1 //===--- BlockGenerators.cpp - Generate code for statements -----*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the BlockGenerator and VectorBlockGenerator classes,
11 // which generate sequential code and vectorized code for a polyhedral
12 // statement, respectively.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "polly/CodeGen/BlockGenerators.h"
17 #include "polly/CodeGen/CodeGeneration.h"
18 #include "polly/CodeGen/IslExprBuilder.h"
19 #include "polly/CodeGen/RuntimeDebugBuilder.h"
20 #include "polly/Options.h"
21 #include "polly/ScopInfo.h"
22 #include "polly/Support/GICHelper.h"
23 #include "polly/Support/SCEVValidator.h"
24 #include "polly/Support/ScopHelper.h"
25 #include "llvm/Analysis/LoopInfo.h"
26 #include "llvm/Analysis/RegionInfo.h"
27 #include "llvm/Analysis/ScalarEvolution.h"
28 #include "llvm/IR/IntrinsicInst.h"
29 #include "llvm/IR/Module.h"
30 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
31 #include "llvm/Transforms/Utils/Local.h"
32 #include "isl/aff.h"
33 #include "isl/ast.h"
34 #include "isl/ast_build.h"
35 #include "isl/set.h"
36 #include <deque>
37 
38 using namespace llvm;
39 using namespace polly;
40 
41 static cl::opt<bool> Aligned("enable-polly-aligned",
42                              cl::desc("Assumed aligned memory accesses."),
43                              cl::Hidden, cl::init(false), cl::ZeroOrMore,
44                              cl::cat(PollyCategory));
45 
46 static cl::opt<bool> DebugPrinting(
47     "polly-codegen-add-debug-printing",
48     cl::desc("Add printf calls that show the values loaded/stored."),
49     cl::Hidden, cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory));
50 
51 BlockGenerator::BlockGenerator(PollyIRBuilder &B, LoopInfo &LI,
52                                ScalarEvolution &SE, DominatorTree &DT,
53                                ScalarAllocaMapTy &ScalarMap,
54                                ScalarAllocaMapTy &PHIOpMap,
55                                EscapeUsersAllocaMapTy &EscapeMap,
56                                ValueMapT &GlobalMap,
57                                IslExprBuilder *ExprBuilder)
58     : Builder(B), LI(LI), SE(SE), ExprBuilder(ExprBuilder), DT(DT),
59       EntryBB(nullptr), PHIOpMap(PHIOpMap), ScalarMap(ScalarMap),
60       EscapeMap(EscapeMap), GlobalMap(GlobalMap) {}
61 
62 Value *BlockGenerator::trySynthesizeNewValue(ScopStmt &Stmt, Value *Old,
63                                              ValueMapT &BBMap,
64                                              LoopToScevMapT &LTS,
65                                              Loop *L) const {
66   if (!SE.isSCEVable(Old->getType()))
67     return nullptr;
68 
69   const SCEV *Scev = SE.getSCEVAtScope(Old, L);
70   if (!Scev)
71     return nullptr;
72 
73   if (isa<SCEVCouldNotCompute>(Scev))
74     return nullptr;
75 
76   const SCEV *NewScev = apply(Scev, LTS, SE);
77   ValueMapT VTV;
78   VTV.insert(BBMap.begin(), BBMap.end());
79   VTV.insert(GlobalMap.begin(), GlobalMap.end());
80 
81   Scop &S = *Stmt.getParent();
82   const DataLayout &DL =
83       S.getRegion().getEntry()->getParent()->getParent()->getDataLayout();
84   auto IP = Builder.GetInsertPoint();
85 
86   assert(IP != Builder.GetInsertBlock()->end() &&
87          "Only instructions can be insert points for SCEVExpander");
88   Value *Expanded =
89       expandCodeFor(S, SE, DL, "polly", NewScev, Old->getType(), &*IP, &VTV);
90 
91   BBMap[Old] = Expanded;
92   return Expanded;
93 }
94 
95 Value *BlockGenerator::getNewValue(ScopStmt &Stmt, Value *Old, ValueMapT &BBMap,
96                                    LoopToScevMapT &LTS, Loop *L) const {
97   // Constants that do not reference any named value can always remain
98   // unchanged. Handle them early to avoid expensive map lookups. We do not take
99   // the fast-path for external constants which are referenced through globals
100   // as these may need to be rewritten when distributing code accross different
101   // LLVM modules.
102   if (isa<Constant>(Old) && !isa<GlobalValue>(Old))
103     return Old;
104 
105   // Inline asm is like a constant to us.
106   if (isa<InlineAsm>(Old))
107     return Old;
108 
109   if (Value *New = GlobalMap.lookup(Old)) {
110     if (Value *NewRemapped = GlobalMap.lookup(New))
111       New = NewRemapped;
112     if (Old->getType()->getScalarSizeInBits() <
113         New->getType()->getScalarSizeInBits())
114       New = Builder.CreateTruncOrBitCast(New, Old->getType());
115 
116     return New;
117   }
118 
119   if (Value *New = BBMap.lookup(Old))
120     return New;
121 
122   if (Value *New = trySynthesizeNewValue(Stmt, Old, BBMap, LTS, L))
123     return New;
124 
125   // A scop-constant value defined by a global or a function parameter.
126   if (isa<GlobalValue>(Old) || isa<Argument>(Old))
127     return Old;
128 
129   // A scop-constant value defined by an instruction executed outside the scop.
130   if (const Instruction *Inst = dyn_cast<Instruction>(Old))
131     if (!Stmt.getParent()->getRegion().contains(Inst->getParent()))
132       return Old;
133 
134   // The scalar dependence is neither available nor SCEVCodegenable.
135   llvm_unreachable("Unexpected scalar dependence in region!");
136   return nullptr;
137 }
138 
139 void BlockGenerator::copyInstScalar(ScopStmt &Stmt, Instruction *Inst,
140                                     ValueMapT &BBMap, LoopToScevMapT &LTS) {
141   // We do not generate debug intrinsics as we did not investigate how to
142   // copy them correctly. At the current state, they just crash the code
143   // generation as the meta-data operands are not correctly copied.
144   if (isa<DbgInfoIntrinsic>(Inst))
145     return;
146 
147   Instruction *NewInst = Inst->clone();
148 
149   // Replace old operands with the new ones.
150   for (Value *OldOperand : Inst->operands()) {
151     Value *NewOperand =
152         getNewValue(Stmt, OldOperand, BBMap, LTS, getLoopForInst(Inst));
153 
154     if (!NewOperand) {
155       assert(!isa<StoreInst>(NewInst) &&
156              "Store instructions are always needed!");
157       delete NewInst;
158       return;
159     }
160 
161     NewInst->replaceUsesOfWith(OldOperand, NewOperand);
162   }
163 
164   Builder.Insert(NewInst);
165   BBMap[Inst] = NewInst;
166 
167   if (!NewInst->getType()->isVoidTy())
168     NewInst->setName("p_" + Inst->getName());
169 }
170 
171 Value *
172 BlockGenerator::generateLocationAccessed(ScopStmt &Stmt, MemAccInst Inst,
173                                          ValueMapT &BBMap, LoopToScevMapT &LTS,
174                                          isl_id_to_ast_expr *NewAccesses) {
175   const MemoryAccess &MA = Stmt.getArrayAccessFor(Inst);
176 
177   isl_ast_expr *AccessExpr = isl_id_to_ast_expr_get(NewAccesses, MA.getId());
178 
179   if (AccessExpr) {
180     AccessExpr = isl_ast_expr_address_of(AccessExpr);
181     auto Address = ExprBuilder->create(AccessExpr);
182 
183     // Cast the address of this memory access to a pointer type that has the
184     // same element type as the original access, but uses the address space of
185     // the newly generated pointer.
