1 //===--- BlockGenerators.cpp - Generate code for statements -----*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the BlockGenerator and VectorBlockGenerator classes,
11 // which generate sequential code and vectorized code for a polyhedral
12 // statement, respectively.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "polly/CodeGen/BlockGenerators.h"
17 #include "polly/CodeGen/CodeGeneration.h"
18 #include "polly/CodeGen/IslExprBuilder.h"
19 #include "polly/CodeGen/RuntimeDebugBuilder.h"
20 #include "polly/Options.h"
21 #include "polly/ScopInfo.h"
22 #include "polly/Support/GICHelper.h"
23 #include "polly/Support/SCEVValidator.h"
24 #include "polly/Support/ScopHelper.h"
25 #include "llvm/Analysis/LoopInfo.h"
26 #include "llvm/Analysis/RegionInfo.h"
27 #include "llvm/Analysis/ScalarEvolution.h"
28 #include "llvm/IR/IntrinsicInst.h"
29 #include "llvm/IR/Module.h"
30 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
31 #include "llvm/Transforms/Utils/Local.h"
32 #include "isl/aff.h"
33 #include "isl/ast.h"
34 #include "isl/ast_build.h"
35 #include "isl/set.h"
36 #include <deque>
37 
38 using namespace llvm;
39 using namespace polly;
40 
41 static cl::opt<bool> Aligned("enable-polly-aligned",
42                              cl::desc("Assumed aligned memory accesses."),
43                              cl::Hidden, cl::init(false), cl::ZeroOrMore,
44                              cl::cat(PollyCategory));
45 
46 static cl::opt<bool> DebugPrinting(
47     "polly-codegen-add-debug-printing",
48     cl::desc("Add printf calls that show the values loaded/stored."),
49     cl::Hidden, cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory));
50 
51 BlockGenerator::BlockGenerator(PollyIRBuilder &B, LoopInfo &LI,
52                                ScalarEvolution &SE, DominatorTree &DT,
53                                ScalarAllocaMapTy &ScalarMap,
54                                ScalarAllocaMapTy &PHIOpMap,
55                                EscapeUsersAllocaMapTy &EscapeMap,
56                                ValueMapT &GlobalMap,
57                                IslExprBuilder *ExprBuilder)
58     : Builder(B), LI(LI), SE(SE), ExprBuilder(ExprBuilder), DT(DT),
59       EntryBB(nullptr), PHIOpMap(PHIOpMap), ScalarMap(ScalarMap),
60       EscapeMap(EscapeMap), GlobalMap(GlobalMap) {}
61 
62 Value *BlockGenerator::trySynthesizeNewValue(ScopStmt &Stmt, Value *Old,
63                                              ValueMapT &BBMap,
64                                              LoopToScevMapT &LTS,
65                                              Loop *L) const {
66   if (!SE.isSCEVable(Old->getType()))
67     return nullptr;
68 
69   const SCEV *Scev = SE.getSCEVAtScope(Old, L);
70   if (!Scev)
71     return nullptr;
72 
73   if (isa<SCEVCouldNotCompute>(Scev))
74     return nullptr;
75 
76   const SCEV *NewScev = apply(Scev, LTS, SE);
77   ValueMapT VTV;
78   VTV.insert(BBMap.begin(), BBMap.end());
79   VTV.insert(GlobalMap.begin(), GlobalMap.end());
80 
81   Scop &S = *Stmt.getParent();
82   const DataLayout &DL =
83       S.getRegion().getEntry()->getParent()->getParent()->getDataLayout();
84   auto IP = Builder.GetInsertPoint();
85 
86   assert(IP != Builder.GetInsertBlock()->end() &&
87          "Only instructions can be insert points for SCEVExpander");
88   Value *Expanded =
89       expandCodeFor(S, SE, DL, "polly", NewScev, Old->getType(), &*IP, &VTV);
90 
91   BBMap[Old] = Expanded;
92   return Expanded;
93 }
94 
95 Value *BlockGenerator::getNewValue(ScopStmt &Stmt, Value *Old, ValueMapT &BBMap,
96                                    LoopToScevMapT &LTS, Loop *L) const {
97   // Constants that do not reference any named value can always remain
98   // unchanged. Handle them early to avoid expensive map lookups. We do not take
99   // the fast-path for external constants which are referenced through globals
100   // as these may need to be rewritten when distributing code accross different
101   // LLVM modules.
102   if (isa<Constant>(Old) && !isa<GlobalValue>(Old))
103     return Old;
104 
105   // Inline asm is like a constant to us.
106   if (isa<InlineAsm>(Old))
107     return Old;
108 
109   if (Value *New = GlobalMap.lookup(Old)) {
110     if (Value *NewRemapped = GlobalMap.lookup(New))
111       New = NewRemapped;
112     if (Old->getType()->getScalarSizeInBits() <
113         New->getType()->getScalarSizeInBits())
114       New = Builder.CreateTruncOrBitCast(New, Old->getType());
115 
116     return New;
117   }
118 
119   if (Value *New = BBMap.lookup(Old))
120     return New;
121 
122   if (Value *New = trySynthesizeNewValue(Stmt, Old, BBMap, LTS, L))
123     return New;
124 
125   // A scop-constant value defined by a global or a function parameter.
126   if (isa<GlobalValue>(Old) || isa<Argument>(Old))
127     return Old;
128 
129   // A scop-constant value defined by an instruction executed outside the scop.
130   if (const Instruction *Inst = dyn_cast<Instruction>(Old))
131     if (!Stmt.getParent()->getRegion().contains(Inst->getParent()))
132       return Old;
133 
134   // The scalar dependence is neither available nor SCEVCodegenable.
135   llvm_unreachable("Unexpected scalar dependence in region!");
136   return nullptr;
137 }
138 
139 void BlockGenerator::copyInstScalar(ScopStmt &Stmt, Instruction *Inst,
140                                     ValueMapT &BBMap, LoopToScevMapT &LTS) {
141   // We do not generate debug intrinsics as we did not investigate how to
142   // copy them correctly. At the current state, they just crash the code
143   // generation as the meta-data operands are not correctly copied.
144   if (isa<DbgInfoIntrinsic>(Inst))
145     return;
146 
147   Instruction *NewInst = Inst->clone();
148 
149   // Replace old operands with the new ones.
