1 //===--- BlockGenerators.cpp - Generate code for statements -----*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the BlockGenerator and VectorBlockGenerator classes, 11 // which generate sequential code and vectorized code for a polyhedral 12 // statement, respectively. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "polly/CodeGen/BlockGenerators.h" 17 #include "polly/CodeGen/CodeGeneration.h" 18 #include "polly/CodeGen/IslExprBuilder.h" 19 #include "polly/CodeGen/RuntimeDebugBuilder.h" 20 #include "polly/Options.h" 21 #include "polly/ScopInfo.h" 22 #include "polly/Support/GICHelper.h" 23 #include "polly/Support/SCEVValidator.h" 24 #include "polly/Support/ScopHelper.h" 25 #include "llvm/Analysis/LoopInfo.h" 26 #include "llvm/Analysis/RegionInfo.h" 27 #include "llvm/Analysis/ScalarEvolution.h" 28 #include "llvm/IR/IntrinsicInst.h" 29 #include "llvm/IR/Module.h" 30 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 31 #include "llvm/Transforms/Utils/Local.h" 32 #include "isl/aff.h" 33 #include "isl/ast.h" 34 #include "isl/ast_build.h" 35 #include "isl/set.h" 36 #include <deque> 37 38 using namespace llvm; 39 using namespace polly; 40 41 static cl::opt<bool> Aligned("enable-polly-aligned", 42 cl::desc("Assumed aligned memory accesses."), 43 cl::Hidden, cl::init(false), cl::ZeroOrMore, 44 cl::cat(PollyCategory)); 45 46 static cl::opt<bool> DebugPrinting( 47 "polly-codegen-add-debug-printing", 48 cl::desc("Add printf calls that show the values loaded/stored."), 49 cl::Hidden, cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory)); 50 51 BlockGenerator::BlockGenerator( 52 PollyIRBuilder &B, LoopInfo &LI, ScalarEvolution &SE, DominatorTree &DT, 53 AllocaMapTy &ScalarMap, EscapeUsersAllocaMapTy &EscapeMap, 54 ValueMapT &GlobalMap, IslExprBuilder *ExprBuilder, BasicBlock *StartBlock) 55 : Builder(B), LI(LI), SE(SE), ExprBuilder(ExprBuilder), DT(DT), 56 EntryBB(nullptr), ScalarMap(ScalarMap), EscapeMap(EscapeMap), 57 GlobalMap(GlobalMap), StartBlock(StartBlock) {} 58 59 Value *BlockGenerator::trySynthesizeNewValue(ScopStmt &Stmt, Value *Old, 60 ValueMapT &BBMap, 61 LoopToScevMapT <S, 62 Loop *L) const { 63 if (!SE.isSCEVable(Old->getType())) 64 return nullptr; 65 66 const SCEV *Scev = SE.getSCEVAtScope(Old, L); 67 if (!Scev) 68 return nullptr; 69 70 if (isa<SCEVCouldNotCompute>(Scev)) 71 return nullptr; 72 73 const SCEV *NewScev = SCEVLoopAddRecRewriter::rewrite(Scev, LTS, SE); 74 ValueMapT VTV; 75 VTV.insert(BBMap.begin(), BBMap.end()); 76 VTV.insert(GlobalMap.begin(), GlobalMap.end()); 77 78 Scop &S = *Stmt.getParent(); 79 const DataLayout &DL = S.getFunction().getParent()->getDataLayout(); 80 auto IP = Builder.GetInsertPoint(); 81 82 assert(IP != Builder.GetInsertBlock()->end() && 83 "Only instructions can be insert points for SCEVExpander"); 84 Value *Expanded = 85 expandCodeFor(S, SE, DL, "polly", NewScev, Old->getType(), &*IP, &VTV, 86 StartBlock->getSinglePredecessor()); 87 88 BBMap[Old] = Expanded; 89 return Expanded; 90 } 91 92 Value *BlockGenerator::getNewValue(ScopStmt &Stmt, Value *Old, ValueMapT &BBMap, 93 LoopToScevMapT <S, Loop *L) const { 94 // Constants that do not reference any named value can always remain 95 // unchanged. Handle them early to avoid expensive map lookups. We do not take 96 // the fast-path for external constants which are referenced through globals 97 // as these may need to be rewritten when distributing code accross different 98 // LLVM modules. 99 if (isa<Constant>(Old) && !isa<GlobalValue>(Old)) 100 return Old; 101 102 // Inline asm is like a constant to us. 103 if (isa<InlineAsm>(Old)) 104 return Old; 105 106 if (Value *New = GlobalMap.lookup(Old)) { 107 if (Value *NewRemapped = GlobalMap.lookup(New)) 108 New = NewRemapped; 109 if (Old->getType()->getScalarSizeInBits() < 110 New->getType()->getScalarSizeInBits()) 111 New = Builder.CreateTruncOrBitCast(New, Old->getType()); 112 113 return New; 114 } 115 116 if (Value *New = BBMap.lookup(Old)) 117 return New; 118 119 if (Value *New = trySynthesizeNewValue(Stmt, Old, BBMap, LTS, L)) 120 return New; 121 122 // A scop-constant value defined by a global or a function parameter. 123 if (isa<GlobalValue>(Old) || isa<Argument>(Old)) 124 return Old; 125 126 // A scop-constant value defined by an instruction executed outside the scop. 127 if (const Instruction *Inst = dyn_cast<Instruction>(Old)) 128 if (!Stmt.getParent()->contains(Inst->getParent())) 129 return Old; 130 131 // The scalar dependence is neither available nor SCEVCodegenable. 132 llvm_unreachable("Unexpected scalar dependence in region!"); 133 return nullptr; 134 } 135 136 void BlockGenerator::copyInstScalar(ScopStmt &Stmt, Instruction *Inst, 137 ValueMapT &BBMap, LoopToScevMapT <S) { 138 // We do not generate debug intrinsics as we did not investigate how to 139 // copy them correctly. At the current state, they just crash the code 140 // generation as the meta-data operands are not correctly copied. 141 if (isa<DbgInfoIntrinsic>(Inst)) 142 return; 143 144 Instruction *NewInst = Inst->clone(); 145 146 // Replace old operands with the new ones. 147 for (Value *OldOperand : Inst->operands()) { 148 Value *NewOperand = 149 getNewValue(Stmt, OldOperand, BBMap, LTS, getLoopForStmt(Stmt)); 150 151 if (!NewOperand) { 152 assert(!isa<StoreInst>(NewInst) && 153 "Store instructions are always needed!"); 154 delete NewInst; 155 return; 156 } 157 158 NewInst->replaceUsesOfWith(OldOperand, NewOperand); 159 } 160 161 Builder.Insert(NewInst); 162 BBMap[Inst] = NewInst; 163 164 if (!NewInst->getType()->isVoidTy()) 165 NewInst->setName("p_" + Inst->getName()); 166 } 167 168 Value * 169 BlockGenerator::generateLocationAccessed(ScopStmt &Stmt, MemAccInst Inst, 170 ValueMapT &BBMap, LoopToScevMapT <S, 171 isl_id_to_ast_expr *NewAccesses) { 172 const MemoryAccess &MA = Stmt.getArrayAccessFor(Inst); 173 return generateLocationAccessed( 174 Stmt, getLoopForStmt(Stmt), 175 Inst.isNull() ? nullptr : Inst.getPointerOperand(), BBMap, LTS, 176 NewAccesses, MA.getId(), MA.getAccessValue()->getType()); 177 } 178 179 Value *BlockGenerator::generateLocationAccessed( 180 ScopStmt &Stmt, Loop *L, Value *Pointer, ValueMapT &BBMap, 181 LoopToScevMapT <S, isl_id_to_ast_expr *NewAccesses, __isl_take isl_id *Id, 182 Type *ExpectedType) { 183 isl_ast_expr *AccessExpr = isl_id_to_ast_expr_get(NewAccesses, Id); 184 185 if (AccessExpr) { 186 AccessExpr = isl_ast_expr_address_of(AccessExpr); 187 auto Address = ExprBuilder->create(AccessExpr); 188 189 // Cast the address of this memory access to a pointer type that has the 190 // same element type as the original access, but uses the address space of 191 // the newly generated pointer. 