1 //===--- BlockGenerators.cpp - Generate code for statements -----*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the BlockGenerator and VectorBlockGenerator classes,
10 // which generate sequential code and vectorized code for a polyhedral
11 // statement, respectively.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "polly/CodeGen/BlockGenerators.h"
16 #include "polly/CodeGen/IslExprBuilder.h"
17 #include "polly/CodeGen/RuntimeDebugBuilder.h"
18 #include "polly/Options.h"
19 #include "polly/ScopInfo.h"
20 #include "polly/Support/ISLTools.h"
21 #include "polly/Support/ScopHelper.h"
22 #include "polly/Support/VirtualInstruction.h"
23 #include "llvm/Analysis/LoopInfo.h"
24 #include "llvm/Analysis/RegionInfo.h"
25 #include "llvm/Analysis/ScalarEvolution.h"
26 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
27 #include "llvm/Transforms/Utils/Local.h"
28 #include "isl/ast.h"
29 #include <deque>
30
31 using namespace llvm;
32 using namespace polly;
33
34 static cl::opt<bool> Aligned("enable-polly-aligned",
35 cl::desc("Assumed aligned memory accesses."),
36 cl::Hidden, cl::cat(PollyCategory));
37
38 bool PollyDebugPrinting;
39 static cl::opt<bool, true> DebugPrintingX(
40 "polly-codegen-add-debug-printing",
41 cl::desc("Add printf calls that show the values loaded/stored."),
42 cl::location(PollyDebugPrinting), cl::Hidden, cl::cat(PollyCategory));
43
44 static cl::opt<bool> TraceStmts(
45 "polly-codegen-trace-stmts",
46 cl::desc("Add printf calls that print the statement being executed"),
47 cl::Hidden, cl::cat(PollyCategory));
48
49 static cl::opt<bool> TraceScalars(
50 "polly-codegen-trace-scalars",
51 cl::desc("Add printf calls that print the values of all scalar values "
52 "used in a statement. Requires -polly-codegen-trace-stmts."),
53 cl::Hidden, cl::cat(PollyCategory));
54
BlockGenerator(PollyIRBuilder & B,LoopInfo & LI,ScalarEvolution & SE,DominatorTree & DT,AllocaMapTy & ScalarMap,EscapeUsersAllocaMapTy & EscapeMap,ValueMapT & GlobalMap,IslExprBuilder * ExprBuilder,BasicBlock * StartBlock)55 BlockGenerator::BlockGenerator(
56 PollyIRBuilder &B, LoopInfo &LI, ScalarEvolution &SE, DominatorTree &DT,
57 AllocaMapTy &ScalarMap, EscapeUsersAllocaMapTy &EscapeMap,
58 ValueMapT &GlobalMap, IslExprBuilder *ExprBuilder, BasicBlock *StartBlock)
59 : Builder(B), LI(LI), SE(SE), ExprBuilder(ExprBuilder), DT(DT),
60 EntryBB(nullptr), ScalarMap(ScalarMap), EscapeMap(EscapeMap),
61 GlobalMap(GlobalMap), StartBlock(StartBlock) {}
62
trySynthesizeNewValue(ScopStmt & Stmt,Value * Old,ValueMapT & BBMap,LoopToScevMapT & LTS,Loop * L) const63 Value *BlockGenerator::trySynthesizeNewValue(ScopStmt &Stmt, Value *Old,
64 ValueMapT &BBMap,
65 LoopToScevMapT <S,
66 Loop *L) const {
67 if (!SE.isSCEVable(Old->getType()))
68 return nullptr;
69
70 const SCEV *Scev = SE.getSCEVAtScope(Old, L);
71 if (!Scev)
72 return nullptr;
73
74 if (isa<SCEVCouldNotCompute>(Scev))
75 return nullptr;
76
77 const SCEV *NewScev = SCEVLoopAddRecRewriter::rewrite(Scev, LTS, SE);
78 ValueMapT VTV;
79 VTV.insert(BBMap.begin(), BBMap.end());
80 VTV.insert(GlobalMap.begin(), GlobalMap.end());
81
82 Scop &S = *Stmt.getParent();
83 const DataLayout &DL = S.getFunction().getParent()->getDataLayout();
84 auto IP = Builder.GetInsertPoint();
85
86 assert(IP != Builder.GetInsertBlock()->end() &&
87 "Only instructions can be insert points for SCEVExpander");
88 Value *Expanded =
89 expandCodeFor(S, SE, DL, "polly", NewScev, Old->getType(), &*IP, &VTV,
90 StartBlock->getSinglePredecessor());
91
92 BBMap[Old] = Expanded;
93 return Expanded;
94 }
95
getNewValue(ScopStmt & Stmt,Value * Old,ValueMapT & BBMap,LoopToScevMapT & LTS,Loop * L) const96 Value *BlockGenerator::getNewValue(ScopStmt &Stmt, Value *Old, ValueMapT &BBMap,
97 LoopToScevMapT <S, Loop *L) const {
98
99 auto lookupGlobally = [this](Value *Old) -> Value * {
100 Value *New = GlobalMap.lookup(Old);
101 if (!New)
102 return nullptr;
103
104 // Required by:
105 // * Isl/CodeGen/OpenMP/invariant_base_pointer_preloaded.ll
106 // * Isl/CodeGen/OpenMP/invariant_base_pointer_preloaded_different_bb.ll
107 // * Isl/CodeGen/OpenMP/invariant_base_pointer_preloaded_pass_only_needed.ll
108 // * Isl/CodeGen/OpenMP/invariant_base_pointers_preloaded.ll
109 // * Isl/CodeGen/OpenMP/loop-body-references-outer-values-3.ll
110 // * Isl/CodeGen/OpenMP/single_loop_with_loop_invariant_baseptr.ll
111 // GlobalMap should be a mapping from (value in original SCoP) to (copied
112 // value in generated SCoP), without intermediate mappings, which might
113 // easily require transitiveness as well.
114 if (Value *NewRemapped = GlobalMap.lookup(New))
115 New = NewRemapped;
116
117 // No test case for this code.
118 if (Old->getType()->getScalarSizeInBits() <
119 New->getType()->getScalarSizeInBits())
120 New = Builder.CreateTruncOrBitCast(New, Old->getType());
121
122 return New;
123 };
124
125 Value *New = nullptr;
126 auto VUse = VirtualUse::create(&Stmt, L, Old, true);
127 switch (VUse.getKind()) {
128 case VirtualUse::Block:
129 // BasicBlock are constants, but the BlockGenerator copies them.
130 New = BBMap.lookup(Old);
131 break;
132
133 case VirtualUse::Constant:
134 // Used by:
135 // * Isl/CodeGen/OpenMP/reference-argument-from-non-affine-region.ll
136 // Constants should not be redefined. In this case, the GlobalMap just
137 // contains a mapping to the same constant, which is unnecessary, but
138 // harmless.
139 if ((New = lookupGlobally(Old)))
140 break;
141
142 assert(!BBMap.count(Old));
143 New = Old;
144 break;
145
146 case VirtualUse::ReadOnly:
147 assert(!GlobalMap.count(Old));
148
149 // Required for:
150 // * Isl/CodeGen/MemAccess/create_arrays.ll
151 // * Isl/CodeGen/read-only-scalars.ll
152 // * ScheduleOptimizer/pattern-matching-based-opts_10.ll
153 // For some reason these reload a read-only value. The reloaded value ends
154 // up in BBMap, buts its value should be identical.
155 //
156 // Required for:
157 // * Isl/CodeGen/OpenMP/single_loop_with_param.ll
158 // The parallel subfunctions need to reference the read-only value from the
159 // parent function, this is done by reloading them locally.
160 if ((New = BBMap.lookup(Old)))
161 break;
162
163 New = Old;
164 break;
165
166 case VirtualUse::Synthesizable:
167 // Used by:
168 // * Isl/CodeGen/OpenMP/loop-body-references-outer-values-3.ll
169 // * Isl/CodeGen/OpenMP/recomputed-srem.ll
170 // * Isl/CodeGen/OpenMP/reference-other-bb.ll
171 // * Isl/CodeGen/OpenMP/two-parallel-loops-reference-outer-indvar.ll
172 // For some reason synthesizable values end up in GlobalMap. Their values
173 // are the same as trySynthesizeNewValue would return. The legacy
174 // implementation prioritized GlobalMap, so this is what we do here as well.
175 // Ideally, synthesizable values should not end up in GlobalMap.
176 if ((New = lookupGlobally(Old)))
177 break;
178
179 // Required for:
180 // * Isl/CodeGen/RuntimeDebugBuilder/combine_different_values.ll
181 // * Isl/CodeGen/getNumberOfIterations.ll
182 // * Isl/CodeGen/non_affine_float_compare.ll
183 // * ScheduleOptimizer/pattern-matching-based-opts_10.ll
184 // Ideally, synthesizable values are synthesized by trySynthesizeNewValue,
185 // not precomputed (SCEVExpander has its own caching mechanism).
186 // These tests fail without this, but I think trySynthesizeNewValue would
187 // just re-synthesize the same instructions.
188 if ((New = BBMap.lookup(Old)))
189 break;
190
191 New = trySynthesizeNewValue(Stmt, Old, BBMap, LTS, L);
192 break;
193
194 case VirtualUse::Hoisted:
195 // TODO: Hoisted invariant loads should be found in GlobalMap only, but not
196 // redefined locally (which will be ignored anyway). That is, the following
197 // assertion should apply: assert(!BBMap.count(Old))
198
199 New = lookupGlobally(Old);
200 break;
201
202 case VirtualUse::Intra:
203 case VirtualUse::Inter:
204 assert(!GlobalMap.count(Old) &&
205 "Intra and inter-stmt values are never global");
206 New = BBMap.lookup(Old);
207 break;
208 }
209 assert(New && "Unexpected scalar dependence in region!");
210 return New;
211 }
212
copyInstScalar(ScopStmt & Stmt,Instruction * Inst,ValueMapT & BBMap,LoopToScevMapT & LTS)213 void BlockGenerator::copyInstScalar(ScopStmt &Stmt, Instruction *Inst,
214 ValueMapT &BBMap, LoopToScevMapT <S) {
215 // We do not generate debug intrinsics as we did not investigate how to
216 // copy them correctly. At the current state, they just crash the code
217 // generation as the meta-data operands are not correctly copied.
218 if (isa<DbgInfoIntrinsic>(Inst))
219 return;
220
221 Instruction *NewInst = Inst->clone();
222
223 // Replace old operands with the new ones.
224 for (Value *OldOperand : Inst->operands()) {
225 Value *NewOperand =
226 getNewValue(Stmt, OldOperand, BBMap, LTS, getLoopForStmt(Stmt));
227
228 if (!NewOperand) {
229 assert(!isa<StoreInst>(NewInst) &&
230 "Store instructions are always needed!");
231 NewInst->deleteValue();
232 return;
233 }
234
235 NewInst->replaceUsesOfWith(OldOperand, NewOperand);
236 }
237
238 Builder.Insert(NewInst);
239 BBMap[Inst] = NewInst;
240
241 // When copying the instruction onto the Module meant for the GPU,
242 // debug metadata attached to an instruction causes all related
243 // metadata to be pulled into the Module. This includes the DICompileUnit,
244 // which will not be listed in llvm.dbg.cu of the Module since the Module
245 // doesn't contain one. This fails the verification of the Module and the
246 // subsequent generation of the ASM string.
