1 //===------ PPCGCodeGeneration.cpp - Polly Accelerator Code Generation. ---===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Take a scop created by ScopInfo and map it to GPU code using the ppcg 11 // GPU mapping strategy. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "polly/CodeGen/IslNodeBuilder.h" 16 #include "polly/CodeGen/Utils.h" 17 #include "polly/DependenceInfo.h" 18 #include "polly/LinkAllPasses.h" 19 #include "polly/Options.h" 20 #include "polly/ScopInfo.h" 21 #include "llvm/Analysis/AliasAnalysis.h" 22 #include "llvm/Analysis/BasicAliasAnalysis.h" 23 #include "llvm/Analysis/GlobalsModRef.h" 24 #include "llvm/Analysis/PostDominators.h" 25 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" 26 27 #include "isl/union_map.h" 28 29 extern "C" { 30 #include "ppcg/cuda.h" 31 #include "ppcg/gpu.h" 32 #include "ppcg/gpu_print.h" 33 #include "ppcg/ppcg.h" 34 #include "ppcg/schedule.h" 35 } 36 37 #include "llvm/Support/Debug.h" 38 39 using namespace polly; 40 using namespace llvm; 41 42 #define DEBUG_TYPE "polly-codegen-ppcg" 43 44 static cl::opt<bool> DumpSchedule("polly-acc-dump-schedule", 45 cl::desc("Dump the computed GPU Schedule"), 46 cl::Hidden, cl::init(false), cl::ZeroOrMore, 47 cl::cat(PollyCategory)); 48 49 static cl::opt<bool> 50 DumpCode("polly-acc-dump-code", 51 cl::desc("Dump C code describing the GPU mapping"), cl::Hidden, 52 cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory)); 53 54 static cl::opt<bool> DumpKernelIR("polly-acc-dump-kernel-ir", 55 cl::desc("Dump the kernel LLVM-IR"), 56 cl::Hidden, cl::init(false), cl::ZeroOrMore, 57 cl::cat(PollyCategory)); 58 59 /// Create the ast expressions for a ScopStmt. 60 /// 61 /// This function is a callback for to generate the ast expressions for each 62 /// of the scheduled ScopStmts. 63 static __isl_give isl_id_to_ast_expr *pollyBuildAstExprForStmt( 64 void *Stmt, isl_ast_build *Build, 65 isl_multi_pw_aff *(*FunctionIndex)(__isl_take isl_multi_pw_aff *MPA, 66 isl_id *Id, void *User), 67 void *UserIndex, 68 isl_ast_expr *(*FunctionExpr)(isl_ast_expr *Expr, isl_id *Id, void *User), 69 void *User_expr) { 70 71 // TODO: Implement the AST expression generation. For now we just return a 72 // nullptr to ensure that we do not free uninitialized pointers. 73 74 return nullptr; 75 } 76 77 /// Generate code for a GPU specific isl AST. 78 /// 79 /// The GPUNodeBuilder augments the general existing IslNodeBuilder, which 80 /// generates code for general-prupose AST nodes, with special functionality 81 /// for generating GPU specific user nodes. 82 /// 83 /// @see GPUNodeBuilder::createUser 84 class GPUNodeBuilder : public IslNodeBuilder { 85 public: 86 GPUNodeBuilder(PollyIRBuilder &Builder, ScopAnnotator &Annotator, Pass *P, 87 const DataLayout &DL, LoopInfo &LI, ScalarEvolution &SE, 88 DominatorTree &DT, Scop &S, gpu_prog *Prog) 89 : IslNodeBuilder(Builder, Annotator, P, DL, LI, SE, DT, S), Prog(Prog) {} 90 91 private: 92 /// A module containing GPU code. 93 /// 94 /// This pointer is only set in case we are currently generating GPU code. 95 std::unique_ptr<Module> GPUModule; 96 97 /// The GPU program we generate code for. 98 gpu_prog *Prog; 99 100 /// Class to free isl_ids. 101 class IslIdDeleter { 102 public: 103 void operator()(__isl_take isl_id *Id) { isl_id_free(Id); }; 104 }; 105 106 /// A set containing all isl_ids allocated in a GPU kernel. 107 /// 108 /// By releasing this set all isl_ids will be freed. 109 std::set<std::unique_ptr<isl_id, IslIdDeleter>> KernelIDs; 110 111 /// Create code for user-defined AST nodes. 112 /// 113 /// These AST nodes can be of type: 114 /// 115 /// - ScopStmt: A computational statement (TODO) 116 /// - Kernel: A GPU kernel call (TODO) 117 /// - Data-Transfer: A GPU <-> CPU data-transfer (TODO) 118 /// - In-kernel synchronization 119 /// - In-kernel memory copy statement 120 /// 121 /// @param UserStmt The ast node to generate code for. 122 virtual void createUser(__isl_take isl_ast_node *UserStmt); 123 124 /// Create GPU kernel. 125 /// 126 /// Code generate the kernel described by @p KernelStmt. 127 /// 128 /// @param KernelStmt The ast node to generate kernel code for. 129 void createKernel(__isl_take isl_ast_node *KernelStmt); 130 131 /// Create kernel function. 132 /// 133 /// Create a kernel function located in a newly created module that can serve 134 /// as target for device code generation. Set the Builder to point to the 135 /// start block of this newly created function. 