192 auto OldPtrTy = ExpectedType->getPointerTo(); 193 auto NewPtrTy = Address->getType(); 194 OldPtrTy = PointerType::get(OldPtrTy->getElementType(), 195 NewPtrTy->getPointerAddressSpace()); 196 197 if (OldPtrTy != NewPtrTy) 198 Address = Builder.CreateBitOrPointerCast(Address, OldPtrTy); 199 return Address; 200 } 201 assert( 202 Pointer && 203 "If expression was not generated, must use the original pointer value"); 204 return getNewValue(Stmt, Pointer, BBMap, LTS, L); 205 } 206 207 Value * 208 BlockGenerator::getImplicitAddress(MemoryAccess &Access, Loop *L, 209 LoopToScevMapT <S, ValueMapT &BBMap, 210 __isl_keep isl_id_to_ast_expr *NewAccesses) { 211 if (Access.isLatestArrayKind()) 212 return generateLocationAccessed(*Access.getStatement(), L, nullptr, BBMap, 213 LTS, NewAccesses, Access.getId(), 214 Access.getAccessValue()->getType()); 215 216 return getOrCreateAlloca(Access); 217 } 218 219 Loop *BlockGenerator::getLoopForStmt(const ScopStmt &Stmt) const { 220 auto *StmtBB = Stmt.getEntryBlock(); 221 return LI.getLoopFor(StmtBB); 222 } 223 224 Value *BlockGenerator::generateArrayLoad(ScopStmt &Stmt, LoadInst *Load, 225 ValueMapT &BBMap, LoopToScevMapT <S, 226 isl_id_to_ast_expr *NewAccesses) { 227 if (Value *PreloadLoad = GlobalMap.lookup(Load)) 228 return PreloadLoad; 229 230 Value *NewPointer = 231 generateLocationAccessed(Stmt, Load, BBMap, LTS, NewAccesses); 232 Value *ScalarLoad = Builder.CreateAlignedLoad( 233 NewPointer, Load->getAlignment(), Load->getName() + "_p_scalar_"); 234 235 if (DebugPrinting) 236 RuntimeDebugBuilder::createCPUPrinter(Builder, "Load from ", NewPointer, 237 ": ", ScalarLoad, "\n"); 238 239 return ScalarLoad; 240 } 241 242 void BlockGenerator::generateArrayStore(ScopStmt &Stmt, StoreInst *Store, 243 ValueMapT &BBMap, LoopToScevMapT <S, 244 isl_id_to_ast_expr *NewAccesses) { 245 Value *NewPointer = 246 generateLocationAccessed(Stmt, Store, BBMap, LTS, NewAccesses); 247 Value *ValueOperand = getNewValue(Stmt, Store->getValueOperand(), BBMap, LTS, 248 getLoopForStmt(Stmt)); 249 250 if (DebugPrinting) 251 RuntimeDebugBuilder::createCPUPrinter(Builder, "Store to ", NewPointer, 252 ": ", ValueOperand, "\n"); 253 254 Builder.CreateAlignedStore(ValueOperand, NewPointer, Store->getAlignment()); 255 } 256 257 bool BlockGenerator::canSyntheziseInStmt(ScopStmt &Stmt, Instruction *Inst) { 258 Loop *L = getLoopForStmt(Stmt); 259 return (Stmt.isBlockStmt() || !Stmt.getRegion()->contains(L)) && 260 canSynthesize(Inst, *Stmt.getParent(), &SE, L); 261 } 262 263 void BlockGenerator::copyInstruction(ScopStmt &Stmt, Instruction *Inst, 264 ValueMapT &BBMap, LoopToScevMapT <S, 265 isl_id_to_ast_expr *NewAccesses) { 266 // Terminator instructions control the control flow. They are explicitly 267 // expressed in the clast and do not need to be copied. 268 if (Inst->isTerminator()) 269 return; 270 271 // Synthesizable statements will be generated on-demand. 272 if (canSyntheziseInStmt(Stmt, Inst)) 273 return; 274 275 if (auto *Load = dyn_cast<LoadInst>(Inst)) { 276 Value *NewLoad = generateArrayLoad(Stmt, Load, BBMap, LTS, NewAccesses); 277 // Compute NewLoad before its insertion in BBMap to make the insertion 278 // deterministic. 279 BBMap[Load] = NewLoad; 280 return; 281 } 282 283 if (auto *Store = dyn_cast<StoreInst>(Inst)) { 284 // Identified as redundant by -polly-simplify. 285 if (!Stmt.getArrayAccessOrNULLFor(Store)) 286 return; 287 288 generateArrayStore(Stmt, Store, BBMap, LTS, NewAccesses); 289 return; 290 } 291 292 if (auto *PHI = dyn_cast<PHINode>(Inst)) { 293 copyPHIInstruction(Stmt, PHI, BBMap, LTS); 294 return; 295 } 296 297 // Skip some special intrinsics for which we do not adjust the semantics to 298 // the new schedule. All others are handled like every other instruction. 299 if (isIgnoredIntrinsic(Inst)) 300 return; 301 302 copyInstScalar(Stmt, Inst, BBMap, LTS); 303 } 304 305 void BlockGenerator::removeDeadInstructions(BasicBlock *BB, ValueMapT &BBMap) { 306 auto NewBB = Builder.GetInsertBlock(); 307 for (auto I = NewBB->rbegin(); I != NewBB->rend(); I++) { 308 Instruction *NewInst = &*I; 309 310 if (!isInstructionTriviallyDead(NewInst)) 311 continue; 312 313 for (auto Pair : BBMap) 314 if (Pair.second == NewInst) { 315 BBMap.erase(Pair.first); 316 } 317 318 NewInst->eraseFromParent(); 319 I = NewBB->rbegin(); 320 } 321 } 322 323 void BlockGenerator::copyStmt(ScopStmt &Stmt, LoopToScevMapT <S, 324 isl_id_to_ast_expr *NewAccesses) { 325 assert(Stmt.isBlockStmt() && 326 "Only block statements can be copied by the block generator"); 327 328 ValueMapT BBMap; 329 330 BasicBlock *BB = Stmt.getBasicBlock(); 331 copyBB(Stmt, BB, BBMap, LTS, NewAccesses); 332 removeDeadInstructions(BB, BBMap); 333 } 334 335 BasicBlock *BlockGenerator::splitBB(BasicBlock *BB) { 336 BasicBlock *CopyBB = SplitBlock(Builder.GetInsertBlock(), 337 &*Builder.GetInsertPoint(), &DT, &LI); 338 CopyBB->setName("polly.stmt." + BB->getName()); 339 return CopyBB; 340 } 341 342 BasicBlock *BlockGenerator::copyBB(ScopStmt &Stmt, BasicBlock *BB, 343 ValueMapT &BBMap, LoopToScevMapT <S, 344 isl_id_to_ast_expr *NewAccesses) { 345 BasicBlock *CopyBB = splitBB(BB); 346 Builder.SetInsertPoint(&CopyBB->front()); 347 generateScalarLoads(Stmt, LTS, BBMap, NewAccesses); 348 349 copyBB(Stmt, BB, CopyBB, BBMap, LTS, NewAccesses); 350 351 // After a basic block was copied store all scalars that escape this block in 352 // their alloca. 353 generateScalarStores(Stmt, LTS, BBMap, NewAccesses); 354 return CopyBB; 355 } 356 357 void BlockGenerator::copyBB(ScopStmt &Stmt, BasicBlock *BB, BasicBlock *CopyBB, 358 ValueMapT &BBMap, LoopToScevMapT <S, 359 isl_id_to_ast_expr *NewAccesses) { 360 EntryBB = &CopyBB->getParent()->getEntryBlock(); 361 362 for (Instruction &Inst : *BB) 363 copyInstruction(Stmt, &Inst, BBMap, LTS, NewAccesses); 364 } 365 366 Value *BlockGenerator::getOrCreateAlloca(const MemoryAccess &Access) { 367 assert(!Access.isLatestArrayKind() && "Trying to get alloca for array kind"); 368 369 return getOrCreateAlloca(Access.getLatestScopArrayInfo()); 370 } 371 372 Value *BlockGenerator::getOrCreateAlloca(const ScopArrayInfo *Array) { 373 assert(!Array->isArrayKind() && "Trying to get alloca for array kind"); 374 375 auto &Addr = ScalarMap[Array]; 376 377 if (Addr) { 378 // Allow allocas to be (temporarily) redirected once by adding a new 379 // old-alloca-addr to new-addr mapping to GlobalMap. This funcitionality 380 // is used for example by the OpenMP code generation where a first use 381 // of a scalar while still in the host code allocates a normal alloca with 382 // getOrCreateAlloca. When the values of this scalar are accessed during 383 // the generation of the parallel subfunction, these values are copied over 384 // to the parallel subfunction and each request for a scalar alloca slot 385 // must be forwared to the temporary in-subfunction slot. This mapping is 386 // removed when the subfunction has been generated and again normal host 387 // code is generated. Due to the following reasons it is not possible to 388 // perform the GlobalMap lookup right after creating the alloca below, but 389 // instead we need to check GlobalMap at each call to getOrCreateAlloca: 390 // 391 // 1) GlobalMap may be changed multiple times (for each parallel loop), 392 // 2) The temporary mapping is commonly only known after the initial 393 // alloca has already been generated, and 394 // 3) The original alloca value must be restored after leaving the 395 // sub-function. 