1 //===------ PPCGCodeGeneration.cpp - Polly Accelerator Code Generation. ---===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Take a scop created by ScopInfo and map it to GPU code using the ppcg 10 // GPU mapping strategy. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "polly/CodeGen/PPCGCodeGeneration.h" 15 #include "polly/CodeGen/CodeGeneration.h" 16 #include "polly/CodeGen/IslAst.h" 17 #include "polly/CodeGen/IslNodeBuilder.h" 18 #include "polly/CodeGen/PerfMonitor.h" 19 #include "polly/CodeGen/Utils.h" 20 #include "polly/DependenceInfo.h" 21 #include "polly/LinkAllPasses.h" 22 #include "polly/Options.h" 23 #include "polly/ScopDetection.h" 24 #include "polly/ScopInfo.h" 25 #include "polly/Support/SCEVValidator.h" 26 #include "llvm/ADT/PostOrderIterator.h" 27 #include "llvm/Analysis/TargetTransformInfo.h" 28 #include "llvm/IR/LegacyPassManager.h" 29 #include "llvm/IR/Verifier.h" 30 #include "llvm/IRReader/IRReader.h" 31 #include "llvm/Linker/Linker.h" 32 #include "llvm/Support/SourceMgr.h" 33 #include "llvm/Support/TargetRegistry.h" 34 #include "llvm/Target/TargetMachine.h" 35 #include "llvm/Transforms/IPO/PassManagerBuilder.h" 36 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 37 #include "isl/union_map.h" 38 39 extern "C" { 40 #include "ppcg/cuda.h" 41 #include "ppcg/gpu.h" 42 #include "ppcg/ppcg.h" 43 } 44 45 #include "llvm/Support/Debug.h" 46 47 using namespace polly; 48 using namespace llvm; 49 50 #define DEBUG_TYPE "polly-codegen-ppcg" 51 52 static cl::opt<bool> DumpSchedule("polly-acc-dump-schedule", 53 cl::desc("Dump the computed GPU Schedule"), 54 cl::Hidden, cl::init(false), cl::ZeroOrMore, 55 cl::cat(PollyCategory)); 56 57 static cl::opt<bool> 58 DumpCode("polly-acc-dump-code", 59 cl::desc("Dump C code describing the GPU mapping"), cl::Hidden, 60 cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory)); 61 62 static cl::opt<bool> DumpKernelIR("polly-acc-dump-kernel-ir", 63 cl::desc("Dump the kernel LLVM-IR"), 64 cl::Hidden, cl::init(false), cl::ZeroOrMore, 65 cl::cat(PollyCategory)); 66 67 static cl::opt<bool> DumpKernelASM("polly-acc-dump-kernel-asm", 68 cl::desc("Dump the kernel assembly code"), 69 cl::Hidden, cl::init(false), cl::ZeroOrMore, 70 cl::cat(PollyCategory)); 71 72 static cl::opt<bool> FastMath("polly-acc-fastmath", 73 cl::desc("Allow unsafe math optimizations"), 74 cl::Hidden, cl::init(false), cl::ZeroOrMore, 75 cl::cat(PollyCategory)); 76 static cl::opt<bool> SharedMemory("polly-acc-use-shared", 77 cl::desc("Use shared memory"), cl::Hidden, 78 cl::init(false), cl::ZeroOrMore, 79 cl::cat(PollyCategory)); 80 static cl::opt<bool> PrivateMemory("polly-acc-use-private", 81 cl::desc("Use private memory"), cl::Hidden, 82 cl::init(false), cl::ZeroOrMore, 83 cl::cat(PollyCategory)); 84 85 bool polly::PollyManagedMemory; 86 static cl::opt<bool, true> 87 XManagedMemory("polly-acc-codegen-managed-memory", 88 cl::desc("Generate Host kernel code assuming" 89 " that all memory has been" 90 " declared as managed memory"), 91 cl::location(PollyManagedMemory), cl::Hidden, 92 cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory)); 93 94 static cl::opt<bool> 95 FailOnVerifyModuleFailure("polly-acc-fail-on-verify-module-failure", 96 cl::desc("Fail and generate a backtrace if" 97 " verifyModule fails on the GPU " 98 " kernel module."), 99 cl::Hidden, cl::init(false), cl::ZeroOrMore, 100 cl::cat(PollyCategory)); 101 102 static cl::opt<std::string> CUDALibDevice( 103 "polly-acc-libdevice", cl::desc("Path to CUDA libdevice"), cl::Hidden, 104 cl::init("/usr/local/cuda/nvvm/libdevice/libdevice.compute_20.10.ll"), 105 cl::ZeroOrMore, cl::cat(PollyCategory)); 106 107 static cl::opt<std::string> 108 CudaVersion("polly-acc-cuda-version", 109 cl::desc("The CUDA version to compile for"), cl::Hidden, 110 cl::init("sm_30"), cl::ZeroOrMore, cl::cat(PollyCategory)); 111 112 static cl::opt<int> 113 MinCompute("polly-acc-mincompute", 114 cl::desc("Minimal number of compute statements to run on GPU."), 115 cl::Hidden, cl::init(10 * 512 * 512)); 116 117 extern bool polly::PerfMonitoring; 118 119 /// Return a unique name for a Scop, which is the scop region with the 120 /// function name. 121 std::string getUniqueScopName(const Scop *S) { 122 return "Scop Region: " + S->getNameStr() + 123 " | Function: " + std::string(S->getFunction().getName()); 124 } 125 126 /// Used to store information PPCG wants for kills. This information is 127 /// used by live range reordering. 128 /// 129 /// @see computeLiveRangeReordering 130 /// @see GPUNodeBuilder::createPPCGScop 131 /// @see GPUNodeBuilder::createPPCGProg 132 struct MustKillsInfo { 133 /// Collection of all kill statements that will be sequenced at the end of 134 /// PPCGScop->schedule. 135 /// 136 /// The nodes in `KillsSchedule` will be merged using `isl_schedule_set` 137 /// which merges schedules in *arbitrary* order. 138 /// (we don't care about the order of the kills anyway). 139 isl::schedule KillsSchedule; 140 /// Map from kill statement instances to scalars that need to be 141 /// killed. 142 /// 143 /// We currently derive kill information for: 144 /// 1. phi nodes. PHI nodes are not alive outside the scop and can 145 /// consequently all be killed. 146 /// 2. Scalar arrays that are not used outside the Scop. This is 147 /// checked by `isScalarUsesContainedInScop`. 148 /// [params] -> { [Stmt_phantom[] -> ref_phantom[]] -> scalar_to_kill[] } 149 isl::union_map TaggedMustKills; 150 151 /// Tagged must kills stripped of the tags. 152 /// [params] -> { Stmt_phantom[] -> scalar_to_kill[] } 153 isl::union_map MustKills; 154 155 MustKillsInfo() : KillsSchedule(nullptr) {} 156 }; 157 158 /// Check if SAI's uses are entirely contained within Scop S. 159 /// If a scalar is used only with a Scop, we are free to kill it, as no data 160 /// can flow in/out of the value any more. 161 /// @see computeMustKillsInfo 162 static bool isScalarUsesContainedInScop(const Scop &S, 163 const ScopArrayInfo *SAI) { 164 assert(SAI->isValueKind() && "this function only deals with scalars." 165 " Dealing with arrays required alias analysis"); 166 167 const Region &R = S.getRegion(); 168 for (User *U : SAI->getBasePtr()->users()) { 169 Instruction *I = dyn_cast<Instruction>(U); 170 assert(I && "invalid user of scop array info"); 171 if (!R.contains(I)) 172 return false; 173 } 174 return true; 175 } 176 177 /// Compute must-kills needed to enable live range reordering with PPCG. 178 /// 179 /// @params S The Scop to compute live range reordering information 180 /// @returns live range reordering information that can be used to setup 181 /// PPCG. 182 static MustKillsInfo computeMustKillsInfo(const Scop &S) { 183 const isl::space ParamSpace = S.getParamSpace(); 184 MustKillsInfo Info; 185 186 // 1. Collect all ScopArrayInfo that satisfy *any* of the criteria: 187 // 1.1 phi nodes in scop. 188 // 1.2 scalars that are only used within the scop 189 SmallVector<isl::id, 4> KillMemIds; 190 for (ScopArrayInfo *SAI : S.arrays()) { 191 if (SAI->isPHIKind() || 192 (SAI->isValueKind() && isScalarUsesContainedInScop(S, SAI))) 193 KillMemIds.push_back(isl::manage(SAI->getBasePtrId().release())); 194 } 195 196 Info.TaggedMustKills = isl::union_map::empty(ParamSpace); 197 Info.MustKills = isl::union_map::empty(ParamSpace); 198 199 // Initialising KillsSchedule to `isl_set_empty` creates an empty node in the 200 // schedule: 201 // - filter: "[control] -> { }" 202 // So, we choose to not create this to keep the output a little nicer, 203 // at the cost of some code complexity. 204 Info.KillsSchedule = nullptr; 205 206 for (isl::id &ToKillId : KillMemIds) { 207 isl::id KillStmtId = isl::id::alloc( 208 S.getIslCtx(), 209 std::string("SKill_phantom_").append(ToKillId.get_name()), nullptr); 210 211 // NOTE: construction of tagged_must_kill: 212 // 2. We need to construct a map: 213 // [param] -> { [Stmt_phantom[] -> ref_phantom[]] -> scalar_to_kill[] } 214 // To construct this, we use `isl_map_domain_product` on 2 maps`: 215 // 2a. StmtToScalar: 216 // [param] -> { Stmt_phantom[] -> scalar_to_kill[] } 217 // 2b. PhantomRefToScalar: 218 // [param] -> { ref_phantom[] -> scalar_to_kill[] } 219 // 220 // Combining these with `isl_map_domain_product` gives us 221 // TaggedMustKill: 222 // [param] -> { [Stmt[] -> phantom_ref[]] -> scalar_to_kill[] } 223 224 // 2a. [param] -> { Stmt[] -> scalar_to_kill[] } 225 isl::map StmtToScalar = isl::map::universe(ParamSpace); 226 StmtToScalar = StmtToScalar.set_tuple_id(isl::dim::in, isl::id(KillStmtId)); 227 StmtToScalar = StmtToScalar.set_tuple_id(isl::dim::out, isl::id(ToKillId)); 228 229 isl::id PhantomRefId = isl::id::alloc( 230 S.getIslCtx(), std::string("ref_phantom") + ToKillId.get_name(), 231 nullptr); 232 233 // 2b. [param] -> { phantom_ref[] -> scalar_to_kill[] } 234 isl::map PhantomRefToScalar = isl::map::universe(ParamSpace); 235 PhantomRefToScalar = 236 PhantomRefToScalar.set_tuple_id(isl::dim::in, PhantomRefId); 237 PhantomRefToScalar = 238 PhantomRefToScalar.set_tuple_id(isl::dim::out, ToKillId); 239 240 // 2. [param] -> { [Stmt[] -> phantom_ref[]] -> scalar_to_kill[] } 241 isl::map TaggedMustKill = StmtToScalar.domain_product(PhantomRefToScalar); 242 Info.TaggedMustKills = Info.TaggedMustKills.unite(TaggedMustKill); 243 244 // 2. [param] -> { Stmt[] -> scalar_to_kill[] } 245 Info.MustKills = Info.TaggedMustKills.domain_factor_domain(); 246 247 // 3. Create the kill schedule of the form: 248 // "[param] -> { Stmt_phantom[] }" 249 // Then add this to Info.KillsSchedule. 250 isl::space KillStmtSpace = ParamSpace; 251 KillStmtSpace = KillStmtSpace.set_tuple_id(isl::dim::set, KillStmtId); 252 isl::union_set KillStmtDomain = isl::set::universe(KillStmtSpace); 253 254 isl::schedule KillSchedule = isl::schedule::from_domain(KillStmtDomain); 255 if (Info.KillsSchedule) 256 Info.KillsSchedule = isl::manage( 257 isl_schedule_set(Info.KillsSchedule.release(), KillSchedule.copy())); 258 else 259 Info.KillsSchedule = KillSchedule; 260 } 261 262 return Info; 263 } 264 265 /// Create the ast expressions for a ScopStmt. 266 /// 267 /// This function is a callback for to generate the ast expressions for each 268 /// of the scheduled ScopStmts. 269 static __isl_give isl_id_to_ast_expr *pollyBuildAstExprForStmt( 270 void *StmtT, __isl_take isl_ast_build *Build_C, 271 isl_multi_pw_aff *(*FunctionIndex)(__isl_take isl_multi_pw_aff *MPA, 272 isl_id *Id, void *User), 273 void *UserIndex, 274 isl_ast_expr *(*FunctionExpr)(isl_ast_expr *Expr, isl_id *Id, void *User), 275 void *UserExpr) { 276 277 ScopStmt *Stmt = (ScopStmt *)StmtT; 278 279 if (!Stmt || !Build_C) 280 return NULL; 281 282 isl::ast_build Build = isl::manage_copy(Build_C); 283 isl::ctx Ctx = Build.get_ctx(); 284 isl::id_to_ast_expr RefToExpr = isl::id_to_ast_expr::alloc(Ctx, 0); 285 286 Stmt->setAstBuild(Build); 287 288 for (MemoryAccess *Acc : *Stmt) { 289 isl::map AddrFunc = Acc->getAddressFunction(); 290 AddrFunc = AddrFunc.intersect_domain(Stmt->getDomain()); 291 292 isl::id RefId = Acc->getId(); 293 isl::pw_multi_aff PMA = isl::pw_multi_aff::from_map(AddrFunc); 294 295 isl::multi_pw_aff MPA = isl::multi_pw_aff(PMA); 296 MPA = MPA.coalesce(); 297 MPA = isl::manage(FunctionIndex(MPA.release(), RefId.get(), UserIndex)); 298 299 isl::ast_expr Access = Build.access_from(MPA); 300 Access = isl::manage(FunctionExpr(Access.release(), RefId.get(), UserExpr)); 301 RefToExpr = RefToExpr.set(RefId, Access); 302 } 303 304 return RefToExpr.release(); 305 } 306 307 /// Given a LLVM Type, compute its size in bytes, 308 static int computeSizeInBytes(const Type *T) { 309 int bytes = T->getPrimitiveSizeInBits() / 8; 310 if (bytes == 0) 311 bytes = T->getScalarSizeInBits() / 8; 312 return bytes; 313 } 314 315 /// Generate code for a GPU specific isl AST. 316 /// 317 /// The GPUNodeBuilder augments the general existing IslNodeBuilder, which 318 /// generates code for general-purpose AST nodes, with special functionality 319 /// for generating GPU specific user nodes. 320 /// 321 /// @see GPUNodeBuilder::createUser 322 class GPUNodeBuilder : public IslNodeBuilder { 323 public: 324 GPUNodeBuilder(PollyIRBuilder &Builder, ScopAnnotator &Annotator, 325 const DataLayout &DL, LoopInfo &LI, ScalarEvolution &SE, 326 DominatorTree &DT, Scop &S, BasicBlock *StartBlock, 327 gpu_prog *Prog, GPURuntime Runtime, GPUArch Arch) 328 : IslNodeBuilder(Builder, Annotator, DL, LI, SE, DT, S, StartBlock), 329 Prog(Prog), Runtime(Runtime), Arch(Arch) { 330 getExprBuilder().setIDToSAI(&IDToSAI); 331 } 332 333 /// Create after-run-time-check initialization code. 334 void initializeAfterRTH(); 335 336 /// Finalize the generated scop. 337 virtual void finalize(); 338 339 /// Track if the full build process was successful. 340 /// 341 /// This value is set to false, if throughout the build process an error 342 /// occurred which prevents us from generating valid GPU code. 343 bool BuildSuccessful = true; 344 345 /// The maximal number of loops surrounding a sequential kernel. 346 unsigned DeepestSequential = 0; 347 348 /// The maximal number of loops surrounding a parallel kernel. 349 unsigned DeepestParallel = 0; 350 351 /// Return the name to set for the ptx_kernel. 352 std::string getKernelFuncName(int Kernel_id); 353 354 private: 355 /// A vector of array base pointers for which a new ScopArrayInfo was created. 356 /// 357 /// This vector is used to delete the ScopArrayInfo when it is not needed any 358 /// more. 359 std::vector<Value *> LocalArrays; 360 361 /// A map from ScopArrays to their corresponding device allocations. 362 std::map<ScopArrayInfo *, Value *> DeviceAllocations; 363 364 /// The current GPU context. 365 Value *GPUContext; 366 367 /// The set of isl_ids allocated in the kernel 368 std::vector<isl_id *> KernelIds; 369 370 /// A module containing GPU code. 371 /// 372 /// This pointer is only set in case we are currently generating GPU code. 373 std::unique_ptr<Module> GPUModule; 374 375 /// The GPU program we generate code for. 376 gpu_prog *Prog; 377 378 /// The GPU Runtime implementation to use (OpenCL or CUDA). 379 GPURuntime Runtime; 380 381 /// The GPU Architecture to target. 382 GPUArch Arch; 383 384 /// Class to free isl_ids. 385 class IslIdDeleter { 386 public: 387 void operator()(__isl_take isl_id *Id) { isl_id_free(Id); }; 388 }; 389 390 /// A set containing all isl_ids allocated in a GPU kernel. 391 /// 392 /// By releasing this set all isl_ids will be freed. 393 std::set<std::unique_ptr<isl_id, IslIdDeleter>> KernelIDs; 394 395 IslExprBuilder::IDToScopArrayInfoTy IDToSAI; 396 397 /// Create code for user-defined AST nodes. 398 /// 399 /// These AST nodes can be of type: 400 /// 401 /// - ScopStmt: A computational statement (TODO) 402 /// - Kernel: A GPU kernel call (TODO) 403 /// - Data-Transfer: A GPU <-> CPU data-transfer 404 /// - In-kernel synchronization 405 /// - In-kernel memory copy statement 406 /// 407 /// @param UserStmt The ast node to generate code for. 408 virtual void createUser(__isl_take isl_ast_node *UserStmt); 409 410 virtual void createFor(__isl_take isl_ast_node *Node); 411 412 enum DataDirection { HOST_TO_DEVICE, DEVICE_TO_HOST }; 413 414 /// Create code for a data transfer statement 415 /// 416 /// @param TransferStmt The data transfer statement. 417 /// @param Direction The direction in which to transfer data. 418 void createDataTransfer(__isl_take isl_ast_node *TransferStmt, 419 enum DataDirection Direction); 420 421 /// Find llvm::Values referenced in GPU kernel. 422 /// 423 /// @param Kernel The kernel to scan for llvm::Values 424 /// 425 /// @returns A tuple, whose: 426 /// - First element contains the set of values referenced by the 427 /// kernel 428 /// - Second element contains the set of functions referenced by the 429 /// kernel. All functions in the set satisfy 430 /// `isValidFunctionInKernel`. 431 /// - Third element contains loops that have induction variables 432 /// which are used in the kernel, *and* these loops are *neither* 433 /// in the scop, nor do they immediately surroung the Scop. 434 /// See [Code generation of induction variables of loops outside 435 /// Scops] 436 std::tuple<SetVector<Value *>, SetVector<Function *>, SetVector<const Loop *>, 437 isl::space> 438 getReferencesInKernel(ppcg_kernel *Kernel); 439 440 /// Compute the sizes of the execution grid for a given kernel. 441 /// 442 /// @param Kernel The kernel to compute grid sizes for. 443 /// 444 /// @returns A tuple with grid sizes for X and Y dimension 445 std::tuple<Value *, Value *> getGridSizes(ppcg_kernel *Kernel); 446 447 /// Get the managed array pointer for sending host pointers to the device. 