136 /// 137 /// @param Kernel The kernel to generate code for. 138 void createKernelFunction(ppcg_kernel *Kernel); 139 140 /// Create the declaration of a kernel function. 141 /// 142 /// The kernel function takes as arguments: 143 /// 144 /// - One i8 pointer for each external array reference used in the kernel. 145 /// - Host iterators 146 /// - Parameters 147 /// - Other LLVM Value references (TODO) 148 /// 149 /// @param Kernel The kernel to generate the function declaration for. 150 /// @returns The newly declared function. 151 Function *createKernelFunctionDecl(ppcg_kernel *Kernel); 152 153 /// Insert intrinsic functions to obtain thread and block ids. 154 /// 155 /// @param The kernel to generate the intrinsic functions for. 156 void insertKernelIntrinsics(ppcg_kernel *Kernel); 157 158 /// Create an in-kernel synchronization call. 159 void createKernelSync(); 160 161 /// Finalize the generation of the kernel function. 162 /// 163 /// Free the LLVM-IR module corresponding to the kernel and -- if requested -- 164 /// dump its IR to stderr. 165 void finalizeKernelFunction(); 166 }; 167 168 /// Check if one string is a prefix of another. 169 /// 170 /// @param String The string in which to look for the prefix. 171 /// @param Prefix The prefix to look for. 172 static bool isPrefix(std::string String, std::string Prefix) { 173 return String.find(Prefix) == 0; 174 } 175 176 void GPUNodeBuilder::createUser(__isl_take isl_ast_node *UserStmt) { 177 isl_ast_expr *Expr = isl_ast_node_user_get_expr(UserStmt); 178 isl_ast_expr *StmtExpr = isl_ast_expr_get_op_arg(Expr, 0); 179 isl_id *Id = isl_ast_expr_get_id(StmtExpr); 180 isl_id_free(Id); 181 isl_ast_expr_free(StmtExpr); 182 183 const char *Str = isl_id_get_name(Id); 184 if (!strcmp(Str, "kernel")) { 185 createKernel(UserStmt); 186 isl_ast_expr_free(Expr); 187 return; 188 } 189 190 if (isPrefix(Str, "to_device") || isPrefix(Str, "from_device")) { 191 // TODO: Insert memory copies 192 isl_ast_expr_free(Expr); 193 isl_ast_node_free(UserStmt); 194 return; 195 } 196 197 isl_id *Anno = isl_ast_node_get_annotation(UserStmt); 198 struct ppcg_kernel_stmt *KernelStmt = 199 (struct ppcg_kernel_stmt *)isl_id_get_user(Anno); 200 isl_id_free(Anno); 201 202 switch (KernelStmt->type) { 203 case ppcg_kernel_domain: 204 // TODO Create kernel user stmt 205 isl_ast_expr_free(Expr); 206 isl_ast_node_free(UserStmt); 207 return; 208 case ppcg_kernel_copy: 209 // TODO: Create kernel copy stmt 210 isl_ast_expr_free(Expr); 211 isl_ast_node_free(UserStmt); 212 return; 213 case ppcg_kernel_sync: 214 createKernelSync(); 215 isl_ast_expr_free(Expr); 216 isl_ast_node_free(UserStmt); 217 return; 218 } 219 220 isl_ast_expr_free(Expr); 221 isl_ast_node_free(UserStmt); 222 return; 223 } 224 225 void GPUNodeBuilder::createKernelSync() { 226 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 227 auto *Sync = Intrinsic::getDeclaration(M, Intrinsic::nvvm_barrier0); 228 Builder.CreateCall(Sync, {}); 229 } 230 231 void GPUNodeBuilder::createKernel(__isl_take isl_ast_node *KernelStmt) { 232 isl_id *Id = isl_ast_node_get_annotation(KernelStmt); 233 ppcg_kernel *Kernel = (ppcg_kernel *)isl_id_get_user(Id); 234 isl_id_free(Id); 235 isl_ast_node_free(KernelStmt); 236 237 assert(Kernel->tree && "Device AST of kernel node is empty"); 238 239 Instruction &HostInsertPoint = *Builder.GetInsertPoint(); 240 IslExprBuilder::IDToValueTy HostIDs = IDToValue; 241 242 createKernelFunction(Kernel); 243 244 create(isl_ast_node_copy(Kernel->tree)); 245 246 Builder.SetInsertPoint(&HostInsertPoint); 247 IDToValue = HostIDs; 248 249 finalizeKernelFunction(); 250 } 251 252 /// Compute the DataLayout string for the NVPTX backend. 253 /// 254 /// @param is64Bit Are we looking for a 64 bit architecture? 255 static std::string computeNVPTXDataLayout(bool is64Bit) { 256 std::string Ret = "e"; 257 258 if (!is64Bit) 259 Ret += "-p:32:32"; 260 261 Ret += "-i64:64-v16:16-v32:32-n16:32:64"; 262 263 return Ret; 264 } 265 266 Function *GPUNodeBuilder::createKernelFunctionDecl(ppcg_kernel *Kernel) { 267 std::vector<Type *> Args; 268 std::string Identifier = "kernel_" + std::to_string(Kernel->id); 269 270 for (long i = 0; i < Prog->n_array; i++) { 271 if (!ppcg_kernel_requires_array_argument(Kernel, i)) 272 continue; 273 274 Args.push_back(Builder.getInt8PtrTy()); 275 } 276 277 int NumHostIters = isl_space_dim(Kernel->space, isl_dim_set); 278 279 for (long i = 0; i < NumHostIters; i++) 280 Args.push_back(Builder.getInt64Ty()); 281 282 int NumVars = isl_space_dim(Kernel->space, isl_dim_param); 283 284 for (long i = 0; i < NumVars; i++) 285 Args.push_back(Builder.getInt64Ty()); 