396 if (Value *NewAddr = GlobalMap.lookup(&*Addr)) 397 return NewAddr; 398 return Addr; 399 } 400 401 Type *Ty = Array->getElementType(); 402 Value *ScalarBase = Array->getBasePtr(); 403 std::string NameExt; 404 if (Array->isPHIKind()) 405 NameExt = ".phiops"; 406 else 407 NameExt = ".s2a"; 408 409 Addr = new AllocaInst(Ty, ScalarBase->getName() + NameExt); 410 EntryBB = &Builder.GetInsertBlock()->getParent()->getEntryBlock(); 411 Addr->insertBefore(&*EntryBB->getFirstInsertionPt()); 412 413 return Addr; 414 } 415 416 void BlockGenerator::handleOutsideUsers(const Scop &S, ScopArrayInfo *Array) { 417 Instruction *Inst = cast<Instruction>(Array->getBasePtr()); 418 419 // If there are escape users we get the alloca for this instruction and put it 420 // in the EscapeMap for later finalization. Lastly, if the instruction was 421 // copied multiple times we already did this and can exit. 422 if (EscapeMap.count(Inst)) 423 return; 424 425 EscapeUserVectorTy EscapeUsers; 426 for (User *U : Inst->users()) { 427 428 // Non-instruction user will never escape. 429 Instruction *UI = dyn_cast<Instruction>(U); 430 if (!UI) 431 continue; 432 433 if (S.contains(UI)) 434 continue; 435 436 EscapeUsers.push_back(UI); 437 } 438 439 // Exit if no escape uses were found. 440 if (EscapeUsers.empty()) 441 return; 442 443 // Get or create an escape alloca for this instruction. 444 auto *ScalarAddr = getOrCreateAlloca(Array); 445 446 // Remember that this instruction has escape uses and the escape alloca. 447 EscapeMap[Inst] = std::make_pair(ScalarAddr, std::move(EscapeUsers)); 448 } 449 450 void BlockGenerator::generateScalarLoads( 451 ScopStmt &Stmt, LoopToScevMapT <S, ValueMapT &BBMap, 452 __isl_keep isl_id_to_ast_expr *NewAccesses) { 453 for (MemoryAccess *MA : Stmt) { 454 if (MA->isOriginalArrayKind() || MA->isWrite()) 455 continue; 456 457 #ifndef NDEBUG 458 auto *StmtDom = Stmt.getDomain(); 459 auto *AccDom = isl_map_domain(MA->getAccessRelation()); 460 assert(isl_set_is_subset(StmtDom, AccDom) && 461 "Scalar must be loaded in all statement instances"); 462 isl_set_free(StmtDom); 463 isl_set_free(AccDom); 464 #endif 465 466 auto *Address = 467 getImplicitAddress(*MA, getLoopForStmt(Stmt), LTS, BBMap, NewAccesses); 468 assert((!isa<Instruction>(Address) || 469 DT.dominates(cast<Instruction>(Address)->getParent(), 470 Builder.GetInsertBlock())) && 471 "Domination violation"); 472 BBMap[MA->getAccessValue()] = 473 Builder.CreateLoad(Address, Address->getName() + ".reload"); 474 } 475 } 476 477 void BlockGenerator::generateScalarStores( 478 ScopStmt &Stmt, LoopToScevMapT <S, ValueMapT &BBMap, 479 __isl_keep isl_id_to_ast_expr *NewAccesses) { 480 Loop *L = LI.getLoopFor(Stmt.getBasicBlock()); 481 482 assert(Stmt.isBlockStmt() && 483 "Region statements need to use the generateScalarStores() function in " 484 "the RegionGenerator"); 485 486 for (MemoryAccess *MA : Stmt) { 487 if (MA->isOriginalArrayKind() || MA->isRead()) 488 continue; 489 490 #ifndef NDEBUG 491 auto *StmtDom = Stmt.getDomain(); 492 auto *AccDom = isl_map_domain(MA->getAccessRelation()); 493 assert(isl_set_is_subset(StmtDom, AccDom) && 494 "Scalar must be stored in all statement instances"); 495 isl_set_free(StmtDom); 496 isl_set_free(AccDom); 497 #endif 498 499 Value *Val = MA->getAccessValue(); 500 if (MA->isAnyPHIKind()) { 501 assert(MA->getIncoming().size() >= 1 && 502 "Block statements have exactly one exiting block, or multiple but " 503 "with same incoming block and value"); 504 assert(std::all_of(MA->getIncoming().begin(), MA->getIncoming().end(), 505 [&](std::pair<BasicBlock *, Value *> p) -> bool { 506 return p.first == Stmt.getBasicBlock(); 507 }) && 508 "Incoming block must be statement's block"); 509 Val = MA->getIncoming()[0].second; 510 } 511 auto Address = 512 getImplicitAddress(*MA, getLoopForStmt(Stmt), LTS, BBMap, NewAccesses); 513 514 Val = getNewValue(Stmt, Val, BBMap, LTS, L); 515 assert((!isa<Instruction>(Val) || 516 DT.dominates(cast<Instruction>(Val)->getParent(), 517 Builder.GetInsertBlock())) && 518 "Domination violation"); 519 assert((!isa<Instruction>(Address) || 520 DT.dominates(cast<Instruction>(Address)->getParent(), 521 Builder.GetInsertBlock())) && 522 "Domination violation"); 523 Builder.CreateStore(Val, Address); 524 } 525 } 526 527 void BlockGenerator::createScalarInitialization(Scop &S) { 528 BasicBlock *ExitBB = S.getExit(); 529 BasicBlock *PreEntryBB = S.getEnteringBlock(); 530 531 Builder.SetInsertPoint(&*StartBlock->begin()); 532 533 for (auto &Array : S.arrays()) { 534 if (Array->getNumberOfDimensions() != 0) 535 continue; 536 if (Array->isPHIKind()) { 537 // For PHI nodes, the only values we need to store are the ones that 538 // reach the PHI node from outside the region. In general there should 539 // only be one such incoming edge and this edge should enter through 540 // 'PreEntryBB'. 541 auto PHI = cast<PHINode>(Array->getBasePtr()); 542 543 for (auto BI = PHI->block_begin(), BE = PHI->block_end(); BI != BE; BI++) 544 if (!S.contains(*BI) && *BI != PreEntryBB) 545 llvm_unreachable("Incoming edges from outside the scop should always " 546 "come from PreEntryBB"); 547 548 int Idx = PHI->getBasicBlockIndex(PreEntryBB); 549 if (Idx < 0) 550 continue; 551 552 Value *ScalarValue = PHI->getIncomingValue(Idx); 553 554 Builder.CreateStore(ScalarValue, getOrCreateAlloca(Array)); 555 continue; 556 } 557 558 auto *Inst = dyn_cast<Instruction>(Array->getBasePtr()); 559 560 if (Inst && S.contains(Inst)) 561 continue; 562 563 // PHI nodes that are not marked as such in their SAI object are either exit 564 // PHI nodes we model as common scalars but without initialization, or 565 // incoming phi nodes that need to be initialized. Check if the first is the 566 // case for Inst and do not create and initialize memory if so. 567 if (auto *PHI = dyn_cast_or_null<PHINode>(Inst)) 568 if (!S.hasSingleExitEdge() && PHI->getBasicBlockIndex(ExitBB) >= 0) 569 continue; 570 571 Builder.CreateStore(Array->getBasePtr(), getOrCreateAlloca(Array)); 572 } 573 } 574 575 void BlockGenerator::createScalarFinalization(Scop &S) { 576 // The exit block of the __unoptimized__ region. 