448 /// \note 449 /// This is to be used only with managed memory 450 Value *getManagedDeviceArray(gpu_array_info *Array, ScopArrayInfo *ArrayInfo); 451 452 /// Compute the sizes of the thread blocks for a given kernel. 453 /// 454 /// @param Kernel The kernel to compute thread block sizes for. 455 /// 456 /// @returns A tuple with thread block sizes for X, Y, and Z dimensions. 457 std::tuple<Value *, Value *, Value *> getBlockSizes(ppcg_kernel *Kernel); 458 459 /// Store a specific kernel launch parameter in the array of kernel launch 460 /// parameters. 461 /// 462 /// @param Parameters The list of parameters in which to store. 463 /// @param Param The kernel launch parameter to store. 464 /// @param Index The index in the parameter list, at which to store the 465 /// parameter. 466 void insertStoreParameter(Instruction *Parameters, Instruction *Param, 467 int Index); 468 469 /// Create kernel launch parameters. 470 /// 471 /// @param Kernel The kernel to create parameters for. 472 /// @param F The kernel function that has been created. 473 /// @param SubtreeValues The set of llvm::Values referenced by this kernel. 474 /// 475 /// @returns A stack allocated array with pointers to the parameter 476 /// values that are passed to the kernel. 477 Value *createLaunchParameters(ppcg_kernel *Kernel, Function *F, 478 SetVector<Value *> SubtreeValues); 479 480 /// Create declarations for kernel variable. 481 /// 482 /// This includes shared memory declarations. 483 /// 484 /// @param Kernel The kernel definition to create variables for. 485 /// @param FN The function into which to generate the variables. 486 void createKernelVariables(ppcg_kernel *Kernel, Function *FN); 487 488 /// Add CUDA annotations to module. 489 /// 490 /// Add a set of CUDA annotations that declares the maximal block dimensions 491 /// that will be used to execute the CUDA kernel. This allows the NVIDIA 492 /// PTX compiler to bound the number of allocated registers to ensure the 493 /// resulting kernel is known to run with up to as many block dimensions 494 /// as specified here. 495 /// 496 /// @param M The module to add the annotations to. 497 /// @param BlockDimX The size of block dimension X. 498 /// @param BlockDimY The size of block dimension Y. 499 /// @param BlockDimZ The size of block dimension Z. 500 void addCUDAAnnotations(Module *M, Value *BlockDimX, Value *BlockDimY, 501 Value *BlockDimZ); 502 503 /// Create GPU kernel. 504 /// 505 /// Code generate the kernel described by @p KernelStmt. 506 /// 507 /// @param KernelStmt The ast node to generate kernel code for. 508 void createKernel(__isl_take isl_ast_node *KernelStmt); 509 510 /// Generate code that computes the size of an array. 511 /// 512 /// @param Array The array for which to compute a size. 513 Value *getArraySize(gpu_array_info *Array); 514 515 /// Generate code to compute the minimal offset at which an array is accessed. 516 /// 517 /// The offset of an array is the minimal array location accessed in a scop. 518 /// 519 /// Example: 520 /// 521 /// for (long i = 0; i < 100; i++) 522 /// A[i + 42] += ... 523 /// 524 /// getArrayOffset(A) results in 42. 525 /// 526 /// @param Array The array for which to compute the offset. 527 /// @returns An llvm::Value that contains the offset of the array. 528 Value *getArrayOffset(gpu_array_info *Array); 529 530 /// Prepare the kernel arguments for kernel code generation 531 /// 532 /// @param Kernel The kernel to generate code for. 533 /// @param FN The function created for the kernel. 534 void prepareKernelArguments(ppcg_kernel *Kernel, Function *FN); 535 536 /// Create kernel function. 537 /// 538 /// Create a kernel function located in a newly created module that can serve 539 /// as target for device code generation. Set the Builder to point to the 540 /// start block of this newly created function. 541 /// 542 /// @param Kernel The kernel to generate code for. 543 /// @param SubtreeValues The set of llvm::Values referenced by this kernel. 544 /// @param SubtreeFunctions The set of llvm::Functions referenced by this 545 /// kernel. 546 void createKernelFunction(ppcg_kernel *Kernel, 547 SetVector<Value *> &SubtreeValues, 548 SetVector<Function *> &SubtreeFunctions); 549 550 /// Create the declaration of a kernel function. 551 /// 552 /// The kernel function takes as arguments: 553 /// 554 /// - One i8 pointer for each external array reference used in the kernel. 555 /// - Host iterators 556 /// - Parameters 557 /// - Other LLVM Value references (TODO) 558 /// 559 /// @param Kernel The kernel to generate the function declaration for. 560 /// @param SubtreeValues The set of llvm::Values referenced by this kernel. 561 /// 562 /// @returns The newly declared function. 563 Function *createKernelFunctionDecl(ppcg_kernel *Kernel, 564 SetVector<Value *> &SubtreeValues); 565 566 /// Insert intrinsic functions to obtain thread and block ids. 567 /// 568 /// @param The kernel to generate the intrinsic functions for. 569 void insertKernelIntrinsics(ppcg_kernel *Kernel); 570 571 /// Insert function calls to retrieve the SPIR group/local ids. 572 /// 573 /// @param Kernel The kernel to generate the function calls for. 574 /// @param SizeTypeIs64Bit Whether size_t of the openCl device is 64bit. 575 void insertKernelCallsSPIR(ppcg_kernel *Kernel, bool SizeTypeIs64bit); 576 577 /// Setup the creation of functions referenced by the GPU kernel. 578 /// 579 /// 1. Create new function declarations in GPUModule which are the same as 580 /// SubtreeFunctions. 581 /// 582 /// 2. Populate IslNodeBuilder::ValueMap with mappings from 583 /// old functions (that come from the original module) to new functions 584 /// (that are created within GPUModule). That way, we generate references 585 /// to the correct function (in GPUModule) in BlockGenerator. 586 /// 587 /// @see IslNodeBuilder::ValueMap 588 /// @see BlockGenerator::GlobalMap 589 /// @see BlockGenerator::getNewValue 590 /// @see GPUNodeBuilder::getReferencesInKernel. 591 /// 592 /// @param SubtreeFunctions The set of llvm::Functions referenced by 593 /// this kernel. 594 void setupKernelSubtreeFunctions(SetVector<Function *> SubtreeFunctions); 595 596 /// Create a global-to-shared or shared-to-global copy statement. 597 /// 598 /// @param CopyStmt The copy statement to generate code for 599 void createKernelCopy(ppcg_kernel_stmt *CopyStmt); 600 601 /// Create code for a ScopStmt called in @p Expr. 602 /// 603 /// @param Expr The expression containing the call. 604 /// @param KernelStmt The kernel statement referenced in the call. 605 void createScopStmt(isl_ast_expr *Expr, ppcg_kernel_stmt *KernelStmt); 606 607 /// Create an in-kernel synchronization call. 608 void createKernelSync(); 609 610 /// Create a PTX assembly string for the current GPU kernel. 611 /// 612 /// @returns A string containing the corresponding PTX assembly code. 613 std::string createKernelASM(); 614 615 /// Remove references from the dominator tree to the kernel function @p F. 616 /// 617 /// @param F The function to remove references to. 618 void clearDominators(Function *F); 619 620 /// Remove references from scalar evolution to the kernel function @p F. 621 /// 622 /// @param F The function to remove references to. 623 void clearScalarEvolution(Function *F); 624 625 /// Remove references from loop info to the kernel function @p F. 626 /// 627 /// @param F The function to remove references to. 628 void clearLoops(Function *F); 629 630 /// Check if the scop requires to be linked with CUDA's libdevice. 631 bool requiresCUDALibDevice(); 632 633 /// Link with the NVIDIA libdevice library (if needed and available). 634 void addCUDALibDevice(); 635 636 /// Finalize the generation of the kernel function. 637 /// 638 /// Free the LLVM-IR module corresponding to the kernel and -- if requested -- 639 /// dump its IR to stderr. 640 /// 641 /// @returns The Assembly string of the kernel. 642 std::string finalizeKernelFunction(); 643 644 /// Finalize the generation of the kernel arguments. 645 /// 646 /// This function ensures that not-read-only scalars used in a kernel are 647 /// stored back to the global memory location they are backed with before 648 /// the kernel terminates. 649 /// 650 /// @params Kernel The kernel to finalize kernel arguments for. 651 void finalizeKernelArguments(ppcg_kernel *Kernel); 652 653 /// Create code that allocates memory to store arrays on device. 654 void allocateDeviceArrays(); 655 656 /// Create code to prepare the managed device pointers. 657 void prepareManagedDeviceArrays(); 658 659 /// Free all allocated device arrays. 660 void freeDeviceArrays(); 661 662 /// Create a call to initialize the GPU context. 663 /// 664 /// @returns A pointer to the newly initialized context. 665 Value *createCallInitContext(); 666 667 /// Create a call to get the device pointer for a kernel allocation. 668 /// 669 /// @param Allocation The Polly GPU allocation 670 /// 671 /// @returns The device parameter corresponding to this allocation. 672 Value *createCallGetDevicePtr(Value *Allocation); 673 674 /// Create a call to free the GPU context. 675 /// 676 /// @param Context A pointer to an initialized GPU context. 677 void createCallFreeContext(Value *Context); 678 679 /// Create a call to allocate memory on the device. 680 /// 681 /// @param Size The size of memory to allocate 682 /// 683 /// @returns A pointer that identifies this allocation. 684 Value *createCallAllocateMemoryForDevice(Value *Size); 685 686 /// Create a call to free a device array. 687 /// 688 /// @param Array The device array to free. 689 void createCallFreeDeviceMemory(Value *Array); 690 691 /// Create a call to copy data from host to device. 692 /// 693 /// @param HostPtr A pointer to the host data that should be copied. 694 /// @param DevicePtr A device pointer specifying the location to copy to. 695 void createCallCopyFromHostToDevice(Value *HostPtr, Value *DevicePtr, 696 Value *Size); 697 698 /// Create a call to copy data from device to host. 699 /// 700 /// @param DevicePtr A pointer to the device data that should be copied. 701 /// @param HostPtr A host pointer specifying the location to copy to. 702 void createCallCopyFromDeviceToHost(Value *DevicePtr, Value *HostPtr, 703 Value *Size); 704 705 /// Create a call to synchronize Host & Device. 706 /// \note 707 /// This is to be used only with managed memory. 708 void createCallSynchronizeDevice(); 709 710 /// Create a call to get a kernel from an assembly string. 711 /// 712 /// @param Buffer The string describing the kernel. 713 /// @param Entry The name of the kernel function to call. 714 /// 715 /// @returns A pointer to a kernel object 716 Value *createCallGetKernel(Value *Buffer, Value *Entry); 717 718 /// Create a call to free a GPU kernel. 719 /// 720 /// @param GPUKernel THe kernel to free. 721 void createCallFreeKernel(Value *GPUKernel); 722 723 /// Create a call to launch a GPU kernel. 724 /// 725 /// @param GPUKernel The kernel to launch. 726 /// @param GridDimX The size of the first grid dimension. 727 /// @param GridDimY The size of the second grid dimension. 728 /// @param GridBlockX The size of the first block dimension. 729 /// @param GridBlockY The size of the second block dimension. 730 /// @param GridBlockZ The size of the third block dimension. 731 /// @param Parameters A pointer to an array that contains itself pointers to 732 /// the parameter values passed for each kernel argument. 733 void createCallLaunchKernel(Value *GPUKernel, Value *GridDimX, 734 Value *GridDimY, Value *BlockDimX, 735 Value *BlockDimY, Value *BlockDimZ, 736 Value *Parameters); 737 }; 738 739 std::string GPUNodeBuilder::getKernelFuncName(int Kernel_id) { 740 return "FUNC_" + S.getFunction().getName().str() + "_SCOP_" + 741 std::to_string(S.getID()) + "_KERNEL_" + std::to_string(Kernel_id); 742 } 743 744 void GPUNodeBuilder::initializeAfterRTH() { 745 BasicBlock *NewBB = SplitBlock(Builder.GetInsertBlock(), 746 &*Builder.GetInsertPoint(), &DT, &LI); 747 NewBB->setName("polly.acc.initialize"); 748 Builder.SetInsertPoint(&NewBB->front()); 749 750 GPUContext = createCallInitContext(); 751 752 if (!PollyManagedMemory) 753 allocateDeviceArrays(); 754 else 755 prepareManagedDeviceArrays(); 756 } 757 758 void GPUNodeBuilder::finalize() { 759 if (!PollyManagedMemory) 760 freeDeviceArrays(); 761 762 createCallFreeContext(GPUContext); 763 IslNodeBuilder::finalize(); 764 } 765 766 void GPUNodeBuilder::allocateDeviceArrays() { 767 assert(!PollyManagedMemory && 768 "Managed memory will directly send host pointers " 769 "to the kernel. There is no need for device arrays"); 770 isl_ast_build *Build = isl_ast_build_from_context(S.getContext().release()); 771 772 for (int i = 0; i < Prog->n_array; ++i) { 773 gpu_array_info *Array = &Prog->array[i]; 774 auto *ScopArray = (ScopArrayInfo *)Array->user; 775 std::string DevArrayName("p_dev_array_"); 776 DevArrayName.append(Array->name); 777 778 Value *ArraySize = getArraySize(Array); 779 Value *Offset = getArrayOffset(Array); 780 if (Offset) 781 ArraySize = Builder.CreateSub( 782 ArraySize, 783 Builder.CreateMul(Offset, 784 Builder.getInt64(ScopArray->getElemSizeInBytes()))); 785 const SCEV *SizeSCEV = SE.getSCEV(ArraySize); 786 // It makes no sense to have an array of size 0. The CUDA API will 787 // throw an error anyway if we invoke `cuMallocManaged` with size `0`. We 788 // choose to be defensive and catch this at the compile phase. It is 789 // most likely that we are doing something wrong with size computation. 790 if (SizeSCEV->isZero()) { 791 errs() << getUniqueScopName(&S) 792 << " has computed array size 0: " << *ArraySize 793 << " | for array: " << *(ScopArray->getBasePtr()) 794 << ". This is illegal, exiting.\n"; 795 report_fatal_error("array size was computed to be 0"); 796 } 797 798 Value *DevArray = createCallAllocateMemoryForDevice(ArraySize); 799 DevArray->setName(DevArrayName); 800 DeviceAllocations[ScopArray] = DevArray; 801 } 802 803 isl_ast_build_free(Build); 804 } 805 806 void GPUNodeBuilder::prepareManagedDeviceArrays() { 807 assert(PollyManagedMemory && 808 "Device array most only be prepared in managed-memory mode"); 809 for (int i = 0; i < Prog->n_array; ++i) { 810 gpu_array_info *Array = &Prog->array[i]; 811 ScopArrayInfo *ScopArray = (ScopArrayInfo *)Array->user; 812 Value *HostPtr; 813 814 if (gpu_array_is_scalar(Array)) 815 HostPtr = BlockGen.getOrCreateAlloca(ScopArray); 816 else 817 HostPtr = ScopArray->getBasePtr(); 818 HostPtr = getLatestValue(HostPtr); 819 820 Value *Offset = getArrayOffset(Array); 821 if (Offset) { 822 HostPtr = Builder.CreatePointerCast( 823 HostPtr, ScopArray->getElementType()->getPointerTo()); 824 HostPtr = Builder.CreateGEP(HostPtr, Offset); 825 } 826 827 HostPtr = Builder.CreatePointerCast(HostPtr, Builder.getInt8PtrTy()); 828 DeviceAllocations[ScopArray] = HostPtr; 829 } 830 } 831 832 void GPUNodeBuilder::addCUDAAnnotations(Module *M, Value *BlockDimX, 833 Value *BlockDimY, Value *BlockDimZ) { 834 auto AnnotationNode = M->getOrInsertNamedMetadata("nvvm.annotations"); 835 836 for (auto &F : *M) { 837 if (F.getCallingConv() != CallingConv::PTX_Kernel) 838 continue; 839 840 Value *V[] = {BlockDimX, BlockDimY, BlockDimZ}; 841 842 Metadata *Elements[] = { 843 ValueAsMetadata::get(&F), MDString::get(M->getContext(), "maxntidx"), 844 ValueAsMetadata::get(V[0]), MDString::get(M->getContext(), "maxntidy"), 845 ValueAsMetadata::get(V[1]), MDString::get(M->getContext(), "maxntidz"), 846 ValueAsMetadata::get(V[2]), 847 }; 848 MDNode *Node = MDNode::get(M->getContext(), Elements); 849 AnnotationNode->addOperand(Node); 850 } 851 } 852 853 void GPUNodeBuilder::freeDeviceArrays() { 854 assert(!PollyManagedMemory && "Managed memory does not use device arrays"); 855 for (auto &Array : DeviceAllocations) 856 createCallFreeDeviceMemory(Array.second); 857 } 858 859 Value *GPUNodeBuilder::createCallGetKernel(Value *Buffer, Value *Entry) { 860 const char *Name = "polly_getKernel"; 861 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 862 Function *F = M->getFunction(Name); 863 864 // If F is not available, declare it. 865 if (!F) { 866 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 867 std::vector<Type *> Args; 868 Args.push_back(Builder.getInt8PtrTy()); 869 Args.push_back(Builder.getInt8PtrTy()); 870 FunctionType *Ty = FunctionType::get(Builder.getInt8PtrTy(), Args, false); 871 F = Function::Create(Ty, Linkage, Name, M); 872 } 873 874 return Builder.CreateCall(F, {Buffer, Entry}); 875 } 876 877 Value *GPUNodeBuilder::createCallGetDevicePtr(Value *Allocation) { 878 const char *Name = "polly_getDevicePtr"; 879 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 