3228 if (PPCGGen->tree) 3229 printGPUTree(PPCGGen->tree, PPCGProg); 3230 else 3231 printf("No code generated\n"); 3232 } 3233 3234 isl_schedule_free(Schedule); 3235 3236 return PPCGGen; 3237 } 3238 3239 /// Free gpu_gen structure. 3240 /// 3241 /// @param PPCGGen The ppcg_gen object to free. 3242 void freePPCGGen(gpu_gen *PPCGGen) { 3243 isl_ast_node_free(PPCGGen->tree); 3244 isl_union_map_free(PPCGGen->sizes); 3245 isl_union_map_free(PPCGGen->used_sizes); 3246 free(PPCGGen); 3247 } 3248 3249 /// Free the options in the ppcg scop structure. 3250 /// 3251 /// ppcg is not freeing these options for us. To avoid leaks we do this 3252 /// ourselves. 3253 /// 3254 /// @param PPCGScop The scop referencing the options to free. 3255 void freeOptions(ppcg_scop *PPCGScop) { 3256 free(PPCGScop->options->debug); 3257 PPCGScop->options->debug = nullptr; 3258 free(PPCGScop->options); 3259 PPCGScop->options = nullptr; 3260 } 3261 3262 /// Approximate the number of points in the set. 3263 /// 3264 /// This function returns an ast expression that overapproximates the number 3265 /// of points in an isl set through the rectangular hull surrounding this set. 3266 /// 3267 /// @param Set The set to count. 3268 /// @param Build The isl ast build object to use for creating the ast 3269 /// expression. 3270 /// 3271 /// @returns An approximation of the number of points in the set. 3272 __isl_give isl_ast_expr *approxPointsInSet(__isl_take isl_set *Set, 3273 __isl_keep isl_ast_build *Build) { 3274 3275 isl_val *One = isl_val_int_from_si(isl_set_get_ctx(Set), 1); 3276 auto *Expr = isl_ast_expr_from_val(isl_val_copy(One)); 3277 3278 isl_space *Space = isl_set_get_space(Set); 3279 Space = isl_space_params(Space); 3280 auto *Univ = isl_set_universe(Space); 3281 isl_pw_aff *OneAff = isl_pw_aff_val_on_domain(Univ, One); 3282 3283 for (long i = 0, n = isl_set_dim(Set, isl_dim_set); i < n; i++) { 3284 isl_pw_aff *Max = isl_set_dim_max(isl_set_copy(Set), i); 3285 isl_pw_aff *Min = isl_set_dim_min(isl_set_copy(Set), i); 3286 isl_pw_aff *DimSize = isl_pw_aff_sub(Max, Min); 3287 DimSize = isl_pw_aff_add(DimSize, isl_pw_aff_copy(OneAff)); 3288 auto DimSizeExpr = isl_ast_build_expr_from_pw_aff(Build, DimSize); 3289 Expr = isl_ast_expr_mul(Expr, DimSizeExpr); 3290 } 3291 3292 isl_set_free(Set); 3293 isl_pw_aff_free(OneAff); 3294 3295 return Expr; 3296 } 3297 3298 /// Approximate a number of dynamic instructions executed by a given 3299 /// statement. 3300 /// 3301 /// @param Stmt The statement for which to compute the number of dynamic 3302 /// instructions. 3303 /// @param Build The isl ast build object to use for creating the ast 3304 /// expression. 3305 /// @returns An approximation of the number of dynamic instructions executed 3306 /// by @p Stmt. 3307 __isl_give isl_ast_expr *approxDynamicInst(ScopStmt &Stmt, 3308 __isl_keep isl_ast_build *Build) { 3309 auto Iterations = approxPointsInSet(Stmt.getDomain().release(), Build); 3310 3311 long InstCount = 0; 3312 3313 if (Stmt.isBlockStmt()) { 3314 auto *BB = Stmt.getBasicBlock(); 3315 InstCount = std::distance(BB->begin(), BB->end()); 3316 } else { 3317 auto *R = Stmt.getRegion(); 3318 3319 for (auto *BB : R->blocks()) { 3320 InstCount += std::distance(BB->begin(), BB->end()); 3321 } 3322 } 3323 3324 isl_val *InstVal = isl_val_int_from_si(S->getIslCtx(), InstCount); 3325 auto *InstExpr = isl_ast_expr_from_val(InstVal); 3326 return isl_ast_expr_mul(InstExpr, Iterations); 3327 } 3328 3329 /// Approximate dynamic instructions executed in scop. 3330 /// 3331 /// @param S The scop for which to approximate dynamic instructions. 