247 if (NewInst->getModule() != Inst->getModule())
248 NewInst->setDebugLoc(llvm::DebugLoc());
249
250 if (!NewInst->getType()->isVoidTy())
251 NewInst->setName("p_" + Inst->getName());
252 }
253
254 Value *
generateLocationAccessed(ScopStmt & Stmt,MemAccInst Inst,ValueMapT & BBMap,LoopToScevMapT & LTS,isl_id_to_ast_expr * NewAccesses)255 BlockGenerator::generateLocationAccessed(ScopStmt &Stmt, MemAccInst Inst,
256 ValueMapT &BBMap, LoopToScevMapT <S,
257 isl_id_to_ast_expr *NewAccesses) {
258 const MemoryAccess &MA = Stmt.getArrayAccessFor(Inst);
259 return generateLocationAccessed(
260 Stmt, getLoopForStmt(Stmt),
261 Inst.isNull() ? nullptr : Inst.getPointerOperand(), BBMap, LTS,
262 NewAccesses, MA.getId().release(), MA.getAccessValue()->getType());
263 }
264
generateLocationAccessed(ScopStmt & Stmt,Loop * L,Value * Pointer,ValueMapT & BBMap,LoopToScevMapT & LTS,isl_id_to_ast_expr * NewAccesses,__isl_take isl_id * Id,Type * ExpectedType)265 Value *BlockGenerator::generateLocationAccessed(
266 ScopStmt &Stmt, Loop *L, Value *Pointer, ValueMapT &BBMap,
267 LoopToScevMapT <S, isl_id_to_ast_expr *NewAccesses, __isl_take isl_id *Id,
268 Type *ExpectedType) {
269 isl_ast_expr *AccessExpr = isl_id_to_ast_expr_get(NewAccesses, Id);
270
271 if (AccessExpr) {
272 AccessExpr = isl_ast_expr_address_of(AccessExpr);
273 auto Address = ExprBuilder->create(AccessExpr);
274
275 // Cast the address of this memory access to a pointer type that has the
276 // same element type as the original access, but uses the address space of
277 // the newly generated pointer.
278 auto OldPtrTy = ExpectedType->getPointerTo();
279 auto NewPtrTy = Address->getType();
280 OldPtrTy = PointerType::getWithSamePointeeType(
281 OldPtrTy, NewPtrTy->getPointerAddressSpace());
282
283 if (OldPtrTy != NewPtrTy)
284 Address = Builder.CreateBitOrPointerCast(Address, OldPtrTy);
285 return Address;
286 }
287 assert(
288 Pointer &&
289 "If expression was not generated, must use the original pointer value");
290 return getNewValue(Stmt, Pointer, BBMap, LTS, L);
291 }
292
293 Value *
getImplicitAddress(MemoryAccess & Access,Loop * L,LoopToScevMapT & LTS,ValueMapT & BBMap,__isl_keep isl_id_to_ast_expr * NewAccesses)294 BlockGenerator::getImplicitAddress(MemoryAccess &Access, Loop *L,
295 LoopToScevMapT <S, ValueMapT &BBMap,
296 __isl_keep isl_id_to_ast_expr *NewAccesses) {
297 if (Access.isLatestArrayKind())
298 return generateLocationAccessed(*Access.getStatement(), L, nullptr, BBMap,
299 LTS, NewAccesses, Access.getId().release(),
300 Access.getAccessValue()->getType());
301
302 return getOrCreateAlloca(Access);
303 }
304
getLoopForStmt(const ScopStmt & Stmt) const305 Loop *BlockGenerator::getLoopForStmt(const ScopStmt &Stmt) const {
306 auto *StmtBB = Stmt.getEntryBlock();
307 return LI.getLoopFor(StmtBB);
308 }
309
generateArrayLoad(ScopStmt & Stmt,LoadInst * Load,ValueMapT & BBMap,LoopToScevMapT & LTS,isl_id_to_ast_expr * NewAccesses)310 Value *BlockGenerator::generateArrayLoad(ScopStmt &Stmt, LoadInst *Load,
311 ValueMapT &BBMap, LoopToScevMapT <S,
312 isl_id_to_ast_expr *NewAccesses) {
313 if (Value *PreloadLoad = GlobalMap.lookup(Load))
314 return PreloadLoad;
315
316 Value *NewPointer =
317 generateLocationAccessed(Stmt, Load, BBMap, LTS, NewAccesses);
318 Value *ScalarLoad =
319 Builder.CreateAlignedLoad(Load->getType(), NewPointer, Load->getAlign(),
320 Load->getName() + "_p_scalar_");
321
322 if (PollyDebugPrinting)
323 RuntimeDebugBuilder::createCPUPrinter(Builder, "Load from ", NewPointer,
324 ": ", ScalarLoad, "\n");
325
326 return ScalarLoad;
327 }
328
generateArrayStore(ScopStmt & Stmt,StoreInst * Store,ValueMapT & BBMap,LoopToScevMapT & LTS,isl_id_to_ast_expr * NewAccesses)329 void BlockGenerator::generateArrayStore(ScopStmt &Stmt, StoreInst *Store,
330 ValueMapT &BBMap, LoopToScevMapT <S,
331 isl_id_to_ast_expr *NewAccesses) {
332 MemoryAccess &MA = Stmt.getArrayAccessFor(Store);
333 isl::set AccDom = MA.getAccessRelation().domain();
334 std::string Subject = MA.getId().get_name();
335
336 generateConditionalExecution(Stmt, AccDom, Subject.c_str(), [&, this]() {
337 Value *NewPointer =
338 generateLocationAccessed(Stmt, Store, BBMap, LTS, NewAccesses);
339 Value *ValueOperand = getNewValue(Stmt, Store->getValueOperand(), BBMap,
340 LTS, getLoopForStmt(Stmt));
341
342 if (PollyDebugPrinting)
343 RuntimeDebugBuilder::createCPUPrinter(Builder, "Store to ", NewPointer,
344 ": ", ValueOperand, "\n");
345
346 Builder.CreateAlignedStore(ValueOperand, NewPointer, Store->getAlign());
347 });
348 }
349
canSyntheziseInStmt(ScopStmt & Stmt,Instruction * Inst)350 bool BlockGenerator::canSyntheziseInStmt(ScopStmt &Stmt, Instruction *Inst) {
351 Loop *L = getLoopForStmt(Stmt);
352 return (Stmt.isBlockStmt() || !Stmt.getRegion()->contains(L)) &&
353 canSynthesize(Inst, *Stmt.getParent(), &SE, L);
354 }
355
copyInstruction(ScopStmt & Stmt,Instruction * Inst,ValueMapT & BBMap,LoopToScevMapT & LTS,isl_id_to_ast_expr * NewAccesses)356 void BlockGenerator::copyInstruction(ScopStmt &Stmt, Instruction *Inst,
357 ValueMapT &BBMap, LoopToScevMapT <S,
358 isl_id_to_ast_expr *NewAccesses) {
359 // Terminator instructions control the control flow. They are explicitly
360 // expressed in the clast and do not need to be copied.
361 if (Inst->isTerminator())
362 return;
363
364 // Synthesizable statements will be generated on-demand.
365 if (canSyntheziseInStmt(Stmt, Inst))
366 return;
367
368 if (auto *Load = dyn_cast<LoadInst>(Inst)) {
369 Value *NewLoad = generateArrayLoad(Stmt, Load, BBMap, LTS, NewAccesses);
370 // Compute NewLoad before its insertion in BBMap to make the insertion
371 // deterministic.
372 BBMap[Load] = NewLoad;
373 return;
374 }
375
376 if (auto *Store = dyn_cast<StoreInst>(Inst)) {
377 // Identified as redundant by -polly-simplify.
378 if (!Stmt.getArrayAccessOrNULLFor(Store))
379 return;
380
381 generateArrayStore(Stmt, Store, BBMap, LTS, NewAccesses);
382 return;
383 }
384
385 if (auto *PHI = dyn_cast<PHINode>(Inst)) {
386 copyPHIInstruction(Stmt, PHI, BBMap, LTS);
387 return;
388 }
389
390 // Skip some special intrinsics for which we do not adjust the semantics to
391 // the new schedule. All others are handled like every other instruction.
392 if (isIgnoredIntrinsic(Inst))
393 return;
394
395 copyInstScalar(Stmt, Inst, BBMap, LTS);
396 }
397
removeDeadInstructions(BasicBlock * BB,ValueMapT & BBMap)398 void BlockGenerator::removeDeadInstructions(BasicBlock *BB, ValueMapT &BBMap) {
399 auto NewBB = Builder.GetInsertBlock();
400 for (auto I = NewBB->rbegin(); I != NewBB->rend(); I++) {
401 Instruction *NewInst = &*I;
402
403 if (!isInstructionTriviallyDead(NewInst))
404 continue;
405
406 for (auto Pair : BBMap)
407 if (Pair.second == NewInst) {
408 BBMap.erase(Pair.first);
409 }
410
411 NewInst->eraseFromParent();
412 I = NewBB->rbegin();
413 }
414 }
415
copyStmt(ScopStmt & Stmt,LoopToScevMapT & LTS,__isl_keep isl_id_to_ast_expr * NewAccesses)416 void BlockGenerator::copyStmt(ScopStmt &Stmt, LoopToScevMapT <S,
417 __isl_keep isl_id_to_ast_expr *NewAccesses) {
418 assert(Stmt.isBlockStmt() &&
419 "Only block statements can be copied by the block generator");
420
421 ValueMapT BBMap;
422
423 BasicBlock *BB = Stmt.getBasicBlock();
424 copyBB(Stmt, BB, BBMap, LTS, NewAccesses);
425 removeDeadInstructions(BB, BBMap);
426 }
427
splitBB(BasicBlock * BB)428 BasicBlock *BlockGenerator::splitBB(BasicBlock *BB) {
429 BasicBlock *CopyBB = SplitBlock(Builder.GetInsertBlock(),
430 &*Builder.GetInsertPoint(), &DT, &LI);
431 CopyBB->setName("polly.stmt." + BB->getName());
432 return CopyBB;
433 }
434
copyBB(ScopStmt & Stmt,BasicBlock * BB,ValueMapT & BBMap,LoopToScevMapT & LTS,isl_id_to_ast_expr * NewAccesses)435 BasicBlock *BlockGenerator::copyBB(ScopStmt &Stmt, BasicBlock *BB,
436 ValueMapT &BBMap, LoopToScevMapT <S,
437 isl_id_to_ast_expr *NewAccesses) {
438 BasicBlock *CopyBB = splitBB(BB);
439 Builder.SetInsertPoint(&CopyBB->front());
440 generateScalarLoads(Stmt, LTS, BBMap, NewAccesses);
441 generateBeginStmtTrace(Stmt, LTS, BBMap);
442
443 copyBB(Stmt, BB, CopyBB, BBMap, LTS, NewAccesses);
444
445 // After a basic block was copied store all scalars that escape this block in
446 // their alloca.
