1 //===--- BlockGenerators.cpp - Generate code for statements -----*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the BlockGenerator and VectorBlockGenerator classes, 11 // which generate sequential code and vectorized code for a polyhedral 12 // statement, respectively. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "polly/CodeGen/BlockGenerators.h" 17 #include "polly/CodeGen/CodeGeneration.h" 18 #include "polly/CodeGen/IslExprBuilder.h" 19 #include "polly/CodeGen/RuntimeDebugBuilder.h" 20 #include "polly/Options.h" 21 #include "polly/ScopInfo.h" 22 #include "polly/Support/GICHelper.h" 23 #include "polly/Support/SCEVValidator.h" 24 #include "polly/Support/ScopHelper.h" 25 #include "llvm/Analysis/LoopInfo.h" 26 #include "llvm/Analysis/RegionInfo.h" 27 #include "llvm/Analysis/ScalarEvolution.h" 28 #include "llvm/IR/IntrinsicInst.h" 29 #include "llvm/IR/Module.h" 30 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 31 #include "llvm/Transforms/Utils/Local.h" 32 #include "isl/aff.h" 33 #include "isl/ast.h" 34 #include "isl/ast_build.h" 35 #include "isl/set.h" 36 #include <deque> 37 38 using namespace llvm; 39 using namespace polly; 40 41 static cl::opt<bool> Aligned("enable-polly-aligned", 42 cl::desc("Assumed aligned memory accesses."), 43 cl::Hidden, cl::init(false), cl::ZeroOrMore, 44 cl::cat(PollyCategory)); 45 46 static cl::opt<bool> DebugPrinting( 47 "polly-codegen-add-debug-printing", 48 cl::desc("Add printf calls that show the values loaded/stored."), 49 cl::Hidden, cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory)); 50 51 BlockGenerator::BlockGenerator(PollyIRBuilder &B, LoopInfo &LI, 52 ScalarEvolution &SE, DominatorTree &DT, 53 ScalarAllocaMapTy &ScalarMap, 54 ScalarAllocaMapTy &PHIOpMap, 55 EscapeUsersAllocaMapTy &EscapeMap, 56 ValueMapT &GlobalMap, 57 IslExprBuilder *ExprBuilder) 58 : Builder(B), LI(LI), SE(SE), ExprBuilder(ExprBuilder), DT(DT), 59 EntryBB(nullptr), PHIOpMap(PHIOpMap), ScalarMap(ScalarMap), 60 EscapeMap(EscapeMap), GlobalMap(GlobalMap) {} 61 62 Value *BlockGenerator::trySynthesizeNewValue(ScopStmt &Stmt, Value *Old, 63 ValueMapT &BBMap, 64 LoopToScevMapT <S, 65 Loop *L) const { 66 if (!SE.isSCEVable(Old->getType())) 67 return nullptr; 68 69 const SCEV *Scev = SE.getSCEVAtScope(Old, L); 70 if (!Scev) 71 return nullptr; 72 73 if (isa<SCEVCouldNotCompute>(Scev)) 74 return nullptr; 75 76 const SCEV *NewScev = SCEVLoopAddRecRewriter::rewrite(Scev, LTS, SE); 77 ValueMapT VTV; 78 VTV.insert(BBMap.begin(), BBMap.end()); 79 VTV.insert(GlobalMap.begin(), GlobalMap.end()); 80 81 Scop &S = *Stmt.getParent(); 82 const DataLayout &DL = S.getFunction().getParent()->getDataLayout(); 83 auto IP = Builder.GetInsertPoint(); 84 85 assert(IP != Builder.GetInsertBlock()->end() && 86 "Only instructions can be insert points for SCEVExpander"); 87 Value *Expanded = 88 expandCodeFor(S, SE, DL, "polly", NewScev, Old->getType(), &*IP, &VTV); 89 90 BBMap[Old] = Expanded; 91 return Expanded; 92 } 93 94 Value *BlockGenerator::getNewValue(ScopStmt &Stmt, Value *Old, ValueMapT &BBMap, 95 LoopToScevMapT <S, Loop *L) const { 96 // Constants that do not reference any named value can always remain 97 // unchanged. Handle them early to avoid expensive map lookups. We do not take 98 // the fast-path for external constants which are referenced through globals 99 // as these may need to be rewritten when distributing code accross different 100 // LLVM modules. 101 if (isa<Constant>(Old) && !isa<GlobalValue>(Old)) 102 return Old; 103 104 // Inline asm is like a constant to us. 105 if (isa<InlineAsm>(Old)) 106 return Old; 107 108 if (Value *New = GlobalMap.lookup(Old)) { 109 if (Value *NewRemapped = GlobalMap.lookup(New)) 110 New = NewRemapped; 111 if (Old->getType()->getScalarSizeInBits() < 112 New->getType()->getScalarSizeInBits()) 113 New = Builder.CreateTruncOrBitCast(New, Old->getType()); 114 115 return New; 116 } 117 118 if (Value *New = BBMap.lookup(Old)) 119 return New; 120 121 if (Value *New = trySynthesizeNewValue(Stmt, Old, BBMap, LTS, L)) 122 return New; 123 124 // A scop-constant value defined by a global or a function parameter. 125 if (isa<GlobalValue>(Old) || isa<Argument>(Old)) 126 return Old; 127 128 // A scop-constant value defined by an instruction executed outside the scop. 129 if (const Instruction *Inst = dyn_cast<Instruction>(Old)) 130 if (!Stmt.getParent()->contains(Inst->getParent())) 131 return Old; 132 133 // The scalar dependence is neither available nor SCEVCodegenable. 134 llvm_unreachable("Unexpected scalar dependence in region!"); 135 return nullptr; 136 } 137 138 void BlockGenerator::copyInstScalar(ScopStmt &Stmt, Instruction *Inst, 139 ValueMapT &BBMap, LoopToScevMapT <S) { 140 // We do not generate debug intrinsics as we did not investigate how to 141 // copy them correctly. At the current state, they just crash the code 142 // generation as the meta-data operands are not correctly copied. 143 if (isa<DbgInfoIntrinsic>(Inst)) 144 return; 145 146 Instruction *NewInst = Inst->clone(); 147 148 // Replace old operands with the new ones. 149 for (Value *OldOperand : Inst->operands()) { 150 Value *NewOperand = 151 getNewValue(Stmt, OldOperand, BBMap, LTS, getLoopForStmt(Stmt)); 152 153 if (!NewOperand) { 154 assert(!isa<StoreInst>(NewInst) && 155 "Store instructions are always needed!"); 156 delete NewInst; 157 return; 158 } 159 160 NewInst->replaceUsesOfWith(OldOperand, NewOperand); 161 } 162 163 Builder.Insert(NewInst); 164 BBMap[Inst] = NewInst; 165 166 if (!NewInst->getType()->isVoidTy()) 167 NewInst->setName("p_" + Inst->getName()); 168 } 169 170 Value * 171 BlockGenerator::generateLocationAccessed(ScopStmt &Stmt, MemAccInst Inst, 172 ValueMapT &BBMap, LoopToScevMapT <S, 173 isl_id_to_ast_expr *NewAccesses) { 174 const MemoryAccess &MA = Stmt.getArrayAccessFor(Inst); 175 return generateLocationAccessed( 176 Stmt, getLoopForStmt(Stmt), 177 Inst.isNull() ? nullptr : Inst.getPointerOperand(), BBMap, LTS, 178 NewAccesses, MA.getId(), MA.getAccessValue()->getType()); 179 } 180 181 Value *BlockGenerator::generateLocationAccessed( 182 ScopStmt &Stmt, Loop *L, Value *Pointer, ValueMapT &BBMap, 183 LoopToScevMapT <S, isl_id_to_ast_expr *NewAccesses, __isl_take isl_id *Id, 184 Type *ExpectedType) { 185 isl_ast_expr *AccessExpr = isl_id_to_ast_expr_get(NewAccesses, Id); 186 187 if (AccessExpr) { 188 AccessExpr = isl_ast_expr_address_of(AccessExpr); 189 auto Address = ExprBuilder->create(AccessExpr); 190 191 // Cast the address of this memory access to a pointer type that has the 192 // same element type as the original access, but uses the address space of 193 // the newly generated pointer. 