1 //===--- BlockGenerators.cpp - Generate code for statements -----*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the BlockGenerator and VectorBlockGenerator classes, 11 // which generate sequential code and vectorized code for a polyhedral 12 // statement, respectively. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "polly/CodeGen/BlockGenerators.h" 17 #include "polly/CodeGen/CodeGeneration.h" 18 #include "polly/CodeGen/IslExprBuilder.h" 19 #include "polly/CodeGen/RuntimeDebugBuilder.h" 20 #include "polly/Options.h" 21 #include "polly/ScopInfo.h" 22 #include "polly/Support/GICHelper.h" 23 #include "polly/Support/SCEVValidator.h" 24 #include "polly/Support/ScopHelper.h" 25 #include "llvm/Analysis/LoopInfo.h" 26 #include "llvm/Analysis/RegionInfo.h" 27 #include "llvm/Analysis/ScalarEvolution.h" 28 #include "llvm/IR/IntrinsicInst.h" 29 #include "llvm/IR/Module.h" 30 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 31 #include "llvm/Transforms/Utils/Local.h" 32 #include "isl/aff.h" 33 #include "isl/ast.h" 34 #include "isl/ast_build.h" 35 #include "isl/set.h" 36 #include <deque> 37 38 using namespace llvm; 39 using namespace polly; 40 41 static cl::opt<bool> Aligned("enable-polly-aligned", 42 cl::desc("Assumed aligned memory accesses."), 43 cl::Hidden, cl::init(false), cl::ZeroOrMore, 44 cl::cat(PollyCategory)); 45 46 static cl::opt<bool> DebugPrinting( 47 "polly-codegen-add-debug-printing", 48 cl::desc("Add printf calls that show the values loaded/stored."), 49 cl::Hidden, cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory)); 50 51 BlockGenerator::BlockGenerator(PollyIRBuilder &B, LoopInfo &LI, 52 ScalarEvolution &SE, DominatorTree &DT, 53 ScalarAllocaMapTy &ScalarMap, 54 ScalarAllocaMapTy &PHIOpMap, 55 EscapeUsersAllocaMapTy &EscapeMap, 56 ValueMapT &GlobalMap, 57 IslExprBuilder *ExprBuilder) 58 : Builder(B), LI(LI), SE(SE), ExprBuilder(ExprBuilder), DT(DT), 59 EntryBB(nullptr), PHIOpMap(PHIOpMap), ScalarMap(ScalarMap), 60 EscapeMap(EscapeMap), GlobalMap(GlobalMap) {} 61 62 Value *BlockGenerator::trySynthesizeNewValue(ScopStmt &Stmt, Value *Old, 63 ValueMapT &BBMap, 64 LoopToScevMapT <S, 65 Loop *L) const { 66 if (!SE.isSCEVable(Old->getType())) 67 return nullptr; 68 69 const SCEV *Scev = SE.getSCEVAtScope(Old, L); 70 if (!Scev) 71 return nullptr; 72 73 if (isa<SCEVCouldNotCompute>(Scev)) 74 return nullptr; 75 76 const SCEV *NewScev = apply(Scev, LTS, SE); 77 ValueMapT VTV; 78 VTV.insert(BBMap.begin(), BBMap.end()); 79 VTV.insert(GlobalMap.begin(), GlobalMap.end()); 80 81 Scop &S = *Stmt.getParent(); 82 const DataLayout &DL = 83 S.getRegion().getEntry()->getParent()->getParent()->getDataLayout(); 84 auto IP = Builder.GetInsertPoint(); 85 86 assert(IP != Builder.GetInsertBlock()->end() && 87 "Only instructions can be insert points for SCEVExpander"); 88 Value *Expanded = 89 expandCodeFor(S, SE, DL, "polly", NewScev, Old->getType(), &*IP, &VTV); 90 91 BBMap[Old] = Expanded; 92 return Expanded; 93 } 94 95 Value *BlockGenerator::getNewValue(ScopStmt &Stmt, Value *Old, ValueMapT &BBMap, 96 LoopToScevMapT <S, Loop *L) const { 97 // Constants that do not reference any named value can always remain 98 // unchanged. Handle them early to avoid expensive map lookups. We do not take 99 // the fast-path for external constants which are referenced through globals 100 // as these may need to be rewritten when distributing code accross different 101 // LLVM modules. 102 if (isa<Constant>(Old) && !isa<GlobalValue>(Old)) 103 return Old; 104 105 // Inline asm is like a constant to us. 106 if (isa<InlineAsm>(Old)) 107 return Old; 108 109 if (Value *New = GlobalMap.lookup(Old)) { 110 if (Value *NewRemapped = GlobalMap.lookup(New)) 111 New = NewRemapped; 112 if (Old->getType()->getScalarSizeInBits() < 113 New->getType()->getScalarSizeInBits()) 114 New = Builder.CreateTruncOrBitCast(New, Old->getType()); 115 116 return New; 117 } 118 119 if (Value *New = BBMap.lookup(Old)) 120 return New; 121 122 if (Value *New = trySynthesizeNewValue(Stmt, Old, BBMap, LTS, L)) 123 return New; 124 125 // A scop-constant value defined by a global or a function parameter. 126 if (isa<GlobalValue>(Old) || isa<Argument>(Old)) 127 return Old; 128 129 // A scop-constant value defined by an instruction executed outside the scop. 130 if (const Instruction *Inst = dyn_cast<Instruction>(Old)) 131 if (!Stmt.getParent()->getRegion().contains(Inst->getParent())) 132 return Old; 133 134 // The scalar dependence is neither available nor SCEVCodegenable. 135 llvm_unreachable("Unexpected scalar dependence in region!"); 136 return nullptr; 137 } 138 139 void BlockGenerator::copyInstScalar(ScopStmt &Stmt, Instruction *Inst, 140 ValueMapT &BBMap, LoopToScevMapT <S) { 141 // We do not generate debug intrinsics as we did not investigate how to 142 // copy them correctly. At the current state, they just crash the code 143 // generation as the meta-data operands are not correctly copied. 144 if (isa<DbgInfoIntrinsic>(Inst)) 145 return; 146 147 Instruction *NewInst = Inst->clone(); 148 149 // Replace old operands with the new ones. 150 for (Value *OldOperand : Inst->operands()) { 151 Value *NewOperand = 152 getNewValue(Stmt, OldOperand, BBMap, LTS, getLoopForStmt(Stmt)); 153 154 if (!NewOperand) { 155 assert(!isa<StoreInst>(NewInst) && 156 "Store instructions are always needed!"); 157 delete NewInst; 158 return; 159 } 160 161 NewInst->replaceUsesOfWith(OldOperand, NewOperand); 162 } 163 164 Builder.Insert(NewInst); 165 BBMap[Inst] = NewInst; 166 167 if (!NewInst->getType()->isVoidTy()) 168 NewInst->setName("p_" + Inst->getName()); 169 } 170 171 Value * 172 BlockGenerator::generateLocationAccessed(ScopStmt &Stmt, MemAccInst Inst, 173 ValueMapT &BBMap, LoopToScevMapT <S, 174 isl_id_to_ast_expr *NewAccesses) { 175 const MemoryAccess &MA = Stmt.getArrayAccessFor(Inst); 176 177 isl_ast_expr *AccessExpr = isl_id_to_ast_expr_get(NewAccesses, MA.getId()); 178 179 if (AccessExpr) { 180 AccessExpr = isl_ast_expr_address_of(AccessExpr); 181 auto Address = ExprBuilder->create(AccessExpr); 182 183 // Cast the address of this memory access to a pointer type that has the 184 // same element type as the original access, but uses the address space of 185 // the newly generated pointer. 