1 //===------ PPCGCodeGeneration.cpp - Polly Accelerator Code Generation. ---===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Take a scop created by ScopInfo and map it to GPU code using the ppcg
11 // GPU mapping strategy.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "polly/CodeGen/PPCGCodeGeneration.h"
16 #include "polly/CodeGen/CodeGeneration.h"
17 #include "polly/CodeGen/IslAst.h"
18 #include "polly/CodeGen/IslNodeBuilder.h"
19 #include "polly/CodeGen/PerfMonitor.h"
20 #include "polly/CodeGen/Utils.h"
21 #include "polly/DependenceInfo.h"
22 #include "polly/LinkAllPasses.h"
23 #include "polly/Options.h"
24 #include "polly/ScopDetection.h"
25 #include "polly/ScopInfo.h"
26 #include "polly/Support/SCEVValidator.h"
27 #include "llvm/ADT/PostOrderIterator.h"
28 #include "llvm/Analysis/AliasAnalysis.h"
29 #include "llvm/Analysis/BasicAliasAnalysis.h"
30 #include "llvm/Analysis/GlobalsModRef.h"
31 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
32 #include "llvm/Analysis/TargetLibraryInfo.h"
33 #include "llvm/Analysis/TargetTransformInfo.h"
34 #include "llvm/IR/LegacyPassManager.h"
35 #include "llvm/IR/Verifier.h"
36 #include "llvm/IRReader/IRReader.h"
37 #include "llvm/Linker/Linker.h"
38 #include "llvm/Support/TargetRegistry.h"
39 #include "llvm/Support/TargetSelect.h"
40 #include "llvm/Target/TargetMachine.h"
41 #include "llvm/Transforms/IPO/PassManagerBuilder.h"
42 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
43 
44 #include "isl/union_map.h"
45 
46 extern "C" {
47 #include "ppcg/cuda.h"
48 #include "ppcg/gpu.h"
49 #include "ppcg/gpu_print.h"
50 #include "ppcg/ppcg.h"
51 #include "ppcg/schedule.h"
52 }
53 
54 #include "llvm/Support/Debug.h"
55 
56 using namespace polly;
57 using namespace llvm;
58 
59 #define DEBUG_TYPE "polly-codegen-ppcg"
60 
61 static cl::opt<bool> DumpSchedule("polly-acc-dump-schedule",
62                                   cl::desc("Dump the computed GPU Schedule"),
63                                   cl::Hidden, cl::init(false), cl::ZeroOrMore,
64                                   cl::cat(PollyCategory));
65 
66 static cl::opt<bool>
67     DumpCode("polly-acc-dump-code",
68              cl::desc("Dump C code describing the GPU mapping"), cl::Hidden,
69              cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory));
70 
71 static cl::opt<bool> DumpKernelIR("polly-acc-dump-kernel-ir",
72                                   cl::desc("Dump the kernel LLVM-IR"),
73                                   cl::Hidden, cl::init(false), cl::ZeroOrMore,
74                                   cl::cat(PollyCategory));
75 
76 static cl::opt<bool> DumpKernelASM("polly-acc-dump-kernel-asm",
77                                    cl::desc("Dump the kernel assembly code"),
78                                    cl::Hidden, cl::init(false), cl::ZeroOrMore,
79                                    cl::cat(PollyCategory));
80 
81 static cl::opt<bool> FastMath("polly-acc-fastmath",
82                               cl::desc("Allow unsafe math optimizations"),
83                               cl::Hidden, cl::init(false), cl::ZeroOrMore,
84                               cl::cat(PollyCategory));
85 static cl::opt<bool> SharedMemory("polly-acc-use-shared",
86                                   cl::desc("Use shared memory"), cl::Hidden,
87                                   cl::init(false), cl::ZeroOrMore,
88                                   cl::cat(PollyCategory));
89 static cl::opt<bool> PrivateMemory("polly-acc-use-private",
90                                    cl::desc("Use private memory"), cl::Hidden,
91                                    cl::init(false), cl::ZeroOrMore,
92                                    cl::cat(PollyCategory));
93 
94 bool polly::PollyManagedMemory;
95 static cl::opt<bool, true>
96     XManagedMemory("polly-acc-codegen-managed-memory",
97                    cl::desc("Generate Host kernel code assuming"
98                             " that all memory has been"
99                             " declared as managed memory"),
100                    cl::location(PollyManagedMemory), cl::Hidden,
101                    cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory));
102 
103 static cl::opt<bool>
104     FailOnVerifyModuleFailure("polly-acc-fail-on-verify-module-failure",
105                               cl::desc("Fail and generate a backtrace if"
106                                        " verifyModule fails on the GPU "
107                                        " kernel module."),
108                               cl::Hidden, cl::init(false), cl::ZeroOrMore,
109                               cl::cat(PollyCategory));
110 
111 static cl::opt<std::string> CUDALibDevice(
112     "polly-acc-libdevice", cl::desc("Path to CUDA libdevice"), cl::Hidden,
113     cl::init("/usr/local/cuda/nvvm/libdevice/libdevice.compute_20.10.ll"),
114     cl::ZeroOrMore, cl::cat(PollyCategory));
115 
116 static cl::opt<std::string>
117     CudaVersion("polly-acc-cuda-version",
118                 cl::desc("The CUDA version to compile for"), cl::Hidden,
119                 cl::init("sm_30"), cl::ZeroOrMore, cl::cat(PollyCategory));
120 
121 static cl::opt<int>
122     MinCompute("polly-acc-mincompute",
123                cl::desc("Minimal number of compute statements to run on GPU."),
124                cl::Hidden, cl::init(10 * 512 * 512));
125 
126 extern bool polly::PerfMonitoring;
127 
128 /// Return  a unique name for a Scop, which is the scop region with the
129 /// function name.
130 std::string getUniqueScopName(const Scop *S) {
131   return "Scop Region: " + S->getNameStr() +
132          " | Function: " + std::string(S->getFunction().getName());
133 }
134 
135 /// Used to store information PPCG wants for kills. This information is
136 /// used by live range reordering.
137 ///
138 /// @see computeLiveRangeReordering
139 /// @see GPUNodeBuilder::createPPCGScop
140 /// @see GPUNodeBuilder::createPPCGProg
141 struct MustKillsInfo {
142   /// Collection of all kill statements that will be sequenced at the end of
143   /// PPCGScop->schedule.
144   ///
145   /// The nodes in `KillsSchedule` will be merged using `isl_schedule_set`
146   /// which merges schedules in *arbitrary* order.
147   /// (we don't care about the order of the kills anyway).
148   isl::schedule KillsSchedule;
149   /// Map from kill statement instances to scalars that need to be
150   /// killed.
151   ///
152   /// We currently derive kill information for:
153   ///  1. phi nodes. PHI nodes are not alive outside the scop and can
154   ///     consequently all be killed.
155   ///  2. Scalar arrays that are not used outside the Scop. This is
156   ///     checked by `isScalarUsesContainedInScop`.
157   /// [params] -> { [Stmt_phantom[] -> ref_phantom[]] -> scalar_to_kill[] }
158   isl::union_map TaggedMustKills;
159 
160   /// Tagged must kills stripped of the tags.
161   /// [params] -> { Stmt_phantom[]  -> scalar_to_kill[] }
162   isl::union_map MustKills;
163 
164   MustKillsInfo() : KillsSchedule(nullptr) {}
165 };
166 
167 /// Check if SAI's uses are entirely contained within Scop S.
168 /// If a scalar is used only with a Scop, we are free to kill it, as no data
169 /// can flow in/out of the value any more.
170 /// @see computeMustKillsInfo
171 static bool isScalarUsesContainedInScop(const Scop &S,
172                                         const ScopArrayInfo *SAI) {
173   assert(SAI->isValueKind() && "this function only deals with scalars."
174                                " Dealing with arrays required alias analysis");
175 
176   const Region &R = S.getRegion();
177   for (User *U : SAI->getBasePtr()->users()) {
178     Instruction *I = dyn_cast<Instruction>(U);
179     assert(I && "invalid user of scop array info");
180     if (!R.contains(I))
181       return false;
182   }
183   return true;
184 }
185 
186 /// Compute must-kills needed to enable live range reordering with PPCG.
187 ///
188 /// @params S The Scop to compute live range reordering information
189 /// @returns live range reordering information that can be used to setup
190 /// PPCG.
191 static MustKillsInfo computeMustKillsInfo(const Scop &S) {
192   const isl::space ParamSpace = S.getParamSpace();
193   MustKillsInfo Info;
194 
195   // 1. Collect all ScopArrayInfo that satisfy *any* of the criteria:
196   //      1.1 phi nodes in scop.
197   //      1.2 scalars that are only used within the scop
198   SmallVector<isl::id, 4> KillMemIds;
199   for (ScopArrayInfo *SAI : S.arrays()) {
200     if (SAI->isPHIKind() ||
201         (SAI->isValueKind() && isScalarUsesContainedInScop(S, SAI)))
202       KillMemIds.push_back(isl::manage(SAI->getBasePtrId().release()));
203   }
204 
205   Info.TaggedMustKills = isl::union_map::empty(ParamSpace);
206   Info.MustKills = isl::union_map::empty(ParamSpace);
207 
208   // Initialising KillsSchedule to `isl_set_empty` creates an empty node in the
209   // schedule:
210   //     - filter: "[control] -> { }"
211   // So, we choose to not create this to keep the output a little nicer,
212   // at the cost of some code complexity.
213   Info.KillsSchedule = nullptr;
214 
215   for (isl::id &ToKillId : KillMemIds) {
216     isl::id KillStmtId = isl::id::alloc(
217         S.getIslCtx(),
218         std::string("SKill_phantom_").append(ToKillId.get_name()), nullptr);
219 
220     // NOTE: construction of tagged_must_kill:
221     // 2. We need to construct a map:
222     //     [param] -> { [Stmt_phantom[] -> ref_phantom[]] -> scalar_to_kill[] }
223     // To construct this, we use `isl_map_domain_product` on 2 maps`:
224     // 2a. StmtToScalar:
225     //         [param] -> { Stmt_phantom[] -> scalar_to_kill[] }
226     // 2b. PhantomRefToScalar:
227     //         [param] -> { ref_phantom[] -> scalar_to_kill[] }
228     //
229     // Combining these with `isl_map_domain_product` gives us
230     // TaggedMustKill:
231     //     [param] -> { [Stmt[] -> phantom_ref[]] -> scalar_to_kill[] }
232 
233     // 2a. [param] -> { Stmt[] -> scalar_to_kill[] }
234     isl::map StmtToScalar = isl::map::universe(ParamSpace);
235     StmtToScalar = StmtToScalar.set_tuple_id(isl::dim::in, isl::id(KillStmtId));
236     StmtToScalar = StmtToScalar.set_tuple_id(isl::dim::out, isl::id(ToKillId));
237 
238     isl::id PhantomRefId = isl::id::alloc(
239         S.getIslCtx(), std::string("ref_phantom") + ToKillId.get_name(),
240         nullptr);
241 
242     // 2b. [param] -> { phantom_ref[] -> scalar_to_kill[] }
243     isl::map PhantomRefToScalar = isl::map::universe(ParamSpace);
244     PhantomRefToScalar =
245         PhantomRefToScalar.set_tuple_id(isl::dim::in, PhantomRefId);
246     PhantomRefToScalar =
247         PhantomRefToScalar.set_tuple_id(isl::dim::out, ToKillId);
248 
249     // 2. [param] -> { [Stmt[] -> phantom_ref[]] -> scalar_to_kill[] }
250     isl::map TaggedMustKill = StmtToScalar.domain_product(PhantomRefToScalar);
251     Info.TaggedMustKills = Info.TaggedMustKills.unite(TaggedMustKill);
252 
253     // 2. [param] -> { Stmt[] -> scalar_to_kill[] }
254     Info.MustKills = Info.TaggedMustKills.domain_factor_domain();
255 
256     // 3. Create the kill schedule of the form:
257     //     "[param] -> { Stmt_phantom[] }"
258     // Then add this to Info.KillsSchedule.
259     isl::space KillStmtSpace = ParamSpace;
260     KillStmtSpace = KillStmtSpace.set_tuple_id(isl::dim::set, KillStmtId);
261     isl::union_set KillStmtDomain = isl::set::universe(KillStmtSpace);
262 
263     isl::schedule KillSchedule = isl::schedule::from_domain(KillStmtDomain);
264     if (Info.KillsSchedule)
265       Info.KillsSchedule = Info.KillsSchedule.set(KillSchedule);
266     else
267       Info.KillsSchedule = KillSchedule;
268   }
269 
270   return Info;
271 }
272 
273 /// Create the ast expressions for a ScopStmt.
274 ///
275 /// This function is a callback for to generate the ast expressions for each
276 /// of the scheduled ScopStmts.
277 static __isl_give isl_id_to_ast_expr *pollyBuildAstExprForStmt(
278     void *StmtT, __isl_take isl_ast_build *Build_C,
279     isl_multi_pw_aff *(*FunctionIndex)(__isl_take isl_multi_pw_aff *MPA,
280                                        isl_id *Id, void *User),
281     void *UserIndex,
282     isl_ast_expr *(*FunctionExpr)(isl_ast_expr *Expr, isl_id *Id, void *User),
283     void *UserExpr) {
284 
285   ScopStmt *Stmt = (ScopStmt *)StmtT;
286 
287   if (!Stmt || !Build_C)
288     return NULL;
289 
290   isl::ast_build Build = isl::manage(isl_ast_build_copy(Build_C));
291   isl::ctx Ctx = Build.get_ctx();
292   isl::id_to_ast_expr RefToExpr = isl::id_to_ast_expr::alloc(Ctx, 0);
293 
294   Stmt->setAstBuild(Build);
295 
296   for (MemoryAccess *Acc : *Stmt) {
297     isl::map AddrFunc = Acc->getAddressFunction();
298     AddrFunc = AddrFunc.intersect_domain(Stmt->getDomain());
299 
300     isl::id RefId = Acc->getId();
301     isl::pw_multi_aff PMA = isl::pw_multi_aff::from_map(AddrFunc);
302 
303     isl::multi_pw_aff MPA = isl::multi_pw_aff(PMA);
304     MPA = MPA.coalesce();
305     MPA = isl::manage(FunctionIndex(MPA.release(), RefId.get(), UserIndex));
306 
307     isl::ast_expr Access = Build.access_from(MPA);
308     Access = isl::manage(FunctionExpr(Access.release(), RefId.get(), UserExpr));
309     RefToExpr = RefToExpr.set(RefId, Access);
310   }
311 
312   return RefToExpr.release();
313 }
314 
315 /// Given a LLVM Type, compute its size in bytes,
316 static int computeSizeInBytes(const Type *T) {
317   int bytes = T->getPrimitiveSizeInBits() / 8;
318   if (bytes == 0)
319     bytes = T->getScalarSizeInBits() / 8;
320   return bytes;
321 }
322 
323 /// Generate code for a GPU specific isl AST.
324 ///
325 /// The GPUNodeBuilder augments the general existing IslNodeBuilder, which
326 /// generates code for general-purpose AST nodes, with special functionality
327 /// for generating GPU specific user nodes.
328 ///
329 /// @see GPUNodeBuilder::createUser
330 class GPUNodeBuilder : public IslNodeBuilder {
331 public:
332   GPUNodeBuilder(PollyIRBuilder &Builder, ScopAnnotator &Annotator,
333                  const DataLayout &DL, LoopInfo &LI, ScalarEvolution &SE,
334                  DominatorTree &DT, Scop &S, BasicBlock *StartBlock,
335                  gpu_prog *Prog, GPURuntime Runtime, GPUArch Arch)
336       : IslNodeBuilder(Builder, Annotator, DL, LI, SE, DT, S, StartBlock),
337         Prog(Prog), Runtime(Runtime), Arch(Arch) {
338     getExprBuilder().setIDToSAI(&IDToSAI);
339   }
340 
341   /// Create after-run-time-check initialization code.
342   void initializeAfterRTH();
343 
344   /// Finalize the generated scop.
345   virtual void finalize();
346 
347   /// Track if the full build process was successful.
348   ///
349   /// This value is set to false, if throughout the build process an error
350   /// occurred which prevents us from generating valid GPU code.
351   bool BuildSuccessful = true;
352 
353   /// The maximal number of loops surrounding a sequential kernel.
354   unsigned DeepestSequential = 0;
355 
356   /// The maximal number of loops surrounding a parallel kernel.
357   unsigned DeepestParallel = 0;
358 
359   /// Return the name to set for the ptx_kernel.
360   std::string getKernelFuncName(int Kernel_id);
361 
362 private:
363   /// A vector of array base pointers for which a new ScopArrayInfo was created.
364   ///
365   /// This vector is used to delete the ScopArrayInfo when it is not needed any
366   /// more.
367   std::vector<Value *> LocalArrays;
368 
369   /// A map from ScopArrays to their corresponding device allocations.
370   std::map<ScopArrayInfo *, Value *> DeviceAllocations;
371 
372   /// The current GPU context.
373   Value *GPUContext;
374 
375   /// The set of isl_ids allocated in the kernel
376   std::vector<isl_id *> KernelIds;
377 
378   /// A module containing GPU code.
379   ///
380   /// This pointer is only set in case we are currently generating GPU code.
381   std::unique_ptr<Module> GPUModule;
382 
383   /// The GPU program we generate code for.
384   gpu_prog *Prog;
385 
386   /// The GPU Runtime implementation to use (OpenCL or CUDA).
387   GPURuntime Runtime;
388 
389   /// The GPU Architecture to target.
390   GPUArch Arch;
391 
392   /// Class to free isl_ids.
393   class IslIdDeleter {
394   public:
395     void operator()(__isl_take isl_id *Id) { isl_id_free(Id); };
396   };
397 
398   /// A set containing all isl_ids allocated in a GPU kernel.
399   ///
400   /// By releasing this set all isl_ids will be freed.
401   std::set<std::unique_ptr<isl_id, IslIdDeleter>> KernelIDs;
402 
403   IslExprBuilder::IDToScopArrayInfoTy IDToSAI;
404 
405   /// Create code for user-defined AST nodes.
406   ///
407   /// These AST nodes can be of type:
408   ///
409   ///   - ScopStmt:      A computational statement (TODO)
410   ///   - Kernel:        A GPU kernel call (TODO)
411   ///   - Data-Transfer: A GPU <-> CPU data-transfer
412   ///   - In-kernel synchronization
413   ///   - In-kernel memory copy statement
414   ///
415   /// @param UserStmt The ast node to generate code for.
416   virtual void createUser(__isl_take isl_ast_node *UserStmt);
417 
418   enum DataDirection { HOST_TO_DEVICE, DEVICE_TO_HOST };
419 
420   /// Create code for a data transfer statement
421   ///
422   /// @param TransferStmt The data transfer statement.
423   /// @param Direction The direction in which to transfer data.
424   void createDataTransfer(__isl_take isl_ast_node *TransferStmt,
425                           enum DataDirection Direction);
426 
427   /// Find llvm::Values referenced in GPU kernel.
428   ///
429   /// @param Kernel The kernel to scan for llvm::Values
430   ///
431   /// @returns A tuple, whose:
432   ///          - First element contains the set of values referenced by the
433   ///            kernel
434   ///          - Second element contains the set of functions referenced by the
435   ///             kernel. All functions in the set satisfy
436   ///             `isValidFunctionInKernel`.
437   ///          - Third element contains loops that have induction variables
438   ///            which are used in the kernel, *and* these loops are *neither*
439   ///            in the scop, nor do they immediately surroung the Scop.
440   ///            See [Code generation of induction variables of loops outside
441   ///            Scops]
442   std::tuple<SetVector<Value *>, SetVector<Function *>, SetVector<const Loop *>,
443              isl::space>
444   getReferencesInKernel(ppcg_kernel *Kernel);
445 
446   /// Compute the sizes of the execution grid for a given kernel.
447   ///
448   /// @param Kernel The kernel to compute grid sizes for.