447 generateScalarStores(Stmt, LTS, BBMap, NewAccesses);
448 return CopyBB;
449 }
450
copyBB(ScopStmt & Stmt,BasicBlock * BB,BasicBlock * CopyBB,ValueMapT & BBMap,LoopToScevMapT & LTS,isl_id_to_ast_expr * NewAccesses)451 void BlockGenerator::copyBB(ScopStmt &Stmt, BasicBlock *BB, BasicBlock *CopyBB,
452 ValueMapT &BBMap, LoopToScevMapT <S,
453 isl_id_to_ast_expr *NewAccesses) {
454 EntryBB = &CopyBB->getParent()->getEntryBlock();
455
456 // Block statements and the entry blocks of region statement are code
457 // generated from instruction lists. This allow us to optimize the
458 // instructions that belong to a certain scop statement. As the code
459 // structure of region statements might be arbitrary complex, optimizing the
460 // instruction list is not yet supported.
461 if (Stmt.isBlockStmt() || (Stmt.isRegionStmt() && Stmt.getEntryBlock() == BB))
462 for (Instruction *Inst : Stmt.getInstructions())
463 copyInstruction(Stmt, Inst, BBMap, LTS, NewAccesses);
464 else
465 for (Instruction &Inst : *BB)
466 copyInstruction(Stmt, &Inst, BBMap, LTS, NewAccesses);
467 }
468
getOrCreateAlloca(const MemoryAccess & Access)469 Value *BlockGenerator::getOrCreateAlloca(const MemoryAccess &Access) {
470 assert(!Access.isLatestArrayKind() && "Trying to get alloca for array kind");
471
472 return getOrCreateAlloca(Access.getLatestScopArrayInfo());
473 }
474
getOrCreateAlloca(const ScopArrayInfo * Array)475 Value *BlockGenerator::getOrCreateAlloca(const ScopArrayInfo *Array) {
476 assert(!Array->isArrayKind() && "Trying to get alloca for array kind");
477
478 auto &Addr = ScalarMap[Array];
479
480 if (Addr) {
481 // Allow allocas to be (temporarily) redirected once by adding a new
482 // old-alloca-addr to new-addr mapping to GlobalMap. This functionality
483 // is used for example by the OpenMP code generation where a first use
484 // of a scalar while still in the host code allocates a normal alloca with
485 // getOrCreateAlloca. When the values of this scalar are accessed during
486 // the generation of the parallel subfunction, these values are copied over
487 // to the parallel subfunction and each request for a scalar alloca slot
488 // must be forwarded to the temporary in-subfunction slot. This mapping is
489 // removed when the subfunction has been generated and again normal host
490 // code is generated. Due to the following reasons it is not possible to
491 // perform the GlobalMap lookup right after creating the alloca below, but
492 // instead we need to check GlobalMap at each call to getOrCreateAlloca:
493 //
494 // 1) GlobalMap may be changed multiple times (for each parallel loop),
495 // 2) The temporary mapping is commonly only known after the initial
496 // alloca has already been generated, and
497 // 3) The original alloca value must be restored after leaving the
498 // sub-function.
499 if (Value *NewAddr = GlobalMap.lookup(&*Addr))
500 return NewAddr;
501 return Addr;
502 }
503
504 Type *Ty = Array->getElementType();
505 Value *ScalarBase = Array->getBasePtr();
506 std::string NameExt;
507 if (Array->isPHIKind())
508 NameExt = ".phiops";
509 else
510 NameExt = ".s2a";
511
512 const DataLayout &DL = Builder.GetInsertBlock()->getModule()->getDataLayout();
513
514 Addr =
515 new AllocaInst(Ty, DL.getAllocaAddrSpace(), nullptr,
516 DL.getPrefTypeAlign(Ty), ScalarBase->getName() + NameExt);
517 EntryBB = &Builder.GetInsertBlock()->getParent()->getEntryBlock();
518 Addr->insertBefore(&*EntryBB->getFirstInsertionPt());
519
520 return Addr;
521 }
522
handleOutsideUsers(const Scop & S,ScopArrayInfo * Array)523 void BlockGenerator::handleOutsideUsers(const Scop &S, ScopArrayInfo *Array) {
524 Instruction *Inst = cast<Instruction>(Array->getBasePtr());
525
526 // If there are escape users we get the alloca for this instruction and put it
527 // in the EscapeMap for later finalization. Lastly, if the instruction was
528 // copied multiple times we already did this and can exit.
529 if (EscapeMap.count(Inst))
530 return;
531
532 EscapeUserVectorTy EscapeUsers;
533 for (User *U : Inst->users()) {
534
535 // Non-instruction user will never escape.
536 Instruction *UI = dyn_cast<Instruction>(U);
537 if (!UI)
538 continue;
539
540 if (S.contains(UI))
541 continue;
542
543 EscapeUsers.push_back(UI);
544 }
545
546 // Exit if no escape uses were found.
547 if (EscapeUsers.empty())
548 return;
549
550 // Get or create an escape alloca for this instruction.
551 auto *ScalarAddr = getOrCreateAlloca(Array);
552
553 // Remember that this instruction has escape uses and the escape alloca.
554 EscapeMap[Inst] = std::make_pair(ScalarAddr, std::move(EscapeUsers));
555 }
556
generateScalarLoads(ScopStmt & Stmt,LoopToScevMapT & LTS,ValueMapT & BBMap,__isl_keep isl_id_to_ast_expr * NewAccesses)557 void BlockGenerator::generateScalarLoads(
558 ScopStmt &Stmt, LoopToScevMapT <S, ValueMapT &BBMap,
559 __isl_keep isl_id_to_ast_expr *NewAccesses) {
560 for (MemoryAccess *MA : Stmt) {
561 if (MA->isOriginalArrayKind() || MA->isWrite())
562 continue;
563
564 #ifndef NDEBUG
565 auto StmtDom =
566 Stmt.getDomain().intersect_params(Stmt.getParent()->getContext());
567 auto AccDom = MA->getAccessRelation().domain();
568 assert(!StmtDom.is_subset(AccDom).is_false() &&
569 "Scalar must be loaded in all statement instances");
570 #endif
571
572 auto *Address =
573 getImplicitAddress(*MA, getLoopForStmt(Stmt), LTS, BBMap, NewAccesses);
574 assert((!isa<Instruction>(Address) ||
575 DT.dominates(cast<Instruction>(Address)->getParent(),
576 Builder.GetInsertBlock())) &&
577 "Domination violation");
578 BBMap[MA->getAccessValue()] = Builder.CreateLoad(
579 MA->getElementType(), Address, Address->getName() + ".reload");
580 }
581 }
582
buildContainsCondition(ScopStmt & Stmt,const isl::set & Subdomain)583 Value *BlockGenerator::buildContainsCondition(ScopStmt &Stmt,
584 const isl::set &Subdomain) {
585 isl::ast_build AstBuild = Stmt.getAstBuild();
586 isl::set Domain = Stmt.getDomain();
587
588 isl::union_map USchedule = AstBuild.get_schedule();
589 USchedule = USchedule.intersect_domain(Domain);
590
591 assert(!USchedule.is_empty());
592 isl::map Schedule = isl::map::from_union_map(USchedule);
593
594 isl::set ScheduledDomain = Schedule.range();
595 isl::set ScheduledSet = Subdomain.apply(Schedule);
596
597 isl::ast_build RestrictedBuild = AstBuild.restrict(ScheduledDomain);
598
599 isl::ast_expr IsInSet = RestrictedBuild.expr_from(ScheduledSet);
600 Value *IsInSetExpr = ExprBuilder->create(IsInSet.copy());
601 IsInSetExpr = Builder.CreateICmpNE(
602 IsInSetExpr, ConstantInt::get(IsInSetExpr->getType(), 0));
603
604 return IsInSetExpr;
605 }
606
generateConditionalExecution(ScopStmt & Stmt,const isl::set & Subdomain,StringRef Subject,const std::function<void ()> & GenThenFunc)607 void BlockGenerator::generateConditionalExecution(
608 ScopStmt &Stmt, const isl::set &Subdomain, StringRef Subject,
609 const std::function<void()> &GenThenFunc) {
610 isl::set StmtDom = Stmt.getDomain();
611
612 // If the condition is a tautology, don't generate a condition around the
613 // code.
614 bool IsPartialWrite =
615 !StmtDom.intersect_params(Stmt.getParent()->getContext())
616 .is_subset(Subdomain);
617 if (!IsPartialWrite) {
618 GenThenFunc();
619 return;
620 }
621
622 // Generate the condition.
623 Value *Cond = buildContainsCondition(Stmt, Subdomain);
624
625 // Don't call GenThenFunc if it is never executed. An ast index expression
626 // might not be defined in this case.
627 if (auto *Const = dyn_cast<ConstantInt>(Cond))
628 if (Const->isZero())
629 return;
630
631 BasicBlock *HeadBlock = Builder.GetInsertBlock();
632 StringRef BlockName = HeadBlock->getName();
633
634 // Generate the conditional block.
635 SplitBlockAndInsertIfThen(Cond, &*Builder.GetInsertPoint(), false, nullptr,
636 &DT, &LI);
637 BranchInst *Branch = cast<BranchInst>(HeadBlock->getTerminator());
638 BasicBlock *ThenBlock = Branch->getSuccessor(0);
639 BasicBlock *TailBlock = Branch->getSuccessor(1);
640
641 // Assign descriptive names.
642 if (auto *CondInst = dyn_cast<Instruction>(Cond))
643 CondInst->setName("polly." + Subject + ".cond");
644 ThenBlock->setName(BlockName + "." + Subject + ".partial");
645 TailBlock->setName(BlockName + ".cont");
646
647 // Put the client code into the conditional block and continue in the merge
648 // block afterwards.
649 Builder.SetInsertPoint(ThenBlock, ThenBlock->getFirstInsertionPt());
650 GenThenFunc();
651 Builder.SetInsertPoint(TailBlock, TailBlock->getFirstInsertionPt());
652 }
653
getInstName(Value * Val)654 static std::string getInstName(Value *Val) {
655 std::string Result;
656 raw_string_ostream OS(Result);
657 Val->printAsOperand(OS, false);
658 return OS.str();
659 }
660
generateBeginStmtTrace(ScopStmt & Stmt,LoopToScevMapT & LTS,ValueMapT & BBMap)661 void BlockGenerator::generateBeginStmtTrace(ScopStmt &Stmt, LoopToScevMapT <S,
662 ValueMapT &BBMap) {
663 if (!TraceStmts)
664 return;
665
666 Scop *S = Stmt.getParent();
667 const char *BaseName = Stmt.getBaseName();
668
669 isl::ast_build AstBuild = Stmt.getAstBuild();
670 isl::set Domain = Stmt.getDomain();
671
672 isl::union_map USchedule = AstBuild.get_schedule().intersect_domain(Domain);
673 isl::map Schedule = isl::map::from_union_map(USchedule);
674 assert(Schedule.is_empty().is_false() &&
675 "The stmt must have a valid instance");
676
677 isl::multi_pw_aff ScheduleMultiPwAff =
678 isl::pw_multi_aff::from_map(Schedule.reverse());
679 isl::ast_build RestrictedBuild = AstBuild.restrict(Schedule.range());
680
681 // Sequence of strings to print.
682 SmallVector<llvm::Value *, 8> Values;
683
684 // Print the name of the statement.
685 // TODO: Indent by the depth of the statement instance in the schedule tree.