186 auto OldPtrTy = MA.getAccessValue()->getType()->getPointerTo(); 187 auto NewPtrTy = Address->getType(); 188 OldPtrTy = PointerType::get(OldPtrTy->getElementType(), 189 NewPtrTy->getPointerAddressSpace()); 190 191 if (OldPtrTy != NewPtrTy) 192 Address = Builder.CreateBitOrPointerCast(Address, OldPtrTy); 193 return Address; 194 } 195 196 return getNewValue(Stmt, Inst.getPointerOperand(), BBMap, LTS, 197 getLoopForStmt(Stmt)); 198 } 199 200 Loop *BlockGenerator::getLoopForStmt(const ScopStmt &Stmt) const { 201 auto *StmtBB = 202 Stmt.isBlockStmt() ? Stmt.getBasicBlock() : Stmt.getRegion()->getEntry(); 203 return LI.getLoopFor(StmtBB); 204 } 205 206 Value *BlockGenerator::generateScalarLoad(ScopStmt &Stmt, LoadInst *Load, 207 ValueMapT &BBMap, LoopToScevMapT <S, 208 isl_id_to_ast_expr *NewAccesses) { 209 if (Value *PreloadLoad = GlobalMap.lookup(Load)) 210 return PreloadLoad; 211 212 Value *NewPointer = 213 generateLocationAccessed(Stmt, Load, BBMap, LTS, NewAccesses); 214 Value *ScalarLoad = Builder.CreateAlignedLoad( 215 NewPointer, Load->getAlignment(), Load->getName() + "_p_scalar_"); 216 217 if (DebugPrinting) 218 RuntimeDebugBuilder::createCPUPrinter(Builder, "Load from ", NewPointer, 219 ": ", ScalarLoad, "\n"); 220 221 return ScalarLoad; 222 } 223 224 void BlockGenerator::generateScalarStore(ScopStmt &Stmt, StoreInst *Store, 225 ValueMapT &BBMap, LoopToScevMapT <S, 226 isl_id_to_ast_expr *NewAccesses) { 227 Value *NewPointer = 228 generateLocationAccessed(Stmt, Store, BBMap, LTS, NewAccesses); 229 Value *ValueOperand = getNewValue(Stmt, Store->getValueOperand(), BBMap, LTS, 230 getLoopForStmt(Stmt)); 231 232 if (DebugPrinting) 233 RuntimeDebugBuilder::createCPUPrinter(Builder, "Store to ", NewPointer, 234 ": ", ValueOperand, "\n"); 235 236 Builder.CreateAlignedStore(ValueOperand, NewPointer, Store->getAlignment()); 237 } 238 239 bool BlockGenerator::canSyntheziseInStmt(ScopStmt &Stmt, Instruction *Inst) { 240 Loop *L = getLoopForStmt(Stmt); 241 return (Stmt.isBlockStmt() || !Stmt.getRegion()->contains(L)) && 242 canSynthesize(Inst, &LI, &SE, &Stmt.getParent()->getRegion()); 243 } 244 245 void BlockGenerator::copyInstruction(ScopStmt &Stmt, Instruction *Inst, 246 ValueMapT &BBMap, LoopToScevMapT <S, 247 isl_id_to_ast_expr *NewAccesses) { 248 // Terminator instructions control the control flow. They are explicitly 249 // expressed in the clast and do not need to be copied. 250 if (Inst->isTerminator()) 251 return; 252 253 // Synthesizable statements will be generated on-demand. 254 if (canSyntheziseInStmt(Stmt, Inst)) 255 return; 256 257 if (auto *Load = dyn_cast<LoadInst>(Inst)) { 258 Value *NewLoad = generateScalarLoad(Stmt, Load, BBMap, LTS, NewAccesses); 259 // Compute NewLoad before its insertion in BBMap to make the insertion 260 // deterministic. 261 BBMap[Load] = NewLoad; 262 return; 263 } 264 265 if (auto *Store = dyn_cast<StoreInst>(Inst)) { 266 generateScalarStore(Stmt, Store, BBMap, LTS, NewAccesses); 267 return; 268 } 269 270 if (auto *PHI = dyn_cast<PHINode>(Inst)) { 271 copyPHIInstruction(Stmt, PHI, BBMap, LTS); 272 return; 273 } 274 275 // Skip some special intrinsics for which we do not adjust the semantics to 276 // the new schedule. All others are handled like every other instruction. 277 if (isIgnoredIntrinsic(Inst)) 278 return; 279 280 copyInstScalar(Stmt, Inst, BBMap, LTS); 281 } 282 283 void BlockGenerator::copyStmt(ScopStmt &Stmt, LoopToScevMapT <S, 284 isl_id_to_ast_expr *NewAccesses) { 285 assert(Stmt.isBlockStmt() && 286 "Only block statements can be copied by the block generator"); 287 288 ValueMapT BBMap; 289 290 BasicBlock *BB = Stmt.getBasicBlock(); 291 copyBB(Stmt, BB, BBMap, LTS, NewAccesses); 292 } 293 294 BasicBlock *BlockGenerator::splitBB(BasicBlock *BB) { 295 BasicBlock *CopyBB = SplitBlock(Builder.GetInsertBlock(), 296 &*Builder.GetInsertPoint(), &DT, &LI); 297 CopyBB->setName("polly.stmt." + BB->getName()); 298 return CopyBB; 299 } 300 301 BasicBlock *BlockGenerator::copyBB(ScopStmt &Stmt, BasicBlock *BB, 302 ValueMapT &BBMap, LoopToScevMapT <S, 303 isl_id_to_ast_expr *NewAccesses) { 304 BasicBlock *CopyBB = splitBB(BB); 305 Builder.SetInsertPoint(&CopyBB->front()); 306 generateScalarLoads(Stmt, BBMap); 307 308 copyBB(Stmt, BB, CopyBB, BBMap, LTS, NewAccesses); 309 310 // After a basic block was copied store all scalars that escape this block in 311 // their alloca. 312 generateScalarStores(Stmt, LTS, BBMap); 313 return CopyBB; 314 } 315 316 void BlockGenerator::copyBB(ScopStmt &Stmt, BasicBlock *BB, BasicBlock *CopyBB, 317 ValueMapT &BBMap, LoopToScevMapT <S, 318 isl_id_to_ast_expr *NewAccesses) { 319 EntryBB = &CopyBB->getParent()->getEntryBlock(); 320 321 for (Instruction &Inst : *BB) 322 copyInstruction(Stmt, &Inst, BBMap, LTS, NewAccesses); 323 } 324 325 Value *BlockGenerator::getOrCreateAlloca(Value *ScalarBase, 326 ScalarAllocaMapTy &Map, 327 const char *NameExt) { 328 // If no alloca was found create one and insert it in the entry block. 