286 287 auto *FT = FunctionType::get(Builder.getVoidTy(), Args, false); 288 auto *FN = Function::Create(FT, Function::ExternalLinkage, Identifier, 289 GPUModule.get()); 290 FN->setCallingConv(CallingConv::PTX_Kernel); 291 292 auto Arg = FN->arg_begin(); 293 for (long i = 0; i < Kernel->n_array; i++) { 294 if (!ppcg_kernel_requires_array_argument(Kernel, i)) 295 continue; 296 297 Arg->setName(Prog->array[i].name); 298 Arg++; 299 } 300 301 for (long i = 0; i < NumHostIters; i++) { 302 isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_set, i); 303 Arg->setName(isl_id_get_name(Id)); 304 IDToValue[Id] = &*Arg; 305 KernelIDs.insert(std::unique_ptr<isl_id, IslIdDeleter>(Id)); 306 Arg++; 307 } 308 309 for (long i = 0; i < NumVars; i++) { 310 isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_param, i); 311 Arg->setName(isl_id_get_name(Id)); 312 IDToValue[Id] = &*Arg; 313 KernelIDs.insert(std::unique_ptr<isl_id, IslIdDeleter>(Id)); 314 Arg++; 315 } 316 317 return FN; 318 } 319 320 void GPUNodeBuilder::insertKernelIntrinsics(ppcg_kernel *Kernel) { 321 Intrinsic::ID IntrinsicsBID[] = {Intrinsic::nvvm_read_ptx_sreg_ctaid_x, 322 Intrinsic::nvvm_read_ptx_sreg_ctaid_y}; 323 324 Intrinsic::ID IntrinsicsTID[] = {Intrinsic::nvvm_read_ptx_sreg_tid_x, 325 Intrinsic::nvvm_read_ptx_sreg_tid_y, 326 Intrinsic::nvvm_read_ptx_sreg_tid_z}; 327 328 auto addId = [this](__isl_take isl_id *Id, Intrinsic::ID Intr) mutable { 329 std::string Name = isl_id_get_name(Id); 330 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 331 Function *IntrinsicFn = Intrinsic::getDeclaration(M, Intr); 332 Value *Val = Builder.CreateCall(IntrinsicFn, {}); 333 Val = Builder.CreateIntCast(Val, Builder.getInt64Ty(), false, Name); 334 IDToValue[Id] = Val; 335 KernelIDs.insert(std::unique_ptr<isl_id, IslIdDeleter>(Id)); 336 }; 337 338 for (int i = 0; i < Kernel->n_grid; ++i) { 339 isl_id *Id = isl_id_list_get_id(Kernel->block_ids, i); 340 addId(Id, IntrinsicsBID[i]); 341 } 342 343 for (int i = 0; i < Kernel->n_block; ++i) { 344 isl_id *Id = isl_id_list_get_id(Kernel->thread_ids, i); 345 addId(Id, IntrinsicsTID[i]); 346 } 347 } 348 349 void GPUNodeBuilder::createKernelFunction(ppcg_kernel *Kernel) { 350 351 std::string Identifier = "kernel_" + std::to_string(Kernel->id); 352 GPUModule.reset(new Module(Identifier, Builder.getContext())); 353 GPUModule->setTargetTriple(Triple::normalize("nvptx64-nvidia-cuda")); 354 GPUModule->setDataLayout(computeNVPTXDataLayout(true /* is64Bit */)); 355 356 Function *FN = createKernelFunctionDecl(Kernel); 357 358 BasicBlock *PrevBlock = Builder.GetInsertBlock(); 359 auto EntryBlock = BasicBlock::Create(Builder.getContext(), "entry", FN); 360 361 DominatorTree &DT = P->getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 362 DT.addNewBlock(EntryBlock, PrevBlock); 363 364 Builder.SetInsertPoint(EntryBlock); 365 Builder.CreateRetVoid(); 366 Builder.SetInsertPoint(EntryBlock, EntryBlock->begin()); 367 368 insertKernelIntrinsics(Kernel); 369 } 370 371 void GPUNodeBuilder::finalizeKernelFunction() { 372 373 if (DumpKernelIR) 374 outs() << *GPUModule << "\n"; 375 376 GPUModule.release(); 377 KernelIDs.clear(); 378 } 379 380 namespace { 381 class PPCGCodeGeneration : public ScopPass { 382 public: 383 static char ID; 384 385 /// The scop that is currently processed. 386 Scop *S; 387 388 LoopInfo *LI; 389 DominatorTree *DT; 390 ScalarEvolution *SE; 391 const DataLayout *DL; 392 RegionInfo *RI; 393 394 PPCGCodeGeneration() : ScopPass(ID) {} 395 396 /// Construct compilation options for PPCG. 397 /// 398 /// @returns The compilation options. 399 ppcg_options *createPPCGOptions() { 400 auto DebugOptions = 401 (ppcg_debug_options *)malloc(sizeof(ppcg_debug_options)); 402 auto Options = (ppcg_options *)malloc(sizeof(ppcg_options)); 403 404 DebugOptions->dump_schedule_constraints = false; 405 DebugOptions->dump_schedule = false; 406 DebugOptions->dump_final_schedule = false; 407 DebugOptions->dump_sizes = false; 408 409 Options->debug = DebugOptions; 410 411 Options->reschedule = true; 412 Options->scale_tile_loops = false; 413 Options->wrap = false; 414 415 Options->non_negative_parameters = false; 416 Options->ctx = nullptr; 417 Options->sizes = nullptr; 418 419 Options->tile_size = 32; 420 421 Options->use_private_memory = false; 422 Options->use_shared_memory = false; 423 Options->max_shared_memory = 0; 424 425 Options->target = PPCG_TARGET_CUDA; 426 Options->openmp = false; 427 Options->linearize_device_arrays = true; 428 Options->live_range_reordering = false; 429 430 Options->opencl_compiler_options = nullptr; 431 Options->opencl_use_gpu = false; 432 Options->opencl_n_include_file = 0; 433 Options->opencl_include_files = nullptr; 434 Options->opencl_print_kernel_types = false; 435 Options->opencl_embed_kernel_code = false; 436 437 Options->save_schedule_file = nullptr; 438 Options->load_schedule_file = nullptr; 439 440 return Options; 441 } 442 443 /// Get a tagged access relation containing all accesses of type @p AccessTy. 