686 Values.push_back(RuntimeDebugBuilder::getPrintableString(Builder, BaseName));
687 Values.push_back(RuntimeDebugBuilder::getPrintableString(Builder, "("));
688
689 // Add the coordinate of the statement instance.
690 for (unsigned i : rangeIslSize(0, ScheduleMultiPwAff.dim(isl::dim::out))) {
691 if (i > 0)
692 Values.push_back(RuntimeDebugBuilder::getPrintableString(Builder, ","));
693
694 isl::ast_expr IsInSet = RestrictedBuild.expr_from(ScheduleMultiPwAff.at(i));
695 Values.push_back(ExprBuilder->create(IsInSet.copy()));
696 }
697
698 if (TraceScalars) {
699 Values.push_back(RuntimeDebugBuilder::getPrintableString(Builder, ")"));
700 DenseSet<Instruction *> Encountered;
701
702 // Add the value of each scalar (and the result of PHIs) used in the
703 // statement.
704 // TODO: Values used in region-statements.
705 for (Instruction *Inst : Stmt.insts()) {
706 if (!RuntimeDebugBuilder::isPrintable(Inst->getType()))
707 continue;
708
709 if (isa<PHINode>(Inst)) {
710 Values.push_back(RuntimeDebugBuilder::getPrintableString(Builder, " "));
711 Values.push_back(RuntimeDebugBuilder::getPrintableString(
712 Builder, getInstName(Inst)));
713 Values.push_back(RuntimeDebugBuilder::getPrintableString(Builder, "="));
714 Values.push_back(getNewValue(Stmt, Inst, BBMap, LTS,
715 LI.getLoopFor(Inst->getParent())));
716 } else {
717 for (Value *Op : Inst->operand_values()) {
718 // Do not print values that cannot change during the execution of the
719 // SCoP.
720 auto *OpInst = dyn_cast<Instruction>(Op);
721 if (!OpInst)
722 continue;
723 if (!S->contains(OpInst))
724 continue;
725
726 // Print each scalar at most once, and exclude values defined in the
727 // statement itself.
728 if (Encountered.count(OpInst))
729 continue;
730
731 Values.push_back(
732 RuntimeDebugBuilder::getPrintableString(Builder, " "));
733 Values.push_back(RuntimeDebugBuilder::getPrintableString(
734 Builder, getInstName(OpInst)));
735 Values.push_back(
736 RuntimeDebugBuilder::getPrintableString(Builder, "="));
737 Values.push_back(getNewValue(Stmt, OpInst, BBMap, LTS,
738 LI.getLoopFor(Inst->getParent())));
739 Encountered.insert(OpInst);
740 }
741 }
742
743 Encountered.insert(Inst);
744 }
745
746 Values.push_back(RuntimeDebugBuilder::getPrintableString(Builder, "\n"));
747 } else {
748 Values.push_back(RuntimeDebugBuilder::getPrintableString(Builder, ")\n"));
749 }
750
751 RuntimeDebugBuilder::createCPUPrinter(Builder, ArrayRef<Value *>(Values));
752 }
753
generateScalarStores(ScopStmt & Stmt,LoopToScevMapT & LTS,ValueMapT & BBMap,__isl_keep isl_id_to_ast_expr * NewAccesses)754 void BlockGenerator::generateScalarStores(
755 ScopStmt &Stmt, LoopToScevMapT <S, ValueMapT &BBMap,
756 __isl_keep isl_id_to_ast_expr *NewAccesses) {
757 Loop *L = LI.getLoopFor(Stmt.getBasicBlock());
758
759 assert(Stmt.isBlockStmt() &&
760 "Region statements need to use the generateScalarStores() function in "
761 "the RegionGenerator");
762
763 for (MemoryAccess *MA : Stmt) {
764 if (MA->isOriginalArrayKind() || MA->isRead())
765 continue;
766
767 isl::set AccDom = MA->getAccessRelation().domain();
768 std::string Subject = MA->getId().get_name();
769
770 generateConditionalExecution(
771 Stmt, AccDom, Subject.c_str(), [&, this, MA]() {
772 Value *Val = MA->getAccessValue();
773 if (MA->isAnyPHIKind()) {
774 assert(MA->getIncoming().size() >= 1 &&
775 "Block statements have exactly one exiting block, or "
776 "multiple but "
777 "with same incoming block and value");
778 assert(std::all_of(MA->getIncoming().begin(),
779 MA->getIncoming().end(),
780 [&](std::pair<BasicBlock *, Value *> p) -> bool {
781 return p.first == Stmt.getBasicBlock();
782 }) &&
783 "Incoming block must be statement's block");
784 Val = MA->getIncoming()[0].second;
785 }
786 auto Address = getImplicitAddress(*MA, getLoopForStmt(Stmt), LTS,
787 BBMap, NewAccesses);
788
789 Val = getNewValue(Stmt, Val, BBMap, LTS, L);
790 assert((!isa<Instruction>(Val) ||
791 DT.dominates(cast<Instruction>(Val)->getParent(),
792 Builder.GetInsertBlock())) &&
793 "Domination violation");
794 assert((!isa<Instruction>(Address) ||
795 DT.dominates(cast<Instruction>(Address)->getParent(),
796 Builder.GetInsertBlock())) &&
797 "Domination violation");
798
799 // The new Val might have a different type than the old Val due to
800 // ScalarEvolution looking through bitcasts.
801 Address = Builder.CreateBitOrPointerCast(
802 Address, Val->getType()->getPointerTo(
803 Address->getType()->getPointerAddressSpace()));
804
805 Builder.CreateStore(Val, Address);
806 });
807 }
808 }
809
createScalarInitialization(Scop & S)810 void BlockGenerator::createScalarInitialization(Scop &S) {
811 BasicBlock *ExitBB = S.getExit();
812 BasicBlock *PreEntryBB = S.getEnteringBlock();
813
814 Builder.SetInsertPoint(&*StartBlock->begin());
815
816 for (auto &Array : S.arrays()) {
817 if (Array->getNumberOfDimensions() != 0)
818 continue;
819 if (Array->isPHIKind()) {
820 // For PHI nodes, the only values we need to store are the ones that
821 // reach the PHI node from outside the region. In general there should
822 // only be one such incoming edge and this edge should enter through
823 // 'PreEntryBB'.
824 auto PHI = cast<PHINode>(Array->getBasePtr());
825
826 for (auto BI = PHI->block_begin(), BE = PHI->block_end(); BI != BE; BI++)
827 if (!S.contains(*BI) && *BI != PreEntryBB)
828 llvm_unreachable("Incoming edges from outside the scop should always "
829 "come from PreEntryBB");
830
831 int Idx = PHI->getBasicBlockIndex(PreEntryBB);
832 if (Idx < 0)
833 continue;
834
835 Value *ScalarValue = PHI->getIncomingValue(Idx);
836
837 Builder.CreateStore(ScalarValue, getOrCreateAlloca(Array));
838 continue;
839 }
840
841 auto *Inst = dyn_cast<Instruction>(Array->getBasePtr());
842
843 if (Inst && S.contains(Inst))
844 continue;
845
846 // PHI nodes that are not marked as such in their SAI object are either exit
847 // PHI nodes we model as common scalars but without initialization, or
848 // incoming phi nodes that need to be initialized. Check if the first is the
849 // case for Inst and do not create and initialize memory if so.
850 if (auto *PHI = dyn_cast_or_null<PHINode>(Inst))
851 if (!S.hasSingleExitEdge() && PHI->getBasicBlockIndex(ExitBB) >= 0)
852 continue;
853
854 Builder.CreateStore(Array->getBasePtr(), getOrCreateAlloca(Array));
855 }
856 }
857
createScalarFinalization(Scop & S)858 void BlockGenerator::createScalarFinalization(Scop &S) {
859 // The exit block of the __unoptimized__ region.
860 BasicBlock *ExitBB = S.getExitingBlock();
861 // The merge block __just after__ the region and the optimized region.
862 BasicBlock *MergeBB = S.getExit();
863
864 // The exit block of the __optimized__ region.
865 BasicBlock *OptExitBB = *(pred_begin(MergeBB));
866 if (OptExitBB == ExitBB)
867 OptExitBB = *(++pred_begin(MergeBB));
868
869 Builder.SetInsertPoint(OptExitBB->getTerminator());
870 for (const auto &EscapeMapping : EscapeMap) {
871 // Extract the escaping instruction and the escaping users as well as the
872 // alloca the instruction was demoted to.
873 Instruction *EscapeInst = EscapeMapping.first;
874 const auto &EscapeMappingValue = EscapeMapping.second;
875 const EscapeUserVectorTy &EscapeUsers = EscapeMappingValue.second;
876 auto *ScalarAddr = cast<AllocaInst>(&*EscapeMappingValue.first);
877
878 // Reload the demoted instruction in the optimized version of the SCoP.
879 Value *EscapeInstReload =
880 Builder.CreateLoad(ScalarAddr->getAllocatedType(), ScalarAddr,
881 EscapeInst->getName() + ".final_reload");
882 EscapeInstReload =
883 Builder.CreateBitOrPointerCast(EscapeInstReload, EscapeInst->getType());
884
885 // Create the merge PHI that merges the optimized and unoptimized version.
886 PHINode *MergePHI = PHINode::Create(EscapeInst->getType(), 2,
887 EscapeInst->getName() + ".merge");
888 MergePHI->insertBefore(&*MergeBB->getFirstInsertionPt());
889
890 // Add the respective values to the merge PHI.
891 MergePHI->addIncoming(EscapeInstReload, OptExitBB);
892 MergePHI->addIncoming(EscapeInst, ExitBB);
893
894 // The information of scalar evolution about the escaping instruction needs
895 // to be revoked so the new merged instruction will be used.
896 if (SE.isSCEVable(EscapeInst->getType()))
897 SE.forgetValue(EscapeInst);
898
899 // Replace all uses of the demoted instruction with the merge PHI.
900 for (Instruction *EUser : EscapeUsers)
901 EUser->replaceUsesOfWith(EscapeInst, MergePHI);
902 }
903 }
904
findOutsideUsers(Scop & S)905 void BlockGenerator::findOutsideUsers(Scop &S) {
906 for (auto &Array : S.arrays()) {
907
908 if (Array->getNumberOfDimensions() != 0)
909 continue;
910
911 if (Array->isPHIKind())
912 continue;
913
914 auto *Inst = dyn_cast<Instruction>(Array->getBasePtr());
915
916 if (!Inst)
917 continue;
918
919 // Scop invariant hoisting moves some of the base pointers out of the scop.
920 // We can ignore these, as the invariant load hoisting already registers the
921 // relevant outside users.
922 if (!S.contains(Inst))
923 continue;
924
925 handleOutsideUsers(S, Array);
926 }
927 }
928
createExitPHINodeMerges(Scop & S)929 void BlockGenerator::createExitPHINodeMerges(Scop &S) {
930 if (S.hasSingleExitEdge())
931 return;
932
933 auto *ExitBB = S.getExitingBlock();
934 auto *MergeBB = S.getExit();
935 auto *AfterMergeBB = MergeBB->getSingleSuccessor();
936 BasicBlock *OptExitBB = *(pred_begin(MergeBB));
937 if (OptExitBB == ExitBB)
938 OptExitBB = *(++pred_begin(MergeBB));
939
940 Builder.SetInsertPoint(OptExitBB->getTerminator());
941
942 for (auto &SAI : S.arrays()) {
943 auto *Val = SAI->getBasePtr();
944
945 // Only Value-like scalars need a merge PHI. Exit block PHIs receive either
946 // the original PHI's value or the reloaded incoming values from the
947 // generated code. An llvm::Value is merged between the original code's
948 // value or the generated one.