880 Function *F = M->getFunction(Name); 881 882 // If F is not available, declare it. 883 if (!F) { 884 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 885 std::vector<Type *> Args; 886 Args.push_back(Builder.getInt8PtrTy()); 887 FunctionType *Ty = FunctionType::get(Builder.getInt8PtrTy(), Args, false); 888 F = Function::Create(Ty, Linkage, Name, M); 889 } 890 891 return Builder.CreateCall(F, {Allocation}); 892 } 893 894 void GPUNodeBuilder::createCallLaunchKernel(Value *GPUKernel, Value *GridDimX, 895 Value *GridDimY, Value *BlockDimX, 896 Value *BlockDimY, Value *BlockDimZ, 897 Value *Parameters) { 898 const char *Name = "polly_launchKernel"; 899 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 900 Function *F = M->getFunction(Name); 901 902 // If F is not available, declare it. 903 if (!F) { 904 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 905 std::vector<Type *> Args; 906 Args.push_back(Builder.getInt8PtrTy()); 907 Args.push_back(Builder.getInt32Ty()); 908 Args.push_back(Builder.getInt32Ty()); 909 Args.push_back(Builder.getInt32Ty()); 910 Args.push_back(Builder.getInt32Ty()); 911 Args.push_back(Builder.getInt32Ty()); 912 Args.push_back(Builder.getInt8PtrTy()); 913 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false); 914 F = Function::Create(Ty, Linkage, Name, M); 915 } 916 917 Builder.CreateCall(F, {GPUKernel, GridDimX, GridDimY, BlockDimX, BlockDimY, 918 BlockDimZ, Parameters}); 919 } 920 921 void GPUNodeBuilder::createCallFreeKernel(Value *GPUKernel) { 922 const char *Name = "polly_freeKernel"; 923 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 924 Function *F = M->getFunction(Name); 925 926 // If F is not available, declare it. 927 if (!F) { 928 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 929 std::vector<Type *> Args; 930 Args.push_back(Builder.getInt8PtrTy()); 931 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false); 932 F = Function::Create(Ty, Linkage, Name, M); 933 } 934 935 Builder.CreateCall(F, {GPUKernel}); 936 } 937 938 void GPUNodeBuilder::createCallFreeDeviceMemory(Value *Array) { 939 assert(!PollyManagedMemory && 940 "Managed memory does not allocate or free memory " 941 "for device"); 942 const char *Name = "polly_freeDeviceMemory"; 943 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 944 Function *F = M->getFunction(Name); 945 946 // If F is not available, declare it. 947 if (!F) { 948 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 949 std::vector<Type *> Args; 950 Args.push_back(Builder.getInt8PtrTy()); 951 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false); 952 F = Function::Create(Ty, Linkage, Name, M); 953 } 954 955 Builder.CreateCall(F, {Array}); 956 } 957 958 Value *GPUNodeBuilder::createCallAllocateMemoryForDevice(Value *Size) { 959 assert(!PollyManagedMemory && 960 "Managed memory does not allocate or free memory " 961 "for device"); 962 const char *Name = "polly_allocateMemoryForDevice"; 963 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 964 Function *F = M->getFunction(Name); 965 966 // If F is not available, declare it. 967 if (!F) { 968 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 969 std::vector<Type *> Args; 970 Args.push_back(Builder.getInt64Ty()); 971 FunctionType *Ty = FunctionType::get(Builder.getInt8PtrTy(), Args, false); 972 F = Function::Create(Ty, Linkage, Name, M); 973 } 974 975 return Builder.CreateCall(F, {Size}); 976 } 977 978 void GPUNodeBuilder::createCallCopyFromHostToDevice(Value *HostData, 979 Value *DeviceData, 980 Value *Size) { 981 assert(!PollyManagedMemory && 982 "Managed memory does not transfer memory between " 983 "device and host"); 984 const char *Name = "polly_copyFromHostToDevice"; 985 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 986 Function *F = M->getFunction(Name); 987 988 // If F is not available, declare it. 989 if (!F) { 990 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 991 std::vector<Type *> Args; 992 Args.push_back(Builder.getInt8PtrTy()); 993 Args.push_back(Builder.getInt8PtrTy()); 994 Args.push_back(Builder.getInt64Ty()); 995 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false); 996 F = Function::Create(Ty, Linkage, Name, M); 997 } 998 999 Builder.CreateCall(F, {HostData, DeviceData, Size}); 1000 } 1001 1002 void GPUNodeBuilder::createCallCopyFromDeviceToHost(Value *DeviceData, 1003 Value *HostData, 1004 Value *Size) { 1005 assert(!PollyManagedMemory && 1006 "Managed memory does not transfer memory between " 1007 "device and host"); 1008 const char *Name = "polly_copyFromDeviceToHost"; 1009 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 1010 Function *F = M->getFunction(Name); 1011 1012 // If F is not available, declare it. 1013 if (!F) { 1014 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 1015 std::vector<Type *> Args; 1016 Args.push_back(Builder.getInt8PtrTy()); 1017 Args.push_back(Builder.getInt8PtrTy()); 1018 Args.push_back(Builder.getInt64Ty()); 1019 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false); 1020 F = Function::Create(Ty, Linkage, Name, M); 1021 } 1022 1023 Builder.CreateCall(F, {DeviceData, HostData, Size}); 1024 } 1025 1026 void GPUNodeBuilder::createCallSynchronizeDevice() { 1027 assert(PollyManagedMemory && "explicit synchronization is only necessary for " 1028 "managed memory"); 1029 const char *Name = "polly_synchronizeDevice"; 1030 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 1031 Function *F = M->getFunction(Name); 1032 1033 // If F is not available, declare it. 1034 if (!F) { 1035 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 1036 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), false); 1037 F = Function::Create(Ty, Linkage, Name, M); 1038 } 1039 1040 Builder.CreateCall(F); 1041 } 1042 1043 Value *GPUNodeBuilder::createCallInitContext() { 1044 const char *Name; 1045 1046 switch (Runtime) { 1047 case GPURuntime::CUDA: 1048 Name = "polly_initContextCUDA"; 1049 break; 1050 case GPURuntime::OpenCL: 1051 Name = "polly_initContextCL"; 1052 break; 1053 } 1054 1055 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 1056 Function *F = M->getFunction(Name); 1057 1058 // If F is not available, declare it. 1059 if (!F) { 1060 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 1061 std::vector<Type *> Args; 1062 FunctionType *Ty = FunctionType::get(Builder.getInt8PtrTy(), Args, false); 1063 F = Function::Create(Ty, Linkage, Name, M); 1064 } 1065 1066 return Builder.CreateCall(F, {}); 1067 } 1068 1069 void GPUNodeBuilder::createCallFreeContext(Value *Context) { 1070 const char *Name = "polly_freeContext"; 1071 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 1072 Function *F = M->getFunction(Name); 1073 1074 // If F is not available, declare it. 1075 if (!F) { 1076 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 1077 std::vector<Type *> Args; 1078 Args.push_back(Builder.getInt8PtrTy()); 1079 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false); 1080 F = Function::Create(Ty, Linkage, Name, M); 1081 } 1082 1083 Builder.CreateCall(F, {Context}); 1084 } 1085 1086 /// Check if one string is a prefix of another. 1087 /// 1088 /// @param String The string in which to look for the prefix. 1089 /// @param Prefix The prefix to look for. 1090 static bool isPrefix(std::string String, std::string Prefix) { 1091 return String.find(Prefix) == 0; 1092 } 1093 1094 Value *GPUNodeBuilder::getArraySize(gpu_array_info *Array) { 1095 isl::ast_build Build = isl::ast_build::from_context(S.getContext()); 1096 Value *ArraySize = ConstantInt::get(Builder.getInt64Ty(), Array->size); 1097 1098 if (!gpu_array_is_scalar(Array)) { 1099 isl::multi_pw_aff ArrayBound = isl::manage_copy(Array->bound); 1100 1101 isl::pw_aff OffsetDimZero = ArrayBound.get_pw_aff(0); 1102 isl::ast_expr Res = Build.expr_from(OffsetDimZero); 1103 1104 for (unsigned int i = 1; i < Array->n_index; i++) { 1105 isl::pw_aff Bound_I = ArrayBound.get_pw_aff(i); 1106 isl::ast_expr Expr = Build.expr_from(Bound_I); 1107 Res = Res.mul(Expr); 1108 } 1109 1110 Value *NumElements = ExprBuilder.create(Res.release()); 1111 if (NumElements->getType() != ArraySize->getType()) 1112 NumElements = Builder.CreateSExt(NumElements, ArraySize->getType()); 1113 ArraySize = Builder.CreateMul(ArraySize, NumElements); 1114 } 1115 return ArraySize; 1116 } 1117 1118 Value *GPUNodeBuilder::getArrayOffset(gpu_array_info *Array) { 1119 if (gpu_array_is_scalar(Array)) 1120 return nullptr; 1121 1122 isl::ast_build Build = isl::ast_build::from_context(S.getContext()); 1123 1124 isl::set Min = isl::manage_copy(Array->extent).lexmin(); 1125 1126 isl::set ZeroSet = isl::set::universe(Min.get_space()); 1127 1128 for (long i = 0, n = Min.dim(isl::dim::set); i < n; i++) 1129 ZeroSet = ZeroSet.fix_si(isl::dim::set, i, 0); 1130 1131 if (Min.is_subset(ZeroSet)) { 1132 return nullptr; 1133 } 1134 1135 isl::ast_expr Result = isl::ast_expr::from_val(isl::val(Min.get_ctx(), 0)); 1136 1137 for (long i = 0, n = Min.dim(isl::dim::set); i < n; i++) { 1138 if (i > 0) { 1139 isl::pw_aff Bound_I = 1140 isl::manage(isl_multi_pw_aff_get_pw_aff(Array->bound, i - 1)); 1141 isl::ast_expr BExpr = Build.expr_from(Bound_I); 1142 Result = Result.mul(BExpr); 1143 } 1144 isl::pw_aff DimMin = Min.dim_min(i); 1145 isl::ast_expr MExpr = Build.expr_from(DimMin); 1146 Result = Result.add(MExpr); 1147 } 1148 1149 return ExprBuilder.create(Result.release()); 1150 } 1151 1152 Value *GPUNodeBuilder::getManagedDeviceArray(gpu_array_info *Array, 1153 ScopArrayInfo *ArrayInfo) { 1154 assert(PollyManagedMemory && "Only used when you wish to get a host " 1155 "pointer for sending data to the kernel, " 1156 "with managed memory"); 1157 std::map<ScopArrayInfo *, Value *>::iterator it; 1158 it = DeviceAllocations.find(ArrayInfo); 1159 assert(it != DeviceAllocations.end() && 1160 "Device array expected to be available"); 1161 return it->second; 1162 } 1163 1164 void GPUNodeBuilder::createDataTransfer(__isl_take isl_ast_node *TransferStmt, 1165 enum DataDirection Direction) { 1166 assert(!PollyManagedMemory && "Managed memory needs no data transfers"); 1167 isl_ast_expr *Expr = isl_ast_node_user_get_expr(TransferStmt); 1168 isl_ast_expr *Arg = isl_ast_expr_get_op_arg(Expr, 0); 1169 isl_id *Id = isl_ast_expr_get_id(Arg); 1170 auto Array = (gpu_array_info *)isl_id_get_user(Id); 1171 auto ScopArray = (ScopArrayInfo *)(Array->user); 1172 1173 Value *Size = getArraySize(Array); 1174 Value *Offset = getArrayOffset(Array); 1175 Value *DevPtr = DeviceAllocations[ScopArray]; 1176 1177 Value *HostPtr; 1178 1179 if (gpu_array_is_scalar(Array)) 1180 HostPtr = BlockGen.getOrCreateAlloca(ScopArray); 1181 else 1182 HostPtr = ScopArray->getBasePtr(); 1183 HostPtr = getLatestValue(HostPtr); 1184 1185 if (Offset) { 1186 HostPtr = Builder.CreatePointerCast( 1187 HostPtr, ScopArray->getElementType()->getPointerTo()); 1188 HostPtr = Builder.CreateGEP(HostPtr, Offset); 1189 } 1190 1191 HostPtr = Builder.CreatePointerCast(HostPtr, Builder.getInt8PtrTy()); 1192 1193 if (Offset) { 1194 Size = Builder.CreateSub( 1195 Size, Builder.CreateMul( 1196 Offset, Builder.getInt64(ScopArray->getElemSizeInBytes()))); 1197 } 1198 1199 if (Direction == HOST_TO_DEVICE) 1200 createCallCopyFromHostToDevice(HostPtr, DevPtr, Size); 1201 else 1202 createCallCopyFromDeviceToHost(DevPtr, HostPtr, Size); 1203 1204 isl_id_free(Id); 1205 isl_ast_expr_free(Arg); 1206 isl_ast_expr_free(Expr); 1207 isl_ast_node_free(TransferStmt); 1208 } 1209 1210 void GPUNodeBuilder::createUser(__isl_take isl_ast_node *UserStmt) { 1211 isl_ast_expr *Expr = isl_ast_node_user_get_expr(UserStmt); 1212 isl_ast_expr *StmtExpr = isl_ast_expr_get_op_arg(Expr, 0); 1213 isl_id *Id = isl_ast_expr_get_id(StmtExpr); 1214 isl_id_free(Id); 1215 isl_ast_expr_free(StmtExpr); 1216 1217 const char *Str = isl_id_get_name(Id); 1218 if (!strcmp(Str, "kernel")) { 1219 createKernel(UserStmt); 1220 if (PollyManagedMemory) 1221 createCallSynchronizeDevice(); 1222 isl_ast_expr_free(Expr); 1223 return; 1224 } 1225 if (!strcmp(Str, "init_device")) { 1226 initializeAfterRTH(); 1227 isl_ast_node_free(UserStmt); 1228 isl_ast_expr_free(Expr); 1229 return; 1230 } 1231 if (!strcmp(Str, "clear_device")) { 1232 finalize(); 1233 isl_ast_node_free(UserStmt); 1234 isl_ast_expr_free(Expr); 1235 return; 1236 } 1237 if (isPrefix(Str, "to_device")) { 1238 if (!PollyManagedMemory) 1239 createDataTransfer(UserStmt, HOST_TO_DEVICE); 1240 else 1241 isl_ast_node_free(UserStmt); 1242 1243 isl_ast_expr_free(Expr); 1244 return; 1245 } 1246 1247 if (isPrefix(Str, "from_device")) { 1248 if (!PollyManagedMemory) { 1249 createDataTransfer(UserStmt, DEVICE_TO_HOST); 1250 } else { 1251 isl_ast_node_free(UserStmt); 1252 } 1253 isl_ast_expr_free(Expr); 1254 return; 1255 } 1256 1257 isl_id *Anno = isl_ast_node_get_annotation(UserStmt); 1258 struct ppcg_kernel_stmt *KernelStmt = 1259 (struct ppcg_kernel_stmt *)isl_id_get_user(Anno); 1260 isl_id_free(Anno); 1261 1262 switch (KernelStmt->type) { 1263 case ppcg_kernel_domain: 1264 createScopStmt(Expr, KernelStmt); 1265 isl_ast_node_free(UserStmt); 1266 return; 1267 case ppcg_kernel_copy: 1268 createKernelCopy(KernelStmt); 1269 isl_ast_expr_free(Expr); 1270 isl_ast_node_free(UserStmt); 1271 return; 1272 case ppcg_kernel_sync: 1273 createKernelSync(); 1274 isl_ast_expr_free(Expr); 1275 isl_ast_node_free(UserStmt); 1276 return; 1277 } 1278 1279 isl_ast_expr_free(Expr); 1280 isl_ast_node_free(UserStmt); 1281 } 1282 1283 void GPUNodeBuilder::createFor(__isl_take isl_ast_node *Node) { 1284 createForSequential(isl::manage(Node), false); 1285 } 1286 1287 void GPUNodeBuilder::createKernelCopy(ppcg_kernel_stmt *KernelStmt) { 1288 isl_ast_expr *LocalIndex = isl_ast_expr_copy(KernelStmt->u.c.local_index); 1289 LocalIndex = isl_ast_expr_address_of(LocalIndex); 1290 Value *LocalAddr = ExprBuilder.create(LocalIndex); 1291 isl_ast_expr *Index = isl_ast_expr_copy(KernelStmt->u.c.index); 1292 Index = isl_ast_expr_address_of(Index); 1293 Value *GlobalAddr = ExprBuilder.create(Index); 1294 1295 if (KernelStmt->u.c.read) { 1296 LoadInst *Load = Builder.CreateLoad(GlobalAddr, "shared.read"); 1297 Builder.CreateStore(Load, LocalAddr); 1298 } else { 1299 LoadInst *Load = Builder.CreateLoad(LocalAddr, "shared.write"); 1300 Builder.CreateStore(Load, GlobalAddr); 1301 } 1302 } 1303 1304 void GPUNodeBuilder::createScopStmt(isl_ast_expr *Expr, 1305 ppcg_kernel_stmt *KernelStmt) { 1306 auto Stmt = (ScopStmt *)KernelStmt->u.d.stmt->stmt; 1307 isl_id_to_ast_expr *Indexes = KernelStmt->u.d.ref2expr; 1308 1309 LoopToScevMapT LTS; 1310 LTS.insert(OutsideLoopIterations.begin(), OutsideLoopIterations.end()); 1311 1312 createSubstitutions(Expr, Stmt, LTS); 1313 1314 if (Stmt->isBlockStmt()) 1315 BlockGen.copyStmt(*Stmt, LTS, Indexes); 1316 else 1317 RegionGen.copyStmt(*Stmt, LTS, Indexes); 1318 } 1319 1320 void GPUNodeBuilder::createKernelSync() { 1321 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 1322 const char *SpirName = "__gen_ocl_barrier_global"; 1323 1324 Function *Sync; 1325 1326 switch (Arch) { 1327 case GPUArch::SPIR64: 1328 case GPUArch::SPIR32: 1329 Sync = M->getFunction(SpirName); 1330 1331 // If Sync is not available, declare it. 1332 if (!Sync) { 1333 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 1334 std::vector<Type *> Args; 1335 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false); 1336 Sync = Function::Create(Ty, Linkage, SpirName, M); 1337 Sync->setCallingConv(CallingConv::SPIR_FUNC); 1338 } 1339 break; 1340 case GPUArch::NVPTX64: 1341 Sync = Intrinsic::getDeclaration(M, Intrinsic::nvvm_barrier0); 1342 break; 1343 } 1344 1345 Builder.CreateCall(Sync, {}); 1346 } 1347 1348 /// Collect llvm::Values referenced from @p Node 1349 /// 1350 /// This function only applies to isl_ast_nodes that are user_nodes referring 1351 /// to a ScopStmt. All other node types are ignore. 1352 /// 1353 /// @param Node The node to collect references for. 1354 /// @param User A user pointer used as storage for the data that is collected. 1355 /// 1356 /// @returns isl_bool_true if data could be collected successfully. 1357 isl_bool collectReferencesInGPUStmt(__isl_keep isl_ast_node *Node, void *User) { 1358 if (isl_ast_node_get_type(Node) != isl_ast_node_user) 1359 return isl_bool_true; 1360 1361 isl_ast_expr *Expr = isl_ast_node_user_get_expr(Node); 1362 isl_ast_expr *StmtExpr = isl_ast_expr_get_op_arg(Expr, 0); 1363 isl_id *Id = isl_ast_expr_get_id(StmtExpr); 1364 const char *Str = isl_id_get_name(Id); 1365 isl_id_free(Id); 1366 isl_ast_expr_free(StmtExpr); 1367 isl_ast_expr_free(Expr); 1368 1369 if (!isPrefix(Str, "Stmt")) 1370 return isl_bool_true; 1371 1372 Id = isl_ast_node_get_annotation(Node); 1373 auto *KernelStmt = (ppcg_kernel_stmt *)isl_id_get_user(Id); 1374 auto Stmt = (ScopStmt *)KernelStmt->u.d.stmt->stmt; 1375 isl_id_free(Id); 1376 1377 addReferencesFromStmt(Stmt, User, false /* CreateScalarRefs */); 1378 1379 return isl_bool_true; 1380 } 1381 1382 /// A list of functions that are available in NVIDIA's libdevice. 