329 if (!Map.count(ScalarBase)) { 330 auto *Ty = ScalarBase->getType(); 331 auto NewAddr = new AllocaInst(Ty, ScalarBase->getName() + NameExt); 332 EntryBB = &Builder.GetInsertBlock()->getParent()->getEntryBlock(); 333 NewAddr->insertBefore(&*EntryBB->getFirstInsertionPt()); 334 Map[ScalarBase] = NewAddr; 335 } 336 337 auto Addr = Map[ScalarBase]; 338 339 if (auto NewAddr = GlobalMap.lookup(Addr)) 340 return NewAddr; 341 342 return Addr; 343 } 344 345 Value *BlockGenerator::getOrCreateAlloca(const MemoryAccess &Access) { 346 if (Access.isPHIKind()) 347 return getOrCreatePHIAlloca(Access.getBaseAddr()); 348 else 349 return getOrCreateScalarAlloca(Access.getBaseAddr()); 350 } 351 352 Value *BlockGenerator::getOrCreateAlloca(const ScopArrayInfo *Array) { 353 if (Array->isPHIKind()) 354 return getOrCreatePHIAlloca(Array->getBasePtr()); 355 else 356 return getOrCreateScalarAlloca(Array->getBasePtr()); 357 } 358 359 Value *BlockGenerator::getOrCreateScalarAlloca(Value *ScalarBase) { 360 return getOrCreateAlloca(ScalarBase, ScalarMap, ".s2a"); 361 } 362 363 Value *BlockGenerator::getOrCreatePHIAlloca(Value *ScalarBase) { 364 return getOrCreateAlloca(ScalarBase, PHIOpMap, ".phiops"); 365 } 366 367 void BlockGenerator::handleOutsideUsers(const Region &R, Instruction *Inst, 368 Value *Address) { 369 // If there are escape users we get the alloca for this instruction and put it 370 // in the EscapeMap for later finalization. Lastly, if the instruction was 371 // copied multiple times we already did this and can exit. 372 if (EscapeMap.count(Inst)) 373 return; 374 375 EscapeUserVectorTy EscapeUsers; 376 for (User *U : Inst->users()) { 377 378 // Non-instruction user will never escape. 379 Instruction *UI = dyn_cast<Instruction>(U); 380 if (!UI) 381 continue; 382 383 if (R.contains(UI)) 384 continue; 385 386 EscapeUsers.push_back(UI); 387 } 388 389 // Exit if no escape uses were found. 390 if (EscapeUsers.empty()) 391 return; 392 393 // Get or create an escape alloca for this instruction. 394 auto *ScalarAddr = Address ? Address : getOrCreateScalarAlloca(Inst); 395 396 // Remember that this instruction has escape uses and the escape alloca. 397 EscapeMap[Inst] = std::make_pair(ScalarAddr, std::move(EscapeUsers)); 398 } 399 400 void BlockGenerator::generateScalarLoads(ScopStmt &Stmt, ValueMapT &BBMap) { 401 for (MemoryAccess *MA : Stmt) { 402 if (MA->isArrayKind() || MA->isWrite()) 403 continue; 404 405 auto *Address = getOrCreateAlloca(*MA); 406 BBMap[MA->getBaseAddr()] = 407 Builder.CreateLoad(Address, Address->getName() + ".reload"); 408 } 409 } 410 411 void BlockGenerator::generateScalarStores(ScopStmt &Stmt, LoopToScevMapT <S, 412 ValueMapT &BBMap) { 413 Loop *L = LI.getLoopFor(Stmt.getBasicBlock()); 414 415 assert(Stmt.isBlockStmt() && "Region statements need to use the " 416 "generateScalarStores() function in the " 417 "RegionGenerator"); 418 419 for (MemoryAccess *MA : Stmt) { 420 if (MA->isArrayKind() || MA->isRead()) 421 continue; 422 423 Value *Val = MA->getAccessValue(); 424 if (MA->isAnyPHIKind()) { 425 assert(MA->getIncoming().size() >= 1 && 426 "Block statements have exactly one exiting block, or multiple but " 427 "with same incoming block and value"); 428 assert(std::all_of(MA->getIncoming().begin(), MA->getIncoming().end(), 429 [&](std::pair<BasicBlock *, Value *> p) -> bool { 430 return p.first == Stmt.getBasicBlock(); 431 }) && 432 "Incoming block must be statement's block"); 433 Val = MA->getIncoming()[0].second; 434 } 435 auto *Address = getOrCreateAlloca(*MA); 436 437 Val = getNewValue(Stmt, Val, BBMap, LTS, L); 438 Builder.CreateStore(Val, Address); 439 } 440 } 441 442 void BlockGenerator::createScalarInitialization(Scop &S) { 443 Region &R = S.getRegion(); 444 BasicBlock *ExitBB = R.getExit(); 445 446 // The split block __just before__ the region and optimized region. 447 BasicBlock *SplitBB = R.getEnteringBlock(); 448 BranchInst *SplitBBTerm = cast<BranchInst>(SplitBB->getTerminator()); 449 assert(SplitBBTerm->getNumSuccessors() == 2 && "Bad region entering block!"); 450 451 // Get the start block of the __optimized__ region. 452 BasicBlock *StartBB = SplitBBTerm->getSuccessor(0); 453 if (StartBB == R.getEntry()) 454 StartBB = SplitBBTerm->getSuccessor(1); 455 456 Builder.SetInsertPoint(StartBB->getTerminator()); 457 458 for (auto &Pair : S.arrays()) { 459 auto &Array = Pair.second; 460 if (Array->getNumberOfDimensions() != 0) 461 continue; 462 if (Array->isPHIKind()) { 463 // For PHI nodes, the only values we need to store are the ones that 464 // reach the PHI node from outside the region. In general there should 465 // only be one such incoming edge and this edge should enter through 466 // 'SplitBB'. 467 auto PHI = cast<PHINode>(Array->getBasePtr()); 468 469 for (auto BI = PHI->block_begin(), BE = PHI->block_end(); BI != BE; BI++) 470 if (!R.contains(*BI) && *BI != SplitBB) 471 llvm_unreachable("Incoming edges from outside the scop should always " 472 "come from SplitBB"); 473 474 int Idx = PHI->getBasicBlockIndex(SplitBB); 475 if (Idx < 0) 476 continue; 477 478 Value *ScalarValue = PHI->getIncomingValue(Idx); 479 480 Builder.CreateStore(ScalarValue, getOrCreatePHIAlloca(PHI)); 481 continue; 482 } 483 484 auto *Inst = dyn_cast<Instruction>(Array->getBasePtr()); 485 486 if (Inst && R.contains(Inst)) 487 continue; 488 489 // PHI nodes that are not marked as such in their SAI object are either exit 490 // PHI nodes we model as common scalars but without initialization, or 491 // incoming phi nodes that need to be initialized. Check if the first is the 492 // case for Inst and do not create and initialize memory if so. 493 if (auto *PHI = dyn_cast_or_null<PHINode>(Inst)) 494 if (!S.hasSingleExitEdge() && PHI->getBasicBlockIndex(ExitBB) >= 0) 495 continue; 496 497 Builder.CreateStore(Array->getBasePtr(), 498 getOrCreateScalarAlloca(Array->getBasePtr())); 499 } 500 } 501 502 void BlockGenerator::createScalarFinalization(Region &R) { 503 // The exit block of the __unoptimized__ region. 504 BasicBlock *ExitBB = R.getExitingBlock(); 505 // The merge block __just after__ the region and the optimized region. 506 BasicBlock *MergeBB = R.getExit(); 507 508 // The exit block of the __optimized__ region. 