194 auto OldPtrTy = ExpectedType->getPointerTo(); 195 auto NewPtrTy = Address->getType(); 196 OldPtrTy = PointerType::get(OldPtrTy->getElementType(), 197 NewPtrTy->getPointerAddressSpace()); 198 199 if (OldPtrTy != NewPtrTy) 200 Address = Builder.CreateBitOrPointerCast(Address, OldPtrTy); 201 return Address; 202 } 203 assert( 204 Pointer && 205 "If expression was not generated, must use the original pointer value"); 206 return getNewValue(Stmt, Pointer, BBMap, LTS, L); 207 } 208 209 Value * 210 BlockGenerator::getImplicitAddress(MemoryAccess &Access, Loop *L, 211 LoopToScevMapT <S, ValueMapT &BBMap, 212 __isl_keep isl_id_to_ast_expr *NewAccesses) { 213 if (Access.isLatestArrayKind()) 214 return generateLocationAccessed(*Access.getStatement(), L, nullptr, BBMap, 215 LTS, NewAccesses, Access.getId(), 216 Access.getAccessValue()->getType()); 217 218 if (Access.isLatestValueKind() || Access.isLatestExitPHIKind()) 219 return getOrCreateScalarAlloca(Access.getBaseAddr()); 220 221 if (Access.isLatestPHIKind()) 222 return getOrCreatePHIAlloca(Access.getBaseAddr()); 223 224 llvm_unreachable("Unknown access type"); 225 } 226 227 Loop *BlockGenerator::getLoopForStmt(const ScopStmt &Stmt) const { 228 auto *StmtBB = Stmt.getEntryBlock(); 229 return LI.getLoopFor(StmtBB); 230 } 231 232 Value *BlockGenerator::generateScalarLoad(ScopStmt &Stmt, LoadInst *Load, 233 ValueMapT &BBMap, LoopToScevMapT <S, 234 isl_id_to_ast_expr *NewAccesses) { 235 if (Value *PreloadLoad = GlobalMap.lookup(Load)) 236 return PreloadLoad; 237 238 Value *NewPointer = 239 generateLocationAccessed(Stmt, Load, BBMap, LTS, NewAccesses); 240 Value *ScalarLoad = Builder.CreateAlignedLoad( 241 NewPointer, Load->getAlignment(), Load->getName() + "_p_scalar_"); 242 243 if (DebugPrinting) 244 RuntimeDebugBuilder::createCPUPrinter(Builder, "Load from ", NewPointer, 245 ": ", ScalarLoad, "\n"); 246 247 return ScalarLoad; 248 } 249 250 void BlockGenerator::generateScalarStore(ScopStmt &Stmt, StoreInst *Store, 251 ValueMapT &BBMap, LoopToScevMapT <S, 252 isl_id_to_ast_expr *NewAccesses) { 253 Value *NewPointer = 254 generateLocationAccessed(Stmt, Store, BBMap, LTS, NewAccesses); 255 Value *ValueOperand = getNewValue(Stmt, Store->getValueOperand(), BBMap, LTS, 256 getLoopForStmt(Stmt)); 257 258 if (DebugPrinting) 259 RuntimeDebugBuilder::createCPUPrinter(Builder, "Store to ", NewPointer, 260 ": ", ValueOperand, "\n"); 261 262 Builder.CreateAlignedStore(ValueOperand, NewPointer, Store->getAlignment()); 263 } 264 265 bool BlockGenerator::canSyntheziseInStmt(ScopStmt &Stmt, Instruction *Inst) { 266 Loop *L = getLoopForStmt(Stmt); 267 return (Stmt.isBlockStmt() || !Stmt.getRegion()->contains(L)) && 268 canSynthesize(Inst, *Stmt.getParent(), &LI, &SE, L); 269 } 270 271 void BlockGenerator::copyInstruction(ScopStmt &Stmt, Instruction *Inst, 272 ValueMapT &BBMap, LoopToScevMapT <S, 273 isl_id_to_ast_expr *NewAccesses) { 274 // Terminator instructions control the control flow. They are explicitly 275 // expressed in the clast and do not need to be copied. 276 if (Inst->isTerminator()) 277 return; 278 279 // Synthesizable statements will be generated on-demand. 280 if (canSyntheziseInStmt(Stmt, Inst)) 281 return; 282 283 if (auto *Load = dyn_cast<LoadInst>(Inst)) { 284 Value *NewLoad = generateScalarLoad(Stmt, Load, BBMap, LTS, NewAccesses); 285 // Compute NewLoad before its insertion in BBMap to make the insertion 286 // deterministic. 287 BBMap[Load] = NewLoad; 288 return; 289 } 290 291 if (auto *Store = dyn_cast<StoreInst>(Inst)) { 292 generateScalarStore(Stmt, Store, BBMap, LTS, NewAccesses); 293 return; 294 } 295 296 if (auto *PHI = dyn_cast<PHINode>(Inst)) { 297 copyPHIInstruction(Stmt, PHI, BBMap, LTS); 298 return; 299 } 300 301 // Skip some special intrinsics for which we do not adjust the semantics to 302 // the new schedule. All others are handled like every other instruction. 303 if (isIgnoredIntrinsic(Inst)) 304 return; 305 306 copyInstScalar(Stmt, Inst, BBMap, LTS); 307 } 308 309 void BlockGenerator::removeDeadInstructions(BasicBlock *BB, ValueMapT &BBMap) { 310 auto NewBB = Builder.GetInsertBlock(); 311 for (auto I = NewBB->rbegin(); I != NewBB->rend(); I++) { 312 Instruction *NewInst = &*I; 313 314 if (!isInstructionTriviallyDead(NewInst)) 315 continue; 316 317 for (auto Pair : BBMap) 318 if (Pair.second == NewInst) { 319 BBMap.erase(Pair.first); 320 } 321 322 NewInst->eraseFromParent(); 323 I = NewBB->rbegin(); 324 } 325 } 326 327 void BlockGenerator::copyStmt(ScopStmt &Stmt, LoopToScevMapT <S, 328 isl_id_to_ast_expr *NewAccesses) { 329 assert(Stmt.isBlockStmt() && 330 "Only block statements can be copied by the block generator"); 331 332 ValueMapT BBMap; 333 334 BasicBlock *BB = Stmt.getBasicBlock(); 335 copyBB(Stmt, BB, BBMap, LTS, NewAccesses); 336 removeDeadInstructions(BB, BBMap); 337 } 338 339 BasicBlock *BlockGenerator::splitBB(BasicBlock *BB) { 340 BasicBlock *CopyBB = SplitBlock(Builder.GetInsertBlock(), 341 &*Builder.GetInsertPoint(), &DT, &LI); 342 CopyBB->setName("polly.stmt." + BB->getName()); 343 return CopyBB; 344 } 345 346 BasicBlock *BlockGenerator::copyBB(ScopStmt &Stmt, BasicBlock *BB, 347 ValueMapT &BBMap, LoopToScevMapT <S, 348 isl_id_to_ast_expr *NewAccesses) { 349 BasicBlock *CopyBB = splitBB(BB); 350 Builder.SetInsertPoint(&CopyBB->front()); 351 generateScalarLoads(Stmt, LTS, BBMap, NewAccesses); 352 353 copyBB(Stmt, BB, CopyBB, BBMap, LTS, NewAccesses); 354 355 // After a basic block was copied store all scalars that escape this block in 356 // their alloca. 357 generateScalarStores(Stmt, LTS, BBMap, NewAccesses); 358 return CopyBB; 359 } 360 361 void BlockGenerator::copyBB(ScopStmt &Stmt, BasicBlock *BB, BasicBlock *CopyBB, 362 ValueMapT &BBMap, LoopToScevMapT <S, 363 isl_id_to_ast_expr *NewAccesses) { 364 EntryBB = &CopyBB->getParent()->getEntryBlock(); 365 366 for (Instruction &Inst : *BB) 367 copyInstruction(Stmt, &Inst, BBMap, LTS, NewAccesses); 368 } 369 370 Value *BlockGenerator::getOrCreateAlloca(Value *ScalarBase, 371 ScalarAllocaMapTy &Map, 372 const char *NameExt) { 373 // If no alloca was found create one and insert it in the entry block. 