186     auto OldPtrTy = MA.getAccessValue()->getType()->getPointerTo();
187     auto NewPtrTy = Address->getType();
188     OldPtrTy = PointerType::get(OldPtrTy->getElementType(),
189                                 NewPtrTy->getPointerAddressSpace());
190 
191     if (OldPtrTy != NewPtrTy) {
192       assert(OldPtrTy->getPointerElementType()->getPrimitiveSizeInBits() ==
193                  NewPtrTy->getPointerElementType()->getPrimitiveSizeInBits() &&
194              "Pointer types to elements with different size found");
195       Address = Builder.CreateBitOrPointerCast(Address, OldPtrTy);
196     }
197     return Address;
198   }
199 
200   return getNewValue(Stmt, Inst.getPointerOperand(), BBMap, LTS,
201                      getLoopForInst(Inst));
202 }
203 
204 Loop *BlockGenerator::getLoopForInst(const llvm::Instruction *Inst) {
205   return LI.getLoopFor(Inst->getParent());
206 }
207 
208 Value *BlockGenerator::generateScalarLoad(ScopStmt &Stmt, LoadInst *Load,
209                                           ValueMapT &BBMap, LoopToScevMapT &LTS,
210                                           isl_id_to_ast_expr *NewAccesses) {
211   if (Value *PreloadLoad = GlobalMap.lookup(Load))
212     return PreloadLoad;
213 
214   Value *NewPointer =
215       generateLocationAccessed(Stmt, Load, BBMap, LTS, NewAccesses);
216   Value *ScalarLoad = Builder.CreateAlignedLoad(
217       NewPointer, Load->getAlignment(), Load->getName() + "_p_scalar_");
218 
219   if (DebugPrinting)
220     RuntimeDebugBuilder::createCPUPrinter(Builder, "Load from ", NewPointer,
221                                           ": ", ScalarLoad, "\n");
222 
223   return ScalarLoad;
224 }
225 
226 void BlockGenerator::generateScalarStore(ScopStmt &Stmt, StoreInst *Store,
227                                          ValueMapT &BBMap, LoopToScevMapT &LTS,
228                                          isl_id_to_ast_expr *NewAccesses) {
229   Value *NewPointer =
230       generateLocationAccessed(Stmt, Store, BBMap, LTS, NewAccesses);
231   Value *ValueOperand = getNewValue(Stmt, Store->getValueOperand(), BBMap, LTS,
232                                     getLoopForInst(Store));
233 
234   if (DebugPrinting)
235     RuntimeDebugBuilder::createCPUPrinter(Builder, "Store to  ", NewPointer,
236                                           ": ", ValueOperand, "\n");
237 
238   Builder.CreateAlignedStore(ValueOperand, NewPointer, Store->getAlignment());
239 }
240 
241 bool BlockGenerator::canSyntheziseInStmt(ScopStmt &Stmt, Instruction *Inst) {
242   Loop *L = getLoopForInst(Inst);
243   return (Stmt.isBlockStmt() || !Stmt.getRegion()->contains(L)) &&
244          canSynthesize(Inst, &LI, &SE, &Stmt.getParent()->getRegion());
245 }
246 
247 void BlockGenerator::copyInstruction(ScopStmt &Stmt, Instruction *Inst,
248                                      ValueMapT &BBMap, LoopToScevMapT &LTS,
249                                      isl_id_to_ast_expr *NewAccesses) {
250   // Terminator instructions control the control flow. They are explicitly
251   // expressed in the clast and do not need to be copied.
252   if (Inst->isTerminator())
253     return;
254 
255   // Synthesizable statements will be generated on-demand.
256   if (canSyntheziseInStmt(Stmt, Inst))
257     return;
258 
259   if (auto *Load = dyn_cast<LoadInst>(Inst)) {
260     Value *NewLoad = generateScalarLoad(Stmt, Load, BBMap, LTS, NewAccesses);
261     // Compute NewLoad before its insertion in BBMap to make the insertion
262     // deterministic.
263     BBMap[Load] = NewLoad;
264     return;
265   }
266 
267   if (auto *Store = dyn_cast<StoreInst>(Inst)) {
268     generateScalarStore(Stmt, Store, BBMap, LTS, NewAccesses);
269     return;
270   }
271 
272   if (auto *PHI = dyn_cast<PHINode>(Inst)) {
273     copyPHIInstruction(Stmt, PHI, BBMap, LTS);
274     return;
275   }
276 
277   // Skip some special intrinsics for which we do not adjust the semantics to
278   // the new schedule. All others are handled like every other instruction.
279   if (isIgnoredIntrinsic(Inst))
280     return;
281 
282   copyInstScalar(Stmt, Inst, BBMap, LTS);
283 }
284 
285 void BlockGenerator::copyStmt(ScopStmt &Stmt, LoopToScevMapT &LTS,
286                               isl_id_to_ast_expr *NewAccesses) {
287   assert(Stmt.isBlockStmt() &&
288          "Only block statements can be copied by the block generator");
289 
290   ValueMapT BBMap;
291 
292   BasicBlock *BB = Stmt.getBasicBlock();
293   copyBB(Stmt, BB, BBMap, LTS, NewAccesses);
294 }
295 
296 BasicBlock *BlockGenerator::splitBB(BasicBlock *BB) {
297   BasicBlock *CopyBB = SplitBlock(Builder.GetInsertBlock(),
298                                   &*Builder.GetInsertPoint(), &DT, &LI);
299   CopyBB->setName("polly.stmt." + BB->getName());
300   return CopyBB;
301 }
302 
303 BasicBlock *BlockGenerator::copyBB(ScopStmt &Stmt, BasicBlock *BB,
304                                    ValueMapT &BBMap, LoopToScevMapT &LTS,
305                                    isl_id_to_ast_expr *NewAccesses) {
306   BasicBlock *CopyBB = splitBB(BB);
307   Builder.SetInsertPoint(&CopyBB->front());
308   generateScalarLoads(Stmt, BBMap);
309 
310   copyBB(Stmt, BB, CopyBB, BBMap, LTS, NewAccesses);
311 
312   // After a basic block was copied store all scalars that escape this block in
313   // their alloca.
314   generateScalarStores(Stmt, LTS, BBMap);
315   return CopyBB;
316 }
317 
318 void BlockGenerator::copyBB(ScopStmt &Stmt, BasicBlock *BB, BasicBlock *CopyBB,
319                             ValueMapT &BBMap, LoopToScevMapT &LTS,
320                             isl_id_to_ast_expr *NewAccesses) {
321   EntryBB = &CopyBB->getParent()->getEntryBlock();
322 
323   for (Instruction &Inst : *BB)
324     copyInstruction(Stmt, &Inst, BBMap, LTS, NewAccesses);
325 }
326 
327 Value *BlockGenerator::getOrCreateAlloca(Value *ScalarBase,
328                                          ScalarAllocaMapTy &Map,
329                                          const char *NameExt) {
330   // If no alloca was found create one and insert it in the entry block.