1383 const std::set<std::string> CUDALibDeviceFunctions = { 1384 "exp", "expf", "expl", "cos", "cosf", "sqrt", "sqrtf", 1385 "copysign", "copysignf", "copysignl", "log", "logf", "powi", "powif"}; 1386 1387 // A map from intrinsics to their corresponding libdevice functions. 1388 const std::map<std::string, std::string> IntrinsicToLibdeviceFunc = { 1389 {"llvm.exp.f64", "exp"}, 1390 {"llvm.exp.f32", "expf"}, 1391 {"llvm.powi.f64", "powi"}, 1392 {"llvm.powi.f32", "powif"}}; 1393 1394 /// Return the corresponding CUDA libdevice function name @p Name. 1395 /// Note that this function will try to convert instrinsics in the list 1396 /// IntrinsicToLibdeviceFunc into libdevice functions. 1397 /// This is because some intrinsics such as `exp` 1398 /// are not supported by the NVPTX backend. 1399 /// If this restriction of the backend is lifted, we should refactor our code 1400 /// so that we use intrinsics whenever possible. 1401 /// 1402 /// Return "" if we are not compiling for CUDA. 1403 std::string getCUDALibDeviceFuntion(StringRef Name) { 1404 auto It = IntrinsicToLibdeviceFunc.find(Name); 1405 if (It != IntrinsicToLibdeviceFunc.end()) 1406 return getCUDALibDeviceFuntion(It->second); 1407 1408 if (CUDALibDeviceFunctions.count(Name)) 1409 return ("__nv_" + Name).str(); 1410 1411 return ""; 1412 } 1413 1414 /// Check if F is a function that we can code-generate in a GPU kernel. 1415 static bool isValidFunctionInKernel(llvm::Function *F, bool AllowLibDevice) { 1416 assert(F && "F is an invalid pointer"); 1417 // We string compare against the name of the function to allow 1418 // all variants of the intrinsic "llvm.sqrt.*", "llvm.fabs", and 1419 // "llvm.copysign". 1420 const StringRef Name = F->getName(); 1421 1422 if (AllowLibDevice && getCUDALibDeviceFuntion(Name).length() > 0) 1423 return true; 1424 1425 return F->isIntrinsic() && 1426 (Name.startswith("llvm.sqrt") || Name.startswith("llvm.fabs") || 1427 Name.startswith("llvm.copysign")); 1428 } 1429 1430 /// Do not take `Function` as a subtree value. 1431 /// 1432 /// We try to take the reference of all subtree values and pass them along 1433 /// to the kernel from the host. Taking an address of any function and 1434 /// trying to pass along is nonsensical. Only allow `Value`s that are not 1435 /// `Function`s. 1436 static bool isValidSubtreeValue(llvm::Value *V) { return !isa<Function>(V); } 1437 1438 /// Return `Function`s from `RawSubtreeValues`. 1439 static SetVector<Function *> 1440 getFunctionsFromRawSubtreeValues(SetVector<Value *> RawSubtreeValues, 1441 bool AllowCUDALibDevice) { 1442 SetVector<Function *> SubtreeFunctions; 1443 for (Value *It : RawSubtreeValues) { 1444 Function *F = dyn_cast<Function>(It); 1445 if (F) { 1446 assert(isValidFunctionInKernel(F, AllowCUDALibDevice) && 1447 "Code should have bailed out by " 1448 "this point if an invalid function " 1449 "were present in a kernel."); 1450 SubtreeFunctions.insert(F); 1451 } 1452 } 1453 return SubtreeFunctions; 1454 } 1455 1456 std::tuple<SetVector<Value *>, SetVector<Function *>, SetVector<const Loop *>, 1457 isl::space> 1458 GPUNodeBuilder::getReferencesInKernel(ppcg_kernel *Kernel) { 1459 SetVector<Value *> SubtreeValues; 1460 SetVector<const SCEV *> SCEVs; 1461 SetVector<const Loop *> Loops; 1462 isl::space ParamSpace = isl::space(S.getIslCtx(), 0, 0).params(); 1463 SubtreeReferences References = { 1464 LI, SE, S, ValueMap, SubtreeValues, SCEVs, getBlockGenerator(), 1465 &ParamSpace}; 1466 1467 for (const auto &I : IDToValue) 1468 SubtreeValues.insert(I.second); 1469 1470 // NOTE: this is populated in IslNodeBuilder::addParameters 1471 // See [Code generation of induction variables of loops outside Scops]. 1472 for (const auto &I : OutsideLoopIterations) 1473 SubtreeValues.insert(cast<SCEVUnknown>(I.second)->getValue()); 1474 1475 isl_ast_node_foreach_descendant_top_down( 1476 Kernel->tree, collectReferencesInGPUStmt, &References); 1477 1478 for (const SCEV *Expr : SCEVs) { 1479 findValues(Expr, SE, SubtreeValues); 1480 findLoops(Expr, Loops); 1481 } 1482 1483 Loops.remove_if([this](const Loop *L) { 1484 return S.contains(L) || L->contains(S.getEntry()); 1485 }); 1486 1487 for (auto &SAI : S.arrays()) 1488 SubtreeValues.remove(SAI->getBasePtr()); 1489 1490 isl_space *Space = S.getParamSpace().release(); 1491 for (long i = 0, n = isl_space_dim(Space, isl_dim_param); i < n; i++) { 1492 isl_id *Id = isl_space_get_dim_id(Space, isl_dim_param, i); 1493 assert(IDToValue.count(Id)); 1494 Value *Val = IDToValue[Id]; 1495 SubtreeValues.remove(Val); 1496 isl_id_free(Id); 1497 } 1498 isl_space_free(Space); 1499 1500 for (long i = 0, n = isl_space_dim(Kernel->space, isl_dim_set); i < n; i++) { 1501 isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_set, i); 1502 assert(IDToValue.count(Id)); 1503 Value *Val = IDToValue[Id]; 1504 SubtreeValues.remove(Val); 1505 isl_id_free(Id); 1506 } 1507 1508 // Note: { ValidSubtreeValues, ValidSubtreeFunctions } partitions 1509 // SubtreeValues. This is important, because we should not lose any 1510 // SubtreeValues in the process of constructing the 1511 // "ValidSubtree{Values, Functions} sets. Nor should the set 1512 // ValidSubtree{Values, Functions} have any common element. 1513 auto ValidSubtreeValuesIt = 1514 make_filter_range(SubtreeValues, isValidSubtreeValue); 1515 SetVector<Value *> ValidSubtreeValues(ValidSubtreeValuesIt.begin(), 1516 ValidSubtreeValuesIt.end()); 1517 1518 bool AllowCUDALibDevice = Arch == GPUArch::NVPTX64; 1519 1520 SetVector<Function *> ValidSubtreeFunctions( 1521 getFunctionsFromRawSubtreeValues(SubtreeValues, AllowCUDALibDevice)); 1522 1523 // @see IslNodeBuilder::getReferencesInSubtree 1524 SetVector<Value *> ReplacedValues; 1525 for (Value *V : ValidSubtreeValues) { 1526 auto It = ValueMap.find(V); 1527 if (It == ValueMap.end()) 1528 ReplacedValues.insert(V); 1529 else 1530 ReplacedValues.insert(It->second); 1531 } 1532 return std::make_tuple(ReplacedValues, ValidSubtreeFunctions, Loops, 1533 ParamSpace); 1534 } 1535 1536 void GPUNodeBuilder::clearDominators(Function *F) { 1537 DomTreeNode *N = DT.getNode(&F->getEntryBlock()); 1538 std::vector<BasicBlock *> Nodes; 1539 for (po_iterator<DomTreeNode *> I = po_begin(N), E = po_end(N); I != E; ++I) 1540 Nodes.push_back(I->getBlock()); 1541 1542 for (BasicBlock *BB : Nodes) 1543 DT.eraseNode(BB); 1544 } 1545 1546 void GPUNodeBuilder::clearScalarEvolution(Function *F) { 1547 for (BasicBlock &BB : *F) { 1548 Loop *L = LI.getLoopFor(&BB); 1549 if (L) 1550 SE.forgetLoop(L); 1551 } 1552 } 1553 1554 void GPUNodeBuilder::clearLoops(Function *F) { 1555 SmallSet<Loop *, 1> WorkList; 1556 for (BasicBlock &BB : *F) { 1557 Loop *L = LI.getLoopFor(&BB); 1558 if (L) 1559 WorkList.insert(L); 1560 } 1561 for (auto *L : WorkList) 1562 LI.erase(L); 1563 } 1564 1565 std::tuple<Value *, Value *> GPUNodeBuilder::getGridSizes(ppcg_kernel *Kernel) { 1566 std::vector<Value *> Sizes; 1567 isl::ast_build Context = isl::ast_build::from_context(S.getContext()); 1568 1569 isl::multi_pw_aff GridSizePwAffs = isl::manage_copy(Kernel->grid_size); 1570 for (long i = 0; i < Kernel->n_grid; i++) { 1571 isl::pw_aff Size = GridSizePwAffs.get_pw_aff(i); 1572 isl::ast_expr GridSize = Context.expr_from(Size); 1573 Value *Res = ExprBuilder.create(GridSize.release()); 1574 Res = Builder.CreateTrunc(Res, Builder.getInt32Ty()); 1575 Sizes.push_back(Res); 1576 } 1577 1578 for (long i = Kernel->n_grid; i < 3; i++) 1579 Sizes.push_back(ConstantInt::get(Builder.getInt32Ty(), 1)); 1580 1581 return std::make_tuple(Sizes[0], Sizes[1]); 1582 } 1583 1584 std::tuple<Value *, Value *, Value *> 1585 GPUNodeBuilder::getBlockSizes(ppcg_kernel *Kernel) { 1586 std::vector<Value *> Sizes; 1587 1588 for (long i = 0; i < Kernel->n_block; i++) { 1589 Value *Res = ConstantInt::get(Builder.getInt32Ty(), Kernel->block_dim[i]); 1590 Sizes.push_back(Res); 1591 } 1592 1593 for (long i = Kernel->n_block; i < 3; i++) 1594 Sizes.push_back(ConstantInt::get(Builder.getInt32Ty(), 1)); 1595 1596 return std::make_tuple(Sizes[0], Sizes[1], Sizes[2]); 1597 } 1598 1599 void GPUNodeBuilder::insertStoreParameter(Instruction *Parameters, 1600 Instruction *Param, int Index) { 1601 Value *Slot = Builder.CreateGEP( 1602 Parameters, {Builder.getInt64(0), Builder.getInt64(Index)}); 1603 Value *ParamTyped = Builder.CreatePointerCast(Param, Builder.getInt8PtrTy()); 1604 Builder.CreateStore(ParamTyped, Slot); 1605 } 1606 1607 Value * 1608 GPUNodeBuilder::createLaunchParameters(ppcg_kernel *Kernel, Function *F, 1609 SetVector<Value *> SubtreeValues) { 1610 const int NumArgs = F->arg_size(); 1611 std::vector<int> ArgSizes(NumArgs); 1612 1613 // If we are using the OpenCL Runtime, we need to add the kernel argument 1614 // sizes to the end of the launch-parameter list, so OpenCL can determine 1615 // how big the respective kernel arguments are. 1616 // Here we need to reserve adequate space for that. 1617 Type *ArrayTy; 1618 if (Runtime == GPURuntime::OpenCL) 1619 ArrayTy = ArrayType::get(Builder.getInt8PtrTy(), 2 * NumArgs); 1620 else 1621 ArrayTy = ArrayType::get(Builder.getInt8PtrTy(), NumArgs); 1622 1623 BasicBlock *EntryBlock = 1624 &Builder.GetInsertBlock()->getParent()->getEntryBlock(); 1625 auto AddressSpace = F->getParent()->getDataLayout().getAllocaAddrSpace(); 1626 std::string Launch = "polly_launch_" + std::to_string(Kernel->id); 1627 Instruction *Parameters = new AllocaInst( 1628 ArrayTy, AddressSpace, Launch + "_params", EntryBlock->getTerminator()); 1629 1630 int Index = 0; 1631 for (long i = 0; i < Prog->n_array; i++) { 1632 if (!ppcg_kernel_requires_array_argument(Kernel, i)) 1633 continue; 1634 1635 isl_id *Id = isl_space_get_tuple_id(Prog->array[i].space, isl_dim_set); 1636 const ScopArrayInfo *SAI = ScopArrayInfo::getFromId(isl::manage(Id)); 1637 1638 if (Runtime == GPURuntime::OpenCL) 1639 ArgSizes[Index] = SAI->getElemSizeInBytes(); 1640 1641 Value *DevArray = nullptr; 1642 if (PollyManagedMemory) { 1643 DevArray = getManagedDeviceArray(&Prog->array[i], 1644 const_cast<ScopArrayInfo *>(SAI)); 1645 } else { 1646 DevArray = DeviceAllocations[const_cast<ScopArrayInfo *>(SAI)]; 1647 DevArray = createCallGetDevicePtr(DevArray); 1648 } 1649 assert(DevArray != nullptr && "Array to be offloaded to device not " 1650 "initialized"); 1651 Value *Offset = getArrayOffset(&Prog->array[i]); 1652 1653 if (Offset) { 1654 DevArray = Builder.CreatePointerCast( 1655 DevArray, SAI->getElementType()->getPointerTo()); 1656 DevArray = Builder.CreateGEP(DevArray, Builder.CreateNeg(Offset)); 1657 DevArray = Builder.CreatePointerCast(DevArray, Builder.getInt8PtrTy()); 1658 } 1659 Value *Slot = Builder.CreateGEP( 1660 Parameters, {Builder.getInt64(0), Builder.getInt64(Index)}); 1661 1662 if (gpu_array_is_read_only_scalar(&Prog->array[i])) { 1663 Value *ValPtr = nullptr; 1664 if (PollyManagedMemory) 1665 ValPtr = DevArray; 1666 else 1667 ValPtr = BlockGen.getOrCreateAlloca(SAI); 1668 1669 assert(ValPtr != nullptr && "ValPtr that should point to a valid object" 1670 " to be stored into Parameters"); 1671 Value *ValPtrCast = 1672 Builder.CreatePointerCast(ValPtr, Builder.getInt8PtrTy()); 1673 Builder.CreateStore(ValPtrCast, Slot); 1674 } else { 1675 Instruction *Param = 1676 new AllocaInst(Builder.getInt8PtrTy(), AddressSpace, 1677 Launch + "_param_" + std::to_string(Index), 1678 EntryBlock->getTerminator()); 1679 Builder.CreateStore(DevArray, Param); 1680 Value *ParamTyped = 1681 Builder.CreatePointerCast(Param, Builder.getInt8PtrTy()); 1682 Builder.CreateStore(ParamTyped, Slot); 1683 } 1684 Index++; 1685 } 1686 1687 int NumHostIters = isl_space_dim(Kernel->space, isl_dim_set); 1688 1689 for (long i = 0; i < NumHostIters; i++) { 1690 isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_set, i); 1691 Value *Val = IDToValue[Id]; 1692 isl_id_free(Id); 1693 1694 if (Runtime == GPURuntime::OpenCL) 1695 ArgSizes[Index] = computeSizeInBytes(Val->getType()); 1696 1697 Instruction *Param = 1698 new AllocaInst(Val->getType(), AddressSpace, 1699 Launch + "_param_" + std::to_string(Index), 1700 EntryBlock->getTerminator()); 1701 Builder.CreateStore(Val, Param); 1702 insertStoreParameter(Parameters, Param, Index); 1703 Index++; 1704 } 1705 1706 int NumVars = isl_space_dim(Kernel->space, isl_dim_param); 1707 1708 for (long i = 0; i < NumVars; i++) { 1709 isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_param, i); 1710 Value *Val = IDToValue[Id]; 1711 if (ValueMap.count(Val)) 1712 Val = ValueMap[Val]; 1713 isl_id_free(Id); 1714 1715 if (Runtime == GPURuntime::OpenCL) 1716 ArgSizes[Index] = computeSizeInBytes(Val->getType()); 1717 1718 Instruction *Param = 1719 new AllocaInst(Val->getType(), AddressSpace, 1720 Launch + "_param_" + std::to_string(Index), 1721 EntryBlock->getTerminator()); 1722 Builder.CreateStore(Val, Param); 1723 insertStoreParameter(Parameters, Param, Index); 1724 Index++; 1725 } 1726 1727 for (auto Val : SubtreeValues) { 1728 if (Runtime == GPURuntime::OpenCL) 1729 ArgSizes[Index] = computeSizeInBytes(Val->getType()); 1730 1731 Instruction *Param = 1732 new AllocaInst(Val->getType(), AddressSpace, 1733 Launch + "_param_" + std::to_string(Index), 1734 EntryBlock->getTerminator()); 1735 Builder.CreateStore(Val, Param); 1736 insertStoreParameter(Parameters, Param, Index); 1737 Index++; 1738 } 1739 1740 if (Runtime == GPURuntime::OpenCL) { 1741 for (int i = 0; i < NumArgs; i++) { 1742 Value *Val = ConstantInt::get(Builder.getInt32Ty(), ArgSizes[i]); 1743 Instruction *Param = 1744 new AllocaInst(Builder.getInt32Ty(), AddressSpace, 1745 Launch + "_param_size_" + std::to_string(i), 1746 EntryBlock->getTerminator()); 1747 Builder.CreateStore(Val, Param); 1748 insertStoreParameter(Parameters, Param, Index); 1749 Index++; 1750 } 1751 } 1752 1753 auto Location = EntryBlock->getTerminator(); 1754 return new BitCastInst(Parameters, Builder.getInt8PtrTy(), 1755 Launch + "_params_i8ptr", Location); 1756 } 1757 1758 void GPUNodeBuilder::setupKernelSubtreeFunctions( 1759 SetVector<Function *> SubtreeFunctions) { 1760 for (auto Fn : SubtreeFunctions) { 1761 const std::string ClonedFnName = Fn->getName(); 1762 Function *Clone = GPUModule->getFunction(ClonedFnName); 1763 if (!Clone) 1764 Clone = 1765 Function::Create(Fn->getFunctionType(), GlobalValue::ExternalLinkage, 1766 ClonedFnName, GPUModule.get()); 1767 assert(Clone && "Expected cloned function to be initialized."); 1768 assert(ValueMap.find(Fn) == ValueMap.end() && 1769 "Fn already present in ValueMap"); 1770 ValueMap[Fn] = Clone; 1771 } 1772 } 1773 void GPUNodeBuilder::createKernel(__isl_take isl_ast_node *KernelStmt) { 1774 isl_id *Id = isl_ast_node_get_annotation(KernelStmt); 1775 ppcg_kernel *Kernel = (ppcg_kernel *)isl_id_get_user(Id); 1776 isl_id_free(Id); 1777 isl_ast_node_free(KernelStmt); 1778 1779 if (Kernel->n_grid > 1) 1780 DeepestParallel = 1781 std::max(DeepestParallel, isl_space_dim(Kernel->space, isl_dim_set)); 1782 else 1783 DeepestSequential = 1784 std::max(DeepestSequential, isl_space_dim(Kernel->space, isl_dim_set)); 1785 1786 Value *BlockDimX, *BlockDimY, *BlockDimZ; 1787 std::tie(BlockDimX, BlockDimY, BlockDimZ) = getBlockSizes(Kernel); 1788 1789 SetVector<Value *> SubtreeValues; 1790 SetVector<Function *> SubtreeFunctions; 1791 SetVector<const Loop *> Loops; 1792 isl::space ParamSpace; 1793 std::tie(SubtreeValues, SubtreeFunctions, Loops, ParamSpace) = 1794 getReferencesInKernel(Kernel); 1795 1796 // Add parameters that appear only in the access function to the kernel 1797 // space. This is important to make sure that all isl_ids are passed as 1798 // parameters to the kernel, even though we may not have all parameters 1799 // in the context to improve compile time. 1800 Kernel->space = isl_space_align_params(Kernel->space, ParamSpace.release()); 1801 1802 assert(Kernel->tree && "Device AST of kernel node is empty"); 1803 1804 Instruction &HostInsertPoint = *Builder.GetInsertPoint(); 1805 IslExprBuilder::IDToValueTy HostIDs = IDToValue; 1806 ValueMapT HostValueMap = ValueMap; 1807 BlockGenerator::AllocaMapTy HostScalarMap = ScalarMap; 1808 ScalarMap.clear(); 1809 BlockGenerator::EscapeUsersAllocaMapTy HostEscapeMap = EscapeMap; 1810 EscapeMap.clear(); 1811 1812 // Create for all loops we depend on values that contain the current loop 1813 // iteration. These values are necessary to generate code for SCEVs that 1814 // depend on such loops. As a result we need to pass them to the subfunction. 