949 if (!SAI->isExitPHIKind())
950 continue;
951
952 PHINode *PHI = dyn_cast<PHINode>(Val);
953 if (!PHI)
954 continue;
955
956 if (PHI->getParent() != AfterMergeBB)
957 continue;
958
959 std::string Name = PHI->getName().str();
960 Value *ScalarAddr = getOrCreateAlloca(SAI);
961 Value *Reload = Builder.CreateLoad(SAI->getElementType(), ScalarAddr,
962 Name + ".ph.final_reload");
963 Reload = Builder.CreateBitOrPointerCast(Reload, PHI->getType());
964 Value *OriginalValue = PHI->getIncomingValueForBlock(MergeBB);
965 assert((!isa<Instruction>(OriginalValue) ||
966 cast<Instruction>(OriginalValue)->getParent() != MergeBB) &&
967 "Original value must no be one we just generated.");
968 auto *MergePHI = PHINode::Create(PHI->getType(), 2, Name + ".ph.merge");
969 MergePHI->insertBefore(&*MergeBB->getFirstInsertionPt());
970 MergePHI->addIncoming(Reload, OptExitBB);
971 MergePHI->addIncoming(OriginalValue, ExitBB);
972 int Idx = PHI->getBasicBlockIndex(MergeBB);
973 PHI->setIncomingValue(Idx, MergePHI);
974 }
975 }
976
invalidateScalarEvolution(Scop & S)977 void BlockGenerator::invalidateScalarEvolution(Scop &S) {
978 for (auto &Stmt : S)
979 if (Stmt.isCopyStmt())
980 continue;
981 else if (Stmt.isBlockStmt())
982 for (auto &Inst : *Stmt.getBasicBlock())
983 SE.forgetValue(&Inst);
984 else if (Stmt.isRegionStmt())
985 for (auto *BB : Stmt.getRegion()->blocks())
986 for (auto &Inst : *BB)
987 SE.forgetValue(&Inst);
988 else
989 llvm_unreachable("Unexpected statement type found");
990
991 // Invalidate SCEV of loops surrounding the EscapeUsers.
992 for (const auto &EscapeMapping : EscapeMap) {
993 const EscapeUserVectorTy &EscapeUsers = EscapeMapping.second.second;
994 for (Instruction *EUser : EscapeUsers) {
995 if (Loop *L = LI.getLoopFor(EUser->getParent()))
996 while (L) {
997 SE.forgetLoop(L);
998 L = L->getParentLoop();
999 }
1000 }
1001 }
1002 }
1003
finalizeSCoP(Scop & S)1004 void BlockGenerator::finalizeSCoP(Scop &S) {
1005 findOutsideUsers(S);
1006 createScalarInitialization(S);
1007 createExitPHINodeMerges(S);
1008 createScalarFinalization(S);
1009 invalidateScalarEvolution(S);
1010 }
1011
VectorBlockGenerator(BlockGenerator & BlockGen,std::vector<LoopToScevMapT> & VLTS,isl_map * Schedule)1012 VectorBlockGenerator::VectorBlockGenerator(BlockGenerator &BlockGen,
1013 std::vector<LoopToScevMapT> &VLTS,
1014 isl_map *Schedule)
1015 : BlockGenerator(BlockGen), VLTS(VLTS), Schedule(Schedule) {
1016 assert(Schedule && "No statement domain provided");
1017 }
1018
getVectorValue(ScopStmt & Stmt,Value * Old,ValueMapT & VectorMap,VectorValueMapT & ScalarMaps,Loop * L)1019 Value *VectorBlockGenerator::getVectorValue(ScopStmt &Stmt, Value *Old,
1020 ValueMapT &VectorMap,
1021 VectorValueMapT &ScalarMaps,
1022 Loop *L) {
1023 if (Value *NewValue = VectorMap.lookup(Old))
1024 return NewValue;
1025
1026 int Width = getVectorWidth();
1027
1028 Value *Vector = UndefValue::get(FixedVectorType::get(Old->getType(), Width));
1029
1030 for (int Lane = 0; Lane < Width; Lane++)
1031 Vector = Builder.CreateInsertElement(
1032 Vector, getNewValue(Stmt, Old, ScalarMaps[Lane], VLTS[Lane], L),
1033 Builder.getInt32(Lane));
1034
1035 VectorMap[Old] = Vector;
1036
1037 return Vector;
1038 }
1039
generateStrideOneLoad(ScopStmt & Stmt,LoadInst * Load,VectorValueMapT & ScalarMaps,__isl_keep isl_id_to_ast_expr * NewAccesses,bool NegativeStride=false)1040 Value *VectorBlockGenerator::generateStrideOneLoad(
1041 ScopStmt &Stmt, LoadInst *Load, VectorValueMapT &ScalarMaps,
1042 __isl_keep isl_id_to_ast_expr *NewAccesses, bool NegativeStride = false) {
1043 unsigned VectorWidth = getVectorWidth();
1044 Type *VectorType = FixedVectorType::get(Load->getType(), VectorWidth);
1045 Type *VectorPtrType =
1046 PointerType::get(VectorType, Load->getPointerAddressSpace());
1047 unsigned Offset = NegativeStride ? VectorWidth - 1 : 0;
1048
1049 Value *NewPointer = generateLocationAccessed(Stmt, Load, ScalarMaps[Offset],
1050 VLTS[Offset], NewAccesses);
1051 Value *VectorPtr =
1052 Builder.CreateBitCast(NewPointer, VectorPtrType, "vector_ptr");
1053 LoadInst *VecLoad = Builder.CreateLoad(VectorType, VectorPtr,
1054 Load->getName() + "_p_vec_full");
1055 if (!Aligned)
1056 VecLoad->setAlignment(Align(8));
1057
1058 if (NegativeStride) {
1059 SmallVector<Constant *, 16> Indices;
1060 for (int i = VectorWidth - 1; i >= 0; i--)
1061 Indices.push_back(ConstantInt::get(Builder.getInt32Ty(), i));
1062 Constant *SV = llvm::ConstantVector::get(Indices);
1063 Value *RevVecLoad = Builder.CreateShuffleVector(
1064 VecLoad, VecLoad, SV, Load->getName() + "_reverse");
1065 return RevVecLoad;
1066 }
1067
1068 return VecLoad;
1069 }
1070
generateStrideZeroLoad(ScopStmt & Stmt,LoadInst * Load,ValueMapT & BBMap,__isl_keep isl_id_to_ast_expr * NewAccesses)1071 Value *VectorBlockGenerator::generateStrideZeroLoad(
1072 ScopStmt &Stmt, LoadInst *Load, ValueMapT &BBMap,
1073 __isl_keep isl_id_to_ast_expr *NewAccesses) {
1074 Type *VectorType = FixedVectorType::get(Load->getType(), 1);
1075 Type *VectorPtrType =
1076 PointerType::get(VectorType, Load->getPointerAddressSpace());
1077 Value *NewPointer =
1078 generateLocationAccessed(Stmt, Load, BBMap, VLTS[0], NewAccesses);
1079 Value *VectorPtr = Builder.CreateBitCast(NewPointer, VectorPtrType,
1080 Load->getName() + "_p_vec_p");
1081 LoadInst *ScalarLoad = Builder.CreateLoad(VectorType, VectorPtr,
1082 Load->getName() + "_p_splat_one");
1083
1084 if (!Aligned)
1085 ScalarLoad->setAlignment(Align(8));
1086
1087 Constant *SplatVector = Constant::getNullValue(
1088 FixedVectorType::get(Builder.getInt32Ty(), getVectorWidth()));
1089
1090 Value *VectorLoad = Builder.CreateShuffleVector(
1091 ScalarLoad, ScalarLoad, SplatVector, Load->getName() + "_p_splat");
1092 return VectorLoad;
1093 }
1094
generateUnknownStrideLoad(ScopStmt & Stmt,LoadInst * Load,VectorValueMapT & ScalarMaps,__isl_keep isl_id_to_ast_expr * NewAccesses)1095 Value *VectorBlockGenerator::generateUnknownStrideLoad(
1096 ScopStmt &Stmt, LoadInst *Load, VectorValueMapT &ScalarMaps,
1097 __isl_keep isl_id_to_ast_expr *NewAccesses) {
1098 int VectorWidth = getVectorWidth();
1099 Type *ElemTy = Load->getType();
1100 auto *FVTy = FixedVectorType::get(ElemTy, VectorWidth);
1101
1102 Value *Vector = UndefValue::get(FVTy);
1103
1104 for (int i = 0; i < VectorWidth; i++) {
1105 Value *NewPointer = generateLocationAccessed(Stmt, Load, ScalarMaps[i],
1106 VLTS[i], NewAccesses);
1107 Value *ScalarLoad =
1108 Builder.CreateLoad(ElemTy, NewPointer, Load->getName() + "_p_scalar_");
1109 Vector = Builder.CreateInsertElement(
1110 Vector, ScalarLoad, Builder.getInt32(i), Load->getName() + "_p_vec_");
1111 }
1112
1113 return Vector;
1114 }
1115
generateLoad(ScopStmt & Stmt,LoadInst * Load,ValueMapT & VectorMap,VectorValueMapT & ScalarMaps,__isl_keep isl_id_to_ast_expr * NewAccesses)1116 void VectorBlockGenerator::generateLoad(
1117 ScopStmt &Stmt, LoadInst *Load, ValueMapT &VectorMap,
1118 VectorValueMapT &ScalarMaps, __isl_keep isl_id_to_ast_expr *NewAccesses) {
1119 if (Value *PreloadLoad = GlobalMap.lookup(Load)) {
1120 VectorMap[Load] = Builder.CreateVectorSplat(getVectorWidth(), PreloadLoad,
1121 Load->getName() + "_p");
1122 return;
1123 }
1124
1125 if (!VectorType::isValidElementType(Load->getType())) {
1126 for (int i = 0; i < getVectorWidth(); i++)
1127 ScalarMaps[i][Load] =
1128 generateArrayLoad(Stmt, Load, ScalarMaps[i], VLTS[i], NewAccesses);
1129 return;
1130 }
1131
1132 const MemoryAccess &Access = Stmt.getArrayAccessFor(Load);
1133
1134 // Make sure we have scalar values available to access the pointer to
1135 // the data location.