150   for (Value *OldOperand : Inst->operands()) {
151     Value *NewOperand =
152         getNewValue(Stmt, OldOperand, BBMap, LTS, getLoopForStmt(Stmt));
153 
154     if (!NewOperand) {
155       assert(!isa<StoreInst>(NewInst) &&
156              "Store instructions are always needed!");
157       delete NewInst;
158       return;
159     }
160 
161     NewInst->replaceUsesOfWith(OldOperand, NewOperand);
162   }
163 
164   Builder.Insert(NewInst);
165   BBMap[Inst] = NewInst;
166 
167   if (!NewInst->getType()->isVoidTy())
168     NewInst->setName("p_" + Inst->getName());
169 }
170 
171 Value *
172 BlockGenerator::generateLocationAccessed(ScopStmt &Stmt, MemAccInst Inst,
173                                          ValueMapT &BBMap, LoopToScevMapT &LTS,
174                                          isl_id_to_ast_expr *NewAccesses) {
175   const MemoryAccess &MA = Stmt.getArrayAccessFor(Inst);
176 
177   isl_ast_expr *AccessExpr = isl_id_to_ast_expr_get(NewAccesses, MA.getId());
178 
179   if (AccessExpr) {
180     AccessExpr = isl_ast_expr_address_of(AccessExpr);
181     auto Address = ExprBuilder->create(AccessExpr);
182 
183     // Cast the address of this memory access to a pointer type that has the
184     // same element type as the original access, but uses the address space of
185     // the newly generated pointer.
186     auto OldPtrTy = MA.getAccessValue()->getType()->getPointerTo();
187     auto NewPtrTy = Address->getType();
188     OldPtrTy = PointerType::get(OldPtrTy->getElementType(),
189                                 NewPtrTy->getPointerAddressSpace());
190 
191     if (OldPtrTy != NewPtrTy)
192       Address = Builder.CreateBitOrPointerCast(Address, OldPtrTy);
193     return Address;
194   }
195 
196   return getNewValue(Stmt, Inst.getPointerOperand(), BBMap, LTS,
197                      getLoopForStmt(Stmt));
198 }
199 
200 Loop *BlockGenerator::getLoopForStmt(const ScopStmt &Stmt) const {
201   auto *StmtBB =
202       Stmt.isBlockStmt() ? Stmt.getBasicBlock() : Stmt.getRegion()->getEntry();
203   return LI.getLoopFor(StmtBB);
204 }
205 
206 Value *BlockGenerator::generateScalarLoad(ScopStmt &Stmt, LoadInst *Load,
207                                           ValueMapT &BBMap, LoopToScevMapT &LTS,
208                                           isl_id_to_ast_expr *NewAccesses) {
209   if (Value *PreloadLoad = GlobalMap.lookup(Load))
210     return PreloadLoad;
211 
212   Value *NewPointer =
213       generateLocationAccessed(Stmt, Load, BBMap, LTS, NewAccesses);
214   Value *ScalarLoad = Builder.CreateAlignedLoad(
215       NewPointer, Load->getAlignment(), Load->getName() + "_p_scalar_");
216 
217   if (DebugPrinting)
218     RuntimeDebugBuilder::createCPUPrinter(Builder, "Load from ", NewPointer,
219                                           ": ", ScalarLoad, "\n");
220 
221   return ScalarLoad;
222 }
223 
224 void BlockGenerator::generateScalarStore(ScopStmt &Stmt, StoreInst *Store,
225                                          ValueMapT &BBMap, LoopToScevMapT &LTS,
226                                          isl_id_to_ast_expr *NewAccesses) {
227   Value *NewPointer =
228       generateLocationAccessed(Stmt, Store, BBMap, LTS, NewAccesses);
229   Value *ValueOperand = getNewValue(Stmt, Store->getValueOperand(), BBMap, LTS,
230                                     getLoopForStmt(Stmt));
231 
232   if (DebugPrinting)
233     RuntimeDebugBuilder::createCPUPrinter(Builder, "Store to  ", NewPointer,
234                                           ": ", ValueOperand, "\n");
235 
236   Builder.CreateAlignedStore(ValueOperand, NewPointer, Store->getAlignment());
237 }
238 
239 bool BlockGenerator::canSyntheziseInStmt(ScopStmt &Stmt, Instruction *Inst) {
240   Loop *L = getLoopForStmt(Stmt);
241   return (Stmt.isBlockStmt() || !Stmt.getRegion()->contains(L)) &&
242          canSynthesize(Inst, &LI, &SE, &Stmt.getParent()->getRegion());
243 }
244 
245 void BlockGenerator::copyInstruction(ScopStmt &Stmt, Instruction *Inst,
246                                      ValueMapT &BBMap, LoopToScevMapT &LTS,
247                                      isl_id_to_ast_expr *NewAccesses) {
248   // Terminator instructions control the control flow. They are explicitly
249   // expressed in the clast and do not need to be copied.
250   if (Inst->isTerminator())
251     return;
252 
253   // Synthesizable statements will be generated on-demand.
254   if (canSyntheziseInStmt(Stmt, Inst))
255     return;
256 
257   if (auto *Load = dyn_cast<LoadInst>(Inst)) {
258     Value *NewLoad = generateScalarLoad(Stmt, Load, BBMap, LTS, NewAccesses);
259     // Compute NewLoad before its insertion in BBMap to make the insertion
260     // deterministic.
261     BBMap[Load] = NewLoad;
262     return;
263   }
264 
265   if (auto *Store = dyn_cast<StoreInst>(Inst)) {
266     generateScalarStore(Stmt, Store, BBMap, LTS, NewAccesses);
267     return;
268   }
269 
270   if (auto *PHI = dyn_cast<PHINode>(Inst)) {
271     copyPHIInstruction(Stmt, PHI, BBMap, LTS);
272     return;
273   }
274 
275   // Skip some special intrinsics for which we do not adjust the semantics to
276   // the new schedule. All others are handled like every other instruction.
277   if (isIgnoredIntrinsic(Inst))
278     return;
279 
280   copyInstScalar(Stmt, Inst, BBMap, LTS);
281 }
282 
283 void BlockGenerator::copyStmt(ScopStmt &Stmt, LoopToScevMapT &LTS,
284                               isl_id_to_ast_expr *NewAccesses) {
285   assert(Stmt.isBlockStmt() &&
286          "Only block statements can be copied by the block generator");
287 
288   ValueMapT BBMap;
289 
290   BasicBlock *BB = Stmt.getBasicBlock();
291   copyBB(Stmt, BB, BBMap, LTS, NewAccesses);
292 }
293 
294 BasicBlock *BlockGenerator::splitBB(BasicBlock *BB) {
295   BasicBlock *CopyBB = SplitBlock(Builder.GetInsertBlock(),
296                                   &*Builder.GetInsertPoint(), &DT, &LI);
297   CopyBB->setName("polly.stmt." + BB->getName());
298   return CopyBB;
299 }
300 
301 BasicBlock *BlockGenerator::copyBB(ScopStmt &Stmt, BasicBlock *BB,
302                                    ValueMapT &BBMap, LoopToScevMapT &LTS,
303                                    isl_id_to_ast_expr *NewAccesses) {
304   BasicBlock *CopyBB = splitBB(BB);
305   Builder.SetInsertPoint(&CopyBB->front());
306   generateScalarLoads(Stmt, BBMap);
307 
308   copyBB(Stmt, BB, CopyBB, BBMap, LTS, NewAccesses);
309 
310   // After a basic block was copied store all scalars that escape this block in
311   // their alloca.