331   if (!Map.count(ScalarBase)) {
332     auto *Ty = ScalarBase->getType();
333     auto NewAddr = new AllocaInst(Ty, ScalarBase->getName() + NameExt);
334     EntryBB = &Builder.GetInsertBlock()->getParent()->getEntryBlock();
335     NewAddr->insertBefore(&*EntryBB->getFirstInsertionPt());
336     Map[ScalarBase] = NewAddr;
337   }
338 
339   auto Addr = Map[ScalarBase];
340 
341   if (auto NewAddr = GlobalMap.lookup(Addr))
342     return NewAddr;
343 
344   return Addr;
345 }
346 
347 Value *BlockGenerator::getOrCreateAlloca(MemoryAccess &Access) {
348   if (Access.isPHIKind())
349     return getOrCreatePHIAlloca(Access.getBaseAddr());
350   else
351     return getOrCreateScalarAlloca(Access.getBaseAddr());
352 }
353 
354 Value *BlockGenerator::getOrCreateAlloca(const ScopArrayInfo *Array) {
355   if (Array->isPHIKind())
356     return getOrCreatePHIAlloca(Array->getBasePtr());
357   else
358     return getOrCreateScalarAlloca(Array->getBasePtr());
359 }
360 
361 Value *BlockGenerator::getOrCreateScalarAlloca(Value *ScalarBase) {
362   return getOrCreateAlloca(ScalarBase, ScalarMap, ".s2a");
363 }
364 
365 Value *BlockGenerator::getOrCreatePHIAlloca(Value *ScalarBase) {
366   return getOrCreateAlloca(ScalarBase, PHIOpMap, ".phiops");
367 }
368 
369 void BlockGenerator::handleOutsideUsers(const Region &R, Instruction *Inst,
370                                         Value *Address) {
371   // If there are escape users we get the alloca for this instruction and put it
372   // in the EscapeMap for later finalization. Lastly, if the instruction was
373   // copied multiple times we already did this and can exit.
374   if (EscapeMap.count(Inst))
375     return;
376 
377   EscapeUserVectorTy EscapeUsers;
378   for (User *U : Inst->users()) {
379 
380     // Non-instruction user will never escape.
381     Instruction *UI = dyn_cast<Instruction>(U);
382     if (!UI)
383       continue;
384 
385     if (R.contains(UI))
386       continue;
387 
388     EscapeUsers.push_back(UI);
389   }
390 
391   // Exit if no escape uses were found.
392   if (EscapeUsers.empty())
393     return;
394 
395   // Get or create an escape alloca for this instruction.
396   auto *ScalarAddr = Address ? Address : getOrCreateScalarAlloca(Inst);
397 
398   // Remember that this instruction has escape uses and the escape alloca.
399   EscapeMap[Inst] = std::make_pair(ScalarAddr, std::move(EscapeUsers));
400 }
401 
402 void BlockGenerator::generateScalarLoads(ScopStmt &Stmt, ValueMapT &BBMap) {
403   for (MemoryAccess *MA : Stmt) {
404     if (MA->isArrayKind() || MA->isWrite())
405       continue;
406 
407     auto *Address = getOrCreateAlloca(*MA);
408     BBMap[MA->getBaseAddr()] =
409         Builder.CreateLoad(Address, Address->getName() + ".reload");
410   }
411 }
412 
413 void BlockGenerator::generateScalarStores(ScopStmt &Stmt, LoopToScevMapT &LTS,
414                                           ValueMapT &BBMap) {
415   Loop *L = LI.getLoopFor(Stmt.getBasicBlock());
416 
417   assert(Stmt.isBlockStmt() && "Region statements need to use the "
418                                "generateScalarStores() function in the "
419                                "RegionGenerator");
420 
421   for (MemoryAccess *MA : Stmt) {
422     if (MA->isArrayKind() || MA->isRead())
423       continue;
424 
425     Value *Val = MA->getAccessValue();
426     if (MA->isAnyPHIKind()) {
427       assert(MA->getIncoming().size() >= 1 &&
428              "Block statements have exactly one exiting block, or multiple but "
429              "with same incoming block and value");
430       assert(std::all_of(MA->getIncoming().begin(), MA->getIncoming().end(),
431                          [&](std::pair<BasicBlock *, Value *> p) -> bool {
432                            return p.first == Stmt.getBasicBlock();
433                          }) &&
434              "Incoming block must be statement's block");
435       Val = MA->getIncoming()[0].second;
436     }
437     auto *Address = getOrCreateAlloca(*MA);
438 
439     Val = getNewValue(Stmt, Val, BBMap, LTS, L);
440     Builder.CreateStore(Val, Address);
441   }
442 }
443 
444 void BlockGenerator::createScalarInitialization(Scop &S) {
445   Region &R = S.getRegion();
446   BasicBlock *ExitBB = R.getExit();
447 
448   // The split block __just before__ the region and optimized region.
449   BasicBlock *SplitBB = R.getEnteringBlock();
450   BranchInst *SplitBBTerm = cast<BranchInst>(SplitBB->getTerminator());
451   assert(SplitBBTerm->getNumSuccessors() == 2 && "Bad region entering block!");
452 
453   // Get the start block of the __optimized__ region.
454   BasicBlock *StartBB = SplitBBTerm->getSuccessor(0);
455   if (StartBB == R.getEntry())
456     StartBB = SplitBBTerm->getSuccessor(1);
457 
458   Builder.SetInsertPoint(StartBB->getTerminator());
459 
460   for (auto &Pair : S.arrays()) {
461     auto &Array = Pair.second;
462     if (Array->getNumberOfDimensions() != 0)
463       continue;
464     if (Array->isPHIKind()) {
465       // For PHI nodes, the only values we need to store are the ones that
466       // reach the PHI node from outside the region. In general there should
467       // only be one such incoming edge and this edge should enter through
468       // 'SplitBB'.
469       auto PHI = cast<PHINode>(Array->getBasePtr());
470 
471       for (auto BI = PHI->block_begin(), BE = PHI->block_end(); BI != BE; BI++)
472         if (!R.contains(*BI) && *BI != SplitBB)
473           llvm_unreachable("Incoming edges from outside the scop should always "
474                            "come from SplitBB");
475 
476       int Idx = PHI->getBasicBlockIndex(SplitBB);
477       if (Idx < 0)
478         continue;
479 
480       Value *ScalarValue = PHI->getIncomingValue(Idx);
481 
482       Builder.CreateStore(ScalarValue, getOrCreatePHIAlloca(PHI));
483       continue;
484     }
485 
486     auto *Inst = dyn_cast<Instruction>(Array->getBasePtr());
487 
488     if (Inst && R.contains(Inst))
489       continue;
490 
491     // PHI nodes that are not marked as such in their SAI object are either exit
492     // PHI nodes we model as common scalars but without initialization, or
493     // incoming phi nodes that need to be initialized. Check if the first is the
494     // case for Inst and do not create and initialize memory if so.
495     if (auto *PHI = dyn_cast_or_null<PHINode>(Inst))
496       if (!S.hasSingleExitEdge() && PHI->getBasicBlockIndex(ExitBB) >= 0)
497         continue;
498 
499     Builder.CreateStore(Array->getBasePtr(),
500                         getOrCreateScalarAlloca(Array->getBasePtr()));
501   }
502 }
503 
504 void BlockGenerator::createScalarFinalization(Region &R) {
505   // The exit block of the __unoptimized__ region.
506   BasicBlock *ExitBB = R.getExitingBlock();
507   // The merge block __just after__ the region and the optimized region.
508   BasicBlock *MergeBB = R.getExit();
509 
510   // The exit block of the __optimized__ region.
511   BasicBlock *OptExitBB = *(pred_begin(MergeBB));
512   if (OptExitBB == ExitBB)
513     OptExitBB = *(++pred_begin(MergeBB));
514 
515   Builder.SetInsertPoint(OptExitBB->getTerminator());
516   for (const auto &EscapeMapping : EscapeMap) {
517     // Extract the escaping instruction and the escaping users as well as the
518     // alloca the instruction was demoted to.
519     Instruction *EscapeInst = EscapeMapping.getFirst();
520     const auto &EscapeMappingValue = EscapeMapping.getSecond();
521     const EscapeUserVectorTy &EscapeUsers = EscapeMappingValue.second;
522     Value *ScalarAddr = EscapeMappingValue.first;
523 
524     // Reload the demoted instruction in the optimized version of the SCoP.