449   ///
450   /// @returns A tuple with grid sizes for X and Y dimension
451   std::tuple<Value *, Value *> getGridSizes(ppcg_kernel *Kernel);
452 
453   /// Get the managed array pointer for sending host pointers to the device.
454   /// \note
455   /// This is to be used only with managed memory
456   Value *getManagedDeviceArray(gpu_array_info *Array, ScopArrayInfo *ArrayInfo);
457 
458   /// Compute the sizes of the thread blocks for a given kernel.
459   ///
460   /// @param Kernel The kernel to compute thread block sizes for.
461   ///
462   /// @returns A tuple with thread block sizes for X, Y, and Z dimensions.
463   std::tuple<Value *, Value *, Value *> getBlockSizes(ppcg_kernel *Kernel);
464 
465   /// Store a specific kernel launch parameter in the array of kernel launch
466   /// parameters.
467   ///
468   /// @param Parameters The list of parameters in which to store.
469   /// @param Param      The kernel launch parameter to store.
470   /// @param Index      The index in the parameter list, at which to store the
471   ///                   parameter.
472   void insertStoreParameter(Instruction *Parameters, Instruction *Param,
473                             int Index);
474 
475   /// Create kernel launch parameters.
476   ///
477   /// @param Kernel        The kernel to create parameters for.
478   /// @param F             The kernel function that has been created.
479   /// @param SubtreeValues The set of llvm::Values referenced by this kernel.
480   ///
481   /// @returns A stack allocated array with pointers to the parameter
482   ///          values that are passed to the kernel.
483   Value *createLaunchParameters(ppcg_kernel *Kernel, Function *F,
484                                 SetVector<Value *> SubtreeValues);
485 
486   /// Create declarations for kernel variable.
487   ///
488   /// This includes shared memory declarations.
489   ///
490   /// @param Kernel        The kernel definition to create variables for.
491   /// @param FN            The function into which to generate the variables.
492   void createKernelVariables(ppcg_kernel *Kernel, Function *FN);
493 
494   /// Add CUDA annotations to module.
495   ///
496   /// Add a set of CUDA annotations that declares the maximal block dimensions
497   /// that will be used to execute the CUDA kernel. This allows the NVIDIA
498   /// PTX compiler to bound the number of allocated registers to ensure the
499   /// resulting kernel is known to run with up to as many block dimensions
500   /// as specified here.
501   ///
502   /// @param M         The module to add the annotations to.
503   /// @param BlockDimX The size of block dimension X.
504   /// @param BlockDimY The size of block dimension Y.
505   /// @param BlockDimZ The size of block dimension Z.
506   void addCUDAAnnotations(Module *M, Value *BlockDimX, Value *BlockDimY,
507                           Value *BlockDimZ);
508 
509   /// Create GPU kernel.
510   ///
511   /// Code generate the kernel described by @p KernelStmt.
512   ///
513   /// @param KernelStmt The ast node to generate kernel code for.
514   void createKernel(__isl_take isl_ast_node *KernelStmt);
515 
516   /// Generate code that computes the size of an array.
517   ///
518   /// @param Array The array for which to compute a size.
519   Value *getArraySize(gpu_array_info *Array);
520 
521   /// Generate code to compute the minimal offset at which an array is accessed.
522   ///
523   /// The offset of an array is the minimal array location accessed in a scop.
524   ///
525   /// Example:
526   ///
527   ///   for (long i = 0; i < 100; i++)
528   ///     A[i + 42] += ...
529   ///
530   ///   getArrayOffset(A) results in 42.
531   ///
532   /// @param Array The array for which to compute the offset.
533   /// @returns An llvm::Value that contains the offset of the array.
534   Value *getArrayOffset(gpu_array_info *Array);
535 
536   /// Prepare the kernel arguments for kernel code generation
537   ///
538   /// @param Kernel The kernel to generate code for.
539   /// @param FN     The function created for the kernel.
540   void prepareKernelArguments(ppcg_kernel *Kernel, Function *FN);
541 
542   /// Create kernel function.
543   ///
544   /// Create a kernel function located in a newly created module that can serve
545   /// as target for device code generation. Set the Builder to point to the
546   /// start block of this newly created function.
547   ///
548   /// @param Kernel The kernel to generate code for.
549   /// @param SubtreeValues The set of llvm::Values referenced by this kernel.
550   /// @param SubtreeFunctions The set of llvm::Functions referenced by this
551   ///                         kernel.
552   void createKernelFunction(ppcg_kernel *Kernel,
553                             SetVector<Value *> &SubtreeValues,
554                             SetVector<Function *> &SubtreeFunctions);
555 
556   /// Create the declaration of a kernel function.
557   ///
558   /// The kernel function takes as arguments:
559   ///
560   ///   - One i8 pointer for each external array reference used in the kernel.
561   ///   - Host iterators
562   ///   - Parameters
563   ///   - Other LLVM Value references (TODO)
564   ///
565   /// @param Kernel The kernel to generate the function declaration for.
566   /// @param SubtreeValues The set of llvm::Values referenced by this kernel.
567   ///
568   /// @returns The newly declared function.
569   Function *createKernelFunctionDecl(ppcg_kernel *Kernel,
570                                      SetVector<Value *> &SubtreeValues);
571 
572   /// Insert intrinsic functions to obtain thread and block ids.
573   ///
574   /// @param The kernel to generate the intrinsic functions for.
575   void insertKernelIntrinsics(ppcg_kernel *Kernel);
576 
577   /// Insert function calls to retrieve the SPIR group/local ids.
578   ///
579   /// @param The kernel to generate the function calls for.
580   void insertKernelCallsSPIR(ppcg_kernel *Kernel);
581 
582   /// Setup the creation of functions referenced by the GPU kernel.
583   ///
584   /// 1. Create new function declarations in GPUModule which are the same as
585   /// SubtreeFunctions.
586   ///
587   /// 2. Populate IslNodeBuilder::ValueMap with mappings from
588   /// old functions (that come from the original module) to new functions
589   /// (that are created within GPUModule). That way, we generate references
590   /// to the correct function (in GPUModule) in BlockGenerator.
591   ///
592   /// @see IslNodeBuilder::ValueMap
593   /// @see BlockGenerator::GlobalMap
594   /// @see BlockGenerator::getNewValue
595   /// @see GPUNodeBuilder::getReferencesInKernel.
596   ///
597   /// @param SubtreeFunctions The set of llvm::Functions referenced by
598   ///                         this kernel.
599   void setupKernelSubtreeFunctions(SetVector<Function *> SubtreeFunctions);
600 
601   /// Create a global-to-shared or shared-to-global copy statement.
602   ///
603   /// @param CopyStmt The copy statement to generate code for
604   void createKernelCopy(ppcg_kernel_stmt *CopyStmt);
605 
606   /// Create code for a ScopStmt called in @p Expr.
607   ///
608   /// @param Expr The expression containing the call.
609   /// @param KernelStmt The kernel statement referenced in the call.
610   void createScopStmt(isl_ast_expr *Expr, ppcg_kernel_stmt *KernelStmt);
611 
612   /// Create an in-kernel synchronization call.
613   void createKernelSync();
614 
615   /// Create a PTX assembly string for the current GPU kernel.
616   ///
617   /// @returns A string containing the corresponding PTX assembly code.
618   std::string createKernelASM();
619 
620   /// Remove references from the dominator tree to the kernel function @p F.
621   ///
622   /// @param F The function to remove references to.
623   void clearDominators(Function *F);
624 
625   /// Remove references from scalar evolution to the kernel function @p F.
626   ///
627   /// @param F The function to remove references to.
628   void clearScalarEvolution(Function *F);
629 
630   /// Remove references from loop info to the kernel function @p F.
631   ///
632   /// @param F The function to remove references to.
633   void clearLoops(Function *F);
634 
635   /// Check if the scop requires to be linked with CUDA's libdevice.
636   bool requiresCUDALibDevice();
637 
638   /// Link with the NVIDIA libdevice library (if needed and available).
639   void addCUDALibDevice();
640 
641   /// Finalize the generation of the kernel function.
642   ///
643   /// Free the LLVM-IR module corresponding to the kernel and -- if requested --
644   /// dump its IR to stderr.
645   ///
646   /// @returns The Assembly string of the kernel.
647   std::string finalizeKernelFunction();
648 
649   /// Finalize the generation of the kernel arguments.
650   ///
651   /// This function ensures that not-read-only scalars used in a kernel are
652   /// stored back to the global memory location they are backed with before
653   /// the kernel terminates.
654   ///
655   /// @params Kernel The kernel to finalize kernel arguments for.
656   void finalizeKernelArguments(ppcg_kernel *Kernel);
657 
658   /// Create code that allocates memory to store arrays on device.
659   void allocateDeviceArrays();
660 
661   /// Create code to prepare the managed device pointers.
662   void prepareManagedDeviceArrays();
663 
664   /// Free all allocated device arrays.
665   void freeDeviceArrays();
666 
667   /// Create a call to initialize the GPU context.
668   ///
669   /// @returns A pointer to the newly initialized context.
670   Value *createCallInitContext();
671 
672   /// Create a call to get the device pointer for a kernel allocation.
673   ///
674   /// @param Allocation The Polly GPU allocation
675   ///
676   /// @returns The device parameter corresponding to this allocation.
677   Value *createCallGetDevicePtr(Value *Allocation);
678 
679   /// Create a call to free the GPU context.
680   ///
681   /// @param Context A pointer to an initialized GPU context.
682   void createCallFreeContext(Value *Context);
683 
684   /// Create a call to allocate memory on the device.
685   ///
686   /// @param Size The size of memory to allocate
687   ///
688   /// @returns A pointer that identifies this allocation.
689   Value *createCallAllocateMemoryForDevice(Value *Size);
690 
691   /// Create a call to free a device array.
692   ///
693   /// @param Array The device array to free.
694   void createCallFreeDeviceMemory(Value *Array);
695 
696   /// Create a call to copy data from host to device.
697   ///
698   /// @param HostPtr A pointer to the host data that should be copied.
699   /// @param DevicePtr A device pointer specifying the location to copy to.
700   void createCallCopyFromHostToDevice(Value *HostPtr, Value *DevicePtr,
701                                       Value *Size);
702 
703   /// Create a call to copy data from device to host.
704   ///
705   /// @param DevicePtr A pointer to the device data that should be copied.
706   /// @param HostPtr A host pointer specifying the location to copy to.
707   void createCallCopyFromDeviceToHost(Value *DevicePtr, Value *HostPtr,
708                                       Value *Size);
709 
710   /// Create a call to synchronize Host & Device.
711   /// \note
712   /// This is to be used only with managed memory.
713   void createCallSynchronizeDevice();
714 
715   /// Create a call to get a kernel from an assembly string.
716   ///
717   /// @param Buffer The string describing the kernel.
718   /// @param Entry  The name of the kernel function to call.
719   ///
720   /// @returns A pointer to a kernel object
721   Value *createCallGetKernel(Value *Buffer, Value *Entry);
722 
723   /// Create a call to free a GPU kernel.
724   ///
725   /// @param GPUKernel THe kernel to free.
726   void createCallFreeKernel(Value *GPUKernel);
727 
728   /// Create a call to launch a GPU kernel.
729   ///
730   /// @param GPUKernel  The kernel to launch.
731   /// @param GridDimX   The size of the first grid dimension.
732   /// @param GridDimY   The size of the second grid dimension.
733   /// @param GridBlockX The size of the first block dimension.
734   /// @param GridBlockY The size of the second block dimension.
735   /// @param GridBlockZ The size of the third block dimension.
736   /// @param Parameters A pointer to an array that contains itself pointers to
737   ///                   the parameter values passed for each kernel argument.
738   void createCallLaunchKernel(Value *GPUKernel, Value *GridDimX,
739                               Value *GridDimY, Value *BlockDimX,
740                               Value *BlockDimY, Value *BlockDimZ,
741                               Value *Parameters);
742 };
743 
744 std::string GPUNodeBuilder::getKernelFuncName(int Kernel_id) {
745   return "FUNC_" + S.getFunction().getName().str() + "_SCOP_" +
746          std::to_string(S.getID()) + "_KERNEL_" + std::to_string(Kernel_id);
747 }
748 
749 void GPUNodeBuilder::initializeAfterRTH() {
750   BasicBlock *NewBB = SplitBlock(Builder.GetInsertBlock(),
751                                  &*Builder.GetInsertPoint(), &DT, &LI);
752   NewBB->setName("polly.acc.initialize");
753   Builder.SetInsertPoint(&NewBB->front());
754 
755   GPUContext = createCallInitContext();
756 
757   if (!PollyManagedMemory)
758     allocateDeviceArrays();
759   else
760     prepareManagedDeviceArrays();
761 }
762 
763 void GPUNodeBuilder::finalize() {
764   if (!PollyManagedMemory)
765     freeDeviceArrays();
766 
767   createCallFreeContext(GPUContext);
768   IslNodeBuilder::finalize();
769 }
770 
771 void GPUNodeBuilder::allocateDeviceArrays() {
772   assert(!PollyManagedMemory &&
773          "Managed memory will directly send host pointers "
774          "to the kernel. There is no need for device arrays");
775   isl_ast_build *Build = isl_ast_build_from_context(S.getContext().release());
776 
777   for (int i = 0; i < Prog->n_array; ++i) {
778     gpu_array_info *Array = &Prog->array[i];
779     auto *ScopArray = (ScopArrayInfo *)Array->user;
780     std::string DevArrayName("p_dev_array_");
781     DevArrayName.append(Array->name);
782 
783     Value *ArraySize = getArraySize(Array);
784     Value *Offset = getArrayOffset(Array);
785     if (Offset)
786       ArraySize = Builder.CreateSub(
787           ArraySize,
788           Builder.CreateMul(Offset,
789                             Builder.getInt64(ScopArray->getElemSizeInBytes())));
790     const SCEV *SizeSCEV = SE.getSCEV(ArraySize);
791     // It makes no sense to have an array of size 0. The CUDA API will
792     // throw an error anyway if we invoke `cuMallocManaged` with size `0`. We
793     // choose to be defensive and catch this at the compile phase. It is
794     // most likely that we are doing something wrong with size computation.
795     if (SizeSCEV->isZero()) {
796       errs() << getUniqueScopName(&S)
797              << " has computed array size 0: " << *ArraySize
798              << " | for array: " << *(ScopArray->getBasePtr())
799              << ". This is illegal, exiting.\n";
800       report_fatal_error("array size was computed to be 0");
801     }
802 
803     Value *DevArray = createCallAllocateMemoryForDevice(ArraySize);
804     DevArray->setName(DevArrayName);
805     DeviceAllocations[ScopArray] = DevArray;
806   }
807 
808   isl_ast_build_free(Build);
809 }
810 
811 void GPUNodeBuilder::prepareManagedDeviceArrays() {
812   assert(PollyManagedMemory &&
813          "Device array most only be prepared in managed-memory mode");
814   for (int i = 0; i < Prog->n_array; ++i) {
815     gpu_array_info *Array = &Prog->array[i];
816     ScopArrayInfo *ScopArray = (ScopArrayInfo *)Array->user;
817     Value *HostPtr;
818 
819     if (gpu_array_is_scalar(Array))
820       HostPtr = BlockGen.getOrCreateAlloca(ScopArray);
821     else
822       HostPtr = ScopArray->getBasePtr();
823     HostPtr = getLatestValue(HostPtr);
824 
825     Value *Offset = getArrayOffset(Array);
826     if (Offset) {
827       HostPtr = Builder.CreatePointerCast(
828           HostPtr, ScopArray->getElementType()->getPointerTo());
829       HostPtr = Builder.CreateGEP(HostPtr, Offset);
830     }
831 
832     HostPtr = Builder.CreatePointerCast(HostPtr, Builder.getInt8PtrTy());
833     DeviceAllocations[ScopArray] = HostPtr;
834   }
835 }
836 
837 void GPUNodeBuilder::addCUDAAnnotations(Module *M, Value *BlockDimX,
838                                         Value *BlockDimY, Value *BlockDimZ) {
839   auto AnnotationNode = M->getOrInsertNamedMetadata("nvvm.annotations");
840 
841   for (auto &F : *M) {
842     if (F.getCallingConv() != CallingConv::PTX_Kernel)
843       continue;
844 
845     Value *V[] = {BlockDimX, BlockDimY, BlockDimZ};
846 
847     Metadata *Elements[] = {
848         ValueAsMetadata::get(&F),   MDString::get(M->getContext(), "maxntidx"),
849         ValueAsMetadata::get(V[0]), MDString::get(M->getContext(), "maxntidy"),
850         ValueAsMetadata::get(V[1]), MDString::get(M->getContext(), "maxntidz"),
851         ValueAsMetadata::get(V[2]),
852     };
853     MDNode *Node = MDNode::get(M->getContext(), Elements);
854     AnnotationNode->addOperand(Node);
855   }
856 }
857 
858 void GPUNodeBuilder::freeDeviceArrays() {
859   assert(!PollyManagedMemory && "Managed memory does not use device arrays");
860   for (auto &Array : DeviceAllocations)
861     createCallFreeDeviceMemory(Array.second);
862 }
863 
864 Value *GPUNodeBuilder::createCallGetKernel(Value *Buffer, Value *Entry) {
865   const char *Name = "polly_getKernel";
866   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
867   Function *F = M->getFunction(Name);
868 
869   // If F is not available, declare it.
870   if (!F) {
871     GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage;
872     std::vector<Type *> Args;
873     Args.push_back(Builder.getInt8PtrTy());
874     Args.push_back(Builder.getInt8PtrTy());
875     FunctionType *Ty = FunctionType::get(Builder.getInt8PtrTy(), Args, false);
876     F = Function::Create(Ty, Linkage, Name, M);
877   }
878 
879   return Builder.CreateCall(F, {Buffer, Entry});
880 }
881 
882 Value *GPUNodeBuilder::createCallGetDevicePtr(Value *Allocation) {
883   const char *Name = "polly_getDevicePtr";
884   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
885   Function *F = M->getFunction(Name);
886 
887   // If F is not available, declare it.
888   if (!F) {
889     GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage;
890     std::vector<Type *> Args;
891     Args.push_back(Builder.getInt8PtrTy());
892     FunctionType *Ty = FunctionType::get(Builder.getInt8PtrTy(), Args, false);
893     F = Function::Create(Ty, Linkage, Name, M);
894   }
895 
896   return Builder.CreateCall(F, {Allocation});
897 }
898 
899 void GPUNodeBuilder::createCallLaunchKernel(Value *GPUKernel, Value *GridDimX,
900                                             Value *GridDimY, Value *BlockDimX,
901                                             Value *BlockDimY, Value *BlockDimZ,
902                                             Value *Parameters) {
903   const char *Name = "polly_launchKernel";
904   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
905   Function *F = M->getFunction(Name);
906 
907   // If F is not available, declare it.
908   if (!F) {
909     GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage;
910     std::vector<Type *> Args;
911     Args.push_back(Builder.getInt8PtrTy());
912     Args.push_back(Builder.getInt32Ty());
913     Args.push_back(Builder.getInt32Ty());
914     Args.push_back(Builder.getInt32Ty());
915     Args.push_back(Builder.getInt32Ty());
916     Args.push_back(Builder.getInt32Ty());
917     Args.push_back(Builder.getInt8PtrTy());
918     FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false);
919     F = Function::Create(Ty, Linkage, Name, M);
920   }
921 
922   Builder.CreateCall(F, {GPUKernel, GridDimX, GridDimY, BlockDimX, BlockDimY,
923                          BlockDimZ, Parameters});
924 }
925 
926 void GPUNodeBuilder::createCallFreeKernel(Value *GPUKernel) {
927   const char *Name = "polly_freeKernel";
928   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
929   Function *F = M->getFunction(Name);
930 
931   // If F is not available, declare it.