312   generateScalarStores(Stmt, LTS, BBMap);
313   return CopyBB;
314 }
315 
316 void BlockGenerator::copyBB(ScopStmt &Stmt, BasicBlock *BB, BasicBlock *CopyBB,
317                             ValueMapT &BBMap, LoopToScevMapT &LTS,
318                             isl_id_to_ast_expr *NewAccesses) {
319   EntryBB = &CopyBB->getParent()->getEntryBlock();
320 
321   for (Instruction &Inst : *BB)
322     copyInstruction(Stmt, &Inst, BBMap, LTS, NewAccesses);
323 }
324 
325 Value *BlockGenerator::getOrCreateAlloca(Value *ScalarBase,
326                                          ScalarAllocaMapTy &Map,
327                                          const char *NameExt) {
328   // If no alloca was found create one and insert it in the entry block.
329   if (!Map.count(ScalarBase)) {
330     auto *Ty = ScalarBase->getType();
331     auto NewAddr = new AllocaInst(Ty, ScalarBase->getName() + NameExt);
332     EntryBB = &Builder.GetInsertBlock()->getParent()->getEntryBlock();
333     NewAddr->insertBefore(&*EntryBB->getFirstInsertionPt());
334     Map[ScalarBase] = NewAddr;
335   }
336 
337   auto Addr = Map[ScalarBase];
338 
339   if (auto NewAddr = GlobalMap.lookup(Addr))
340     return NewAddr;
341 
342   return Addr;
343 }
344 
345 Value *BlockGenerator::getOrCreateAlloca(const MemoryAccess &Access) {
346   if (Access.isPHIKind())
347     return getOrCreatePHIAlloca(Access.getBaseAddr());
348   else
349     return getOrCreateScalarAlloca(Access.getBaseAddr());
350 }
351 
352 Value *BlockGenerator::getOrCreateAlloca(const ScopArrayInfo *Array) {
353   if (Array->isPHIKind())
354     return getOrCreatePHIAlloca(Array->getBasePtr());
355   else
356     return getOrCreateScalarAlloca(Array->getBasePtr());
357 }
358 
359 Value *BlockGenerator::getOrCreateScalarAlloca(Value *ScalarBase) {
360   return getOrCreateAlloca(ScalarBase, ScalarMap, ".s2a");
361 }
362 
363 Value *BlockGenerator::getOrCreatePHIAlloca(Value *ScalarBase) {
364   return getOrCreateAlloca(ScalarBase, PHIOpMap, ".phiops");
365 }
366 
367 void BlockGenerator::handleOutsideUsers(const Region &R, Instruction *Inst,
368                                         Value *Address) {
369   // If there are escape users we get the alloca for this instruction and put it
370   // in the EscapeMap for later finalization. Lastly, if the instruction was
371   // copied multiple times we already did this and can exit.
372   if (EscapeMap.count(Inst))
373     return;
374 
375   EscapeUserVectorTy EscapeUsers;
376   for (User *U : Inst->users()) {
377 
378     // Non-instruction user will never escape.
379     Instruction *UI = dyn_cast<Instruction>(U);
380     if (!UI)
381       continue;
382 
383     if (R.contains(UI))
384       continue;
385 
386     EscapeUsers.push_back(UI);
387   }
388 
389   // Exit if no escape uses were found.
390   if (EscapeUsers.empty())
391     return;
392 
393   // Get or create an escape alloca for this instruction.
394   auto *ScalarAddr = Address ? Address : getOrCreateScalarAlloca(Inst);
395 
396   // Remember that this instruction has escape uses and the escape alloca.
397   EscapeMap[Inst] = std::make_pair(ScalarAddr, std::move(EscapeUsers));
398 }
399 
400 void BlockGenerator::generateScalarLoads(ScopStmt &Stmt, ValueMapT &BBMap) {
401   for (MemoryAccess *MA : Stmt) {
402     if (MA->isArrayKind() || MA->isWrite())
403       continue;
404 
405     auto *Address = getOrCreateAlloca(*MA);
406     BBMap[MA->getBaseAddr()] =
407         Builder.CreateLoad(Address, Address->getName() + ".reload");
408   }
409 }
410 
411 void BlockGenerator::generateScalarStores(ScopStmt &Stmt, LoopToScevMapT &LTS,
412                                           ValueMapT &BBMap) {
413   Loop *L = LI.getLoopFor(Stmt.getBasicBlock());
414 
415   assert(Stmt.isBlockStmt() && "Region statements need to use the "
416                                "generateScalarStores() function in the "
417                                "RegionGenerator");
418 
419   for (MemoryAccess *MA : Stmt) {
420     if (MA->isArrayKind() || MA->isRead())
421       continue;
422 
423     Value *Val = MA->getAccessValue();
424     if (MA->isAnyPHIKind()) {
425       assert(MA->getIncoming().size() >= 1 &&
426              "Block statements have exactly one exiting block, or multiple but "
427              "with same incoming block and value");
428       assert(std::all_of(MA->getIncoming().begin(), MA->getIncoming().end(),
429                          [&](std::pair<BasicBlock *, Value *> p) -> bool {
430                            return p.first == Stmt.getBasicBlock();
431                          }) &&
432              "Incoming block must be statement's block");
433       Val = MA->getIncoming()[0].second;
434     }
435     auto *Address = getOrCreateAlloca(*MA);
436 
437     Val = getNewValue(Stmt, Val, BBMap, LTS, L);
438     Builder.CreateStore(Val, Address);
439   }
440 }
441 
442 void BlockGenerator::createScalarInitialization(Scop &S) {
443   Region &R = S.getRegion();
444   BasicBlock *ExitBB = R.getExit();
445 
446   // The split block __just before__ the region and optimized region.