577 BasicBlock *ExitBB = S.getExitingBlock(); 578 // The merge block __just after__ the region and the optimized region. 579 BasicBlock *MergeBB = S.getExit(); 580 581 // The exit block of the __optimized__ region. 582 BasicBlock *OptExitBB = *(pred_begin(MergeBB)); 583 if (OptExitBB == ExitBB) 584 OptExitBB = *(++pred_begin(MergeBB)); 585 586 Builder.SetInsertPoint(OptExitBB->getTerminator()); 587 for (const auto &EscapeMapping : EscapeMap) { 588 // Extract the escaping instruction and the escaping users as well as the 589 // alloca the instruction was demoted to. 590 Instruction *EscapeInst = EscapeMapping.first; 591 const auto &EscapeMappingValue = EscapeMapping.second; 592 const EscapeUserVectorTy &EscapeUsers = EscapeMappingValue.second; 593 Value *ScalarAddr = EscapeMappingValue.first; 594 595 // Reload the demoted instruction in the optimized version of the SCoP. 596 Value *EscapeInstReload = 597 Builder.CreateLoad(ScalarAddr, EscapeInst->getName() + ".final_reload"); 598 EscapeInstReload = 599 Builder.CreateBitOrPointerCast(EscapeInstReload, EscapeInst->getType()); 600 601 // Create the merge PHI that merges the optimized and unoptimized version. 602 PHINode *MergePHI = PHINode::Create(EscapeInst->getType(), 2, 603 EscapeInst->getName() + ".merge"); 604 MergePHI->insertBefore(&*MergeBB->getFirstInsertionPt()); 605 606 // Add the respective values to the merge PHI. 607 MergePHI->addIncoming(EscapeInstReload, OptExitBB); 608 MergePHI->addIncoming(EscapeInst, ExitBB); 609 610 // The information of scalar evolution about the escaping instruction needs 611 // to be revoked so the new merged instruction will be used. 612 if (SE.isSCEVable(EscapeInst->getType())) 613 SE.forgetValue(EscapeInst); 614 615 // Replace all uses of the demoted instruction with the merge PHI. 616 for (Instruction *EUser : EscapeUsers) 617 EUser->replaceUsesOfWith(EscapeInst, MergePHI); 618 } 619 } 620 621 void BlockGenerator::findOutsideUsers(Scop &S) { 622 for (auto &Array : S.arrays()) { 623 624 if (Array->getNumberOfDimensions() != 0) 625 continue; 626 627 if (Array->isPHIKind()) 628 continue; 629 630 auto *Inst = dyn_cast<Instruction>(Array->getBasePtr()); 631 632 if (!Inst) 633 continue; 634 635 // Scop invariant hoisting moves some of the base pointers out of the scop. 636 // We can ignore these, as the invariant load hoisting already registers the 637 // relevant outside users. 638 if (!S.contains(Inst)) 639 continue; 640 641 handleOutsideUsers(S, Array); 642 } 643 } 644 645 void BlockGenerator::createExitPHINodeMerges(Scop &S) { 646 if (S.hasSingleExitEdge()) 647 return; 648 649 auto *ExitBB = S.getExitingBlock(); 650 auto *MergeBB = S.getExit(); 651 auto *AfterMergeBB = MergeBB->getSingleSuccessor(); 652 BasicBlock *OptExitBB = *(pred_begin(MergeBB)); 653 if (OptExitBB == ExitBB) 654 OptExitBB = *(++pred_begin(MergeBB)); 655 656 Builder.SetInsertPoint(OptExitBB->getTerminator()); 657 658 for (auto &SAI : S.arrays()) { 659 auto *Val = SAI->getBasePtr(); 660 661 // Only Value-like scalars need a merge PHI. Exit block PHIs receive either 662 // the original PHI's value or the reloaded incoming values from the 663 // generated code. An llvm::Value is merged between the original code's 664 // value or the generated one. 665 if (!SAI->isExitPHIKind()) 666 continue; 667 668 PHINode *PHI = dyn_cast<PHINode>(Val); 669 if (!PHI) 670 continue; 671 672 if (PHI->getParent() != AfterMergeBB) 673 continue; 674 675 std::string Name = PHI->getName(); 676 Value *ScalarAddr = getOrCreateAlloca(SAI); 677 Value *Reload = Builder.CreateLoad(ScalarAddr, Name + ".ph.final_reload"); 678 Reload = Builder.CreateBitOrPointerCast(Reload, PHI->getType()); 679 Value *OriginalValue = PHI->getIncomingValueForBlock(MergeBB); 680 assert((!isa<Instruction>(OriginalValue) || 681 cast<Instruction>(OriginalValue)->getParent() != MergeBB) && 682 "Original value must no be one we just generated."); 683 auto *MergePHI = PHINode::Create(PHI->getType(), 2, Name + ".ph.merge"); 684 MergePHI->insertBefore(&*MergeBB->getFirstInsertionPt()); 685 MergePHI->addIncoming(Reload, OptExitBB); 686 MergePHI->addIncoming(OriginalValue, ExitBB); 687 int Idx = PHI->getBasicBlockIndex(MergeBB); 688 PHI->setIncomingValue(Idx, MergePHI); 689 } 690 } 691 692 void BlockGenerator::invalidateScalarEvolution(Scop &S) { 693 for (auto &Stmt : S) 694 if (Stmt.isCopyStmt()) 695 continue; 696 else if (Stmt.isBlockStmt()) 697 for (auto &Inst : *Stmt.getBasicBlock()) 698 SE.forgetValue(&Inst); 699 else if (Stmt.isRegionStmt()) 700 for (auto *BB : Stmt.getRegion()->blocks()) 701 for (auto &Inst : *BB) 702 SE.forgetValue(&Inst); 703 else 704 llvm_unreachable("Unexpected statement type found"); 705 } 706 707 void BlockGenerator::finalizeSCoP(Scop &S) { 708 findOutsideUsers(S); 709 createScalarInitialization(S); 710 createExitPHINodeMerges(S); 711 createScalarFinalization(S); 712 invalidateScalarEvolution(S); 713 } 714 715 VectorBlockGenerator::VectorBlockGenerator(BlockGenerator &BlockGen, 716 std::vector<LoopToScevMapT> &VLTS, 717 isl_map *Schedule) 718 : BlockGenerator(BlockGen), VLTS(VLTS), Schedule(Schedule) { 719 assert(Schedule && "No statement domain provided"); 720 } 721 722 Value *VectorBlockGenerator::getVectorValue(ScopStmt &Stmt, Value *Old, 723 ValueMapT &VectorMap, 724 VectorValueMapT &ScalarMaps, 725 Loop *L) { 726 if (Value *NewValue = VectorMap.lookup(Old)) 727 return NewValue; 728 729 int Width = getVectorWidth(); 730 731 Value *Vector = UndefValue::get(VectorType::get(Old->getType(), Width)); 732 733 for (int Lane = 0; Lane < Width; Lane++) 734 Vector = Builder.CreateInsertElement( 735 Vector, getNewValue(Stmt, Old, ScalarMaps[Lane], VLTS[Lane], L), 736 Builder.getInt32(Lane)); 737 738 VectorMap[Old] = Vector; 739 740 return Vector; 741 } 742 743 Type *VectorBlockGenerator::getVectorPtrTy(const Value *Val, int Width) { 744 PointerType *PointerTy = dyn_cast<PointerType>(Val->getType()); 745 assert(PointerTy && "PointerType expected"); 746 747 Type *ScalarType = PointerTy->getElementType(); 748 VectorType *VectorType = VectorType::get(ScalarType, Width); 749 750 return PointerType::getUnqual(VectorType); 751 } 752 753 Value *VectorBlockGenerator::generateStrideOneLoad( 754 ScopStmt &Stmt, LoadInst *Load, VectorValueMapT &ScalarMaps, 755 __isl_keep isl_id_to_ast_expr *NewAccesses, bool NegativeStride = false) { 756 unsigned VectorWidth = getVectorWidth(); 757 auto *Pointer = Load->getPointerOperand(); 758 Type *VectorPtrType = getVectorPtrTy(Pointer, VectorWidth); 759 unsigned Offset = NegativeStride ? VectorWidth - 1 : 0; 760 761 Value *NewPointer = generateLocationAccessed(Stmt, Load, ScalarMaps[Offset], 762 VLTS[Offset], NewAccesses); 763 Value *VectorPtr = 764 Builder.CreateBitCast(NewPointer, VectorPtrType, "vector_ptr"); 765 LoadInst *VecLoad = 766 Builder.CreateLoad(VectorPtr, Load->getName() + "_p_vec_full"); 767 if (!Aligned) 768 VecLoad->setAlignment(8); 769 770 if (NegativeStride) { 771 SmallVector<Constant *, 16> Indices; 772 for (int i = VectorWidth - 1; i >= 0; i--) 773 Indices.push_back(ConstantInt::get(Builder.getInt32Ty(), i)); 774 Constant *SV = llvm::ConstantVector::get(Indices); 775 Value *RevVecLoad = Builder.CreateShuffleVector( 776 VecLoad, VecLoad, SV, Load->getName() + "_reverse"); 777 return RevVecLoad; 778 } 779 780 return VecLoad; 781 } 782 783 Value *VectorBlockGenerator::generateStrideZeroLoad( 784 ScopStmt &Stmt, LoadInst *Load, ValueMapT &BBMap, 785 __isl_keep isl_id_to_ast_expr *NewAccesses) { 786 auto *Pointer = Load->getPointerOperand(); 787 Type *VectorPtrType = getVectorPtrTy(Pointer, 1); 788 Value *NewPointer = 789 generateLocationAccessed(Stmt, Load, BBMap, VLTS[0], NewAccesses); 790 Value *VectorPtr = Builder.CreateBitCast(NewPointer, VectorPtrType, 791 Load->getName() + "_p_vec_p"); 792 LoadInst *ScalarLoad = 793 Builder.CreateLoad(VectorPtr, Load->getName() + "_p_splat_one"); 794 795 if (!Aligned) 796 ScalarLoad->setAlignment(8); 797 798 Constant *SplatVector = Constant::getNullValue( 799 VectorType::get(Builder.getInt32Ty(), getVectorWidth())); 800 801 Value *VectorLoad = Builder.CreateShuffleVector( 802 ScalarLoad, ScalarLoad, SplatVector, Load->getName() + "_p_splat"); 803 return VectorLoad; 804 } 805 806 Value *VectorBlockGenerator::generateUnknownStrideLoad( 807 ScopStmt &Stmt, LoadInst *Load, VectorValueMapT &ScalarMaps, 808 __isl_keep isl_id_to_ast_expr *NewAccesses) { 809 int VectorWidth = getVectorWidth(); 810 auto *Pointer = Load->getPointerOperand(); 811 VectorType *VectorType = VectorType::get( 812 dyn_cast<PointerType>(Pointer->getType())->getElementType(), VectorWidth); 813 814 Value *Vector = UndefValue::get(VectorType); 815 816 for (int i = 0; i < VectorWidth; i++) { 817 Value *NewPointer = generateLocationAccessed(Stmt, Load, ScalarMaps[i], 818 VLTS[i], NewAccesses); 819 Value *ScalarLoad = 820 Builder.CreateLoad(NewPointer, Load->getName() + "_p_scalar_"); 821 Vector = Builder.CreateInsertElement( 822 Vector, ScalarLoad, Builder.getInt32(i), Load->getName() + "_p_vec_"); 823 } 824 825 return Vector; 826 } 827 828 void VectorBlockGenerator::generateLoad( 829 ScopStmt &Stmt, LoadInst *Load, ValueMapT &VectorMap, 830 VectorValueMapT &ScalarMaps, __isl_keep isl_id_to_ast_expr *NewAccesses) { 831 if (Value *PreloadLoad = GlobalMap.lookup(Load)) { 832 VectorMap[Load] = Builder.CreateVectorSplat(getVectorWidth(), PreloadLoad, 833 Load->getName() + "_p"); 834 return; 835 } 836 837 if (!VectorType::isValidElementType(Load->getType())) { 838 for (int i = 0; i < getVectorWidth(); i++) 839 ScalarMaps[i][Load] = 840 generateArrayLoad(Stmt, Load, ScalarMaps[i], VLTS[i], NewAccesses); 841 return; 842 } 843 844 const MemoryAccess &Access = Stmt.getArrayAccessFor(Load); 845 846 // Make sure we have scalar values available to access the pointer to 847 // the data location. 848 extractScalarValues(Load, VectorMap, ScalarMaps); 849 850 Value *NewLoad; 851 if (Access.isStrideZero(isl_map_copy(Schedule))) 852 NewLoad = generateStrideZeroLoad(Stmt, Load, ScalarMaps[0], NewAccesses); 853 else if (Access.isStrideOne(isl_map_copy(Schedule))) 854 NewLoad = generateStrideOneLoad(Stmt, Load, ScalarMaps, NewAccesses); 855 else if (Access.isStrideX(isl_map_copy(Schedule), -1)) 856 NewLoad = generateStrideOneLoad(Stmt, Load, ScalarMaps, NewAccesses, true); 857 else 858 NewLoad = generateUnknownStrideLoad(Stmt, Load, ScalarMaps, NewAccesses); 859 860 VectorMap[Load] = NewLoad; 861 } 862 863 void VectorBlockGenerator::copyUnaryInst(ScopStmt &Stmt, UnaryInstruction *Inst, 864 ValueMapT &VectorMap, 865 VectorValueMapT &ScalarMaps) { 866 int VectorWidth = getVectorWidth(); 867 Value *NewOperand = getVectorValue(Stmt, Inst->getOperand(0), VectorMap, 868 ScalarMaps, getLoopForStmt(Stmt)); 869 870 assert(isa<CastInst>(Inst) && "Can not generate vector code for instruction"); 871 872 const CastInst *Cast = dyn_cast<CastInst>(Inst); 873 VectorType *DestType = VectorType::get(Inst->getType(), VectorWidth); 874 VectorMap[Inst] = Builder.CreateCast(Cast->getOpcode(), NewOperand, DestType); 875 } 876 877 void VectorBlockGenerator::copyBinaryInst(ScopStmt &Stmt, BinaryOperator *Inst, 878 ValueMapT &VectorMap, 879 VectorValueMapT &ScalarMaps) { 880 Loop *L = getLoopForStmt(Stmt); 881 Value *OpZero = Inst->getOperand(0); 882 Value *OpOne = Inst->getOperand(1); 883 884 Value *NewOpZero, *NewOpOne; 885 NewOpZero = getVectorValue(Stmt, OpZero, VectorMap, ScalarMaps, L); 886 NewOpOne = getVectorValue(Stmt, OpOne, VectorMap, ScalarMaps, L); 887 888 Value *NewInst = Builder.CreateBinOp(Inst->getOpcode(), NewOpZero, NewOpOne, 889 Inst->getName() + "p_vec"); 890 VectorMap[Inst] = NewInst; 891 } 892 893 void VectorBlockGenerator::copyStore( 894 ScopStmt &Stmt, StoreInst *Store, ValueMapT &VectorMap, 895 VectorValueMapT &ScalarMaps, __isl_keep isl_id_to_ast_expr *NewAccesses) { 896 const MemoryAccess &Access = Stmt.getArrayAccessFor(Store); 897 898 auto *Pointer = Store->getPointerOperand(); 899 Value *Vector = getVectorValue(Stmt, Store->getValueOperand(), VectorMap, 900 ScalarMaps, getLoopForStmt(Stmt)); 901 902 // Make sure we have scalar values available to access the pointer to 903 // the data location. 