1 //===--- BlockGenerators.cpp - Generate code for statements -----*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the BlockGenerator and VectorBlockGenerator classes, 11 // which generate sequential code and vectorized code for a polyhedral 12 // statement, respectively. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "polly/CodeGen/BlockGenerators.h" 17 #include "polly/CodeGen/CodeGeneration.h" 18 #include "polly/CodeGen/IslExprBuilder.h" 19 #include "polly/CodeGen/RuntimeDebugBuilder.h" 20 #include "polly/Options.h" 21 #include "polly/ScopInfo.h" 22 #include "polly/Support/GICHelper.h" 23 #include "polly/Support/SCEVValidator.h" 24 #include "polly/Support/ScopHelper.h" 25 #include "llvm/Analysis/LoopInfo.h" 26 #include "llvm/Analysis/RegionInfo.h" 27 #include "llvm/Analysis/ScalarEvolution.h" 28 #include "llvm/IR/IntrinsicInst.h" 29 #include "llvm/IR/Module.h" 30 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 31 #include "llvm/Transforms/Utils/Local.h" 32 #include "isl/aff.h" 33 #include "isl/ast.h" 34 #include "isl/ast_build.h" 35 #include "isl/set.h" 36 #include <deque> 37 38 using namespace llvm; 39 using namespace polly; 40 41 static cl::opt<bool> Aligned("enable-polly-aligned", 42 cl::desc("Assumed aligned memory accesses."), 43 cl::Hidden, cl::init(false), cl::ZeroOrMore, 44 cl::cat(PollyCategory)); 45 46 static cl::opt<bool> DebugPrinting( 47 "polly-codegen-add-debug-printing", 48 cl::desc("Add printf calls that show the values loaded/stored."), 49 cl::Hidden, cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory)); 50 51 BlockGenerator::BlockGenerator(PollyIRBuilder &B, LoopInfo &LI, 52 ScalarEvolution &SE, DominatorTree &DT, 53 ScalarAllocaMapTy &ScalarMap, 54 ScalarAllocaMapTy &PHIOpMap, 55 EscapeUsersAllocaMapTy &EscapeMap, 56 ValueMapT &GlobalMap, 57 IslExprBuilder *ExprBuilder) 58 : Builder(B), LI(LI), SE(SE), ExprBuilder(ExprBuilder), DT(DT), 59 EntryBB(nullptr), PHIOpMap(PHIOpMap), ScalarMap(ScalarMap), 60 EscapeMap(EscapeMap), GlobalMap(GlobalMap) {} 61 62 Value *BlockGenerator::trySynthesizeNewValue(ScopStmt &Stmt, Value *Old, 63 ValueMapT &BBMap, 64 LoopToScevMapT <S, 65 Loop *L) const { 66 if (!SE.isSCEVable(Old->getType())) 67 return nullptr; 68 69 const SCEV *Scev = SE.getSCEVAtScope(Old, L); 70 if (!Scev) 71 return nullptr; 72 73 if (isa<SCEVCouldNotCompute>(Scev)) 74 return nullptr; 75 76 const SCEV *NewScev = apply(Scev, LTS, SE); 77 ValueMapT VTV; 78 VTV.insert(BBMap.begin(), BBMap.end()); 79 VTV.insert(GlobalMap.begin(), GlobalMap.end()); 80 81 Scop &S = *Stmt.getParent(); 82 const DataLayout &DL = 83 S.getRegion().getEntry()->getParent()->getParent()->getDataLayout(); 84 auto IP = Builder.GetInsertPoint(); 85 86 assert(IP != Builder.GetInsertBlock()->end() && 87 "Only instructions can be insert points for SCEVExpander"); 88 Value *Expanded = 89 expandCodeFor(S, SE, DL, "polly", NewScev, Old->getType(), &*IP, &VTV); 90 91 BBMap[Old] = Expanded; 92 return Expanded; 93 } 94 95 Value *BlockGenerator::getNewValue(ScopStmt &Stmt, Value *Old, ValueMapT &BBMap, 96 LoopToScevMapT <S, Loop *L) const { 97 // Constants that do not reference any named value can always remain 98 // unchanged. Handle them early to avoid expensive map lookups. We do not take 99 // the fast-path for external constants which are referenced through globals 100 // as these may need to be rewritten when distributing code accross different 101 // LLVM modules. 102 if (isa<Constant>(Old) && !isa<GlobalValue>(Old)) 103 return Old; 104 105 // Inline asm is like a constant to us. 106 if (isa<InlineAsm>(Old)) 107 return Old; 108 109 if (Value *New = GlobalMap.lookup(Old)) { 110 if (Value *NewRemapped = GlobalMap.lookup(New)) 111 New = NewRemapped; 112 if (Old->getType()->getScalarSizeInBits() < 113 New->getType()->getScalarSizeInBits()) 114 New = Builder.CreateTruncOrBitCast(New, Old->getType()); 115 116 return New; 117 } 118 119 if (Value *New = BBMap.lookup(Old)) 120 return New; 121 122 if (Value *New = trySynthesizeNewValue(Stmt, Old, BBMap, LTS, L)) 123 return New; 124 125 // A scop-constant value defined by a global or a function parameter. 126 if (isa<GlobalValue>(Old) || isa<Argument>(Old)) 127 return Old; 128 129 // A scop-constant value defined by an instruction executed outside the scop. 130 if (const Instruction *Inst = dyn_cast<Instruction>(Old)) 131 if (!Stmt.getParent()->getRegion().contains(Inst->getParent())) 132 return Old; 133 134 // The scalar dependence is neither available nor SCEVCodegenable. 135 llvm_unreachable("Unexpected scalar dependence in region!"); 136 return nullptr; 137 } 138 139 void BlockGenerator::copyInstScalar(ScopStmt &Stmt, Instruction *Inst, 140 ValueMapT &BBMap, LoopToScevMapT <S) { 141 // We do not generate debug intrinsics as we did not investigate how to 142 // copy them correctly. At the current state, they just crash the code 143 // generation as the meta-data operands are not correctly copied. 144 if (isa<DbgInfoIntrinsic>(Inst)) 145 return; 146 147 Instruction *NewInst = Inst->clone(); 148 149 // Replace old operands with the new ones. 150 for (Value *OldOperand : Inst->operands()) { 151 Value *NewOperand = 152 getNewValue(Stmt, OldOperand, BBMap, LTS, getLoopForInst(Inst)); 153 154 if (!NewOperand) { 155 assert(!isa<StoreInst>(NewInst) && 156 "Store instructions are always needed!"); 157 delete NewInst; 158 return; 159 } 160 161 NewInst->replaceUsesOfWith(OldOperand, NewOperand); 162 } 163 164 Builder.Insert(NewInst); 165 BBMap[Inst] = NewInst; 166 167 if (!NewInst->getType()->isVoidTy()) 168 NewInst->setName("p_" + Inst->getName()); 169 } 170 171 Value * 172 BlockGenerator::generateLocationAccessed(ScopStmt &Stmt, MemAccInst Inst, 173 ValueMapT &BBMap, LoopToScevMapT <S, 174 isl_id_to_ast_expr *NewAccesses) { 175 const MemoryAccess &MA = Stmt.getArrayAccessFor(Inst); 176 177 isl_ast_expr *AccessExpr = isl_id_to_ast_expr_get(NewAccesses, MA.getId()); 178 179 if (AccessExpr) { 180 AccessExpr = isl_ast_expr_address_of(AccessExpr); 181 auto Address = ExprBuilder->create(AccessExpr); 182 183 // Cast the address of this memory access to a pointer type that has the 184 // same element type as the original access, but uses the address space of 185 // the newly generated pointer. 