509 BasicBlock *OptExitBB = *(pred_begin(MergeBB)); 510 if (OptExitBB == ExitBB) 511 OptExitBB = *(++pred_begin(MergeBB)); 512 513 Builder.SetInsertPoint(OptExitBB->getTerminator()); 514 for (const auto &EscapeMapping : EscapeMap) { 515 // Extract the escaping instruction and the escaping users as well as the 516 // alloca the instruction was demoted to. 517 Instruction *EscapeInst = EscapeMapping.getFirst(); 518 const auto &EscapeMappingValue = EscapeMapping.getSecond(); 519 const EscapeUserVectorTy &EscapeUsers = EscapeMappingValue.second; 520 Value *ScalarAddr = EscapeMappingValue.first; 521 522 // Reload the demoted instruction in the optimized version of the SCoP. 523 Value *EscapeInstReload = 524 Builder.CreateLoad(ScalarAddr, EscapeInst->getName() + ".final_reload"); 525 EscapeInstReload = 526 Builder.CreateBitOrPointerCast(EscapeInstReload, EscapeInst->getType()); 527 528 // Create the merge PHI that merges the optimized and unoptimized version. 529 PHINode *MergePHI = PHINode::Create(EscapeInst->getType(), 2, 530 EscapeInst->getName() + ".merge"); 531 MergePHI->insertBefore(&*MergeBB->getFirstInsertionPt()); 532 533 // Add the respective values to the merge PHI. 534 MergePHI->addIncoming(EscapeInstReload, OptExitBB); 535 MergePHI->addIncoming(EscapeInst, ExitBB); 536 537 // The information of scalar evolution about the escaping instruction needs 538 // to be revoked so the new merged instruction will be used. 539 if (SE.isSCEVable(EscapeInst->getType())) 540 SE.forgetValue(EscapeInst); 541 542 // Replace all uses of the demoted instruction with the merge PHI. 543 for (Instruction *EUser : EscapeUsers) 544 EUser->replaceUsesOfWith(EscapeInst, MergePHI); 545 } 546 } 547 548 void BlockGenerator::findOutsideUsers(Scop &S) { 549 auto &R = S.getRegion(); 550 for (auto &Pair : S.arrays()) { 551 auto &Array = Pair.second; 552 553 if (Array->getNumberOfDimensions() != 0) 554 continue; 555 556 if (Array->isPHIKind()) 557 continue; 558 559 auto *Inst = dyn_cast<Instruction>(Array->getBasePtr()); 560 561 if (!Inst) 562 continue; 563 564 // Scop invariant hoisting moves some of the base pointers out of the scop. 565 // We can ignore these, as the invariant load hoisting already registers the 566 // relevant outside users. 567 if (!R.contains(Inst)) 568 continue; 569 570 handleOutsideUsers(R, Inst, nullptr); 571 } 572 } 573 574 void BlockGenerator::createExitPHINodeMerges(Scop &S) { 575 if (S.hasSingleExitEdge()) 576 return; 577 578 Region &R = S.getRegion(); 579 580 auto *ExitBB = R.getExitingBlock(); 581 auto *MergeBB = R.getExit(); 582 auto *AfterMergeBB = MergeBB->getSingleSuccessor(); 583 BasicBlock *OptExitBB = *(pred_begin(MergeBB)); 584 if (OptExitBB == ExitBB) 585 OptExitBB = *(++pred_begin(MergeBB)); 586 587 Builder.SetInsertPoint(OptExitBB->getTerminator()); 588 589 for (auto &Pair : S.arrays()) { 590 auto &SAI = Pair.second; 591 auto *Val = SAI->getBasePtr(); 592 593 PHINode *PHI = dyn_cast<PHINode>(Val); 594 if (!PHI) 595 continue; 596 597 if (PHI->getParent() != AfterMergeBB) 598 continue; 599 600 std::string Name = PHI->getName(); 601 Value *ScalarAddr = getOrCreateScalarAlloca(PHI); 602 Value *Reload = Builder.CreateLoad(ScalarAddr, Name + ".ph.final_reload"); 603 Reload = Builder.CreateBitOrPointerCast(Reload, PHI->getType()); 604 Value *OriginalValue = PHI->getIncomingValueForBlock(MergeBB); 605 auto *MergePHI = PHINode::Create(PHI->getType(), 2, Name + ".ph.merge"); 606 MergePHI->insertBefore(&*MergeBB->getFirstInsertionPt()); 607 MergePHI->addIncoming(Reload, OptExitBB); 608 MergePHI->addIncoming(OriginalValue, ExitBB); 609 int Idx = PHI->getBasicBlockIndex(MergeBB); 610 PHI->setIncomingValue(Idx, MergePHI); 611 } 612 } 613 614 void BlockGenerator::finalizeSCoP(Scop &S) { 615 findOutsideUsers(S); 616 createScalarInitialization(S); 617 createExitPHINodeMerges(S); 618 createScalarFinalization(S.getRegion()); 619 } 620 621 VectorBlockGenerator::VectorBlockGenerator(BlockGenerator &BlockGen, 622 std::vector<LoopToScevMapT> &VLTS, 623 isl_map *Schedule) 624 : BlockGenerator(BlockGen), VLTS(VLTS), Schedule(Schedule) { 625 assert(Schedule && "No statement domain provided"); 626 } 627 628 Value *VectorBlockGenerator::getVectorValue(ScopStmt &Stmt, Value *Old, 629 ValueMapT &VectorMap, 630 VectorValueMapT &ScalarMaps, 631 Loop *L) { 632 if (Value *NewValue = VectorMap.lookup(Old)) 633 return NewValue; 634 635 int Width = getVectorWidth(); 636 637 Value *Vector = UndefValue::get(VectorType::get(Old->getType(), Width)); 638 639 for (int Lane = 0; Lane < Width; Lane++) 640 Vector = Builder.CreateInsertElement( 641 Vector, getNewValue(Stmt, Old, ScalarMaps[Lane], VLTS[Lane], L), 642 Builder.getInt32(Lane)); 643 644 VectorMap[Old] = Vector; 645 646 return Vector; 647 } 648 649 Type *VectorBlockGenerator::getVectorPtrTy(const Value *Val, int Width) { 650 PointerType *PointerTy = dyn_cast<PointerType>(Val->getType()); 651 assert(PointerTy && "PointerType expected"); 652 653 Type *ScalarType = PointerTy->getElementType(); 654 VectorType *VectorType = VectorType::get(ScalarType, Width); 655 656 return PointerType::getUnqual(VectorType); 657 } 658 659 Value *VectorBlockGenerator::generateStrideOneLoad( 660 ScopStmt &Stmt, LoadInst *Load, VectorValueMapT &ScalarMaps, 661 __isl_keep isl_id_to_ast_expr *NewAccesses, bool NegativeStride = false) { 662 unsigned VectorWidth = getVectorWidth(); 663 auto *Pointer = Load->getPointerOperand(); 664 Type *VectorPtrType = getVectorPtrTy(Pointer, VectorWidth); 665 unsigned Offset = NegativeStride ? VectorWidth - 1 : 0; 666 667 Value *NewPointer = nullptr; 668 NewPointer = generateLocationAccessed(Stmt, Load, ScalarMaps[Offset], 669 VLTS[Offset], NewAccesses); 670 Value *VectorPtr = 671 Builder.CreateBitCast(NewPointer, VectorPtrType, "vector_ptr"); 672 LoadInst *VecLoad = 673 Builder.CreateLoad(VectorPtr, Load->getName() + "_p_vec_full"); 674 if (!Aligned) 675 VecLoad->setAlignment(8); 676 677 if (NegativeStride) { 678 SmallVector<Constant *, 16> Indices; 679 for (int i = VectorWidth - 1; i >= 0; i--) 680 Indices.push_back(ConstantInt::get(Builder.getInt32Ty(), i)); 681 Constant *SV = llvm::ConstantVector::get(Indices); 682 Value *RevVecLoad = Builder.CreateShuffleVector( 683 VecLoad, VecLoad, SV, Load->getName() + "_reverse"); 684 return RevVecLoad; 685 } 686 687 return VecLoad; 688 } 689 690 Value *VectorBlockGenerator::generateStrideZeroLoad( 691 ScopStmt &Stmt, LoadInst *Load, ValueMapT &BBMap, 692 __isl_keep isl_id_to_ast_expr *NewAccesses) { 693 auto *Pointer = Load->getPointerOperand(); 694 Type *VectorPtrType = getVectorPtrTy(Pointer, 1); 695 Value *NewPointer = 696 generateLocationAccessed(Stmt, Load, BBMap, VLTS[0], NewAccesses); 697 Value *VectorPtr = Builder.CreateBitCast(NewPointer, VectorPtrType, 698 Load->getName() + "_p_vec_p"); 699 LoadInst *ScalarLoad = 700 Builder.CreateLoad(VectorPtr, Load->getName() + "_p_splat_one"); 701 702 if (!Aligned) 703 ScalarLoad->setAlignment(8); 704 705 Constant *SplatVector = Constant::getNullValue( 706 VectorType::get(Builder.getInt32Ty(), getVectorWidth())); 707 708 Value *VectorLoad = Builder.CreateShuffleVector( 709 ScalarLoad, ScalarLoad, SplatVector, Load->getName() + "_p_splat"); 710 return VectorLoad; 711 } 712 713 Value *VectorBlockGenerator::generateUnknownStrideLoad( 714 ScopStmt &Stmt, LoadInst *Load, VectorValueMapT &ScalarMaps, 715 __isl_keep isl_id_to_ast_expr *NewAccesses) { 716 int VectorWidth = getVectorWidth(); 717 auto *Pointer = Load->getPointerOperand(); 718 VectorType *VectorType = VectorType::get( 719 dyn_cast<PointerType>(Pointer->getType())->getElementType(), VectorWidth); 720 721 Value *Vector = UndefValue::get(VectorType); 722 723 for (int i = 0; i < VectorWidth; i++) { 724 Value *NewPointer = generateLocationAccessed(Stmt, Load, ScalarMaps[i], 725 VLTS[i], NewAccesses); 726 Value *ScalarLoad = 727 Builder.CreateLoad(NewPointer, Load->getName() + "_p_scalar_"); 728 Vector = Builder.CreateInsertElement( 729 Vector, ScalarLoad, Builder.getInt32(i), Load->getName() + "_p_vec_"); 730 } 731 732 return Vector; 733 } 734 735 void VectorBlockGenerator::generateLoad( 736 ScopStmt &Stmt, LoadInst *Load, ValueMapT &VectorMap, 737 VectorValueMapT &ScalarMaps, __isl_keep isl_id_to_ast_expr *NewAccesses) { 738 if (Value *PreloadLoad = GlobalMap.lookup(Load)) { 739 VectorMap[Load] = Builder.CreateVectorSplat(getVectorWidth(), PreloadLoad, 740 Load->getName() + "_p"); 741 return; 742 } 743 744 if (!VectorType::isValidElementType(Load->getType())) { 745 for (int i = 0; i < getVectorWidth(); i++) 746 ScalarMaps[i][Load] = 747 generateScalarLoad(Stmt, Load, ScalarMaps[i], VLTS[i], NewAccesses); 748 return; 749 } 750 751 const MemoryAccess &Access = Stmt.getArrayAccessFor(Load); 752 753 // Make sure we have scalar values available to access the pointer to 754 // the data location. 755 extractScalarValues(Load, VectorMap, ScalarMaps); 756 757 Value *NewLoad; 758 if (Access.isStrideZero(isl_map_copy(Schedule))) 759 NewLoad = generateStrideZeroLoad(Stmt, Load, ScalarMaps[0], NewAccesses); 760 else if (Access.isStrideOne(isl_map_copy(Schedule))) 761 NewLoad = generateStrideOneLoad(Stmt, Load, ScalarMaps, NewAccesses); 762 else if (Access.isStrideX(isl_map_copy(Schedule), -1)) 763 NewLoad = generateStrideOneLoad(Stmt, Load, ScalarMaps, NewAccesses, true); 764 else 765 NewLoad = generateUnknownStrideLoad(Stmt, Load, ScalarMaps, NewAccesses); 766 767 VectorMap[Load] = NewLoad; 768 } 769 770 void VectorBlockGenerator::copyUnaryInst(ScopStmt &Stmt, UnaryInstruction *Inst, 771 ValueMapT &VectorMap, 772 VectorValueMapT &ScalarMaps) { 773 int VectorWidth = getVectorWidth(); 774 Value *NewOperand = getVectorValue(Stmt, Inst->getOperand(0), VectorMap, 775 ScalarMaps, getLoopForStmt(Stmt)); 776 777 assert(isa<CastInst>(Inst) && "Can not generate vector code for instruction"); 778 779 const CastInst *Cast = dyn_cast<CastInst>(Inst); 780 VectorType *DestType = VectorType::get(Inst->getType(), VectorWidth); 781 VectorMap[Inst] = Builder.CreateCast(Cast->getOpcode(), NewOperand, DestType); 782 } 783 784 void VectorBlockGenerator::copyBinaryInst(ScopStmt &Stmt, BinaryOperator *Inst, 785 ValueMapT &VectorMap, 786 VectorValueMapT &ScalarMaps) { 787 Loop *L = getLoopForStmt(Stmt); 788 Value *OpZero = Inst->getOperand(0); 789 Value *OpOne = Inst->getOperand(1); 790 791 Value *NewOpZero, *NewOpOne; 792 NewOpZero = getVectorValue(Stmt, OpZero, VectorMap, ScalarMaps, L); 793 NewOpOne = getVectorValue(Stmt, OpOne, VectorMap, ScalarMaps, L); 794 795 Value *NewInst = Builder.CreateBinOp(Inst->getOpcode(), NewOpZero, NewOpOne, 796 Inst->getName() + "p_vec"); 797 VectorMap[Inst] = NewInst; 798 } 799 800 void VectorBlockGenerator::copyStore( 801 ScopStmt &Stmt, StoreInst *Store, ValueMapT &VectorMap, 802 VectorValueMapT &ScalarMaps, __isl_keep isl_id_to_ast_expr *NewAccesses) { 803 const MemoryAccess &Access = Stmt.getArrayAccessFor(Store); 804 805 auto *Pointer = Store->getPointerOperand(); 806 Value *Vector = getVectorValue(Stmt, Store->getValueOperand(), VectorMap, 807 ScalarMaps, getLoopForStmt(Stmt)); 808 809 // Make sure we have scalar values available to access the pointer to 810 // the data location. 811 extractScalarValues(Store, VectorMap, ScalarMaps); 812 813 if (Access.isStrideOne(isl_map_copy(Schedule))) { 814 Type *VectorPtrType = getVectorPtrTy(Pointer, getVectorWidth()); 815 Value *NewPointer = generateLocationAccessed(Stmt, Store, ScalarMaps[0], 816 VLTS[0], NewAccesses); 817 818 Value *VectorPtr = 819 Builder.CreateBitCast(NewPointer, VectorPtrType, "vector_ptr"); 820 StoreInst *Store = Builder.CreateStore(Vector, VectorPtr); 821 822 if (!Aligned) 823 Store->setAlignment(8); 824 } else { 825 for (unsigned i = 0; i < ScalarMaps.size(); i++) { 826 Value *Scalar = Builder.CreateExtractElement(Vector, Builder.getInt32(i)); 827 Value *NewPointer = generateLocationAccessed(Stmt, Store, ScalarMaps[i], 828 VLTS[i], NewAccesses); 829 Builder.CreateStore(Scalar, NewPointer); 830 } 831 } 832 } 833 834 bool VectorBlockGenerator::hasVectorOperands(const Instruction *Inst, 835 ValueMapT &VectorMap) { 836 for (Value *Operand : Inst->operands()) 837 if (VectorMap.count(Operand)) 838 return true; 839 return false; 840 } 841 842 bool VectorBlockGenerator::extractScalarValues(const Instruction *Inst, 843 ValueMapT &VectorMap, 844 VectorValueMapT &ScalarMaps) { 845 bool HasVectorOperand = false; 846 int VectorWidth = getVectorWidth(); 847 848 for (Value *Operand : Inst->operands()) { 849 ValueMapT::iterator VecOp = VectorMap.find(Operand); 850 851 if (VecOp == VectorMap.end()) 852 continue; 853 854 HasVectorOperand = true; 855 Value *NewVector = VecOp->second; 856 857 for (int i = 0; i < VectorWidth; ++i) { 858 ValueMapT &SM = ScalarMaps[i]; 859 860 // If there is one scalar extracted, all scalar elements should have 861 // already been extracted by the code here. So no need to check for the 862 // existance of all of them. 863 if (SM.count(Operand)) 864 break; 865 866 SM[Operand] = 867 Builder.CreateExtractElement(NewVector, Builder.getInt32(i)); 868 } 869 } 870 871 return HasVectorOperand; 872 } 873 874 void VectorBlockGenerator::copyInstScalarized( 875 ScopStmt &Stmt, Instruction *Inst, ValueMapT &VectorMap, 876 VectorValueMapT &ScalarMaps, __isl_keep isl_id_to_ast_expr *NewAccesses) { 877 bool HasVectorOperand; 878 int VectorWidth = getVectorWidth(); 879 880 HasVectorOperand = extractScalarValues(Inst, VectorMap, ScalarMaps); 881 882 for (int VectorLane = 0; VectorLane < getVectorWidth(); VectorLane++) 883 BlockGenerator::copyInstruction(Stmt, Inst, ScalarMaps[VectorLane], 884 VLTS[VectorLane], NewAccesses); 885 886 if (!VectorType::isValidElementType(Inst->getType()) || !HasVectorOperand) 887 return; 888 889 // Make the result available as vector value. 890 VectorType *VectorType = VectorType::get(Inst->getType(), VectorWidth); 891 Value *Vector = UndefValue::get(VectorType); 892 893 for (int i = 0; i < VectorWidth; i++) 894 Vector = Builder.CreateInsertElement(Vector, ScalarMaps[i][Inst], 895 Builder.getInt32(i)); 896 897 VectorMap[Inst] = Vector; 898 } 899 900 int VectorBlockGenerator::getVectorWidth() { return VLTS.size(); } 901 902 void VectorBlockGenerator::copyInstruction( 903 ScopStmt &Stmt, Instruction *Inst, ValueMapT &VectorMap, 904 VectorValueMapT &ScalarMaps, __isl_keep isl_id_to_ast_expr *NewAccesses) { 905 // Terminator instructions control the control flow. They are explicitly 906 // expressed in the clast and do not need to be copied. 907 if (Inst->isTerminator()) 908 return; 909 910 if (canSyntheziseInStmt(Stmt, Inst)) 911 return; 912 913 if (auto *Load = dyn_cast<LoadInst>(Inst)) { 914 generateLoad(Stmt, Load, VectorMap, ScalarMaps, NewAccesses); 915 return; 916 } 917 918 if (hasVectorOperands(Inst, VectorMap)) { 919 if (auto *Store = dyn_cast<StoreInst>(Inst)) { 920 copyStore(Stmt, Store, VectorMap, ScalarMaps, NewAccesses); 921 return; 922 } 923 924 if (auto *Unary = dyn_cast<UnaryInstruction>(Inst)) { 925 copyUnaryInst(Stmt, Unary, VectorMap, ScalarMaps); 926 return; 927 } 928 929 if (auto *Binary = dyn_cast<BinaryOperator>(Inst)) { 930 copyBinaryInst(Stmt, Binary, VectorMap, ScalarMaps); 931 return; 932 } 933 934 // Falltrough: We generate scalar instructions, if we don't know how to 935 // generate vector code. 936 } 937 938 copyInstScalarized(Stmt, Inst, VectorMap, ScalarMaps, NewAccesses); 939 } 940 941 void VectorBlockGenerator::generateScalarVectorLoads( 942 ScopStmt &Stmt, ValueMapT &VectorBlockMap) { 943 for (MemoryAccess *MA : Stmt) { 944 if (MA->isArrayKind() || MA->isWrite()) 945 continue; 946 947 auto *Address = getOrCreateAlloca(*MA); 948 Type *VectorPtrType = getVectorPtrTy(Address, 1); 949 Value *VectorPtr = Builder.CreateBitCast(Address, VectorPtrType, 950 Address->getName() + "_p_vec_p"); 951 auto *Val = Builder.CreateLoad(VectorPtr, Address->getName() + ".reload"); 952 Constant *SplatVector = Constant::getNullValue( 953 VectorType::get(Builder.getInt32Ty(), getVectorWidth())); 954 955 Value *VectorVal = Builder.CreateShuffleVector( 956 Val, Val, SplatVector, Address->getName() + "_p_splat"); 957 VectorBlockMap[MA->getBaseAddr()] = VectorVal; 958 VectorVal->dump(); 959 } 960 } 961 962 void VectorBlockGenerator::verifyNoScalarStores(ScopStmt &Stmt) { 963 for (MemoryAccess *MA : Stmt) { 964 if (MA->isArrayKind() || MA->isRead()) 965 continue; 966 967 llvm_unreachable("Scalar stores not expected in vector loop"); 968 } 969 } 970 971 void VectorBlockGenerator::copyStmt( 972 ScopStmt &Stmt, __isl_keep isl_id_to_ast_expr *NewAccesses) { 973 assert(Stmt.isBlockStmt() && "TODO: Only block statements can be copied by " 974 "the vector block generator"); 975 976 BasicBlock *BB = Stmt.getBasicBlock(); 977 BasicBlock *CopyBB = SplitBlock(Builder.GetInsertBlock(), 978 &*Builder.GetInsertPoint(), &DT, &LI); 979 CopyBB->setName("polly.stmt." + BB->getName()); 980 Builder.SetInsertPoint(&CopyBB->front()); 981 982 // Create two maps that store the mapping from the original instructions of 983 // the old basic block to their copies in the new basic block. Those maps 984 // are basic block local. 985 // 986 // As vector code generation is supported there is one map for scalar values 987 // and one for vector values. 988 // 989 // In case we just do scalar code generation, the vectorMap is not used and 990 // the scalarMap has just one dimension, which contains the mapping. 991 // 992 // In case vector code generation is done, an instruction may either appear 993 // in the vector map once (as it is calculating >vectorwidth< values at a 994 // time. Or (if the values are calculated using scalar operations), it 995 // appears once in every dimension of the scalarMap. 996 VectorValueMapT ScalarBlockMap(getVectorWidth()); 997 ValueMapT VectorBlockMap; 998 999 generateScalarVectorLoads(Stmt, VectorBlockMap); 1000 1001 for (Instruction &Inst : *BB) 1002 copyInstruction(Stmt, &Inst, VectorBlockMap, ScalarBlockMap, NewAccesses); 1003 1004 verifyNoScalarStores(Stmt); 1005 } 1006 1007 BasicBlock *RegionGenerator::repairDominance(BasicBlock *BB, 1008 BasicBlock *BBCopy) { 1009 1010 BasicBlock *BBIDom = DT.getNode(BB)->getIDom()->getBlock(); 1011 BasicBlock *BBCopyIDom = BlockMap.lookup(BBIDom); 1012 1013 if (BBCopyIDom) 1014 DT.changeImmediateDominator(BBCopy, BBCopyIDom); 1015 1016 return BBCopyIDom; 1017 } 1018 1019 void RegionGenerator::copyStmt(ScopStmt &Stmt, LoopToScevMapT <S, 1020 isl_id_to_ast_expr *IdToAstExp) { 1021 assert(Stmt.isRegionStmt() && 1022 "Only region statements can be copied by the region generator"); 1023 1024 Scop *S = Stmt.getParent(); 1025 1026 // Forget all old mappings. 