904 extractScalarValues(Store, VectorMap, ScalarMaps); 905 906 if (Access.isStrideOne(isl_map_copy(Schedule))) { 907 Type *VectorPtrType = getVectorPtrTy(Pointer, getVectorWidth()); 908 Value *NewPointer = generateLocationAccessed(Stmt, Store, ScalarMaps[0], 909 VLTS[0], NewAccesses); 910 911 Value *VectorPtr = 912 Builder.CreateBitCast(NewPointer, VectorPtrType, "vector_ptr"); 913 StoreInst *Store = Builder.CreateStore(Vector, VectorPtr); 914 915 if (!Aligned) 916 Store->setAlignment(8); 917 } else { 918 for (unsigned i = 0; i < ScalarMaps.size(); i++) { 919 Value *Scalar = Builder.CreateExtractElement(Vector, Builder.getInt32(i)); 920 Value *NewPointer = generateLocationAccessed(Stmt, Store, ScalarMaps[i], 921 VLTS[i], NewAccesses); 922 Builder.CreateStore(Scalar, NewPointer); 923 } 924 } 925 } 926 927 bool VectorBlockGenerator::hasVectorOperands(const Instruction *Inst, 928 ValueMapT &VectorMap) { 929 for (Value *Operand : Inst->operands()) 930 if (VectorMap.count(Operand)) 931 return true; 932 return false; 933 } 934 935 bool VectorBlockGenerator::extractScalarValues(const Instruction *Inst, 936 ValueMapT &VectorMap, 937 VectorValueMapT &ScalarMaps) { 938 bool HasVectorOperand = false; 939 int VectorWidth = getVectorWidth(); 940 941 for (Value *Operand : Inst->operands()) { 942 ValueMapT::iterator VecOp = VectorMap.find(Operand); 943 944 if (VecOp == VectorMap.end()) 945 continue; 946 947 HasVectorOperand = true; 948 Value *NewVector = VecOp->second; 949 950 for (int i = 0; i < VectorWidth; ++i) { 951 ValueMapT &SM = ScalarMaps[i]; 952 953 // If there is one scalar extracted, all scalar elements should have 954 // already been extracted by the code here. So no need to check for the 955 // existence of all of them. 956 if (SM.count(Operand)) 957 break; 958 959 SM[Operand] = 960 Builder.CreateExtractElement(NewVector, Builder.getInt32(i)); 961 } 962 } 963 964 return HasVectorOperand; 965 } 966 967 void VectorBlockGenerator::copyInstScalarized( 968 ScopStmt &Stmt, Instruction *Inst, ValueMapT &VectorMap, 969 VectorValueMapT &ScalarMaps, __isl_keep isl_id_to_ast_expr *NewAccesses) { 970 bool HasVectorOperand; 971 int VectorWidth = getVectorWidth(); 972 973 HasVectorOperand = extractScalarValues(Inst, VectorMap, ScalarMaps); 974 975 for (int VectorLane = 0; VectorLane < getVectorWidth(); VectorLane++) 976 BlockGenerator::copyInstruction(Stmt, Inst, ScalarMaps[VectorLane], 977 VLTS[VectorLane], NewAccesses); 978 979 if (!VectorType::isValidElementType(Inst->getType()) || !HasVectorOperand) 980 return; 981 982 // Make the result available as vector value. 983 VectorType *VectorType = VectorType::get(Inst->getType(), VectorWidth); 984 Value *Vector = UndefValue::get(VectorType); 985 986 for (int i = 0; i < VectorWidth; i++) 987 Vector = Builder.CreateInsertElement(Vector, ScalarMaps[i][Inst], 988 Builder.getInt32(i)); 989 990 VectorMap[Inst] = Vector; 991 } 992 993 int VectorBlockGenerator::getVectorWidth() { return VLTS.size(); } 994 995 void VectorBlockGenerator::copyInstruction( 996 ScopStmt &Stmt, Instruction *Inst, ValueMapT &VectorMap, 997 VectorValueMapT &ScalarMaps, __isl_keep isl_id_to_ast_expr *NewAccesses) { 998 // Terminator instructions control the control flow. They are explicitly 999 // expressed in the clast and do not need to be copied. 1000 if (Inst->isTerminator()) 1001 return; 1002 1003 if (canSyntheziseInStmt(Stmt, Inst)) 1004 return; 1005 1006 if (auto *Load = dyn_cast<LoadInst>(Inst)) { 1007 generateLoad(Stmt, Load, VectorMap, ScalarMaps, NewAccesses); 1008 return; 1009 } 1010 1011 if (hasVectorOperands(Inst, VectorMap)) { 1012 if (auto *Store = dyn_cast<StoreInst>(Inst)) { 1013 // Identified as redundant by -polly-simplify. 1014 if (!Stmt.getArrayAccessOrNULLFor(Store)) 1015 return; 1016 1017 copyStore(Stmt, Store, VectorMap, ScalarMaps, NewAccesses); 1018 return; 1019 } 1020 1021 if (auto *Unary = dyn_cast<UnaryInstruction>(Inst)) { 1022 copyUnaryInst(Stmt, Unary, VectorMap, ScalarMaps); 1023 return; 1024 } 1025 1026 if (auto *Binary = dyn_cast<BinaryOperator>(Inst)) { 1027 copyBinaryInst(Stmt, Binary, VectorMap, ScalarMaps); 1028 return; 1029 } 1030 1031 // Falltrough: We generate scalar instructions, if we don't know how to 1032 // generate vector code. 1033 } 1034 1035 copyInstScalarized(Stmt, Inst, VectorMap, ScalarMaps, NewAccesses); 1036 } 1037 1038 void VectorBlockGenerator::generateScalarVectorLoads( 1039 ScopStmt &Stmt, ValueMapT &VectorBlockMap) { 1040 for (MemoryAccess *MA : Stmt) { 1041 if (MA->isArrayKind() || MA->isWrite()) 1042 continue; 1043 1044 auto *Address = getOrCreateAlloca(*MA); 1045 Type *VectorPtrType = getVectorPtrTy(Address, 1); 1046 Value *VectorPtr = Builder.CreateBitCast(Address, VectorPtrType, 1047 Address->getName() + "_p_vec_p"); 1048 auto *Val = Builder.CreateLoad(VectorPtr, Address->getName() + ".reload"); 1049 Constant *SplatVector = Constant::getNullValue( 1050 VectorType::get(Builder.getInt32Ty(), getVectorWidth())); 1051 1052 Value *VectorVal = Builder.CreateShuffleVector( 1053 Val, Val, SplatVector, Address->getName() + "_p_splat"); 1054 VectorBlockMap[MA->getAccessValue()] = VectorVal; 1055 } 1056 } 1057 1058 void VectorBlockGenerator::verifyNoScalarStores(ScopStmt &Stmt) { 1059 for (MemoryAccess *MA : Stmt) { 1060 if (MA->isArrayKind() || MA->isRead()) 1061 continue; 1062 1063 llvm_unreachable("Scalar stores not expected in vector loop"); 1064 } 1065 } 1066 1067 void VectorBlockGenerator::copyStmt( 1068 ScopStmt &Stmt, __isl_keep isl_id_to_ast_expr *NewAccesses) { 1069 assert(Stmt.isBlockStmt() && 1070 "TODO: Only block statements can be copied by the vector block " 1071 "generator"); 1072 1073 BasicBlock *BB = Stmt.getBasicBlock(); 1074 BasicBlock *CopyBB = SplitBlock(Builder.GetInsertBlock(), 1075 &*Builder.GetInsertPoint(), &DT, &LI); 1076 CopyBB->setName("polly.stmt." + BB->getName()); 1077 Builder.SetInsertPoint(&CopyBB->front()); 1078 1079 // Create two maps that store the mapping from the original instructions of 1080 // the old basic block to their copies in the new basic block. Those maps 1081 // are basic block local. 1082 // 1083 // As vector code generation is supported there is one map for scalar values 1084 // and one for vector values. 1085 // 1086 // In case we just do scalar code generation, the vectorMap is not used and 1087 // the scalarMap has just one dimension, which contains the mapping. 1088 // 1089 // In case vector code generation is done, an instruction may either appear 1090 // in the vector map once (as it is calculating >vectorwidth< values at a 1091 // time. Or (if the values are calculated using scalar operations), it 1092 // appears once in every dimension of the scalarMap. 1093 VectorValueMapT ScalarBlockMap(getVectorWidth()); 1094 ValueMapT VectorBlockMap; 1095 1096 generateScalarVectorLoads(Stmt, VectorBlockMap); 1097 1098 for (Instruction &Inst : *BB) 1099 copyInstruction(Stmt, &Inst, VectorBlockMap, ScalarBlockMap, NewAccesses); 1100 1101 verifyNoScalarStores(Stmt); 1102 } 1103 1104 BasicBlock *RegionGenerator::repairDominance(BasicBlock *BB, 1105 BasicBlock *BBCopy) { 1106 1107 BasicBlock *BBIDom = DT.getNode(BB)->getIDom()->getBlock(); 1108 BasicBlock *BBCopyIDom = BlockMap.lookup(BBIDom); 1109 1110 if (BBCopyIDom) 1111 DT.changeImmediateDominator(BBCopy, BBCopyIDom); 1112 1113 return BBCopyIDom; 1114 } 1115 1116 // This is to determine whether an llvm::Value (defined in @p BB) is usable when 1117 // leaving a subregion. The straight-forward DT.dominates(BB, R->getExitBlock()) 1118 // does not work in cases where the exit block has edges from outside the 1119 // region. In that case the llvm::Value would never be usable in in the exit 1120 // block. The RegionGenerator however creates an new exit block ('ExitBBCopy') 1121 // for the subregion's exiting edges only. We need to determine whether an 1122 // llvm::Value is usable in there. We do this by checking whether it dominates 1123 // all exiting blocks individually. 