186 auto OldPtrTy = MA.getAccessValue()->getType()->getPointerTo(); 187 auto NewPtrTy = Address->getType(); 188 OldPtrTy = PointerType::get(OldPtrTy->getElementType(), 189 NewPtrTy->getPointerAddressSpace()); 190 191 if (OldPtrTy != NewPtrTy) { 192 assert(OldPtrTy->getPointerElementType()->getPrimitiveSizeInBits() == 193 NewPtrTy->getPointerElementType()->getPrimitiveSizeInBits() && 194 "Pointer types to elements with different size found"); 195 Address = Builder.CreateBitOrPointerCast(Address, OldPtrTy); 196 } 197 return Address; 198 } 199 200 return getNewValue(Stmt, Inst.getPointerOperand(), BBMap, LTS, 201 getLoopForInst(Inst)); 202 } 203 204 Loop *BlockGenerator::getLoopForInst(const llvm::Instruction *Inst) { 205 return LI.getLoopFor(Inst->getParent()); 206 } 207 208 Value *BlockGenerator::generateScalarLoad(ScopStmt &Stmt, LoadInst *Load, 209 ValueMapT &BBMap, LoopToScevMapT <S, 210 isl_id_to_ast_expr *NewAccesses) { 211 if (Value *PreloadLoad = GlobalMap.lookup(Load)) 212 return PreloadLoad; 213 214 Value *NewPointer = 215 generateLocationAccessed(Stmt, Load, BBMap, LTS, NewAccesses); 216 Value *ScalarLoad = Builder.CreateAlignedLoad( 217 NewPointer, Load->getAlignment(), Load->getName() + "_p_scalar_"); 218 219 if (DebugPrinting) 220 RuntimeDebugBuilder::createCPUPrinter(Builder, "Load from ", NewPointer, 221 ": ", ScalarLoad, "\n"); 222 223 return ScalarLoad; 224 } 225 226 void BlockGenerator::generateScalarStore(ScopStmt &Stmt, StoreInst *Store, 227 ValueMapT &BBMap, LoopToScevMapT <S, 228 isl_id_to_ast_expr *NewAccesses) { 229 Value *NewPointer = 230 generateLocationAccessed(Stmt, Store, BBMap, LTS, NewAccesses); 231 Value *ValueOperand = getNewValue(Stmt, Store->getValueOperand(), BBMap, LTS, 232 getLoopForInst(Store)); 233 234 if (DebugPrinting) 235 RuntimeDebugBuilder::createCPUPrinter(Builder, "Store to ", NewPointer, 236 ": ", ValueOperand, "\n"); 237 238 Builder.CreateAlignedStore(ValueOperand, NewPointer, Store->getAlignment()); 239 } 240 241 bool BlockGenerator::canSyntheziseInStmt(ScopStmt &Stmt, Instruction *Inst) { 242 Loop *L = getLoopForInst(Inst); 243 return (Stmt.isBlockStmt() || !Stmt.getRegion()->contains(L)) && 244 canSynthesize(Inst, &LI, &SE, &Stmt.getParent()->getRegion()); 245 } 246 247 void BlockGenerator::copyInstruction(ScopStmt &Stmt, Instruction *Inst, 248 ValueMapT &BBMap, LoopToScevMapT <S, 249 isl_id_to_ast_expr *NewAccesses) { 250 // Terminator instructions control the control flow. They are explicitly 251 // expressed in the clast and do not need to be copied. 252 if (Inst->isTerminator()) 253 return; 254 255 // Synthesizable statements will be generated on-demand. 256 if (canSyntheziseInStmt(Stmt, Inst)) 257 return; 258 259 if (auto *Load = dyn_cast<LoadInst>(Inst)) { 260 Value *NewLoad = generateScalarLoad(Stmt, Load, BBMap, LTS, NewAccesses); 261 // Compute NewLoad before its insertion in BBMap to make the insertion 262 // deterministic. 263 BBMap[Load] = NewLoad; 264 return; 265 } 266 267 if (auto *Store = dyn_cast<StoreInst>(Inst)) { 268 generateScalarStore(Stmt, Store, BBMap, LTS, NewAccesses); 269 return; 270 } 271 272 if (auto *PHI = dyn_cast<PHINode>(Inst)) { 273 copyPHIInstruction(Stmt, PHI, BBMap, LTS); 274 return; 275 } 276 277 // Skip some special intrinsics for which we do not adjust the semantics to 278 // the new schedule. All others are handled like every other instruction. 279 if (isIgnoredIntrinsic(Inst)) 280 return; 281 282 copyInstScalar(Stmt, Inst, BBMap, LTS); 283 } 284 285 void BlockGenerator::copyStmt(ScopStmt &Stmt, LoopToScevMapT <S, 286 isl_id_to_ast_expr *NewAccesses) { 287 assert(Stmt.isBlockStmt() && 288 "Only block statements can be copied by the block generator"); 289 290 ValueMapT BBMap; 291 292 BasicBlock *BB = Stmt.getBasicBlock(); 293 copyBB(Stmt, BB, BBMap, LTS, NewAccesses); 294 } 295 296 BasicBlock *BlockGenerator::splitBB(BasicBlock *BB) { 297 BasicBlock *CopyBB = SplitBlock(Builder.GetInsertBlock(), 298 &*Builder.GetInsertPoint(), &DT, &LI); 299 CopyBB->setName("polly.stmt." + BB->getName()); 300 return CopyBB; 301 } 302 303 BasicBlock *BlockGenerator::copyBB(ScopStmt &Stmt, BasicBlock *BB, 304 ValueMapT &BBMap, LoopToScevMapT <S, 305 isl_id_to_ast_expr *NewAccesses) { 306 BasicBlock *CopyBB = splitBB(BB); 307 Builder.SetInsertPoint(&CopyBB->front()); 308 generateScalarLoads(Stmt, BBMap); 309 310 copyBB(Stmt, BB, CopyBB, BBMap, LTS, NewAccesses); 311 312 // After a basic block was copied store all scalars that escape this block in 313 // their alloca. 314 generateScalarStores(Stmt, LTS, BBMap); 315 return CopyBB; 316 } 317 318 void BlockGenerator::copyBB(ScopStmt &Stmt, BasicBlock *BB, BasicBlock *CopyBB, 319 ValueMapT &BBMap, LoopToScevMapT <S, 320 isl_id_to_ast_expr *NewAccesses) { 321 EntryBB = &CopyBB->getParent()->getEntryBlock(); 322 323 for (Instruction &Inst : *BB) 324 copyInstruction(Stmt, &Inst, BBMap, LTS, NewAccesses); 325 } 326 327 Value *BlockGenerator::getOrCreateAlloca(Value *ScalarBase, 328 ScalarAllocaMapTy &Map, 329 const char *NameExt) { 330 // If no alloca was found create one and insert it in the entry block. 