525     Value *EscapeInstReload =
526         Builder.CreateLoad(ScalarAddr, EscapeInst->getName() + ".final_reload");
527     EscapeInstReload =
528         Builder.CreateBitOrPointerCast(EscapeInstReload, EscapeInst->getType());
529 
530     // Create the merge PHI that merges the optimized and unoptimized version.
531     PHINode *MergePHI = PHINode::Create(EscapeInst->getType(), 2,
532                                         EscapeInst->getName() + ".merge");
533     MergePHI->insertBefore(&*MergeBB->getFirstInsertionPt());
534 
535     // Add the respective values to the merge PHI.
536     MergePHI->addIncoming(EscapeInstReload, OptExitBB);
537     MergePHI->addIncoming(EscapeInst, ExitBB);
538 
539     // The information of scalar evolution about the escaping instruction needs
540     // to be revoked so the new merged instruction will be used.
541     if (SE.isSCEVable(EscapeInst->getType()))
542       SE.forgetValue(EscapeInst);
543 
544     // Replace all uses of the demoted instruction with the merge PHI.
545     for (Instruction *EUser : EscapeUsers)
546       EUser->replaceUsesOfWith(EscapeInst, MergePHI);
547   }
548 }
549 
550 void BlockGenerator::findOutsideUsers(Scop &S) {
551   auto &R = S.getRegion();
552   for (auto &Pair : S.arrays()) {
553     auto &Array = Pair.second;
554 
555     if (Array->getNumberOfDimensions() != 0)
556       continue;
557 
558     if (Array->isPHIKind())
559       continue;
560 
561     auto *Inst = dyn_cast<Instruction>(Array->getBasePtr());
562 
563     if (!Inst)
564       continue;
565 
566     // Scop invariant hoisting moves some of the base pointers out of the scop.
567     // We can ignore these, as the invariant load hoisting already registers the
568     // relevant outside users.
569     if (!R.contains(Inst))
570       continue;
571 
572     handleOutsideUsers(R, Inst, nullptr);
573   }
574 }
575 
576 void BlockGenerator::createExitPHINodeMerges(Scop &S) {
577   if (S.hasSingleExitEdge())
578     return;
579 
580   Region &R = S.getRegion();
581 
582   auto *ExitBB = R.getExitingBlock();
583   auto *MergeBB = R.getExit();
584   auto *AfterMergeBB = MergeBB->getSingleSuccessor();
585   BasicBlock *OptExitBB = *(pred_begin(MergeBB));
586   if (OptExitBB == ExitBB)
587     OptExitBB = *(++pred_begin(MergeBB));
588 
589   Builder.SetInsertPoint(OptExitBB->getTerminator());
590 
591   for (auto &Pair : S.arrays()) {
592     auto &SAI = Pair.second;
593     auto *Val = SAI->getBasePtr();
594 
595     PHINode *PHI = dyn_cast<PHINode>(Val);
596     if (!PHI)
597       continue;
598 
599     if (PHI->getParent() != AfterMergeBB)
600       continue;
601 
602     std::string Name = PHI->getName();
603     Value *ScalarAddr = getOrCreateScalarAlloca(PHI);
604     Value *Reload = Builder.CreateLoad(ScalarAddr, Name + ".ph.final_reload");
605     Reload = Builder.CreateBitOrPointerCast(Reload, PHI->getType());
606     Value *OriginalValue = PHI->getIncomingValueForBlock(MergeBB);
607     auto *MergePHI = PHINode::Create(PHI->getType(), 2, Name + ".ph.merge");
608     MergePHI->insertBefore(&*MergeBB->getFirstInsertionPt());
609     MergePHI->addIncoming(Reload, OptExitBB);
610     MergePHI->addIncoming(OriginalValue, ExitBB);
611     int Idx = PHI->getBasicBlockIndex(MergeBB);
612     PHI->setIncomingValue(Idx, MergePHI);
613   }
614 }
615 
616 void BlockGenerator::finalizeSCoP(Scop &S) {
617   findOutsideUsers(S);
618   createScalarInitialization(S);
619   createExitPHINodeMerges(S);
620   createScalarFinalization(S.getRegion());
621 }
622 
623 VectorBlockGenerator::VectorBlockGenerator(BlockGenerator &BlockGen,
624                                            std::vector<LoopToScevMapT> &VLTS,
625                                            isl_map *Schedule)
626     : BlockGenerator(BlockGen), VLTS(VLTS), Schedule(Schedule) {
627   assert(Schedule && "No statement domain provided");
628 }
629 
630 Value *VectorBlockGenerator::getVectorValue(ScopStmt &Stmt, Value *Old,
631                                             ValueMapT &VectorMap,
632                                             VectorValueMapT &ScalarMaps,
633                                             Loop *L) {
634   if (Value *NewValue = VectorMap.lookup(Old))
635     return NewValue;
636 
637   int Width = getVectorWidth();
638 
639   Value *Vector = UndefValue::get(VectorType::get(Old->getType(), Width));
640 
641   for (int Lane = 0; Lane < Width; Lane++)
642     Vector = Builder.CreateInsertElement(
643         Vector, getNewValue(Stmt, Old, ScalarMaps[Lane], VLTS[Lane], L),
644         Builder.getInt32(Lane));
645 
646   VectorMap[Old] = Vector;
647 
648   return Vector;
649 }
650 
651 Type *VectorBlockGenerator::getVectorPtrTy(const Value *Val, int Width) {
652   PointerType *PointerTy = dyn_cast<PointerType>(Val->getType());
653   assert(PointerTy && "PointerType expected");
654 
655   Type *ScalarType = PointerTy->getElementType();
656   VectorType *VectorType = VectorType::get(ScalarType, Width);
657 
658   return PointerType::getUnqual(VectorType);
659 }
660 
661 Value *VectorBlockGenerator::generateStrideOneLoad(
662     ScopStmt &Stmt, LoadInst *Load, VectorValueMapT &ScalarMaps,
663     __isl_keep isl_id_to_ast_expr *NewAccesses, bool NegativeStride = false) {
664   unsigned VectorWidth = getVectorWidth();
665   auto *Pointer = Load->getPointerOperand();
666   Type *VectorPtrType = getVectorPtrTy(Pointer, VectorWidth);
667   unsigned Offset = NegativeStride ? VectorWidth - 1 : 0;
668 
669   Value *NewPointer = nullptr;
670   NewPointer = generateLocationAccessed(Stmt, Load, ScalarMaps[Offset],
671                                         VLTS[Offset], NewAccesses);
672   Value *VectorPtr =
673       Builder.CreateBitCast(NewPointer, VectorPtrType, "vector_ptr");
674   LoadInst *VecLoad =
675       Builder.CreateLoad(VectorPtr, Load->getName() + "_p_vec_full");
676   if (!Aligned)
677     VecLoad->setAlignment(8);
678 
679   if (NegativeStride) {
680     SmallVector<Constant *, 16> Indices;
681     for (int i = VectorWidth - 1; i >= 0; i--)
682       Indices.push_back(ConstantInt::get(Builder.getInt32Ty(), i));
683     Constant *SV = llvm::ConstantVector::get(Indices);
684     Value *RevVecLoad = Builder.CreateShuffleVector(
685         VecLoad, VecLoad, SV, Load->getName() + "_reverse");
686     return RevVecLoad;
687   }
688 
689   return VecLoad;
690 }
691 
692 Value *VectorBlockGenerator::generateStrideZeroLoad(
693     ScopStmt &Stmt, LoadInst *Load, ValueMapT &BBMap,
694     __isl_keep isl_id_to_ast_expr *NewAccesses) {
695   auto *Pointer = Load->getPointerOperand();
696   Type *VectorPtrType = getVectorPtrTy(Pointer, 1);
697   Value *NewPointer =
698       generateLocationAccessed(Stmt, Load, BBMap, VLTS[0], NewAccesses);
699   Value *VectorPtr = Builder.CreateBitCast(NewPointer, VectorPtrType,
700                                            Load->getName() + "_p_vec_p");
701   LoadInst *ScalarLoad =
702       Builder.CreateLoad(VectorPtr, Load->getName() + "_p_splat_one");