1124 static bool isDominatingSubregionExit(const DominatorTree &DT, Region *R, 1125 BasicBlock *BB) { 1126 for (auto ExitingBB : predecessors(R->getExit())) { 1127 // Check for non-subregion incoming edges. 1128 if (!R->contains(ExitingBB)) 1129 continue; 1130 1131 if (!DT.dominates(BB, ExitingBB)) 1132 return false; 1133 } 1134 1135 return true; 1136 } 1137 1138 // Find the direct dominator of the subregion's exit block if the subregion was 1139 // simplified. 1140 static BasicBlock *findExitDominator(DominatorTree &DT, Region *R) { 1141 BasicBlock *Common = nullptr; 1142 for (auto ExitingBB : predecessors(R->getExit())) { 1143 // Check for non-subregion incoming edges. 1144 if (!R->contains(ExitingBB)) 1145 continue; 1146 1147 // First exiting edge. 1148 if (!Common) { 1149 Common = ExitingBB; 1150 continue; 1151 } 1152 1153 Common = DT.findNearestCommonDominator(Common, ExitingBB); 1154 } 1155 1156 assert(Common && R->contains(Common)); 1157 return Common; 1158 } 1159 1160 void RegionGenerator::copyStmt(ScopStmt &Stmt, LoopToScevMapT <S, 1161 isl_id_to_ast_expr *IdToAstExp) { 1162 assert(Stmt.isRegionStmt() && 1163 "Only region statements can be copied by the region generator"); 1164 1165 // Forget all old mappings. 1166 BlockMap.clear(); 1167 RegionMaps.clear(); 1168 IncompletePHINodeMap.clear(); 1169 1170 // Collection of all values related to this subregion. 1171 ValueMapT ValueMap; 1172 1173 // The region represented by the statement. 1174 Region *R = Stmt.getRegion(); 1175 1176 // Create a dedicated entry for the region where we can reload all demoted 1177 // inputs. 1178 BasicBlock *EntryBB = R->getEntry(); 1179 BasicBlock *EntryBBCopy = SplitBlock(Builder.GetInsertBlock(), 1180 &*Builder.GetInsertPoint(), &DT, &LI); 1181 EntryBBCopy->setName("polly.stmt." + EntryBB->getName() + ".entry"); 1182 Builder.SetInsertPoint(&EntryBBCopy->front()); 1183 1184 ValueMapT &EntryBBMap = RegionMaps[EntryBBCopy]; 1185 generateScalarLoads(Stmt, LTS, EntryBBMap, IdToAstExp); 1186 1187 for (auto PI = pred_begin(EntryBB), PE = pred_end(EntryBB); PI != PE; ++PI) 1188 if (!R->contains(*PI)) 1189 BlockMap[*PI] = EntryBBCopy; 1190 1191 // Iterate over all blocks in the region in a breadth-first search. 1192 std::deque<BasicBlock *> Blocks; 1193 SmallSetVector<BasicBlock *, 8> SeenBlocks; 1194 Blocks.push_back(EntryBB); 1195 SeenBlocks.insert(EntryBB); 1196 1197 while (!Blocks.empty()) { 1198 BasicBlock *BB = Blocks.front(); 1199 Blocks.pop_front(); 1200 1201 // First split the block and update dominance information. 1202 BasicBlock *BBCopy = splitBB(BB); 1203 BasicBlock *BBCopyIDom = repairDominance(BB, BBCopy); 1204 1205 // Get the mapping for this block and initialize it with either the scalar 1206 // loads from the generated entering block (which dominates all blocks of 1207 // this subregion) or the maps of the immediate dominator, if part of the 1208 // subregion. The latter necessarily includes the former. 1209 ValueMapT *InitBBMap; 1210 if (BBCopyIDom) { 1211 assert(RegionMaps.count(BBCopyIDom)); 1212 InitBBMap = &RegionMaps[BBCopyIDom]; 1213 } else 1214 InitBBMap = &EntryBBMap; 1215 auto Inserted = RegionMaps.insert(std::make_pair(BBCopy, *InitBBMap)); 1216 ValueMapT &RegionMap = Inserted.first->second; 1217 1218 // Copy the block with the BlockGenerator. 1219 Builder.SetInsertPoint(&BBCopy->front()); 1220 copyBB(Stmt, BB, BBCopy, RegionMap, LTS, IdToAstExp); 1221 1222 // In order to remap PHI nodes we store also basic block mappings. 1223 BlockMap[BB] = BBCopy; 1224 1225 // Add values to incomplete PHI nodes waiting for this block to be copied. 1226 for (const PHINodePairTy &PHINodePair : IncompletePHINodeMap[BB]) 1227 addOperandToPHI(Stmt, PHINodePair.first, PHINodePair.second, BB, LTS); 1228 IncompletePHINodeMap[BB].clear(); 1229 1230 // And continue with new successors inside the region. 1231 for (auto SI = succ_begin(BB), SE = succ_end(BB); SI != SE; SI++) 1232 if (R->contains(*SI) && SeenBlocks.insert(*SI)) 1233 Blocks.push_back(*SI); 1234 1235 // Remember value in case it is visible after this subregion. 1236 if (isDominatingSubregionExit(DT, R, BB)) 1237 ValueMap.insert(RegionMap.begin(), RegionMap.end()); 1238 } 1239 1240 // Now create a new dedicated region exit block and add it to the region map. 1241 BasicBlock *ExitBBCopy = SplitBlock(Builder.GetInsertBlock(), 1242 &*Builder.GetInsertPoint(), &DT, &LI); 1243 ExitBBCopy->setName("polly.stmt." + R->getExit()->getName() + ".exit"); 1244 BlockMap[R->getExit()] = ExitBBCopy; 1245 1246 BasicBlock *ExitDomBBCopy = BlockMap.lookup(findExitDominator(DT, R)); 1247 assert(ExitDomBBCopy && 1248 "Common exit dominator must be within region; at least the entry node " 1249 "must match"); 1250 DT.changeImmediateDominator(ExitBBCopy, ExitDomBBCopy); 1251 1252 // As the block generator doesn't handle control flow we need to add the 1253 // region control flow by hand after all blocks have been copied. 1254 for (BasicBlock *BB : SeenBlocks) { 1255 1256 BasicBlock *BBCopy = BlockMap[BB]; 1257 TerminatorInst *TI = BB->getTerminator(); 1258 if (isa<UnreachableInst>(TI)) { 1259 while (!BBCopy->empty()) 1260 BBCopy->begin()->eraseFromParent(); 1261 new UnreachableInst(BBCopy->getContext(), BBCopy); 1262 continue; 1263 } 1264 1265 Instruction *BICopy = BBCopy->getTerminator(); 1266 1267 ValueMapT &RegionMap = RegionMaps[BBCopy]; 1268 RegionMap.insert(BlockMap.begin(), BlockMap.end()); 1269 1270 Builder.SetInsertPoint(BICopy); 1271 copyInstScalar(Stmt, TI, RegionMap, LTS); 1272 BICopy->eraseFromParent(); 1273 } 1274 1275 // Add counting PHI nodes to all loops in the region that can be used as 1276 // replacement for SCEVs refering to the old loop. 1277 for (BasicBlock *BB : SeenBlocks) { 1278 Loop *L = LI.getLoopFor(BB); 1279 if (L == nullptr || L->getHeader() != BB || !R->contains(L)) 1280 continue; 1281 1282 BasicBlock *BBCopy = BlockMap[BB]; 1283 Value *NullVal = Builder.getInt32(0); 1284 PHINode *LoopPHI = 1285 PHINode::Create(Builder.getInt32Ty(), 2, "polly.subregion.iv"); 1286 Instruction *LoopPHIInc = BinaryOperator::CreateAdd( 1287 LoopPHI, Builder.getInt32(1), "polly.subregion.iv.inc"); 1288 LoopPHI->insertBefore(&BBCopy->front()); 1289 LoopPHIInc->insertBefore(BBCopy->getTerminator()); 1290 1291 for (auto *PredBB : make_range(pred_begin(BB), pred_end(BB))) { 1292 if (!R->contains(PredBB)) 1293 continue; 1294 if (L->contains(PredBB)) 1295 LoopPHI->addIncoming(LoopPHIInc, BlockMap[PredBB]); 1296 else 1297 LoopPHI->addIncoming(NullVal, BlockMap[PredBB]); 1298 } 1299 1300 for (auto *PredBBCopy : make_range(pred_begin(BBCopy), pred_end(BBCopy))) 1301 if (LoopPHI->getBasicBlockIndex(PredBBCopy) < 0) 1302 LoopPHI->addIncoming(NullVal, PredBBCopy); 1303 1304 LTS[L] = SE.getUnknown(LoopPHI); 1305 } 1306 1307 // Continue generating code in the exit block. 