331 if (!Map.count(ScalarBase)) { 332 auto *Ty = ScalarBase->getType(); 333 auto NewAddr = new AllocaInst(Ty, ScalarBase->getName() + NameExt); 334 EntryBB = &Builder.GetInsertBlock()->getParent()->getEntryBlock(); 335 NewAddr->insertBefore(&*EntryBB->getFirstInsertionPt()); 336 Map[ScalarBase] = NewAddr; 337 } 338 339 auto Addr = Map[ScalarBase]; 340 341 if (auto NewAddr = GlobalMap.lookup(Addr)) 342 return NewAddr; 343 344 return Addr; 345 } 346 347 Value *BlockGenerator::getOrCreateAlloca(MemoryAccess &Access) { 348 if (Access.isPHIKind()) 349 return getOrCreatePHIAlloca(Access.getBaseAddr()); 350 else 351 return getOrCreateScalarAlloca(Access.getBaseAddr()); 352 } 353 354 Value *BlockGenerator::getOrCreateAlloca(const ScopArrayInfo *Array) { 355 if (Array->isPHIKind()) 356 return getOrCreatePHIAlloca(Array->getBasePtr()); 357 else 358 return getOrCreateScalarAlloca(Array->getBasePtr()); 359 } 360 361 Value *BlockGenerator::getOrCreateScalarAlloca(Value *ScalarBase) { 362 return getOrCreateAlloca(ScalarBase, ScalarMap, ".s2a"); 363 } 364 365 Value *BlockGenerator::getOrCreatePHIAlloca(Value *ScalarBase) { 366 return getOrCreateAlloca(ScalarBase, PHIOpMap, ".phiops"); 367 } 368 369 void BlockGenerator::handleOutsideUsers(const Region &R, Instruction *Inst, 370 Value *Address) { 371 // If there are escape users we get the alloca for this instruction and put it 372 // in the EscapeMap for later finalization. Lastly, if the instruction was 373 // copied multiple times we already did this and can exit. 374 if (EscapeMap.count(Inst)) 375 return; 376 377 EscapeUserVectorTy EscapeUsers; 378 for (User *U : Inst->users()) { 379 380 // Non-instruction user will never escape. 381 Instruction *UI = dyn_cast<Instruction>(U); 382 if (!UI) 383 continue; 384 385 if (R.contains(UI)) 386 continue; 387 388 EscapeUsers.push_back(UI); 389 } 390 391 // Exit if no escape uses were found. 392 if (EscapeUsers.empty()) 393 return; 394 395 // Get or create an escape alloca for this instruction. 396 auto *ScalarAddr = Address ? Address : getOrCreateScalarAlloca(Inst); 397 398 // Remember that this instruction has escape uses and the escape alloca. 399 EscapeMap[Inst] = std::make_pair(ScalarAddr, std::move(EscapeUsers)); 400 } 401 402 void BlockGenerator::generateScalarLoads(ScopStmt &Stmt, ValueMapT &BBMap) { 403 for (MemoryAccess *MA : Stmt) { 404 if (MA->isArrayKind() || MA->isWrite()) 405 continue; 406 407 auto *Address = getOrCreateAlloca(*MA); 408 BBMap[MA->getBaseAddr()] = 409 Builder.CreateLoad(Address, Address->getName() + ".reload"); 410 } 411 } 412 413 void BlockGenerator::generateScalarStores(ScopStmt &Stmt, LoopToScevMapT <S, 414 ValueMapT &BBMap) { 415 Loop *L = LI.getLoopFor(Stmt.getBasicBlock()); 416 417 assert(Stmt.isBlockStmt() && "Region statements need to use the " 418 "generateScalarStores() function in the " 419 "RegionGenerator"); 420 421 for (MemoryAccess *MA : Stmt) { 422 if (MA->isArrayKind() || MA->isRead()) 423 continue; 424 425 Value *Val = MA->getAccessValue(); 426 if (MA->isAnyPHIKind()) { 427 assert(MA->getIncoming().size() >= 1 && 428 "Block statements have exactly one exiting block, or multiple but " 429 "with same incoming block and value"); 430 assert(std::all_of(MA->getIncoming().begin(), MA->getIncoming().end(), 431 [&](std::pair<BasicBlock *, Value *> p) -> bool { 432 return p.first == Stmt.getBasicBlock(); 433 }) && 434 "Incoming block must be statement's block"); 435 Val = MA->getIncoming()[0].second; 436 } 437 auto *Address = getOrCreateAlloca(*MA); 438 439 Val = getNewValue(Stmt, Val, BBMap, LTS, L); 440 Builder.CreateStore(Val, Address); 441 } 442 } 443 444 void BlockGenerator::createScalarInitialization(Scop &S) { 445 Region &R = S.getRegion(); 446 BasicBlock *ExitBB = R.getExit(); 447 448 // The split block __just before__ the region and optimized region. 449 BasicBlock *SplitBB = R.getEnteringBlock(); 450 BranchInst *SplitBBTerm = cast<BranchInst>(SplitBB->getTerminator()); 451 assert(SplitBBTerm->getNumSuccessors() == 2 && "Bad region entering block!"); 452 453 // Get the start block of the __optimized__ region. 454 BasicBlock *StartBB = SplitBBTerm->getSuccessor(0); 455 if (StartBB == R.getEntry()) 456 StartBB = SplitBBTerm->getSuccessor(1); 457 458 Builder.SetInsertPoint(StartBB->getTerminator()); 459 460 for (auto &Pair : S.arrays()) { 461 auto &Array = Pair.second; 462 if (Array->getNumberOfDimensions() != 0) 463 continue; 464 if (Array->isPHIKind()) { 465 // For PHI nodes, the only values we need to store are the ones that 466 // reach the PHI node from outside the region. In general there should 467 // only be one such incoming edge and this edge should enter through 468 // 'SplitBB'. 469 auto PHI = cast<PHINode>(Array->getBasePtr()); 470 471 for (auto BI = PHI->block_begin(), BE = PHI->block_end(); BI != BE; BI++) 472 if (!R.contains(*BI) && *BI != SplitBB) 473 llvm_unreachable("Incoming edges from outside the scop should always " 474 "come from SplitBB"); 475 476 int Idx = PHI->getBasicBlockIndex(SplitBB); 477 if (Idx < 0) 478 continue; 479 480 Value *ScalarValue = PHI->getIncomingValue(Idx); 481 482 Builder.CreateStore(ScalarValue, getOrCreatePHIAlloca(PHI)); 483 continue; 484 } 485 486 auto *Inst = dyn_cast<Instruction>(Array->getBasePtr()); 487 488 if (Inst && R.contains(Inst)) 489 continue; 490 491 // PHI nodes that are not marked as such in their SAI object are either exit 492 // PHI nodes we model as common scalars but without initialization, or 493 // incoming phi nodes that need to be initialized. Check if the first is the 494 // case for Inst and do not create and initialize memory if so. 495 if (auto *PHI = dyn_cast_or_null<PHINode>(Inst)) 496 if (!S.hasSingleExitEdge() && PHI->getBasicBlockIndex(ExitBB) >= 0) 497 continue; 498 499 Builder.CreateStore(Array->getBasePtr(), 500 getOrCreateScalarAlloca(Array->getBasePtr())); 501 } 502 } 503 504 void BlockGenerator::createScalarFinalization(Region &R) { 505 // The exit block of the __unoptimized__ region. 506 BasicBlock *ExitBB = R.getExitingBlock(); 507 // The merge block __just after__ the region and the optimized region. 508 BasicBlock *MergeBB = R.getExit(); 509 510 // The exit block of the __optimized__ region. 