703 
704   if (!Aligned)
705     ScalarLoad->setAlignment(8);
706 
707   Constant *SplatVector = Constant::getNullValue(
708       VectorType::get(Builder.getInt32Ty(), getVectorWidth()));
709 
710   Value *VectorLoad = Builder.CreateShuffleVector(
711       ScalarLoad, ScalarLoad, SplatVector, Load->getName() + "_p_splat");
712   return VectorLoad;
713 }
714 
715 Value *VectorBlockGenerator::generateUnknownStrideLoad(
716     ScopStmt &Stmt, LoadInst *Load, VectorValueMapT &ScalarMaps,
717     __isl_keep isl_id_to_ast_expr *NewAccesses) {
718   int VectorWidth = getVectorWidth();
719   auto *Pointer = Load->getPointerOperand();
720   VectorType *VectorType = VectorType::get(
721       dyn_cast<PointerType>(Pointer->getType())->getElementType(), VectorWidth);
722 
723   Value *Vector = UndefValue::get(VectorType);
724 
725   for (int i = 0; i < VectorWidth; i++) {
726     Value *NewPointer = generateLocationAccessed(Stmt, Load, ScalarMaps[i],
727                                                  VLTS[i], NewAccesses);
728     Value *ScalarLoad =
729         Builder.CreateLoad(NewPointer, Load->getName() + "_p_scalar_");
730     Vector = Builder.CreateInsertElement(
731         Vector, ScalarLoad, Builder.getInt32(i), Load->getName() + "_p_vec_");
732   }
733 
734   return Vector;
735 }
736 
737 void VectorBlockGenerator::generateLoad(
738     ScopStmt &Stmt, LoadInst *Load, ValueMapT &VectorMap,
739     VectorValueMapT &ScalarMaps, __isl_keep isl_id_to_ast_expr *NewAccesses) {
740   if (Value *PreloadLoad = GlobalMap.lookup(Load)) {
741     VectorMap[Load] = Builder.CreateVectorSplat(getVectorWidth(), PreloadLoad,
742                                                 Load->getName() + "_p");
743     return;
744   }
745 
746   if (!VectorType::isValidElementType(Load->getType())) {
747     for (int i = 0; i < getVectorWidth(); i++)
748       ScalarMaps[i][Load] =
749           generateScalarLoad(Stmt, Load, ScalarMaps[i], VLTS[i], NewAccesses);
750     return;
751   }
752 
753   const MemoryAccess &Access = Stmt.getArrayAccessFor(Load);
754 
755   // Make sure we have scalar values available to access the pointer to
756   // the data location.
757   extractScalarValues(Load, VectorMap, ScalarMaps);
758 
759   Value *NewLoad;
760   if (Access.isStrideZero(isl_map_copy(Schedule)))
761     NewLoad = generateStrideZeroLoad(Stmt, Load, ScalarMaps[0], NewAccesses);
762   else if (Access.isStrideOne(isl_map_copy(Schedule)))
763     NewLoad = generateStrideOneLoad(Stmt, Load, ScalarMaps, NewAccesses);
764   else if (Access.isStrideX(isl_map_copy(Schedule), -1))
765     NewLoad = generateStrideOneLoad(Stmt, Load, ScalarMaps, NewAccesses, true);
766   else
767     NewLoad = generateUnknownStrideLoad(Stmt, Load, ScalarMaps, NewAccesses);
768 
769   VectorMap[Load] = NewLoad;
770 }
771 
772 void VectorBlockGenerator::copyUnaryInst(ScopStmt &Stmt, UnaryInstruction *Inst,
773                                          ValueMapT &VectorMap,
774                                          VectorValueMapT &ScalarMaps) {
775   int VectorWidth = getVectorWidth();
776   Value *NewOperand = getVectorValue(Stmt, Inst->getOperand(0), VectorMap,
777                                      ScalarMaps, getLoopForInst(Inst));
778 
779   assert(isa<CastInst>(Inst) && "Can not generate vector code for instruction");
780 
781   const CastInst *Cast = dyn_cast<CastInst>(Inst);
782   VectorType *DestType = VectorType::get(Inst->getType(), VectorWidth);
783   VectorMap[Inst] = Builder.CreateCast(Cast->getOpcode(), NewOperand, DestType);
784 }
785 
786 void VectorBlockGenerator::copyBinaryInst(ScopStmt &Stmt, BinaryOperator *Inst,
787                                           ValueMapT &VectorMap,
788                                           VectorValueMapT &ScalarMaps) {
789   Loop *L = getLoopForInst(Inst);
790   Value *OpZero = Inst->getOperand(0);
791   Value *OpOne = Inst->getOperand(1);
792 
793   Value *NewOpZero, *NewOpOne;
794   NewOpZero = getVectorValue(Stmt, OpZero, VectorMap, ScalarMaps, L);
795   NewOpOne = getVectorValue(Stmt, OpOne, VectorMap, ScalarMaps, L);
796 
797   Value *NewInst = Builder.CreateBinOp(Inst->getOpcode(), NewOpZero, NewOpOne,
798                                        Inst->getName() + "p_vec");
799   VectorMap[Inst] = NewInst;
800 }
801 
802 void VectorBlockGenerator::copyStore(
803     ScopStmt &Stmt, StoreInst *Store, ValueMapT &VectorMap,
804     VectorValueMapT &ScalarMaps, __isl_keep isl_id_to_ast_expr *NewAccesses) {
805   const MemoryAccess &Access = Stmt.getArrayAccessFor(Store);
806 
807   auto *Pointer = Store->getPointerOperand();
808   Value *Vector = getVectorValue(Stmt, Store->getValueOperand(), VectorMap,
809                                  ScalarMaps, getLoopForInst(Store));
810 
811   // Make sure we have scalar values available to access the pointer to
812   // the data location.
813   extractScalarValues(Store, VectorMap, ScalarMaps);
814 
815   if (Access.isStrideOne(isl_map_copy(Schedule))) {
816     Type *VectorPtrType = getVectorPtrTy(Pointer, getVectorWidth());
817     Value *NewPointer = generateLocationAccessed(Stmt, Store, ScalarMaps[0],
818                                                  VLTS[0], NewAccesses);
819 
820     Value *VectorPtr =
821         Builder.CreateBitCast(NewPointer, VectorPtrType, "vector_ptr");
822     StoreInst *Store = Builder.CreateStore(Vector, VectorPtr);
823 
824     if (!Aligned)
825       Store->setAlignment(8);
826   } else {
827     for (unsigned i = 0; i < ScalarMaps.size(); i++) {
828       Value *Scalar = Builder.CreateExtractElement(Vector, Builder.getInt32(i));
829       Value *NewPointer = generateLocationAccessed(Stmt, Store, ScalarMaps[i],
830                                                    VLTS[i], NewAccesses);
831       Builder.CreateStore(Scalar, NewPointer);
832     }
833   }
834 }
835 
836 bool VectorBlockGenerator::hasVectorOperands(const Instruction *Inst,
837                                              ValueMapT &VectorMap) {
838   for (Value *Operand : Inst->operands())
839     if (VectorMap.count(Operand))
840       return true;
841   return false;
842 }
843 
844 bool VectorBlockGenerator::extractScalarValues(const Instruction *Inst,
845                                                ValueMapT &VectorMap,
846                                                VectorValueMapT &ScalarMaps) {
847   bool HasVectorOperand = false;
848   int VectorWidth = getVectorWidth();
849 
850   for (Value *Operand : Inst->operands()) {
851     ValueMapT::iterator VecOp = VectorMap.find(Operand);
852 
853     if (VecOp == VectorMap.end())
854       continue;
855 
856     HasVectorOperand = true;
857     Value *NewVector = VecOp->second;
858 
859     for (int i = 0; i < VectorWidth; ++i) {
860       ValueMapT &SM = ScalarMaps[i];
861 
862       // If there is one scalar extracted, all scalar elements should have
863       // already been extracted by the code here. So no need to check for the
864       // existance of all of them.