932   if (!F) {
933     GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage;
934     std::vector<Type *> Args;
935     Args.push_back(Builder.getInt8PtrTy());
936     FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false);
937     F = Function::Create(Ty, Linkage, Name, M);
938   }
939 
940   Builder.CreateCall(F, {GPUKernel});
941 }
942 
943 void GPUNodeBuilder::createCallFreeDeviceMemory(Value *Array) {
944   assert(!PollyManagedMemory &&
945          "Managed memory does not allocate or free memory "
946          "for device");
947   const char *Name = "polly_freeDeviceMemory";
948   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
949   Function *F = M->getFunction(Name);
950 
951   // If F is not available, declare it.
952   if (!F) {
953     GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage;
954     std::vector<Type *> Args;
955     Args.push_back(Builder.getInt8PtrTy());
956     FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false);
957     F = Function::Create(Ty, Linkage, Name, M);
958   }
959 
960   Builder.CreateCall(F, {Array});
961 }
962 
963 Value *GPUNodeBuilder::createCallAllocateMemoryForDevice(Value *Size) {
964   assert(!PollyManagedMemory &&
965          "Managed memory does not allocate or free memory "
966          "for device");
967   const char *Name = "polly_allocateMemoryForDevice";
968   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
969   Function *F = M->getFunction(Name);
970 
971   // If F is not available, declare it.
972   if (!F) {
973     GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage;
974     std::vector<Type *> Args;
975     Args.push_back(Builder.getInt64Ty());
976     FunctionType *Ty = FunctionType::get(Builder.getInt8PtrTy(), Args, false);
977     F = Function::Create(Ty, Linkage, Name, M);
978   }
979 
980   return Builder.CreateCall(F, {Size});
981 }
982 
983 void GPUNodeBuilder::createCallCopyFromHostToDevice(Value *HostData,
984                                                     Value *DeviceData,
985                                                     Value *Size) {
986   assert(!PollyManagedMemory &&
987          "Managed memory does not transfer memory between "
988          "device and host");
989   const char *Name = "polly_copyFromHostToDevice";
990   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
991   Function *F = M->getFunction(Name);
992 
993   // If F is not available, declare it.
994   if (!F) {
995     GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage;
996     std::vector<Type *> Args;
997     Args.push_back(Builder.getInt8PtrTy());
998     Args.push_back(Builder.getInt8PtrTy());
999     Args.push_back(Builder.getInt64Ty());
1000     FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false);
1001     F = Function::Create(Ty, Linkage, Name, M);
1002   }
1003 
1004   Builder.CreateCall(F, {HostData, DeviceData, Size});
1005 }
1006 
1007 void GPUNodeBuilder::createCallCopyFromDeviceToHost(Value *DeviceData,
1008                                                     Value *HostData,
1009                                                     Value *Size) {
1010   assert(!PollyManagedMemory &&
1011          "Managed memory does not transfer memory between "
1012          "device and host");
1013   const char *Name = "polly_copyFromDeviceToHost";
1014   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
1015   Function *F = M->getFunction(Name);
1016 
1017   // If F is not available, declare it.
1018   if (!F) {
1019     GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage;
1020     std::vector<Type *> Args;
1021     Args.push_back(Builder.getInt8PtrTy());
1022     Args.push_back(Builder.getInt8PtrTy());
1023     Args.push_back(Builder.getInt64Ty());
1024     FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false);
1025     F = Function::Create(Ty, Linkage, Name, M);
1026   }
1027 
1028   Builder.CreateCall(F, {DeviceData, HostData, Size});
1029 }
1030 
1031 void GPUNodeBuilder::createCallSynchronizeDevice() {
1032   assert(PollyManagedMemory && "explicit synchronization is only necessary for "
1033                                "managed memory");
1034   const char *Name = "polly_synchronizeDevice";
1035   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
1036   Function *F = M->getFunction(Name);
1037 
1038   // If F is not available, declare it.
1039   if (!F) {
1040     GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage;
1041     FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), false);
1042     F = Function::Create(Ty, Linkage, Name, M);
1043   }
1044 
1045   Builder.CreateCall(F);
1046 }
1047 
1048 Value *GPUNodeBuilder::createCallInitContext() {
1049   const char *Name;
1050 
1051   switch (Runtime) {
1052   case GPURuntime::CUDA:
1053     Name = "polly_initContextCUDA";
1054     break;
1055   case GPURuntime::OpenCL:
1056     Name = "polly_initContextCL";
1057     break;
1058   }
1059 
1060   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
1061   Function *F = M->getFunction(Name);
1062 
1063   // If F is not available, declare it.
1064   if (!F) {
1065     GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage;
1066     std::vector<Type *> Args;
1067     FunctionType *Ty = FunctionType::get(Builder.getInt8PtrTy(), Args, false);
1068     F = Function::Create(Ty, Linkage, Name, M);
1069   }
1070 
1071   return Builder.CreateCall(F, {});
1072 }
1073 
1074 void GPUNodeBuilder::createCallFreeContext(Value *Context) {
1075   const char *Name = "polly_freeContext";
1076   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
1077   Function *F = M->getFunction(Name);
1078 
1079   // If F is not available, declare it.
1080   if (!F) {
1081     GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage;
1082     std::vector<Type *> Args;
1083     Args.push_back(Builder.getInt8PtrTy());
1084     FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false);
1085     F = Function::Create(Ty, Linkage, Name, M);
1086   }
1087 
1088   Builder.CreateCall(F, {Context});
1089 }
1090 
1091 /// Check if one string is a prefix of another.
1092 ///
1093 /// @param String The string in which to look for the prefix.
1094 /// @param Prefix The prefix to look for.
1095 static bool isPrefix(std::string String, std::string Prefix) {
1096   return String.find(Prefix) == 0;
1097 }
1098 
1099 Value *GPUNodeBuilder::getArraySize(gpu_array_info *Array) {
1100   isl::ast_build Build = isl::ast_build::from_context(S.getContext());
1101   Value *ArraySize = ConstantInt::get(Builder.getInt64Ty(), Array->size);
1102 
1103   if (!gpu_array_is_scalar(Array)) {
1104     isl::multi_pw_aff ArrayBound =
1105         isl::manage(isl_multi_pw_aff_copy(Array->bound));
1106 
1107     isl::pw_aff OffsetDimZero = ArrayBound.get_pw_aff(0);
1108     isl::ast_expr Res = Build.expr_from(OffsetDimZero);
1109 
1110     for (unsigned int i = 1; i < Array->n_index; i++) {
1111       isl::pw_aff Bound_I = ArrayBound.get_pw_aff(i);
1112       isl::ast_expr Expr = Build.expr_from(Bound_I);
1113       Res = Res.mul(Expr);
1114     }
1115 
1116     Value *NumElements = ExprBuilder.create(Res.release());
1117     if (NumElements->getType() != ArraySize->getType())
1118       NumElements = Builder.CreateSExt(NumElements, ArraySize->getType());
1119     ArraySize = Builder.CreateMul(ArraySize, NumElements);
1120   }
1121   return ArraySize;
1122 }
1123 
1124 Value *GPUNodeBuilder::getArrayOffset(gpu_array_info *Array) {
1125   if (gpu_array_is_scalar(Array))
1126     return nullptr;
1127 
1128   isl::ast_build Build = isl::ast_build::from_context(S.getContext());
1129 
1130   isl::set Min = isl::manage(isl_set_copy(Array->extent)).lexmin();
1131 
1132   isl::set ZeroSet = isl::set::universe(Min.get_space());
1133 
1134   for (long i = 0, n = Min.dim(isl::dim::set); i < n; i++)
1135     ZeroSet = ZeroSet.fix_si(isl::dim::set, i, 0);
1136 
1137   if (Min.is_subset(ZeroSet)) {
1138     return nullptr;
1139   }
1140 
1141   isl::ast_expr Result = isl::ast_expr::from_val(isl::val(Min.get_ctx(), 0));
1142 
1143   for (long i = 0, n = Min.dim(isl::dim::set); i < n; i++) {
1144     if (i > 0) {
1145       isl::pw_aff Bound_I =
1146           isl::manage(isl_multi_pw_aff_get_pw_aff(Array->bound, i - 1));
1147       isl::ast_expr BExpr = Build.expr_from(Bound_I);
1148       Result = Result.mul(BExpr);
1149     }
1150     isl::pw_aff DimMin = Min.dim_min(i);
1151     isl::ast_expr MExpr = Build.expr_from(DimMin);
1152     Result = Result.add(MExpr);
1153   }
1154 
1155   return ExprBuilder.create(Result.release());
1156 }
1157 
1158 Value *GPUNodeBuilder::getManagedDeviceArray(gpu_array_info *Array,
1159                                              ScopArrayInfo *ArrayInfo) {
1160   assert(PollyManagedMemory && "Only used when you wish to get a host "
1161                                "pointer for sending data to the kernel, "
1162                                "with managed memory");
1163   std::map<ScopArrayInfo *, Value *>::iterator it;
1164   it = DeviceAllocations.find(ArrayInfo);
1165   assert(it != DeviceAllocations.end() &&
1166          "Device array expected to be available");
1167   return it->second;
1168 }
1169 
1170 void GPUNodeBuilder::createDataTransfer(__isl_take isl_ast_node *TransferStmt,
1171                                         enum DataDirection Direction) {
1172   assert(!PollyManagedMemory && "Managed memory needs no data transfers");
1173   isl_ast_expr *Expr = isl_ast_node_user_get_expr(TransferStmt);
1174   isl_ast_expr *Arg = isl_ast_expr_get_op_arg(Expr, 0);
1175   isl_id *Id = isl_ast_expr_get_id(Arg);
1176   auto Array = (gpu_array_info *)isl_id_get_user(Id);
1177   auto ScopArray = (ScopArrayInfo *)(Array->user);
1178 
1179   Value *Size = getArraySize(Array);
1180   Value *Offset = getArrayOffset(Array);
1181   Value *DevPtr = DeviceAllocations[ScopArray];
1182 
1183   Value *HostPtr;
1184 
1185   if (gpu_array_is_scalar(Array))
1186     HostPtr = BlockGen.getOrCreateAlloca(ScopArray);
1187   else
1188     HostPtr = ScopArray->getBasePtr();
1189   HostPtr = getLatestValue(HostPtr);
1190 
1191   if (Offset) {
1192     HostPtr = Builder.CreatePointerCast(
1193         HostPtr, ScopArray->getElementType()->getPointerTo());
1194     HostPtr = Builder.CreateGEP(HostPtr, Offset);
1195   }
1196 
1197   HostPtr = Builder.CreatePointerCast(HostPtr, Builder.getInt8PtrTy());
1198 
1199   if (Offset) {
1200     Size = Builder.CreateSub(
1201         Size, Builder.CreateMul(
1202                   Offset, Builder.getInt64(ScopArray->getElemSizeInBytes())));
1203   }
1204 
1205   if (Direction == HOST_TO_DEVICE)
1206     createCallCopyFromHostToDevice(HostPtr, DevPtr, Size);
1207   else
1208     createCallCopyFromDeviceToHost(DevPtr, HostPtr, Size);
1209 
1210   isl_id_free(Id);
1211   isl_ast_expr_free(Arg);
1212   isl_ast_expr_free(Expr);
1213   isl_ast_node_free(TransferStmt);
1214 }
1215 
1216 void GPUNodeBuilder::createUser(__isl_take isl_ast_node *UserStmt) {
1217   isl_ast_expr *Expr = isl_ast_node_user_get_expr(UserStmt);
1218   isl_ast_expr *StmtExpr = isl_ast_expr_get_op_arg(Expr, 0);
1219   isl_id *Id = isl_ast_expr_get_id(StmtExpr);
1220   isl_id_free(Id);
1221   isl_ast_expr_free(StmtExpr);
1222 
1223   const char *Str = isl_id_get_name(Id);
1224   if (!strcmp(Str, "kernel")) {
1225     createKernel(UserStmt);
1226     if (PollyManagedMemory)
1227       createCallSynchronizeDevice();
1228     isl_ast_expr_free(Expr);
1229     return;
1230   }
1231   if (!strcmp(Str, "init_device")) {
1232     initializeAfterRTH();
1233     isl_ast_node_free(UserStmt);
1234     isl_ast_expr_free(Expr);
1235     return;
1236   }
1237   if (!strcmp(Str, "clear_device")) {
1238     finalize();
1239     isl_ast_node_free(UserStmt);
1240     isl_ast_expr_free(Expr);
1241     return;
1242   }
1243   if (isPrefix(Str, "to_device")) {
1244     if (!PollyManagedMemory)
1245       createDataTransfer(UserStmt, HOST_TO_DEVICE);
1246     else
1247       isl_ast_node_free(UserStmt);
1248 
1249     isl_ast_expr_free(Expr);
1250     return;
1251   }
1252 
1253   if (isPrefix(Str, "from_device")) {
1254     if (!PollyManagedMemory) {
1255       createDataTransfer(UserStmt, DEVICE_TO_HOST);
1256     } else {
1257       isl_ast_node_free(UserStmt);
1258     }
1259     isl_ast_expr_free(Expr);
1260     return;
1261   }
1262 
1263   isl_id *Anno = isl_ast_node_get_annotation(UserStmt);
1264   struct ppcg_kernel_stmt *KernelStmt =
1265       (struct ppcg_kernel_stmt *)isl_id_get_user(Anno);
1266   isl_id_free(Anno);
1267 
1268   switch (KernelStmt->type) {
1269   case ppcg_kernel_domain:
1270     createScopStmt(Expr, KernelStmt);
1271     isl_ast_node_free(UserStmt);
1272     return;
1273   case ppcg_kernel_copy:
1274     createKernelCopy(KernelStmt);
1275     isl_ast_expr_free(Expr);
1276     isl_ast_node_free(UserStmt);
1277     return;
1278   case ppcg_kernel_sync:
1279     createKernelSync();
1280     isl_ast_expr_free(Expr);
1281     isl_ast_node_free(UserStmt);
1282     return;
1283   }
1284 
1285   isl_ast_expr_free(Expr);
1286   isl_ast_node_free(UserStmt);
1287   return;
1288 }
1289 void GPUNodeBuilder::createKernelCopy(ppcg_kernel_stmt *KernelStmt) {
1290   isl_ast_expr *LocalIndex = isl_ast_expr_copy(KernelStmt->u.c.local_index);
1291   LocalIndex = isl_ast_expr_address_of(LocalIndex);
1292   Value *LocalAddr = ExprBuilder.create(LocalIndex);
1293   isl_ast_expr *Index = isl_ast_expr_copy(KernelStmt->u.c.index);
1294   Index = isl_ast_expr_address_of(Index);
1295   Value *GlobalAddr = ExprBuilder.create(Index);
1296 
1297   if (KernelStmt->u.c.read) {
1298     LoadInst *Load = Builder.CreateLoad(GlobalAddr, "shared.read");
1299     Builder.CreateStore(Load, LocalAddr);
1300   } else {
1301     LoadInst *Load = Builder.CreateLoad(LocalAddr, "shared.write");
1302     Builder.CreateStore(Load, GlobalAddr);
1303   }
1304 }
1305 
1306 void GPUNodeBuilder::createScopStmt(isl_ast_expr *Expr,
1307                                     ppcg_kernel_stmt *KernelStmt) {
1308   auto Stmt = (ScopStmt *)KernelStmt->u.d.stmt->stmt;
1309   isl_id_to_ast_expr *Indexes = KernelStmt->u.d.ref2expr;
1310 
1311   LoopToScevMapT LTS;
1312   LTS.insert(OutsideLoopIterations.begin(), OutsideLoopIterations.end());
1313 
1314   createSubstitutions(Expr, Stmt, LTS);
1315 
1316   if (Stmt->isBlockStmt())
1317     BlockGen.copyStmt(*Stmt, LTS, Indexes);
1318   else
1319     RegionGen.copyStmt(*Stmt, LTS, Indexes);
1320 }
1321 
1322 void GPUNodeBuilder::createKernelSync() {
1323   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
1324   const char *SpirName = "__gen_ocl_barrier_global";
1325 
1326   Function *Sync;
1327 
1328   switch (Arch) {
1329   case GPUArch::SPIR64:
1330   case GPUArch::SPIR32:
1331     Sync = M->getFunction(SpirName);
1332 
1333     // If Sync is not available, declare it.
1334     if (!Sync) {
1335       GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage;
1336       std::vector<Type *> Args;
1337       FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false);
1338       Sync = Function::Create(Ty, Linkage, SpirName, M);
1339       Sync->setCallingConv(CallingConv::SPIR_FUNC);
1340     }
1341     break;
1342   case GPUArch::NVPTX64:
1343     Sync = Intrinsic::getDeclaration(M, Intrinsic::nvvm_barrier0);
1344     break;
1345   }
1346 
1347   Builder.CreateCall(Sync, {});
1348 }
1349 
1350 /// Collect llvm::Values referenced from @p Node
1351 ///
1352 /// This function only applies to isl_ast_nodes that are user_nodes referring
1353 /// to a ScopStmt. All other node types are ignore.
1354 ///
1355 /// @param Node The node to collect references for.
1356 /// @param User A user pointer used as storage for the data that is collected.
1357 ///
1358 /// @returns isl_bool_true if data could be collected successfully.
1359 isl_bool collectReferencesInGPUStmt(__isl_keep isl_ast_node *Node, void *User) {
1360   if (isl_ast_node_get_type(Node) != isl_ast_node_user)
1361     return isl_bool_true;
1362 
1363   isl_ast_expr *Expr = isl_ast_node_user_get_expr(Node);
1364   isl_ast_expr *StmtExpr = isl_ast_expr_get_op_arg(Expr, 0);
1365   isl_id *Id = isl_ast_expr_get_id(StmtExpr);
1366   const char *Str = isl_id_get_name(Id);
1367   isl_id_free(Id);
1368   isl_ast_expr_free(StmtExpr);
1369   isl_ast_expr_free(Expr);
1370 
1371   if (!isPrefix(Str, "Stmt"))
1372     return isl_bool_true;
1373 
1374   Id = isl_ast_node_get_annotation(Node);
1375   auto *KernelStmt = (ppcg_kernel_stmt *)isl_id_get_user(Id);
1376   auto Stmt = (ScopStmt *)KernelStmt->u.d.stmt->stmt;
1377   isl_id_free(Id);
1378 
1379   addReferencesFromStmt(Stmt, User, false /* CreateScalarRefs */);
1380 
1381   return isl_bool_true;
1382 }
1383 
1384 /// A list of functions that are available in NVIDIA's libdevice.
1385 const std::set<std::string> CUDALibDeviceFunctions = {
1386     "exp",      "expf",      "expl",      "cos", "cosf", "sqrt", "sqrtf",
1387     "copysign", "copysignf", "copysignl", "log", "logf", "powi", "powif"};
1388 
1389 // A map from intrinsics to their corresponding libdevice functions.
1390 const std::map<std::string, std::string> IntrinsicToLibdeviceFunc = {
1391     {"llvm.exp.f64", "exp"},
1392     {"llvm.exp.f32", "expf"},
1393     {"llvm.powi.f64", "powi"},
1394     {"llvm.powi.f32", "powif"}};
1395 
1396 /// Return the corresponding CUDA libdevice function name for @p F.
1397 /// Note that this function will try to convert instrinsics in the list
1398 /// IntrinsicToLibdeviceFunc into libdevice functions.
1399 /// This is because some intrinsics such as `exp`
1400 /// are not supported by the NVPTX backend.
1401 /// If this restriction of the backend is lifted, we should refactor our code
1402 /// so that we use intrinsics whenever possible.
1403 ///
1404 /// Return "" if we are not compiling for CUDA.
1405 std::string getCUDALibDeviceFuntion(Function *F) {
1406   const std::string FnName = [&] {
1407     auto It = IntrinsicToLibdeviceFunc.find(F->getName());
1408     if (It != IntrinsicToLibdeviceFunc.end())
1409       return It->second;
1410 
1411     return std::string(F->getName());
1412   }();
1413 
1414   if (CUDALibDeviceFunctions.count(FnName))
1415     return "__nv_" + FnName;
1416 
1417   return "";
1418 }
1419 
1420 /// Check if F is a function that we can code-generate in a GPU kernel.
1421 static bool isValidFunctionInKernel(llvm::Function *F, bool AllowLibDevice) {
1422   assert(F && "F is an invalid pointer");
1423   // We string compare against the name of the function to allow
1424   // all variants of the intrinsic "llvm.sqrt.*", "llvm.fabs", and
1425   // "llvm.copysign".