511 BasicBlock *OptExitBB = *(pred_begin(MergeBB)); 512 if (OptExitBB == ExitBB) 513 OptExitBB = *(++pred_begin(MergeBB)); 514 515 Builder.SetInsertPoint(OptExitBB->getTerminator()); 516 for (const auto &EscapeMapping : EscapeMap) { 517 // Extract the escaping instruction and the escaping users as well as the 518 // alloca the instruction was demoted to. 519 Instruction *EscapeInst = EscapeMapping.getFirst(); 520 const auto &EscapeMappingValue = EscapeMapping.getSecond(); 521 const EscapeUserVectorTy &EscapeUsers = EscapeMappingValue.second; 522 Value *ScalarAddr = EscapeMappingValue.first; 523 524 // Reload the demoted instruction in the optimized version of the SCoP. 525 Value *EscapeInstReload = 526 Builder.CreateLoad(ScalarAddr, EscapeInst->getName() + ".final_reload"); 527 EscapeInstReload = 528 Builder.CreateBitOrPointerCast(EscapeInstReload, EscapeInst->getType()); 529 530 // Create the merge PHI that merges the optimized and unoptimized version. 531 PHINode *MergePHI = PHINode::Create(EscapeInst->getType(), 2, 532 EscapeInst->getName() + ".merge"); 533 MergePHI->insertBefore(&*MergeBB->getFirstInsertionPt()); 534 535 // Add the respective values to the merge PHI. 536 MergePHI->addIncoming(EscapeInstReload, OptExitBB); 537 MergePHI->addIncoming(EscapeInst, ExitBB); 538 539 // The information of scalar evolution about the escaping instruction needs 540 // to be revoked so the new merged instruction will be used. 541 if (SE.isSCEVable(EscapeInst->getType())) 542 SE.forgetValue(EscapeInst); 543 544 // Replace all uses of the demoted instruction with the merge PHI. 545 for (Instruction *EUser : EscapeUsers) 546 EUser->replaceUsesOfWith(EscapeInst, MergePHI); 547 } 548 } 549 550 void BlockGenerator::findOutsideUsers(Scop &S) { 551 auto &R = S.getRegion(); 552 for (auto &Pair : S.arrays()) { 553 auto &Array = Pair.second; 554 555 if (Array->getNumberOfDimensions() != 0) 556 continue; 557 558 if (Array->isPHIKind()) 559 continue; 560 561 auto *Inst = dyn_cast<Instruction>(Array->getBasePtr()); 562 563 if (!Inst) 564 continue; 565 566 // Scop invariant hoisting moves some of the base pointers out of the scop. 567 // We can ignore these, as the invariant load hoisting already registers the 568 // relevant outside users. 569 if (!R.contains(Inst)) 570 continue; 571 572 handleOutsideUsers(R, Inst, nullptr); 573 } 574 } 575 576 void BlockGenerator::createExitPHINodeMerges(Scop &S) { 577 if (S.hasSingleExitEdge()) 578 return; 579 580 Region &R = S.getRegion(); 581 582 auto *ExitBB = R.getExitingBlock(); 583 auto *MergeBB = R.getExit(); 584 auto *AfterMergeBB = MergeBB->getSingleSuccessor(); 585 BasicBlock *OptExitBB = *(pred_begin(MergeBB)); 586 if (OptExitBB == ExitBB) 587 OptExitBB = *(++pred_begin(MergeBB)); 588 589 Builder.SetInsertPoint(OptExitBB->getTerminator()); 590 591 for (auto &Pair : S.arrays()) { 592 auto &SAI = Pair.second; 593 auto *Val = SAI->getBasePtr(); 594 595 PHINode *PHI = dyn_cast<PHINode>(Val); 596 if (!PHI) 597 continue; 598 599 if (PHI->getParent() != AfterMergeBB) 600 continue; 601 602 std::string Name = PHI->getName(); 603 Value *ScalarAddr = getOrCreateScalarAlloca(PHI); 604 Value *Reload = Builder.CreateLoad(ScalarAddr, Name + ".ph.final_reload"); 605 Reload = Builder.CreateBitOrPointerCast(Reload, PHI->getType()); 606 Value *OriginalValue = PHI->getIncomingValueForBlock(MergeBB); 607 auto *MergePHI = PHINode::Create(PHI->getType(), 2, Name + ".ph.merge"); 608 MergePHI->insertBefore(&*MergeBB->getFirstInsertionPt()); 609 MergePHI->addIncoming(Reload, OptExitBB); 610 MergePHI->addIncoming(OriginalValue, ExitBB); 611 int Idx = PHI->getBasicBlockIndex(MergeBB); 612 PHI->setIncomingValue(Idx, MergePHI); 613 } 614 } 615 616 void BlockGenerator::finalizeSCoP(Scop &S) { 617 findOutsideUsers(S); 618 createScalarInitialization(S); 619 createExitPHINodeMerges(S); 620 createScalarFinalization(S.getRegion()); 621 } 622 623 VectorBlockGenerator::VectorBlockGenerator(BlockGenerator &BlockGen, 624 std::vector<LoopToScevMapT> &VLTS, 625 isl_map *Schedule) 626 : BlockGenerator(BlockGen), VLTS(VLTS), Schedule(Schedule) { 627 assert(Schedule && "No statement domain provided"); 628 } 629 630 Value *VectorBlockGenerator::getVectorValue(ScopStmt &Stmt, Value *Old, 631 ValueMapT &VectorMap, 632 VectorValueMapT &ScalarMaps, 633 Loop *L) { 634 if (Value *NewValue = VectorMap.lookup(Old)) 635 return NewValue; 636 637 int Width = getVectorWidth(); 638 639 Value *Vector = UndefValue::get(VectorType::get(Old->getType(), Width)); 640 641 for (int Lane = 0; Lane < Width; Lane++) 642 Vector = Builder.CreateInsertElement( 643 Vector, getNewValue(Stmt, Old, ScalarMaps[Lane], VLTS[Lane], L), 644 Builder.getInt32(Lane)); 645 646 VectorMap[Old] = Vector; 647 648 return Vector; 649 } 650 651 Type *VectorBlockGenerator::getVectorPtrTy(const Value *Val, int Width) { 652 PointerType *PointerTy = dyn_cast<PointerType>(Val->getType()); 653 assert(PointerTy && "PointerType expected"); 654 655 Type *ScalarType = PointerTy->getElementType(); 656 VectorType *VectorType = VectorType::get(ScalarType, Width); 657 658 return PointerType::getUnqual(VectorType); 659 } 660 661 Value *VectorBlockGenerator::generateStrideOneLoad( 662 ScopStmt &Stmt, LoadInst *Load, VectorValueMapT &ScalarMaps, 663 __isl_keep isl_id_to_ast_expr *NewAccesses, bool NegativeStride = false) { 664 unsigned VectorWidth = getVectorWidth(); 665 auto *Pointer = Load->getPointerOperand(); 666 Type *VectorPtrType = getVectorPtrTy(Pointer, VectorWidth); 667 unsigned Offset = NegativeStride ? VectorWidth - 1 : 0; 668 669 Value *NewPointer = nullptr; 670 NewPointer = generateLocationAccessed(Stmt, Load, ScalarMaps[Offset], 671 VLTS[Offset], NewAccesses); 672 Value *VectorPtr = 673 Builder.CreateBitCast(NewPointer, VectorPtrType, "vector_ptr"); 674 LoadInst *VecLoad = 675 Builder.CreateLoad(VectorPtr, Load->getName() + "_p_vec_full"); 676 if (!Aligned) 677 VecLoad->setAlignment(8); 678 679 if (NegativeStride) { 680 SmallVector<Constant *, 16> Indices; 681 for (int i = VectorWidth - 1; i >= 0; i--) 682 Indices.push_back(ConstantInt::get(Builder.getInt32Ty(), i)); 683 Constant *SV = llvm::ConstantVector::get(Indices); 684 Value *RevVecLoad = Builder.CreateShuffleVector( 685 VecLoad, VecLoad, SV, Load->getName() + "_reverse"); 686 return RevVecLoad; 687 } 688 689 return VecLoad; 690 } 691 692 Value *VectorBlockGenerator::generateStrideZeroLoad( 693 ScopStmt &Stmt, LoadInst *Load, ValueMapT &BBMap, 694 __isl_keep isl_id_to_ast_expr *NewAccesses) { 695 auto *Pointer = Load->getPointerOperand(); 696 Type *VectorPtrType = getVectorPtrTy(Pointer, 1); 697 Value *NewPointer = 698 generateLocationAccessed(Stmt, Load, BBMap, VLTS[0], NewAccesses); 699 Value *VectorPtr = Builder.CreateBitCast(NewPointer, VectorPtrType, 700 Load->getName() + "_p_vec_p"); 701 LoadInst *ScalarLoad = 702 Builder.CreateLoad(VectorPtr, Load->getName() + "_p_splat_one"); 703 704 if (!Aligned) 705 ScalarLoad->setAlignment(8); 706 707 Constant *SplatVector = Constant::getNullValue( 708 VectorType::get(Builder.getInt32Ty(), getVectorWidth())); 709 710 Value *VectorLoad = Builder.CreateShuffleVector( 711 ScalarLoad, ScalarLoad, SplatVector, Load->getName() + "_p_splat"); 712 return VectorLoad; 713 } 714 715 Value *VectorBlockGenerator::generateUnknownStrideLoad( 716 ScopStmt &Stmt, LoadInst *Load, VectorValueMapT &ScalarMaps, 717 __isl_keep isl_id_to_ast_expr *NewAccesses) { 718 int VectorWidth = getVectorWidth(); 719 auto *Pointer = Load->getPointerOperand(); 720 VectorType *VectorType = VectorType::get( 721 dyn_cast<PointerType>(Pointer->getType())->getElementType(), VectorWidth); 722 723 Value *Vector = UndefValue::get(VectorType); 724 725 for (int i = 0; i < VectorWidth; i++) { 726 Value *NewPointer = generateLocationAccessed(Stmt, Load, ScalarMaps[i], 727 VLTS[i], NewAccesses); 728 Value *ScalarLoad = 729 Builder.CreateLoad(NewPointer, Load->getName() + "_p_scalar_"); 730 Vector = Builder.CreateInsertElement( 731 Vector, ScalarLoad, Builder.getInt32(i), Load->getName() + "_p_vec_"); 732 } 733 734 return Vector; 735 } 736 737 void VectorBlockGenerator::generateLoad( 738 ScopStmt &Stmt, LoadInst *Load, ValueMapT &VectorMap, 739 VectorValueMapT &ScalarMaps, __isl_keep isl_id_to_ast_expr *NewAccesses) { 740 if (Value *PreloadLoad = GlobalMap.lookup(Load)) { 741 VectorMap[Load] = Builder.CreateVectorSplat(getVectorWidth(), PreloadLoad, 742 Load->getName() + "_p"); 743 return; 744 } 745 746 if (!VectorType::isValidElementType(Load->getType())) { 747 for (int i = 0; i < getVectorWidth(); i++) 748 ScalarMaps[i][Load] = 749 generateScalarLoad(Stmt, Load, ScalarMaps[i], VLTS[i], NewAccesses); 750 return; 751 } 752 753 const MemoryAccess &Access = Stmt.getArrayAccessFor(Load); 754 755 // Make sure we have scalar values available to access the pointer to 756 // the data location. 757 extractScalarValues(Load, VectorMap, ScalarMaps); 758 759 Value *NewLoad; 760 if (Access.isStrideZero(isl_map_copy(Schedule))) 761 NewLoad = generateStrideZeroLoad(Stmt, Load, ScalarMaps[0], NewAccesses); 762 else if (Access.isStrideOne(isl_map_copy(Schedule))) 763 NewLoad = generateStrideOneLoad(Stmt, Load, ScalarMaps, NewAccesses); 764 else if (Access.isStrideX(isl_map_copy(Schedule), -1)) 765 NewLoad = generateStrideOneLoad(Stmt, Load, ScalarMaps, NewAccesses, true); 766 else 767 NewLoad = generateUnknownStrideLoad(Stmt, Load, ScalarMaps, NewAccesses); 768 769 VectorMap[Load] = NewLoad; 770 } 771 772 void VectorBlockGenerator::copyUnaryInst(ScopStmt &Stmt, UnaryInstruction *Inst, 773 ValueMapT &VectorMap, 774 VectorValueMapT &ScalarMaps) { 775 int VectorWidth = getVectorWidth(); 776 Value *NewOperand = getVectorValue(Stmt, Inst->getOperand(0), VectorMap, 777 ScalarMaps, getLoopForInst(Inst)); 778 779 assert(isa<CastInst>(Inst) && "Can not generate vector code for instruction"); 780 781 const CastInst *Cast = dyn_cast<CastInst>(Inst); 782 VectorType *DestType = VectorType::get(Inst->getType(), VectorWidth); 783 VectorMap[Inst] = Builder.CreateCast(Cast->getOpcode(), NewOperand, DestType); 784 } 785 786 void VectorBlockGenerator::copyBinaryInst(ScopStmt &Stmt, BinaryOperator *Inst, 787 ValueMapT &VectorMap, 788 VectorValueMapT &ScalarMaps) { 789 Loop *L = getLoopForInst(Inst); 790 Value *OpZero = Inst->getOperand(0); 791 Value *OpOne = Inst->getOperand(1); 792 793 Value *NewOpZero, *NewOpOne; 794 NewOpZero = getVectorValue(Stmt, OpZero, VectorMap, ScalarMaps, L); 795 NewOpOne = getVectorValue(Stmt, OpOne, VectorMap, ScalarMaps, L); 796 797 Value *NewInst = Builder.CreateBinOp(Inst->getOpcode(), NewOpZero, NewOpOne, 798 Inst->getName() + "p_vec"); 799 VectorMap[Inst] = NewInst; 800 } 801 802 void VectorBlockGenerator::copyStore( 803 ScopStmt &Stmt, StoreInst *Store, ValueMapT &VectorMap, 804 VectorValueMapT &ScalarMaps, __isl_keep isl_id_to_ast_expr *NewAccesses) { 805 const MemoryAccess &Access = Stmt.getArrayAccessFor(Store); 806 807 auto *Pointer = Store->getPointerOperand(); 808 Value *Vector = getVectorValue(Stmt, Store->getValueOperand(), VectorMap, 809 ScalarMaps, getLoopForInst(Store)); 810 811 // Make sure we have scalar values available to access the pointer to 812 // the data location. 813 extractScalarValues(Store, VectorMap, ScalarMaps); 814 815 if (Access.isStrideOne(isl_map_copy(Schedule))) { 816 Type *VectorPtrType = getVectorPtrTy(Pointer, getVectorWidth()); 817 Value *NewPointer = generateLocationAccessed(Stmt, Store, ScalarMaps[0], 818 VLTS[0], NewAccesses); 819 820 Value *VectorPtr = 821 Builder.CreateBitCast(NewPointer, VectorPtrType, "vector_ptr"); 822 StoreInst *Store = Builder.CreateStore(Vector, VectorPtr); 823 824 if (!Aligned) 825 Store->setAlignment(8); 826 } else { 827 for (unsigned i = 0; i < ScalarMaps.size(); i++) { 828 Value *Scalar = Builder.CreateExtractElement(Vector, Builder.getInt32(i)); 829 Value *NewPointer = generateLocationAccessed(Stmt, Store, ScalarMaps[i], 830 VLTS[i], NewAccesses); 831 Builder.CreateStore(Scalar, NewPointer); 832 } 833 } 834 } 835 836 bool VectorBlockGenerator::hasVectorOperands(const Instruction *Inst, 837 ValueMapT &VectorMap) { 838 for (Value *Operand : Inst->operands()) 839 if (VectorMap.count(Operand)) 840 return true; 841 return false; 842 } 843 844 bool VectorBlockGenerator::extractScalarValues(const Instruction *Inst, 845 ValueMapT &VectorMap, 846 VectorValueMapT &ScalarMaps) { 