447   BasicBlock *SplitBB = R.getEnteringBlock();
448   BranchInst *SplitBBTerm = cast<BranchInst>(SplitBB->getTerminator());
449   assert(SplitBBTerm->getNumSuccessors() == 2 && "Bad region entering block!");
450 
451   // Get the start block of the __optimized__ region.
452   BasicBlock *StartBB = SplitBBTerm->getSuccessor(0);
453   if (StartBB == R.getEntry())
454     StartBB = SplitBBTerm->getSuccessor(1);
455 
456   Builder.SetInsertPoint(StartBB->getTerminator());
457 
458   for (auto &Pair : S.arrays()) {
459     auto &Array = Pair.second;
460     if (Array->getNumberOfDimensions() != 0)
461       continue;
462     if (Array->isPHIKind()) {
463       // For PHI nodes, the only values we need to store are the ones that
464       // reach the PHI node from outside the region. In general there should
465       // only be one such incoming edge and this edge should enter through
466       // 'SplitBB'.
467       auto PHI = cast<PHINode>(Array->getBasePtr());
468 
469       for (auto BI = PHI->block_begin(), BE = PHI->block_end(); BI != BE; BI++)
470         if (!R.contains(*BI) && *BI != SplitBB)
471           llvm_unreachable("Incoming edges from outside the scop should always "
472                            "come from SplitBB");
473 
474       int Idx = PHI->getBasicBlockIndex(SplitBB);
475       if (Idx < 0)
476         continue;
477 
478       Value *ScalarValue = PHI->getIncomingValue(Idx);
479 
480       Builder.CreateStore(ScalarValue, getOrCreatePHIAlloca(PHI));
481       continue;
482     }
483 
484     auto *Inst = dyn_cast<Instruction>(Array->getBasePtr());
485 
486     if (Inst && R.contains(Inst))
487       continue;
488 
489     // PHI nodes that are not marked as such in their SAI object are either exit
490     // PHI nodes we model as common scalars but without initialization, or
491     // incoming phi nodes that need to be initialized. Check if the first is the
492     // case for Inst and do not create and initialize memory if so.
493     if (auto *PHI = dyn_cast_or_null<PHINode>(Inst))
494       if (!S.hasSingleExitEdge() && PHI->getBasicBlockIndex(ExitBB) >= 0)
495         continue;
496 
497     Builder.CreateStore(Array->getBasePtr(),
498                         getOrCreateScalarAlloca(Array->getBasePtr()));
499   }
500 }
501 
502 void BlockGenerator::createScalarFinalization(Region &R) {
503   // The exit block of the __unoptimized__ region.
504   BasicBlock *ExitBB = R.getExitingBlock();
505   // The merge block __just after__ the region and the optimized region.
506   BasicBlock *MergeBB = R.getExit();
507 
508   // The exit block of the __optimized__ region.
509   BasicBlock *OptExitBB = *(pred_begin(MergeBB));
510   if (OptExitBB == ExitBB)
511     OptExitBB = *(++pred_begin(MergeBB));
512 
513   Builder.SetInsertPoint(OptExitBB->getTerminator());
514   for (const auto &EscapeMapping : EscapeMap) {
515     // Extract the escaping instruction and the escaping users as well as the
516     // alloca the instruction was demoted to.
517     Instruction *EscapeInst = EscapeMapping.getFirst();
518     const auto &EscapeMappingValue = EscapeMapping.getSecond();
519     const EscapeUserVectorTy &EscapeUsers = EscapeMappingValue.second;
520     Value *ScalarAddr = EscapeMappingValue.first;
521 
522     // Reload the demoted instruction in the optimized version of the SCoP.
523     Value *EscapeInstReload =
524         Builder.CreateLoad(ScalarAddr, EscapeInst->getName() + ".final_reload");
525     EscapeInstReload =
526         Builder.CreateBitOrPointerCast(EscapeInstReload, EscapeInst->getType());
527 
528     // Create the merge PHI that merges the optimized and unoptimized version.
529     PHINode *MergePHI = PHINode::Create(EscapeInst->getType(), 2,
530                                         EscapeInst->getName() + ".merge");
531     MergePHI->insertBefore(&*MergeBB->getFirstInsertionPt());
532 
533     // Add the respective values to the merge PHI.
534     MergePHI->addIncoming(EscapeInstReload, OptExitBB);
535     MergePHI->addIncoming(EscapeInst, ExitBB);
536 
537     // The information of scalar evolution about the escaping instruction needs
538     // to be revoked so the new merged instruction will be used.
539     if (SE.isSCEVable(EscapeInst->getType()))
540       SE.forgetValue(EscapeInst);
541 
542     // Replace all uses of the demoted instruction with the merge PHI.
543     for (Instruction *EUser : EscapeUsers)
544       EUser->replaceUsesOfWith(EscapeInst, MergePHI);
545   }
546 }
547 
548 void BlockGenerator::findOutsideUsers(Scop &S) {
549   auto &R = S.getRegion();
550   for (auto &Pair : S.arrays()) {
551     auto &Array = Pair.second;
552 
553     if (Array->getNumberOfDimensions() != 0)
554       continue;
555 
556     if (Array->isPHIKind())
557       continue;
558 
559     auto *Inst = dyn_cast<Instruction>(Array->getBasePtr());
560 
561     if (!Inst)
562       continue;
563 
564     // Scop invariant hoisting moves some of the base pointers out of the scop.
565     // We can ignore these, as the invariant load hoisting already registers the
566     // relevant outside users.