1426   const StringRef Name = F->getName();
1427 
1428   if (AllowLibDevice && getCUDALibDeviceFuntion(F).length() > 0)
1429     return true;
1430 
1431   return F->isIntrinsic() &&
1432          (Name.startswith("llvm.sqrt") || Name.startswith("llvm.fabs") ||
1433           Name.startswith("llvm.copysign"));
1434 }
1435 
1436 /// Do not take `Function` as a subtree value.
1437 ///
1438 /// We try to take the reference of all subtree values and pass them along
1439 /// to the kernel from the host. Taking an address of any function and
1440 /// trying to pass along is nonsensical. Only allow `Value`s that are not
1441 /// `Function`s.
1442 static bool isValidSubtreeValue(llvm::Value *V) { return !isa<Function>(V); }
1443 
1444 /// Return `Function`s from `RawSubtreeValues`.
1445 static SetVector<Function *>
1446 getFunctionsFromRawSubtreeValues(SetVector<Value *> RawSubtreeValues,
1447                                  bool AllowCUDALibDevice) {
1448   SetVector<Function *> SubtreeFunctions;
1449   for (Value *It : RawSubtreeValues) {
1450     Function *F = dyn_cast<Function>(It);
1451     if (F) {
1452       assert(isValidFunctionInKernel(F, AllowCUDALibDevice) &&
1453              "Code should have bailed out by "
1454              "this point if an invalid function "
1455              "were present in a kernel.");
1456       SubtreeFunctions.insert(F);
1457     }
1458   }
1459   return SubtreeFunctions;
1460 }
1461 
1462 std::tuple<SetVector<Value *>, SetVector<Function *>, SetVector<const Loop *>,
1463            isl::space>
1464 GPUNodeBuilder::getReferencesInKernel(ppcg_kernel *Kernel) {
1465   SetVector<Value *> SubtreeValues;
1466   SetVector<const SCEV *> SCEVs;
1467   SetVector<const Loop *> Loops;
1468   isl::space ParamSpace = isl::space(S.getIslCtx(), 0, 0).params();
1469   SubtreeReferences References = {
1470       LI,         SE, S, ValueMap, SubtreeValues, SCEVs, getBlockGenerator(),
1471       &ParamSpace};
1472 
1473   for (const auto &I : IDToValue)
1474     SubtreeValues.insert(I.second);
1475 
1476   // NOTE: this is populated in IslNodeBuilder::addParameters
1477   // See [Code generation of induction variables of loops outside Scops].
1478   for (const auto &I : OutsideLoopIterations)
1479     SubtreeValues.insert(cast<SCEVUnknown>(I.second)->getValue());
1480 
1481   isl_ast_node_foreach_descendant_top_down(
1482       Kernel->tree, collectReferencesInGPUStmt, &References);
1483 
1484   for (const SCEV *Expr : SCEVs) {
1485     findValues(Expr, SE, SubtreeValues);
1486     findLoops(Expr, Loops);
1487   }
1488 
1489   Loops.remove_if([this](const Loop *L) {
1490     return S.contains(L) || L->contains(S.getEntry());
1491   });
1492 
1493   for (auto &SAI : S.arrays())
1494     SubtreeValues.remove(SAI->getBasePtr());
1495 
1496   isl_space *Space = S.getParamSpace().release();
1497   for (long i = 0, n = isl_space_dim(Space, isl_dim_param); i < n; i++) {
1498     isl_id *Id = isl_space_get_dim_id(Space, isl_dim_param, i);
1499     assert(IDToValue.count(Id));
1500     Value *Val = IDToValue[Id];
1501     SubtreeValues.remove(Val);
1502     isl_id_free(Id);
1503   }
1504   isl_space_free(Space);
1505 
1506   for (long i = 0, n = isl_space_dim(Kernel->space, isl_dim_set); i < n; i++) {
1507     isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_set, i);
1508     assert(IDToValue.count(Id));
1509     Value *Val = IDToValue[Id];
1510     SubtreeValues.remove(Val);
1511     isl_id_free(Id);
1512   }
1513 
1514   // Note: { ValidSubtreeValues, ValidSubtreeFunctions } partitions
1515   // SubtreeValues. This is important, because we should not lose any
1516   // SubtreeValues in the process of constructing the
1517   // "ValidSubtree{Values, Functions} sets. Nor should the set
1518   // ValidSubtree{Values, Functions} have any common element.
1519   auto ValidSubtreeValuesIt =
1520       make_filter_range(SubtreeValues, isValidSubtreeValue);
1521   SetVector<Value *> ValidSubtreeValues(ValidSubtreeValuesIt.begin(),
1522                                         ValidSubtreeValuesIt.end());
1523 
1524   bool AllowCUDALibDevice = Arch == GPUArch::NVPTX64;
1525 
1526   SetVector<Function *> ValidSubtreeFunctions(
1527       getFunctionsFromRawSubtreeValues(SubtreeValues, AllowCUDALibDevice));
1528 
1529   // @see IslNodeBuilder::getReferencesInSubtree
1530   SetVector<Value *> ReplacedValues;
1531   for (Value *V : ValidSubtreeValues) {
1532     auto It = ValueMap.find(V);
1533     if (It == ValueMap.end())
1534       ReplacedValues.insert(V);
1535     else
1536       ReplacedValues.insert(It->second);
1537   }
1538   return std::make_tuple(ReplacedValues, ValidSubtreeFunctions, Loops,
1539                          ParamSpace);
1540 }
1541 
1542 void GPUNodeBuilder::clearDominators(Function *F) {
1543   DomTreeNode *N = DT.getNode(&F->getEntryBlock());
1544   std::vector<BasicBlock *> Nodes;
1545   for (po_iterator<DomTreeNode *> I = po_begin(N), E = po_end(N); I != E; ++I)
1546     Nodes.push_back(I->getBlock());
1547 
1548   for (BasicBlock *BB : Nodes)
1549     DT.eraseNode(BB);
1550 }
1551 
1552 void GPUNodeBuilder::clearScalarEvolution(Function *F) {
1553   for (BasicBlock &BB : *F) {
1554     Loop *L = LI.getLoopFor(&BB);
1555     if (L)
1556       SE.forgetLoop(L);
1557   }
1558 }
1559 
1560 void GPUNodeBuilder::clearLoops(Function *F) {
1561   for (BasicBlock &BB : *F) {
1562     Loop *L = LI.getLoopFor(&BB);
1563     if (L)
1564       SE.forgetLoop(L);
1565     LI.removeBlock(&BB);
1566   }
1567 }
1568 
1569 std::tuple<Value *, Value *> GPUNodeBuilder::getGridSizes(ppcg_kernel *Kernel) {
1570   std::vector<Value *> Sizes;
1571   isl::ast_build Context = isl::ast_build::from_context(S.getContext());
1572 
1573   isl::multi_pw_aff GridSizePwAffs =
1574       isl::manage(isl_multi_pw_aff_copy(Kernel->grid_size));
1575   for (long i = 0; i < Kernel->n_grid; i++) {
1576     isl::pw_aff Size = GridSizePwAffs.get_pw_aff(i);
1577     isl::ast_expr GridSize = Context.expr_from(Size);
1578     Value *Res = ExprBuilder.create(GridSize.release());
1579     Res = Builder.CreateTrunc(Res, Builder.getInt32Ty());
1580     Sizes.push_back(Res);
1581   }
1582 
1583   for (long i = Kernel->n_grid; i < 3; i++)
1584     Sizes.push_back(ConstantInt::get(Builder.getInt32Ty(), 1));
1585 
1586   return std::make_tuple(Sizes[0], Sizes[1]);
1587 }
1588 
1589 std::tuple<Value *, Value *, Value *>
1590 GPUNodeBuilder::getBlockSizes(ppcg_kernel *Kernel) {
1591   std::vector<Value *> Sizes;
1592 
1593   for (long i = 0; i < Kernel->n_block; i++) {
1594     Value *Res = ConstantInt::get(Builder.getInt32Ty(), Kernel->block_dim[i]);
1595     Sizes.push_back(Res);
1596   }
1597 
1598   for (long i = Kernel->n_block; i < 3; i++)
1599     Sizes.push_back(ConstantInt::get(Builder.getInt32Ty(), 1));
1600 
1601   return std::make_tuple(Sizes[0], Sizes[1], Sizes[2]);
1602 }
1603 
1604 void GPUNodeBuilder::insertStoreParameter(Instruction *Parameters,
1605                                           Instruction *Param, int Index) {
1606   Value *Slot = Builder.CreateGEP(
1607       Parameters, {Builder.getInt64(0), Builder.getInt64(Index)});
1608   Value *ParamTyped = Builder.CreatePointerCast(Param, Builder.getInt8PtrTy());
1609   Builder.CreateStore(ParamTyped, Slot);
1610 }
1611 
1612 Value *
1613 GPUNodeBuilder::createLaunchParameters(ppcg_kernel *Kernel, Function *F,
1614                                        SetVector<Value *> SubtreeValues) {
1615   const int NumArgs = F->arg_size();
1616   std::vector<int> ArgSizes(NumArgs);
1617 
1618   // If we are using the OpenCL Runtime, we need to add the kernel argument
1619   // sizes to the end of the launch-parameter list, so OpenCL can determine
1620   // how big the respective kernel arguments are.
1621   // Here we need to reserve adequate space for that.
1622   Type *ArrayTy;
1623   if (Runtime == GPURuntime::OpenCL)
1624     ArrayTy = ArrayType::get(Builder.getInt8PtrTy(), 2 * NumArgs);
1625   else
1626     ArrayTy = ArrayType::get(Builder.getInt8PtrTy(), NumArgs);
1627 
1628   BasicBlock *EntryBlock =
1629       &Builder.GetInsertBlock()->getParent()->getEntryBlock();
1630   auto AddressSpace = F->getParent()->getDataLayout().getAllocaAddrSpace();
1631   std::string Launch = "polly_launch_" + std::to_string(Kernel->id);
1632   Instruction *Parameters = new AllocaInst(
1633       ArrayTy, AddressSpace, Launch + "_params", EntryBlock->getTerminator());
1634 
1635   int Index = 0;
1636   for (long i = 0; i < Prog->n_array; i++) {
1637     if (!ppcg_kernel_requires_array_argument(Kernel, i))
1638       continue;
1639 
1640     isl_id *Id = isl_space_get_tuple_id(Prog->array[i].space, isl_dim_set);
1641     const ScopArrayInfo *SAI = ScopArrayInfo::getFromId(isl::manage(Id));
1642 
1643     if (Runtime == GPURuntime::OpenCL)
1644       ArgSizes[Index] = SAI->getElemSizeInBytes();
1645 
1646     Value *DevArray = nullptr;
1647     if (PollyManagedMemory) {
1648       DevArray = getManagedDeviceArray(&Prog->array[i],
1649                                        const_cast<ScopArrayInfo *>(SAI));
1650     } else {
1651       DevArray = DeviceAllocations[const_cast<ScopArrayInfo *>(SAI)];
1652       DevArray = createCallGetDevicePtr(DevArray);
1653     }
1654     assert(DevArray != nullptr && "Array to be offloaded to device not "
1655                                   "initialized");
1656     Value *Offset = getArrayOffset(&Prog->array[i]);
1657 
1658     if (Offset) {
1659       DevArray = Builder.CreatePointerCast(
1660           DevArray, SAI->getElementType()->getPointerTo());
1661       DevArray = Builder.CreateGEP(DevArray, Builder.CreateNeg(Offset));
1662       DevArray = Builder.CreatePointerCast(DevArray, Builder.getInt8PtrTy());
1663     }
1664     Value *Slot = Builder.CreateGEP(
1665         Parameters, {Builder.getInt64(0), Builder.getInt64(Index)});
1666 
1667     if (gpu_array_is_read_only_scalar(&Prog->array[i])) {
1668       Value *ValPtr = nullptr;
1669       if (PollyManagedMemory)
1670         ValPtr = DevArray;
1671       else
1672         ValPtr = BlockGen.getOrCreateAlloca(SAI);
1673 
1674       assert(ValPtr != nullptr && "ValPtr that should point to a valid object"
1675                                   " to be stored into Parameters");
1676       Value *ValPtrCast =
1677           Builder.CreatePointerCast(ValPtr, Builder.getInt8PtrTy());
1678       Builder.CreateStore(ValPtrCast, Slot);
1679     } else {
1680       Instruction *Param =
1681           new AllocaInst(Builder.getInt8PtrTy(), AddressSpace,
1682                          Launch + "_param_" + std::to_string(Index),
1683                          EntryBlock->getTerminator());
1684       Builder.CreateStore(DevArray, Param);
1685       Value *ParamTyped =
1686           Builder.CreatePointerCast(Param, Builder.getInt8PtrTy());
1687       Builder.CreateStore(ParamTyped, Slot);
1688     }
1689     Index++;
1690   }
1691 
1692   int NumHostIters = isl_space_dim(Kernel->space, isl_dim_set);
1693 
1694   for (long i = 0; i < NumHostIters; i++) {
1695     isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_set, i);
1696     Value *Val = IDToValue[Id];
1697     isl_id_free(Id);
1698 
1699     if (Runtime == GPURuntime::OpenCL)
1700       ArgSizes[Index] = computeSizeInBytes(Val->getType());
1701 
1702     Instruction *Param =
1703         new AllocaInst(Val->getType(), AddressSpace,
1704                        Launch + "_param_" + std::to_string(Index),
1705                        EntryBlock->getTerminator());
1706     Builder.CreateStore(Val, Param);
1707     insertStoreParameter(Parameters, Param, Index);
1708     Index++;
1709   }
1710 
1711   int NumVars = isl_space_dim(Kernel->space, isl_dim_param);
1712 
1713   for (long i = 0; i < NumVars; i++) {
1714     isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_param, i);
1715     Value *Val = IDToValue[Id];
1716     if (ValueMap.count(Val))
1717       Val = ValueMap[Val];
1718     isl_id_free(Id);
1719 
1720     if (Runtime == GPURuntime::OpenCL)
1721       ArgSizes[Index] = computeSizeInBytes(Val->getType());
1722 
1723     Instruction *Param =
1724         new AllocaInst(Val->getType(), AddressSpace,
1725                        Launch + "_param_" + std::to_string(Index),
1726                        EntryBlock->getTerminator());
1727     Builder.CreateStore(Val, Param);
1728     insertStoreParameter(Parameters, Param, Index);
1729     Index++;
1730   }
1731 
1732   for (auto Val : SubtreeValues) {
1733     if (Runtime == GPURuntime::OpenCL)
1734       ArgSizes[Index] = computeSizeInBytes(Val->getType());
1735 
1736     Instruction *Param =
1737         new AllocaInst(Val->getType(), AddressSpace,
1738                        Launch + "_param_" + std::to_string(Index),
1739                        EntryBlock->getTerminator());
1740     Builder.CreateStore(Val, Param);
1741     insertStoreParameter(Parameters, Param, Index);
1742     Index++;
1743   }
1744 
1745   if (Runtime == GPURuntime::OpenCL) {
1746     for (int i = 0; i < NumArgs; i++) {
1747       Value *Val = ConstantInt::get(Builder.getInt32Ty(), ArgSizes[i]);
1748       Instruction *Param =
1749           new AllocaInst(Builder.getInt32Ty(), AddressSpace,
1750                          Launch + "_param_size_" + std::to_string(i),
1751                          EntryBlock->getTerminator());
1752       Builder.CreateStore(Val, Param);
1753       insertStoreParameter(Parameters, Param, Index);
1754       Index++;
1755     }
1756   }
1757 
1758   auto Location = EntryBlock->getTerminator();
1759   return new BitCastInst(Parameters, Builder.getInt8PtrTy(),
1760                          Launch + "_params_i8ptr", Location);
1761 }
1762 
1763 void GPUNodeBuilder::setupKernelSubtreeFunctions(
1764     SetVector<Function *> SubtreeFunctions) {
1765   for (auto Fn : SubtreeFunctions) {
1766     const std::string ClonedFnName = Fn->getName();
1767     Function *Clone = GPUModule->getFunction(ClonedFnName);
1768     if (!Clone)
1769       Clone =
1770           Function::Create(Fn->getFunctionType(), GlobalValue::ExternalLinkage,
1771                            ClonedFnName, GPUModule.get());
1772     assert(Clone && "Expected cloned function to be initialized.");
1773     assert(ValueMap.find(Fn) == ValueMap.end() &&
1774            "Fn already present in ValueMap");
1775     ValueMap[Fn] = Clone;
1776   }
1777 }
1778 void GPUNodeBuilder::createKernel(__isl_take isl_ast_node *KernelStmt) {
1779   isl_id *Id = isl_ast_node_get_annotation(KernelStmt);
1780   ppcg_kernel *Kernel = (ppcg_kernel *)isl_id_get_user(Id);
1781   isl_id_free(Id);
1782   isl_ast_node_free(KernelStmt);
1783 
1784   if (Kernel->n_grid > 1)
1785     DeepestParallel =
1786         std::max(DeepestParallel, isl_space_dim(Kernel->space, isl_dim_set));
1787   else
1788     DeepestSequential =
1789         std::max(DeepestSequential, isl_space_dim(Kernel->space, isl_dim_set));
1790 
1791   Value *BlockDimX, *BlockDimY, *BlockDimZ;
1792   std::tie(BlockDimX, BlockDimY, BlockDimZ) = getBlockSizes(Kernel);
1793 
1794   SetVector<Value *> SubtreeValues;
1795   SetVector<Function *> SubtreeFunctions;
1796   SetVector<const Loop *> Loops;
1797   isl::space ParamSpace;
1798   std::tie(SubtreeValues, SubtreeFunctions, Loops, ParamSpace) =
1799       getReferencesInKernel(Kernel);
1800 
1801   // Add parameters that appear only in the access function to the kernel
1802   // space. This is important to make sure that all isl_ids are passed as
1803   // parameters to the kernel, even though we may not have all parameters
1804   // in the context to improve compile time.
1805   Kernel->space = isl_space_align_params(Kernel->space, ParamSpace.release());
1806 
1807   assert(Kernel->tree && "Device AST of kernel node is empty");
1808 
1809   Instruction &HostInsertPoint = *Builder.GetInsertPoint();
1810   IslExprBuilder::IDToValueTy HostIDs = IDToValue;
1811   ValueMapT HostValueMap = ValueMap;
1812   BlockGenerator::AllocaMapTy HostScalarMap = ScalarMap;
1813   ScalarMap.clear();
1814 
1815   // Create for all loops we depend on values that contain the current loop
1816   // iteration. These values are necessary to generate code for SCEVs that
1817   // depend on such loops. As a result we need to pass them to the subfunction.