374 if (!Map.count(ScalarBase)) { 375 auto *Ty = ScalarBase->getType(); 376 auto NewAddr = new AllocaInst(Ty, ScalarBase->getName() + NameExt); 377 EntryBB = &Builder.GetInsertBlock()->getParent()->getEntryBlock(); 378 NewAddr->insertBefore(&*EntryBB->getFirstInsertionPt()); 379 Map[ScalarBase] = NewAddr; 380 } 381 382 auto Addr = Map[ScalarBase]; 383 384 if (auto NewAddr = GlobalMap.lookup(Addr)) 385 return NewAddr; 386 387 return Addr; 388 } 389 390 Value *BlockGenerator::getOrCreateAlloca(const MemoryAccess &Access) { 391 assert(!Access.isArrayKind() && "Trying to get alloca for array kind"); 392 393 if (Access.isPHIKind()) 394 return getOrCreatePHIAlloca(Access.getBaseAddr()); 395 else 396 return getOrCreateScalarAlloca(Access.getBaseAddr()); 397 } 398 399 Value *BlockGenerator::getOrCreateAlloca(const ScopArrayInfo *Array) { 400 assert(!Array->isArrayKind() && "Trying to get alloca for array kind"); 401 402 if (Array->isPHIKind()) 403 return getOrCreatePHIAlloca(Array->getBasePtr()); 404 else 405 return getOrCreateScalarAlloca(Array->getBasePtr()); 406 } 407 408 Value *BlockGenerator::getOrCreateScalarAlloca(Value *ScalarBase) { 409 return getOrCreateAlloca(ScalarBase, ScalarMap, ".s2a"); 410 } 411 412 Value *BlockGenerator::getOrCreatePHIAlloca(Value *ScalarBase) { 413 return getOrCreateAlloca(ScalarBase, PHIOpMap, ".phiops"); 414 } 415 416 void BlockGenerator::handleOutsideUsers(const Scop &S, Instruction *Inst) { 417 // If there are escape users we get the alloca for this instruction and put it 418 // in the EscapeMap for later finalization. Lastly, if the instruction was 419 // copied multiple times we already did this and can exit. 420 if (EscapeMap.count(Inst)) 421 return; 422 423 EscapeUserVectorTy EscapeUsers; 424 for (User *U : Inst->users()) { 425 426 // Non-instruction user will never escape. 427 Instruction *UI = dyn_cast<Instruction>(U); 428 if (!UI) 429 continue; 430 431 if (S.contains(UI)) 432 continue; 433 434 EscapeUsers.push_back(UI); 435 } 436 437 // Exit if no escape uses were found. 438 if (EscapeUsers.empty()) 439 return; 440 441 // Get or create an escape alloca for this instruction. 442 auto *ScalarAddr = getOrCreateScalarAlloca(Inst); 443 444 // Remember that this instruction has escape uses and the escape alloca. 445 EscapeMap[Inst] = std::make_pair(ScalarAddr, std::move(EscapeUsers)); 446 } 447 448 void BlockGenerator::generateScalarLoads( 449 ScopStmt &Stmt, LoopToScevMapT <S, ValueMapT &BBMap, 450 __isl_keep isl_id_to_ast_expr *NewAccesses) { 451 for (MemoryAccess *MA : Stmt) { 452 if (MA->isOriginalArrayKind() || MA->isWrite()) 453 continue; 454 455 auto *Address = 456 getImplicitAddress(*MA, getLoopForStmt(Stmt), LTS, BBMap, NewAccesses); 457 assert((!isa<Instruction>(Address) || 458 DT.dominates(cast<Instruction>(Address)->getParent(), 459 Builder.GetInsertBlock())) && 460 "Domination violation"); 461 BBMap[MA->getBaseAddr()] = 462 Builder.CreateLoad(Address, Address->getName() + ".reload"); 463 } 464 } 465 466 void BlockGenerator::generateScalarStores( 467 ScopStmt &Stmt, LoopToScevMapT <S, ValueMapT &BBMap, 468 __isl_keep isl_id_to_ast_expr *NewAccesses) { 469 Loop *L = LI.getLoopFor(Stmt.getBasicBlock()); 470 471 assert(Stmt.isBlockStmt() && "Region statements need to use the " 472 "generateScalarStores() function in the " 473 "RegionGenerator"); 474 475 for (MemoryAccess *MA : Stmt) { 476 if (MA->isOriginalArrayKind() || MA->isRead()) 477 continue; 478 479 Value *Val = MA->getAccessValue(); 480 if (MA->isAnyPHIKind()) { 481 assert(MA->getIncoming().size() >= 1 && 482 "Block statements have exactly one exiting block, or multiple but " 483 "with same incoming block and value"); 484 assert(std::all_of(MA->getIncoming().begin(), MA->getIncoming().end(), 485 [&](std::pair<BasicBlock *, Value *> p) -> bool { 486 return p.first == Stmt.getBasicBlock(); 487 }) && 488 "Incoming block must be statement's block"); 489 Val = MA->getIncoming()[0].second; 490 } 491 auto Address = 492 getImplicitAddress(*MA, getLoopForStmt(Stmt), LTS, BBMap, NewAccesses); 493 494 Val = getNewValue(Stmt, Val, BBMap, LTS, L); 495 assert((!isa<Instruction>(Val) || 496 DT.dominates(cast<Instruction>(Val)->getParent(), 497 Builder.GetInsertBlock())) && 498 "Domination violation"); 499 assert((!isa<Instruction>(Address) || 500 DT.dominates(cast<Instruction>(Address)->getParent(), 501 Builder.GetInsertBlock())) && 502 "Domination violation"); 503 Builder.CreateStore(Val, Address); 504 } 505 } 506 507 void BlockGenerator::createScalarInitialization(Scop &S) { 508 BasicBlock *ExitBB = S.getExit(); 509 510 // The split block __just before__ the region and optimized region. 511 BasicBlock *SplitBB = S.getEnteringBlock(); 512 BranchInst *SplitBBTerm = cast<BranchInst>(SplitBB->getTerminator()); 513 assert(SplitBBTerm->getNumSuccessors() == 2 && "Bad region entering block!"); 514 515 // Get the start block of the __optimized__ region. 516 BasicBlock *StartBB = SplitBBTerm->getSuccessor(0); 517 if (StartBB == S.getEntry()) 518 StartBB = SplitBBTerm->getSuccessor(1); 519 520 Builder.SetInsertPoint(&*StartBB->begin()); 521 522 for (auto &Array : S.arrays()) { 523 if (Array->getNumberOfDimensions() != 0) 524 continue; 525 if (Array->isPHIKind()) { 526 // For PHI nodes, the only values we need to store are the ones that 527 // reach the PHI node from outside the region. In general there should 528 // only be one such incoming edge and this edge should enter through 529 // 'SplitBB'. 530 auto PHI = cast<PHINode>(Array->getBasePtr()); 531 532 for (auto BI = PHI->block_begin(), BE = PHI->block_end(); BI != BE; BI++) 533 if (!S.contains(*BI) && *BI != SplitBB) 534 llvm_unreachable("Incoming edges from outside the scop should always " 535 "come from SplitBB"); 536 537 int Idx = PHI->getBasicBlockIndex(SplitBB); 538 if (Idx < 0) 539 continue; 540 541 Value *ScalarValue = PHI->getIncomingValue(Idx); 542 543 Builder.CreateStore(ScalarValue, getOrCreatePHIAlloca(PHI)); 544 continue; 545 } 546 547 auto *Inst = dyn_cast<Instruction>(Array->getBasePtr()); 548 549 if (Inst && S.contains(Inst)) 550 continue; 551 552 // PHI nodes that are not marked as such in their SAI object are either exit 553 // PHI nodes we model as common scalars but without initialization, or 554 // incoming phi nodes that need to be initialized. Check if the first is the 555 // case for Inst and do not create and initialize memory if so. 556 if (auto *PHI = dyn_cast_or_null<PHINode>(Inst)) 557 if (!S.hasSingleExitEdge() && PHI->getBasicBlockIndex(ExitBB) >= 0) 558 continue; 559 560 Builder.CreateStore(Array->getBasePtr(), 561 getOrCreateScalarAlloca(Array->getBasePtr())); 562 } 563 } 564 565 void BlockGenerator::createScalarFinalization(Scop &S) { 566 // The exit block of the __unoptimized__ region. 567 BasicBlock *ExitBB = S.getExitingBlock(); 568 // The merge block __just after__ the region and the optimized region. 