444 /// 445 /// Instead of a normal access of the form: 446 /// 447 /// Stmt[i,j,k] -> Array[f_0(i,j,k), f_1(i,j,k)] 448 /// 449 /// a tagged access has the form 450 /// 451 /// [Stmt[i,j,k] -> id[]] -> Array[f_0(i,j,k), f_1(i,j,k)] 452 /// 453 /// where 'id' is an additional space that references the memory access that 454 /// triggered the access. 455 /// 456 /// @param AccessTy The type of the memory accesses to collect. 457 /// 458 /// @return The relation describing all tagged memory accesses. 459 isl_union_map *getTaggedAccesses(enum MemoryAccess::AccessType AccessTy) { 460 isl_union_map *Accesses = isl_union_map_empty(S->getParamSpace()); 461 462 for (auto &Stmt : *S) 463 for (auto &Acc : Stmt) 464 if (Acc->getType() == AccessTy) { 465 isl_map *Relation = Acc->getAccessRelation(); 466 Relation = isl_map_intersect_domain(Relation, Stmt.getDomain()); 467 468 isl_space *Space = isl_map_get_space(Relation); 469 Space = isl_space_range(Space); 470 Space = isl_space_from_range(Space); 471 Space = isl_space_set_tuple_id(Space, isl_dim_in, Acc->getId()); 472 isl_map *Universe = isl_map_universe(Space); 473 Relation = isl_map_domain_product(Relation, Universe); 474 Accesses = isl_union_map_add_map(Accesses, Relation); 475 } 476 477 return Accesses; 478 } 479 480 /// Get the set of all read accesses, tagged with the access id. 481 /// 482 /// @see getTaggedAccesses 483 isl_union_map *getTaggedReads() { 484 return getTaggedAccesses(MemoryAccess::READ); 485 } 486 487 /// Get the set of all may (and must) accesses, tagged with the access id. 488 /// 489 /// @see getTaggedAccesses 490 isl_union_map *getTaggedMayWrites() { 491 return isl_union_map_union(getTaggedAccesses(MemoryAccess::MAY_WRITE), 492 getTaggedAccesses(MemoryAccess::MUST_WRITE)); 493 } 494 495 /// Get the set of all must accesses, tagged with the access id. 496 /// 497 /// @see getTaggedAccesses 498 isl_union_map *getTaggedMustWrites() { 499 return getTaggedAccesses(MemoryAccess::MUST_WRITE); 500 } 501 502 /// Collect parameter and array names as isl_ids. 503 /// 504 /// To reason about the different parameters and arrays used, ppcg requires 505 /// a list of all isl_ids in use. As PPCG traditionally performs 506 /// source-to-source compilation each of these isl_ids is mapped to the 507 /// expression that represents it. As we do not have a corresponding 508 /// expression in Polly, we just map each id to a 'zero' expression to match 509 /// the data format that ppcg expects. 510 /// 511 /// @returns Retun a map from collected ids to 'zero' ast expressions. 512 __isl_give isl_id_to_ast_expr *getNames() { 513 auto *Names = isl_id_to_ast_expr_alloc( 514 S->getIslCtx(), 515 S->getNumParams() + std::distance(S->array_begin(), S->array_end())); 516 auto *Zero = isl_ast_expr_from_val(isl_val_zero(S->getIslCtx())); 517 auto *Space = S->getParamSpace(); 518 519 for (int I = 0, E = S->getNumParams(); I < E; ++I) { 520 isl_id *Id = isl_space_get_dim_id(Space, isl_dim_param, I); 521 Names = isl_id_to_ast_expr_set(Names, Id, isl_ast_expr_copy(Zero)); 522 } 523 524 for (auto &Array : S->arrays()) { 525 auto Id = Array.second->getBasePtrId(); 526 Names = isl_id_to_ast_expr_set(Names, Id, isl_ast_expr_copy(Zero)); 527 } 528 529 isl_space_free(Space); 530 isl_ast_expr_free(Zero); 531 532 return Names; 533 } 534 535 /// Create a new PPCG scop from the current scop. 536 /// 537 /// The PPCG scop is initialized with data from the current polly::Scop. From 538 /// this initial data, the data-dependences in the PPCG scop are initialized. 539 /// We do not use Polly's dependence analysis for now, to ensure we match 540 /// the PPCG default behaviour more closely. 