1818   for (const Loop *L : Loops) {
1819     const SCEV *OuterLIV = SE.getAddRecExpr(SE.getUnknown(Builder.getInt64(0)),
1820                                             SE.getUnknown(Builder.getInt64(1)),
1821                                             L, SCEV::FlagAnyWrap);
1822     Value *V = generateSCEV(OuterLIV);
1823     OutsideLoopIterations[L] = SE.getUnknown(V);
1824     SubtreeValues.insert(V);
1825   }
1826 
1827   createKernelFunction(Kernel, SubtreeValues, SubtreeFunctions);
1828   setupKernelSubtreeFunctions(SubtreeFunctions);
1829 
1830   create(isl_ast_node_copy(Kernel->tree));
1831 
1832   finalizeKernelArguments(Kernel);
1833   Function *F = Builder.GetInsertBlock()->getParent();
1834   if (Arch == GPUArch::NVPTX64)
1835     addCUDAAnnotations(F->getParent(), BlockDimX, BlockDimY, BlockDimZ);
1836   clearDominators(F);
1837   clearScalarEvolution(F);
1838   clearLoops(F);
1839 
1840   IDToValue = HostIDs;
1841 
1842   ValueMap = std::move(HostValueMap);
1843   ScalarMap = std::move(HostScalarMap);
1844   EscapeMap.clear();
1845   IDToSAI.clear();
1846   Annotator.resetAlternativeAliasBases();
1847   for (auto &BasePtr : LocalArrays)
1848     S.invalidateScopArrayInfo(BasePtr, MemoryKind::Array);
1849   LocalArrays.clear();
1850 
1851   std::string ASMString = finalizeKernelFunction();
1852   Builder.SetInsertPoint(&HostInsertPoint);
1853   Value *Parameters = createLaunchParameters(Kernel, F, SubtreeValues);
1854 
1855   std::string Name = getKernelFuncName(Kernel->id);
1856   Value *KernelString = Builder.CreateGlobalStringPtr(ASMString, Name);
1857   Value *NameString = Builder.CreateGlobalStringPtr(Name, Name + "_name");
1858   Value *GPUKernel = createCallGetKernel(KernelString, NameString);
1859 
1860   Value *GridDimX, *GridDimY;
1861   std::tie(GridDimX, GridDimY) = getGridSizes(Kernel);
1862 
1863   createCallLaunchKernel(GPUKernel, GridDimX, GridDimY, BlockDimX, BlockDimY,
1864                          BlockDimZ, Parameters);
1865   createCallFreeKernel(GPUKernel);
1866 
1867   for (auto Id : KernelIds)
1868     isl_id_free(Id);
1869 
1870   KernelIds.clear();
1871 }
1872 
1873 /// Compute the DataLayout string for the NVPTX backend.
1874 ///
1875 /// @param is64Bit Are we looking for a 64 bit architecture?
1876 static std::string computeNVPTXDataLayout(bool is64Bit) {
1877   std::string Ret = "";
1878 
1879   if (!is64Bit) {
1880     Ret += "e-p:32:32:32-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:"
1881            "64-i128:128:128-f32:32:32-f64:64:64-v16:16:16-v32:32:32-v64:64:"
1882            "64-v128:128:128-n16:32:64";
1883   } else {
1884     Ret += "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:"
1885            "64-i128:128:128-f32:32:32-f64:64:64-v16:16:16-v32:32:32-v64:64:"
1886            "64-v128:128:128-n16:32:64";
1887   }
1888 
1889   return Ret;
1890 }
1891 
1892 /// Compute the DataLayout string for a SPIR kernel.
1893 ///
1894 /// @param is64Bit Are we looking for a 64 bit architecture?
1895 static std::string computeSPIRDataLayout(bool is64Bit) {
1896   std::string Ret = "";
1897 
1898   if (!is64Bit) {
1899     Ret += "e-p:32:32:32-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:"
1900            "64-i128:128:128-f32:32:32-f64:64:64-v16:16:16-v24:32:32-v32:32:"
1901            "32-v48:64:64-v64:64:64-v96:128:128-v128:128:128-v192:"
1902            "256:256-v256:256:256-v512:512:512-v1024:1024:1024";
1903   } else {
1904     Ret += "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:"
1905            "64-i128:128:128-f32:32:32-f64:64:64-v16:16:16-v24:32:32-v32:32:"
1906            "32-v48:64:64-v64:64:64-v96:128:128-v128:128:128-v192:"
1907            "256:256-v256:256:256-v512:512:512-v1024:1024:1024";
1908   }
1909 
1910   return Ret;
1911 }
1912 
1913 Function *
1914 GPUNodeBuilder::createKernelFunctionDecl(ppcg_kernel *Kernel,
1915                                          SetVector<Value *> &SubtreeValues) {
1916   std::vector<Type *> Args;
1917   std::string Identifier = getKernelFuncName(Kernel->id);
1918 
1919   std::vector<Metadata *> MemoryType;
1920 
1921   for (long i = 0; i < Prog->n_array; i++) {
1922     if (!ppcg_kernel_requires_array_argument(Kernel, i))
1923       continue;
1924 
1925     if (gpu_array_is_read_only_scalar(&Prog->array[i])) {
1926       isl_id *Id = isl_space_get_tuple_id(Prog->array[i].space, isl_dim_set);
1927       const ScopArrayInfo *SAI = ScopArrayInfo::getFromId(isl::manage(Id));
1928       Args.push_back(SAI->getElementType());
1929       MemoryType.push_back(
1930           ConstantAsMetadata::get(ConstantInt::get(Builder.getInt32Ty(), 0)));
1931     } else {
1932       static const int UseGlobalMemory = 1;
1933       Args.push_back(Builder.getInt8PtrTy(UseGlobalMemory));
1934       MemoryType.push_back(
1935           ConstantAsMetadata::get(ConstantInt::get(Builder.getInt32Ty(), 1)));
1936     }
1937   }
1938 
1939   int NumHostIters = isl_space_dim(Kernel->space, isl_dim_set);
1940 
1941   for (long i = 0; i < NumHostIters; i++) {
1942     Args.push_back(Builder.getInt64Ty());
1943     MemoryType.push_back(
1944         ConstantAsMetadata::get(ConstantInt::get(Builder.getInt32Ty(), 0)));
1945   }
1946 
1947   int NumVars = isl_space_dim(Kernel->space, isl_dim_param);
1948 
1949   for (long i = 0; i < NumVars; i++) {
1950     isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_param, i);
1951     Value *Val = IDToValue[Id];
1952     isl_id_free(Id);
1953     Args.push_back(Val->getType());
1954     MemoryType.push_back(
1955         ConstantAsMetadata::get(ConstantInt::get(Builder.getInt32Ty(), 0)));
1956   }
1957 
1958   for (auto *V : SubtreeValues) {
1959     Args.push_back(V->getType());
1960     MemoryType.push_back(
1961         ConstantAsMetadata::get(ConstantInt::get(Builder.getInt32Ty(), 0)));
1962   }
1963 
1964   auto *FT = FunctionType::get(Builder.getVoidTy(), Args, false);
1965   auto *FN = Function::Create(FT, Function::ExternalLinkage, Identifier,
1966                               GPUModule.get());
1967 
1968   std::vector<Metadata *> EmptyStrings;
1969 
1970   for (unsigned int i = 0; i < MemoryType.size(); i++) {
1971     EmptyStrings.push_back(MDString::get(FN->getContext(), ""));
1972   }
1973 
1974   if (Arch == GPUArch::SPIR32 || Arch == GPUArch::SPIR64) {
1975     FN->setMetadata("kernel_arg_addr_space",
1976                     MDNode::get(FN->getContext(), MemoryType));
1977     FN->setMetadata("kernel_arg_name",
1978                     MDNode::get(FN->getContext(), EmptyStrings));
1979     FN->setMetadata("kernel_arg_access_qual",
1980                     MDNode::get(FN->getContext(), EmptyStrings));
1981     FN->setMetadata("kernel_arg_type",
1982                     MDNode::get(FN->getContext(), EmptyStrings));
1983     FN->setMetadata("kernel_arg_type_qual",
1984                     MDNode::get(FN->getContext(), EmptyStrings));
1985     FN->setMetadata("kernel_arg_base_type",
1986                     MDNode::get(FN->getContext(), EmptyStrings));
1987   }
1988 
1989   switch (Arch) {
1990   case GPUArch::NVPTX64:
1991     FN->setCallingConv(CallingConv::PTX_Kernel);
1992     break;
1993   case GPUArch::SPIR32:
1994   case GPUArch::SPIR64:
1995     FN->setCallingConv(CallingConv::SPIR_KERNEL);
1996     break;
1997   }
1998 
1999   auto Arg = FN->arg_begin();
2000   for (long i = 0; i < Kernel->n_array; i++) {
2001     if (!ppcg_kernel_requires_array_argument(Kernel, i))
2002       continue;
2003 
2004     Arg->setName(Kernel->array[i].array->name);
2005 
2006     isl_id *Id = isl_space_get_tuple_id(Prog->array[i].space, isl_dim_set);
2007     const ScopArrayInfo *SAI =
2008         ScopArrayInfo::getFromId(isl::manage(isl_id_copy(Id)));
2009     Type *EleTy = SAI->getElementType();
2010     Value *Val = &*Arg;
2011     SmallVector<const SCEV *, 4> Sizes;
2012     isl_ast_build *Build =
2013         isl_ast_build_from_context(isl_set_copy(Prog->context));
2014     Sizes.push_back(nullptr);
2015     for (long j = 1, n = Kernel->array[i].array->n_index; j < n; j++) {
2016       isl_ast_expr *DimSize = isl_ast_build_expr_from_pw_aff(
2017           Build, isl_multi_pw_aff_get_pw_aff(Kernel->array[i].array->bound, j));
2018       auto V = ExprBuilder.create(DimSize);
2019       Sizes.push_back(SE.getSCEV(V));
2020     }
2021     const ScopArrayInfo *SAIRep =
2022         S.getOrCreateScopArrayInfo(Val, EleTy, Sizes, MemoryKind::Array);
2023     LocalArrays.push_back(Val);
2024 
2025     isl_ast_build_free(Build);
2026     KernelIds.push_back(Id);
2027     IDToSAI[Id] = SAIRep;
2028     Arg++;
2029   }
2030 
2031   for (long i = 0; i < NumHostIters; i++) {
2032     isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_set, i);
2033     Arg->setName(isl_id_get_name(Id));
2034     IDToValue[Id] = &*Arg;
2035     KernelIDs.insert(std::unique_ptr<isl_id, IslIdDeleter>(Id));
2036     Arg++;
2037   }
2038 
2039   for (long i = 0; i < NumVars; i++) {
2040     isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_param, i);
2041     Arg->setName(isl_id_get_name(Id));
2042     Value *Val = IDToValue[Id];
2043     ValueMap[Val] = &*Arg;
2044     IDToValue[Id] = &*Arg;
2045     KernelIDs.insert(std::unique_ptr<isl_id, IslIdDeleter>(Id));
2046     Arg++;
2047   }
2048 
2049   for (auto *V : SubtreeValues) {
2050     Arg->setName(V->getName());
2051     ValueMap[V] = &*Arg;
2052     Arg++;
2053   }
2054 
2055   return FN;
2056 }
2057 
2058 void GPUNodeBuilder::insertKernelIntrinsics(ppcg_kernel *Kernel) {
2059   Intrinsic::ID IntrinsicsBID[2];
2060   Intrinsic::ID IntrinsicsTID[3];
2061 
2062   switch (Arch) {
2063   case GPUArch::SPIR64:
2064   case GPUArch::SPIR32:
2065     llvm_unreachable("Cannot generate NVVM intrinsics for SPIR");
2066   case GPUArch::NVPTX64:
2067     IntrinsicsBID[0] = Intrinsic::nvvm_read_ptx_sreg_ctaid_x;
2068     IntrinsicsBID[1] = Intrinsic::nvvm_read_ptx_sreg_ctaid_y;
2069 
2070     IntrinsicsTID[0] = Intrinsic::nvvm_read_ptx_sreg_tid_x;
2071     IntrinsicsTID[1] = Intrinsic::nvvm_read_ptx_sreg_tid_y;
2072     IntrinsicsTID[2] = Intrinsic::nvvm_read_ptx_sreg_tid_z;
2073     break;
2074   }
2075 
2076   auto addId = [this](__isl_take isl_id *Id, Intrinsic::ID Intr) mutable {
2077     std::string Name = isl_id_get_name(Id);
2078     Module *M = Builder.GetInsertBlock()->getParent()->getParent();
2079     Function *IntrinsicFn = Intrinsic::getDeclaration(M, Intr);
2080     Value *Val = Builder.CreateCall(IntrinsicFn, {});
2081     Val = Builder.CreateIntCast(Val, Builder.getInt64Ty(), false, Name);
2082     IDToValue[Id] = Val;
2083     KernelIDs.insert(std::unique_ptr<isl_id, IslIdDeleter>(Id));
2084   };
2085 
2086   for (int i = 0; i < Kernel->n_grid; ++i) {
2087     isl_id *Id = isl_id_list_get_id(Kernel->block_ids, i);
2088     addId(Id, IntrinsicsBID[i]);
2089   }
2090 
2091   for (int i = 0; i < Kernel->n_block; ++i) {
2092     isl_id *Id = isl_id_list_get_id(Kernel->thread_ids, i);
2093     addId(Id, IntrinsicsTID[i]);
2094   }
2095 }
2096 
2097 void GPUNodeBuilder::insertKernelCallsSPIR(ppcg_kernel *Kernel) {
2098   const char *GroupName[3] = {"__gen_ocl_get_group_id0",
2099                               "__gen_ocl_get_group_id1",
2100                               "__gen_ocl_get_group_id2"};
2101 
2102   const char *LocalName[3] = {"__gen_ocl_get_local_id0",
2103                               "__gen_ocl_get_local_id1",
2104                               "__gen_ocl_get_local_id2"};
2105 
2106   auto createFunc = [this](const char *Name, __isl_take isl_id *Id) mutable {
2107     Module *M = Builder.GetInsertBlock()->getParent()->getParent();
2108     Function *FN = M->getFunction(Name);
2109 
2110     // If FN is not available, declare it.
2111     if (!FN) {
2112       GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage;
2113       std::vector<Type *> Args;
2114       FunctionType *Ty = FunctionType::get(Builder.getInt32Ty(), Args, false);
2115       FN = Function::Create(Ty, Linkage, Name, M);
2116       FN->setCallingConv(CallingConv::SPIR_FUNC);
2117     }
2118 
2119     Value *Val = Builder.CreateCall(FN, {});
2120     Val = Builder.CreateIntCast(Val, Builder.getInt64Ty(), false, Name);
2121     IDToValue[Id] = Val;
2122     KernelIDs.insert(std::unique_ptr<isl_id, IslIdDeleter>(Id));
2123   };
2124 
2125   for (int i = 0; i < Kernel->n_grid; ++i)
2126     createFunc(GroupName[i], isl_id_list_get_id(Kernel->block_ids, i));
2127 
2128   for (int i = 0; i < Kernel->n_block; ++i)
2129     createFunc(LocalName[i], isl_id_list_get_id(Kernel->thread_ids, i));
2130 }
2131 
2132 void GPUNodeBuilder::prepareKernelArguments(ppcg_kernel *Kernel, Function *FN) {
2133   auto Arg = FN->arg_begin();
2134   for (long i = 0; i < Kernel->n_array; i++) {
2135     if (!ppcg_kernel_requires_array_argument(Kernel, i))
2136       continue;
2137 
2138     isl_id *Id = isl_space_get_tuple_id(Prog->array[i].space, isl_dim_set);
2139     const ScopArrayInfo *SAI =
2140         ScopArrayInfo::getFromId(isl::manage(isl_id_copy(Id)));
2141     isl_id_free(Id);
2142 
2143     if (SAI->getNumberOfDimensions() > 0) {
2144       Arg++;
2145       continue;
2146     }
2147 
2148     Value *Val = &*Arg;
2149 
2150     if (!gpu_array_is_read_only_scalar(&Prog->array[i])) {
2151       Type *TypePtr = SAI->getElementType()->getPointerTo();
2152       Value *TypedArgPtr = Builder.CreatePointerCast(Val, TypePtr);
2153       Val = Builder.CreateLoad(TypedArgPtr);
2154     }
2155 
2156     Value *Alloca = BlockGen.getOrCreateAlloca(SAI);
2157     Builder.CreateStore(Val, Alloca);
2158 
2159     Arg++;
2160   }
2161 }
2162 
2163 void GPUNodeBuilder::finalizeKernelArguments(ppcg_kernel *Kernel) {
2164   auto *FN = Builder.GetInsertBlock()->getParent();
2165   auto Arg = FN->arg_begin();
2166 
2167   bool StoredScalar = false;
2168   for (long i = 0; i < Kernel->n_array; i++) {
2169     if (!ppcg_kernel_requires_array_argument(Kernel, i))
2170       continue;
2171 
2172     isl_id *Id = isl_space_get_tuple_id(Prog->array[i].space, isl_dim_set);
2173     const ScopArrayInfo *SAI =
2174         ScopArrayInfo::getFromId(isl::manage(isl_id_copy(Id)));
2175     isl_id_free(Id);
2176 
2177     if (SAI->getNumberOfDimensions() > 0) {
2178       Arg++;
2179       continue;
2180     }
2181 
2182     if (gpu_array_is_read_only_scalar(&Prog->array[i])) {
2183       Arg++;
2184       continue;
2185     }
2186 
2187     Value *Alloca = BlockGen.getOrCreateAlloca(SAI);
2188     Value *ArgPtr = &*Arg;
2189     Type *TypePtr = SAI->getElementType()->getPointerTo();
2190     Value *TypedArgPtr = Builder.CreatePointerCast(ArgPtr, TypePtr);
2191     Value *Val = Builder.CreateLoad(Alloca);
2192     Builder.CreateStore(Val, TypedArgPtr);
2193     StoredScalar = true;
2194 
2195     Arg++;
2196   }
2197 
2198   if (StoredScalar) {
2199     /// In case more than one thread contains scalar stores, the generated
2200     /// code might be incorrect, if we only store at the end of the kernel.
2201     /// To support this case we need to store these scalars back at each
2202     /// memory store or at least before each kernel barrier.