569 BasicBlock *MergeBB = S.getExit(); 570 571 // The exit block of the __optimized__ region. 572 BasicBlock *OptExitBB = *(pred_begin(MergeBB)); 573 if (OptExitBB == ExitBB) 574 OptExitBB = *(++pred_begin(MergeBB)); 575 576 Builder.SetInsertPoint(OptExitBB->getTerminator()); 577 for (const auto &EscapeMapping : EscapeMap) { 578 // Extract the escaping instruction and the escaping users as well as the 579 // alloca the instruction was demoted to. 580 Instruction *EscapeInst = EscapeMapping.first; 581 const auto &EscapeMappingValue = EscapeMapping.second; 582 const EscapeUserVectorTy &EscapeUsers = EscapeMappingValue.second; 583 Value *ScalarAddr = EscapeMappingValue.first; 584 585 // Reload the demoted instruction in the optimized version of the SCoP. 586 Value *EscapeInstReload = 587 Builder.CreateLoad(ScalarAddr, EscapeInst->getName() + ".final_reload"); 588 EscapeInstReload = 589 Builder.CreateBitOrPointerCast(EscapeInstReload, EscapeInst->getType()); 590 591 // Create the merge PHI that merges the optimized and unoptimized version. 592 PHINode *MergePHI = PHINode::Create(EscapeInst->getType(), 2, 593 EscapeInst->getName() + ".merge"); 594 MergePHI->insertBefore(&*MergeBB->getFirstInsertionPt()); 595 596 // Add the respective values to the merge PHI. 597 MergePHI->addIncoming(EscapeInstReload, OptExitBB); 598 MergePHI->addIncoming(EscapeInst, ExitBB); 599 600 // The information of scalar evolution about the escaping instruction needs 601 // to be revoked so the new merged instruction will be used. 602 if (SE.isSCEVable(EscapeInst->getType())) 603 SE.forgetValue(EscapeInst); 604 605 // Replace all uses of the demoted instruction with the merge PHI. 606 for (Instruction *EUser : EscapeUsers) 607 EUser->replaceUsesOfWith(EscapeInst, MergePHI); 608 } 609 } 610 611 void BlockGenerator::findOutsideUsers(Scop &S) { 612 for (auto &Array : S.arrays()) { 613 614 if (Array->getNumberOfDimensions() != 0) 615 continue; 616 617 if (Array->isPHIKind()) 618 continue; 619 620 auto *Inst = dyn_cast<Instruction>(Array->getBasePtr()); 621 622 if (!Inst) 623 continue; 624 625 // Scop invariant hoisting moves some of the base pointers out of the scop. 626 // We can ignore these, as the invariant load hoisting already registers the 627 // relevant outside users. 628 if (!S.contains(Inst)) 629 continue; 630 631 handleOutsideUsers(S, Inst); 632 } 633 } 634 635 void BlockGenerator::createExitPHINodeMerges(Scop &S) { 636 if (S.hasSingleExitEdge()) 637 return; 638 639 auto *ExitBB = S.getExitingBlock(); 640 auto *MergeBB = S.getExit(); 641 auto *AfterMergeBB = MergeBB->getSingleSuccessor(); 642 BasicBlock *OptExitBB = *(pred_begin(MergeBB)); 643 if (OptExitBB == ExitBB) 644 OptExitBB = *(++pred_begin(MergeBB)); 645 646 Builder.SetInsertPoint(OptExitBB->getTerminator()); 647 648 for (auto &SAI : S.arrays()) { 649 auto *Val = SAI->getBasePtr(); 650 651 // Only Value-like scalars need a merge PHI. Exit block PHIs receive either 652 // the original PHI's value or the reloaded incoming values from the 653 // generated code. An llvm::Value is merged between the original code's 654 // value or the generated one. 655 if (!SAI->isValueKind() && !SAI->isExitPHIKind()) 656 continue; 657 658 PHINode *PHI = dyn_cast<PHINode>(Val); 659 if (!PHI) 660 continue; 661 662 if (PHI->getParent() != AfterMergeBB) 663 continue; 664 665 std::string Name = PHI->getName(); 666 Value *ScalarAddr = getOrCreateScalarAlloca(PHI); 667 Value *Reload = Builder.CreateLoad(ScalarAddr, Name + ".ph.final_reload"); 668 Reload = Builder.CreateBitOrPointerCast(Reload, PHI->getType()); 669 Value *OriginalValue = PHI->getIncomingValueForBlock(MergeBB); 670 assert((!isa<Instruction>(OriginalValue) || 671 cast<Instruction>(OriginalValue)->getParent() != MergeBB) && 672 "Original value must no be one we just generated."); 673 auto *MergePHI = PHINode::Create(PHI->getType(), 2, Name + ".ph.merge"); 674 MergePHI->insertBefore(&*MergeBB->getFirstInsertionPt()); 675 MergePHI->addIncoming(Reload, OptExitBB); 676 MergePHI->addIncoming(OriginalValue, ExitBB); 677 int Idx = PHI->getBasicBlockIndex(MergeBB); 678 PHI->setIncomingValue(Idx, MergePHI); 679 } 680 } 681 682 void BlockGenerator::invalidateScalarEvolution(Scop &S) { 683 for (auto &Stmt : S) 684 if (Stmt.isBlockStmt()) 685 for (auto &Inst : *Stmt.getBasicBlock()) 686 SE.forgetValue(&Inst); 687 else if (Stmt.isRegionStmt()) 688 for (auto *BB : Stmt.getRegion()->blocks()) 689 for (auto &Inst : *BB) 690 SE.forgetValue(&Inst); 691 else 692 llvm_unreachable("Unexpected statement type found"); 693 } 694 695 void BlockGenerator::finalizeSCoP(Scop &S) { 696 findOutsideUsers(S); 697 createScalarInitialization(S); 698 createExitPHINodeMerges(S); 699 createScalarFinalization(S); 700 invalidateScalarEvolution(S); 701 } 702 703 VectorBlockGenerator::VectorBlockGenerator(BlockGenerator &BlockGen, 704 std::vector<LoopToScevMapT> &VLTS, 705 isl_map *Schedule) 706 : BlockGenerator(BlockGen), VLTS(VLTS), Schedule(Schedule) { 707 assert(Schedule && "No statement domain provided"); 708 } 709 710 Value *VectorBlockGenerator::getVectorValue(ScopStmt &Stmt, Value *Old, 711 ValueMapT &VectorMap, 712 VectorValueMapT &ScalarMaps, 713 Loop *L) { 714 if (Value *NewValue = VectorMap.lookup(Old)) 715 return NewValue; 716 717 int Width = getVectorWidth(); 718 719 Value *Vector = UndefValue::get(VectorType::get(Old->getType(), Width)); 720 721 for (int Lane = 0; Lane < Width; Lane++) 722 Vector = Builder.CreateInsertElement( 723 Vector, getNewValue(Stmt, Old, ScalarMaps[Lane], VLTS[Lane], L), 724 Builder.getInt32(Lane)); 725 726 VectorMap[Old] = Vector; 727 728 return Vector; 729 } 730 731 Type *VectorBlockGenerator::getVectorPtrTy(const Value *Val, int Width) { 732 PointerType *PointerTy = dyn_cast<PointerType>(Val->getType()); 733 assert(PointerTy && "PointerType expected"); 734 735 Type *ScalarType = PointerTy->getElementType(); 736 VectorType *VectorType = VectorType::get(ScalarType, Width); 737 738 return PointerType::getUnqual(VectorType); 739 } 740 741 Value *VectorBlockGenerator::generateStrideOneLoad( 742 ScopStmt &Stmt, LoadInst *Load, VectorValueMapT &ScalarMaps, 743 __isl_keep isl_id_to_ast_expr *NewAccesses, bool NegativeStride = false) { 744 unsigned VectorWidth = getVectorWidth(); 745 auto *Pointer = Load->getPointerOperand(); 746 Type *VectorPtrType = getVectorPtrTy(Pointer, VectorWidth); 747 unsigned Offset = NegativeStride ? VectorWidth - 1 : 0; 748 749 Value *NewPointer = generateLocationAccessed(Stmt, Load, ScalarMaps[Offset], 