1815 for (const Loop *L : Loops) { 1816 const SCEV *OuterLIV = SE.getAddRecExpr(SE.getUnknown(Builder.getInt64(0)), 1817 SE.getUnknown(Builder.getInt64(1)), 1818 L, SCEV::FlagAnyWrap); 1819 Value *V = generateSCEV(OuterLIV); 1820 OutsideLoopIterations[L] = SE.getUnknown(V); 1821 SubtreeValues.insert(V); 1822 } 1823 1824 createKernelFunction(Kernel, SubtreeValues, SubtreeFunctions); 1825 setupKernelSubtreeFunctions(SubtreeFunctions); 1826 1827 create(isl_ast_node_copy(Kernel->tree)); 1828 1829 finalizeKernelArguments(Kernel); 1830 Function *F = Builder.GetInsertBlock()->getParent(); 1831 if (Arch == GPUArch::NVPTX64) 1832 addCUDAAnnotations(F->getParent(), BlockDimX, BlockDimY, BlockDimZ); 1833 clearDominators(F); 1834 clearScalarEvolution(F); 1835 clearLoops(F); 1836 1837 IDToValue = HostIDs; 1838 1839 ValueMap = std::move(HostValueMap); 1840 ScalarMap = std::move(HostScalarMap); 1841 EscapeMap = std::move(HostEscapeMap); 1842 IDToSAI.clear(); 1843 Annotator.resetAlternativeAliasBases(); 1844 for (auto &BasePtr : LocalArrays) 1845 S.invalidateScopArrayInfo(BasePtr, MemoryKind::Array); 1846 LocalArrays.clear(); 1847 1848 std::string ASMString = finalizeKernelFunction(); 1849 Builder.SetInsertPoint(&HostInsertPoint); 1850 Value *Parameters = createLaunchParameters(Kernel, F, SubtreeValues); 1851 1852 std::string Name = getKernelFuncName(Kernel->id); 1853 Value *KernelString = Builder.CreateGlobalStringPtr(ASMString, Name); 1854 Value *NameString = Builder.CreateGlobalStringPtr(Name, Name + "_name"); 1855 Value *GPUKernel = createCallGetKernel(KernelString, NameString); 1856 1857 Value *GridDimX, *GridDimY; 1858 std::tie(GridDimX, GridDimY) = getGridSizes(Kernel); 1859 1860 createCallLaunchKernel(GPUKernel, GridDimX, GridDimY, BlockDimX, BlockDimY, 1861 BlockDimZ, Parameters); 1862 createCallFreeKernel(GPUKernel); 1863 1864 for (auto Id : KernelIds) 1865 isl_id_free(Id); 1866 1867 KernelIds.clear(); 1868 } 1869 1870 /// Compute the DataLayout string for the NVPTX backend. 1871 /// 1872 /// @param is64Bit Are we looking for a 64 bit architecture? 1873 static std::string computeNVPTXDataLayout(bool is64Bit) { 1874 std::string Ret = ""; 1875 1876 if (!is64Bit) { 1877 Ret += "e-p:32:32:32-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:" 1878 "64-i128:128:128-f32:32:32-f64:64:64-v16:16:16-v32:32:32-v64:64:" 1879 "64-v128:128:128-n16:32:64"; 1880 } else { 1881 Ret += "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:" 1882 "64-i128:128:128-f32:32:32-f64:64:64-v16:16:16-v32:32:32-v64:64:" 1883 "64-v128:128:128-n16:32:64"; 1884 } 1885 1886 return Ret; 1887 } 1888 1889 /// Compute the DataLayout string for a SPIR kernel. 1890 /// 1891 /// @param is64Bit Are we looking for a 64 bit architecture? 1892 static std::string computeSPIRDataLayout(bool is64Bit) { 1893 std::string Ret = ""; 1894 1895 if (!is64Bit) { 1896 Ret += "e-p:32:32:32-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:" 1897 "64-i128:128:128-f32:32:32-f64:64:64-v16:16:16-v24:32:32-v32:32:" 1898 "32-v48:64:64-v64:64:64-v96:128:128-v128:128:128-v192:" 1899 "256:256-v256:256:256-v512:512:512-v1024:1024:1024"; 1900 } else { 1901 Ret += "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:" 1902 "64-i128:128:128-f32:32:32-f64:64:64-v16:16:16-v24:32:32-v32:32:" 1903 "32-v48:64:64-v64:64:64-v96:128:128-v128:128:128-v192:" 1904 "256:256-v256:256:256-v512:512:512-v1024:1024:1024"; 1905 } 1906 1907 return Ret; 1908 } 1909 1910 Function * 1911 GPUNodeBuilder::createKernelFunctionDecl(ppcg_kernel *Kernel, 1912 SetVector<Value *> &SubtreeValues) { 1913 std::vector<Type *> Args; 1914 std::string Identifier = getKernelFuncName(Kernel->id); 1915 1916 std::vector<Metadata *> MemoryType; 1917 1918 for (long i = 0; i < Prog->n_array; i++) { 1919 if (!ppcg_kernel_requires_array_argument(Kernel, i)) 1920 continue; 1921 1922 if (gpu_array_is_read_only_scalar(&Prog->array[i])) { 1923 isl_id *Id = isl_space_get_tuple_id(Prog->array[i].space, isl_dim_set); 1924 const ScopArrayInfo *SAI = ScopArrayInfo::getFromId(isl::manage(Id)); 1925 Args.push_back(SAI->getElementType()); 1926 MemoryType.push_back( 1927 ConstantAsMetadata::get(ConstantInt::get(Builder.getInt32Ty(), 0))); 1928 } else { 1929 static const int UseGlobalMemory = 1; 1930 Args.push_back(Builder.getInt8PtrTy(UseGlobalMemory)); 1931 MemoryType.push_back( 1932 ConstantAsMetadata::get(ConstantInt::get(Builder.getInt32Ty(), 1))); 1933 } 1934 } 1935 1936 int NumHostIters = isl_space_dim(Kernel->space, isl_dim_set); 1937 1938 for (long i = 0; i < NumHostIters; i++) { 1939 Args.push_back(Builder.getInt64Ty()); 1940 MemoryType.push_back( 1941 ConstantAsMetadata::get(ConstantInt::get(Builder.getInt32Ty(), 0))); 1942 } 1943 1944 int NumVars = isl_space_dim(Kernel->space, isl_dim_param); 1945 1946 for (long i = 0; i < NumVars; i++) { 1947 isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_param, i); 1948 Value *Val = IDToValue[Id]; 1949 isl_id_free(Id); 1950 Args.push_back(Val->getType()); 1951 MemoryType.push_back( 1952 ConstantAsMetadata::get(ConstantInt::get(Builder.getInt32Ty(), 0))); 1953 } 1954 1955 for (auto *V : SubtreeValues) { 1956 Args.push_back(V->getType()); 1957 MemoryType.push_back( 1958 ConstantAsMetadata::get(ConstantInt::get(Builder.getInt32Ty(), 0))); 1959 } 1960 1961 auto *FT = FunctionType::get(Builder.getVoidTy(), Args, false); 1962 auto *FN = Function::Create(FT, Function::ExternalLinkage, Identifier, 1963 GPUModule.get()); 1964 1965 std::vector<Metadata *> EmptyStrings; 1966 1967 for (unsigned int i = 0; i < MemoryType.size(); i++) { 1968 EmptyStrings.push_back(MDString::get(FN->getContext(), "")); 1969 } 1970 1971 if (Arch == GPUArch::SPIR32 || Arch == GPUArch::SPIR64) { 1972 FN->setMetadata("kernel_arg_addr_space", 1973 MDNode::get(FN->getContext(), MemoryType)); 1974 FN->setMetadata("kernel_arg_name", 1975 MDNode::get(FN->getContext(), EmptyStrings)); 1976 FN->setMetadata("kernel_arg_access_qual", 1977 MDNode::get(FN->getContext(), EmptyStrings)); 1978 FN->setMetadata("kernel_arg_type", 1979 MDNode::get(FN->getContext(), EmptyStrings)); 1980 FN->setMetadata("kernel_arg_type_qual", 1981 MDNode::get(FN->getContext(), EmptyStrings)); 1982 FN->setMetadata("kernel_arg_base_type", 1983 MDNode::get(FN->getContext(), EmptyStrings)); 1984 } 1985 1986 switch (Arch) { 1987 case GPUArch::NVPTX64: 1988 FN->setCallingConv(CallingConv::PTX_Kernel); 1989 break; 1990 case GPUArch::SPIR32: 1991 case GPUArch::SPIR64: 1992 FN->setCallingConv(CallingConv::SPIR_KERNEL); 1993 break; 1994 } 1995 1996 auto Arg = FN->arg_begin(); 1997 for (long i = 0; i < Kernel->n_array; i++) { 1998 if (!ppcg_kernel_requires_array_argument(Kernel, i)) 1999 continue; 2000 2001 Arg->setName(Kernel->array[i].array->name); 2002 2003 isl_id *Id = isl_space_get_tuple_id(Prog->array[i].space, isl_dim_set); 2004 const ScopArrayInfo *SAI = ScopArrayInfo::getFromId(isl::manage_copy(Id)); 2005 Type *EleTy = SAI->getElementType(); 2006 Value *Val = &*Arg; 2007 SmallVector<const SCEV *, 4> Sizes; 2008 isl_ast_build *Build = 2009 isl_ast_build_from_context(isl_set_copy(Prog->context)); 2010 Sizes.push_back(nullptr); 2011 for (long j = 1, n = Kernel->array[i].array->n_index; j < n; j++) { 2012 isl_ast_expr *DimSize = isl_ast_build_expr_from_pw_aff( 2013 Build, isl_multi_pw_aff_get_pw_aff(Kernel->array[i].array->bound, j)); 2014 auto V = ExprBuilder.create(DimSize); 2015 Sizes.push_back(SE.getSCEV(V)); 2016 } 2017 const ScopArrayInfo *SAIRep = 2018 S.getOrCreateScopArrayInfo(Val, EleTy, Sizes, MemoryKind::Array); 2019 LocalArrays.push_back(Val); 2020 2021 isl_ast_build_free(Build); 2022 KernelIds.push_back(Id); 2023 IDToSAI[Id] = SAIRep; 2024 Arg++; 2025 } 2026 2027 for (long i = 0; i < NumHostIters; i++) { 2028 isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_set, i); 2029 Arg->setName(isl_id_get_name(Id)); 2030 IDToValue[Id] = &*Arg; 2031 KernelIDs.insert(std::unique_ptr<isl_id, IslIdDeleter>(Id)); 2032 Arg++; 2033 } 2034 2035 for (long i = 0; i < NumVars; i++) { 2036 isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_param, i); 2037 Arg->setName(isl_id_get_name(Id)); 2038 Value *Val = IDToValue[Id]; 2039 ValueMap[Val] = &*Arg; 2040 IDToValue[Id] = &*Arg; 2041 KernelIDs.insert(std::unique_ptr<isl_id, IslIdDeleter>(Id)); 2042 Arg++; 2043 } 2044 2045 for (auto *V : SubtreeValues) { 2046 Arg->setName(V->getName()); 2047 ValueMap[V] = &*Arg; 2048 Arg++; 2049 } 2050 2051 return FN; 2052 } 2053 2054 void GPUNodeBuilder::insertKernelIntrinsics(ppcg_kernel *Kernel) { 2055 Intrinsic::ID IntrinsicsBID[2]; 2056 Intrinsic::ID IntrinsicsTID[3]; 2057 2058 switch (Arch) { 2059 case GPUArch::SPIR64: 2060 case GPUArch::SPIR32: 2061 llvm_unreachable("Cannot generate NVVM intrinsics for SPIR"); 2062 case GPUArch::NVPTX64: 2063 IntrinsicsBID[0] = Intrinsic::nvvm_read_ptx_sreg_ctaid_x; 2064 IntrinsicsBID[1] = Intrinsic::nvvm_read_ptx_sreg_ctaid_y; 2065 2066 IntrinsicsTID[0] = Intrinsic::nvvm_read_ptx_sreg_tid_x; 2067 IntrinsicsTID[1] = Intrinsic::nvvm_read_ptx_sreg_tid_y; 2068 IntrinsicsTID[2] = Intrinsic::nvvm_read_ptx_sreg_tid_z; 2069 break; 2070 } 2071 2072 auto addId = [this](__isl_take isl_id *Id, Intrinsic::ID Intr) mutable { 2073 std::string Name = isl_id_get_name(Id); 2074 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 2075 Function *IntrinsicFn = Intrinsic::getDeclaration(M, Intr); 2076 Value *Val = Builder.CreateCall(IntrinsicFn, {}); 2077 Val = Builder.CreateIntCast(Val, Builder.getInt64Ty(), false, Name); 2078 IDToValue[Id] = Val; 2079 KernelIDs.insert(std::unique_ptr<isl_id, IslIdDeleter>(Id)); 2080 }; 2081 2082 for (int i = 0; i < Kernel->n_grid; ++i) { 2083 isl_id *Id = isl_id_list_get_id(Kernel->block_ids, i); 2084 addId(Id, IntrinsicsBID[i]); 2085 } 2086 2087 for (int i = 0; i < Kernel->n_block; ++i) { 2088 isl_id *Id = isl_id_list_get_id(Kernel->thread_ids, i); 2089 addId(Id, IntrinsicsTID[i]); 2090 } 2091 } 2092 2093 void GPUNodeBuilder::insertKernelCallsSPIR(ppcg_kernel *Kernel, 2094 bool SizeTypeIs64bit) { 2095 const char *GroupName[3] = {"__gen_ocl_get_group_id0", 2096 "__gen_ocl_get_group_id1", 2097 "__gen_ocl_get_group_id2"}; 2098 2099 const char *LocalName[3] = {"__gen_ocl_get_local_id0", 2100 "__gen_ocl_get_local_id1", 2101 "__gen_ocl_get_local_id2"}; 2102 IntegerType *SizeT = 2103 SizeTypeIs64bit ? Builder.getInt64Ty() : Builder.getInt32Ty(); 2104 2105 auto createFunc = [this](const char *Name, __isl_take isl_id *Id, 2106 IntegerType *SizeT) mutable { 2107 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 2108 Function *FN = M->getFunction(Name); 2109 2110 // If FN is not available, declare it. 2111 if (!FN) { 2112 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; 2113 std::vector<Type *> Args; 2114 FunctionType *Ty = FunctionType::get(SizeT, Args, false); 2115 FN = Function::Create(Ty, Linkage, Name, M); 2116 FN->setCallingConv(CallingConv::SPIR_FUNC); 2117 } 2118 2119 Value *Val = Builder.CreateCall(FN, {}); 2120 if (SizeT == Builder.getInt32Ty()) 2121 Val = Builder.CreateIntCast(Val, Builder.getInt64Ty(), false, Name); 2122 IDToValue[Id] = Val; 2123 KernelIDs.insert(std::unique_ptr<isl_id, IslIdDeleter>(Id)); 2124 }; 2125 2126 for (int i = 0; i < Kernel->n_grid; ++i) 2127 createFunc(GroupName[i], isl_id_list_get_id(Kernel->block_ids, i), SizeT); 2128 2129 for (int i = 0; i < Kernel->n_block; ++i) 2130 createFunc(LocalName[i], isl_id_list_get_id(Kernel->thread_ids, i), SizeT); 2131 } 2132 2133 void GPUNodeBuilder::prepareKernelArguments(ppcg_kernel *Kernel, Function *FN) { 2134 auto Arg = FN->arg_begin(); 2135 for (long i = 0; i < Kernel->n_array; i++) { 2136 if (!ppcg_kernel_requires_array_argument(Kernel, i)) 2137 continue; 2138 2139 isl_id *Id = isl_space_get_tuple_id(Prog->array[i].space, isl_dim_set); 2140 const ScopArrayInfo *SAI = ScopArrayInfo::getFromId(isl::manage_copy(Id)); 2141 isl_id_free(Id); 2142 2143 if (SAI->getNumberOfDimensions() > 0) { 2144 Arg++; 2145 continue; 2146 } 2147 2148 Value *Val = &*Arg; 2149 2150 if (!gpu_array_is_read_only_scalar(&Prog->array[i])) { 2151 Type *TypePtr = SAI->getElementType()->getPointerTo(); 2152 Value *TypedArgPtr = Builder.CreatePointerCast(Val, TypePtr); 2153 Val = Builder.CreateLoad(TypedArgPtr); 2154 } 2155 2156 Value *Alloca = BlockGen.getOrCreateAlloca(SAI); 2157 Builder.CreateStore(Val, Alloca); 2158 2159 Arg++; 2160 } 2161 } 2162 2163 void GPUNodeBuilder::finalizeKernelArguments(ppcg_kernel *Kernel) { 2164 auto *FN = Builder.GetInsertBlock()->getParent(); 2165 auto Arg = FN->arg_begin(); 2166 2167 bool StoredScalar = false; 2168 for (long i = 0; i < Kernel->n_array; i++) { 2169 if (!ppcg_kernel_requires_array_argument(Kernel, i)) 2170 continue; 2171 2172 isl_id *Id = isl_space_get_tuple_id(Prog->array[i].space, isl_dim_set); 2173 const ScopArrayInfo *SAI = ScopArrayInfo::getFromId(isl::manage_copy(Id)); 2174 isl_id_free(Id); 2175 2176 if (SAI->getNumberOfDimensions() > 0) { 2177 Arg++; 2178 continue; 2179 } 2180 2181 if (gpu_array_is_read_only_scalar(&Prog->array[i])) { 2182 Arg++; 2183 continue; 2184 } 2185 2186 Value *Alloca = BlockGen.getOrCreateAlloca(SAI); 2187 Value *ArgPtr = &*Arg; 2188 Type *TypePtr = SAI->getElementType()->getPointerTo(); 2189 Value *TypedArgPtr = Builder.CreatePointerCast(ArgPtr, TypePtr); 2190 Value *Val = Builder.CreateLoad(Alloca); 2191 Builder.CreateStore(Val, TypedArgPtr); 2192 StoredScalar = true; 2193 2194 Arg++; 2195 } 2196 2197 if (StoredScalar) { 2198 /// In case more than one thread contains scalar stores, the generated 2199 /// code might be incorrect, if we only store at the end of the kernel. 2200 /// To support this case we need to store these scalars back at each 2201 /// memory store or at least before each kernel barrier. 2202 if (Kernel->n_block != 0 || Kernel->n_grid != 0) { 2203 BuildSuccessful = 0; 2204 LLVM_DEBUG( 2205 dbgs() << getUniqueScopName(&S) 2206 << " has a store to a scalar value that" 2207 " would be undefined to run in parallel. Bailing out.\n";); 2208 } 2209 } 2210 } 2211 2212 void GPUNodeBuilder::createKernelVariables(ppcg_kernel *Kernel, Function *FN) { 2213 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 2214 2215 for (int i = 0; i < Kernel->n_var; ++i) { 2216 struct ppcg_kernel_var &Var = Kernel->var[i]; 2217 isl_id *Id = isl_space_get_tuple_id(Var.array->space, isl_dim_set); 2218 Type *EleTy = ScopArrayInfo::getFromId(isl::manage(Id))->getElementType(); 2219 2220 Type *ArrayTy = EleTy; 2221 SmallVector<const SCEV *, 4> Sizes; 2222 2223 Sizes.push_back(nullptr); 2224 for (unsigned int j = 1; j < Var.array->n_index; ++j) { 2225 isl_val *Val = isl_vec_get_element_val(Var.size, j); 2226 long Bound = isl_val_get_num_si(Val); 2227 isl_val_free(Val); 2228 Sizes.push_back(S.getSE()->getConstant(Builder.getInt64Ty(), Bound)); 2229 } 2230 2231 for (int j = Var.array->n_index - 1; j >= 0; --j) { 2232 isl_val *Val = isl_vec_get_element_val(Var.size, j); 2233 long Bound = isl_val_get_num_si(Val); 2234 isl_val_free(Val); 2235 ArrayTy = ArrayType::get(ArrayTy, Bound); 2236 } 2237 2238 const ScopArrayInfo *SAI; 2239 Value *Allocation; 2240 if (Var.type == ppcg_access_shared) { 2241 auto GlobalVar = new GlobalVariable( 2242 *M, ArrayTy, false, GlobalValue::InternalLinkage, 0, Var.name, 2243 nullptr, GlobalValue::ThreadLocalMode::NotThreadLocal, 3); 2244 GlobalVar->setAlignment(EleTy->getPrimitiveSizeInBits() / 8); 2245 GlobalVar->setInitializer(Constant::getNullValue(ArrayTy)); 2246 2247 Allocation = GlobalVar; 2248 } else if (Var.type == ppcg_access_private) { 2249 Allocation = Builder.CreateAlloca(ArrayTy, 0, "private_array"); 2250 } else { 2251 llvm_unreachable("unknown variable type"); 2252 } 2253 SAI = 2254 S.getOrCreateScopArrayInfo(Allocation, EleTy, Sizes, MemoryKind::Array); 2255 Id = isl_id_alloc(S.getIslCtx().get(), Var.name, nullptr); 2256 IDToValue[Id] = Allocation; 2257 LocalArrays.push_back(Allocation); 2258 KernelIds.push_back(Id); 2259 IDToSAI[Id] = SAI; 2260 } 2261 } 2262 2263 void GPUNodeBuilder::createKernelFunction( 2264 ppcg_kernel *Kernel, SetVector<Value *> &SubtreeValues, 2265 SetVector<Function *> &SubtreeFunctions) { 2266 std::string Identifier = getKernelFuncName(Kernel->id); 2267 GPUModule.reset(new Module(Identifier, Builder.getContext())); 2268 2269 switch (Arch) { 2270 case GPUArch::NVPTX64: 2271 if (Runtime == GPURuntime::CUDA) 2272 GPUModule->setTargetTriple(Triple::normalize("nvptx64-nvidia-cuda")); 2273 else if (Runtime == GPURuntime::OpenCL) 2274 GPUModule->setTargetTriple(Triple::normalize("nvptx64-nvidia-nvcl")); 2275 