541 /// 542 /// @returns A new ppcg scop. 543 ppcg_scop *createPPCGScop() { 544 auto PPCGScop = (ppcg_scop *)malloc(sizeof(ppcg_scop)); 545 546 PPCGScop->options = createPPCGOptions(); 547 548 PPCGScop->start = 0; 549 PPCGScop->end = 0; 550 551 PPCGScop->context = S->getContext(); 552 PPCGScop->domain = S->getDomains(); 553 PPCGScop->call = nullptr; 554 PPCGScop->tagged_reads = getTaggedReads(); 555 PPCGScop->reads = S->getReads(); 556 PPCGScop->live_in = nullptr; 557 PPCGScop->tagged_may_writes = getTaggedMayWrites(); 558 PPCGScop->may_writes = S->getWrites(); 559 PPCGScop->tagged_must_writes = getTaggedMustWrites(); 560 PPCGScop->must_writes = S->getMustWrites(); 561 PPCGScop->live_out = nullptr; 562 PPCGScop->tagged_must_kills = isl_union_map_empty(S->getParamSpace()); 563 PPCGScop->tagger = nullptr; 564 565 PPCGScop->independence = nullptr; 566 PPCGScop->dep_flow = nullptr; 567 PPCGScop->tagged_dep_flow = nullptr; 568 PPCGScop->dep_false = nullptr; 569 PPCGScop->dep_forced = nullptr; 570 PPCGScop->dep_order = nullptr; 571 PPCGScop->tagged_dep_order = nullptr; 572 573 PPCGScop->schedule = S->getScheduleTree(); 574 PPCGScop->names = getNames(); 575 576 PPCGScop->pet = nullptr; 577 578 compute_tagger(PPCGScop); 579 compute_dependences(PPCGScop); 580 581 return PPCGScop; 582 } 583 584 /// Collect the array acesses in a statement. 585 /// 586 /// @param Stmt The statement for which to collect the accesses. 587 /// 588 /// @returns A list of array accesses. 589 gpu_stmt_access *getStmtAccesses(ScopStmt &Stmt) { 590 gpu_stmt_access *Accesses = nullptr; 591 592 for (MemoryAccess *Acc : Stmt) { 593 auto Access = isl_alloc_type(S->getIslCtx(), struct gpu_stmt_access); 594 Access->read = Acc->isRead(); 595 Access->write = Acc->isWrite(); 596 Access->access = Acc->getAccessRelation(); 597 isl_space *Space = isl_map_get_space(Access->access); 598 Space = isl_space_range(Space); 599 Space = isl_space_from_range(Space); 600 Space = isl_space_set_tuple_id(Space, isl_dim_in, Acc->getId()); 601 isl_map *Universe = isl_map_universe(Space); 602 Access->tagged_access = 603 isl_map_domain_product(Acc->getAccessRelation(), Universe); 604 Access->exact_write = Acc->isWrite(); 605 Access->ref_id = Acc->getId(); 606 Access->next = Accesses; 607 Accesses = Access; 608 } 609 610 return Accesses; 611 } 612 613 /// Collect the list of GPU statements. 614 /// 615 /// Each statement has an id, a pointer to the underlying data structure, 616 /// as well as a list with all memory accesses. 617 /// 618 /// TODO: Initialize the list of memory accesses. 619 /// 620 /// @returns A linked-list of statements. 621 gpu_stmt *getStatements() { 622 gpu_stmt *Stmts = isl_calloc_array(S->getIslCtx(), struct gpu_stmt, 623 std::distance(S->begin(), S->end())); 624 625 int i = 0; 626 for (auto &Stmt : *S) { 627 gpu_stmt *GPUStmt = &Stmts[i]; 628 629 GPUStmt->id = Stmt.getDomainId(); 630 631 // We use the pet stmt pointer to keep track of the Polly statements. 632 GPUStmt->stmt = (pet_stmt *)&Stmt; 633 GPUStmt->accesses = getStmtAccesses(Stmt); 634 i++; 635 } 636 637 return Stmts; 638 } 639 640 /// Derive the extent of an array. 641 /// 642 /// The extent of an array is defined by the set of memory locations for 643 /// which a memory access in the iteration domain exists. 644 /// 645 /// @param Array The array to derive the extent for. 646 /// 647 /// @returns An isl_set describing the extent of the array. 648 __isl_give isl_set *getExtent(ScopArrayInfo *Array) { 649 isl_union_map *Accesses = S->getAccesses(); 650 Accesses = isl_union_map_intersect_domain(Accesses, S->getDomains()); 651 isl_union_set *AccessUSet = isl_union_map_range(Accesses); 652 isl_set *AccessSet = 653 isl_union_set_extract_set(AccessUSet, Array->getSpace()); 654 isl_union_set_free(AccessUSet); 655 656 return AccessSet; 657 } 658 659 /// Derive the bounds of an array. 660 /// 661 /// For the first dimension we derive the bound of the array from the extent 662 /// of this dimension. For inner dimensions we obtain their size directly from 663 /// ScopArrayInfo. 664 /// 665 /// @param PPCGArray The array to compute bounds for. 666 /// @param Array The polly array from which to take the information. 667 void setArrayBounds(gpu_array_info &PPCGArray, ScopArrayInfo *Array) { 668 if (PPCGArray.n_index > 0) { 669 isl_set *Dom = isl_set_copy(PPCGArray.extent); 670 Dom = isl_set_project_out(Dom, isl_dim_set, 1, PPCGArray.n_index - 1); 671 isl_pw_aff *Bound = isl_set_dim_max(isl_set_copy(Dom), 0); 672 isl_set_free(Dom); 673 Dom = isl_pw_aff_domain(isl_pw_aff_copy(Bound)); 674 isl_local_space *LS = isl_local_space_from_space(isl_set_get_space(Dom)); 675 isl_aff *One = isl_aff_zero_on_domain(LS); 676 One = isl_aff_add_constant_si(One, 1); 677 Bound = isl_pw_aff_add(Bound, isl_pw_aff_alloc(Dom, One)); 678 Bound = isl_pw_aff_gist(Bound, S->getContext()); 679 PPCGArray.bound[0] = Bound; 680 } 681 682 for (unsigned i = 1; i < PPCGArray.n_index; ++i) { 683 isl_pw_aff *Bound = Array->getDimensionSizePw(i); 684 auto LS = isl_pw_aff_get_domain_space(Bound); 685 auto Aff = isl_multi_aff_zero(LS); 686 Bound = isl_pw_aff_pullback_multi_aff(Bound, Aff); 687 PPCGArray.bound[i] = Bound; 688 } 689 } 690 691 /// Create the arrays for @p PPCGProg. 