750 VLTS[Offset], NewAccesses); 751 Value *VectorPtr = 752 Builder.CreateBitCast(NewPointer, VectorPtrType, "vector_ptr"); 753 LoadInst *VecLoad = 754 Builder.CreateLoad(VectorPtr, Load->getName() + "_p_vec_full"); 755 if (!Aligned) 756 VecLoad->setAlignment(8); 757 758 if (NegativeStride) { 759 SmallVector<Constant *, 16> Indices; 760 for (int i = VectorWidth - 1; i >= 0; i--) 761 Indices.push_back(ConstantInt::get(Builder.getInt32Ty(), i)); 762 Constant *SV = llvm::ConstantVector::get(Indices); 763 Value *RevVecLoad = Builder.CreateShuffleVector( 764 VecLoad, VecLoad, SV, Load->getName() + "_reverse"); 765 return RevVecLoad; 766 } 767 768 return VecLoad; 769 } 770 771 Value *VectorBlockGenerator::generateStrideZeroLoad( 772 ScopStmt &Stmt, LoadInst *Load, ValueMapT &BBMap, 773 __isl_keep isl_id_to_ast_expr *NewAccesses) { 774 auto *Pointer = Load->getPointerOperand(); 775 Type *VectorPtrType = getVectorPtrTy(Pointer, 1); 776 Value *NewPointer = 777 generateLocationAccessed(Stmt, Load, BBMap, VLTS[0], NewAccesses); 778 Value *VectorPtr = Builder.CreateBitCast(NewPointer, VectorPtrType, 779 Load->getName() + "_p_vec_p"); 780 LoadInst *ScalarLoad = 781 Builder.CreateLoad(VectorPtr, Load->getName() + "_p_splat_one"); 782 783 if (!Aligned) 784 ScalarLoad->setAlignment(8); 785 786 Constant *SplatVector = Constant::getNullValue( 787 VectorType::get(Builder.getInt32Ty(), getVectorWidth())); 788 789 Value *VectorLoad = Builder.CreateShuffleVector( 790 ScalarLoad, ScalarLoad, SplatVector, Load->getName() + "_p_splat"); 791 return VectorLoad; 792 } 793 794 Value *VectorBlockGenerator::generateUnknownStrideLoad( 795 ScopStmt &Stmt, LoadInst *Load, VectorValueMapT &ScalarMaps, 796 __isl_keep isl_id_to_ast_expr *NewAccesses) { 797 int VectorWidth = getVectorWidth(); 798 auto *Pointer = Load->getPointerOperand(); 799 VectorType *VectorType = VectorType::get( 800 dyn_cast<PointerType>(Pointer->getType())->getElementType(), VectorWidth); 801 802 Value *Vector = UndefValue::get(VectorType); 803 804 for (int i = 0; i < VectorWidth; i++) { 805 Value *NewPointer = generateLocationAccessed(Stmt, Load, ScalarMaps[i], 806 VLTS[i], NewAccesses); 807 Value *ScalarLoad = 808 Builder.CreateLoad(NewPointer, Load->getName() + "_p_scalar_"); 809 Vector = Builder.CreateInsertElement( 810 Vector, ScalarLoad, Builder.getInt32(i), Load->getName() + "_p_vec_"); 811 } 812 813 return Vector; 814 } 815 816 void VectorBlockGenerator::generateLoad( 817 ScopStmt &Stmt, LoadInst *Load, ValueMapT &VectorMap, 818 VectorValueMapT &ScalarMaps, __isl_keep isl_id_to_ast_expr *NewAccesses) { 819 if (Value *PreloadLoad = GlobalMap.lookup(Load)) { 820 VectorMap[Load] = Builder.CreateVectorSplat(getVectorWidth(), PreloadLoad, 821 Load->getName() + "_p"); 822 return; 823 } 824 825 if (!VectorType::isValidElementType(Load->getType())) { 826 for (int i = 0; i < getVectorWidth(); i++) 827 ScalarMaps[i][Load] = 828 generateScalarLoad(Stmt, Load, ScalarMaps[i], VLTS[i], NewAccesses); 829 return; 830 } 831 832 const MemoryAccess &Access = Stmt.getArrayAccessFor(Load); 833 834 // Make sure we have scalar values available to access the pointer to 835 // the data location. 836 extractScalarValues(Load, VectorMap, ScalarMaps); 837 838 Value *NewLoad; 839 if (Access.isStrideZero(isl_map_copy(Schedule))) 840 NewLoad = generateStrideZeroLoad(Stmt, Load, ScalarMaps[0], NewAccesses); 841 else if (Access.isStrideOne(isl_map_copy(Schedule))) 842 NewLoad = generateStrideOneLoad(Stmt, Load, ScalarMaps, NewAccesses); 843 else if (Access.isStrideX(isl_map_copy(Schedule), -1)) 844 NewLoad = generateStrideOneLoad(Stmt, Load, ScalarMaps, NewAccesses, true); 845 else 846 NewLoad = generateUnknownStrideLoad(Stmt, Load, ScalarMaps, NewAccesses); 847 848 VectorMap[Load] = NewLoad; 849 } 850 851 void VectorBlockGenerator::copyUnaryInst(ScopStmt &Stmt, UnaryInstruction *Inst, 852 ValueMapT &VectorMap, 853 VectorValueMapT &ScalarMaps) { 854 int VectorWidth = getVectorWidth(); 855 Value *NewOperand = getVectorValue(Stmt, Inst->getOperand(0), VectorMap, 856 ScalarMaps, getLoopForStmt(Stmt)); 857 858 assert(isa<CastInst>(Inst) && "Can not generate vector code for instruction"); 859 860 const CastInst *Cast = dyn_cast<CastInst>(Inst); 861 VectorType *DestType = VectorType::get(Inst->getType(), VectorWidth); 862 VectorMap[Inst] = Builder.CreateCast(Cast->getOpcode(), NewOperand, DestType); 863 } 864 865 void VectorBlockGenerator::copyBinaryInst(ScopStmt &Stmt, BinaryOperator *Inst, 866 ValueMapT &VectorMap, 867 VectorValueMapT &ScalarMaps) { 868 Loop *L = getLoopForStmt(Stmt); 869 Value *OpZero = Inst->getOperand(0); 870 Value *OpOne = Inst->getOperand(1); 871 872 Value *NewOpZero, *NewOpOne; 873 NewOpZero = getVectorValue(Stmt, OpZero, VectorMap, ScalarMaps, L); 874 NewOpOne = getVectorValue(Stmt, OpOne, VectorMap, ScalarMaps, L); 875 876 Value *NewInst = Builder.CreateBinOp(Inst->getOpcode(), NewOpZero, NewOpOne, 877 Inst->getName() + "p_vec"); 878 VectorMap[Inst] = NewInst; 879 } 880 881 void VectorBlockGenerator::copyStore( 882 ScopStmt &Stmt, StoreInst *Store, ValueMapT &VectorMap, 883 VectorValueMapT &ScalarMaps, __isl_keep isl_id_to_ast_expr *NewAccesses) { 884 const MemoryAccess &Access = Stmt.getArrayAccessFor(Store); 885 886 auto *Pointer = Store->getPointerOperand(); 887 Value *Vector = getVectorValue(Stmt, Store->getValueOperand(), VectorMap, 888 ScalarMaps, getLoopForStmt(Stmt)); 889 890 // Make sure we have scalar values available to access the pointer to 891 // the data location. 892 extractScalarValues(Store, VectorMap, ScalarMaps); 893 894 if (Access.isStrideOne(isl_map_copy(Schedule))) { 895 Type *VectorPtrType = getVectorPtrTy(Pointer, getVectorWidth()); 896 Value *NewPointer = generateLocationAccessed(Stmt, Store, ScalarMaps[0], 897 VLTS[0], NewAccesses); 898 899 Value *VectorPtr = 900 Builder.CreateBitCast(NewPointer, VectorPtrType, "vector_ptr"); 901 StoreInst *Store = Builder.CreateStore(Vector, VectorPtr); 902 903 if (!Aligned) 904 Store->setAlignment(8); 905 } else { 906 for (unsigned i = 0; i < ScalarMaps.size(); i++) { 907 Value *Scalar = Builder.CreateExtractElement(Vector, Builder.getInt32(i)); 908 Value *NewPointer = generateLocationAccessed(Stmt, Store, ScalarMaps[i], 909 VLTS[i], NewAccesses); 910 Builder.CreateStore(Scalar, NewPointer); 911 } 912 } 913 } 914 915 bool VectorBlockGenerator::hasVectorOperands(const Instruction *Inst, 916 ValueMapT &VectorMap) { 917 for (Value *Operand : Inst->operands()) 918 if (VectorMap.count(Operand)) 919 return true; 920 return false; 921 } 922 923 