847 bool HasVectorOperand = false; 848 int VectorWidth = getVectorWidth(); 849 850 for (Value *Operand : Inst->operands()) { 851 ValueMapT::iterator VecOp = VectorMap.find(Operand); 852 853 if (VecOp == VectorMap.end()) 854 continue; 855 856 HasVectorOperand = true; 857 Value *NewVector = VecOp->second; 858 859 for (int i = 0; i < VectorWidth; ++i) { 860 ValueMapT &SM = ScalarMaps[i]; 861 862 // If there is one scalar extracted, all scalar elements should have 863 // already been extracted by the code here. So no need to check for the 864 // existance of all of them. 865 if (SM.count(Operand)) 866 break; 867 868 SM[Operand] = 869 Builder.CreateExtractElement(NewVector, Builder.getInt32(i)); 870 } 871 } 872 873 return HasVectorOperand; 874 } 875 876 void VectorBlockGenerator::copyInstScalarized( 877 ScopStmt &Stmt, Instruction *Inst, ValueMapT &VectorMap, 878 VectorValueMapT &ScalarMaps, __isl_keep isl_id_to_ast_expr *NewAccesses) { 879 bool HasVectorOperand; 880 int VectorWidth = getVectorWidth(); 881 882 HasVectorOperand = extractScalarValues(Inst, VectorMap, ScalarMaps); 883 884 for (int VectorLane = 0; VectorLane < getVectorWidth(); VectorLane++) 885 BlockGenerator::copyInstruction(Stmt, Inst, ScalarMaps[VectorLane], 886 VLTS[VectorLane], NewAccesses); 887 888 if (!VectorType::isValidElementType(Inst->getType()) || !HasVectorOperand) 889 return; 890 891 // Make the result available as vector value. 892 VectorType *VectorType = VectorType::get(Inst->getType(), VectorWidth); 893 Value *Vector = UndefValue::get(VectorType); 894 895 for (int i = 0; i < VectorWidth; i++) 896 Vector = Builder.CreateInsertElement(Vector, ScalarMaps[i][Inst], 897 Builder.getInt32(i)); 898 899 VectorMap[Inst] = Vector; 900 } 901 902 int VectorBlockGenerator::getVectorWidth() { return VLTS.size(); } 903 904 void VectorBlockGenerator::copyInstruction( 905 ScopStmt &Stmt, Instruction *Inst, ValueMapT &VectorMap, 906 VectorValueMapT &ScalarMaps, __isl_keep isl_id_to_ast_expr *NewAccesses) { 907 // Terminator instructions control the control flow. They are explicitly 908 // expressed in the clast and do not need to be copied. 909 if (Inst->isTerminator()) 910 return; 911 912 if (canSyntheziseInStmt(Stmt, Inst)) 913 return; 914 915 if (auto *Load = dyn_cast<LoadInst>(Inst)) { 916 generateLoad(Stmt, Load, VectorMap, ScalarMaps, NewAccesses); 917 return; 918 } 919 920 if (hasVectorOperands(Inst, VectorMap)) { 921 if (auto *Store = dyn_cast<StoreInst>(Inst)) { 922 copyStore(Stmt, Store, VectorMap, ScalarMaps, NewAccesses); 923 return; 924 } 925 926 if (auto *Unary = dyn_cast<UnaryInstruction>(Inst)) { 927 copyUnaryInst(Stmt, Unary, VectorMap, ScalarMaps); 928 return; 929 } 930 931 if (auto *Binary = dyn_cast<BinaryOperator>(Inst)) { 932 copyBinaryInst(Stmt, Binary, VectorMap, ScalarMaps); 933 return; 934 } 935 936 // Falltrough: We generate scalar instructions, if we don't know how to 937 // generate vector code. 938 } 939 940 copyInstScalarized(Stmt, Inst, VectorMap, ScalarMaps, NewAccesses); 941 } 942 943 void VectorBlockGenerator::generateScalarVectorLoads( 944 ScopStmt &Stmt, ValueMapT &VectorBlockMap) { 945 for (MemoryAccess *MA : Stmt) { 946 if (MA->isArrayKind() || MA->isWrite()) 947 continue; 948 949 auto *Address = getOrCreateAlloca(*MA); 950 Type *VectorPtrType = getVectorPtrTy(Address, 1); 951 Value *VectorPtr = Builder.CreateBitCast(Address, VectorPtrType, 952 Address->getName() + "_p_vec_p"); 953 auto *Val = Builder.CreateLoad(VectorPtr, Address->getName() + ".reload"); 954 Constant *SplatVector = Constant::getNullValue( 955 VectorType::get(Builder.getInt32Ty(), getVectorWidth())); 956 957 Value *VectorVal = Builder.CreateShuffleVector( 958 Val, Val, SplatVector, Address->getName() + "_p_splat"); 959 VectorBlockMap[MA->getBaseAddr()] = VectorVal; 960 VectorVal->dump(); 961 } 962 } 963 964 void VectorBlockGenerator::verifyNoScalarStores(ScopStmt &Stmt) { 965 for (MemoryAccess *MA : Stmt) { 966 if (MA->isArrayKind() || MA->isRead()) 967 continue; 968 969 llvm_unreachable("Scalar stores not expected in vector loop"); 970 } 971 } 972 973 void VectorBlockGenerator::copyStmt( 974 ScopStmt &Stmt, __isl_keep isl_id_to_ast_expr *NewAccesses) { 975 assert(Stmt.isBlockStmt() && "TODO: Only block statements can be copied by " 976 "the vector block generator"); 977 978 BasicBlock *BB = Stmt.getBasicBlock(); 979 BasicBlock *CopyBB = SplitBlock(Builder.GetInsertBlock(), 980 &*Builder.GetInsertPoint(), &DT, &LI); 981 CopyBB->setName("polly.stmt." + BB->getName()); 982 Builder.SetInsertPoint(&CopyBB->front()); 983 984 // Create two maps that store the mapping from the original instructions of 985 // the old basic block to their copies in the new basic block. Those maps 986 // are basic block local. 987 // 988 // As vector code generation is supported there is one map for scalar values 989 // and one for vector values. 990 // 991 // In case we just do scalar code generation, the vectorMap is not used and 992 // the scalarMap has just one dimension, which contains the mapping. 993 // 994 // In case vector code generation is done, an instruction may either appear 995 // in the vector map once (as it is calculating >vectorwidth< values at a 996 // time. Or (if the values are calculated using scalar operations), it 997 // appears once in every dimension of the scalarMap. 998 VectorValueMapT ScalarBlockMap(getVectorWidth()); 999 ValueMapT VectorBlockMap; 1000 1001 generateScalarVectorLoads(Stmt, VectorBlockMap); 1002 1003 for (Instruction &Inst : *BB) 1004 copyInstruction(Stmt, &Inst, VectorBlockMap, ScalarBlockMap, NewAccesses); 1005 1006 verifyNoScalarStores(Stmt); 1007 } 1008 1009 BasicBlock *RegionGenerator::repairDominance(BasicBlock *BB, 1010 BasicBlock *BBCopy) { 1011 1012 BasicBlock *BBIDom = DT.getNode(BB)->getIDom()->getBlock(); 1013 BasicBlock *BBCopyIDom = BlockMap.lookup(BBIDom); 1014 1015 if (BBCopyIDom) 1016 DT.changeImmediateDominator(BBCopy, BBCopyIDom); 1017 1018 return BBCopyIDom; 1019 } 1020 1021 void RegionGenerator::copyStmt(ScopStmt &Stmt, LoopToScevMapT <S, 1022 isl_id_to_ast_expr *IdToAstExp) { 1023 assert(Stmt.isRegionStmt() && 1024 "Only region statements can be copied by the region generator"); 1025 1026 Scop *S = Stmt.getParent(); 1027 1028 // Forget all old mappings. 