GPUModule->setDataLayout(computeNVPTXDataLayout(true /* is64Bit */)); 2276 break; 2277 case GPUArch::SPIR32: 2278 GPUModule->setTargetTriple(Triple::normalize("spir-unknown-unknown")); 2279 GPUModule->setDataLayout(computeSPIRDataLayout(false /* is64Bit */)); 2280 break; 2281 case GPUArch::SPIR64: 2282 GPUModule->setTargetTriple(Triple::normalize("spir64-unknown-unknown")); 2283 GPUModule->setDataLayout(computeSPIRDataLayout(true /* is64Bit */)); 2284 break; 2285 } 2286 2287 Function *FN = createKernelFunctionDecl(Kernel, SubtreeValues); 2288 2289 BasicBlock *PrevBlock = Builder.GetInsertBlock(); 2290 auto EntryBlock = BasicBlock::Create(Builder.getContext(), "entry", FN); 2291 2292 DT.addNewBlock(EntryBlock, PrevBlock); 2293 2294 Builder.SetInsertPoint(EntryBlock); 2295 Builder.CreateRetVoid(); 2296 Builder.SetInsertPoint(EntryBlock, EntryBlock->begin()); 2297 2298 ScopDetection::markFunctionAsInvalid(FN); 2299 2300 prepareKernelArguments(Kernel, FN); 2301 createKernelVariables(Kernel, FN); 2302 2303 switch (Arch) { 2304 case GPUArch::NVPTX64: 2305 insertKernelIntrinsics(Kernel); 2306 break; 2307 case GPUArch::SPIR32: 2308 insertKernelCallsSPIR(Kernel, false); 2309 break; 2310 case GPUArch::SPIR64: 2311 insertKernelCallsSPIR(Kernel, true); 2312 break; 2313 } 2314 } 2315 2316 std::string GPUNodeBuilder::createKernelASM() { 2317 llvm::Triple GPUTriple; 2318 2319 switch (Arch) { 2320 case GPUArch::NVPTX64: 2321 switch (Runtime) { 2322 case GPURuntime::CUDA: 2323 GPUTriple = llvm::Triple(Triple::normalize("nvptx64-nvidia-cuda")); 2324 break; 2325 case GPURuntime::OpenCL: 2326 GPUTriple = llvm::Triple(Triple::normalize("nvptx64-nvidia-nvcl")); 2327 break; 2328 } 2329 break; 2330 case GPUArch::SPIR64: 2331 case GPUArch::SPIR32: 2332 std::string SPIRAssembly; 2333 raw_string_ostream IROstream(SPIRAssembly); 2334 IROstream << *GPUModule; 2335 IROstream.flush(); 2336 return SPIRAssembly; 2337 } 2338 2339 std::string ErrMsg; 2340 auto GPUTarget = TargetRegistry::lookupTarget(GPUTriple.getTriple(), ErrMsg); 2341 2342 if (!GPUTarget) { 2343 errs() << ErrMsg << "\n"; 2344 return ""; 2345 } 2346 2347 TargetOptions Options; 2348 Options.UnsafeFPMath = FastMath; 2349 2350 std::string subtarget; 2351 2352 switch (Arch) { 2353 case GPUArch::NVPTX64: 2354 subtarget = CudaVersion; 2355 break; 2356 case GPUArch::SPIR32: 2357 case GPUArch::SPIR64: 2358 llvm_unreachable("No subtarget for SPIR architecture"); 2359 } 2360 2361 std::unique_ptr<TargetMachine> TargetM(GPUTarget->createTargetMachine( 2362 GPUTriple.getTriple(), subtarget, "", Options, Optional<Reloc::Model>())); 2363 2364 SmallString<0> ASMString; 2365 raw_svector_ostream ASMStream(ASMString); 2366 llvm::legacy::PassManager PM; 2367 2368 PM.add(createTargetTransformInfoWrapperPass(TargetM->getTargetIRAnalysis())); 2369 2370 if (TargetM->addPassesToEmitFile(PM, ASMStream, nullptr, 2371 TargetMachine::CGFT_AssemblyFile, 2372 true /* verify */)) { 2373 errs() << "The target does not support generation of this file type!\n"; 2374 return ""; 2375 } 2376 2377 PM.run(*GPUModule); 2378 2379 return ASMStream.str(); 2380 } 2381 2382 bool GPUNodeBuilder::requiresCUDALibDevice() { 2383 bool RequiresLibDevice = false; 2384 for (Function &F : GPUModule->functions()) { 2385 if (!F.isDeclaration()) 2386 continue; 2387 2388 const std::string CUDALibDeviceFunc = getCUDALibDeviceFuntion(F.getName()); 2389 if (CUDALibDeviceFunc.length() != 0) { 2390 // We need to handle the case where a module looks like this: 2391 // @expf(..) 2392 // @llvm.exp.f64(..) 2393 // Both of these functions would be renamed to `__nv_expf`. 2394 // 2395 // So, we must first check for the existence of the libdevice function. 2396 // If this exists, we replace our current function with it. 2397 // 2398 // If it does not exist, we rename the current function to the 2399 // libdevice functiono name. 2400 if (Function *Replacement = F.getParent()->getFunction(CUDALibDeviceFunc)) 2401 F.replaceAllUsesWith(Replacement); 2402 else 2403 F.setName(CUDALibDeviceFunc); 2404 RequiresLibDevice = true; 2405 } 2406 } 2407 2408 return RequiresLibDevice; 2409 } 2410 2411 void GPUNodeBuilder::addCUDALibDevice() { 2412 if (Arch != GPUArch::NVPTX64) 2413 return; 2414 2415 if (requiresCUDALibDevice()) { 2416 SMDiagnostic Error; 2417 2418 errs() << CUDALibDevice << "\n"; 2419 auto LibDeviceModule = 2420 parseIRFile(CUDALibDevice, Error, GPUModule->getContext()); 2421 2422 if (!LibDeviceModule) { 2423 BuildSuccessful = false; 2424 report_fatal_error("Could not find or load libdevice. Skipping GPU " 2425 "kernel generation. Please set -polly-acc-libdevice " 2426 "accordingly.\n"); 2427 return; 2428 } 2429 2430 Linker L(*GPUModule); 2431 2432 // Set an nvptx64 target triple to avoid linker warnings. The original 2433 // triple of the libdevice files are nvptx-unknown-unknown. 2434 LibDeviceModule->setTargetTriple(Triple::normalize("nvptx64-nvidia-cuda")); 2435 L.linkInModule(std::move(LibDeviceModule), Linker::LinkOnlyNeeded); 2436 } 2437 } 2438 2439 std::string GPUNodeBuilder::finalizeKernelFunction() { 2440 2441 if (verifyModule(*GPUModule)) { 2442 LLVM_DEBUG(dbgs() << "verifyModule failed on module:\n"; 2443 GPUModule->print(dbgs(), nullptr); dbgs() << "\n";); 2444 LLVM_DEBUG(dbgs() << "verifyModule Error:\n"; 2445 verifyModule(*GPUModule, &dbgs());); 2446 2447 if (FailOnVerifyModuleFailure) 2448 llvm_unreachable("VerifyModule failed."); 2449 2450 BuildSuccessful = false; 2451 return ""; 2452 } 2453 2454 addCUDALibDevice(); 2455 2456 if (DumpKernelIR) 2457 outs() << *GPUModule << "\n"; 2458 2459 if (Arch != GPUArch::SPIR32 && Arch != GPUArch::SPIR64) { 2460 // Optimize module. 2461 llvm::legacy::PassManager OptPasses; 2462 PassManagerBuilder PassBuilder; 2463 PassBuilder.OptLevel = 3; 2464 PassBuilder.SizeLevel = 0; 2465 PassBuilder.populateModulePassManager(OptPasses); 2466 OptPasses.run(*GPUModule); 2467 } 2468 2469 std::string Assembly = createKernelASM(); 2470 2471 if (DumpKernelASM) 2472 outs() << Assembly << "\n"; 2473 2474 GPUModule.release(); 2475 KernelIDs.clear(); 2476 2477 return Assembly; 2478 } 2479 /// Construct an `isl_pw_aff_list` from a vector of `isl_pw_aff` 2480 /// @param PwAffs The list of piecewise affine functions to create an 2481 /// `isl_pw_aff_list` from. We expect an rvalue ref because 2482 /// all the isl_pw_aff are used up by this function. 2483 /// 2484 /// @returns The `isl_pw_aff_list`. 2485 __isl_give isl_pw_aff_list * 2486 createPwAffList(isl_ctx *Context, 2487 const std::vector<__isl_take isl_pw_aff *> &&PwAffs) { 2488 isl_pw_aff_list *List = isl_pw_aff_list_alloc(Context, PwAffs.size()); 2489 2490 for (unsigned i = 0; i < PwAffs.size(); i++) { 2491 List = isl_pw_aff_list_insert(List, i, PwAffs[i]); 2492 } 2493 return List; 2494 } 2495 2496 /// Align all the `PwAffs` such that they have the same parameter dimensions. 2497 /// 2498 /// We loop over all `pw_aff` and align all of their spaces together to 2499 /// create a common space for all the `pw_aff`. This common space is the 2500 /// `AlignSpace`. We then align all the `pw_aff` to this space. We start 2501 /// with the given `SeedSpace`. 2502 /// @param PwAffs The list of piecewise affine functions we want to align. 2503 /// This is an rvalue reference because the entire vector is 2504 /// used up by the end of the operation. 2505 /// @param SeedSpace The space to start the alignment process with. 2506 /// @returns A std::pair, whose first element is the aligned space, 2507 /// whose second element is the vector of aligned piecewise 2508 /// affines. 2509 static std::pair<__isl_give isl_space *, std::vector<__isl_give isl_pw_aff *>> 2510 alignPwAffs(const std::vector<__isl_take isl_pw_aff *> &&PwAffs, 2511 __isl_take isl_space *SeedSpace) { 2512 assert(SeedSpace && "Invalid seed space given."); 2513 2514 isl_space *AlignSpace = SeedSpace; 2515 for (isl_pw_aff *PwAff : PwAffs) { 2516 isl_space *PwAffSpace = isl_pw_aff_get_domain_space(PwAff); 2517 AlignSpace = isl_space_align_params(AlignSpace, PwAffSpace); 2518 } 2519 std::vector<isl_pw_aff *> AdjustedPwAffs; 2520 2521 for (unsigned i = 0; i < PwAffs.size(); i++) { 2522 isl_pw_aff *Adjusted = PwAffs[i]; 2523 assert(Adjusted && "Invalid pw_aff given."); 2524 Adjusted = isl_pw_aff_align_params(Adjusted, isl_space_copy(AlignSpace)); 2525 AdjustedPwAffs.push_back(Adjusted); 2526 } 2527 return std::make_pair(AlignSpace, AdjustedPwAffs); 2528 } 2529 2530 namespace { 2531 class PPCGCodeGeneration : public ScopPass { 2532 public: 2533 static char ID; 2534 2535 GPURuntime Runtime = GPURuntime::CUDA; 2536 2537 GPUArch Architecture = GPUArch::NVPTX64; 2538 2539 /// The scop that is currently processed. 2540 Scop *S; 2541 2542 LoopInfo *LI; 2543 DominatorTree *DT; 2544 ScalarEvolution *SE; 2545 const DataLayout *DL; 2546 RegionInfo *RI; 2547 2548 PPCGCodeGeneration() : ScopPass(ID) {} 2549 2550 /// Construct compilation options for PPCG. 2551 /// 2552 /// @returns The compilation options. 2553 ppcg_options *createPPCGOptions() { 2554 auto DebugOptions = 2555 (ppcg_debug_options *)malloc(sizeof(ppcg_debug_options)); 2556 auto Options = (ppcg_options *)malloc(sizeof(ppcg_options)); 2557 2558 DebugOptions->dump_schedule_constraints = false; 2559 DebugOptions->dump_schedule = false; 2560 DebugOptions->dump_final_schedule = false; 2561 DebugOptions->dump_sizes = false; 2562 DebugOptions->verbose = false; 2563 2564 Options->debug = DebugOptions; 2565 2566 Options->group_chains = false; 2567 Options->reschedule = true; 2568 Options->scale_tile_loops = false; 2569 Options->wrap = false; 2570 2571 Options->non_negative_parameters = false; 2572 Options->ctx = nullptr; 2573 Options->sizes = nullptr; 2574 2575 Options->tile = true; 2576 Options->tile_size = 32; 2577 2578 Options->isolate_full_tiles = false; 2579 2580 Options->use_private_memory = PrivateMemory; 2581 Options->use_shared_memory = SharedMemory; 2582 Options->max_shared_memory = 48 * 1024; 2583 2584 Options->target = PPCG_TARGET_CUDA; 2585 Options->openmp = false; 2586 Options->linearize_device_arrays = true; 2587 Options->allow_gnu_extensions = false; 2588 2589 Options->unroll_copy_shared = false; 2590 Options->unroll_gpu_tile = false; 2591 Options->live_range_reordering = true; 2592 2593 Options->live_range_reordering = true; 2594 Options->hybrid = false; 2595 Options->opencl_compiler_options = nullptr; 2596 Options->opencl_use_gpu = false; 2597 Options->opencl_n_include_file = 0; 2598 Options->opencl_include_files = nullptr; 2599 Options->opencl_print_kernel_types = false; 2600 Options->opencl_embed_kernel_code = false; 2601 2602 Options->save_schedule_file = nullptr; 2603 Options->load_schedule_file = nullptr; 2604 2605 return Options; 2606 } 2607 2608 /// Get a tagged access relation containing all accesses of type @p AccessTy. 2609 /// 2610 /// Instead of a normal access of the form: 2611 /// 2612 /// Stmt[i,j,k] -> Array[f_0(i,j,k), f_1(i,j,k)] 2613 /// 2614 /// a tagged access has the form 2615 /// 2616 /// [Stmt[i,j,k] -> id[]] -> Array[f_0(i,j,k), f_1(i,j,k)] 2617 /// 2618 /// where 'id' is an additional space that references the memory access that 2619 /// triggered the access. 2620 /// 2621 /// @param AccessTy The type of the memory accesses to collect. 2622 /// 2623 /// @return The relation describing all tagged memory accesses. 2624 isl_union_map *getTaggedAccesses(enum MemoryAccess::AccessType AccessTy) { 2625 isl_union_map *Accesses = isl_union_map_empty(S->getParamSpace().release()); 2626 2627 for (auto &Stmt : *S) 2628 for (auto &Acc : Stmt) 2629 if (Acc->getType() == AccessTy) { 2630 isl_map *Relation = Acc->getAccessRelation().release(); 2631 Relation = 2632 isl_map_intersect_domain(Relation, Stmt.getDomain().release()); 2633 2634 isl_space *Space = isl_map_get_space(Relation); 2635 Space = isl_space_range(Space); 2636 Space = isl_space_from_range(Space); 2637 Space = 2638 isl_space_set_tuple_id(Space, isl_dim_in, Acc->getId().release()); 2639 isl_map *Universe = isl_map_universe(Space); 2640 Relation = isl_map_domain_product(Relation, Universe); 2641 Accesses = isl_union_map_add_map(Accesses, Relation); 2642 } 2643 2644 return Accesses; 2645 } 2646 2647 /// Get the set of all read accesses, tagged with the access id. 2648 /// 2649 /// @see getTaggedAccesses 2650 isl_union_map *getTaggedReads() { 2651 return getTaggedAccesses(MemoryAccess::READ); 2652 } 2653 2654 /// Get the set of all may (and must) accesses, tagged with the access id. 2655 /// 2656 /// @see getTaggedAccesses 2657 isl_union_map *getTaggedMayWrites() { 2658 return isl_union_map_union(getTaggedAccesses(MemoryAccess::MAY_WRITE), 2659 getTaggedAccesses(MemoryAccess::MUST_WRITE)); 2660 } 2661 2662 /// Get the set of all must accesses, tagged with the access id. 2663 /// 2664 /// @see getTaggedAccesses 2665 isl_union_map *getTaggedMustWrites() { 2666 return getTaggedAccesses(MemoryAccess::MUST_WRITE); 2667 } 2668 2669 /// Collect parameter and array names as isl_ids. 2670 /// 2671 /// To reason about the different parameters and arrays used, ppcg requires 2672 /// a list of all isl_ids in use. As PPCG traditionally performs 2673 /// source-to-source compilation each of these isl_ids is mapped to the 2674 /// expression that represents it. As we do not have a corresponding 2675 /// expression in Polly, we just map each id to a 'zero' expression to match 2676 /// the data format that ppcg expects. 2677 /// 2678 /// @returns Retun a map from collected ids to 'zero' ast expressions. 2679 __isl_give isl_id_to_ast_expr *getNames() { 2680 auto *Names = isl_id_to_ast_expr_alloc( 2681 S->getIslCtx().get(), 2682 S->getNumParams() + std::distance(S->array_begin(), S->array_end())); 2683 auto *Zero = isl_ast_expr_from_val(isl_val_zero(S->getIslCtx().get())); 2684 2685 for (const SCEV *P : S->parameters()) { 2686 isl_id *Id = S->getIdForParam(P).release(); 2687 Names = isl_id_to_ast_expr_set(Names, Id, isl_ast_expr_copy(Zero)); 2688 } 2689 2690 for (auto &Array : S->arrays()) { 2691 auto Id = Array->getBasePtrId().release(); 2692 Names = isl_id_to_ast_expr_set(Names, Id, isl_ast_expr_copy(Zero)); 2693 } 2694 2695 isl_ast_expr_free(Zero); 2696 2697 return Names; 2698 } 2699 2700 /// Create a new PPCG scop from the current scop. 2701 /// 2702 /// The PPCG scop is initialized with data from the current polly::Scop. From 2703 /// this initial data, the data-dependences in the PPCG scop are initialized. 2704 /// We do not use Polly's dependence analysis for now, to ensure we match 2705 /// the PPCG default behaviour more closely. 2706 /// 2707 /// @returns A new ppcg scop. 2708 ppcg_scop *createPPCGScop() { 2709 MustKillsInfo KillsInfo = computeMustKillsInfo(*S); 2710 2711 auto PPCGScop = (ppcg_scop *)malloc(sizeof(ppcg_scop)); 2712 2713 PPCGScop->options = createPPCGOptions(); 2714 // enable live range reordering 2715 PPCGScop->options->live_range_reordering = 1; 2716 2717 PPCGScop->start = 0; 2718 PPCGScop->end = 0; 2719 2720 PPCGScop->context = S->getContext().release(); 2721 PPCGScop->domain = S->getDomains().release(); 2722 // TODO: investigate this further. PPCG calls collect_call_domains. 2723 PPCGScop->call = isl_union_set_from_set(S->getContext().release()); 2724 PPCGScop->tagged_reads = getTaggedReads(); 2725 PPCGScop->reads = S->getReads().release(); 2726 PPCGScop->live_in = nullptr; 2727 PPCGScop->tagged_may_writes = getTaggedMayWrites(); 2728 PPCGScop->may_writes = S->getWrites().release(); 2729 PPCGScop->tagged_must_writes = getTaggedMustWrites(); 2730 PPCGScop->must_writes = S->getMustWrites().release(); 2731 PPCGScop->live_out = nullptr; 2732 PPCGScop->tagged_must_kills = KillsInfo.TaggedMustKills.release(); 2733 PPCGScop->must_kills = KillsInfo.MustKills.release(); 2734 2735 PPCGScop->tagger = nullptr; 2736 PPCGScop->independence = 2737 isl_union_map_empty(isl_set_get_space(PPCGScop->context)); 2738 PPCGScop->dep_flow = nullptr; 2739 PPCGScop->tagged_dep_flow = nullptr; 2740 PPCGScop->dep_false = nullptr; 2741 PPCGScop->dep_forced = nullptr; 2742 PPCGScop->dep_order = nullptr; 2743 PPCGScop->tagged_dep_order = nullptr; 2744 2745 PPCGScop->schedule = S->getScheduleTree().release(); 2746 // If we have something non-trivial to kill, add it to the schedule 2747 if (KillsInfo.KillsSchedule.get()) 2748 PPCGScop->schedule = isl_schedule_sequence( 2749 PPCGScop->schedule, KillsInfo.KillsSchedule.release()); 2750 2751 PPCGScop->names = getNames(); 2752 PPCGScop->pet = nullptr; 2753 2754 compute_tagger(PPCGScop); 2755 compute_dependences(PPCGScop); 2756 eliminate_dead_code(PPCGScop); 2757 2758 return PPCGScop; 2759 } 2760 2761 /// Collect the array accesses in a statement. 2762 /// 2763 /// @param Stmt The statement for which to collect the accesses. 