3332 /// @param Build The isl ast build object to use for creating the ast 3333 /// expression. 3334 /// @returns An approximation of the number of dynamic instructions executed 3335 /// in @p S. 3336 __isl_give isl_ast_expr * 3337 getNumberOfIterations(Scop &S, __isl_keep isl_ast_build *Build) { 3338 isl_ast_expr *Instructions; 3339 3340 isl_val *Zero = isl_val_int_from_si(S.getIslCtx(), 0); 3341 Instructions = isl_ast_expr_from_val(Zero); 3342 3343 for (ScopStmt &Stmt : S) { 3344 isl_ast_expr *StmtInstructions = approxDynamicInst(Stmt, Build); 3345 Instructions = isl_ast_expr_add(Instructions, StmtInstructions); 3346 } 3347 return Instructions; 3348 } 3349 3350 /// Create a check that ensures sufficient compute in scop. 3351 /// 3352 /// @param S The scop for which to ensure sufficient compute. 3353 /// @param Build The isl ast build object to use for creating the ast 3354 /// expression. 3355 /// @returns An expression that evaluates to TRUE in case of sufficient 3356 /// compute and to FALSE, otherwise. 3357 __isl_give isl_ast_expr * 3358 createSufficientComputeCheck(Scop &S, __isl_keep isl_ast_build *Build) { 3359 auto Iterations = getNumberOfIterations(S, Build); 3360 auto *MinComputeVal = isl_val_int_from_si(S.getIslCtx(), MinCompute); 3361 auto *MinComputeExpr = isl_ast_expr_from_val(MinComputeVal); 3362 return isl_ast_expr_ge(Iterations, MinComputeExpr); 3363 } 3364 3365 /// Check if the basic block contains a function we cannot codegen for GPU 3366 /// kernels. 3367 /// 3368 /// If this basic block does something with a `Function` other than calling 3369 /// a function that we support in a kernel, return true. 3370 bool containsInvalidKernelFunctionInBlock(const BasicBlock *BB, 3371 bool AllowCUDALibDevice) { 3372 for (const Instruction &Inst : *BB) { 3373 const CallInst *Call = dyn_cast<CallInst>(&Inst); 3374 if (Call && isValidFunctionInKernel(Call->getCalledFunction(), 3375 AllowCUDALibDevice)) 3376 continue; 3377 3378 for (Value *Op : Inst.operands()) 3379 // Look for (<func-type>*) among operands of Inst 3380 if (auto PtrTy = dyn_cast<PointerType>(Op->getType())) { 3381 if (isa<FunctionType>(PtrTy->getElementType())) { 3382 DEBUG(dbgs() << Inst 3383 << " has illegal use of function in kernel.\n"); 3384 return true; 3385 } 3386 } 3387 } 3388 return false; 3389 } 3390 3391 /// Return whether the Scop S uses functions in a way that we do not support. 3392 bool containsInvalidKernelFunction(const Scop &S, bool AllowCUDALibDevice) { 3393 for (auto &Stmt : S) { 3394 if (Stmt.isBlockStmt()) { 3395 if (containsInvalidKernelFunctionInBlock(Stmt.getBasicBlock(), 3396 AllowCUDALibDevice)) 3397 return true; 3398 } else { 3399 assert(Stmt.isRegionStmt() && 3400 "Stmt was neither block nor region statement"); 3401 for (const BasicBlock *BB : Stmt.getRegion()->blocks()) 3402 if (containsInvalidKernelFunctionInBlock(BB, AllowCUDALibDevice)) 3403 return true; 3404 } 3405 } 3406 return false; 3407 } 3408 3409 /// Generate code for a given GPU AST described by @p Root. 3410 /// 3411 /// @param Root An isl_ast_node pointing to the root of the GPU AST. 3412 /// @param Prog The GPU Program to generate code for. 3413 void generateCode(__isl_take isl_ast_node *Root, gpu_prog *Prog) { 3414 ScopAnnotator Annotator; 3415 Annotator.buildAliasScopes(*S); 3416 3417 Region *R = &S->getRegion(); 3418 3419 simplifyRegion(R, DT, LI, RI); 3420 3421 BasicBlock *EnteringBB = R->getEnteringBlock(); 3422 3423 PollyIRBuilder Builder = createPollyIRBuilder(EnteringBB, Annotator); 3424 3425 // Only build the run-time condition and parameters _after_ having 3426 // introduced the conditional branch. This is important as the conditional 3427 // branch will guard the original scop from new induction variables that 3428 // the SCEVExpander may introduce while code generating the parameters and 3429 // which may introduce scalar dependences that prevent us from correctly 3430 // code generating this scop. 3431 BBPair StartExitBlocks; 3432 BranchInst *CondBr = nullptr; 3433 std::tie(StartExitBlocks, CondBr) = 3434 executeScopConditionally(*S, Builder.getTrue(), *DT, *RI, *LI); 3435 BasicBlock *StartBlock = std::get<0>(StartExitBlocks); 3436 3437 assert(CondBr && "CondBr not initialized by executeScopConditionally"); 3438 3439 GPUNodeBuilder NodeBuilder(Builder, Annotator, *DL, *LI, *SE, *DT, *S, 3440 StartBlock, Prog, Runtime, Architecture); 3441 3442 // TODO: Handle LICM 3443 auto SplitBlock = StartBlock->getSinglePredecessor(); 3444 Builder.SetInsertPoint(SplitBlock->getTerminator()); 3445 3446 isl_ast_build *Build = isl_ast_build_alloc(S->getIslCtx()); 3447 isl_ast_expr *Condition = IslAst::buildRunCondition(*S, Build); 3448 isl_ast_expr *SufficientCompute = createSufficientComputeCheck(*S, Build); 3449 Condition = isl_ast_expr_and(Condition, SufficientCompute); 3450 isl_ast_build_free(Build); 3451 3452 // preload invariant loads. Note: This should happen before the RTC 3453 // because the RTC may depend on values that are invariant load hoisted. 3454 if (!NodeBuilder.preloadInvariantLoads()) { 3455 DEBUG(dbgs() << "preloading invariant loads failed in function: " + 3456 S->getFunction().getName() + 3457 " | Scop Region: " + S->getNameStr()); 3458 // adjust the dominator tree accordingly. 3459 auto *ExitingBlock = StartBlock->getUniqueSuccessor(); 3460 assert(ExitingBlock); 3461 auto *MergeBlock = ExitingBlock->getUniqueSuccessor(); 3462 assert(MergeBlock); 3463 polly::markBlockUnreachable(*StartBlock, Builder); 3464 polly::markBlockUnreachable(*ExitingBlock, Builder); 3465 auto *ExitingBB = S->getExitingBlock(); 3466 assert(ExitingBB); 3467 3468 DT->changeImmediateDominator(MergeBlock, ExitingBB); 3469 DT->eraseNode(ExitingBlock); 3470 isl_ast_expr_free(Condition); 3471 isl_ast_node_free(Root); 3472 } else { 3473 3474 if (polly::PerfMonitoring) { 3475 PerfMonitor P(*S, EnteringBB->getParent()->getParent()); 3476 P.initialize(); 3477 P.insertRegionStart(SplitBlock->getTerminator()); 3478 3479 // TODO: actually think if this is the correct exiting block to place 3480 // the `end` performance marker. Invariant load hoisting changes 3481 // the CFG in a way that I do not precisely understand, so I 3482 // (Siddharth<[email protected]>) should come back to this and 3483 // think about which exiting block to use. 3484 auto *ExitingBlock = StartBlock->getUniqueSuccessor(); 3485 assert(ExitingBlock); 3486 BasicBlock *MergeBlock = ExitingBlock->getUniqueSuccessor(); 3487 P.insertRegionEnd(MergeBlock->getTerminator()); 3488 } 3489 3490 NodeBuilder.addParameters(S->getContext().release()); 3491 Value *RTC = NodeBuilder.createRTC(Condition); 3492 Builder.GetInsertBlock()->getTerminator()->setOperand(0, RTC); 3493 3494 Builder.SetInsertPoint(&*StartBlock->begin()); 3495 3496 NodeBuilder.create(Root); 3497 } 3498 3499 /// In case a sequential kernel has more surrounding loops as any parallel 3500 /// kernel, the SCoP is probably