1136 extractScalarValues(Load, VectorMap, ScalarMaps);
1137
1138 Value *NewLoad;
1139 if (Access.isStrideZero(isl::manage_copy(Schedule)))
1140 NewLoad = generateStrideZeroLoad(Stmt, Load, ScalarMaps[0], NewAccesses);
1141 else if (Access.isStrideOne(isl::manage_copy(Schedule)))
1142 NewLoad = generateStrideOneLoad(Stmt, Load, ScalarMaps, NewAccesses);
1143 else if (Access.isStrideX(isl::manage_copy(Schedule), -1))
1144 NewLoad = generateStrideOneLoad(Stmt, Load, ScalarMaps, NewAccesses, true);
1145 else
1146 NewLoad = generateUnknownStrideLoad(Stmt, Load, ScalarMaps, NewAccesses);
1147
1148 VectorMap[Load] = NewLoad;
1149 }
1150
copyUnaryInst(ScopStmt & Stmt,UnaryInstruction * Inst,ValueMapT & VectorMap,VectorValueMapT & ScalarMaps)1151 void VectorBlockGenerator::copyUnaryInst(ScopStmt &Stmt, UnaryInstruction *Inst,
1152 ValueMapT &VectorMap,
1153 VectorValueMapT &ScalarMaps) {
1154 int VectorWidth = getVectorWidth();
1155 Value *NewOperand = getVectorValue(Stmt, Inst->getOperand(0), VectorMap,
1156 ScalarMaps, getLoopForStmt(Stmt));
1157
1158 assert(isa<CastInst>(Inst) && "Can not generate vector code for instruction");
1159
1160 const CastInst *Cast = dyn_cast<CastInst>(Inst);
1161 auto *DestType = FixedVectorType::get(Inst->getType(), VectorWidth);
1162 VectorMap[Inst] = Builder.CreateCast(Cast->getOpcode(), NewOperand, DestType);
1163 }
1164
copyBinaryInst(ScopStmt & Stmt,BinaryOperator * Inst,ValueMapT & VectorMap,VectorValueMapT & ScalarMaps)1165 void VectorBlockGenerator::copyBinaryInst(ScopStmt &Stmt, BinaryOperator *Inst,
1166 ValueMapT &VectorMap,
1167 VectorValueMapT &ScalarMaps) {
1168 Loop *L = getLoopForStmt(Stmt);
1169 Value *OpZero = Inst->getOperand(0);
1170 Value *OpOne = Inst->getOperand(1);
1171
1172 Value *NewOpZero, *NewOpOne;
1173 NewOpZero = getVectorValue(Stmt, OpZero, VectorMap, ScalarMaps, L);
1174 NewOpOne = getVectorValue(Stmt, OpOne, VectorMap, ScalarMaps, L);
1175
1176 Value *NewInst = Builder.CreateBinOp(Inst->getOpcode(), NewOpZero, NewOpOne,
1177 Inst->getName() + "p_vec");
1178 VectorMap[Inst] = NewInst;
1179 }
1180
copyStore(ScopStmt & Stmt,StoreInst * Store,ValueMapT & VectorMap,VectorValueMapT & ScalarMaps,__isl_keep isl_id_to_ast_expr * NewAccesses)1181 void VectorBlockGenerator::copyStore(
1182 ScopStmt &Stmt, StoreInst *Store, ValueMapT &VectorMap,
1183 VectorValueMapT &ScalarMaps, __isl_keep isl_id_to_ast_expr *NewAccesses) {
1184 const MemoryAccess &Access = Stmt.getArrayAccessFor(Store);
1185
1186 Value *Vector = getVectorValue(Stmt, Store->getValueOperand(), VectorMap,
1187 ScalarMaps, getLoopForStmt(Stmt));
1188
1189 // Make sure we have scalar values available to access the pointer to
1190 // the data location.
1191 extractScalarValues(Store, VectorMap, ScalarMaps);
1192
1193 if (Access.isStrideOne(isl::manage_copy(Schedule))) {
1194 Type *VectorType = FixedVectorType::get(Store->getValueOperand()->getType(),
1195 getVectorWidth());
1196 Type *VectorPtrType =
1197 PointerType::get(VectorType, Store->getPointerAddressSpace());
1198 Value *NewPointer = generateLocationAccessed(Stmt, Store, ScalarMaps[0],
1199 VLTS[0], NewAccesses);
1200
1201 Value *VectorPtr =
1202 Builder.CreateBitCast(NewPointer, VectorPtrType, "vector_ptr");
1203 StoreInst *Store = Builder.CreateStore(Vector, VectorPtr);
1204
1205 if (!Aligned)
1206 Store->setAlignment(Align(8));
1207 } else {
1208 for (unsigned i = 0; i < ScalarMaps.size(); i++) {
1209 Value *Scalar = Builder.CreateExtractElement(Vector, Builder.getInt32(i));
1210 Value *NewPointer = generateLocationAccessed(Stmt, Store, ScalarMaps[i],
1211 VLTS[i], NewAccesses);
1212 Builder.CreateStore(Scalar, NewPointer);
1213 }
1214 }
1215 }
1216
hasVectorOperands(const Instruction * Inst,ValueMapT & VectorMap)1217 bool VectorBlockGenerator::hasVectorOperands(const Instruction *Inst,
1218 ValueMapT &VectorMap) {
1219 for (Value *Operand : Inst->operands())
1220 if (VectorMap.count(Operand))
1221 return true;
1222 return false;
1223 }
1224
extractScalarValues(const Instruction * Inst,ValueMapT & VectorMap,VectorValueMapT & ScalarMaps)1225 bool VectorBlockGenerator::extractScalarValues(const Instruction *Inst,
1226 ValueMapT &VectorMap,
1227 VectorValueMapT &ScalarMaps) {
1228 bool HasVectorOperand = false;
1229 int VectorWidth = getVectorWidth();
1230
1231 for (Value *Operand : Inst->operands()) {
1232 ValueMapT::iterator VecOp = VectorMap.find(Operand);
1233
1234 if (VecOp == VectorMap.end())
1235 continue;
1236
1237 HasVectorOperand = true;
1238 Value *NewVector = VecOp->second;
1239
1240 for (int i = 0; i < VectorWidth; ++i) {
1241 ValueMapT &SM = ScalarMaps[i];
1242
1243 // If there is one scalar extracted, all scalar elements should have
1244 // already been extracted by the code here. So no need to check for the
1245 // existence of all of them.
1246 if (SM.count(Operand))
1247 break;
1248
1249 SM[Operand] =
1250 Builder.CreateExtractElement(NewVector, Builder.getInt32(i));
1251 }
1252 }
1253
1254 return HasVectorOperand;
1255 }
1256
copyInstScalarized(ScopStmt & Stmt,Instruction * Inst,ValueMapT & VectorMap,VectorValueMapT & ScalarMaps,__isl_keep isl_id_to_ast_expr * NewAccesses)1257 void VectorBlockGenerator::copyInstScalarized(
1258 ScopStmt &Stmt, Instruction *Inst, ValueMapT &VectorMap,
1259 VectorValueMapT &ScalarMaps, __isl_keep isl_id_to_ast_expr *NewAccesses) {
1260 bool HasVectorOperand;
1261 int VectorWidth = getVectorWidth();
1262
1263 HasVectorOperand = extractScalarValues(Inst, VectorMap, ScalarMaps);
1264
1265 for (int VectorLane = 0; VectorLane < getVectorWidth(); VectorLane++)
1266 BlockGenerator::copyInstruction(Stmt, Inst, ScalarMaps[VectorLane],
1267 VLTS[VectorLane], NewAccesses);
1268
1269 if (!VectorType::isValidElementType(Inst->getType()) || !HasVectorOperand)
1270 return;
1271
1272 // Make the result available as vector value.
1273 auto *FVTy = FixedVectorType::get(Inst->getType(), VectorWidth);
1274 Value *Vector = UndefValue::get(FVTy);
1275
1276 for (int i = 0; i < VectorWidth; i++)
1277 Vector = Builder.CreateInsertElement(Vector, ScalarMaps[i][Inst],
1278 Builder.getInt32(i));
1279
1280 VectorMap[Inst] = Vector;
1281 }
1282
getVectorWidth()1283 int VectorBlockGenerator::getVectorWidth() { return VLTS.size(); }
1284
copyInstruction(ScopStmt & Stmt,Instruction * Inst,ValueMapT & VectorMap,VectorValueMapT & ScalarMaps,__isl_keep isl_id_to_ast_expr * NewAccesses)1285 void VectorBlockGenerator::copyInstruction(
1286 ScopStmt &Stmt, Instruction *Inst, ValueMapT &VectorMap,
1287 VectorValueMapT &ScalarMaps, __isl_keep isl_id_to_ast_expr *NewAccesses) {
1288 // Terminator instructions control the control flow. They are explicitly
1289 // expressed in the clast and do not need to be copied.
1290 if (Inst->isTerminator())
1291 return;
1292
1293 if (canSyntheziseInStmt(Stmt, Inst))
1294 return;
1295
1296 if (auto *Load = dyn_cast<LoadInst>(Inst)) {
1297 generateLoad(Stmt, Load, VectorMap, ScalarMaps, NewAccesses);
1298 return;
1299 }
1300
1301 if (hasVectorOperands(Inst, VectorMap)) {
1302 if (auto *Store = dyn_cast<StoreInst>(Inst)) {
1303 // Identified as redundant by -polly-simplify.
1304 if (!Stmt.getArrayAccessOrNULLFor(Store))
1305 return;
1306
1307 copyStore(Stmt, Store, VectorMap, ScalarMaps, NewAccesses);
1308 return;
1309 }
1310
1311 if (auto *Unary = dyn_cast<UnaryInstruction>(Inst)) {
1312 copyUnaryInst(Stmt, Unary, VectorMap, ScalarMaps);
1313 return;
1314 }
1315
1316 if (auto *Binary = dyn_cast<BinaryOperator>(Inst)) {
1317 copyBinaryInst(Stmt, Binary, VectorMap, ScalarMaps);
1318 return;
1319 }
1320
1321 // Fallthrough: We generate scalar instructions, if we don't know how to
1322 // generate vector code.
1323 }
1324
1325 copyInstScalarized(Stmt, Inst, VectorMap, ScalarMaps, NewAccesses);
1326 }
1327
generateScalarVectorLoads(ScopStmt & Stmt,ValueMapT & VectorBlockMap)1328 void VectorBlockGenerator::generateScalarVectorLoads(
1329 ScopStmt &Stmt, ValueMapT &VectorBlockMap) {
1330 for (MemoryAccess *MA : Stmt) {
1331 if (MA->isArrayKind() || MA->isWrite())
1332 continue;
1333
1334 auto *Address = getOrCreateAlloca(*MA);
1335 Type *VectorType = FixedVectorType::get(MA->getElementType(), 1);
1336 Type *VectorPtrType = PointerType::get(
1337 VectorType, Address->getType()->getPointerAddressSpace());
1338 Value *VectorPtr = Builder.CreateBitCast(Address, VectorPtrType,
1339 Address->getName() + "_p_vec_p");
1340 auto *Val = Builder.CreateLoad(VectorType, VectorPtr,
1341 Address->getName() + ".reload");
1342 Constant *SplatVector = Constant::getNullValue(
1343 FixedVectorType::get(Builder.getInt32Ty(), getVectorWidth()));
1344
1345 Value *VectorVal = Builder.CreateShuffleVector(
1346 Val, Val, SplatVector, Address->getName() + "_p_splat");
1347 VectorBlockMap[MA->getAccessValue()] = VectorVal;
1348 }
1349 }
1350
verifyNoScalarStores(ScopStmt & Stmt)1351 void VectorBlockGenerator::verifyNoScalarStores(ScopStmt &Stmt) {
1352 for (MemoryAccess *MA : Stmt) {
1353 if (MA->isArrayKind() || MA->isRead())
1354 continue;
1355
1356 llvm_unreachable("Scalar stores not expected in vector loop");
1357 }
1358 }
1359
copyStmt(ScopStmt & Stmt,__isl_keep isl_id_to_ast_expr * NewAccesses)1360 void VectorBlockGenerator::copyStmt(
1361 ScopStmt &Stmt, __isl_keep isl_id_to_ast_expr *NewAccesses) {
1362 assert(Stmt.isBlockStmt() &&
1363 "TODO: Only block statements can be copied by the vector block "
1364 "generator");
1365
1366 BasicBlock *BB = Stmt.getBasicBlock();
1367 BasicBlock *CopyBB = SplitBlock(Builder.GetInsertBlock(),
1368 &*Builder.GetInsertPoint(), &DT, &LI);
1369 CopyBB->setName("polly.stmt." + BB->getName());
1370 Builder.SetInsertPoint(&CopyBB->front());
1371
1372 // Create two maps that store the mapping from the original instructions of
1373 // the old basic block to their copies in the new basic block. Those maps
1374 // are basic block local.