865       if (SM.count(Operand))
866         break;
867 
868       SM[Operand] =
869           Builder.CreateExtractElement(NewVector, Builder.getInt32(i));
870     }
871   }
872 
873   return HasVectorOperand;
874 }
875 
876 void VectorBlockGenerator::copyInstScalarized(
877     ScopStmt &Stmt, Instruction *Inst, ValueMapT &VectorMap,
878     VectorValueMapT &ScalarMaps, __isl_keep isl_id_to_ast_expr *NewAccesses) {
879   bool HasVectorOperand;
880   int VectorWidth = getVectorWidth();
881 
882   HasVectorOperand = extractScalarValues(Inst, VectorMap, ScalarMaps);
883 
884   for (int VectorLane = 0; VectorLane < getVectorWidth(); VectorLane++)
885     BlockGenerator::copyInstruction(Stmt, Inst, ScalarMaps[VectorLane],
886                                     VLTS[VectorLane], NewAccesses);
887 
888   if (!VectorType::isValidElementType(Inst->getType()) || !HasVectorOperand)
889     return;
890 
891   // Make the result available as vector value.
892   VectorType *VectorType = VectorType::get(Inst->getType(), VectorWidth);
893   Value *Vector = UndefValue::get(VectorType);
894 
895   for (int i = 0; i < VectorWidth; i++)
896     Vector = Builder.CreateInsertElement(Vector, ScalarMaps[i][Inst],
897                                          Builder.getInt32(i));
898 
899   VectorMap[Inst] = Vector;
900 }
901 
902 int VectorBlockGenerator::getVectorWidth() { return VLTS.size(); }
903 
904 void VectorBlockGenerator::copyInstruction(
905     ScopStmt &Stmt, Instruction *Inst, ValueMapT &VectorMap,
906     VectorValueMapT &ScalarMaps, __isl_keep isl_id_to_ast_expr *NewAccesses) {
907   // Terminator instructions control the control flow. They are explicitly
908   // expressed in the clast and do not need to be copied.
909   if (Inst->isTerminator())
910     return;
911 
912   if (canSyntheziseInStmt(Stmt, Inst))
913     return;
914 
915   if (auto *Load = dyn_cast<LoadInst>(Inst)) {
916     generateLoad(Stmt, Load, VectorMap, ScalarMaps, NewAccesses);
917     return;
918   }
919 
920   if (hasVectorOperands(Inst, VectorMap)) {
921     if (auto *Store = dyn_cast<StoreInst>(Inst)) {
922       copyStore(Stmt, Store, VectorMap, ScalarMaps, NewAccesses);
923       return;
924     }
925 
926     if (auto *Unary = dyn_cast<UnaryInstruction>(Inst)) {
927       copyUnaryInst(Stmt, Unary, VectorMap, ScalarMaps);
928       return;
929     }
930 
931     if (auto *Binary = dyn_cast<BinaryOperator>(Inst)) {
932       copyBinaryInst(Stmt, Binary, VectorMap, ScalarMaps);
933       return;
934     }
935 
936     // Falltrough: We generate scalar instructions, if we don't know how to
937     // generate vector code.
938   }
939 
940   copyInstScalarized(Stmt, Inst, VectorMap, ScalarMaps, NewAccesses);
941 }
942 
943 void VectorBlockGenerator::generateScalarVectorLoads(
944     ScopStmt &Stmt, ValueMapT &VectorBlockMap) {
945   for (MemoryAccess *MA : Stmt) {
946     if (MA->isArrayKind() || MA->isWrite())
947       continue;
948 
949     auto *Address = getOrCreateAlloca(*MA);
950     Type *VectorPtrType = getVectorPtrTy(Address, 1);
951     Value *VectorPtr = Builder.CreateBitCast(Address, VectorPtrType,
952                                              Address->getName() + "_p_vec_p");
953     auto *Val = Builder.CreateLoad(VectorPtr, Address->getName() + ".reload");
954     Constant *SplatVector = Constant::getNullValue(
955         VectorType::get(Builder.getInt32Ty(), getVectorWidth()));
956 
957     Value *VectorVal = Builder.CreateShuffleVector(
958         Val, Val, SplatVector, Address->getName() + "_p_splat");
959     VectorBlockMap[MA->getBaseAddr()] = VectorVal;
960     VectorVal->dump();
961   }
962 }
963 
964 void VectorBlockGenerator::verifyNoScalarStores(ScopStmt &Stmt) {
965   for (MemoryAccess *MA : Stmt) {
966     if (MA->isArrayKind() || MA->isRead())
967       continue;
968 
969     llvm_unreachable("Scalar stores not expected in vector loop");
970   }
971 }
972 
973 void VectorBlockGenerator::copyStmt(
974     ScopStmt &Stmt, __isl_keep isl_id_to_ast_expr *NewAccesses) {
975   assert(Stmt.isBlockStmt() && "TODO: Only block statements can be copied by "
976                                "the vector block generator");
977 
978   BasicBlock *BB = Stmt.getBasicBlock();
979   BasicBlock *CopyBB = SplitBlock(Builder.GetInsertBlock(),
980                                   &*Builder.GetInsertPoint(), &DT, &LI);
981   CopyBB->setName("polly.stmt." + BB->getName());
982   Builder.SetInsertPoint(&CopyBB->front());
983 
984   // Create two maps that store the mapping from the original instructions of
985   // the old basic block to their copies in the new basic block. Those maps
986   // are basic block local.
987   //
988   // As vector code generation is supported there is one map for scalar values
989   // and one for vector values.
990   //
991   // In case we just do scalar code generation, the vectorMap is not used and
992   // the scalarMap has just one dimension, which contains the mapping.
993   //
994   // In case vector code generation is done, an instruction may either appear
995   // in the vector map once (as it is calculating >vectorwidth< values at a
996   // time. Or (if the values are calculated using scalar operations), it
997   // appears once in every dimension of the scalarMap.
998   VectorValueMapT ScalarBlockMap(getVectorWidth());
999   ValueMapT VectorBlockMap;
1000 
1001   generateScalarVectorLoads(Stmt, VectorBlockMap);
1002 
1003   for (Instruction &Inst : *BB)
1004     copyInstruction(Stmt, &Inst, VectorBlockMap, ScalarBlockMap, NewAccesses);
1005 
1006   verifyNoScalarStores(Stmt);
1007 }
1008 
1009 BasicBlock *RegionGenerator::repairDominance(BasicBlock *BB,
1010                                              BasicBlock *BBCopy) {
1011 
1012   BasicBlock *BBIDom = DT.getNode(BB)->getIDom()->getBlock();
1013   BasicBlock *BBCopyIDom = BlockMap.lookup(BBIDom);
1014 
1015   if (BBCopyIDom)
1016     DT.changeImmediateDominator(BBCopy, BBCopyIDom);
1017 
1018   return BBCopyIDom;
1019 }
1020 
1021 void RegionGenerator::copyStmt(ScopStmt &Stmt, LoopToScevMapT &LTS,
1022                                isl_id_to_ast_expr *IdToAstExp) {
1023   assert(Stmt.isRegionStmt() &&
1024          "Only region statements can be copied by the region generator");
1025 
1026   Scop *S = Stmt.getParent();
1027 
1028   // Forget all old mappings.