692 /// 693 /// @param PPCGProg The program to compute the arrays for. 694 void createArrays(gpu_prog *PPCGProg) { 695 int i = 0; 696 for (auto &Element : S->arrays()) { 697 ScopArrayInfo *Array = Element.second.get(); 698 699 std::string TypeName; 700 raw_string_ostream OS(TypeName); 701 702 OS << *Array->getElementType(); 703 TypeName = OS.str(); 704 705 gpu_array_info &PPCGArray = PPCGProg->array[i]; 706 707 PPCGArray.space = Array->getSpace(); 708 PPCGArray.type = strdup(TypeName.c_str()); 709 PPCGArray.size = Array->getElementType()->getPrimitiveSizeInBits() / 8; 710 PPCGArray.name = strdup(Array->getName().c_str()); 711 PPCGArray.extent = nullptr; 712 PPCGArray.n_index = Array->getNumberOfDimensions(); 713 PPCGArray.bound = 714 isl_alloc_array(S->getIslCtx(), isl_pw_aff *, PPCGArray.n_index); 715 PPCGArray.extent = getExtent(Array); 716 PPCGArray.n_ref = 0; 717 PPCGArray.refs = nullptr; 718 PPCGArray.accessed = true; 719 PPCGArray.read_only_scalar = false; 720 PPCGArray.has_compound_element = false; 721 PPCGArray.local = false; 722 PPCGArray.declare_local = false; 723 PPCGArray.global = false; 724 PPCGArray.linearize = false; 725 PPCGArray.dep_order = nullptr; 726 727 setArrayBounds(PPCGArray, Array); 728 i++; 729 730 collect_references(PPCGProg, &PPCGArray); 731 } 732 } 733 734 /// Create an identity map between the arrays in the scop. 735 /// 736 /// @returns An identity map between the arrays in the scop. 737 isl_union_map *getArrayIdentity() { 738 isl_union_map *Maps = isl_union_map_empty(S->getParamSpace()); 739 740 for (auto &Item : S->arrays()) { 741 ScopArrayInfo *Array = Item.second.get(); 742 isl_space *Space = Array->getSpace(); 743 Space = isl_space_map_from_set(Space); 744 isl_map *Identity = isl_map_identity(Space); 745 Maps = isl_union_map_add_map(Maps, Identity); 746 } 747 748 return Maps; 749 } 750 751 /// Create a default-initialized PPCG GPU program. 752 /// 753 /// @returns A new gpu grogram description. 754 gpu_prog *createPPCGProg(ppcg_scop *PPCGScop) { 755 756 if (!PPCGScop) 757 return nullptr; 758 759 auto PPCGProg = isl_calloc_type(S->getIslCtx(), struct gpu_prog); 760 761 PPCGProg->ctx = S->getIslCtx(); 762 PPCGProg->scop = PPCGScop; 763 PPCGProg->context = isl_set_copy(PPCGScop->context); 764 PPCGProg->read = isl_union_map_copy(PPCGScop->reads); 765 PPCGProg->may_write = isl_union_map_copy(PPCGScop->may_writes); 766 PPCGProg->must_write = isl_union_map_copy(PPCGScop->must_writes); 767 PPCGProg->tagged_must_kill = 768 isl_union_map_copy(PPCGScop->tagged_must_kills); 769 PPCGProg->to_inner = getArrayIdentity(); 770 PPCGProg->to_outer = getArrayIdentity(); 771 PPCGProg->may_persist = compute_may_persist(PPCGProg); 772 PPCGProg->any_to_outer = nullptr; 773 PPCGProg->array_order = nullptr; 774 PPCGProg->n_stmts = std::distance(S->begin(), S->end()); 775 PPCGProg->stmts = getStatements(); 776 PPCGProg->n_array = std::distance(S->array_begin(), S->array_end()); 777 PPCGProg->array = isl_calloc_array(S->getIslCtx(), struct gpu_array_info, 778 PPCGProg->n_array); 779 780 createArrays(PPCGProg); 781 782 return PPCGProg; 783 } 784 785 struct PrintGPUUserData { 786 struct cuda_info *CudaInfo; 787 struct gpu_prog *PPCGProg; 788 std::vector<ppcg_kernel *> Kernels; 789 }; 790 791 /// Print a user statement node in the host code. 792 /// 793 /// We use ppcg's printing facilities to print the actual statement and 794 /// additionally build up a list of all kernels that are encountered in the 795 /// host ast. 796 /// 797 /// @param P The printer to print to 798 /// @param Options The printing options to use 799 /// @param Node The node to print 800 /// @param User A user pointer to carry additional data. This pointer is 801 /// expected to be of type PrintGPUUserData. 802 /// 803 /// @returns A printer to which the output has been printed. 804 static __isl_give isl_printer * 805 printHostUser(__isl_take isl_printer *P, 806 __isl_take isl_ast_print_options *Options, 807 __isl_take isl_ast_node *Node, void *User) { 808 auto Data = (struct PrintGPUUserData *)User; 809 auto Id = isl_ast_node_get_annotation(Node); 810 811 if (Id) { 812 bool IsUser = !strcmp(isl_id_get_name(Id), "user"); 813 814 // If this is a user statement, format it ourselves as ppcg would 815 // otherwise try to call pet functionality that is not available in 816 // Polly. 