2203     if (Kernel->n_block != 0 || Kernel->n_grid != 0) {
2204       BuildSuccessful = 0;
2205       DEBUG(
2206           dbgs() << getUniqueScopName(&S)
2207                  << " has a store to a scalar value that"
2208                     " would be undefined to run in parallel. Bailing out.\n";);
2209     }
2210   }
2211 }
2212 
2213 void GPUNodeBuilder::createKernelVariables(ppcg_kernel *Kernel, Function *FN) {
2214   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
2215 
2216   for (int i = 0; i < Kernel->n_var; ++i) {
2217     struct ppcg_kernel_var &Var = Kernel->var[i];
2218     isl_id *Id = isl_space_get_tuple_id(Var.array->space, isl_dim_set);
2219     Type *EleTy = ScopArrayInfo::getFromId(isl::manage(Id))->getElementType();
2220 
2221     Type *ArrayTy = EleTy;
2222     SmallVector<const SCEV *, 4> Sizes;
2223 
2224     Sizes.push_back(nullptr);
2225     for (unsigned int j = 1; j < Var.array->n_index; ++j) {
2226       isl_val *Val = isl_vec_get_element_val(Var.size, j);
2227       long Bound = isl_val_get_num_si(Val);
2228       isl_val_free(Val);
2229       Sizes.push_back(S.getSE()->getConstant(Builder.getInt64Ty(), Bound));
2230     }
2231 
2232     for (int j = Var.array->n_index - 1; j >= 0; --j) {
2233       isl_val *Val = isl_vec_get_element_val(Var.size, j);
2234       long Bound = isl_val_get_num_si(Val);
2235       isl_val_free(Val);
2236       ArrayTy = ArrayType::get(ArrayTy, Bound);
2237     }
2238 
2239     const ScopArrayInfo *SAI;
2240     Value *Allocation;
2241     if (Var.type == ppcg_access_shared) {
2242       auto GlobalVar = new GlobalVariable(
2243           *M, ArrayTy, false, GlobalValue::InternalLinkage, 0, Var.name,
2244           nullptr, GlobalValue::ThreadLocalMode::NotThreadLocal, 3);
2245       GlobalVar->setAlignment(EleTy->getPrimitiveSizeInBits() / 8);
2246       GlobalVar->setInitializer(Constant::getNullValue(ArrayTy));
2247 
2248       Allocation = GlobalVar;
2249     } else if (Var.type == ppcg_access_private) {
2250       Allocation = Builder.CreateAlloca(ArrayTy, 0, "private_array");
2251     } else {
2252       llvm_unreachable("unknown variable type");
2253     }
2254     SAI =
2255         S.getOrCreateScopArrayInfo(Allocation, EleTy, Sizes, MemoryKind::Array);
2256     Id = isl_id_alloc(S.getIslCtx(), Var.name, nullptr);
2257     IDToValue[Id] = Allocation;
2258     LocalArrays.push_back(Allocation);
2259     KernelIds.push_back(Id);
2260     IDToSAI[Id] = SAI;
2261   }
2262 }
2263 
2264 void GPUNodeBuilder::createKernelFunction(
2265     ppcg_kernel *Kernel, SetVector<Value *> &SubtreeValues,
2266     SetVector<Function *> &SubtreeFunctions) {
2267   std::string Identifier = getKernelFuncName(Kernel->id);
2268   GPUModule.reset(new Module(Identifier, Builder.getContext()));
2269 
2270   switch (Arch) {
2271   case GPUArch::NVPTX64:
2272     if (Runtime == GPURuntime::CUDA)
2273       GPUModule->setTargetTriple(Triple::normalize("nvptx64-nvidia-cuda"));
2274     else if (Runtime == GPURuntime::OpenCL)
2275       GPUModule->setTargetTriple(Triple::normalize("nvptx64-nvidia-nvcl"));
2276     GPUModule->setDataLayout(computeNVPTXDataLayout(true /* is64Bit */));
2277     break;
2278   case GPUArch::SPIR32:
2279     GPUModule->setTargetTriple(Triple::normalize("spir-unknown-unknown"));
2280     GPUModule->setDataLayout(computeSPIRDataLayout(false /* is64Bit */));
2281     break;
2282   case GPUArch::SPIR64:
2283     GPUModule->setTargetTriple(Triple::normalize("spir64-unknown-unknown"));
2284     GPUModule->setDataLayout(computeSPIRDataLayout(true /* is64Bit */));
2285     break;
2286   }
2287 
2288   Function *FN = createKernelFunctionDecl(Kernel, SubtreeValues);
2289 
2290   BasicBlock *PrevBlock = Builder.GetInsertBlock();
2291   auto EntryBlock = BasicBlock::Create(Builder.getContext(), "entry", FN);
2292 
2293   DT.addNewBlock(EntryBlock, PrevBlock);
2294 
2295   Builder.SetInsertPoint(EntryBlock);
2296   Builder.CreateRetVoid();
2297   Builder.SetInsertPoint(EntryBlock, EntryBlock->begin());
2298 
2299   ScopDetection::markFunctionAsInvalid(FN);
2300 
2301   prepareKernelArguments(Kernel, FN);
2302   createKernelVariables(Kernel, FN);
2303 
2304   switch (Arch) {
2305   case GPUArch::NVPTX64:
2306     insertKernelIntrinsics(Kernel);
2307     break;
2308   case GPUArch::SPIR32:
2309   case GPUArch::SPIR64:
2310     insertKernelCallsSPIR(Kernel);
2311     break;
2312   }
2313 }
2314 
2315 std::string GPUNodeBuilder::createKernelASM() {
2316   llvm::Triple GPUTriple;
2317 
2318   switch (Arch) {
2319   case GPUArch::NVPTX64:
2320     switch (Runtime) {
2321     case GPURuntime::CUDA:
2322       GPUTriple = llvm::Triple(Triple::normalize("nvptx64-nvidia-cuda"));
2323       break;
2324     case GPURuntime::OpenCL:
2325       GPUTriple = llvm::Triple(Triple::normalize("nvptx64-nvidia-nvcl"));
2326       break;
2327     }
2328     break;
2329   case GPUArch::SPIR64:
2330   case GPUArch::SPIR32:
2331     std::string SPIRAssembly;
2332     raw_string_ostream IROstream(SPIRAssembly);
2333     IROstream << *GPUModule;
2334     IROstream.flush();
2335     return SPIRAssembly;
2336   }
2337 
2338   std::string ErrMsg;
2339   auto GPUTarget = TargetRegistry::lookupTarget(GPUTriple.getTriple(), ErrMsg);
2340 
2341   if (!GPUTarget) {
2342     errs() << ErrMsg << "\n";
2343     return "";
2344   }
2345 
2346   TargetOptions Options;
2347   Options.UnsafeFPMath = FastMath;
2348 
2349   std::string subtarget;
2350 
2351   switch (Arch) {
2352   case GPUArch::NVPTX64:
2353     subtarget = CudaVersion;
2354     break;
2355   case GPUArch::SPIR32:
2356   case GPUArch::SPIR64:
2357     llvm_unreachable("No subtarget for SPIR architecture");
2358   }
2359 
2360   std::unique_ptr<TargetMachine> TargetM(GPUTarget->createTargetMachine(
2361       GPUTriple.getTriple(), subtarget, "", Options, Optional<Reloc::Model>()));
2362 
2363   SmallString<0> ASMString;
2364   raw_svector_ostream ASMStream(ASMString);
2365   llvm::legacy::PassManager PM;
2366 
2367   PM.add(createTargetTransformInfoWrapperPass(TargetM->getTargetIRAnalysis()));
2368 
2369   if (TargetM->addPassesToEmitFile(
2370           PM, ASMStream, TargetMachine::CGFT_AssemblyFile, true /* verify */)) {
2371     errs() << "The target does not support generation of this file type!\n";
2372     return "";
2373   }
2374 
2375   PM.run(*GPUModule);
2376 
2377   return ASMStream.str();
2378 }
2379 
2380 bool GPUNodeBuilder::requiresCUDALibDevice() {
2381   bool RequiresLibDevice = false;
2382   for (Function &F : GPUModule->functions()) {
2383     if (!F.isDeclaration())
2384       continue;
2385 
2386     const std::string CUDALibDeviceFunc = getCUDALibDeviceFuntion(&F);
2387     if (CUDALibDeviceFunc.length() != 0) {
2388       // We need to handle the case where a module looks like this:
2389       // @expf(..)
2390       // @llvm.exp.f64(..)
2391       // Both of these functions would be renamed to `__nv_expf`.
2392       //
2393       // So, we must first check for the existence of the libdevice function.
2394       // If this exists, we replace our current function with it.
2395       //
2396       // If it does not exist, we rename the current function to the
2397       // libdevice functiono name.
2398       if (Function *Replacement = F.getParent()->getFunction(CUDALibDeviceFunc))
2399         F.replaceAllUsesWith(Replacement);
2400       else
2401         F.setName(CUDALibDeviceFunc);
2402       RequiresLibDevice = true;
2403     }
2404   }
2405 
2406   return RequiresLibDevice;
2407 }
2408 
2409 void GPUNodeBuilder::addCUDALibDevice() {
2410   if (Arch != GPUArch::NVPTX64)
2411     return;
2412 
2413   if (requiresCUDALibDevice()) {
2414     SMDiagnostic Error;
2415 
2416     errs() << CUDALibDevice << "\n";
2417     auto LibDeviceModule =
2418         parseIRFile(CUDALibDevice, Error, GPUModule->getContext());
2419 
2420     if (!LibDeviceModule) {
2421       BuildSuccessful = false;
2422       report_fatal_error("Could not find or load libdevice. Skipping GPU "
2423                          "kernel generation. Please set -polly-acc-libdevice "
2424                          "accordingly.\n");
2425       return;
2426     }
2427 
2428     Linker L(*GPUModule);
2429 
2430     // Set an nvptx64 target triple to avoid linker warnings. The original
2431     // triple of the libdevice files are nvptx-unknown-unknown.
2432     LibDeviceModule->setTargetTriple(Triple::normalize("nvptx64-nvidia-cuda"));
2433     L.linkInModule(std::move(LibDeviceModule), Linker::LinkOnlyNeeded);
2434   }
2435 }
2436 
2437 std::string GPUNodeBuilder::finalizeKernelFunction() {
2438 
2439   if (verifyModule(*GPUModule)) {
2440     DEBUG(dbgs() << "verifyModule failed on module:\n";
2441           GPUModule->print(dbgs(), nullptr); dbgs() << "\n";);
2442     DEBUG(dbgs() << "verifyModule Error:\n";
2443           verifyModule(*GPUModule, &dbgs()););
2444 
2445     if (FailOnVerifyModuleFailure)
2446       llvm_unreachable("VerifyModule failed.");
2447 
2448     BuildSuccessful = false;
2449     return "";
2450   }
2451 
2452   addCUDALibDevice();
2453 
2454   if (DumpKernelIR)
2455     outs() << *GPUModule << "\n";
2456 
2457   if (Arch != GPUArch::SPIR32 && Arch != GPUArch::SPIR64) {
2458     // Optimize module.
2459     llvm::legacy::PassManager OptPasses;
2460     PassManagerBuilder PassBuilder;
2461     PassBuilder.OptLevel = 3;
2462     PassBuilder.SizeLevel = 0;
2463     PassBuilder.populateModulePassManager(OptPasses);
2464     OptPasses.run(*GPUModule);
2465   }
2466 
2467   std::string Assembly = createKernelASM();
2468 
2469   if (DumpKernelASM)
2470     outs() << Assembly << "\n";
2471 
2472   GPUModule.release();
2473   KernelIDs.clear();
2474 
2475   return Assembly;
2476 }
2477 /// Construct an `isl_pw_aff_list` from a vector of `isl_pw_aff`
2478 /// @param PwAffs The list of piecewise affine functions to create an
2479 ///               `isl_pw_aff_list` from. We expect an rvalue ref because
2480 ///               all the isl_pw_aff are used up by this function.
2481 ///
2482 /// @returns  The `isl_pw_aff_list`.
2483 __isl_give isl_pw_aff_list *
2484 createPwAffList(isl_ctx *Context,
2485                 const std::vector<__isl_take isl_pw_aff *> &&PwAffs) {
2486   isl_pw_aff_list *List = isl_pw_aff_list_alloc(Context, PwAffs.size());
2487 
2488   for (unsigned i = 0; i < PwAffs.size(); i++) {
2489     List = isl_pw_aff_list_insert(List, i, PwAffs[i]);
2490   }
2491   return List;
2492 }
2493 
2494 /// Align all the `PwAffs` such that they have the same parameter dimensions.
2495 ///
2496 /// We loop over all `pw_aff` and align all of their spaces together to
2497 /// create a common space for all the `pw_aff`. This common space is the
2498 /// `AlignSpace`. We then align all the `pw_aff` to this space. We start
2499 /// with the given `SeedSpace`.
2500 /// @param PwAffs    The list of piecewise affine functions we want to align.
2501 ///                  This is an rvalue reference because the entire vector is
2502 ///                  used up by the end of the operation.
2503 /// @param SeedSpace The space to start the alignment process with.
2504 /// @returns         A std::pair, whose first element is the aligned space,
2505 ///                  whose second element is the vector of aligned piecewise
2506 ///                  affines.
2507 static std::pair<__isl_give isl_space *, std::vector<__isl_give isl_pw_aff *>>
2508 alignPwAffs(const std::vector<__isl_take isl_pw_aff *> &&PwAffs,
2509             __isl_take isl_space *SeedSpace) {
2510   assert(SeedSpace && "Invalid seed space given.");
2511 
2512   isl_space *AlignSpace = SeedSpace;
2513   for (isl_pw_aff *PwAff : PwAffs) {
2514     isl_space *PwAffSpace = isl_pw_aff_get_domain_space(PwAff);
2515     AlignSpace = isl_space_align_params(AlignSpace, PwAffSpace);
2516   }
2517   std::vector<isl_pw_aff *> AdjustedPwAffs;
2518 
2519   for (unsigned i = 0; i < PwAffs.size(); i++) {
2520     isl_pw_aff *Adjusted = PwAffs[i];
2521     assert(Adjusted && "Invalid pw_aff given.");
2522     Adjusted = isl_pw_aff_align_params(Adjusted, isl_space_copy(AlignSpace));
2523     AdjustedPwAffs.push_back(Adjusted);
2524   }
2525   return std::make_pair(AlignSpace, AdjustedPwAffs);
2526 }
2527 
2528 namespace {
2529 class PPCGCodeGeneration : public ScopPass {
2530 public:
2531   static char ID;
2532 
2533   GPURuntime Runtime = GPURuntime::CUDA;
2534 
2535   GPUArch Architecture = GPUArch::NVPTX64;
2536 
2537   /// The scop that is currently processed.
2538   Scop *S;
2539 
2540   LoopInfo *LI;
2541   DominatorTree *DT;
2542   ScalarEvolution *SE;
2543   const DataLayout *DL;
2544   RegionInfo *RI;
2545 
2546   PPCGCodeGeneration() : ScopPass(ID) {}
2547 
2548   /// Construct compilation options for PPCG.
2549   ///
2550   /// @returns The compilation options.
2551   ppcg_options *createPPCGOptions() {
2552     auto DebugOptions =
2553         (ppcg_debug_options *)malloc(sizeof(ppcg_debug_options));
2554     auto Options = (ppcg_options *)malloc(sizeof(ppcg_options));
2555 
2556     DebugOptions->dump_schedule_constraints = false;
2557     DebugOptions->dump_schedule = false;
2558     DebugOptions->dump_final_schedule = false;
2559     DebugOptions->dump_sizes = false;
2560     DebugOptions->verbose = false;
2561 
2562     Options->debug = DebugOptions;
2563 
2564     Options->group_chains = false;
2565     Options->reschedule = true;
2566     Options->scale_tile_loops = false;
2567     Options->wrap = false;
2568 
2569     Options->non_negative_parameters = false;
2570     Options->ctx = nullptr;
2571     Options->sizes = nullptr;
2572 
2573     Options->tile = true;
2574     Options->tile_size = 32;
2575 
2576     Options->isolate_full_tiles = false;
2577 
2578     Options->use_private_memory = PrivateMemory;
2579     Options->use_shared_memory = SharedMemory;
2580     Options->max_shared_memory = 48 * 1024;
2581 
2582     Options->target = PPCG_TARGET_CUDA;
2583     Options->openmp = false;
2584     Options->linearize_device_arrays = true;
2585     Options->allow_gnu_extensions = false;
2586 
2587     Options->unroll_copy_shared = false;
2588     Options->unroll_gpu_tile = false;
2589     Options->live_range_reordering = true;
2590 
2591     Options->live_range_reordering = true;
2592     Options->hybrid = false;
2593     Options->opencl_compiler_options = nullptr;
2594     Options->opencl_use_gpu = false;
2595     Options->opencl_n_include_file = 0;
2596     Options->opencl_include_files = nullptr;
2597     Options->opencl_print_kernel_types = false;
2598     Options->opencl_embed_kernel_code = false;
2599 
2600     Options->save_schedule_file = nullptr;
2601     Options->load_schedule_file = nullptr;
2602 
2603     return Options;
2604   }
2605 
2606   /// Get a tagged access relation containing all accesses of type @p AccessTy.
2607   ///
2608   /// Instead of a normal access of the form:
2609   ///
2610   ///   Stmt[i,j,k] -> Array[f_0(i,j,k), f_1(i,j,k)]
2611   ///
2612   /// a tagged access has the form
2613   ///
2614   ///   [Stmt[i,j,k] -> id[]] -> Array[f_0(i,j,k), f_1(i,j,k)]
2615   ///
2616   /// where 'id' is an additional space that references the memory access that
2617   /// triggered the access.
2618   ///
2619   /// @param AccessTy The type of the memory accesses to collect.
2620   ///
2621   /// @return The relation describing all tagged memory accesses.
2622   isl_union_map *getTaggedAccesses(enum MemoryAccess::AccessType AccessTy) {
2623     isl_union_map *Accesses = isl_union_map_empty(S->getParamSpace().release());
2624 
2625     for (auto &Stmt : *S)
2626       for (auto &Acc : Stmt)
2627         if (Acc->getType() == AccessTy) {
2628           isl_map *Relation = Acc->getAccessRelation().release();
2629           Relation =
2630               isl_map_intersect_domain(Relation, Stmt.getDomain().release());
2631 
2632           isl_space *Space = isl_map_get_space(Relation);
2633           Space = isl_space_range(Space);
2634           Space = isl_space_from_range(Space);
2635           Space =
2636               isl_space_set_tuple_id(Space, isl_dim_in, Acc->getId().release());
2637           isl_map *Universe = isl_map_universe(Space);
2638           Relation = isl_map_domain_product(Relation, Universe);
2639           Accesses = isl_union_map_add_map(Accesses, Relation);
2640         }
2641 
2642     return Accesses;
2643   }
2644 
2645   /// Get the set of all read accesses, tagged with the access id.
2646   ///
2647   /// @see getTaggedAccesses
2648   isl_union_map *getTaggedReads() {
2649     return getTaggedAccesses(MemoryAccess::READ);
2650   }
2651 
2652   /// Get the set of all may (and must) accesses, tagged with the access id.
2653   ///
2654   /// @see getTaggedAccesses
2655   isl_union_map *getTaggedMayWrites() {
2656     return isl_union_map_union(getTaggedAccesses(MemoryAccess::MAY_WRITE),
2657                                getTaggedAccesses(MemoryAccess::MUST_WRITE));
2658   }
2659 
2660   /// Get the set of all must accesses, tagged with the access id.
2661   ///
2662   /// @see getTaggedAccesses
2663   isl_union_map *getTaggedMustWrites() {
2664     return getTaggedAccesses(MemoryAccess::MUST_WRITE);
2665   }
2666 
2667   /// Collect parameter and array names as isl_ids.
2668   ///
2669   /// To reason about the different parameters and arrays used, ppcg requires
2670   /// a list of all isl_ids in use. As PPCG traditionally performs
2671   /// source-to-source compilation each of these isl_ids is mapped to the
2672   /// expression that represents it. As we do not have a corresponding
2673   /// expression in Polly, we just map each id to a 'zero' expression to match
2674   /// the data format that ppcg expects.
2675   ///
2676   /// @returns Retun a map from collected ids to 'zero' ast expressions.
2677   __isl_give isl_id_to_ast_expr *getNames() {
2678     auto *Names = isl_id_to_ast_expr_alloc(
2679         S->getIslCtx(),
2680         S->getNumParams() + std::distance(S->array_begin(), S->array_end()));
2681     auto *Zero = isl_ast_expr_from_val(isl_val_zero(S->getIslCtx()));
2682 
2683     for (const SCEV *P : S->parameters()) {
2684       isl_id *Id = S->getIdForParam(P).release();
2685       Names = isl_id_to_ast_expr_set(Names, Id, isl_ast_expr_copy(Zero));
2686     }
2687 
2688     for (auto &Array : S->arrays()) {
2689       auto Id = Array->getBasePtrId().release();
2690       Names = isl_id_to_ast_expr_set(Names, Id, isl_ast_expr_copy(Zero));
2691     }
2692 
2693     isl_ast_expr_free(Zero);
2694 
2695     return Names;
2696   }
2697 
2698   /// Create a new PPCG scop from the current scop.
2699   ///
2700   /// The PPCG scop is initialized with data from the current polly::Scop. From
2701   /// this initial data, the data-dependences in the PPCG scop are initialized.
2702   /// We do not use Polly's dependence analysis for now, to ensure we match
2703   /// the PPCG default behaviour more closely.
2704   ///
2705   /// @returns A new ppcg scop.
2706   ppcg_scop *createPPCGScop() {
2707     MustKillsInfo KillsInfo = computeMustKillsInfo(*S);
2708 
2709     auto PPCGScop = (ppcg_scop *)malloc(sizeof(ppcg_scop));
2710 
2711     PPCGScop->options = createPPCGOptions();
2712     // enable live range reordering
2713     PPCGScop->options->live_range_reordering = 1;
2714 
2715     PPCGScop->start = 0;
2716     PPCGScop->end = 0;
2717 
2718     PPCGScop->context = S->getContext().release();
2719     PPCGScop->domain = S->getDomains().release();
2720     // TODO: investigate this further. PPCG calls collect_call_domains.