1029   BlockMap.clear();
1030   RegionMaps.clear();
1031   IncompletePHINodeMap.clear();
1032 
1033   // Collection of all values related to this subregion.
1034   ValueMapT ValueMap;
1035 
1036   // The region represented by the statement.
1037   Region *R = Stmt.getRegion();
1038 
1039   // Create a dedicated entry for the region where we can reload all demoted
1040   // inputs.
1041   BasicBlock *EntryBB = R->getEntry();
1042   BasicBlock *EntryBBCopy = SplitBlock(Builder.GetInsertBlock(),
1043                                        &*Builder.GetInsertPoint(), &DT, &LI);
1044   EntryBBCopy->setName("polly.stmt." + EntryBB->getName() + ".entry");
1045   Builder.SetInsertPoint(&EntryBBCopy->front());
1046 
1047   ValueMapT &EntryBBMap = RegionMaps[EntryBBCopy];
1048   generateScalarLoads(Stmt, EntryBBMap);
1049 
1050   for (auto PI = pred_begin(EntryBB), PE = pred_end(EntryBB); PI != PE; ++PI)
1051     if (!R->contains(*PI))
1052       BlockMap[*PI] = EntryBBCopy;
1053 
1054   // Determine the original exit block of this subregion. If it the exit block
1055   // is also the scop's exit, it it has been changed to polly.merge_new_and_old.
1056   // We move one block back to find the original block. This only happens if the
1057   // scop required simplification.
1058   // If the whole scop consists of only this non-affine region, then they share
1059   // the same Region object, such that we cannot change the exit of one and not
1060   // the other.
1061   BasicBlock *ExitBB = R->getExit();
1062   if (!S->hasSingleExitEdge() && ExitBB == S->getRegion().getExit())
1063     ExitBB = *(++pred_begin(ExitBB));
1064 
1065   // Iterate over all blocks in the region in a breadth-first search.
1066   std::deque<BasicBlock *> Blocks;
1067   SmallPtrSet<BasicBlock *, 8> SeenBlocks;
1068   Blocks.push_back(EntryBB);
1069   SeenBlocks.insert(EntryBB);
1070 
1071   while (!Blocks.empty()) {
1072     BasicBlock *BB = Blocks.front();
1073     Blocks.pop_front();
1074 
1075     // First split the block and update dominance information.
1076     BasicBlock *BBCopy = splitBB(BB);
1077     BasicBlock *BBCopyIDom = repairDominance(BB, BBCopy);
1078 
1079     // In order to remap PHI nodes we store also basic block mappings.
1080     BlockMap[BB] = BBCopy;
1081 
1082     // Get the mapping for this block and initialize it with either the scalar
1083     // loads from the generated entering block (which dominates all blocks of
1084     // this subregion) or the maps of the immediate dominator, if part of the
1085     // subregion. The latter necessarily includes the former.
1086     ValueMapT *InitBBMap;
1087     if (BBCopyIDom) {
1088       assert(RegionMaps.count(BBCopyIDom));
1089       InitBBMap = &RegionMaps[BBCopyIDom];
1090     } else
1091       InitBBMap = &EntryBBMap;
1092     auto Inserted = RegionMaps.insert(std::make_pair(BBCopy, *InitBBMap));
1093     ValueMapT &RegionMap = Inserted.first->second;
1094 
1095     // Copy the block with the BlockGenerator.
1096     Builder.SetInsertPoint(&BBCopy->front());
1097     copyBB(Stmt, BB, BBCopy, RegionMap, LTS, IdToAstExp);
1098 
1099     // In order to remap PHI nodes we store also basic block mappings.
1100     BlockMap[BB] = BBCopy;
1101 
1102     // Add values to incomplete PHI nodes waiting for this block to be copied.
1103     for (const PHINodePairTy &PHINodePair : IncompletePHINodeMap[BB])
1104       addOperandToPHI(Stmt, PHINodePair.first, PHINodePair.second, BB, LTS);
1105     IncompletePHINodeMap[BB].clear();
1106 
1107     // And continue with new successors inside the region.
1108     for (auto SI = succ_begin(BB), SE = succ_end(BB); SI != SE; SI++)
1109       if (R->contains(*SI) && SeenBlocks.insert(*SI).second)
1110         Blocks.push_back(*SI);
1111 
1112     // Remember value in case it is visible after this subregion.
1113     if (DT.dominates(BB, ExitBB))
1114       ValueMap.insert(RegionMap.begin(), RegionMap.end());
1115   }
1116 
1117   // Now create a new dedicated region exit block and add it to the region map.
1118   BasicBlock *ExitBBCopy = SplitBlock(Builder.GetInsertBlock(),
1119                                       &*Builder.GetInsertPoint(), &DT, &LI);
1120   ExitBBCopy->setName("polly.stmt." + R->getExit()->getName() + ".exit");
1121   BlockMap[R->getExit()] = ExitBBCopy;
1122 
1123   if (ExitBB == R->getExit())
1124     repairDominance(ExitBB, ExitBBCopy);
1125   else
1126     DT.changeImmediateDominator(ExitBBCopy, BlockMap.lookup(ExitBB));
1127 
1128   // As the block generator doesn't handle control flow we need to add the
1129   // region control flow by hand after all blocks have been copied.
1130   for (BasicBlock *BB : SeenBlocks) {
1131 
1132     BasicBlock *BBCopy = BlockMap[BB];
1133     TerminatorInst *TI = BB->getTerminator();
1134     if (isa<UnreachableInst>(TI)) {
1135       while (!BBCopy->empty())
1136         BBCopy->begin()->eraseFromParent();
1137       new UnreachableInst(BBCopy->getContext(), BBCopy);
1138       continue;
1139     }
1140 
1141     Instruction *BICopy = BBCopy->getTerminator();
1142 
1143     ValueMapT &RegionMap = RegionMaps[BBCopy];
1144     RegionMap.insert(BlockMap.begin(), BlockMap.end());
1145 
1146     Builder.SetInsertPoint(BICopy);
1147     copyInstScalar(Stmt, TI, RegionMap, LTS);
1148     BICopy->eraseFromParent();
1149   }
1150 
1151   // Add counting PHI nodes to all loops in the region that can be used as
1152   // replacement for SCEVs refering to the old loop.
1153   for (BasicBlock *BB : SeenBlocks) {
1154     Loop *L = LI.getLoopFor(BB);
1155     if (L == nullptr || L->getHeader() != BB || !R->contains(L))
1156       continue;
1157 
1158     BasicBlock *BBCopy = BlockMap[BB];
1159     Value *NullVal = Builder.getInt32(0);
1160     PHINode *LoopPHI =
1161         PHINode::Create(Builder.getInt32Ty(), 2, "polly.subregion.iv");
1162     Instruction *LoopPHIInc = BinaryOperator::CreateAdd(
1163         LoopPHI, Builder.getInt32(1), "polly.subregion.iv.inc");
1164     LoopPHI->insertBefore(&BBCopy->front());
1165     LoopPHIInc->insertBefore(BBCopy->getTerminator());
1166 
1167     for (auto *PredBB : make_range(pred_begin(BB), pred_end(BB))) {
1168       if (!R->contains(PredBB))
1169         continue;
1170       if (L->contains(PredBB))
1171         LoopPHI->addIncoming(LoopPHIInc, BlockMap[PredBB]);
1172       else
1173         LoopPHI->addIncoming(NullVal, BlockMap[PredBB]);
1174     }
1175 
1176     for (auto *PredBBCopy : make_range(pred_begin(BBCopy), pred_end(BBCopy)))
1177       if (LoopPHI->getBasicBlockIndex(PredBBCopy) < 0)
1178         LoopPHI->addIncoming(NullVal, PredBBCopy);
1179 
1180     LTS[L] = SE.getUnknown(LoopPHI);
1181   }
1182 
1183   // Continue generating code in the exit block.