817 if (IsUser) { 818 P = isl_printer_start_line(P); 819 P = isl_printer_print_ast_node(P, Node); 820 P = isl_printer_end_line(P); 821 isl_id_free(Id); 822 isl_ast_print_options_free(Options); 823 return P; 824 } 825 826 auto Kernel = (struct ppcg_kernel *)isl_id_get_user(Id); 827 isl_id_free(Id); 828 Data->Kernels.push_back(Kernel); 829 } 830 831 return print_host_user(P, Options, Node, User); 832 } 833 834 /// Print C code corresponding to the control flow in @p Kernel. 835 /// 836 /// @param Kernel The kernel to print 837 void printKernel(ppcg_kernel *Kernel) { 838 auto *P = isl_printer_to_str(S->getIslCtx()); 839 P = isl_printer_set_output_format(P, ISL_FORMAT_C); 840 auto *Options = isl_ast_print_options_alloc(S->getIslCtx()); 841 P = isl_ast_node_print(Kernel->tree, P, Options); 842 char *String = isl_printer_get_str(P); 843 printf("%s\n", String); 844 free(String); 845 isl_printer_free(P); 846 } 847 848 /// Print C code corresponding to the GPU code described by @p Tree. 849 /// 850 /// @param Tree An AST describing GPU code 851 /// @param PPCGProg The PPCG program from which @Tree has been constructed. 852 void printGPUTree(isl_ast_node *Tree, gpu_prog *PPCGProg) { 853 auto *P = isl_printer_to_str(S->getIslCtx()); 854 P = isl_printer_set_output_format(P, ISL_FORMAT_C); 855 856 PrintGPUUserData Data; 857 Data.PPCGProg = PPCGProg; 858 859 auto *Options = isl_ast_print_options_alloc(S->getIslCtx()); 860 Options = 861 isl_ast_print_options_set_print_user(Options, printHostUser, &Data); 862 P = isl_ast_node_print(Tree, P, Options); 863 char *String = isl_printer_get_str(P); 864 printf("# host\n"); 865 printf("%s\n", String); 866 free(String); 867 isl_printer_free(P); 868 869 for (auto Kernel : Data.Kernels) { 870 printf("# kernel%d\n", Kernel->id); 871 printKernel(Kernel); 872 } 873 } 874 875 // Generate a GPU program using PPCG. 876 // 877 // GPU mapping consists of multiple steps: 878 // 879 // 1) Compute new schedule for the program. 880 // 2) Map schedule to GPU (TODO) 881 // 3) Generate code for new schedule (TODO) 882 // 883 // We do not use here the Polly ScheduleOptimizer, as the schedule optimizer 884 // is mostly CPU specific. Instead, we use PPCG's GPU code generation 885 // strategy directly from this pass. 886 gpu_gen *generateGPU(ppcg_scop *PPCGScop, gpu_prog *PPCGProg) { 887 888 auto PPCGGen = isl_calloc_type(S->getIslCtx(), struct gpu_gen); 889 890 PPCGGen->ctx = S->getIslCtx(); 891 PPCGGen->options = PPCGScop->options; 892 PPCGGen->print = nullptr; 893 PPCGGen->print_user = nullptr; 894 PPCGGen->build_ast_expr = &pollyBuildAstExprForStmt; 895 PPCGGen->prog = PPCGProg; 896 PPCGGen->tree = nullptr; 897 PPCGGen->types.n = 0; 898 PPCGGen->types.name = nullptr; 899 PPCGGen->sizes = nullptr; 900 PPCGGen->used_sizes = nullptr; 901 PPCGGen->kernel_id = 0; 902 903 // Set scheduling strategy to same strategy PPCG is using. 904 isl_options_set_schedule_outer_coincidence(PPCGGen->ctx, true); 905 isl_options_set_schedule_maximize_band_depth(PPCGGen->ctx, true); 906 isl_options_set_schedule_whole_component(PPCGGen->ctx, false); 907 908 isl_schedule *Schedule = get_schedule(PPCGGen); 909 910 int has_permutable = has_any_permutable_node(Schedule); 911 912 if (!has_permutable || has_permutable < 0) { 913 Schedule = isl_schedule_free(Schedule); 914 } else { 915 Schedule = map_to_device(PPCGGen, Schedule); 916 PPCGGen->tree = generate_code(PPCGGen, isl_schedule_copy(Schedule)); 917 } 918 919 if (DumpSchedule) { 920 isl_printer *P = isl_printer_to_str(S->getIslCtx()); 921 P = isl_printer_set_yaml_style(P, ISL_YAML_STYLE_BLOCK); 922 P = isl_printer_print_str(P, "Schedule\n"); 923 P = isl_printer_print_str(P, "========\n"); 924 if (Schedule) 925 P = isl_printer_print_schedule(P, Schedule); 926 else 927 P = isl_printer_print_str(P, "No schedule found\n"); 928 929 printf("%s\n", isl_printer_get_str(P)); 930 isl_printer_free(P); 931 } 932 933 if (DumpCode) { 934 printf("Code\n"); 935 printf("====\n"); 936 if (PPCGGen->tree) 937 printGPUTree(PPCGGen->tree, PPCGProg); 938 else 939 printf("No code generated\n"); 940 } 941 942 isl_schedule_free(Schedule); 943 944 return PPCGGen; 945 } 946 947 /// Free gpu_gen structure. 948 /// 949 /// @param PPCGGen The ppcg_gen object to free. 950 void freePPCGGen(gpu_gen *PPCGGen) { 951 isl_ast_node_free(PPCGGen->tree); 952 isl_union_map_free(PPCGGen->sizes); 953 isl_union_map_free(PPCGGen->used_sizes); 954 free(PPCGGen); 955 } 956 957 /// Free the options in the ppcg scop structure. 