bool VectorBlockGenerator::extractScalarValues(const Instruction *Inst, 924 ValueMapT &VectorMap, 925 VectorValueMapT &ScalarMaps) { 926 bool HasVectorOperand = false; 927 int VectorWidth = getVectorWidth(); 928 929 for (Value *Operand : Inst->operands()) { 930 ValueMapT::iterator VecOp = VectorMap.find(Operand); 931 932 if (VecOp == VectorMap.end()) 933 continue; 934 935 HasVectorOperand = true; 936 Value *NewVector = VecOp->second; 937 938 for (int i = 0; i < VectorWidth; ++i) { 939 ValueMapT &SM = ScalarMaps[i]; 940 941 // If there is one scalar extracted, all scalar elements should have 942 // already been extracted by the code here. So no need to check for the 943 // existence of all of them. 944 if (SM.count(Operand)) 945 break; 946 947 SM[Operand] = 948 Builder.CreateExtractElement(NewVector, Builder.getInt32(i)); 949 } 950 } 951 952 return HasVectorOperand; 953 } 954 955 void VectorBlockGenerator::copyInstScalarized( 956 ScopStmt &Stmt, Instruction *Inst, ValueMapT &VectorMap, 957 VectorValueMapT &ScalarMaps, __isl_keep isl_id_to_ast_expr *NewAccesses) { 958 bool HasVectorOperand; 959 int VectorWidth = getVectorWidth(); 960 961 HasVectorOperand = extractScalarValues(Inst, VectorMap, ScalarMaps); 962 963 for (int VectorLane = 0; VectorLane < getVectorWidth(); VectorLane++) 964 BlockGenerator::copyInstruction(Stmt, Inst, ScalarMaps[VectorLane], 965 VLTS[VectorLane], NewAccesses); 966 967 if (!VectorType::isValidElementType(Inst->getType()) || !HasVectorOperand) 968 return; 969 970 // Make the result available as vector value. 971 VectorType *VectorType = VectorType::get(Inst->getType(), VectorWidth); 972 Value *Vector = UndefValue::get(VectorType); 973 974 for (int i = 0; i < VectorWidth; i++) 975 Vector = Builder.CreateInsertElement(Vector, ScalarMaps[i][Inst], 976 Builder.getInt32(i)); 977 978 VectorMap[Inst] = Vector; 979 } 980 981 int VectorBlockGenerator::getVectorWidth() { return VLTS.size(); } 982 983 void VectorBlockGenerator::copyInstruction( 984 ScopStmt &Stmt, Instruction *Inst, ValueMapT &VectorMap, 985 VectorValueMapT &ScalarMaps, __isl_keep isl_id_to_ast_expr *NewAccesses) { 986 // Terminator instructions control the control flow. They are explicitly 987 // expressed in the clast and do not need to be copied. 988 if (Inst->isTerminator()) 989 return; 990 991 if (canSyntheziseInStmt(Stmt, Inst)) 992 return; 993 994 if (auto *Load = dyn_cast<LoadInst>(Inst)) { 995 generateLoad(Stmt, Load, VectorMap, ScalarMaps, NewAccesses); 996 return; 997 } 998 999 if (hasVectorOperands(Inst, VectorMap)) { 1000 if (auto *Store = dyn_cast<StoreInst>(Inst)) { 1001 copyStore(Stmt, Store, VectorMap, ScalarMaps, NewAccesses); 1002 return; 1003 } 1004 1005 if (auto *Unary = dyn_cast<UnaryInstruction>(Inst)) { 1006 copyUnaryInst(Stmt, Unary, VectorMap, ScalarMaps); 1007 return; 1008 } 1009 1010 if (auto *Binary = dyn_cast<BinaryOperator>(Inst)) { 1011 copyBinaryInst(Stmt, Binary, VectorMap, ScalarMaps); 1012 return; 1013 } 1014 1015 // Falltrough: We generate scalar instructions, if we don't know how to 1016 // generate vector code. 1017 } 1018 1019 copyInstScalarized(Stmt, Inst, VectorMap, ScalarMaps, NewAccesses); 1020 } 1021 1022 void VectorBlockGenerator::generateScalarVectorLoads( 1023 ScopStmt &Stmt, ValueMapT &VectorBlockMap) { 1024 for (MemoryAccess *MA : Stmt) { 1025 if (MA->isArrayKind() || MA->isWrite()) 1026 continue; 1027 1028 auto *Address = getOrCreateAlloca(*MA); 1029 Type *VectorPtrType = getVectorPtrTy(Address, 1); 1030 Value *VectorPtr = Builder.CreateBitCast(Address, VectorPtrType, 1031 Address->getName() + "_p_vec_p"); 1032 auto *Val = Builder.CreateLoad(VectorPtr, Address->getName() + ".reload"); 1033 Constant *SplatVector = Constant::getNullValue( 1034 VectorType::get(Builder.getInt32Ty(), getVectorWidth())); 1035 1036 Value *VectorVal = Builder.CreateShuffleVector( 1037 Val, Val, SplatVector, Address->getName() + "_p_splat"); 1038 VectorBlockMap[MA->getBaseAddr()] = VectorVal; 1039 } 1040 } 1041 1042 void VectorBlockGenerator::verifyNoScalarStores(ScopStmt &Stmt) { 1043 for (MemoryAccess *MA : Stmt) { 1044 if (MA->isArrayKind() || MA->isRead()) 1045 continue; 1046 1047 llvm_unreachable("Scalar stores not expected in vector loop"); 1048 } 1049 } 1050 1051 void VectorBlockGenerator::copyStmt( 1052 ScopStmt &Stmt, __isl_keep isl_id_to_ast_expr *NewAccesses) { 1053 assert(Stmt.isBlockStmt() && "TODO: Only block statements can be copied by " 1054 "the vector block generator"); 1055 1056 BasicBlock *BB = Stmt.getBasicBlock(); 1057 BasicBlock *CopyBB = SplitBlock(Builder.GetInsertBlock(), 1058 &*Builder.GetInsertPoint(), &DT, &LI); 1059 CopyBB->setName("polly.stmt." + BB->getName()); 1060 Builder.SetInsertPoint(&CopyBB->front()); 1061 1062 // Create two maps that store the mapping from the original instructions of 1063 // the old basic block to their copies in the new basic block. Those maps 1064 // are basic block local. 1065 // 1066 // As vector code generation is supported there is one map for scalar values 1067 // and one for vector values. 1068 // 1069 // In case we just do scalar code generation, the vectorMap is not used and 1070 // the scalarMap has just one dimension, which contains the mapping. 1071 // 1072 // In case vector code generation is done, an instruction may either appear 1073 // in the vector map once (as it is calculating >vectorwidth< values at a 1074 // time. Or (if the values are calculated using scalar operations), it 1075 // appears once in every dimension of the scalarMap. 1076 VectorValueMapT ScalarBlockMap(getVectorWidth()); 1077 ValueMapT VectorBlockMap; 1078 1079 generateScalarVectorLoads(Stmt, VectorBlockMap); 1080 1081 for (Instruction &Inst : *BB) 1082 copyInstruction(Stmt, &Inst, VectorBlockMap, ScalarBlockMap, NewAccesses); 1083 1084 verifyNoScalarStores(Stmt); 1085 } 1086 1087 BasicBlock *RegionGenerator::repairDominance(BasicBlock *BB, 1088 BasicBlock *BBCopy) { 1089 1090 BasicBlock *BBIDom = DT.getNode(BB)->getIDom()->getBlock(); 1091 BasicBlock *BBCopyIDom = BlockMap.lookup(BBIDom); 1092 1093 if (BBCopyIDom) 1094 DT.changeImmediateDominator(BBCopy, BBCopyIDom); 1095 1096 return BBCopyIDom; 1097 } 1098 1099 // This is to determine whether an llvm::Value (defined in @p BB) is usable when 1100 // leaving a subregion. The straight-forward DT.dominates(BB, R->getExitBlock()) 1101 // does not work in cases where the exit block has edges from outside the 1102 // region. In that case the llvm::Value would never be usable in in the exit 1103 // block. The RegionGenerator however creates an new exit block ('ExitBBCopy') 1104 // for the subregion's exiting edges only. We need to determine whether an 1105 // llvm::Value is usable in there. We do this by checking whether it dominates 1106 // all exiting blocks individually. 