1184   Builder.SetInsertPoint(&*ExitBBCopy->getFirstInsertionPt());
1185 
1186   // Write values visible to other statements.
1187   generateScalarStores(Stmt, LTS, ValueMap);
1188   BlockMap.clear();
1189   RegionMaps.clear();
1190   IncompletePHINodeMap.clear();
1191 }
1192 
1193 PHINode *RegionGenerator::buildExitPHI(MemoryAccess *MA, LoopToScevMapT &LTS,
1194                                        ValueMapT &BBMap, Loop *L) {
1195   ScopStmt *Stmt = MA->getStatement();
1196   Region *SubR = Stmt->getRegion();
1197   auto Incoming = MA->getIncoming();
1198 
1199   PollyIRBuilder::InsertPointGuard IPGuard(Builder);
1200   PHINode *OrigPHI = cast<PHINode>(MA->getAccessInstruction());
1201   BasicBlock *NewSubregionExit = Builder.GetInsertBlock();
1202 
1203   // This can happen if the subregion is simplified after the ScopStmts
1204   // have been created; simplification happens as part of CodeGeneration.
1205   if (OrigPHI->getParent() != SubR->getExit()) {
1206     BasicBlock *FormerExit = SubR->getExitingBlock();
1207     if (FormerExit)
1208       NewSubregionExit = BlockMap.lookup(FormerExit);
1209   }
1210 
1211   PHINode *NewPHI = PHINode::Create(OrigPHI->getType(), Incoming.size(),
1212                                     "polly." + OrigPHI->getName(),
1213                                     NewSubregionExit->getFirstNonPHI());
1214 
1215   // Add the incoming values to the PHI.
1216   for (auto &Pair : Incoming) {
1217     BasicBlock *OrigIncomingBlock = Pair.first;
1218     BasicBlock *NewIncomingBlock = BlockMap.lookup(OrigIncomingBlock);
1219     Builder.SetInsertPoint(NewIncomingBlock->getTerminator());
1220     assert(RegionMaps.count(NewIncomingBlock));
1221     ValueMapT *LocalBBMap = &RegionMaps[NewIncomingBlock];
1222 
1223     Value *OrigIncomingValue = Pair.second;
1224     Value *NewIncomingValue =
1225         getNewValue(*Stmt, OrigIncomingValue, *LocalBBMap, LTS, L);
1226     NewPHI->addIncoming(NewIncomingValue, NewIncomingBlock);
1227   }
1228 
1229   return NewPHI;
1230 }
1231 
1232 Value *RegionGenerator::getExitScalar(MemoryAccess *MA, LoopToScevMapT &LTS,
1233                                       ValueMapT &BBMap) {
1234   ScopStmt *Stmt = MA->getStatement();
1235 
1236   // TODO: Add some test cases that ensure this is really the right choice.
1237   Loop *L = LI.getLoopFor(Stmt->getRegion()->getExit());
1238 
1239   if (MA->isAnyPHIKind()) {
1240     auto Incoming = MA->getIncoming();
1241     assert(!Incoming.empty() &&
1242            "PHI WRITEs must have originate from at least one incoming block");
1243 
1244     // If there is only one incoming value, we do not need to create a PHI.
1245     if (Incoming.size() == 1) {
1246       Value *OldVal = Incoming[0].second;
1247       return getNewValue(*Stmt, OldVal, BBMap, LTS, L);
1248     }
1249 
1250     return buildExitPHI(MA, LTS, BBMap, L);
1251   }
1252 
1253   // MK_Value accesses leaving the subregion must dominate the exit block; just
1254   // pass the copied value
1255   Value *OldVal = MA->getAccessValue();
1256   return getNewValue(*Stmt, OldVal, BBMap, LTS, L);
1257 }
1258 
1259 void RegionGenerator::generateScalarStores(ScopStmt &Stmt, LoopToScevMapT &LTS,
1260                                            ValueMapT &BBMap) {
1261   assert(Stmt.getRegion() &&
1262          "Block statements need to use the generateScalarStores() "
1263          "function in the BlockGenerator");
1264 
1265   for (MemoryAccess *MA : Stmt) {
1266     if (MA->isArrayKind() || MA->isRead())
1267       continue;
1268 
1269     Value *NewVal = getExitScalar(MA, LTS, BBMap);
1270     Value *Address = getOrCreateAlloca(*MA);
1271     Builder.CreateStore(NewVal, Address);
1272   }
1273 }
1274 
1275 void RegionGenerator::addOperandToPHI(ScopStmt &Stmt, const PHINode *PHI,
1276                                       PHINode *PHICopy, BasicBlock *IncomingBB,
1277                                       LoopToScevMapT &LTS) {
1278   Region *StmtR = Stmt.getRegion();
1279 
1280   // If the incoming block was not yet copied mark this PHI as incomplete.
1281   // Once the block will be copied the incoming value will be added.
1282   BasicBlock *BBCopy = BlockMap[IncomingBB];
1283   if (!BBCopy) {
1284     assert(StmtR->contains(IncomingBB) &&
1285            "Bad incoming block for PHI in non-affine region");
1286     IncompletePHINodeMap[IncomingBB].push_back(std::make_pair(PHI, PHICopy));
1287     return;
1288   }
1289 
1290   Value *OpCopy = nullptr;
1291   if (StmtR->contains(IncomingBB)) {
1292     assert(RegionMaps.count(BBCopy) &&
1293            "Incoming PHI block did not have a BBMap");
1294     ValueMapT &BBCopyMap = RegionMaps[BBCopy];
1295 
1296     Value *Op = PHI->getIncomingValueForBlock(IncomingBB);
1297 
1298     BasicBlock *OldBlock = Builder.GetInsertBlock();
1299     auto OldIP = Builder.GetInsertPoint();
1300     Builder.SetInsertPoint(BBCopy->getTerminator());
1301     OpCopy = getNewValue(Stmt, Op, BBCopyMap, LTS, getLoopForInst(PHI));
1302     Builder.SetInsertPoint(OldBlock, OldIP);
1303   } else {
1304 
1305     if (PHICopy->getBasicBlockIndex(BBCopy) >= 0)
1306       return;
1307 
1308     Value *PHIOpAddr = getOrCreatePHIAlloca(const_cast<PHINode *>(PHI));
1309     OpCopy = new LoadInst(PHIOpAddr, PHIOpAddr->getName() + ".reload",
1310                           BlockMap[IncomingBB]->getTerminator());
1311   }
1312 
1313   assert(OpCopy && "Incoming PHI value was not copied properly");
1314   assert(BBCopy && "Incoming PHI block was not copied properly");
1315   PHICopy->addIncoming(OpCopy, BBCopy);
1316 }
1317 
1318 Value *RegionGenerator::copyPHIInstruction(ScopStmt &Stmt, PHINode *PHI,
1319                                            ValueMapT &BBMap,
1320                                            LoopToScevMapT &LTS) {
1321   unsigned NumIncoming = PHI->getNumIncomingValues();
1322   PHINode *PHICopy =
1323       Builder.CreatePHI(PHI->getType(), NumIncoming, "polly." + PHI->getName());
1324   PHICopy->moveBefore(PHICopy->getParent()->getFirstNonPHI());
1325   BBMap[PHI] = PHICopy;
1326 
1327   for (unsigned u = 0; u < NumIncoming; u++)
1328     addOperandToPHI(Stmt, PHI, PHICopy, PHI->getIncomingBlock(u), LTS);
1329   return PHICopy;
1330 }
1331