1027 BlockMap.clear(); 1028 RegionMaps.clear(); 1029 IncompletePHINodeMap.clear(); 1030 1031 // Collection of all values related to this subregion. 1032 ValueMapT ValueMap; 1033 1034 // The region represented by the statement. 1035 Region *R = Stmt.getRegion(); 1036 1037 // Create a dedicated entry for the region where we can reload all demoted 1038 // inputs. 1039 BasicBlock *EntryBB = R->getEntry(); 1040 BasicBlock *EntryBBCopy = SplitBlock(Builder.GetInsertBlock(), 1041 &*Builder.GetInsertPoint(), &DT, &LI); 1042 EntryBBCopy->setName("polly.stmt." + EntryBB->getName() + ".entry"); 1043 Builder.SetInsertPoint(&EntryBBCopy->front()); 1044 1045 ValueMapT &EntryBBMap = RegionMaps[EntryBBCopy]; 1046 generateScalarLoads(Stmt, EntryBBMap); 1047 1048 for (auto PI = pred_begin(EntryBB), PE = pred_end(EntryBB); PI != PE; ++PI) 1049 if (!R->contains(*PI)) 1050 BlockMap[*PI] = EntryBBCopy; 1051 1052 // Determine the original exit block of this subregion. If it the exit block 1053 // is also the scop's exit, it it has been changed to polly.merge_new_and_old. 1054 // We move one block back to find the original block. This only happens if the 1055 // scop required simplification. 1056 // If the whole scop consists of only this non-affine region, then they share 1057 // the same Region object, such that we cannot change the exit of one and not 1058 // the other. 1059 BasicBlock *ExitBB = R->getExit(); 1060 if (!S->hasSingleExitEdge() && ExitBB == S->getRegion().getExit()) 1061 ExitBB = *(++pred_begin(ExitBB)); 1062 1063 // Iterate over all blocks in the region in a breadth-first search. 1064 std::deque<BasicBlock *> Blocks; 1065 SmallPtrSet<BasicBlock *, 8> SeenBlocks; 1066 Blocks.push_back(EntryBB); 1067 SeenBlocks.insert(EntryBB); 1068 1069 while (!Blocks.empty()) { 1070 BasicBlock *BB = Blocks.front(); 1071 Blocks.pop_front(); 1072 1073 // First split the block and update dominance information. 1074 BasicBlock *BBCopy = splitBB(BB); 1075 BasicBlock *BBCopyIDom = repairDominance(BB, BBCopy); 1076 1077 // In order to remap PHI nodes we store also basic block mappings. 1078 BlockMap[BB] = BBCopy; 1079 1080 // Get the mapping for this block and initialize it with either the scalar 1081 // loads from the generated entering block (which dominates all blocks of 1082 // this subregion) or the maps of the immediate dominator, if part of the 1083 // subregion. The latter necessarily includes the former. 1084 ValueMapT *InitBBMap; 1085 if (BBCopyIDom) { 1086 assert(RegionMaps.count(BBCopyIDom)); 1087 InitBBMap = &RegionMaps[BBCopyIDom]; 1088 } else 1089 InitBBMap = &EntryBBMap; 1090 auto Inserted = RegionMaps.insert(std::make_pair(BBCopy, *InitBBMap)); 1091 ValueMapT &RegionMap = Inserted.first->second; 1092 1093 // Copy the block with the BlockGenerator. 1094 Builder.SetInsertPoint(&BBCopy->front()); 1095 copyBB(Stmt, BB, BBCopy, RegionMap, LTS, IdToAstExp); 1096 1097 // In order to remap PHI nodes we store also basic block mappings. 1098 BlockMap[BB] = BBCopy; 1099 1100 // Add values to incomplete PHI nodes waiting for this block to be copied. 1101 for (const PHINodePairTy &PHINodePair : IncompletePHINodeMap[BB]) 1102 addOperandToPHI(Stmt, PHINodePair.first, PHINodePair.second, BB, LTS); 1103 IncompletePHINodeMap[BB].clear(); 1104 1105 // And continue with new successors inside the region. 1106 for (auto SI = succ_begin(BB), SE = succ_end(BB); SI != SE; SI++) 1107 if (R->contains(*SI) && SeenBlocks.insert(*SI).second) 1108 Blocks.push_back(*SI); 1109 1110 // Remember value in case it is visible after this subregion. 1111 if (DT.dominates(BB, ExitBB)) 1112 ValueMap.insert(RegionMap.begin(), RegionMap.end()); 1113 } 1114 1115 // Now create a new dedicated region exit block and add it to the region map. 1116 BasicBlock *ExitBBCopy = SplitBlock(Builder.GetInsertBlock(), 1117 &*Builder.GetInsertPoint(), &DT, &LI); 1118 ExitBBCopy->setName("polly.stmt." + R->getExit()->getName() + ".exit"); 1119 BlockMap[R->getExit()] = ExitBBCopy; 1120 1121 if (ExitBB == R->getExit()) 1122 repairDominance(ExitBB, ExitBBCopy); 1123 else 1124 DT.changeImmediateDominator(ExitBBCopy, BlockMap.lookup(ExitBB)); 1125 1126 // As the block generator doesn't handle control flow we need to add the 1127 // region control flow by hand after all blocks have been copied. 1128 for (BasicBlock *BB : SeenBlocks) { 1129 1130 BasicBlock *BBCopy = BlockMap[BB]; 1131 TerminatorInst *TI = BB->getTerminator(); 1132 if (isa<UnreachableInst>(TI)) { 1133 while (!BBCopy->empty()) 1134 BBCopy->begin()->eraseFromParent(); 1135 new UnreachableInst(BBCopy->getContext(), BBCopy); 1136 continue; 1137 } 1138 1139 Instruction *BICopy = BBCopy->getTerminator(); 1140 1141 ValueMapT &RegionMap = RegionMaps[BBCopy]; 1142 RegionMap.insert(BlockMap.begin(), BlockMap.end()); 1143 1144 Builder.SetInsertPoint(BICopy); 1145 copyInstScalar(Stmt, TI, RegionMap, LTS); 1146 BICopy->eraseFromParent(); 1147 } 1148 1149 // Add counting PHI nodes to all loops in the region that can be used as 1150 // replacement for SCEVs refering to the old loop. 1151 for (BasicBlock *BB : SeenBlocks) { 1152 Loop *L = LI.getLoopFor(BB); 1153 if (L == nullptr || L->getHeader() != BB || !R->contains(L)) 1154 continue; 1155 1156 BasicBlock *BBCopy = BlockMap[BB]; 1157 Value *NullVal = Builder.getInt32(0); 1158 PHINode *LoopPHI = 1159 PHINode::Create(Builder.getInt32Ty(), 2, "polly.subregion.iv"); 1160 Instruction *LoopPHIInc = BinaryOperator::CreateAdd( 1161 LoopPHI, Builder.getInt32(1), "polly.subregion.iv.inc"); 1162 LoopPHI->insertBefore(&BBCopy->front()); 1163 LoopPHIInc->insertBefore(BBCopy->getTerminator()); 1164 1165 for (auto *PredBB : make_range(pred_begin(BB), pred_end(BB))) { 1166 if (!R->contains(PredBB)) 1167 continue; 1168 if (L->contains(PredBB)) 1169 LoopPHI->addIncoming(LoopPHIInc, BlockMap[PredBB]); 1170 else 1171 LoopPHI->addIncoming(NullVal, BlockMap[PredBB]); 1172 } 1173 1174 for (auto *PredBBCopy : make_range(pred_begin(BBCopy), pred_end(BBCopy))) 1175 if (LoopPHI->getBasicBlockIndex(PredBBCopy) < 0) 1176 LoopPHI->addIncoming(NullVal, PredBBCopy); 1177 1178 LTS[L] = SE.getUnknown(LoopPHI); 1179 } 1180 1181 // Continue generating code in the exit block. 