567     if (!R.contains(Inst))
568       continue;
569 
570     handleOutsideUsers(R, Inst, nullptr);
571   }
572 }
573 
574 void BlockGenerator::createExitPHINodeMerges(Scop &S) {
575   if (S.hasSingleExitEdge())
576     return;
577 
578   Region &R = S.getRegion();
579 
580   auto *ExitBB = R.getExitingBlock();
581   auto *MergeBB = R.getExit();
582   auto *AfterMergeBB = MergeBB->getSingleSuccessor();
583   BasicBlock *OptExitBB = *(pred_begin(MergeBB));
584   if (OptExitBB == ExitBB)
585     OptExitBB = *(++pred_begin(MergeBB));
586 
587   Builder.SetInsertPoint(OptExitBB->getTerminator());
588 
589   for (auto &Pair : S.arrays()) {
590     auto &SAI = Pair.second;
591     auto *Val = SAI->getBasePtr();
592 
593     PHINode *PHI = dyn_cast<PHINode>(Val);
594     if (!PHI)
595       continue;
596 
597     if (PHI->getParent() != AfterMergeBB)
598       continue;
599 
600     std::string Name = PHI->getName();
601     Value *ScalarAddr = getOrCreateScalarAlloca(PHI);
602     Value *Reload = Builder.CreateLoad(ScalarAddr, Name + ".ph.final_reload");
603     Reload = Builder.CreateBitOrPointerCast(Reload, PHI->getType());
604     Value *OriginalValue = PHI->getIncomingValueForBlock(MergeBB);
605     auto *MergePHI = PHINode::Create(PHI->getType(), 2, Name + ".ph.merge");
606     MergePHI->insertBefore(&*MergeBB->getFirstInsertionPt());
607     MergePHI->addIncoming(Reload, OptExitBB);
608     MergePHI->addIncoming(OriginalValue, ExitBB);
609     int Idx = PHI->getBasicBlockIndex(MergeBB);
610     PHI->setIncomingValue(Idx, MergePHI);
611   }
612 }
613 
614 void BlockGenerator::finalizeSCoP(Scop &S) {
615   findOutsideUsers(S);
616   createScalarInitialization(S);
617   createExitPHINodeMerges(S);
618   createScalarFinalization(S.getRegion());
619 }
620 
621 VectorBlockGenerator::VectorBlockGenerator(BlockGenerator &BlockGen,
622                                            std::vector<LoopToScevMapT> &VLTS,
623                                            isl_map *Schedule)
624     : BlockGenerator(BlockGen), VLTS(VLTS), Schedule(Schedule) {
625   assert(Schedule && "No statement domain provided");
626 }
627 
628 Value *VectorBlockGenerator::getVectorValue(ScopStmt &Stmt, Value *Old,
629                                             ValueMapT &VectorMap,
630                                             VectorValueMapT &ScalarMaps,
631                                             Loop *L) {
632   if (Value *NewValue = VectorMap.lookup(Old))
633     return NewValue;
634 
635   int Width = getVectorWidth();
636 
637   Value *Vector = UndefValue::get(VectorType::get(Old->getType(), Width));
638 
639   for (int Lane = 0; Lane < Width; Lane++)
640     Vector = Builder.CreateInsertElement(
641         Vector, getNewValue(Stmt, Old, ScalarMaps[Lane], VLTS[Lane], L),
642         Builder.getInt32(Lane));
643 
644   VectorMap[Old] = Vector;
645 
646   return Vector;
647 }
648 
649 Type *VectorBlockGenerator::getVectorPtrTy(const Value *Val, int Width) {
650   PointerType *PointerTy = dyn_cast<PointerType>(Val->getType());
651   assert(PointerTy && "PointerType expected");
652 
653   Type *ScalarType = PointerTy->getElementType();
654   VectorType *VectorType = VectorType::get(ScalarType, Width);
655 
656   return PointerType::getUnqual(VectorType);
657 }
658 
659 Value *VectorBlockGenerator::generateStrideOneLoad(
660     ScopStmt &Stmt, LoadInst *Load, VectorValueMapT &ScalarMaps,
661     __isl_keep isl_id_to_ast_expr *NewAccesses, bool NegativeStride = false) {
662   unsigned VectorWidth = getVectorWidth();
663   auto *Pointer = Load->getPointerOperand();
664   Type *VectorPtrType = getVectorPtrTy(Pointer, VectorWidth);
665   unsigned Offset = NegativeStride ? VectorWidth - 1 : 0;
666 
667   Value *NewPointer = nullptr;
668   NewPointer = generateLocationAccessed(Stmt, Load, ScalarMaps[Offset],
669                                         VLTS[Offset], NewAccesses);
670   Value *VectorPtr =
671       Builder.CreateBitCast(NewPointer, VectorPtrType, "vector_ptr");
672   LoadInst *VecLoad =
673       Builder.CreateLoad(VectorPtr, Load->getName() + "_p_vec_full");
674   if (!Aligned)
675     VecLoad->setAlignment(8);
676 
677   if (NegativeStride) {
678     SmallVector<Constant *, 16> Indices;
679     for (int i = VectorWidth - 1; i >= 0; i--)
680       Indices.push_back(ConstantInt::get(Builder.getInt32Ty(), i));
681     Constant *SV = llvm::ConstantVector::get(Indices);
682     Value *RevVecLoad = Builder.CreateShuffleVector(
683         VecLoad, VecLoad, SV, Load->getName() + "_reverse");
684     return RevVecLoad;
685   }
686 
687   return VecLoad;
688 }
689 
690 Value *VectorBlockGenerator::generateStrideZeroLoad(
691     ScopStmt &Stmt, LoadInst *Load, ValueMapT &BBMap,
692     __isl_keep isl_id_to_ast_expr *NewAccesses) {
693   auto *Pointer = Load->getPointerOperand();
694   Type *VectorPtrType = getVectorPtrTy(Pointer, 1);
695   Value *NewPointer =
696       generateLocationAccessed(Stmt, Load, BBMap, VLTS[0], NewAccesses);
697   Value *VectorPtr = Builder.CreateBitCast(NewPointer, VectorPtrType,
698                                            Load->getName() + "_p_vec_p");
699   LoadInst *ScalarLoad =
700       Builder.CreateLoad(VectorPtr, Load->getName() + "_p_splat_one");
701 
702   if (!Aligned)
703     ScalarLoad->setAlignment(8);
704 
705   Constant *SplatVector = Constant::getNullValue(
706       VectorType::get(Builder.getInt32Ty(), getVectorWidth()));
707 
708   Value *VectorLoad = Builder.CreateShuffleVector(
709       ScalarLoad, ScalarLoad, SplatVector, Load->getName() + "_p_splat");
710   return VectorLoad;
711 }
712 
713 Value *VectorBlockGenerator::generateUnknownStrideLoad(
714     ScopStmt &Stmt, LoadInst *Load, VectorValueMapT &ScalarMaps,
715     __isl_keep isl_id_to_ast_expr *NewAccesses) {
716   int VectorWidth = getVectorWidth();
717   auto *Pointer = Load->getPointerOperand();
718   VectorType *VectorType = VectorType::get(
719       dyn_cast<PointerType>(Pointer->getType())->getElementType(), VectorWidth);
720 
721   Value *Vector = UndefValue::get(VectorType);
722 
723   for (int i = 0; i < VectorWidth; i++) {
724     Value *NewPointer = generateLocationAccessed(Stmt, Load, ScalarMaps[i],
725                                                  VLTS[i], NewAccesses);
726     Value *ScalarLoad =
727         Builder.CreateLoad(NewPointer, Load->getName() + "_p_scalar_");
728     Vector = Builder.CreateInsertElement(
729         Vector, ScalarLoad, Builder.getInt32(i), Load->getName() + "_p_vec_");
730   }
731 
732   return Vector;
733 }
734 
735 void VectorBlockGenerator::generateLoad(
736     ScopStmt &Stmt, LoadInst *Load, ValueMapT &VectorMap,
737     VectorValueMapT &ScalarMaps, __isl_keep isl_id_to_ast_expr *NewAccesses) {
738   if (Value *PreloadLoad = GlobalMap.lookup(Load)) {
739     VectorMap[Load] = Builder.CreateVectorSplat(getVectorWidth(), PreloadLoad,
740                                                 Load->getName() + "_p");
741     return;
742   }
743 
744   if (!VectorType::isValidElementType(Load->getType())) {
745     for (int i = 0; i < getVectorWidth(); i++)
746       ScalarMaps[i][Load] =
747           generateScalarLoad(Stmt, Load, ScalarMaps[i], VLTS[i], NewAccesses);
748     return;
749   }
750 
751   const MemoryAccess &Access = Stmt.getArrayAccessFor(Load);
752 
753   // Make sure we have scalar values available to access the pointer to
754   // the data location.