1107 static bool isDominatingSubregionExit(const DominatorTree &DT, Region *R, 1108 BasicBlock *BB) { 1109 for (auto ExitingBB : predecessors(R->getExit())) { 1110 // Check for non-subregion incoming edges. 1111 if (!R->contains(ExitingBB)) 1112 continue; 1113 1114 if (!DT.dominates(BB, ExitingBB)) 1115 return false; 1116 } 1117 1118 return true; 1119 } 1120 1121 // Find the direct dominator of the subregion's exit block if the subregion was 1122 // simplified. 1123 static BasicBlock *findExitDominator(DominatorTree &DT, Region *R) { 1124 BasicBlock *Common = nullptr; 1125 for (auto ExitingBB : predecessors(R->getExit())) { 1126 // Check for non-subregion incoming edges. 1127 if (!R->contains(ExitingBB)) 1128 continue; 1129 1130 // First exiting edge. 1131 if (!Common) { 1132 Common = ExitingBB; 1133 continue; 1134 } 1135 1136 Common = DT.findNearestCommonDominator(Common, ExitingBB); 1137 } 1138 1139 assert(Common && R->contains(Common)); 1140 return Common; 1141 } 1142 1143 void RegionGenerator::copyStmt(ScopStmt &Stmt, LoopToScevMapT <S, 1144 isl_id_to_ast_expr *IdToAstExp) { 1145 assert(Stmt.isRegionStmt() && 1146 "Only region statements can be copied by the region generator"); 1147 1148 // Forget all old mappings. 1149 BlockMap.clear(); 1150 RegionMaps.clear(); 1151 IncompletePHINodeMap.clear(); 1152 1153 // Collection of all values related to this subregion. 1154 ValueMapT ValueMap; 1155 1156 // The region represented by the statement. 1157 Region *R = Stmt.getRegion(); 1158 1159 // Create a dedicated entry for the region where we can reload all demoted 1160 // inputs. 1161 BasicBlock *EntryBB = R->getEntry(); 1162 BasicBlock *EntryBBCopy = SplitBlock(Builder.GetInsertBlock(), 1163 &*Builder.GetInsertPoint(), &DT, &LI); 1164 EntryBBCopy->setName("polly.stmt." + EntryBB->getName() + ".entry"); 1165 Builder.SetInsertPoint(&EntryBBCopy->front()); 1166 1167 ValueMapT &EntryBBMap = RegionMaps[EntryBBCopy]; 1168 generateScalarLoads(Stmt, LTS, EntryBBMap, IdToAstExp); 1169 1170 for (auto PI = pred_begin(EntryBB), PE = pred_end(EntryBB); PI != PE; ++PI) 1171 if (!R->contains(*PI)) 1172 BlockMap[*PI] = EntryBBCopy; 1173 1174 // Iterate over all blocks in the region in a breadth-first search. 1175 std::deque<BasicBlock *> Blocks; 1176 SmallPtrSet<BasicBlock *, 8> SeenBlocks; 1177 Blocks.push_back(EntryBB); 1178 SeenBlocks.insert(EntryBB); 1179 1180 while (!Blocks.empty()) { 1181 BasicBlock *BB = Blocks.front(); 1182 Blocks.pop_front(); 1183 1184 // First split the block and update dominance information. 1185 BasicBlock *BBCopy = splitBB(BB); 1186 BasicBlock *BBCopyIDom = repairDominance(BB, BBCopy); 1187 1188 // Get the mapping for this block and initialize it with either the scalar 1189 // loads from the generated entering block (which dominates all blocks of 1190 // this subregion) or the maps of the immediate dominator, if part of the 1191 // subregion. The latter necessarily includes the former. 1192 ValueMapT *InitBBMap; 1193 if (BBCopyIDom) { 1194 assert(RegionMaps.count(BBCopyIDom)); 1195 InitBBMap = &RegionMaps[BBCopyIDom]; 1196 } else 1197 InitBBMap = &EntryBBMap; 1198 auto Inserted = RegionMaps.insert(std::make_pair(BBCopy, *InitBBMap)); 1199 ValueMapT &RegionMap = Inserted.first->second; 1200 1201 // Copy the block with the BlockGenerator. 1202 Builder.SetInsertPoint(&BBCopy->front()); 1203 copyBB(Stmt, BB, BBCopy, RegionMap, LTS, IdToAstExp); 1204 1205 // In order to remap PHI nodes we store also basic block mappings. 1206 BlockMap[BB] = BBCopy; 1207 1208 // Add values to incomplete PHI nodes waiting for this block to be copied. 1209 for (const PHINodePairTy &PHINodePair : IncompletePHINodeMap[BB]) 1210 addOperandToPHI(Stmt, PHINodePair.first, PHINodePair.second, BB, LTS); 1211 IncompletePHINodeMap[BB].clear(); 1212 1213 // And continue with new successors inside the region. 1214 for (auto SI = succ_begin(BB), SE = succ_end(BB); SI != SE; SI++) 1215 if (R->contains(*SI) && SeenBlocks.insert(*SI).second) 1216 Blocks.push_back(*SI); 1217 1218 // Remember value in case it is visible after this subregion. 1219 if (isDominatingSubregionExit(DT, R, BB)) 1220 ValueMap.insert(RegionMap.begin(), RegionMap.end()); 1221 } 1222 1223 // Now create a new dedicated region exit block and add it to the region map. 1224 BasicBlock *ExitBBCopy = SplitBlock(Builder.GetInsertBlock(), 1225 &*Builder.GetInsertPoint(), &DT, &LI); 1226 ExitBBCopy->setName("polly.stmt." + R->getExit()->getName() + ".exit"); 1227 BlockMap[R->getExit()] = ExitBBCopy; 1228 1229 BasicBlock *ExitDomBBCopy = BlockMap.lookup(findExitDominator(DT, R)); 1230 assert(ExitDomBBCopy && "Common exit dominator must be within region; at " 1231 "least the entry node must match"); 1232 DT.changeImmediateDominator(ExitBBCopy, ExitDomBBCopy); 1233 1234 // As the block generator doesn't handle control flow we need to add the 1235 // region control flow by hand after all blocks have been copied. 1236 for (BasicBlock *BB : SeenBlocks) { 1237 1238 BasicBlock *BBCopy = BlockMap[BB]; 1239 TerminatorInst *TI = BB->getTerminator(); 1240 if (isa<UnreachableInst>(TI)) { 1241 while (!BBCopy->empty()) 1242 BBCopy->begin()->eraseFromParent(); 1243 new UnreachableInst(BBCopy->getContext(), BBCopy); 1244 continue; 1245 } 1246 1247 Instruction *BICopy = BBCopy->getTerminator(); 1248 1249 ValueMapT &RegionMap = RegionMaps[BBCopy]; 1250 RegionMap.insert(BlockMap.begin(), BlockMap.end()); 1251 1252 Builder.SetInsertPoint(BICopy); 1253 copyInstScalar(Stmt, TI, RegionMap, LTS); 1254 BICopy->eraseFromParent(); 1255 } 1256 1257 // Add counting PHI nodes to all loops in the region that can be used as 1258 // replacement for SCEVs refering to the old loop. 1259 for (BasicBlock *BB : SeenBlocks) { 1260 Loop *L = LI.getLoopFor(BB); 1261 if (L == nullptr || L->getHeader() != BB || !R->contains(L)) 1262 continue; 1263 1264 BasicBlock *BBCopy = BlockMap[BB]; 1265 Value *NullVal = Builder.getInt32(0); 1266 PHINode *LoopPHI = 1267 PHINode::Create(Builder.getInt32Ty(), 2, "polly.subregion.iv"); 1268 Instruction *LoopPHIInc = BinaryOperator::CreateAdd( 1269 LoopPHI, Builder.getInt32(1), "polly.subregion.iv.inc"); 1270 LoopPHI->insertBefore(&BBCopy->front()); 1271 LoopPHIInc->insertBefore(BBCopy->getTerminator()); 1272 1273 for (auto *PredBB : make_range(pred_begin(BB), pred_end(BB))) { 1274 if (!R->contains(PredBB)) 1275 continue; 1276 if (L->contains(PredBB)) 1277 LoopPHI->addIncoming(LoopPHIInc, BlockMap[PredBB]); 1278 else 1279 LoopPHI->addIncoming(NullVal, BlockMap[PredBB]); 1280 } 1281 1282 for (auto *PredBBCopy : make_range(pred_begin(BBCopy), pred_end(BBCopy))) 1283 if (LoopPHI->getBasicBlockIndex(PredBBCopy) < 0) 1284 LoopPHI->addIncoming(NullVal, PredBBCopy); 1285 1286 LTS[L] = SE.getUnknown(LoopPHI); 1287 } 1288 1289 // Continue generating code in the exit block. 