mostly sequential. Hence, there is no 3501 /// point in running it on a GPU. 3502 if (NodeBuilder.DeepestSequential > NodeBuilder.DeepestParallel) 3503 CondBr->setOperand(0, Builder.getFalse()); 3504 3505 if (!NodeBuilder.BuildSuccessful) 3506 CondBr->setOperand(0, Builder.getFalse()); 3507 } 3508 3509 bool runOnScop(Scop &CurrentScop) override { 3510 S = &CurrentScop; 3511 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 3512 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 3513 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 3514 DL = &S->getRegion().getEntry()->getModule()->getDataLayout(); 3515 RI = &getAnalysis<RegionInfoPass>().getRegionInfo(); 3516 3517 DEBUG(dbgs() << "PPCGCodeGen running on : " << getUniqueScopName(S) 3518 << " | loop depth: " << S->getMaxLoopDepth() << "\n"); 3519 3520 // We currently do not support functions other than intrinsics inside 3521 // kernels, as code generation will need to offload function calls to the 3522 // kernel. This may lead to a kernel trying to call a function on the host. 3523 // This also allows us to prevent codegen from trying to take the 3524 // address of an intrinsic function to send to the kernel. 3525 if (containsInvalidKernelFunction(CurrentScop, 3526 Architecture == GPUArch::NVPTX64)) { 3527 DEBUG( 3528 dbgs() << getUniqueScopName(S) 3529 << " contains function which cannot be materialised in a GPU " 3530 "kernel. Bailing out.\n";); 3531 return false; 3532 } 3533 3534 auto PPCGScop = createPPCGScop(); 3535 auto PPCGProg = createPPCGProg(PPCGScop); 3536 auto PPCGGen = generateGPU(PPCGScop, PPCGProg); 3537 3538 if (PPCGGen->tree) { 3539 generateCode(isl_ast_node_copy(PPCGGen->tree), PPCGProg); 3540 CurrentScop.markAsToBeSkipped(); 3541 } else { 3542 DEBUG(dbgs() << getUniqueScopName(S) 3543 << " has empty PPCGGen->tree. Bailing out.\n"); 3544 } 3545 3546 freeOptions(PPCGScop); 3547 freePPCGGen(PPCGGen); 3548 gpu_prog_free(PPCGProg); 3549 ppcg_scop_free(PPCGScop); 3550 3551 return true; 3552 } 3553 3554 void printScop(raw_ostream &, Scop &) const override {} 3555 3556 void getAnalysisUsage(AnalysisUsage &AU) const override { 3557 ScopPass::getAnalysisUsage(AU); 3558 3559 AU.addRequired<DominatorTreeWrapperPass>(); 3560 AU.addRequired<RegionInfoPass>(); 3561 AU.addRequired<ScalarEvolutionWrapperPass>(); 3562 AU.addRequired<ScopDetectionWrapperPass>(); 3563 AU.addRequired<ScopInfoRegionPass>(); 3564 AU.addRequired<LoopInfoWrapperPass>(); 3565 3566 // FIXME: We do not yet add regions for the newly generated code to the 3567 // region tree. 3568 } 3569 }; 3570 } // namespace 3571 3572 char PPCGCodeGeneration::ID = 1; 3573 3574 Pass *polly::createPPCGCodeGenerationPass(GPUArch Arch, GPURuntime Runtime) { 3575 PPCGCodeGeneration *generator = new PPCGCodeGeneration(); 3576 generator->Runtime = Runtime; 3577 generator->Architecture = Arch; 3578 return generator; 3579 } 3580 3581 INITIALIZE_PASS_BEGIN(PPCGCodeGeneration, "polly-codegen-ppcg", 3582 "Polly - Apply PPCG translation to SCOP", false, false) 3583 INITIALIZE_PASS_DEPENDENCY(DependenceInfo); 3584 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass); 3585 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass); 3586 INITIALIZE_PASS_DEPENDENCY(RegionInfoPass); 3587 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass); 3588 INITIALIZE_PASS_DEPENDENCY(ScopDetectionWrapperPass); 3589 INITIALIZE_PASS_END(PPCGCodeGeneration, "polly-codegen-ppcg", 3590 "Polly - Apply PPCG translation to SCOP", false, false) 3591