1375 //
1376 // As vector code generation is supported there is one map for scalar values
1377 // and one for vector values.
1378 //
1379 // In case we just do scalar code generation, the vectorMap is not used and
1380 // the scalarMap has just one dimension, which contains the mapping.
1381 //
1382 // In case vector code generation is done, an instruction may either appear
1383 // in the vector map once (as it is calculating >vectorwidth< values at a
1384 // time. Or (if the values are calculated using scalar operations), it
1385 // appears once in every dimension of the scalarMap.
1386 VectorValueMapT ScalarBlockMap(getVectorWidth());
1387 ValueMapT VectorBlockMap;
1388
1389 generateScalarVectorLoads(Stmt, VectorBlockMap);
1390
1391 for (Instruction *Inst : Stmt.getInstructions())
1392 copyInstruction(Stmt, Inst, VectorBlockMap, ScalarBlockMap, NewAccesses);
1393
1394 verifyNoScalarStores(Stmt);
1395 }
1396
repairDominance(BasicBlock * BB,BasicBlock * BBCopy)1397 BasicBlock *RegionGenerator::repairDominance(BasicBlock *BB,
1398 BasicBlock *BBCopy) {
1399
1400 BasicBlock *BBIDom = DT.getNode(BB)->getIDom()->getBlock();
1401 BasicBlock *BBCopyIDom = EndBlockMap.lookup(BBIDom);
1402
1403 if (BBCopyIDom)
1404 DT.changeImmediateDominator(BBCopy, BBCopyIDom);
1405
1406 return StartBlockMap.lookup(BBIDom);
1407 }
1408
1409 // This is to determine whether an llvm::Value (defined in @p BB) is usable when
1410 // leaving a subregion. The straight-forward DT.dominates(BB, R->getExitBlock())
1411 // does not work in cases where the exit block has edges from outside the
1412 // region. In that case the llvm::Value would never be usable in in the exit
1413 // block. The RegionGenerator however creates an new exit block ('ExitBBCopy')
1414 // for the subregion's exiting edges only. We need to determine whether an
1415 // llvm::Value is usable in there. We do this by checking whether it dominates
1416 // all exiting blocks individually.
isDominatingSubregionExit(const DominatorTree & DT,Region * R,BasicBlock * BB)1417 static bool isDominatingSubregionExit(const DominatorTree &DT, Region *R,
1418 BasicBlock *BB) {
1419 for (auto ExitingBB : predecessors(R->getExit())) {
1420 // Check for non-subregion incoming edges.
1421 if (!R->contains(ExitingBB))
1422 continue;
1423
1424 if (!DT.dominates(BB, ExitingBB))
1425 return false;
1426 }
1427
1428 return true;
1429 }
1430
1431 // Find the direct dominator of the subregion's exit block if the subregion was
1432 // simplified.
findExitDominator(DominatorTree & DT,Region * R)1433 static BasicBlock *findExitDominator(DominatorTree &DT, Region *R) {
1434 BasicBlock *Common = nullptr;
1435 for (auto ExitingBB : predecessors(R->getExit())) {
1436 // Check for non-subregion incoming edges.
1437 if (!R->contains(ExitingBB))
1438 continue;
1439
1440 // First exiting edge.
1441 if (!Common) {
1442 Common = ExitingBB;
1443 continue;
1444 }
1445
1446 Common = DT.findNearestCommonDominator(Common, ExitingBB);
1447 }
1448
1449 assert(Common && R->contains(Common));
1450 return Common;
1451 }
1452
copyStmt(ScopStmt & Stmt,LoopToScevMapT & LTS,__isl_keep isl_id_to_ast_expr * IdToAstExp)1453 void RegionGenerator::copyStmt(ScopStmt &Stmt, LoopToScevMapT <S,
1454 __isl_keep isl_id_to_ast_expr *IdToAstExp) {
1455 assert(Stmt.isRegionStmt() &&
1456 "Only region statements can be copied by the region generator");
1457
1458 // Forget all old mappings.
1459 StartBlockMap.clear();
1460 EndBlockMap.clear();
1461 RegionMaps.clear();
1462 IncompletePHINodeMap.clear();
1463
1464 // Collection of all values related to this subregion.
1465 ValueMapT ValueMap;
1466
1467 // The region represented by the statement.
1468 Region *R = Stmt.getRegion();
1469
1470 // Create a dedicated entry for the region where we can reload all demoted
1471 // inputs.
1472 BasicBlock *EntryBB = R->getEntry();
1473 BasicBlock *EntryBBCopy = SplitBlock(Builder.GetInsertBlock(),
1474 &*Builder.GetInsertPoint(), &DT, &LI);
1475 EntryBBCopy->setName("polly.stmt." + EntryBB->getName() + ".entry");
1476 Builder.SetInsertPoint(&EntryBBCopy->front());
1477
1478 ValueMapT &EntryBBMap = RegionMaps[EntryBBCopy];
1479 generateScalarLoads(Stmt, LTS, EntryBBMap, IdToAstExp);
1480 generateBeginStmtTrace(Stmt, LTS, EntryBBMap);
1481
1482 for (auto PI = pred_begin(EntryBB), PE = pred_end(EntryBB); PI != PE; ++PI)
1483 if (!R->contains(*PI)) {
1484 StartBlockMap[*PI] = EntryBBCopy;
1485 EndBlockMap[*PI] = EntryBBCopy;
1486 }
1487
1488 // Iterate over all blocks in the region in a breadth-first search.
1489 std::deque<BasicBlock *> Blocks;
1490 SmallSetVector<BasicBlock *, 8> SeenBlocks;
1491 Blocks.push_back(EntryBB);
1492 SeenBlocks.insert(EntryBB);
1493
1494 while (!Blocks.empty()) {
1495 BasicBlock *BB = Blocks.front();
1496 Blocks.pop_front();
1497
1498 // First split the block and update dominance information.
1499 BasicBlock *BBCopy = splitBB(BB);
1500 BasicBlock *BBCopyIDom = repairDominance(BB, BBCopy);
1501
1502 // Get the mapping for this block and initialize it with either the scalar
1503 // loads from the generated entering block (which dominates all blocks of
1504 // this subregion) or the maps of the immediate dominator, if part of the
1505 // subregion. The latter necessarily includes the former.
1506 ValueMapT *InitBBMap;
1507 if (BBCopyIDom) {
1508 assert(RegionMaps.count(BBCopyIDom));
1509 InitBBMap = &RegionMaps[BBCopyIDom];
1510 } else
1511 InitBBMap = &EntryBBMap;
1512 auto Inserted = RegionMaps.insert(std::make_pair(BBCopy, *InitBBMap));
1513 ValueMapT &RegionMap = Inserted.first->second;
1514
1515 // Copy the block with the BlockGenerator.
1516 Builder.SetInsertPoint(&BBCopy->front());
1517 copyBB(Stmt, BB, BBCopy, RegionMap, LTS, IdToAstExp);
1518
1519 // In order to remap PHI nodes we store also basic block mappings.
1520 StartBlockMap[BB] = BBCopy;
1521 EndBlockMap[BB] = Builder.GetInsertBlock();
1522
1523 // Add values to incomplete PHI nodes waiting for this block to be copied.
1524 for (const PHINodePairTy &PHINodePair : IncompletePHINodeMap[BB])
1525 addOperandToPHI(Stmt, PHINodePair.first, PHINodePair.second, BB, LTS);
1526 IncompletePHINodeMap[BB].clear();
1527
1528 // And continue with new successors inside the region.
1529 for (auto SI = succ_begin(BB), SE = succ_end(BB); SI != SE; SI++)
1530 if (R->contains(*SI) && SeenBlocks.insert(*SI))
1531 Blocks.push_back(*SI);
1532
1533 // Remember value in case it is visible after this subregion.
1534 if (isDominatingSubregionExit(DT, R, BB))
1535 ValueMap.insert(RegionMap.begin(), RegionMap.end());
1536 }
1537
1538 // Now create a new dedicated region exit block and add it to the region map.
1539 BasicBlock *ExitBBCopy = SplitBlock(Builder.GetInsertBlock(),
1540 &*Builder.GetInsertPoint(), &DT, &LI);
1541 ExitBBCopy->setName("polly.stmt." + R->getExit()->getName() + ".exit");
1542 StartBlockMap[R->getExit()] = ExitBBCopy;
1543 EndBlockMap[R->getExit()] = ExitBBCopy;
1544
1545 BasicBlock *ExitDomBBCopy = EndBlockMap.lookup(findExitDominator(DT, R));
1546 assert(ExitDomBBCopy &&
1547 "Common exit dominator must be within region; at least the entry node "
1548 "must match");
1549 DT.changeImmediateDominator(ExitBBCopy, ExitDomBBCopy);
1550
1551 // As the block generator doesn't handle control flow we need to add the
1552 // region control flow by hand after all blocks have been copied.
1553 for (BasicBlock *BB : SeenBlocks) {
1554
1555 BasicBlock *BBCopyStart = StartBlockMap[BB];
1556 BasicBlock *BBCopyEnd = EndBlockMap[BB];
1557 Instruction *TI = BB->getTerminator();
1558 if (isa<UnreachableInst>(TI)) {
1559 while (!BBCopyEnd->empty())
1560 BBCopyEnd->begin()->eraseFromParent();
1561 new UnreachableInst(BBCopyEnd->getContext(), BBCopyEnd);
1562 continue;
1563 }
1564
1565 Instruction *BICopy = BBCopyEnd->getTerminator();
1566
1567 ValueMapT &RegionMap = RegionMaps[BBCopyStart];
1568 RegionMap.insert(StartBlockMap.begin(), StartBlockMap.end());
1569
1570 Builder.SetInsertPoint(BICopy);
1571 copyInstScalar(Stmt, TI, RegionMap, LTS);
1572 BICopy->eraseFromParent();
1573 }
1574
1575 // Add counting PHI nodes to all loops in the region that can be used as
1576 // replacement for SCEVs referring to the old loop.