1290 Builder.SetInsertPoint(&*ExitBBCopy->getFirstInsertionPt()); 1291 1292 // Write values visible to other statements. 1293 generateScalarStores(Stmt, LTS, ValueMap, IdToAstExp); 1294 BlockMap.clear(); 1295 RegionMaps.clear(); 1296 IncompletePHINodeMap.clear(); 1297 } 1298 1299 PHINode *RegionGenerator::buildExitPHI(MemoryAccess *MA, LoopToScevMapT <S, 1300 ValueMapT &BBMap, Loop *L) { 1301 ScopStmt *Stmt = MA->getStatement(); 1302 Region *SubR = Stmt->getRegion(); 1303 auto Incoming = MA->getIncoming(); 1304 1305 PollyIRBuilder::InsertPointGuard IPGuard(Builder); 1306 PHINode *OrigPHI = cast<PHINode>(MA->getAccessInstruction()); 1307 BasicBlock *NewSubregionExit = Builder.GetInsertBlock(); 1308 1309 // This can happen if the subregion is simplified after the ScopStmts 1310 // have been created; simplification happens as part of CodeGeneration. 1311 if (OrigPHI->getParent() != SubR->getExit()) { 1312 BasicBlock *FormerExit = SubR->getExitingBlock(); 1313 if (FormerExit) 1314 NewSubregionExit = BlockMap.lookup(FormerExit); 1315 } 1316 1317 PHINode *NewPHI = PHINode::Create(OrigPHI->getType(), Incoming.size(), 1318 "polly." + OrigPHI->getName(), 1319 NewSubregionExit->getFirstNonPHI()); 1320 1321 // Add the incoming values to the PHI. 1322 for (auto &Pair : Incoming) { 1323 BasicBlock *OrigIncomingBlock = Pair.first; 1324 BasicBlock *NewIncomingBlock = BlockMap.lookup(OrigIncomingBlock); 1325 Builder.SetInsertPoint(NewIncomingBlock->getTerminator()); 1326 assert(RegionMaps.count(NewIncomingBlock)); 1327 ValueMapT *LocalBBMap = &RegionMaps[NewIncomingBlock]; 1328 1329 Value *OrigIncomingValue = Pair.second; 1330 Value *NewIncomingValue = 1331 getNewValue(*Stmt, OrigIncomingValue, *LocalBBMap, LTS, L); 1332 NewPHI->addIncoming(NewIncomingValue, NewIncomingBlock); 1333 } 1334 1335 return NewPHI; 1336 } 1337 1338 Value *RegionGenerator::getExitScalar(MemoryAccess *MA, LoopToScevMapT <S, 1339 ValueMapT &BBMap) { 1340 ScopStmt *Stmt = MA->getStatement(); 1341 1342 // TODO: Add some test cases that ensure this is really the right choice. 1343 Loop *L = LI.getLoopFor(Stmt->getRegion()->getExit()); 1344 1345 if (MA->isAnyPHIKind()) { 1346 auto Incoming = MA->getIncoming(); 1347 assert(!Incoming.empty() && 1348 "PHI WRITEs must have originate from at least one incoming block"); 1349 1350 // If there is only one incoming value, we do not need to create a PHI. 1351 if (Incoming.size() == 1) { 1352 Value *OldVal = Incoming[0].second; 1353 return getNewValue(*Stmt, OldVal, BBMap, LTS, L); 1354 } 1355 1356 return buildExitPHI(MA, LTS, BBMap, L); 1357 } 1358 1359 // MK_Value accesses leaving the subregion must dominate the exit block; just 1360 // pass the copied value 1361 Value *OldVal = MA->getAccessValue(); 1362 return getNewValue(*Stmt, OldVal, BBMap, LTS, L); 1363 } 1364 1365 void RegionGenerator::generateScalarStores( 1366 ScopStmt &Stmt, LoopToScevMapT <S, ValueMapT &BBMap, 1367 __isl_keep isl_id_to_ast_expr *NewAccesses) { 1368 assert(Stmt.getRegion() && 1369 "Block statements need to use the generateScalarStores() " 1370 "function in the BlockGenerator"); 1371 1372 for (MemoryAccess *MA : Stmt) { 1373 if (MA->isOriginalArrayKind() || MA->isRead()) 1374 continue; 1375 1376 Value *NewVal = getExitScalar(MA, LTS, BBMap); 1377 Value *Address = 1378 getImplicitAddress(*MA, getLoopForStmt(Stmt), LTS, BBMap, NewAccesses); 1379 assert((!isa<Instruction>(NewVal) || 1380 DT.dominates(cast<Instruction>(NewVal)->getParent(), 1381 Builder.GetInsertBlock())) && 1382 "Domination violation"); 1383 assert((!isa<Instruction>(Address) || 1384 DT.dominates(cast<Instruction>(Address)->getParent(), 1385 Builder.GetInsertBlock())) && 1386 "Domination violation"); 1387 Builder.CreateStore(NewVal, Address); 1388 } 1389 } 1390 1391 void RegionGenerator::addOperandToPHI(ScopStmt &Stmt, const PHINode *PHI, 1392 PHINode *PHICopy, BasicBlock *IncomingBB, 1393 LoopToScevMapT <S) { 1394 Region *StmtR = Stmt.getRegion(); 1395 1396 // If the incoming block was not yet copied mark this PHI as incomplete. 1397 // Once the block will be copied the incoming value will be added. 1398 BasicBlock *BBCopy = BlockMap[IncomingBB]; 1399 if (!BBCopy) { 1400 assert(StmtR->contains(IncomingBB) && 1401 "Bad incoming block for PHI in non-affine region"); 1402 IncompletePHINodeMap[IncomingBB].push_back(std::make_pair(PHI, PHICopy)); 1403 return; 1404 } 1405 1406 Value *OpCopy = nullptr; 1407 if (StmtR->contains(IncomingBB)) { 1408 assert(RegionMaps.count(BBCopy) && 1409 "Incoming PHI block did not have a BBMap"); 1410 ValueMapT &BBCopyMap = RegionMaps[BBCopy]; 1411 1412 Value *Op = PHI->getIncomingValueForBlock(IncomingBB); 1413 1414 // If the current insert block is different from the PHIs incoming block 1415 // change it, otherwise do not. 1416 auto IP = Builder.GetInsertPoint(); 1417 if (IP->getParent() != BBCopy) 1418 Builder.SetInsertPoint(BBCopy->getTerminator()); 1419 OpCopy = getNewValue(Stmt, Op, BBCopyMap, LTS, getLoopForStmt(Stmt)); 1420 if (IP->getParent() != BBCopy) 1421 Builder.SetInsertPoint(&*IP); 1422 } else { 1423 1424 if (PHICopy->getBasicBlockIndex(BBCopy) >= 0) 1425 return; 1426 1427 Value *PHIOpAddr = getOrCreatePHIAlloca(const_cast<PHINode *>(PHI)); 1428 OpCopy = new LoadInst(PHIOpAddr, PHIOpAddr->getName() + ".reload", 1429 BlockMap[IncomingBB]->getTerminator()); 1430 } 1431 1432 assert(OpCopy && "Incoming PHI value was not copied properly"); 1433 assert(BBCopy && "Incoming PHI block was not copied properly"); 1434 PHICopy->addIncoming(OpCopy, BBCopy); 1435 } 1436 1437 void RegionGenerator::copyPHIInstruction(ScopStmt &Stmt, PHINode *PHI, 1438 ValueMapT &BBMap, 1439 LoopToScevMapT <S) { 1440 unsigned NumIncoming = PHI->getNumIncomingValues(); 1441 PHINode *PHICopy = 1442 Builder.CreatePHI(PHI->getType(), NumIncoming, "polly." + PHI->getName()); 1443 PHICopy->moveBefore(PHICopy->getParent()->getFirstNonPHI()); 1444 BBMap[PHI] = PHICopy; 1445 1446 for (unsigned u = 0; u < NumIncoming; u++) 1447 addOperandToPHI(Stmt, PHI, PHICopy, PHI->getIncomingBlock(u), LTS); 1448 } 1449