755   extractScalarValues(Load, VectorMap, ScalarMaps);
756 
757   Value *NewLoad;
758   if (Access.isStrideZero(isl_map_copy(Schedule)))
759     NewLoad = generateStrideZeroLoad(Stmt, Load, ScalarMaps[0], NewAccesses);
760   else if (Access.isStrideOne(isl_map_copy(Schedule)))
761     NewLoad = generateStrideOneLoad(Stmt, Load, ScalarMaps, NewAccesses);
762   else if (Access.isStrideX(isl_map_copy(Schedule), -1))
763     NewLoad = generateStrideOneLoad(Stmt, Load, ScalarMaps, NewAccesses, true);
764   else
765     NewLoad = generateUnknownStrideLoad(Stmt, Load, ScalarMaps, NewAccesses);
766 
767   VectorMap[Load] = NewLoad;
768 }
769 
770 void VectorBlockGenerator::copyUnaryInst(ScopStmt &Stmt, UnaryInstruction *Inst,
771                                          ValueMapT &VectorMap,
772                                          VectorValueMapT &ScalarMaps) {
773   int VectorWidth = getVectorWidth();
774   Value *NewOperand = getVectorValue(Stmt, Inst->getOperand(0), VectorMap,
775                                      ScalarMaps, getLoopForStmt(Stmt));
776 
777   assert(isa<CastInst>(Inst) && "Can not generate vector code for instruction");
778 
779   const CastInst *Cast = dyn_cast<CastInst>(Inst);
780   VectorType *DestType = VectorType::get(Inst->getType(), VectorWidth);
781   VectorMap[Inst] = Builder.CreateCast(Cast->getOpcode(), NewOperand, DestType);
782 }
783 
784 void VectorBlockGenerator::copyBinaryInst(ScopStmt &Stmt, BinaryOperator *Inst,
785                                           ValueMapT &VectorMap,
786                                           VectorValueMapT &ScalarMaps) {
787   Loop *L = getLoopForStmt(Stmt);
788   Value *OpZero = Inst->getOperand(0);
789   Value *OpOne = Inst->getOperand(1);
790 
791   Value *NewOpZero, *NewOpOne;
792   NewOpZero = getVectorValue(Stmt, OpZero, VectorMap, ScalarMaps, L);
793   NewOpOne = getVectorValue(Stmt, OpOne, VectorMap, ScalarMaps, L);
794 
795   Value *NewInst = Builder.CreateBinOp(Inst->getOpcode(), NewOpZero, NewOpOne,
796                                        Inst->getName() + "p_vec");
797   VectorMap[Inst] = NewInst;
798 }
799 
800 void VectorBlockGenerator::copyStore(
801     ScopStmt &Stmt, StoreInst *Store, ValueMapT &VectorMap,
802     VectorValueMapT &ScalarMaps, __isl_keep isl_id_to_ast_expr *NewAccesses) {
803   const MemoryAccess &Access = Stmt.getArrayAccessFor(Store);
804 
805   auto *Pointer = Store->getPointerOperand();
806   Value *Vector = getVectorValue(Stmt, Store->getValueOperand(), VectorMap,
807                                  ScalarMaps, getLoopForStmt(Stmt));
808 
809   // Make sure we have scalar values available to access the pointer to
810   // the data location.
811   extractScalarValues(Store, VectorMap, ScalarMaps);
812 
813   if (Access.isStrideOne(isl_map_copy(Schedule))) {
814     Type *VectorPtrType = getVectorPtrTy(Pointer, getVectorWidth());
815     Value *NewPointer = generateLocationAccessed(Stmt, Store, ScalarMaps[0],
816                                                  VLTS[0], NewAccesses);
817 
818     Value *VectorPtr =
819         Builder.CreateBitCast(NewPointer, VectorPtrType, "vector_ptr");
820     StoreInst *Store = Builder.CreateStore(Vector, VectorPtr);
821 
822     if (!Aligned)
823       Store->setAlignment(8);
824   } else {
825     for (unsigned i = 0; i < ScalarMaps.size(); i++) {
826       Value *Scalar = Builder.CreateExtractElement(Vector, Builder.getInt32(i));
827       Value *NewPointer = generateLocationAccessed(Stmt, Store, ScalarMaps[i],
828                                                    VLTS[i], NewAccesses);
829       Builder.CreateStore(Scalar, NewPointer);
830     }
831   }
832 }
833 
834 bool VectorBlockGenerator::hasVectorOperands(const Instruction *Inst,
835                                              ValueMapT &VectorMap) {
836   for (Value *Operand : Inst->operands())
837     if (VectorMap.count(Operand))
838       return true;
839   return false;
840 }
841 
842 bool VectorBlockGenerator::extractScalarValues(const Instruction *Inst,
843                                                ValueMapT &VectorMap,
844                                                VectorValueMapT &ScalarMaps) {
845   bool HasVectorOperand = false;
846   int VectorWidth = getVectorWidth();
847 
848   for (Value *Operand : Inst->operands()) {
849     ValueMapT::iterator VecOp = VectorMap.find(Operand);
850 
851     if (VecOp == VectorMap.end())
852       continue;
853 
854     HasVectorOperand = true;
855     Value *NewVector = VecOp->second;
856 
857     for (int i = 0; i < VectorWidth; ++i) {
858       ValueMapT &SM = ScalarMaps[i];
859 
860       // If there is one scalar extracted, all scalar elements should have
861       // already been extracted by the code here. So no need to check for the
862       // existance of all of them.