1577 for (BasicBlock *BB : SeenBlocks) {
1578 Loop *L = LI.getLoopFor(BB);
1579 if (L == nullptr || L->getHeader() != BB || !R->contains(L))
1580 continue;
1581
1582 BasicBlock *BBCopy = StartBlockMap[BB];
1583 Value *NullVal = Builder.getInt32(0);
1584 PHINode *LoopPHI =
1585 PHINode::Create(Builder.getInt32Ty(), 2, "polly.subregion.iv");
1586 Instruction *LoopPHIInc = BinaryOperator::CreateAdd(
1587 LoopPHI, Builder.getInt32(1), "polly.subregion.iv.inc");
1588 LoopPHI->insertBefore(&BBCopy->front());
1589 LoopPHIInc->insertBefore(BBCopy->getTerminator());
1590
1591 for (auto *PredBB : predecessors(BB)) {
1592 if (!R->contains(PredBB))
1593 continue;
1594 if (L->contains(PredBB))
1595 LoopPHI->addIncoming(LoopPHIInc, EndBlockMap[PredBB]);
1596 else
1597 LoopPHI->addIncoming(NullVal, EndBlockMap[PredBB]);
1598 }
1599
1600 for (auto *PredBBCopy : predecessors(BBCopy))
1601 if (LoopPHI->getBasicBlockIndex(PredBBCopy) < 0)
1602 LoopPHI->addIncoming(NullVal, PredBBCopy);
1603
1604 LTS[L] = SE.getUnknown(LoopPHI);
1605 }
1606
1607 // Continue generating code in the exit block.
1608 Builder.SetInsertPoint(&*ExitBBCopy->getFirstInsertionPt());
1609
1610 // Write values visible to other statements.
1611 generateScalarStores(Stmt, LTS, ValueMap, IdToAstExp);
1612 StartBlockMap.clear();
1613 EndBlockMap.clear();
1614 RegionMaps.clear();
1615 IncompletePHINodeMap.clear();
1616 }
1617
buildExitPHI(MemoryAccess * MA,LoopToScevMapT & LTS,ValueMapT & BBMap,Loop * L)1618 PHINode *RegionGenerator::buildExitPHI(MemoryAccess *MA, LoopToScevMapT <S,
1619 ValueMapT &BBMap, Loop *L) {
1620 ScopStmt *Stmt = MA->getStatement();
1621 Region *SubR = Stmt->getRegion();
1622 auto Incoming = MA->getIncoming();
1623
1624 PollyIRBuilder::InsertPointGuard IPGuard(Builder);
1625 PHINode *OrigPHI = cast<PHINode>(MA->getAccessInstruction());
1626 BasicBlock *NewSubregionExit = Builder.GetInsertBlock();
1627
1628 // This can happen if the subregion is simplified after the ScopStmts
1629 // have been created; simplification happens as part of CodeGeneration.
1630 if (OrigPHI->getParent() != SubR->getExit()) {
1631 BasicBlock *FormerExit = SubR->getExitingBlock();
1632 if (FormerExit)
1633 NewSubregionExit = StartBlockMap.lookup(FormerExit);
1634 }
1635
1636 PHINode *NewPHI = PHINode::Create(OrigPHI->getType(), Incoming.size(),
1637 "polly." + OrigPHI->getName(),
1638 NewSubregionExit->getFirstNonPHI());
1639
1640 // Add the incoming values to the PHI.
1641 for (auto &Pair : Incoming) {
1642 BasicBlock *OrigIncomingBlock = Pair.first;
1643 BasicBlock *NewIncomingBlockStart = StartBlockMap.lookup(OrigIncomingBlock);
1644 BasicBlock *NewIncomingBlockEnd = EndBlockMap.lookup(OrigIncomingBlock);
1645 Builder.SetInsertPoint(NewIncomingBlockEnd->getTerminator());
1646 assert(RegionMaps.count(NewIncomingBlockStart));
1647 assert(RegionMaps.count(NewIncomingBlockEnd));
1648 ValueMapT *LocalBBMap = &RegionMaps[NewIncomingBlockStart];
1649
1650 Value *OrigIncomingValue = Pair.second;
1651 Value *NewIncomingValue =
1652 getNewValue(*Stmt, OrigIncomingValue, *LocalBBMap, LTS, L);
1653 NewPHI->addIncoming(NewIncomingValue, NewIncomingBlockEnd);
1654 }
1655
1656 return NewPHI;
1657 }
1658
getExitScalar(MemoryAccess * MA,LoopToScevMapT & LTS,ValueMapT & BBMap)1659 Value *RegionGenerator::getExitScalar(MemoryAccess *MA, LoopToScevMapT <S,
1660 ValueMapT &BBMap) {
1661 ScopStmt *Stmt = MA->getStatement();
1662
1663 // TODO: Add some test cases that ensure this is really the right choice.
1664 Loop *L = LI.getLoopFor(Stmt->getRegion()->getExit());
1665
1666 if (MA->isAnyPHIKind()) {
1667 auto Incoming = MA->getIncoming();
1668 assert(!Incoming.empty() &&
1669 "PHI WRITEs must have originate from at least one incoming block");
1670
1671 // If there is only one incoming value, we do not need to create a PHI.
1672 if (Incoming.size() == 1) {
1673 Value *OldVal = Incoming[0].second;
1674 return getNewValue(*Stmt, OldVal, BBMap, LTS, L);
1675 }
1676
1677 return buildExitPHI(MA, LTS, BBMap, L);
1678 }
1679
1680 // MemoryKind::Value accesses leaving the subregion must dominate the exit
1681 // block; just pass the copied value.
1682 Value *OldVal = MA->getAccessValue();
1683 return getNewValue(*Stmt, OldVal, BBMap, LTS, L);
1684 }
1685
generateScalarStores(ScopStmt & Stmt,LoopToScevMapT & LTS,ValueMapT & BBMap,__isl_keep isl_id_to_ast_expr * NewAccesses)1686 void RegionGenerator::generateScalarStores(
1687 ScopStmt &Stmt, LoopToScevMapT <S, ValueMapT &BBMap,
1688 __isl_keep isl_id_to_ast_expr *NewAccesses) {
1689 assert(Stmt.getRegion() &&
1690 "Block statements need to use the generateScalarStores() "
1691 "function in the BlockGenerator");
1692
1693 // Get the exit scalar values before generating the writes.
1694 // This is necessary because RegionGenerator::getExitScalar may insert
1695 // PHINodes that depend on the region's exiting blocks. But
1696 // BlockGenerator::generateConditionalExecution may insert a new basic block
1697 // such that the current basic block is not a direct successor of the exiting
1698 // blocks anymore. Hence, build the PHINodes while the current block is still
1699 // the direct successor.
1700 SmallDenseMap<MemoryAccess *, Value *> NewExitScalars;
1701 for (MemoryAccess *MA : Stmt) {
1702 if (MA->isOriginalArrayKind() || MA->isRead())
1703 continue;
1704
1705 Value *NewVal = getExitScalar(MA, LTS, BBMap);
1706 NewExitScalars[MA] = NewVal;
1707 }
1708
1709 for (MemoryAccess *MA : Stmt) {
1710 if (MA->isOriginalArrayKind() || MA->isRead())
1711 continue;
1712
1713 isl::set AccDom = MA->getAccessRelation().domain();
1714 std::string Subject = MA->getId().get_name();
1715 generateConditionalExecution(
1716 Stmt, AccDom, Subject.c_str(), [&, this, MA]() {
1717 Value *NewVal = NewExitScalars.lookup(MA);
1718 assert(NewVal && "The exit scalar must be determined before");
1719 Value *Address = getImplicitAddress(*MA, getLoopForStmt(Stmt), LTS,
1720 BBMap, NewAccesses);
1721 assert((!isa<Instruction>(NewVal) ||
1722 DT.dominates(cast<Instruction>(NewVal)->getParent(),
1723 Builder.GetInsertBlock())) &&
1724 "Domination violation");
1725 assert((!isa<Instruction>(Address) ||
1726 DT.dominates(cast<Instruction>(Address)->getParent(),
1727 Builder.GetInsertBlock())) &&
1728 "Domination violation");
1729 Builder.CreateStore(NewVal, Address);
1730 });
1731 }
1732 }
1733
addOperandToPHI(ScopStmt & Stmt,PHINode * PHI,PHINode * PHICopy,BasicBlock * IncomingBB,LoopToScevMapT & LTS)1734 void RegionGenerator::addOperandToPHI(ScopStmt &Stmt, PHINode *PHI,
1735 PHINode *PHICopy, BasicBlock *IncomingBB,
1736 LoopToScevMapT <S) {
1737 // If the incoming block was not yet copied mark this PHI as incomplete.
1738 // Once the block will be copied the incoming value will be added.
1739 BasicBlock *BBCopyStart = StartBlockMap[IncomingBB];
1740 BasicBlock *BBCopyEnd = EndBlockMap[IncomingBB];
1741 if (!BBCopyStart) {
1742 assert(!BBCopyEnd);
1743 assert(Stmt.represents(IncomingBB) &&
1744 "Bad incoming block for PHI in non-affine region");
1745 IncompletePHINodeMap[IncomingBB].push_back(std::make_pair(PHI, PHICopy));
1746 return;
1747 }
1748
1749 assert(RegionMaps.count(BBCopyStart) &&
1750 "Incoming PHI block did not have a BBMap");
1751 ValueMapT &BBCopyMap = RegionMaps[BBCopyStart];
1752
1753 Value *OpCopy = nullptr;
1754
1755 if (Stmt.represents(IncomingBB)) {
1756 Value *Op = PHI->getIncomingValueForBlock(IncomingBB);
1757
1758 // If the current insert block is different from the PHIs incoming block
1759 // change it, otherwise do not.
1760 auto IP = Builder.GetInsertPoint();
1761 if (IP->getParent() != BBCopyEnd)
1762 Builder.SetInsertPoint(BBCopyEnd->getTerminator());
1763 OpCopy = getNewValue(Stmt, Op, BBCopyMap, LTS, getLoopForStmt(Stmt));
1764 if (IP->getParent() != BBCopyEnd)
1765 Builder.SetInsertPoint(&*IP);
1766 } else {
1767 // All edges from outside the non-affine region become a single edge
1768 // in the new copy of the non-affine region. Make sure to only add the
1769 // corresponding edge the first time we encounter a basic block from
1770 // outside the non-affine region.
1771 if (PHICopy->getBasicBlockIndex(BBCopyEnd) >= 0)
1772 return;
1773
1774 // Get the reloaded value.
1775 OpCopy = getNewValue(Stmt, PHI, BBCopyMap, LTS, getLoopForStmt(Stmt));
1776 }
1777
1778 assert(OpCopy && "Incoming PHI value was not copied properly");
1779 PHICopy->addIncoming(OpCopy, BBCopyEnd);
1780 }
1781
copyPHIInstruction(ScopStmt & Stmt,PHINode * PHI,ValueMapT & BBMap,LoopToScevMapT & LTS)1782 void RegionGenerator::copyPHIInstruction(ScopStmt &Stmt, PHINode *PHI,
1783 ValueMapT &BBMap,
1784 LoopToScevMapT <S) {
1785 unsigned NumIncoming = PHI->getNumIncomingValues();
1786 PHINode *PHICopy =
1787 Builder.CreatePHI(PHI->getType(), NumIncoming, "polly." + PHI->getName());
1788 PHICopy->moveBefore(PHICopy->getParent()->getFirstNonPHI());
1789 BBMap[PHI] = PHICopy;
1790
1791 for (BasicBlock *IncomingBB : PHI->blocks())
1792 addOperandToPHI(Stmt, PHI, PHICopy, IncomingBB, LTS);
1793 }
1794