2721     PPCGScop->call = isl_union_set_from_set(S->getContext().release());
2722     PPCGScop->tagged_reads = getTaggedReads();
2723     PPCGScop->reads = S->getReads().release();
2724     PPCGScop->live_in = nullptr;
2725     PPCGScop->tagged_may_writes = getTaggedMayWrites();
2726     PPCGScop->may_writes = S->getWrites().release();
2727     PPCGScop->tagged_must_writes = getTaggedMustWrites();
2728     PPCGScop->must_writes = S->getMustWrites().release();
2729     PPCGScop->live_out = nullptr;
2730     PPCGScop->tagged_must_kills = KillsInfo.TaggedMustKills.take();
2731     PPCGScop->must_kills = KillsInfo.MustKills.take();
2732 
2733     PPCGScop->tagger = nullptr;
2734     PPCGScop->independence =
2735         isl_union_map_empty(isl_set_get_space(PPCGScop->context));
2736     PPCGScop->dep_flow = nullptr;
2737     PPCGScop->tagged_dep_flow = nullptr;
2738     PPCGScop->dep_false = nullptr;
2739     PPCGScop->dep_forced = nullptr;
2740     PPCGScop->dep_order = nullptr;
2741     PPCGScop->tagged_dep_order = nullptr;
2742 
2743     PPCGScop->schedule = S->getScheduleTree().release();
2744     // If we have something non-trivial to kill, add it to the schedule
2745     if (KillsInfo.KillsSchedule.get())
2746       PPCGScop->schedule = isl_schedule_sequence(
2747           PPCGScop->schedule, KillsInfo.KillsSchedule.take());
2748 
2749     PPCGScop->names = getNames();
2750     PPCGScop->pet = nullptr;
2751 
2752     compute_tagger(PPCGScop);
2753     compute_dependences(PPCGScop);
2754     eliminate_dead_code(PPCGScop);
2755 
2756     return PPCGScop;
2757   }
2758 
2759   /// Collect the array accesses in a statement.
2760   ///
2761   /// @param Stmt The statement for which to collect the accesses.
2762   ///
2763   /// @returns A list of array accesses.
2764   gpu_stmt_access *getStmtAccesses(ScopStmt &Stmt) {
2765     gpu_stmt_access *Accesses = nullptr;
2766 
2767     for (MemoryAccess *Acc : Stmt) {
2768       auto Access = isl_alloc_type(S->getIslCtx(), struct gpu_stmt_access);
2769       Access->read = Acc->isRead();
2770       Access->write = Acc->isWrite();
2771       Access->access = Acc->getAccessRelation().release();
2772       isl_space *Space = isl_map_get_space(Access->access);
2773       Space = isl_space_range(Space);
2774       Space = isl_space_from_range(Space);
2775       Space = isl_space_set_tuple_id(Space, isl_dim_in, Acc->getId().release());
2776       isl_map *Universe = isl_map_universe(Space);
2777       Access->tagged_access =
2778           isl_map_domain_product(Acc->getAccessRelation().release(), Universe);
2779       Access->exact_write = !Acc->isMayWrite();
2780       Access->ref_id = Acc->getId().release();
2781       Access->next = Accesses;
2782       Access->n_index = Acc->getScopArrayInfo()->getNumberOfDimensions();
2783       // TODO: Also mark one-element accesses to arrays as fixed-element.
2784       Access->fixed_element =
2785           Acc->isLatestScalarKind() ? isl_bool_true : isl_bool_false;
2786       Accesses = Access;
2787     }
2788 
2789     return Accesses;
2790   }
2791 
2792   /// Collect the list of GPU statements.
2793   ///
2794   /// Each statement has an id, a pointer to the underlying data structure,
2795   /// as well as a list with all memory accesses.
2796   ///
2797   /// TODO: Initialize the list of memory accesses.
2798   ///
2799   /// @returns A linked-list of statements.
2800   gpu_stmt *getStatements() {
2801     gpu_stmt *Stmts = isl_calloc_array(S->getIslCtx(), struct gpu_stmt,
2802                                        std::distance(S->begin(), S->end()));
2803 
2804     int i = 0;
2805     for (auto &Stmt : *S) {
2806       gpu_stmt *GPUStmt = &Stmts[i];
2807 
2808       GPUStmt->id = Stmt.getDomainId().release();
2809 
2810       // We use the pet stmt pointer to keep track of the Polly statements.
2811       GPUStmt->stmt = (pet_stmt *)&Stmt;
2812       GPUStmt->accesses = getStmtAccesses(Stmt);
2813       i++;
2814     }
2815 
2816     return Stmts;
2817   }
2818 
2819   /// Derive the extent of an array.
2820   ///
2821   /// The extent of an array is the set of elements that are within the
2822   /// accessed array. For the inner dimensions, the extent constraints are
2823   /// 0 and the size of the corresponding array dimension. For the first
2824   /// (outermost) dimension, the extent constraints are the minimal and maximal
2825   /// subscript value for the first dimension.
2826   ///
2827   /// @param Array The array to derive the extent for.
2828   ///
2829   /// @returns An isl_set describing the extent of the array.
2830   isl::set getExtent(ScopArrayInfo *Array) {
2831     unsigned NumDims = Array->getNumberOfDimensions();
2832 
2833     if (Array->getNumberOfDimensions() == 0)
2834       return isl::set::universe(Array->getSpace());
2835 
2836     isl::union_map Accesses = S->getAccesses(Array);
2837     isl::union_set AccessUSet = Accesses.range();
2838     AccessUSet = AccessUSet.coalesce();
2839     AccessUSet = AccessUSet.detect_equalities();
2840     AccessUSet = AccessUSet.coalesce();
2841 
2842     if (AccessUSet.is_empty())
2843       return isl::set::empty(Array->getSpace());
2844 
2845     isl::set AccessSet = AccessUSet.extract_set(Array->getSpace());
2846 
2847     isl::local_space LS = isl::local_space(Array->getSpace());
2848 
2849     isl::pw_aff Val = isl::aff::var_on_domain(LS, isl::dim::set, 0);
2850     isl::pw_aff OuterMin = AccessSet.dim_min(0);
2851     isl::pw_aff OuterMax = AccessSet.dim_max(0);
2852     OuterMin = OuterMin.add_dims(isl::dim::in, Val.dim(isl::dim::in));
2853     OuterMax = OuterMax.add_dims(isl::dim::in, Val.dim(isl::dim::in));
2854     OuterMin = OuterMin.set_tuple_id(isl::dim::in, Array->getBasePtrId());
2855     OuterMax = OuterMax.set_tuple_id(isl::dim::in, Array->getBasePtrId());
2856 
2857     isl::set Extent = isl::set::universe(Array->getSpace());
2858 
2859     Extent = Extent.intersect(OuterMin.le_set(Val));
2860     Extent = Extent.intersect(OuterMax.ge_set(Val));
2861 
2862     for (unsigned i = 1; i < NumDims; ++i)
2863       Extent = Extent.lower_bound_si(isl::dim::set, i, 0);
2864 
2865     for (unsigned i = 0; i < NumDims; ++i) {
2866       isl::pw_aff PwAff = Array->getDimensionSizePw(i);
2867 
2868       // isl_pw_aff can be NULL for zero dimension. Only in the case of a
2869       // Fortran array will we have a legitimate dimension.
2870       if (PwAff.is_null()) {
2871         assert(i == 0 && "invalid dimension isl_pw_aff for nonzero dimension");
2872         continue;
2873       }
2874 
2875       isl::pw_aff Val = isl::aff::var_on_domain(
2876           isl::local_space(Array->getSpace()), isl::dim::set, i);
2877       PwAff = PwAff.add_dims(isl::dim::in, Val.dim(isl::dim::in));
2878       PwAff = PwAff.set_tuple_id(isl::dim::in, Val.get_tuple_id(isl::dim::in));
2879       isl::set Set = PwAff.gt_set(Val);
2880       Extent = Set.intersect(Extent);
2881     }
2882 
2883     return Extent;
2884   }
2885 
2886   /// Derive the bounds of an array.
2887   ///
2888   /// For the first dimension we derive the bound of the array from the extent
2889   /// of this dimension. For inner dimensions we obtain their size directly from
2890   /// ScopArrayInfo.
2891   ///
2892   /// @param PPCGArray The array to compute bounds for.
2893   /// @param Array The polly array from which to take the information.
2894   void setArrayBounds(gpu_array_info &PPCGArray, ScopArrayInfo *Array) {
2895     std::vector<isl_pw_aff *> Bounds;
2896 
2897     if (PPCGArray.n_index > 0) {
2898       if (isl_set_is_empty(PPCGArray.extent)) {
2899         isl_set *Dom = isl_set_copy(PPCGArray.extent);
2900         isl_local_space *LS = isl_local_space_from_space(
2901             isl_space_params(isl_set_get_space(Dom)));
2902         isl_set_free(Dom);
2903         isl_pw_aff *Zero = isl_pw_aff_from_aff(isl_aff_zero_on_domain(LS));
2904         Bounds.push_back(Zero);
2905       } else {
2906         isl_set *Dom = isl_set_copy(PPCGArray.extent);
2907         Dom = isl_set_project_out(Dom, isl_dim_set, 1, PPCGArray.n_index - 1);
2908         isl_pw_aff *Bound = isl_set_dim_max(isl_set_copy(Dom), 0);
2909         isl_set_free(Dom);
2910         Dom = isl_pw_aff_domain(isl_pw_aff_copy(Bound));
2911         isl_local_space *LS =
2912             isl_local_space_from_space(isl_set_get_space(Dom));
2913         isl_aff *One = isl_aff_zero_on_domain(LS);
2914         One = isl_aff_add_constant_si(One, 1);
2915         Bound = isl_pw_aff_add(Bound, isl_pw_aff_alloc(Dom, One));
2916         Bound = isl_pw_aff_gist(Bound, S->getContext().release());
2917         Bounds.push_back(Bound);
2918       }
2919     }
2920 
2921     for (unsigned i = 1; i < PPCGArray.n_index; ++i) {
2922       isl_pw_aff *Bound = Array->getDimensionSizePw(i).release();
2923       auto LS = isl_pw_aff_get_domain_space(Bound);
2924       auto Aff = isl_multi_aff_zero(LS);
2925       Bound = isl_pw_aff_pullback_multi_aff(Bound, Aff);
2926       Bounds.push_back(Bound);
2927     }
2928 
2929     /// To construct a `isl_multi_pw_aff`, we need all the indivisual `pw_aff`
2930     /// to have the same parameter dimensions. So, we need to align them to an
2931     /// appropriate space.
2932     /// Scop::Context is _not_ an appropriate space, because when we have
2933     /// `-polly-ignore-parameter-bounds` enabled, the Scop::Context does not
2934     /// contain all parameter dimensions.
2935     /// So, use the helper `alignPwAffs` to align all the `isl_pw_aff` together.
2936     isl_space *SeedAlignSpace = S->getParamSpace().release();
2937     SeedAlignSpace = isl_space_add_dims(SeedAlignSpace, isl_dim_set, 1);
2938 
2939     isl_space *AlignSpace = nullptr;
2940     std::vector<isl_pw_aff *> AlignedBounds;
2941     std::tie(AlignSpace, AlignedBounds) =
2942         alignPwAffs(std::move(Bounds), SeedAlignSpace);
2943 
2944     assert(AlignSpace && "alignPwAffs did not initialise AlignSpace");
2945 
2946     isl_pw_aff_list *BoundsList =
2947         createPwAffList(S->getIslCtx(), std::move(AlignedBounds));
2948 
2949     isl_space *BoundsSpace = isl_set_get_space(PPCGArray.extent);
2950     BoundsSpace = isl_space_align_params(BoundsSpace, AlignSpace);
2951 
2952     assert(BoundsSpace && "Unable to access space of array.");
2953     assert(BoundsList && "Unable to access list of bounds.");
2954 
2955     PPCGArray.bound =
2956         isl_multi_pw_aff_from_pw_aff_list(BoundsSpace, BoundsList);
2957     assert(PPCGArray.bound && "PPCGArray.bound was not constructed correctly.");
2958   }
2959 
2960   /// Create the arrays for @p PPCGProg.
2961   ///
2962   /// @param PPCGProg The program to compute the arrays for.
2963   void createArrays(gpu_prog *PPCGProg,
2964                     const SmallVector<ScopArrayInfo *, 4> &ValidSAIs) {
2965     int i = 0;
2966     for (auto &Array : ValidSAIs) {
2967       std::string TypeName;
2968       raw_string_ostream OS(TypeName);
2969 
2970       OS << *Array->getElementType();
2971       TypeName = OS.str();
2972 
2973       gpu_array_info &PPCGArray = PPCGProg->array[i];
2974 
2975       PPCGArray.space = Array->getSpace().release();
2976       PPCGArray.type = strdup(TypeName.c_str());
2977       PPCGArray.size = DL->getTypeAllocSize(Array->getElementType());
2978       PPCGArray.name = strdup(Array->getName().c_str());
2979       PPCGArray.extent = nullptr;
2980       PPCGArray.n_index = Array->getNumberOfDimensions();
2981       PPCGArray.extent = getExtent(Array).release();
2982       PPCGArray.n_ref = 0;
2983       PPCGArray.refs = nullptr;
2984       PPCGArray.accessed = true;
2985       PPCGArray.read_only_scalar =
2986           Array->isReadOnly() && Array->getNumberOfDimensions() == 0;
2987       PPCGArray.has_compound_element = false;
2988       PPCGArray.local = false;
2989       PPCGArray.declare_local = false;
2990       PPCGArray.global = false;
2991       PPCGArray.linearize = false;
2992       PPCGArray.dep_order = nullptr;
2993       PPCGArray.user = Array;
2994 
2995       PPCGArray.bound = nullptr;
2996       setArrayBounds(PPCGArray, Array);
2997       i++;
2998 
2999       collect_references(PPCGProg, &PPCGArray);
3000       PPCGArray.only_fixed_element = only_fixed_element_accessed(&PPCGArray);
3001     }
3002   }
3003 
3004   /// Create an identity map between the arrays in the scop.
3005   ///
3006   /// @returns An identity map between the arrays in the scop.
3007   isl_union_map *getArrayIdentity() {
3008     isl_union_map *Maps = isl_union_map_empty(S->getParamSpace().release());
3009 
3010     for (auto &Array : S->arrays()) {
3011       isl_space *Space = Array->getSpace().release();
3012       Space = isl_space_map_from_set(Space);
3013       isl_map *Identity = isl_map_identity(Space);
3014       Maps = isl_union_map_add_map(Maps, Identity);
3015     }
3016 
3017     return Maps;
3018   }
3019 
3020   /// Create a default-initialized PPCG GPU program.
3021   ///
3022   /// @returns A new gpu program description.
3023   gpu_prog *createPPCGProg(ppcg_scop *PPCGScop) {
3024 
3025     if (!PPCGScop)
3026       return nullptr;
3027 
3028     auto PPCGProg = isl_calloc_type(S->getIslCtx(), struct gpu_prog);
3029 
3030     PPCGProg->ctx = S->getIslCtx();
3031     PPCGProg->scop = PPCGScop;
3032     PPCGProg->context = isl_set_copy(PPCGScop->context);
3033     PPCGProg->read = isl_union_map_copy(PPCGScop->reads);
3034     PPCGProg->may_write = isl_union_map_copy(PPCGScop->may_writes);
3035     PPCGProg->must_write = isl_union_map_copy(PPCGScop->must_writes);
3036     PPCGProg->tagged_must_kill =
3037         isl_union_map_copy(PPCGScop->tagged_must_kills);
3038     PPCGProg->to_inner = getArrayIdentity();
3039     PPCGProg->to_outer = getArrayIdentity();
3040     // TODO: verify that this assignment is correct.
3041     PPCGProg->any_to_outer = nullptr;
3042     PPCGProg->n_stmts = std::distance(S->begin(), S->end());
3043     PPCGProg->stmts = getStatements();
3044 
3045     // Only consider arrays that have a non-empty extent.
3046     // Otherwise, this will cause us to consider the following kinds of
3047     // empty arrays:
3048     //     1. Invariant loads that are represented by SAI objects.
3049     //     2. Arrays with statically known zero size.
3050     auto ValidSAIsRange =
3051         make_filter_range(S->arrays(), [this](ScopArrayInfo *SAI) -> bool {
3052           return !getExtent(SAI).is_empty();
3053         });
3054     SmallVector<ScopArrayInfo *, 4> ValidSAIs(ValidSAIsRange.begin(),
3055                                               ValidSAIsRange.end());
3056 
3057     PPCGProg->n_array =
3058         ValidSAIs.size(); // std::distance(S->array_begin(), S->array_end());
3059     PPCGProg->array = isl_calloc_array(S->getIslCtx(), struct gpu_array_info,
3060                                        PPCGProg->n_array);
3061 
3062     createArrays(PPCGProg, ValidSAIs);
3063 
3064     PPCGProg->array_order = nullptr;
3065     collect_order_dependences(PPCGProg);
3066 
3067     PPCGProg->may_persist = compute_may_persist(PPCGProg);
3068     return PPCGProg;
3069   }
3070 
3071   struct PrintGPUUserData {
3072     struct cuda_info *CudaInfo;
3073     struct gpu_prog *PPCGProg;
3074     std::vector<ppcg_kernel *> Kernels;
3075   };
3076 
3077   /// Print a user statement node in the host code.
3078   ///
3079   /// We use ppcg's printing facilities to print the actual statement and
3080   /// additionally build up a list of all kernels that are encountered in the
3081   /// host ast.
3082   ///
3083   /// @param P The printer to print to
3084   /// @param Options The printing options to use
3085   /// @param Node The node to print
3086   /// @param User A user pointer to carry additional data. This pointer is
3087   ///             expected to be of type PrintGPUUserData.
3088   ///
3089   /// @returns A printer to which the output has been printed.
3090   static __isl_give isl_printer *
3091   printHostUser(__isl_take isl_printer *P,
3092                 __isl_take isl_ast_print_options *Options,
3093                 __isl_take isl_ast_node *Node, void *User) {
3094     auto Data = (struct PrintGPUUserData *)User;
3095     auto Id = isl_ast_node_get_annotation(Node);
3096 
3097     if (Id) {
3098       bool IsUser = !strcmp(isl_id_get_name(Id), "user");
3099 
3100       // If this is a user statement, format it ourselves as ppcg would
3101       // otherwise try to call pet functionality that is not available in
3102       // Polly.
3103       if (IsUser) {
3104         P = isl_printer_start_line(P);
3105         P = isl_printer_print_ast_node(P, Node);
3106         P = isl_printer_end_line(P);
3107         isl_id_free(Id);
3108         isl_ast_print_options_free(Options);
3109         return P;
3110       }
3111 
3112       auto Kernel = (struct ppcg_kernel *)isl_id_get_user(Id);
3113       isl_id_free(Id);
3114       Data->Kernels.push_back(Kernel);
3115     }
3116 
3117     return print_host_user(P, Options, Node, User);
3118   }
3119 
3120   /// Print C code corresponding to the control flow in @p Kernel.
3121   ///
3122   /// @param Kernel The kernel to print
3123   void printKernel(ppcg_kernel *Kernel) {
3124     auto *P = isl_printer_to_str(S->getIslCtx());
3125     P = isl_printer_set_output_format(P, ISL_FORMAT_C);
3126     auto *Options = isl_ast_print_options_alloc(S->getIslCtx());
3127     P = isl_ast_node_print(Kernel->tree, P, Options);
3128     char *String = isl_printer_get_str(P);
3129     printf("%s\n", String);
3130     free(String);
3131     isl_printer_free(P);
3132   }
3133 
3134   /// Print C code corresponding to the GPU code described by @p Tree.
3135   ///
3136   /// @param Tree An AST describing GPU code
3137   /// @param PPCGProg The PPCG program from which @Tree has been constructed.
3138   void printGPUTree(isl_ast_node *Tree, gpu_prog *PPCGProg) {
3139     auto *P = isl_printer_to_str(S->getIslCtx());
3140     P = isl_printer_set_output_format(P, ISL_FORMAT_C);
3141 
3142     PrintGPUUserData Data;
3143     Data.PPCGProg = PPCGProg;
3144 
3145     auto *Options = isl_ast_print_options_alloc(S->getIslCtx());
3146     Options =
3147         isl_ast_print_options_set_print_user(Options, printHostUser, &Data);
3148     P = isl_ast_node_print(Tree, P, Options);
3149     char *String = isl_printer_get_str(P);
3150     printf("# host\n");
3151     printf("%s\n", String);
3152     free(String);
3153     isl_printer_free(P);
3154 
3155     for (auto Kernel : Data.Kernels) {
3156       printf("# kernel%d\n", Kernel->id);
3157       printKernel(Kernel);
3158     }
3159   }
3160 
3161   // Generate a GPU program using PPCG.