863       if (SM.count(Operand))
864         break;
865 
866       SM[Operand] =
867           Builder.CreateExtractElement(NewVector, Builder.getInt32(i));
868     }
869   }
870 
871   return HasVectorOperand;
872 }
873 
874 void VectorBlockGenerator::copyInstScalarized(
875     ScopStmt &Stmt, Instruction *Inst, ValueMapT &VectorMap,
876     VectorValueMapT &ScalarMaps, __isl_keep isl_id_to_ast_expr *NewAccesses) {
877   bool HasVectorOperand;
878   int VectorWidth = getVectorWidth();
879 
880   HasVectorOperand = extractScalarValues(Inst, VectorMap, ScalarMaps);
881 
882   for (int VectorLane = 0; VectorLane < getVectorWidth(); VectorLane++)
883     BlockGenerator::copyInstruction(Stmt, Inst, ScalarMaps[VectorLane],
884                                     VLTS[VectorLane], NewAccesses);
885 
886   if (!VectorType::isValidElementType(Inst->getType()) || !HasVectorOperand)
887     return;
888 
889   // Make the result available as vector value.
890   VectorType *VectorType = VectorType::get(Inst->getType(), VectorWidth);
891   Value *Vector = UndefValue::get(VectorType);
892 
893   for (int i = 0; i < VectorWidth; i++)
894     Vector = Builder.CreateInsertElement(Vector, ScalarMaps[i][Inst],
895                                          Builder.getInt32(i));
896 
897   VectorMap[Inst] = Vector;
898 }
899 
900 int VectorBlockGenerator::getVectorWidth() { return VLTS.size(); }
901 
902 void VectorBlockGenerator::copyInstruction(
903     ScopStmt &Stmt, Instruction *Inst, ValueMapT &VectorMap,
904     VectorValueMapT &ScalarMaps, __isl_keep isl_id_to_ast_expr *NewAccesses) {
905   // Terminator instructions control the control flow. They are explicitly
906   // expressed in the clast and do not need to be copied.
907   if (Inst->isTerminator())
908     return;
909 
910   if (canSyntheziseInStmt(Stmt, Inst))
911     return;
912 
913   if (auto *Load = dyn_cast<LoadInst>(Inst)) {
914     generateLoad(Stmt, Load, VectorMap, ScalarMaps, NewAccesses);
915     return;
916   }
917 
918   if (hasVectorOperands(Inst, VectorMap)) {
919     if (auto *Store = dyn_cast<StoreInst>(Inst)) {
920       copyStore(Stmt, Store, VectorMap, ScalarMaps, NewAccesses);
921       return;
922     }
923 
924     if (auto *Unary = dyn_cast<UnaryInstruction>(Inst)) {
925       copyUnaryInst(Stmt, Unary, VectorMap, ScalarMaps);
926       return;
927     }
928 
929     if (auto *Binary = dyn_cast<BinaryOperator>(Inst)) {
930       copyBinaryInst(Stmt, Binary, VectorMap, ScalarMaps);
931       return;
932     }
933 
934     // Falltrough: We generate scalar instructions, if we don't know how to
935     // generate vector code.
936   }
937 
938   copyInstScalarized(Stmt, Inst, VectorMap, ScalarMaps, NewAccesses);
939 }
940 
941 void VectorBlockGenerator::generateScalarVectorLoads(
942     ScopStmt &Stmt, ValueMapT &VectorBlockMap) {
943   for (MemoryAccess *MA : Stmt) {
944     if (MA->isArrayKind() || MA->isWrite())
945       continue;
946 
947     auto *Address = getOrCreateAlloca(*MA);
948     Type *VectorPtrType = getVectorPtrTy(Address, 1);
949     Value *VectorPtr = Builder.CreateBitCast(Address, VectorPtrType,
950                                              Address->getName() + "_p_vec_p");
951     auto *Val = Builder.CreateLoad(VectorPtr, Address->getName() + ".reload");
952     Constant *SplatVector = Constant::getNullValue(
953         VectorType::get(Builder.getInt32Ty(), getVectorWidth()));
954 
955     Value *VectorVal = Builder.CreateShuffleVector(
956         Val, Val, SplatVector, Address->getName() + "_p_splat");
957     VectorBlockMap[MA->getBaseAddr()] = VectorVal;
958     VectorVal->dump();
959   }
960 }
961 
962 void VectorBlockGenerator::verifyNoScalarStores(ScopStmt &Stmt) {
963   for (MemoryAccess *MA : Stmt) {
964     if (MA->isArrayKind() || MA->isRead())
965       continue;
966 
967     llvm_unreachable("Scalar stores not expected in vector loop");
968   }
969 }
970 
971 void VectorBlockGenerator::copyStmt(
972     ScopStmt &Stmt, __isl_keep isl_id_to_ast_expr *NewAccesses) {
973   assert(Stmt.isBlockStmt() && "TODO: Only block statements can be copied by "
974                                "the vector block generator");
975 
976   BasicBlock *BB = Stmt.getBasicBlock();
977   BasicBlock *CopyBB = SplitBlock(Builder.GetInsertBlock(),
978                                   &*Builder.GetInsertPoint(), &DT, &LI);
979   CopyBB->setName("polly.stmt." + BB->getName());
980   Builder.SetInsertPoint(&CopyBB->front());
981 
982   // Create two maps that store the mapping from the original instructions of
983   // the old basic block to their copies in the new basic block. Those maps
984   // are basic block local.
985   //
986   // As vector code generation is supported there is one map for scalar values
987   // and one for vector values.
988   //
989   // In case we just do scalar code generation, the vectorMap is not used and
990   // the scalarMap has just one dimension, which contains the mapping.
991   //
992   // In case vector code generation is done, an instruction may either appear
993   // in the vector map once (as it is calculating >vectorwidth< values at a
994   // time. Or (if the values are calculated using scalar operations), it
995   // appears once in every dimension of the scalarMap.