958 /// 959 /// ppcg is not freeing these options for us. To avoid leaks we do this 960 /// ourselves. 961 /// 962 /// @param PPCGScop The scop referencing the options to free. 963 void freeOptions(ppcg_scop *PPCGScop) { 964 free(PPCGScop->options->debug); 965 PPCGScop->options->debug = nullptr; 966 free(PPCGScop->options); 967 PPCGScop->options = nullptr; 968 } 969 970 /// Generate code for a given GPU AST described by @p Root. 971 /// 972 /// @param Root An isl_ast_node pointing to the root of the GPU AST. 973 /// @param Prog The GPU Program to generate code for. 974 void generateCode(__isl_take isl_ast_node *Root, gpu_prog *Prog) { 975 ScopAnnotator Annotator; 976 Annotator.buildAliasScopes(*S); 977 978 Region *R = &S->getRegion(); 979 980 simplifyRegion(R, DT, LI, RI); 981 982 BasicBlock *EnteringBB = R->getEnteringBlock(); 983 984 PollyIRBuilder Builder = createPollyIRBuilder(EnteringBB, Annotator); 985 986 GPUNodeBuilder NodeBuilder(Builder, Annotator, this, *DL, *LI, *SE, *DT, *S, 987 Prog); 988 989 // Only build the run-time condition and parameters _after_ having 990 // introduced the conditional branch. This is important as the conditional 991 // branch will guard the original scop from new induction variables that 992 // the SCEVExpander may introduce while code generating the parameters and 993 // which may introduce scalar dependences that prevent us from correctly 994 // code generating this scop. 995 BasicBlock *StartBlock = 996 executeScopConditionally(*S, this, Builder.getTrue()); 997 998 // TODO: Handle LICM 999 // TODO: Verify run-time checks 1000 auto SplitBlock = StartBlock->getSinglePredecessor(); 1001 Builder.SetInsertPoint(SplitBlock->getTerminator()); 1002 NodeBuilder.addParameters(S->getContext()); 1003 Builder.SetInsertPoint(&*StartBlock->begin()); 1004 NodeBuilder.create(Root); 1005 NodeBuilder.finalizeSCoP(*S); 1006 } 1007 1008 bool runOnScop(Scop &CurrentScop) override { 1009 S = &CurrentScop; 1010 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 1011 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1012 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 1013 DL = &S->getRegion().getEntry()->getParent()->getParent()->getDataLayout(); 1014 RI = &getAnalysis<RegionInfoPass>().getRegionInfo(); 1015 1016 // We currently do not support scops with invariant loads. 1017 if (S->hasInvariantAccesses()) 1018 return false; 1019 1020 auto PPCGScop = createPPCGScop(); 1021 auto PPCGProg = createPPCGProg(PPCGScop); 1022 auto PPCGGen = generateGPU(PPCGScop, PPCGProg); 1023 1024 if (PPCGGen->tree) 1025 generateCode(isl_ast_node_copy(PPCGGen->tree), PPCGProg); 1026 1027 freeOptions(PPCGScop); 1028 freePPCGGen(PPCGGen); 1029 gpu_prog_free(PPCGProg); 1030 ppcg_scop_free(PPCGScop); 1031 1032 return true; 1033 } 1034 1035 void printScop(raw_ostream &, Scop &) const override {} 1036 1037 void getAnalysisUsage(AnalysisUsage &AU) const override { 1038 AU.addRequired<DominatorTreeWrapperPass>(); 1039 AU.addRequired<RegionInfoPass>(); 1040 AU.addRequired<ScalarEvolutionWrapperPass>(); 1041 AU.addRequired<ScopDetection>(); 1042 AU.addRequired<ScopInfoRegionPass>(); 1043 AU.addRequired<LoopInfoWrapperPass>(); 1044 1045 AU.addPreserved<AAResultsWrapperPass>(); 1046 AU.addPreserved<BasicAAWrapperPass>(); 1047 AU.addPreserved<LoopInfoWrapperPass>(); 1048 AU.addPreserved<DominatorTreeWrapperPass>(); 1049 AU.addPreserved<GlobalsAAWrapperPass>(); 1050 AU.addPreserved<PostDominatorTreeWrapperPass>(); 1051 AU.addPreserved<ScopDetection>(); 1052 AU.addPreserved<ScalarEvolutionWrapperPass>(); 1053 AU.addPreserved<SCEVAAWrapperPass>(); 1054 1055 // FIXME: We do not yet add regions for the newly generated code to the 1056 // region tree. 1057 AU.addPreserved<RegionInfoPass>(); 1058 AU.addPreserved<ScopInfoRegionPass>(); 1059 } 1060 }; 1061 } 1062 1063 char PPCGCodeGeneration::ID = 1; 1064 1065 Pass *polly::createPPCGCodeGenerationPass() { return new PPCGCodeGeneration(); } 1066 1067 INITIALIZE_PASS_BEGIN(PPCGCodeGeneration, "polly-codegen-ppcg", 1068 "Polly - Apply PPCG translation to SCOP", false, false) 1069 INITIALIZE_PASS_DEPENDENCY(DependenceInfo); 1070 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass); 1071 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass); 1072 INITIALIZE_PASS_DEPENDENCY(RegionInfoPass); 1073 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass); 1074 INITIALIZE_PASS_DEPENDENCY(ScopDetection); 1075 INITIALIZE_PASS_END(PPCGCodeGeneration, "polly-codegen-ppcg", 1076 "Polly - Apply PPCG translation to SCOP", false, false) 1077