3162   //
3163   // GPU mapping consists of multiple steps:
3164   //
3165   //  1) Compute new schedule for the program.
3166   //  2) Map schedule to GPU (TODO)
3167   //  3) Generate code for new schedule (TODO)
3168   //
3169   // We do not use here the Polly ScheduleOptimizer, as the schedule optimizer
3170   // is mostly CPU specific. Instead, we use PPCG's GPU code generation
3171   // strategy directly from this pass.
3172   gpu_gen *generateGPU(ppcg_scop *PPCGScop, gpu_prog *PPCGProg) {
3173 
3174     auto PPCGGen = isl_calloc_type(S->getIslCtx(), struct gpu_gen);
3175 
3176     PPCGGen->ctx = S->getIslCtx();
3177     PPCGGen->options = PPCGScop->options;
3178     PPCGGen->print = nullptr;
3179     PPCGGen->print_user = nullptr;
3180     PPCGGen->build_ast_expr = &pollyBuildAstExprForStmt;
3181     PPCGGen->prog = PPCGProg;
3182     PPCGGen->tree = nullptr;
3183     PPCGGen->types.n = 0;
3184     PPCGGen->types.name = nullptr;
3185     PPCGGen->sizes = nullptr;
3186     PPCGGen->used_sizes = nullptr;
3187     PPCGGen->kernel_id = 0;
3188 
3189     // Set scheduling strategy to same strategy PPCG is using.
3190     isl_options_set_schedule_outer_coincidence(PPCGGen->ctx, true);
3191     isl_options_set_schedule_maximize_band_depth(PPCGGen->ctx, true);
3192     isl_options_set_schedule_whole_component(PPCGGen->ctx, false);
3193 
3194     isl_schedule *Schedule = get_schedule(PPCGGen);
3195 
3196     int has_permutable = has_any_permutable_node(Schedule);
3197 
3198     Schedule =
3199         isl_schedule_align_params(Schedule, S->getFullParamSpace().release());
3200 
3201     if (!has_permutable || has_permutable < 0) {
3202       Schedule = isl_schedule_free(Schedule);
3203       DEBUG(dbgs() << getUniqueScopName(S)
3204                    << " does not have permutable bands. Bailing out\n";);
3205     } else {
3206       const bool CreateTransferToFromDevice = !PollyManagedMemory;
3207       Schedule = map_to_device(PPCGGen, Schedule, CreateTransferToFromDevice);
3208       PPCGGen->tree = generate_code(PPCGGen, isl_schedule_copy(Schedule));
3209     }
3210 
3211     if (DumpSchedule) {
3212       isl_printer *P = isl_printer_to_str(S->getIslCtx());
3213       P = isl_printer_set_yaml_style(P, ISL_YAML_STYLE_BLOCK);
3214       P = isl_printer_print_str(P, "Schedule\n");
3215       P = isl_printer_print_str(P, "========\n");
3216       if (Schedule)
3217         P = isl_printer_print_schedule(P, Schedule);
3218       else
3219         P = isl_printer_print_str(P, "No schedule found\n");
3220 
3221       printf("%s\n", isl_printer_get_str(P));
3222       isl_printer_free(P);
3223     }
3224 
3225     if (DumpCode) {
3226       printf("Code\n");
3227       printf("====\n");
3228       if (PPCGGen->tree)
3229         printGPUTree(PPCGGen->tree, PPCGProg);
3230       else
3231         printf("No code generated\n");
3232     }
3233 
3234     isl_schedule_free(Schedule);
3235 
3236     return PPCGGen;
3237   }
3238 
3239   /// Free gpu_gen structure.
3240   ///
3241   /// @param PPCGGen The ppcg_gen object to free.
3242   void freePPCGGen(gpu_gen *PPCGGen) {
3243     isl_ast_node_free(PPCGGen->tree);
3244     isl_union_map_free(PPCGGen->sizes);
3245     isl_union_map_free(PPCGGen->used_sizes);
3246     free(PPCGGen);
3247   }
3248 
3249   /// Free the options in the ppcg scop structure.
3250   ///
3251   /// ppcg is not freeing these options for us. To avoid leaks we do this
3252   /// ourselves.
3253   ///
3254   /// @param PPCGScop The scop referencing the options to free.
3255   void freeOptions(ppcg_scop *PPCGScop) {
3256     free(PPCGScop->options->debug);
3257     PPCGScop->options->debug = nullptr;
3258     free(PPCGScop->options);
3259     PPCGScop->options = nullptr;
3260   }
3261 
3262   /// Approximate the number of points in the set.
3263   ///
3264   /// This function returns an ast expression that overapproximates the number
3265   /// of points in an isl set through the rectangular hull surrounding this set.
3266   ///
3267   /// @param Set   The set to count.
3268   /// @param Build The isl ast build object to use for creating the ast
3269   ///              expression.
3270   ///
3271   /// @returns An approximation of the number of points in the set.
3272   __isl_give isl_ast_expr *approxPointsInSet(__isl_take isl_set *Set,
3273                                              __isl_keep isl_ast_build *Build) {
3274 
3275     isl_val *One = isl_val_int_from_si(isl_set_get_ctx(Set), 1);
3276     auto *Expr = isl_ast_expr_from_val(isl_val_copy(One));
3277 
3278     isl_space *Space = isl_set_get_space(Set);
3279     Space = isl_space_params(Space);
3280     auto *Univ = isl_set_universe(Space);
3281     isl_pw_aff *OneAff = isl_pw_aff_val_on_domain(Univ, One);
3282 
3283     for (long i = 0, n = isl_set_dim(Set, isl_dim_set); i < n; i++) {
3284       isl_pw_aff *Max = isl_set_dim_max(isl_set_copy(Set), i);
3285       isl_pw_aff *Min = isl_set_dim_min(isl_set_copy(Set), i);
3286       isl_pw_aff *DimSize = isl_pw_aff_sub(Max, Min);
3287       DimSize = isl_pw_aff_add(DimSize, isl_pw_aff_copy(OneAff));
3288       auto DimSizeExpr = isl_ast_build_expr_from_pw_aff(Build, DimSize);
3289       Expr = isl_ast_expr_mul(Expr, DimSizeExpr);
3290     }
3291 
3292     isl_set_free(Set);
3293     isl_pw_aff_free(OneAff);
3294 
3295     return Expr;
3296   }
3297 
3298   /// Approximate a number of dynamic instructions executed by a given
3299   /// statement.
3300   ///
3301   /// @param Stmt  The statement for which to compute the number of dynamic
3302   ///              instructions.
3303   /// @param Build The isl ast build object to use for creating the ast
3304   ///              expression.
3305   /// @returns An approximation of the number of dynamic instructions executed
3306   ///          by @p Stmt.
3307   __isl_give isl_ast_expr *approxDynamicInst(ScopStmt &Stmt,
3308                                              __isl_keep isl_ast_build *Build) {
3309     auto Iterations = approxPointsInSet(Stmt.getDomain().release(), Build);
3310 
3311     long InstCount = 0;
3312 
3313     if (Stmt.isBlockStmt()) {
3314       auto *BB = Stmt.getBasicBlock();
3315       InstCount = std::distance(BB->begin(), BB->end());
3316     } else {
3317       auto *R = Stmt.getRegion();
3318 
3319       for (auto *BB : R->blocks()) {
3320         InstCount += std::distance(BB->begin(), BB->end());
3321       }
3322     }
3323 
3324     isl_val *InstVal = isl_val_int_from_si(S->getIslCtx(), InstCount);
3325     auto *InstExpr = isl_ast_expr_from_val(InstVal);
3326     return isl_ast_expr_mul(InstExpr, Iterations);
3327   }
3328 
3329   /// Approximate dynamic instructions executed in scop.
3330   ///
3331   /// @param S     The scop for which to approximate dynamic instructions.
3332   /// @param Build The isl ast build object to use for creating the ast
3333   ///              expression.
3334   /// @returns An approximation of the number of dynamic instructions executed
3335   ///          in @p S.
3336   __isl_give isl_ast_expr *
3337   getNumberOfIterations(Scop &S, __isl_keep isl_ast_build *Build) {
3338     isl_ast_expr *Instructions;
3339 
3340     isl_val *Zero = isl_val_int_from_si(S.getIslCtx(), 0);
3341     Instructions = isl_ast_expr_from_val(Zero);
3342 
3343     for (ScopStmt &Stmt : S) {
3344       isl_ast_expr *StmtInstructions = approxDynamicInst(Stmt, Build);
3345       Instructions = isl_ast_expr_add(Instructions, StmtInstructions);
3346     }
3347     return Instructions;
3348   }
3349 
3350   /// Create a check that ensures sufficient compute in scop.
3351   ///
3352   /// @param S     The scop for which to ensure sufficient compute.
3353   /// @param Build The isl ast build object to use for creating the ast
3354   ///              expression.
3355   /// @returns An expression that evaluates to TRUE in case of sufficient
3356   ///          compute and to FALSE, otherwise.
3357   __isl_give isl_ast_expr *
3358   createSufficientComputeCheck(Scop &S, __isl_keep isl_ast_build *Build) {
3359     auto Iterations = getNumberOfIterations(S, Build);
3360     auto *MinComputeVal = isl_val_int_from_si(S.getIslCtx(), MinCompute);
3361     auto *MinComputeExpr = isl_ast_expr_from_val(MinComputeVal);
3362     return isl_ast_expr_ge(Iterations, MinComputeExpr);
3363   }
3364 
3365   /// Check if the basic block contains a function we cannot codegen for GPU
3366   /// kernels.
3367   ///
3368   /// If this basic block does something with a `Function` other than calling
3369   /// a function that we support in a kernel, return true.
3370   bool containsInvalidKernelFunctionInBlock(const BasicBlock *BB,
3371                                             bool AllowCUDALibDevice) {
3372     for (const Instruction &Inst : *BB) {
3373       const CallInst *Call = dyn_cast<CallInst>(&Inst);
3374       if (Call && isValidFunctionInKernel(Call->getCalledFunction(),
3375                                           AllowCUDALibDevice))
3376         continue;
3377 
3378       for (Value *Op : Inst.operands())
3379         // Look for (<func-type>*) among operands of Inst
3380         if (auto PtrTy = dyn_cast<PointerType>(Op->getType())) {
3381           if (isa<FunctionType>(PtrTy->getElementType())) {
3382             DEBUG(dbgs() << Inst
3383                          << " has illegal use of function in kernel.\n");
3384             return true;
3385           }
3386         }
3387     }
3388     return false;
3389   }
3390 
3391   /// Return whether the Scop S uses functions in a way that we do not support.
3392   bool containsInvalidKernelFunction(const Scop &S, bool AllowCUDALibDevice) {
3393     for (auto &Stmt : S) {
3394       if (Stmt.isBlockStmt()) {
3395         if (containsInvalidKernelFunctionInBlock(Stmt.getBasicBlock(),
3396                                                  AllowCUDALibDevice))
3397           return true;
3398       } else {
3399         assert(Stmt.isRegionStmt() &&
3400                "Stmt was neither block nor region statement");
3401         for (const BasicBlock *BB : Stmt.getRegion()->blocks())
3402           if (containsInvalidKernelFunctionInBlock(BB, AllowCUDALibDevice))
3403             return true;
3404       }
3405     }
3406     return false;
3407   }
3408 
3409   /// Generate code for a given GPU AST described by @p Root.
3410   ///
3411   /// @param Root An isl_ast_node pointing to the root of the GPU AST.
3412   /// @param Prog The GPU Program to generate code for.
3413   void generateCode(__isl_take isl_ast_node *Root, gpu_prog *Prog) {
3414     ScopAnnotator Annotator;
3415     Annotator.buildAliasScopes(*S);
3416 
3417     Region *R = &S->getRegion();
3418 
3419     simplifyRegion(R, DT, LI, RI);
3420 
3421     BasicBlock *EnteringBB = R->getEnteringBlock();
3422 
3423     PollyIRBuilder Builder = createPollyIRBuilder(EnteringBB, Annotator);
3424 
3425     // Only build the run-time condition and parameters _after_ having
3426     // introduced the conditional branch. This is important as the conditional
3427     // branch will guard the original scop from new induction variables that
3428     // the SCEVExpander may introduce while code generating the parameters and
3429     // which may introduce scalar dependences that prevent us from correctly
3430     // code generating this scop.
3431     BBPair StartExitBlocks;
3432     BranchInst *CondBr = nullptr;
3433     std::tie(StartExitBlocks, CondBr) =
3434         executeScopConditionally(*S, Builder.getTrue(), *DT, *RI, *LI);
3435     BasicBlock *StartBlock = std::get<0>(StartExitBlocks);
3436 
3437     assert(CondBr && "CondBr not initialized by executeScopConditionally");
3438 
3439     GPUNodeBuilder NodeBuilder(Builder, Annotator, *DL, *LI, *SE, *DT, *S,
3440                                StartBlock, Prog, Runtime, Architecture);
3441 
3442     // TODO: Handle LICM
3443     auto SplitBlock = StartBlock->getSinglePredecessor();
3444     Builder.SetInsertPoint(SplitBlock->getTerminator());
3445 
3446     isl_ast_build *Build = isl_ast_build_alloc(S->getIslCtx());
3447     isl_ast_expr *Condition = IslAst::buildRunCondition(*S, Build);
3448     isl_ast_expr *SufficientCompute = createSufficientComputeCheck(*S, Build);
3449     Condition = isl_ast_expr_and(Condition, SufficientCompute);
3450     isl_ast_build_free(Build);
3451 
3452     // preload invariant loads. Note: This should happen before the RTC
3453     // because the RTC may depend on values that are invariant load hoisted.
3454     if (!NodeBuilder.preloadInvariantLoads()) {
3455       DEBUG(dbgs() << "preloading invariant loads failed in function: " +
3456                           S->getFunction().getName() +
3457                           " | Scop Region: " + S->getNameStr());
3458       // adjust the dominator tree accordingly.
3459       auto *ExitingBlock = StartBlock->getUniqueSuccessor();
3460       assert(ExitingBlock);
3461       auto *MergeBlock = ExitingBlock->getUniqueSuccessor();
3462       assert(MergeBlock);
3463       polly::markBlockUnreachable(*StartBlock, Builder);
3464       polly::markBlockUnreachable(*ExitingBlock, Builder);
3465       auto *ExitingBB = S->getExitingBlock();
3466       assert(ExitingBB);
3467 
3468       DT->changeImmediateDominator(MergeBlock, ExitingBB);
3469       DT->eraseNode(ExitingBlock);
3470       isl_ast_expr_free(Condition);
3471       isl_ast_node_free(Root);
3472     } else {
3473 
3474       if (polly::PerfMonitoring) {
3475         PerfMonitor P(*S, EnteringBB->getParent()->getParent());
3476         P.initialize();
3477         P.insertRegionStart(SplitBlock->getTerminator());
3478 
3479         // TODO: actually think if this is the correct exiting block to place
3480         // the `end` performance marker. Invariant load hoisting changes
3481         // the CFG in a way that I do not precisely understand, so I
3482         // (Siddharth<[email protected]>) should come back to this and
3483         // think about which exiting block to use.
3484         auto *ExitingBlock = StartBlock->getUniqueSuccessor();
3485         assert(ExitingBlock);
3486         BasicBlock *MergeBlock = ExitingBlock->getUniqueSuccessor();
3487         P.insertRegionEnd(MergeBlock->getTerminator());
3488       }
3489 
3490       NodeBuilder.addParameters(S->getContext().release());
3491       Value *RTC = NodeBuilder.createRTC(Condition);
3492       Builder.GetInsertBlock()->getTerminator()->setOperand(0, RTC);
3493 
3494       Builder.SetInsertPoint(&*StartBlock->begin());
3495 
3496       NodeBuilder.create(Root);
3497     }
3498 
3499     /// In case a sequential kernel has more surrounding loops as any parallel
3500     /// kernel, the SCoP is probably mostly sequential. Hence, there is no
3501     /// point in running it on a GPU.
3502     if (NodeBuilder.DeepestSequential > NodeBuilder.DeepestParallel)
3503       CondBr->setOperand(0, Builder.getFalse());
3504 
3505     if (!NodeBuilder.BuildSuccessful)
3506       CondBr->setOperand(0, Builder.getFalse());
3507   }
3508 
3509   bool runOnScop(Scop &CurrentScop) override {
3510     S = &CurrentScop;
3511     LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
3512     DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
3513     SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
3514     DL = &S->getRegion().getEntry()->getModule()->getDataLayout();
3515     RI = &getAnalysis<RegionInfoPass>().getRegionInfo();
3516 
3517     DEBUG(dbgs() << "PPCGCodeGen running on : " << getUniqueScopName(S)
3518                  << " | loop depth: " << S->getMaxLoopDepth() << "\n");
3519 
3520     // We currently do not support functions other than intrinsics inside
3521     // kernels, as code generation will need to offload function calls to the
3522     // kernel. This may lead to a kernel trying to call a function on the host.
3523     // This also allows us to prevent codegen from trying to take the
3524     // address of an intrinsic function to send to the kernel.
3525     if (containsInvalidKernelFunction(CurrentScop,
3526                                       Architecture == GPUArch::NVPTX64)) {
3527       DEBUG(
3528           dbgs() << getUniqueScopName(S)
3529                  << " contains function which cannot be materialised in a GPU "
3530                     "kernel. Bailing out.\n";);
3531       return false;
3532     }
3533 
3534     auto PPCGScop = createPPCGScop();
3535     auto PPCGProg = createPPCGProg(PPCGScop);
3536     auto PPCGGen = generateGPU(PPCGScop, PPCGProg);
3537 
3538     if (PPCGGen->tree) {
3539       generateCode(isl_ast_node_copy(PPCGGen->tree), PPCGProg);
3540       CurrentScop.markAsToBeSkipped();
3541     } else {
3542       DEBUG(dbgs() << getUniqueScopName(S)
3543                    << " has empty PPCGGen->tree. Bailing out.\n");
3544     }
3545 
3546     freeOptions(PPCGScop);
3547     freePPCGGen(PPCGGen);
3548     gpu_prog_free(PPCGProg);
3549     ppcg_scop_free(PPCGScop);
3550 
3551     return true;
3552   }
3553 
3554   void printScop(raw_ostream &, Scop &) const override {}
3555 
3556   void getAnalysisUsage(AnalysisUsage &AU) const override {
3557     ScopPass::getAnalysisUsage(AU);
3558 
3559     AU.addRequired<DominatorTreeWrapperPass>();
3560     AU.addRequired<RegionInfoPass>();
3561     AU.addRequired<ScalarEvolutionWrapperPass>();
3562     AU.addRequired<ScopDetectionWrapperPass>();
3563     AU.addRequired<ScopInfoRegionPass>();
3564     AU.addRequired<LoopInfoWrapperPass>();
3565 
3566     // FIXME: We do not yet add regions for the newly generated code to the
3567     //        region tree.
3568   }
3569 };
3570 } // namespace
3571 
3572 char PPCGCodeGeneration::ID = 1;
3573 
3574 Pass *polly::createPPCGCodeGenerationPass(GPUArch Arch, GPURuntime Runtime) {
3575   PPCGCodeGeneration *generator = new PPCGCodeGeneration();
3576   generator->Runtime = Runtime;
3577   generator->Architecture = Arch;
3578   return generator;
3579 }
3580 
3581 INITIALIZE_PASS_BEGIN(PPCGCodeGeneration, "polly-codegen-ppcg",
3582                       "Polly - Apply PPCG translation to SCOP", false, false)
3583 INITIALIZE_PASS_DEPENDENCY(DependenceInfo);
3584 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass);
3585 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass);
3586 INITIALIZE_PASS_DEPENDENCY(RegionInfoPass);
3587 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass);
3588 INITIALIZE_PASS_DEPENDENCY(ScopDetectionWrapperPass);
3589 INITIALIZE_PASS_END(PPCGCodeGeneration, "polly-codegen-ppcg",
3590                     "Polly - Apply PPCG translation to SCOP", false, false)
3591