2764 /// 2765 /// @returns A list of array accesses. 2766 gpu_stmt_access *getStmtAccesses(ScopStmt &Stmt) { 2767 gpu_stmt_access *Accesses = nullptr; 2768 2769 for (MemoryAccess *Acc : Stmt) { 2770 auto Access = 2771 isl_alloc_type(S->getIslCtx().get(), struct gpu_stmt_access); 2772 Access->read = Acc->isRead(); 2773 Access->write = Acc->isWrite(); 2774 Access->access = Acc->getAccessRelation().release(); 2775 isl_space *Space = isl_map_get_space(Access->access); 2776 Space = isl_space_range(Space); 2777 Space = isl_space_from_range(Space); 2778 Space = isl_space_set_tuple_id(Space, isl_dim_in, Acc->getId().release()); 2779 isl_map *Universe = isl_map_universe(Space); 2780 Access->tagged_access = 2781 isl_map_domain_product(Acc->getAccessRelation().release(), Universe); 2782 Access->exact_write = !Acc->isMayWrite(); 2783 Access->ref_id = Acc->getId().release(); 2784 Access->next = Accesses; 2785 Access->n_index = Acc->getScopArrayInfo()->getNumberOfDimensions(); 2786 // TODO: Also mark one-element accesses to arrays as fixed-element. 2787 Access->fixed_element = 2788 Acc->isLatestScalarKind() ? isl_bool_true : isl_bool_false; 2789 Accesses = Access; 2790 } 2791 2792 return Accesses; 2793 } 2794 2795 /// Collect the list of GPU statements. 2796 /// 2797 /// Each statement has an id, a pointer to the underlying data structure, 2798 /// as well as a list with all memory accesses. 2799 /// 2800 /// TODO: Initialize the list of memory accesses. 2801 /// 2802 /// @returns A linked-list of statements. 2803 gpu_stmt *getStatements() { 2804 gpu_stmt *Stmts = isl_calloc_array(S->getIslCtx().get(), struct gpu_stmt, 2805 std::distance(S->begin(), S->end())); 2806 2807 int i = 0; 2808 for (auto &Stmt : *S) { 2809 gpu_stmt *GPUStmt = &Stmts[i]; 2810 2811 GPUStmt->id = Stmt.getDomainId().release(); 2812 2813 // We use the pet stmt pointer to keep track of the Polly statements. 2814 GPUStmt->stmt = (pet_stmt *)&Stmt; 2815 GPUStmt->accesses = getStmtAccesses(Stmt); 2816 i++; 2817 } 2818 2819 return Stmts; 2820 } 2821 2822 /// Derive the extent of an array. 2823 /// 2824 /// The extent of an array is the set of elements that are within the 2825 /// accessed array. For the inner dimensions, the extent constraints are 2826 /// 0 and the size of the corresponding array dimension. For the first 2827 /// (outermost) dimension, the extent constraints are the minimal and maximal 2828 /// subscript value for the first dimension. 2829 /// 2830 /// @param Array The array to derive the extent for. 2831 /// 2832 /// @returns An isl_set describing the extent of the array. 2833 isl::set getExtent(ScopArrayInfo *Array) { 2834 unsigned NumDims = Array->getNumberOfDimensions(); 2835 2836 if (Array->getNumberOfDimensions() == 0) 2837 return isl::set::universe(Array->getSpace()); 2838 2839 isl::union_map Accesses = S->getAccesses(Array); 2840 isl::union_set AccessUSet = Accesses.range(); 2841 AccessUSet = AccessUSet.coalesce(); 2842 AccessUSet = AccessUSet.detect_equalities(); 2843 AccessUSet = AccessUSet.coalesce(); 2844 2845 if (AccessUSet.is_empty()) 2846 return isl::set::empty(Array->getSpace()); 2847 2848 isl::set AccessSet = AccessUSet.extract_set(Array->getSpace()); 2849 2850 isl::local_space LS = isl::local_space(Array->getSpace()); 2851 2852 isl::pw_aff Val = isl::aff::var_on_domain(LS, isl::dim::set, 0); 2853 isl::pw_aff OuterMin = AccessSet.dim_min(0); 2854 isl::pw_aff OuterMax = AccessSet.dim_max(0); 2855 OuterMin = OuterMin.add_dims(isl::dim::in, Val.dim(isl::dim::in)); 2856 OuterMax = OuterMax.add_dims(isl::dim::in, Val.dim(isl::dim::in)); 2857 OuterMin = OuterMin.set_tuple_id(isl::dim::in, Array->getBasePtrId()); 2858 OuterMax = OuterMax.set_tuple_id(isl::dim::in, Array->getBasePtrId()); 2859 2860 isl::set Extent = isl::set::universe(Array->getSpace()); 2861 2862 Extent = Extent.intersect(OuterMin.le_set(Val)); 2863 Extent = Extent.intersect(OuterMax.ge_set(Val)); 2864 2865 for (unsigned i = 1; i < NumDims; ++i) 2866 Extent = Extent.lower_bound_si(isl::dim::set, i, 0); 2867 2868 for (unsigned i = 0; i < NumDims; ++i) { 2869 isl::pw_aff PwAff = Array->getDimensionSizePw(i); 2870 2871 // isl_pw_aff can be NULL for zero dimension. Only in the case of a 2872 // Fortran array will we have a legitimate dimension. 2873 if (PwAff.is_null()) { 2874 assert(i == 0 && "invalid dimension isl_pw_aff for nonzero dimension"); 2875 continue; 2876 } 2877 2878 isl::pw_aff Val = isl::aff::var_on_domain( 2879 isl::local_space(Array->getSpace()), isl::dim::set, i); 2880 PwAff = PwAff.add_dims(isl::dim::in, Val.dim(isl::dim::in)); 2881 PwAff = PwAff.set_tuple_id(isl::dim::in, Val.get_tuple_id(isl::dim::in)); 2882 isl::set Set = PwAff.gt_set(Val); 2883 Extent = Set.intersect(Extent); 2884 } 2885 2886 return Extent; 2887 } 2888 2889 /// Derive the bounds of an array. 2890 /// 2891 /// For the first dimension we derive the bound of the array from the extent 2892 /// of this dimension. For inner dimensions we obtain their size directly from 2893 /// ScopArrayInfo. 2894 /// 2895 /// @param PPCGArray The array to compute bounds for. 2896 /// @param Array The polly array from which to take the information. 2897 void setArrayBounds(gpu_array_info &PPCGArray, ScopArrayInfo *Array) { 2898 std::vector<isl_pw_aff *> Bounds; 2899 2900 if (PPCGArray.n_index > 0) { 2901 if (isl_set_is_empty(PPCGArray.extent)) { 2902 isl_set *Dom = isl_set_copy(PPCGArray.extent); 2903 isl_local_space *LS = isl_local_space_from_space( 2904 isl_space_params(isl_set_get_space(Dom))); 2905 isl_set_free(Dom); 2906 isl_pw_aff *Zero = isl_pw_aff_from_aff(isl_aff_zero_on_domain(LS)); 2907 Bounds.push_back(Zero); 2908 } else { 2909 isl_set *Dom = isl_set_copy(PPCGArray.extent); 2910 Dom = isl_set_project_out(Dom, isl_dim_set, 1, PPCGArray.n_index - 1); 2911 isl_pw_aff *Bound = isl_set_dim_max(isl_set_copy(Dom), 0); 2912 isl_set_free(Dom); 2913 Dom = isl_pw_aff_domain(isl_pw_aff_copy(Bound)); 2914 isl_local_space *LS = 2915 isl_local_space_from_space(isl_set_get_space(Dom)); 2916 isl_aff *One = isl_aff_zero_on_domain(LS); 2917 One = isl_aff_add_constant_si(One, 1); 2918 Bound = isl_pw_aff_add(Bound, isl_pw_aff_alloc(Dom, One)); 2919 Bound = isl_pw_aff_gist(Bound, S->getContext().release()); 2920 Bounds.push_back(Bound); 2921 } 2922 } 2923 2924 for (unsigned i = 1; i < PPCGArray.n_index; ++i) { 2925 isl_pw_aff *Bound = Array->getDimensionSizePw(i).release(); 2926 auto LS = isl_pw_aff_get_domain_space(Bound); 2927 auto Aff = isl_multi_aff_zero(LS); 2928 2929 // We need types to work out, which is why we perform this weird dance 2930 // with `Aff` and `Bound`. Consider this example: 2931 2932 // LS: [p] -> { [] } 2933 // Zero: [p] -> { [] } | Implicitly, is [p] -> { ~ -> [] }. 2934 // This `~` is used to denote a "null space" (which is different from 2935 // a *zero dimensional* space), which is something that ISL does not 2936 // show you when pretty printing. 2937 2938 // Bound: [p] -> { [] -> [(10p)] } | Here, the [] is a *zero dimensional* 2939 // space, not a "null space" which does not exist at all. 2940 2941 // When we pullback (precompose) `Bound` with `Zero`, we get: 2942 // Bound . Zero = 2943 // ([p] -> { [] -> [(10p)] }) . ([p] -> {~ -> [] }) = 2944 // [p] -> { ~ -> [(10p)] } = 2945 // [p] -> [(10p)] (as ISL pretty prints it) 2946 // Bound Pullback: [p] -> { [(10p)] } 2947 2948 // We want this kind of an expression for Bound, without a 2949 // zero dimensional input, but with a "null space" input for the types 2950 // to work out later on, as far as I (Siddharth Bhat) understand. 2951 // I was unable to find a reference to this in the ISL manual. 2952 // References: Tobias Grosser. 2953 2954 Bound = isl_pw_aff_pullback_multi_aff(Bound, Aff); 2955 Bounds.push_back(Bound); 2956 } 2957 2958 /// To construct a `isl_multi_pw_aff`, we need all the indivisual `pw_aff` 2959 /// to have the same parameter dimensions. So, we need to align them to an 2960 /// appropriate space. 2961 /// Scop::Context is _not_ an appropriate space, because when we have 2962 /// `-polly-ignore-parameter-bounds` enabled, the Scop::Context does not 2963 /// contain all parameter dimensions. 2964 /// So, use the helper `alignPwAffs` to align all the `isl_pw_aff` together. 2965 isl_space *SeedAlignSpace = S->getParamSpace().release(); 2966 SeedAlignSpace = isl_space_add_dims(SeedAlignSpace, isl_dim_set, 1); 2967 2968 isl_space *AlignSpace = nullptr; 2969 std::vector<isl_pw_aff *> AlignedBounds; 2970 std::tie(AlignSpace, AlignedBounds) = 2971 alignPwAffs(std::move(Bounds), SeedAlignSpace); 2972 2973 assert(AlignSpace && "alignPwAffs did not initialise AlignSpace"); 2974 2975 isl_pw_aff_list *BoundsList = 2976 createPwAffList(S->getIslCtx().get(), std::move(AlignedBounds)); 2977 2978 isl_space *BoundsSpace = isl_set_get_space(PPCGArray.extent); 2979 BoundsSpace = isl_space_align_params(BoundsSpace, AlignSpace); 2980 2981 assert(BoundsSpace && "Unable to access space of array."); 2982 assert(BoundsList && "Unable to access list of bounds."); 2983 2984 PPCGArray.bound = 2985 isl_multi_pw_aff_from_pw_aff_list(BoundsSpace, BoundsList); 2986 assert(PPCGArray.bound && "PPCGArray.bound was not constructed correctly."); 2987 } 2988 2989 /// Create the arrays for @p PPCGProg. 2990 /// 2991 /// @param PPCGProg The program to compute the arrays for. 2992 void createArrays(gpu_prog *PPCGProg, 2993 const SmallVector<ScopArrayInfo *, 4> &ValidSAIs) { 2994 int i = 0; 2995 for (auto &Array : ValidSAIs) { 2996 std::string TypeName; 2997 raw_string_ostream OS(TypeName); 2998 2999 OS << *Array->getElementType(); 3000 TypeName = OS.str(); 3001 3002 gpu_array_info &PPCGArray = PPCGProg->array[i]; 3003 3004 PPCGArray.space = Array->getSpace().release(); 3005 PPCGArray.type = strdup(TypeName.c_str()); 3006 PPCGArray.size = DL->getTypeAllocSize(Array->getElementType()); 3007 PPCGArray.name = strdup(Array->getName().c_str()); 3008 PPCGArray.extent = nullptr; 3009 PPCGArray.n_index = Array->getNumberOfDimensions(); 3010 PPCGArray.extent = getExtent(Array).release(); 3011 PPCGArray.n_ref = 0; 3012 PPCGArray.refs = nullptr; 3013 PPCGArray.accessed = true; 3014 PPCGArray.read_only_scalar = 3015 Array->isReadOnly() && Array->getNumberOfDimensions() == 0; 3016 PPCGArray.has_compound_element = false; 3017 PPCGArray.local = false; 3018 PPCGArray.declare_local = false; 3019 PPCGArray.global = false; 3020 PPCGArray.linearize = false; 3021 PPCGArray.dep_order = nullptr; 3022 PPCGArray.user = Array; 3023 3024 PPCGArray.bound = nullptr; 3025 setArrayBounds(PPCGArray, Array); 3026 i++; 3027 3028 collect_references(PPCGProg, &PPCGArray); 3029 PPCGArray.only_fixed_element = only_fixed_element_accessed(&PPCGArray); 3030 } 3031 } 3032 3033 /// Create an identity map between the arrays in the scop. 3034 /// 3035 /// @returns An identity map between the arrays in the scop. 3036 isl_union_map *getArrayIdentity() { 3037 isl_union_map *Maps = isl_union_map_empty(S->getParamSpace().release()); 3038 3039 for (auto &Array : S->arrays()) { 3040 isl_space *Space = Array->getSpace().release(); 3041 Space = isl_space_map_from_set(Space); 3042 isl_map *Identity = isl_map_identity(Space); 3043 Maps = isl_union_map_add_map(Maps, Identity); 3044 } 3045 3046 return Maps; 3047 } 3048 3049 /// Create a default-initialized PPCG GPU program. 3050 /// 3051 /// @returns A new gpu program description. 3052 gpu_prog *createPPCGProg(ppcg_scop *PPCGScop) { 3053 3054 if (!PPCGScop) 3055 return nullptr; 3056 3057 auto PPCGProg = isl_calloc_type(S->getIslCtx().get(), struct gpu_prog); 3058 3059 PPCGProg->ctx = S->getIslCtx().get(); 3060 PPCGProg->scop = PPCGScop; 3061 PPCGProg->context = isl_set_copy(PPCGScop->context); 3062 PPCGProg->read = isl_union_map_copy(PPCGScop->reads); 3063 PPCGProg->may_write = isl_union_map_copy(PPCGScop->may_writes); 3064 PPCGProg->must_write = isl_union_map_copy(PPCGScop->must_writes); 3065 PPCGProg->tagged_must_kill = 3066 isl_union_map_copy(PPCGScop->tagged_must_kills); 3067 PPCGProg->to_inner = getArrayIdentity(); 3068 PPCGProg->to_outer = getArrayIdentity(); 3069 // TODO: verify that this assignment is correct. 3070 PPCGProg->any_to_outer = nullptr; 3071 PPCGProg->n_stmts = std::distance(S->begin(), S->end()); 3072 PPCGProg->stmts = getStatements(); 3073 3074 // Only consider arrays that have a non-empty extent. 3075 // Otherwise, this will cause us to consider the following kinds of 3076 // empty arrays: 3077 // 1. Invariant loads that are represented by SAI objects. 3078 // 2. Arrays with statically known zero size. 3079 auto ValidSAIsRange = 3080 make_filter_range(S->arrays(), [this](ScopArrayInfo *SAI) -> bool { 3081 return !getExtent(SAI).is_empty(); 3082 }); 3083 SmallVector<ScopArrayInfo *, 4> ValidSAIs(ValidSAIsRange.begin(), 3084 ValidSAIsRange.end()); 3085 3086 PPCGProg->n_array = 3087 ValidSAIs.size(); // std::distance(S->array_begin(), S->array_end()); 3088 PPCGProg->array = isl_calloc_array( 3089 S->getIslCtx().get(), struct gpu_array_info, PPCGProg->n_array); 3090 3091 createArrays(PPCGProg, ValidSAIs); 3092 3093 PPCGProg->array_order = nullptr; 3094 collect_order_dependences(PPCGProg); 3095 3096 PPCGProg->may_persist = compute_may_persist(PPCGProg); 3097 return PPCGProg; 3098 } 3099 3100 struct PrintGPUUserData { 3101 struct cuda_info *CudaInfo; 3102 struct gpu_prog *PPCGProg; 3103 std::vector<ppcg_kernel *> Kernels; 3104 }; 3105 3106 /// Print a user statement node in the host code. 3107 /// 3108 /// We use ppcg's printing facilities to print the actual statement and 3109 /// additionally build up a list of all kernels that are encountered in the 3110 /// host ast. 3111 /// 3112 /// @param P The printer to print to 3113 /// @param Options The printing options to use 3114 /// @param Node The node to print 3115 /// @param User A user pointer to carry additional data. This pointer is 3116 /// expected to be of type PrintGPUUserData. 3117 /// 3118 /// @returns A printer to which the output has been printed. 3119 static __isl_give isl_printer * 3120 printHostUser(__isl_take isl_printer *P, 3121 __isl_take isl_ast_print_options *Options, 3122 __isl_take isl_ast_node *Node, void *User) { 3123 auto Data = (struct PrintGPUUserData *)User; 3124 auto Id = isl_ast_node_get_annotation(Node); 3125 3126 if (Id) { 3127 bool IsUser = !strcmp(isl_id_get_name(Id), "user"); 3128 3129 // If this is a user statement, format it ourselves as ppcg would 3130 // otherwise try to call pet functionality that is not available in 3131 // Polly. 3132 if (IsUser) { 3133 P = isl_printer_start_line(P); 3134 P = isl_printer_print_ast_node(P, Node); 3135 P = isl_printer_end_line(P); 3136 isl_id_free(Id); 3137 isl_ast_print_options_free(Options); 3138 return P; 3139 } 3140 3141 auto Kernel = (struct ppcg_kernel *)isl_id_get_user(Id); 3142 isl_id_free(Id); 3143 Data->Kernels.push_back(Kernel); 3144 } 3145 3146 return print_host_user(P, Options, Node, User); 3147 } 3148 3149 /// Print C code corresponding to the control flow in @p Kernel. 3150 /// 3151 /// @param Kernel The kernel to print 3152 void printKernel(ppcg_kernel *Kernel) { 3153 auto *P = isl_printer_to_str(S->getIslCtx().get()); 3154 P = isl_printer_set_output_format(P, ISL_FORMAT_C); 3155 auto *Options = isl_ast_print_options_alloc(S->getIslCtx().get()); 3156 P = isl_ast_node_print(Kernel->tree, P, Options); 3157 char *String = isl_printer_get_str(P); 3158 outs() << String << "\n"; 3159 free(String); 3160 isl_printer_free(P); 3161 } 3162 3163 /// Print C code corresponding to the GPU code described by @p Tree. 3164 /// 3165 /// @param Tree An AST describing GPU code 3166 /// @param PPCGProg The PPCG program from which @Tree has been constructed. 3167 void printGPUTree(isl_ast_node *Tree, gpu_prog *PPCGProg) { 3168 auto *P = isl_printer_to_str(S->getIslCtx().get()); 3169 P = isl_printer_set_output_format(P, ISL_FORMAT_C); 3170 3171 PrintGPUUserData Data; 3172 Data.PPCGProg = PPCGProg; 3173 3174 auto *Options = isl_ast_print_options_alloc(S->getIslCtx().get()); 3175 Options = 3176 isl_ast_print_options_set_print_user(Options, printHostUser, &Data); 3177 P = isl_ast_node_print(Tree, P, Options); 3178 char *String = isl_printer_get_str(P); 3179 outs() << "# host\n"; 3180 outs() << String << "\n"; 3181 free(String); 3182 isl_printer_free(P); 3183 3184 for (auto Kernel : Data.Kernels) { 3185 outs() << "# kernel" << Kernel->id << "\n"; 3186 printKernel(Kernel); 3187 } 3188 } 3189 3190 // Generate a GPU program using PPCG. 3191 // 3192 // GPU mapping consists of multiple steps: 3193 // 3194 // 1) Compute new schedule for the program. 