1029 BlockMap.clear(); 1030 RegionMaps.clear(); 1031 IncompletePHINodeMap.clear(); 1032 1033 // Collection of all values related to this subregion. 1034 ValueMapT ValueMap; 1035 1036 // The region represented by the statement. 1037 Region *R = Stmt.getRegion(); 1038 1039 // Create a dedicated entry for the region where we can reload all demoted 1040 // inputs. 1041 BasicBlock *EntryBB = R->getEntry(); 1042 BasicBlock *EntryBBCopy = SplitBlock(Builder.GetInsertBlock(), 1043 &*Builder.GetInsertPoint(), &DT, &LI); 1044 EntryBBCopy->setName("polly.stmt." + EntryBB->getName() + ".entry"); 1045 Builder.SetInsertPoint(&EntryBBCopy->front()); 1046 1047 ValueMapT &EntryBBMap = RegionMaps[EntryBBCopy]; 1048 generateScalarLoads(Stmt, EntryBBMap); 1049 1050 for (auto PI = pred_begin(EntryBB), PE = pred_end(EntryBB); PI != PE; ++PI) 1051 if (!R->contains(*PI)) 1052 BlockMap[*PI] = EntryBBCopy; 1053 1054 // Determine the original exit block of this subregion. If it the exit block 1055 // is also the scop's exit, it it has been changed to polly.merge_new_and_old. 1056 // We move one block back to find the original block. This only happens if the 1057 // scop required simplification. 1058 // If the whole scop consists of only this non-affine region, then they share 1059 // the same Region object, such that we cannot change the exit of one and not 1060 // the other. 1061 BasicBlock *ExitBB = R->getExit(); 1062 if (!S->hasSingleExitEdge() && ExitBB == S->getRegion().getExit()) 1063 ExitBB = *(++pred_begin(ExitBB)); 1064 1065 // Iterate over all blocks in the region in a breadth-first search. 1066 std::deque<BasicBlock *> Blocks; 1067 SmallPtrSet<BasicBlock *, 8> SeenBlocks; 1068 Blocks.push_back(EntryBB); 1069 SeenBlocks.insert(EntryBB); 1070 1071 while (!Blocks.empty()) { 1072 BasicBlock *BB = Blocks.front(); 1073 Blocks.pop_front(); 1074 1075 // First split the block and update dominance information. 1076 BasicBlock *BBCopy = splitBB(BB); 1077 BasicBlock *BBCopyIDom = repairDominance(BB, BBCopy); 1078 1079 // In order to remap PHI nodes we store also basic block mappings. 1080 BlockMap[BB] = BBCopy; 1081 1082 // Get the mapping for this block and initialize it with either the scalar 1083 // loads from the generated entering block (which dominates all blocks of 1084 // this subregion) or the maps of the immediate dominator, if part of the 1085 // subregion. The latter necessarily includes the former. 1086 ValueMapT *InitBBMap; 1087 if (BBCopyIDom) { 1088 assert(RegionMaps.count(BBCopyIDom)); 1089 InitBBMap = &RegionMaps[BBCopyIDom]; 1090 } else 1091 InitBBMap = &EntryBBMap; 1092 auto Inserted = RegionMaps.insert(std::make_pair(BBCopy, *InitBBMap)); 1093 ValueMapT &RegionMap = Inserted.first->second; 1094 1095 // Copy the block with the BlockGenerator. 1096 Builder.SetInsertPoint(&BBCopy->front()); 1097 copyBB(Stmt, BB, BBCopy, RegionMap, LTS, IdToAstExp); 1098 1099 // In order to remap PHI nodes we store also basic block mappings. 1100 BlockMap[BB] = BBCopy; 1101 1102 // Add values to incomplete PHI nodes waiting for this block to be copied. 1103 for (const PHINodePairTy &PHINodePair : IncompletePHINodeMap[BB]) 1104 addOperandToPHI(Stmt, PHINodePair.first, PHINodePair.second, BB, LTS); 1105 IncompletePHINodeMap[BB].clear(); 1106 1107 // And continue with new successors inside the region. 1108 for (auto SI = succ_begin(BB), SE = succ_end(BB); SI != SE; SI++) 1109 if (R->contains(*SI) && SeenBlocks.insert(*SI).second) 1110 Blocks.push_back(*SI); 1111 1112 // Remember value in case it is visible after this subregion. 1113 if (DT.dominates(BB, ExitBB)) 1114 ValueMap.insert(RegionMap.begin(), RegionMap.end()); 1115 } 1116 1117 // Now create a new dedicated region exit block and add it to the region map. 1118 BasicBlock *ExitBBCopy = SplitBlock(Builder.GetInsertBlock(), 1119 &*Builder.GetInsertPoint(), &DT, &LI); 1120 ExitBBCopy->setName("polly.stmt." + R->getExit()->getName() + ".exit"); 1121 BlockMap[R->getExit()] = ExitBBCopy; 1122 1123 if (ExitBB == R->getExit()) 1124 repairDominance(ExitBB, ExitBBCopy); 1125 else 1126 DT.changeImmediateDominator(ExitBBCopy, BlockMap.lookup(ExitBB)); 1127 1128 // As the block generator doesn't handle control flow we need to add the 1129 // region control flow by hand after all blocks have been copied. 1130 for (BasicBlock *BB : SeenBlocks) { 1131 1132 BasicBlock *BBCopy = BlockMap[BB]; 1133 TerminatorInst *TI = BB->getTerminator(); 1134 if (isa<UnreachableInst>(TI)) { 1135 while (!BBCopy->empty()) 1136 BBCopy->begin()->eraseFromParent(); 1137 new UnreachableInst(BBCopy->getContext(), BBCopy); 1138 continue; 1139 } 1140 1141 Instruction *BICopy = BBCopy->getTerminator(); 1142 1143 ValueMapT &RegionMap = RegionMaps[BBCopy]; 1144 RegionMap.insert(BlockMap.begin(), BlockMap.end()); 1145 1146 Builder.SetInsertPoint(BICopy); 1147 copyInstScalar(Stmt, TI, RegionMap, LTS); 1148 BICopy->eraseFromParent(); 1149 } 1150 1151 // Add counting PHI nodes to all loops in the region that can be used as 1152 // replacement for SCEVs refering to the old loop. 1153 for (BasicBlock *BB : SeenBlocks) { 1154 Loop *L = LI.getLoopFor(BB); 1155 if (L == nullptr || L->getHeader() != BB || !R->contains(L)) 1156 continue; 1157 1158 BasicBlock *BBCopy = BlockMap[BB]; 1159 Value *NullVal = Builder.getInt32(0); 1160 PHINode *LoopPHI = 1161 PHINode::Create(Builder.getInt32Ty(), 2, "polly.subregion.iv"); 1162 Instruction *LoopPHIInc = BinaryOperator::CreateAdd( 1163 LoopPHI, Builder.getInt32(1), "polly.subregion.iv.inc"); 1164 LoopPHI->insertBefore(&BBCopy->front()); 1165 LoopPHIInc->insertBefore(BBCopy->getTerminator()); 1166 1167 for (auto *PredBB : make_range(pred_begin(BB), pred_end(BB))) { 1168 if (!R->contains(PredBB)) 1169 continue; 1170 if (L->contains(PredBB)) 1171 LoopPHI->addIncoming(LoopPHIInc, BlockMap[PredBB]); 1172 else 1173 LoopPHI->addIncoming(NullVal, BlockMap[PredBB]); 1174 } 1175 1176 for (auto *PredBBCopy : make_range(pred_begin(BBCopy), pred_end(BBCopy))) 1177 if (LoopPHI->getBasicBlockIndex(PredBBCopy) < 0) 1178 LoopPHI->addIncoming(NullVal, PredBBCopy); 1179 1180 LTS[L] = SE.getUnknown(LoopPHI); 1181 } 1182 1183 // Continue generating code in the exit block. 