1308 Builder.SetInsertPoint(&*ExitBBCopy->getFirstInsertionPt()); 1309 1310 // Write values visible to other statements. 1311 generateScalarStores(Stmt, LTS, ValueMap, IdToAstExp); 1312 BlockMap.clear(); 1313 RegionMaps.clear(); 1314 IncompletePHINodeMap.clear(); 1315 } 1316 1317 PHINode *RegionGenerator::buildExitPHI(MemoryAccess *MA, LoopToScevMapT <S, 1318 ValueMapT &BBMap, Loop *L) { 1319 ScopStmt *Stmt = MA->getStatement(); 1320 Region *SubR = Stmt->getRegion(); 1321 auto Incoming = MA->getIncoming(); 1322 1323 PollyIRBuilder::InsertPointGuard IPGuard(Builder); 1324 PHINode *OrigPHI = cast<PHINode>(MA->getAccessInstruction()); 1325 BasicBlock *NewSubregionExit = Builder.GetInsertBlock(); 1326 1327 // This can happen if the subregion is simplified after the ScopStmts 1328 // have been created; simplification happens as part of CodeGeneration. 1329 if (OrigPHI->getParent() != SubR->getExit()) { 1330 BasicBlock *FormerExit = SubR->getExitingBlock(); 1331 if (FormerExit) 1332 NewSubregionExit = BlockMap.lookup(FormerExit); 1333 } 1334 1335 PHINode *NewPHI = PHINode::Create(OrigPHI->getType(), Incoming.size(), 1336 "polly." + OrigPHI->getName(), 1337 NewSubregionExit->getFirstNonPHI()); 1338 1339 // Add the incoming values to the PHI. 1340 for (auto &Pair : Incoming) { 1341 BasicBlock *OrigIncomingBlock = Pair.first; 1342 BasicBlock *NewIncomingBlock = BlockMap.lookup(OrigIncomingBlock); 1343 Builder.SetInsertPoint(NewIncomingBlock->getTerminator()); 1344 assert(RegionMaps.count(NewIncomingBlock)); 1345 ValueMapT *LocalBBMap = &RegionMaps[NewIncomingBlock]; 1346 1347 Value *OrigIncomingValue = Pair.second; 1348 Value *NewIncomingValue = 1349 getNewValue(*Stmt, OrigIncomingValue, *LocalBBMap, LTS, L); 1350 NewPHI->addIncoming(NewIncomingValue, NewIncomingBlock); 1351 } 1352 1353 return NewPHI; 1354 } 1355 1356 Value *RegionGenerator::getExitScalar(MemoryAccess *MA, LoopToScevMapT <S, 1357 ValueMapT &BBMap) { 1358 ScopStmt *Stmt = MA->getStatement(); 1359 1360 // TODO: Add some test cases that ensure this is really the right choice. 1361 Loop *L = LI.getLoopFor(Stmt->getRegion()->getExit()); 1362 1363 if (MA->isAnyPHIKind()) { 1364 auto Incoming = MA->getIncoming(); 1365 assert(!Incoming.empty() && 1366 "PHI WRITEs must have originate from at least one incoming block"); 1367 1368 // If there is only one incoming value, we do not need to create a PHI. 1369 if (Incoming.size() == 1) { 1370 Value *OldVal = Incoming[0].second; 1371 return getNewValue(*Stmt, OldVal, BBMap, LTS, L); 1372 } 1373 1374 return buildExitPHI(MA, LTS, BBMap, L); 1375 } 1376 1377 // MemoryKind::Value accesses leaving the subregion must dominate the exit 1378 // block; just pass the copied value. 1379 Value *OldVal = MA->getAccessValue(); 1380 return getNewValue(*Stmt, OldVal, BBMap, LTS, L); 1381 } 1382 1383 void RegionGenerator::generateScalarStores( 1384 ScopStmt &Stmt, LoopToScevMapT <S, ValueMapT &BBMap, 1385 __isl_keep isl_id_to_ast_expr *NewAccesses) { 1386 assert(Stmt.getRegion() && 1387 "Block statements need to use the generateScalarStores() " 1388 "function in the BlockGenerator"); 1389 1390 for (MemoryAccess *MA : Stmt) { 1391 if (MA->isOriginalArrayKind() || MA->isRead()) 1392 continue; 1393 1394 Value *NewVal = getExitScalar(MA, LTS, BBMap); 1395 Value *Address = 1396 getImplicitAddress(*MA, getLoopForStmt(Stmt), LTS, BBMap, NewAccesses); 1397 assert((!isa<Instruction>(NewVal) || 1398 DT.dominates(cast<Instruction>(NewVal)->getParent(), 1399 Builder.GetInsertBlock())) && 1400 "Domination violation"); 1401 assert((!isa<Instruction>(Address) || 1402 DT.dominates(cast<Instruction>(Address)->getParent(), 1403 Builder.GetInsertBlock())) && 1404 "Domination violation"); 1405 Builder.CreateStore(NewVal, Address); 1406 } 1407 } 1408 1409 void RegionGenerator::addOperandToPHI(ScopStmt &Stmt, PHINode *PHI, 1410 PHINode *PHICopy, BasicBlock *IncomingBB, 1411 LoopToScevMapT <S) { 1412 Region *StmtR = Stmt.getRegion(); 1413 1414 // If the incoming block was not yet copied mark this PHI as incomplete. 1415 // Once the block will be copied the incoming value will be added. 1416 BasicBlock *BBCopy = BlockMap[IncomingBB]; 1417 if (!BBCopy) { 1418 assert(StmtR->contains(IncomingBB) && 1419 "Bad incoming block for PHI in non-affine region"); 1420 IncompletePHINodeMap[IncomingBB].push_back(std::make_pair(PHI, PHICopy)); 1421 return; 1422 } 1423 1424 assert(RegionMaps.count(BBCopy) && "Incoming PHI block did not have a BBMap"); 1425 ValueMapT &BBCopyMap = RegionMaps[BBCopy]; 1426 1427 Value *OpCopy = nullptr; 1428 1429 if (StmtR->contains(IncomingBB)) { 1430 Value *Op = PHI->getIncomingValueForBlock(IncomingBB); 1431 1432 // If the current insert block is different from the PHIs incoming block 1433 // change it, otherwise do not. 1434 auto IP = Builder.GetInsertPoint(); 1435 if (IP->getParent() != BBCopy) 1436 Builder.SetInsertPoint(BBCopy->getTerminator()); 1437 OpCopy = getNewValue(Stmt, Op, BBCopyMap, LTS, getLoopForStmt(Stmt)); 1438 if (IP->getParent() != BBCopy) 1439 Builder.SetInsertPoint(&*IP); 1440 } else { 1441 // All edges from outside the non-affine region become a single edge 1442 // in the new copy of the non-affine region. Make sure to only add the 1443 // corresponding edge the first time we encounter a basic block from 1444 // outside the non-affine region. 1445 if (PHICopy->getBasicBlockIndex(BBCopy) >= 0) 1446 return; 1447 1448 // Get the reloaded value. 1449 OpCopy = getNewValue(Stmt, PHI, BBCopyMap, LTS, getLoopForStmt(Stmt)); 1450 } 1451 1452 assert(OpCopy && "Incoming PHI value was not copied properly"); 1453 assert(BBCopy && "Incoming PHI block was not copied properly"); 1454 PHICopy->addIncoming(OpCopy, BBCopy); 1455 } 1456 1457 void RegionGenerator::copyPHIInstruction(ScopStmt &Stmt, PHINode *PHI, 1458 ValueMapT &BBMap, 1459 LoopToScevMapT <S) { 1460 unsigned NumIncoming = PHI->getNumIncomingValues(); 1461 PHINode *PHICopy = 1462 Builder.CreatePHI(PHI->getType(), NumIncoming, "polly." + PHI->getName()); 1463 PHICopy->moveBefore(PHICopy->getParent()->getFirstNonPHI()); 1464 BBMap[PHI] = PHICopy; 1465 1466 for (BasicBlock *IncomingBB : PHI->blocks()) 1467 addOperandToPHI(Stmt, PHI, PHICopy, IncomingBB, LTS); 1468 } 1469