3195 // 2) Map schedule to GPU (TODO) 3196 // 3) Generate code for new schedule (TODO) 3197 // 3198 // We do not use here the Polly ScheduleOptimizer, as the schedule optimizer 3199 // is mostly CPU specific. Instead, we use PPCG's GPU code generation 3200 // strategy directly from this pass. 3201 gpu_gen *generateGPU(ppcg_scop *PPCGScop, gpu_prog *PPCGProg) { 3202 3203 auto PPCGGen = isl_calloc_type(S->getIslCtx().get(), struct gpu_gen); 3204 3205 PPCGGen->ctx = S->getIslCtx().get(); 3206 PPCGGen->options = PPCGScop->options; 3207 PPCGGen->print = nullptr; 3208 PPCGGen->print_user = nullptr; 3209 PPCGGen->build_ast_expr = &pollyBuildAstExprForStmt; 3210 PPCGGen->prog = PPCGProg; 3211 PPCGGen->tree = nullptr; 3212 PPCGGen->types.n = 0; 3213 PPCGGen->types.name = nullptr; 3214 PPCGGen->sizes = nullptr; 3215 PPCGGen->used_sizes = nullptr; 3216 PPCGGen->kernel_id = 0; 3217 3218 // Set scheduling strategy to same strategy PPCG is using. 3219 isl_options_set_schedule_outer_coincidence(PPCGGen->ctx, true); 3220 isl_options_set_schedule_maximize_band_depth(PPCGGen->ctx, true); 3221 isl_options_set_schedule_whole_component(PPCGGen->ctx, false); 3222 3223 isl_schedule *Schedule = get_schedule(PPCGGen); 3224 3225 int has_permutable = has_any_permutable_node(Schedule); 3226 3227 Schedule = 3228 isl_schedule_align_params(Schedule, S->getFullParamSpace().release()); 3229 3230 if (!has_permutable || has_permutable < 0) { 3231 Schedule = isl_schedule_free(Schedule); 3232 LLVM_DEBUG(dbgs() << getUniqueScopName(S) 3233 << " does not have permutable bands. Bailing out\n";); 3234 } else { 3235 const bool CreateTransferToFromDevice = !PollyManagedMemory; 3236 Schedule = map_to_device(PPCGGen, Schedule, CreateTransferToFromDevice); 3237 PPCGGen->tree = generate_code(PPCGGen, isl_schedule_copy(Schedule)); 3238 } 3239 3240 if (DumpSchedule) { 3241 isl_printer *P = isl_printer_to_str(S->getIslCtx().get()); 3242 P = isl_printer_set_yaml_style(P, ISL_YAML_STYLE_BLOCK); 3243 P = isl_printer_print_str(P, "Schedule\n"); 3244 P = isl_printer_print_str(P, "========\n"); 3245 if (Schedule) 3246 P = isl_printer_print_schedule(P, Schedule); 3247 else 3248 P = isl_printer_print_str(P, "No schedule found\n"); 3249 3250 outs() << isl_printer_get_str(P) << "\n"; 3251 isl_printer_free(P); 3252 } 3253 3254 if (DumpCode) { 3255 outs() << "Code\n"; 3256 outs() << "====\n"; 3257 if (PPCGGen->tree) 3258 printGPUTree(PPCGGen->tree, PPCGProg); 3259 else 3260 outs() << "No code generated\n"; 3261 } 3262 3263 isl_schedule_free(Schedule); 3264 3265 return PPCGGen; 3266 } 3267 3268 /// Free gpu_gen structure. 3269 /// 3270 /// @param PPCGGen The ppcg_gen object to free. 3271 void freePPCGGen(gpu_gen *PPCGGen) { 3272 isl_ast_node_free(PPCGGen->tree); 3273 isl_union_map_free(PPCGGen->sizes); 3274 isl_union_map_free(PPCGGen->used_sizes); 3275 free(PPCGGen); 3276 } 3277 3278 /// Free the options in the ppcg scop structure. 3279 /// 3280 /// ppcg is not freeing these options for us. To avoid leaks we do this 3281 /// ourselves. 3282 /// 3283 /// @param PPCGScop The scop referencing the options to free. 3284 void freeOptions(ppcg_scop *PPCGScop) { 3285 free(PPCGScop->options->debug); 3286 PPCGScop->options->debug = nullptr; 3287 free(PPCGScop->options); 3288 PPCGScop->options = nullptr; 3289 } 3290 3291 /// Approximate the number of points in the set. 3292 /// 3293 /// This function returns an ast expression that overapproximates the number 3294 /// of points in an isl set through the rectangular hull surrounding this set. 3295 /// 3296 /// @param Set The set to count. 3297 /// @param Build The isl ast build object to use for creating the ast 3298 /// expression. 3299 /// 3300 /// @returns An approximation of the number of points in the set. 3301 __isl_give isl_ast_expr *approxPointsInSet(__isl_take isl_set *Set, 3302 __isl_keep isl_ast_build *Build) { 3303 3304 isl_val *One = isl_val_int_from_si(isl_set_get_ctx(Set), 1); 3305 auto *Expr = isl_ast_expr_from_val(isl_val_copy(One)); 3306 3307 isl_space *Space = isl_set_get_space(Set); 3308 Space = isl_space_params(Space); 3309 auto *Univ = isl_set_universe(Space); 3310 isl_pw_aff *OneAff = isl_pw_aff_val_on_domain(Univ, One); 3311 3312 for (long i = 0, n = isl_set_dim(Set, isl_dim_set); i < n; i++) { 3313 isl_pw_aff *Max = isl_set_dim_max(isl_set_copy(Set), i); 3314 isl_pw_aff *Min = isl_set_dim_min(isl_set_copy(Set), i); 3315 isl_pw_aff *DimSize = isl_pw_aff_sub(Max, Min); 3316 DimSize = isl_pw_aff_add(DimSize, isl_pw_aff_copy(OneAff)); 3317 auto DimSizeExpr = isl_ast_build_expr_from_pw_aff(Build, DimSize); 3318 Expr = isl_ast_expr_mul(Expr, DimSizeExpr); 3319 } 3320 3321 isl_set_free(Set); 3322 isl_pw_aff_free(OneAff); 3323 3324 return Expr; 3325 } 3326 3327 /// Approximate a number of dynamic instructions executed by a given 3328 /// statement. 3329 /// 3330 /// @param Stmt The statement for which to compute the number of dynamic 3331 /// instructions. 3332 /// @param Build The isl ast build object to use for creating the ast 3333 /// expression. 3334 /// @returns An approximation of the number of dynamic instructions executed 3335 /// by @p Stmt. 3336 __isl_give isl_ast_expr *approxDynamicInst(ScopStmt &Stmt, 3337 __isl_keep isl_ast_build *Build) { 3338 auto Iterations = approxPointsInSet(Stmt.getDomain().release(), Build); 3339 3340 long InstCount = 0; 3341 3342 if (Stmt.isBlockStmt()) { 3343 auto *BB = Stmt.getBasicBlock(); 3344 InstCount = std::distance(BB->begin(), BB->end()); 3345 } else { 3346 auto *R = Stmt.getRegion(); 3347 3348 for (auto *BB : R->blocks()) { 3349 InstCount += std::distance(BB->begin(), BB->end()); 3350 } 3351 } 3352 3353 isl_val *InstVal = isl_val_int_from_si(S->getIslCtx().get(), InstCount); 3354 auto *InstExpr = isl_ast_expr_from_val(InstVal); 3355 return isl_ast_expr_mul(InstExpr, Iterations); 3356 } 3357 3358 /// Approximate dynamic instructions executed in scop. 3359 /// 3360 /// @param S The scop for which to approximate dynamic instructions. 3361 /// @param Build The isl ast build object to use for creating the ast 3362 /// expression. 3363 /// @returns An approximation of the number of dynamic instructions executed 3364 /// in @p S. 3365 __isl_give isl_ast_expr * 3366 getNumberOfIterations(Scop &S, __isl_keep isl_ast_build *Build) { 3367 isl_ast_expr *Instructions; 3368 3369 isl_val *Zero = isl_val_int_from_si(S.getIslCtx().get(), 0); 3370 Instructions = isl_ast_expr_from_val(Zero); 3371 3372 for (ScopStmt &Stmt : S) { 3373 isl_ast_expr *StmtInstructions = approxDynamicInst(Stmt, Build); 3374 Instructions = isl_ast_expr_add(Instructions, StmtInstructions); 3375 } 3376 return Instructions; 3377 } 3378 3379 /// Create a check that ensures sufficient compute in scop. 3380 /// 3381 /// @param S The scop for which to ensure sufficient compute. 3382 /// @param Build The isl ast build object to use for creating the ast 3383 /// expression. 3384 /// @returns An expression that evaluates to TRUE in case of sufficient 3385 /// compute and to FALSE, otherwise. 3386 __isl_give isl_ast_expr * 3387 createSufficientComputeCheck(Scop &S, __isl_keep isl_ast_build *Build) { 3388 auto Iterations = getNumberOfIterations(S, Build); 3389 auto *MinComputeVal = isl_val_int_from_si(S.getIslCtx().get(), MinCompute); 3390 auto *MinComputeExpr = isl_ast_expr_from_val(MinComputeVal); 3391 return isl_ast_expr_ge(Iterations, MinComputeExpr); 3392 } 3393 3394 /// Check if the basic block contains a function we cannot codegen for GPU 3395 /// kernels. 3396 /// 3397 /// If this basic block does something with a `Function` other than calling 3398 /// a function that we support in a kernel, return true. 3399 bool containsInvalidKernelFunctionInBlock(const BasicBlock *BB, 3400 bool AllowCUDALibDevice) { 3401 for (const Instruction &Inst : *BB) { 3402 const CallInst *Call = dyn_cast<CallInst>(&Inst); 3403 if (Call && isValidFunctionInKernel(Call->getCalledFunction(), 3404 AllowCUDALibDevice)) 3405 continue; 3406 3407 for (Value *Op : Inst.operands()) 3408 // Look for (<func-type>*) among operands of Inst 3409 if (auto PtrTy = dyn_cast<PointerType>(Op->getType())) { 3410 if (isa<FunctionType>(PtrTy->getElementType())) { 3411 LLVM_DEBUG(dbgs() 3412 << Inst << " has illegal use of function in kernel.\n"); 3413 return true; 3414 } 3415 } 3416 } 3417 return false; 3418 } 3419 3420 /// Return whether the Scop S uses functions in a way that we do not support. 3421 bool containsInvalidKernelFunction(const Scop &S, bool AllowCUDALibDevice) { 3422 for (auto &Stmt : S) { 3423 if (Stmt.isBlockStmt()) { 3424 if (containsInvalidKernelFunctionInBlock(Stmt.getBasicBlock(), 3425 AllowCUDALibDevice)) 3426 return true; 3427 } else { 3428 assert(Stmt.isRegionStmt() && 3429 "Stmt was neither block nor region statement"); 3430 for (const BasicBlock *BB : Stmt.getRegion()->blocks()) 3431 if (containsInvalidKernelFunctionInBlock(BB, AllowCUDALibDevice)) 3432 return true; 3433 } 3434 } 3435 return false; 3436 } 3437 3438 /// Generate code for a given GPU AST described by @p Root. 3439 /// 3440 /// @param Root An isl_ast_node pointing to the root of the GPU AST. 3441 /// @param Prog The GPU Program to generate code for. 3442 void generateCode(__isl_take isl_ast_node *Root, gpu_prog *Prog) { 3443 ScopAnnotator Annotator; 3444 Annotator.buildAliasScopes(*S); 3445 3446 Region *R = &S->getRegion(); 3447 3448 simplifyRegion(R, DT, LI, RI); 3449 3450 BasicBlock *EnteringBB = R->getEnteringBlock(); 3451 3452 PollyIRBuilder Builder = createPollyIRBuilder(EnteringBB, Annotator); 3453 3454 // Only build the run-time condition and parameters _after_ having 3455 // introduced the conditional branch. This is important as the conditional 3456 // branch will guard the original scop from new induction variables that 3457 // the SCEVExpander may introduce while code generating the parameters and 3458 // which may introduce scalar dependences that prevent us from correctly 3459 // code generating this scop. 3460 BBPair StartExitBlocks; 3461 BranchInst *CondBr = nullptr; 3462 std::tie(StartExitBlocks, CondBr) = 3463 executeScopConditionally(*S, Builder.getTrue(), *DT, *RI, *LI); 3464 BasicBlock *StartBlock = std::get<0>(StartExitBlocks); 3465 3466 assert(CondBr && "CondBr not initialized by executeScopConditionally"); 3467 3468 GPUNodeBuilder NodeBuilder(Builder, Annotator, *DL, *LI, *SE, *DT, *S, 3469 StartBlock, Prog, Runtime, Architecture); 3470 3471 // TODO: Handle LICM 3472 auto SplitBlock = StartBlock->getSinglePredecessor(); 3473 Builder.SetInsertPoint(SplitBlock->getTerminator()); 3474 3475 isl_ast_build *Build = isl_ast_build_alloc(S->getIslCtx().get()); 3476 isl_ast_expr *Condition = IslAst::buildRunCondition(*S, Build); 3477 isl_ast_expr *SufficientCompute = createSufficientComputeCheck(*S, Build); 3478 Condition = isl_ast_expr_and(Condition, SufficientCompute); 3479 isl_ast_build_free(Build); 3480 3481 // preload invariant loads. Note: This should happen before the RTC 3482 // because the RTC may depend on values that are invariant load hoisted. 3483 if (!NodeBuilder.preloadInvariantLoads()) { 3484 // Patch the introduced branch condition to ensure that we always execute 3485 // the original SCoP. 3486 auto *FalseI1 = Builder.getFalse(); 3487 auto *SplitBBTerm = Builder.GetInsertBlock()->getTerminator(); 3488 SplitBBTerm->setOperand(0, FalseI1); 3489 3490 LLVM_DEBUG(dbgs() << "preloading invariant loads failed in function: " + 3491 S->getFunction().getName() + 3492 " | Scop Region: " + S->getNameStr()); 3493 // adjust the dominator tree accordingly. 3494 auto *ExitingBlock = StartBlock->getUniqueSuccessor(); 3495 assert(ExitingBlock); 3496 auto *MergeBlock = ExitingBlock->getUniqueSuccessor(); 3497 assert(MergeBlock); 3498 polly::markBlockUnreachable(*StartBlock, Builder); 3499 polly::markBlockUnreachable(*ExitingBlock, Builder); 3500 auto *ExitingBB = S->getExitingBlock(); 3501 assert(ExitingBB); 3502 3503 DT->changeImmediateDominator(MergeBlock, ExitingBB); 3504 DT->eraseNode(ExitingBlock); 3505 isl_ast_expr_free(Condition); 3506 isl_ast_node_free(Root); 3507 } else { 3508 3509 if (polly::PerfMonitoring) { 3510 PerfMonitor P(*S, EnteringBB->getParent()->getParent()); 3511 P.initialize(); 3512 P.insertRegionStart(SplitBlock->getTerminator()); 3513 3514 // TODO: actually think if this is the correct exiting block to place 3515 // the `end` performance marker. Invariant load hoisting changes 3516 // the CFG in a way that I do not precisely understand, so I 3517 // (Siddharth<[email protected]>) should come back to this and 3518 // think about which exiting block to use. 3519 auto *ExitingBlock = StartBlock->getUniqueSuccessor(); 3520 assert(ExitingBlock); 3521 BasicBlock *MergeBlock = ExitingBlock->getUniqueSuccessor(); 3522 P.insertRegionEnd(MergeBlock->getTerminator()); 3523 } 3524 3525 NodeBuilder.addParameters(S->getContext().release()); 3526 Value *RTC = NodeBuilder.createRTC(Condition); 3527 Builder.GetInsertBlock()->getTerminator()->setOperand(0, RTC); 3528 3529 Builder.SetInsertPoint(&*StartBlock->begin()); 3530 3531 NodeBuilder.create(Root); 3532 } 3533 3534 /// In case a sequential kernel has more surrounding loops as any parallel 3535 /// kernel, the SCoP is probably mostly sequential. Hence, there is no 3536 /// point in running it on a GPU. 3537 if (NodeBuilder.DeepestSequential > NodeBuilder.DeepestParallel) 3538 CondBr->setOperand(0, Builder.getFalse()); 3539 3540 if (!NodeBuilder.BuildSuccessful) 3541 CondBr->setOperand(0, Builder.getFalse()); 3542 } 3543 3544 bool runOnScop(Scop &CurrentScop) override { 3545 S = &CurrentScop; 3546 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 3547 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 3548 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 3549 DL = &S->getRegion().getEntry()->getModule()->getDataLayout(); 3550 RI = &getAnalysis<RegionInfoPass>().getRegionInfo(); 3551 3552 LLVM_DEBUG(dbgs() << "PPCGCodeGen running on : " << getUniqueScopName(S) 3553 << " | loop depth: " << S->getMaxLoopDepth() << "\n"); 3554 3555 // We currently do not support functions other than intrinsics inside 3556 // kernels, as code generation will need to offload function calls to the 3557 // kernel. This may lead to a kernel trying to call a function on the host. 3558 // This also allows us to prevent codegen from trying to take the 3559 // address of an intrinsic function to send to the kernel. 3560 if (containsInvalidKernelFunction(CurrentScop, 3561 Architecture == GPUArch::NVPTX64)) { 3562 LLVM_DEBUG( 3563 dbgs() << getUniqueScopName(S) 3564 << " contains function which cannot be materialised in a GPU " 3565 "kernel. Bailing out.\n";); 3566 return false; 3567 } 3568 3569 auto PPCGScop = createPPCGScop(); 3570 auto PPCGProg = createPPCGProg(PPCGScop); 3571 auto PPCGGen = generateGPU(PPCGScop, PPCGProg); 3572 3573 if (PPCGGen->tree) { 3574 generateCode(isl_ast_node_copy(PPCGGen->tree), PPCGProg); 3575 CurrentScop.markAsToBeSkipped(); 3576 } else { 3577 LLVM_DEBUG(dbgs() << getUniqueScopName(S) 3578 << " has empty PPCGGen->tree. Bailing out.\n"); 3579 } 3580 3581 freeOptions(PPCGScop); 3582 freePPCGGen(PPCGGen); 3583 gpu_prog_free(PPCGProg); 3584 ppcg_scop_free(PPCGScop); 3585 3586 return true; 3587 } 3588 3589 void printScop(raw_ostream &, Scop &) const override {} 3590 3591 void getAnalysisUsage(AnalysisUsage &AU) const override { 3592 ScopPass::getAnalysisUsage(AU); 3593 3594 AU.addRequired<DominatorTreeWrapperPass>(); 3595 AU.addRequired<RegionInfoPass>(); 3596 AU.addRequired<ScalarEvolutionWrapperPass>(); 3597 AU.addRequired<ScopDetectionWrapperPass>(); 3598 AU.addRequired<ScopInfoRegionPass>(); 3599 AU.addRequired<LoopInfoWrapperPass>(); 3600 3601 // FIXME: We do not yet add regions for the newly generated code to the 3602 // region tree. 3603 } 3604 }; 3605 } // namespace 3606 3607 char PPCGCodeGeneration::ID = 1; 3608 3609 Pass *polly::createPPCGCodeGenerationPass(GPUArch Arch, GPURuntime Runtime) { 3610 PPCGCodeGeneration *generator = new PPCGCodeGeneration(); 3611 generator->Runtime = Runtime; 3612 generator->Architecture = Arch; 3613 return generator; 3614 } 3615 3616 INITIALIZE_PASS_BEGIN(PPCGCodeGeneration, "polly-codegen-ppcg", 3617 "Polly - Apply PPCG translation to SCOP", false, false) 3618 INITIALIZE_PASS_DEPENDENCY(DependenceInfo); 3619 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass); 3620 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass); 3621 INITIALIZE_PASS_DEPENDENCY(RegionInfoPass); 3622 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass); 3623 INITIALIZE_PASS_DEPENDENCY(ScopDetectionWrapperPass); 3624 INITIALIZE_PASS_END(PPCGCodeGeneration, "polly-codegen-ppcg", 3625 "Polly - Apply PPCG translation to SCOP", false, false) 3626