1184 Builder.SetInsertPoint(&*ExitBBCopy->getFirstInsertionPt()); 1185 1186 // Write values visible to other statements. 1187 generateScalarStores(Stmt, LTS, ValueMap); 1188 BlockMap.clear(); 1189 RegionMaps.clear(); 1190 IncompletePHINodeMap.clear(); 1191 } 1192 1193 PHINode *RegionGenerator::buildExitPHI(MemoryAccess *MA, LoopToScevMapT <S, 1194 ValueMapT &BBMap, Loop *L) { 1195 ScopStmt *Stmt = MA->getStatement(); 1196 Region *SubR = Stmt->getRegion(); 1197 auto Incoming = MA->getIncoming(); 1198 1199 PollyIRBuilder::InsertPointGuard IPGuard(Builder); 1200 PHINode *OrigPHI = cast<PHINode>(MA->getAccessInstruction()); 1201 BasicBlock *NewSubregionExit = Builder.GetInsertBlock(); 1202 1203 // This can happen if the subregion is simplified after the ScopStmts 1204 // have been created; simplification happens as part of CodeGeneration. 1205 if (OrigPHI->getParent() != SubR->getExit()) { 1206 BasicBlock *FormerExit = SubR->getExitingBlock(); 1207 if (FormerExit) 1208 NewSubregionExit = BlockMap.lookup(FormerExit); 1209 } 1210 1211 PHINode *NewPHI = PHINode::Create(OrigPHI->getType(), Incoming.size(), 1212 "polly." + OrigPHI->getName(), 1213 NewSubregionExit->getFirstNonPHI()); 1214 1215 // Add the incoming values to the PHI. 1216 for (auto &Pair : Incoming) { 1217 BasicBlock *OrigIncomingBlock = Pair.first; 1218 BasicBlock *NewIncomingBlock = BlockMap.lookup(OrigIncomingBlock); 1219 Builder.SetInsertPoint(NewIncomingBlock->getTerminator()); 1220 assert(RegionMaps.count(NewIncomingBlock)); 1221 ValueMapT *LocalBBMap = &RegionMaps[NewIncomingBlock]; 1222 1223 Value *OrigIncomingValue = Pair.second; 1224 Value *NewIncomingValue = 1225 getNewValue(*Stmt, OrigIncomingValue, *LocalBBMap, LTS, L); 1226 NewPHI->addIncoming(NewIncomingValue, NewIncomingBlock); 1227 } 1228 1229 return NewPHI; 1230 } 1231 1232 Value *RegionGenerator::getExitScalar(MemoryAccess *MA, LoopToScevMapT <S, 1233 ValueMapT &BBMap) { 1234 ScopStmt *Stmt = MA->getStatement(); 1235 1236 // TODO: Add some test cases that ensure this is really the right choice. 1237 Loop *L = LI.getLoopFor(Stmt->getRegion()->getExit()); 1238 1239 if (MA->isAnyPHIKind()) { 1240 auto Incoming = MA->getIncoming(); 1241 assert(!Incoming.empty() && 1242 "PHI WRITEs must have originate from at least one incoming block"); 1243 1244 // If there is only one incoming value, we do not need to create a PHI. 1245 if (Incoming.size() == 1) { 1246 Value *OldVal = Incoming[0].second; 1247 return getNewValue(*Stmt, OldVal, BBMap, LTS, L); 1248 } 1249 1250 return buildExitPHI(MA, LTS, BBMap, L); 1251 } 1252 1253 // MK_Value accesses leaving the subregion must dominate the exit block; just 1254 // pass the copied value 1255 Value *OldVal = MA->getAccessValue(); 1256 return getNewValue(*Stmt, OldVal, BBMap, LTS, L); 1257 } 1258 1259 void RegionGenerator::generateScalarStores(ScopStmt &Stmt, LoopToScevMapT <S, 1260 ValueMapT &BBMap) { 1261 assert(Stmt.getRegion() && 1262 "Block statements need to use the generateScalarStores() " 1263 "function in the BlockGenerator"); 1264 1265 for (MemoryAccess *MA : Stmt) { 1266 if (MA->isArrayKind() || MA->isRead()) 1267 continue; 1268 1269 Value *NewVal = getExitScalar(MA, LTS, BBMap); 1270 Value *Address = getOrCreateAlloca(*MA); 1271 Builder.CreateStore(NewVal, Address); 1272 } 1273 } 1274 1275 void RegionGenerator::addOperandToPHI(ScopStmt &Stmt, const PHINode *PHI, 1276 PHINode *PHICopy, BasicBlock *IncomingBB, 1277 LoopToScevMapT <S) { 1278 Region *StmtR = Stmt.getRegion(); 1279 1280 // If the incoming block was not yet copied mark this PHI as incomplete. 1281 // Once the block will be copied the incoming value will be added. 1282 BasicBlock *BBCopy = BlockMap[IncomingBB]; 1283 if (!BBCopy) { 1284 assert(StmtR->contains(IncomingBB) && 1285 "Bad incoming block for PHI in non-affine region"); 1286 IncompletePHINodeMap[IncomingBB].push_back(std::make_pair(PHI, PHICopy)); 1287 return; 1288 } 1289 1290 Value *OpCopy = nullptr; 1291 if (StmtR->contains(IncomingBB)) { 1292 assert(RegionMaps.count(BBCopy) && 1293 "Incoming PHI block did not have a BBMap"); 1294 ValueMapT &BBCopyMap = RegionMaps[BBCopy]; 1295 1296 Value *Op = PHI->getIncomingValueForBlock(IncomingBB); 1297 1298 BasicBlock *OldBlock = Builder.GetInsertBlock(); 1299 auto OldIP = Builder.GetInsertPoint(); 1300 Builder.SetInsertPoint(BBCopy->getTerminator()); 1301 OpCopy = getNewValue(Stmt, Op, BBCopyMap, LTS, getLoopForInst(PHI)); 1302 Builder.SetInsertPoint(OldBlock, OldIP); 1303 } else { 1304 1305 if (PHICopy->getBasicBlockIndex(BBCopy) >= 0) 1306 return; 1307 1308 Value *PHIOpAddr = getOrCreatePHIAlloca(const_cast<PHINode *>(PHI)); 1309 OpCopy = new LoadInst(PHIOpAddr, PHIOpAddr->getName() + ".reload", 1310 BlockMap[IncomingBB]->getTerminator()); 1311 } 1312 1313 assert(OpCopy && "Incoming PHI value was not copied properly"); 1314 assert(BBCopy && "Incoming PHI block was not copied properly"); 1315 PHICopy->addIncoming(OpCopy, BBCopy); 1316 } 1317 1318 Value *RegionGenerator::copyPHIInstruction(ScopStmt &Stmt, PHINode *PHI, 1319 ValueMapT &BBMap, 1320 LoopToScevMapT <S) { 1321 unsigned NumIncoming = PHI->getNumIncomingValues(); 1322 PHINode *PHICopy = 1323 Builder.CreatePHI(PHI->getType(), NumIncoming, "polly." + PHI->getName()); 1324 PHICopy->moveBefore(PHICopy->getParent()->getFirstNonPHI()); 1325 BBMap[PHI] = PHICopy; 1326 1327 for (unsigned u = 0; u < NumIncoming; u++) 1328 addOperandToPHI(Stmt, PHI, PHICopy, PHI->getIncomingBlock(u), LTS); 1329 return PHICopy; 1330 } 1331