1182 Builder.SetInsertPoint(&*ExitBBCopy->getFirstInsertionPt()); 1183 1184 // Write values visible to other statements. 1185 generateScalarStores(Stmt, LTS, ValueMap); 1186 BlockMap.clear(); 1187 RegionMaps.clear(); 1188 IncompletePHINodeMap.clear(); 1189 } 1190 1191 PHINode *RegionGenerator::buildExitPHI(MemoryAccess *MA, LoopToScevMapT <S, 1192 ValueMapT &BBMap, Loop *L) { 1193 ScopStmt *Stmt = MA->getStatement(); 1194 Region *SubR = Stmt->getRegion(); 1195 auto Incoming = MA->getIncoming(); 1196 1197 PollyIRBuilder::InsertPointGuard IPGuard(Builder); 1198 PHINode *OrigPHI = cast<PHINode>(MA->getAccessInstruction()); 1199 BasicBlock *NewSubregionExit = Builder.GetInsertBlock(); 1200 1201 // This can happen if the subregion is simplified after the ScopStmts 1202 // have been created; simplification happens as part of CodeGeneration. 1203 if (OrigPHI->getParent() != SubR->getExit()) { 1204 BasicBlock *FormerExit = SubR->getExitingBlock(); 1205 if (FormerExit) 1206 NewSubregionExit = BlockMap.lookup(FormerExit); 1207 } 1208 1209 PHINode *NewPHI = PHINode::Create(OrigPHI->getType(), Incoming.size(), 1210 "polly." + OrigPHI->getName(), 1211 NewSubregionExit->getFirstNonPHI()); 1212 1213 // Add the incoming values to the PHI. 1214 for (auto &Pair : Incoming) { 1215 BasicBlock *OrigIncomingBlock = Pair.first; 1216 BasicBlock *NewIncomingBlock = BlockMap.lookup(OrigIncomingBlock); 1217 Builder.SetInsertPoint(NewIncomingBlock->getTerminator()); 1218 assert(RegionMaps.count(NewIncomingBlock)); 1219 ValueMapT *LocalBBMap = &RegionMaps[NewIncomingBlock]; 1220 1221 Value *OrigIncomingValue = Pair.second; 1222 Value *NewIncomingValue = 1223 getNewValue(*Stmt, OrigIncomingValue, *LocalBBMap, LTS, L); 1224 NewPHI->addIncoming(NewIncomingValue, NewIncomingBlock); 1225 } 1226 1227 return NewPHI; 1228 } 1229 1230 Value *RegionGenerator::getExitScalar(MemoryAccess *MA, LoopToScevMapT <S, 1231 ValueMapT &BBMap) { 1232 ScopStmt *Stmt = MA->getStatement(); 1233 1234 // TODO: Add some test cases that ensure this is really the right choice. 1235 Loop *L = LI.getLoopFor(Stmt->getRegion()->getExit()); 1236 1237 if (MA->isAnyPHIKind()) { 1238 auto Incoming = MA->getIncoming(); 1239 assert(!Incoming.empty() && 1240 "PHI WRITEs must have originate from at least one incoming block"); 1241 1242 // If there is only one incoming value, we do not need to create a PHI. 1243 if (Incoming.size() == 1) { 1244 Value *OldVal = Incoming[0].second; 1245 return getNewValue(*Stmt, OldVal, BBMap, LTS, L); 1246 } 1247 1248 return buildExitPHI(MA, LTS, BBMap, L); 1249 } 1250 1251 // MK_Value accesses leaving the subregion must dominate the exit block; just 1252 // pass the copied value 1253 Value *OldVal = MA->getAccessValue(); 1254 return getNewValue(*Stmt, OldVal, BBMap, LTS, L); 1255 } 1256 1257 void RegionGenerator::generateScalarStores(ScopStmt &Stmt, LoopToScevMapT <S, 1258 ValueMapT &BBMap) { 1259 assert(Stmt.getRegion() && 1260 "Block statements need to use the generateScalarStores() " 1261 "function in the BlockGenerator"); 1262 1263 for (MemoryAccess *MA : Stmt) { 1264 if (MA->isArrayKind() || MA->isRead()) 1265 continue; 1266 1267 Value *NewVal = getExitScalar(MA, LTS, BBMap); 1268 Value *Address = getOrCreateAlloca(*MA); 1269 Builder.CreateStore(NewVal, Address); 1270 } 1271 } 1272 1273 void RegionGenerator::addOperandToPHI(ScopStmt &Stmt, const PHINode *PHI, 1274 PHINode *PHICopy, BasicBlock *IncomingBB, 1275 LoopToScevMapT <S) { 1276 Region *StmtR = Stmt.getRegion(); 1277 1278 // If the incoming block was not yet copied mark this PHI as incomplete. 1279 // Once the block will be copied the incoming value will be added. 1280 BasicBlock *BBCopy = BlockMap[IncomingBB]; 1281 if (!BBCopy) { 1282 assert(StmtR->contains(IncomingBB) && 1283 "Bad incoming block for PHI in non-affine region"); 1284 IncompletePHINodeMap[IncomingBB].push_back(std::make_pair(PHI, PHICopy)); 1285 return; 1286 } 1287 1288 Value *OpCopy = nullptr; 1289 if (StmtR->contains(IncomingBB)) { 1290 assert(RegionMaps.count(BBCopy) && 1291 "Incoming PHI block did not have a BBMap"); 1292 ValueMapT &BBCopyMap = RegionMaps[BBCopy]; 1293 1294 Value *Op = PHI->getIncomingValueForBlock(IncomingBB); 1295 1296 BasicBlock *OldBlock = Builder.GetInsertBlock(); 1297 auto OldIP = Builder.GetInsertPoint(); 1298 Builder.SetInsertPoint(BBCopy->getTerminator()); 1299 OpCopy = getNewValue(Stmt, Op, BBCopyMap, LTS, getLoopForStmt(Stmt)); 1300 Builder.SetInsertPoint(OldBlock, OldIP); 1301 } else { 1302 1303 if (PHICopy->getBasicBlockIndex(BBCopy) >= 0) 1304 return; 1305 1306 Value *PHIOpAddr = getOrCreatePHIAlloca(const_cast<PHINode *>(PHI)); 1307 OpCopy = new LoadInst(PHIOpAddr, PHIOpAddr->getName() + ".reload", 1308 BlockMap[IncomingBB]->getTerminator()); 1309 } 1310 1311 assert(OpCopy && "Incoming PHI value was not copied properly"); 1312 assert(BBCopy && "Incoming PHI block was not copied properly"); 1313 PHICopy->addIncoming(OpCopy, BBCopy); 1314 } 1315 1316 void RegionGenerator::copyPHIInstruction(ScopStmt &Stmt, PHINode *PHI, 1317 ValueMapT &BBMap, 1318 LoopToScevMapT <S) { 1319 unsigned NumIncoming = PHI->getNumIncomingValues(); 1320 PHINode *PHICopy = 1321 Builder.CreatePHI(PHI->getType(), NumIncoming, "polly." + PHI->getName()); 1322 PHICopy->moveBefore(PHICopy->getParent()->getFirstNonPHI()); 1323 BBMap[PHI] = PHICopy; 1324 1325 for (unsigned u = 0; u < NumIncoming; u++) 1326 addOperandToPHI(Stmt, PHI, PHICopy, PHI->getIncomingBlock(u), LTS); 1327 } 1328