996   VectorValueMapT ScalarBlockMap(getVectorWidth());
997   ValueMapT VectorBlockMap;
998 
999   generateScalarVectorLoads(Stmt, VectorBlockMap);
1000 
1001   for (Instruction &Inst : *BB)
1002     copyInstruction(Stmt, &Inst, VectorBlockMap, ScalarBlockMap, NewAccesses);
1003 
1004   verifyNoScalarStores(Stmt);
1005 }
1006 
1007 BasicBlock *RegionGenerator::repairDominance(BasicBlock *BB,
1008                                              BasicBlock *BBCopy) {
1009 
1010   BasicBlock *BBIDom = DT.getNode(BB)->getIDom()->getBlock();
1011   BasicBlock *BBCopyIDom = BlockMap.lookup(BBIDom);
1012 
1013   if (BBCopyIDom)
1014     DT.changeImmediateDominator(BBCopy, BBCopyIDom);
1015 
1016   return BBCopyIDom;
1017 }
1018 
1019 void RegionGenerator::copyStmt(ScopStmt &Stmt, LoopToScevMapT &LTS,
1020                                isl_id_to_ast_expr *IdToAstExp) {
1021   assert(Stmt.isRegionStmt() &&
1022          "Only region statements can be copied by the region generator");
1023 
1024   Scop *S = Stmt.getParent();
1025 
1026   // Forget all old mappings.
1027   BlockMap.clear();
1028   RegionMaps.clear();
1029   IncompletePHINodeMap.clear();
1030 
1031   // Collection of all values related to this subregion.
1032   ValueMapT ValueMap;
1033 
1034   // The region represented by the statement.
1035   Region *R = Stmt.getRegion();
1036 
1037   // Create a dedicated entry for the region where we can reload all demoted
1038   // inputs.
1039   BasicBlock *EntryBB = R->getEntry();
1040   BasicBlock *EntryBBCopy = SplitBlock(Builder.GetInsertBlock(),
1041                                        &*Builder.GetInsertPoint(), &DT, &LI);
1042   EntryBBCopy->setName("polly.stmt." + EntryBB->getName() + ".entry");
1043   Builder.SetInsertPoint(&EntryBBCopy->front());
1044 
1045   ValueMapT &EntryBBMap = RegionMaps[EntryBBCopy];
1046   generateScalarLoads(Stmt, EntryBBMap);
1047 
1048   for (auto PI = pred_begin(EntryBB), PE = pred_end(EntryBB); PI != PE; ++PI)
1049     if (!R->contains(*PI))
1050       BlockMap[*PI] = EntryBBCopy;
1051 
1052   // Determine the original exit block of this subregion. If it the exit block
1053   // is also the scop's exit, it it has been changed to polly.merge_new_and_old.
1054   // We move one block back to find the original block. This only happens if the
1055   // scop required simplification.
1056   // If the whole scop consists of only this non-affine region, then they share
1057   // the same Region object, such that we cannot change the exit of one and not
1058   // the other.
1059   BasicBlock *ExitBB = R->getExit();
1060   if (!S->hasSingleExitEdge() && ExitBB == S->getRegion().getExit())
1061     ExitBB = *(++pred_begin(ExitBB));
1062 
1063   // Iterate over all blocks in the region in a breadth-first search.
1064   std::deque<BasicBlock *> Blocks;
1065   SmallPtrSet<BasicBlock *, 8> SeenBlocks;
1066   Blocks.push_back(EntryBB);
1067   SeenBlocks.insert(EntryBB);
1068 
1069   while (!Blocks.empty()) {
1070     BasicBlock *BB = Blocks.front();
1071     Blocks.pop_front();
1072 
1073     // First split the block and update dominance information.
1074     BasicBlock *BBCopy = splitBB(BB);
1075     BasicBlock *BBCopyIDom = repairDominance(BB, BBCopy);
1076 
1077     // In order to remap PHI nodes we store also basic block mappings.
1078     BlockMap[BB] = BBCopy;
1079 
1080     // Get the mapping for this block and initialize it with either the scalar
1081     // loads from the generated entering block (which dominates all blocks of
1082     // this subregion) or the maps of the immediate dominator, if part of the
1083     // subregion. The latter necessarily includes the former.
1084     ValueMapT *InitBBMap;
1085     if (BBCopyIDom) {
1086       assert(RegionMaps.count(BBCopyIDom));
1087       InitBBMap = &RegionMaps[BBCopyIDom];
1088     } else
1089       InitBBMap = &EntryBBMap;
1090     auto Inserted = RegionMaps.insert(std::make_pair(BBCopy, *InitBBMap));
1091     ValueMapT &RegionMap = Inserted.first->second;
1092 
1093     // Copy the block with the BlockGenerator.
1094     Builder.SetInsertPoint(&BBCopy->front());
1095     copyBB(Stmt, BB, BBCopy, RegionMap, LTS, IdToAstExp);
1096 
1097     // In order to remap PHI nodes we store also basic block mappings.
1098     BlockMap[BB] = BBCopy;
1099 
1100     // Add values to incomplete PHI nodes waiting for this block to be copied.
1101     for (const PHINodePairTy &PHINodePair : IncompletePHINodeMap[BB])
1102       addOperandToPHI(Stmt, PHINodePair.first, PHINodePair.second, BB, LTS);
1103     IncompletePHINodeMap[BB].clear();
1104 
1105     // And continue with new successors inside the region.
1106     for (auto SI = succ_begin(BB), SE = succ_end(BB); SI != SE; SI++)
1107       if (R->contains(*SI) && SeenBlocks.insert(*SI).second)
1108         Blocks.push_back(*SI);
1109 
1110     // Remember value in case it is visible after this subregion.
1111     if (DT.dominates(BB, ExitBB))
1112       ValueMap.insert(RegionMap.begin(), RegionMap.end());
1113   }
1114 
1115   // Now create a new dedicated region exit block and add it to the region map.
1116   BasicBlock *ExitBBCopy = SplitBlock(Builder.GetInsertBlock(),
1117                                       &*Builder.GetInsertPoint(), &DT, &LI);
1118   ExitBBCopy->setName("polly.stmt." + R->getExit()->getName() + ".exit");
1119   BlockMap[R->getExit()] = ExitBBCopy;
1120 
1121   if (ExitBB == R->getExit())
1122     repairDominance(ExitBB, ExitBBCopy);
1123   else
1124     DT.changeImmediateDominator(ExitBBCopy, BlockMap.lookup(ExitBB));
1125 
1126   // As the block generator doesn't handle control flow we need to add the
1127   // region control flow by hand after all blocks have been copied.
1128   for (BasicBlock *BB : SeenBlocks) {
1129 
1130     BasicBlock *BBCopy = BlockMap[BB];
1131     TerminatorInst *TI = BB->getTerminator();
1132     if (isa<UnreachableInst>(TI)) {
1133       while (!BBCopy->empty())
1134         BBCopy->begin()->eraseFromParent();
1135       new UnreachableInst(BBCopy->getContext(), BBCopy);
1136       continue;
1137     }
1138 
1139     Instruction *BICopy = BBCopy->getTerminator();
1140 
1141     ValueMapT &RegionMap = RegionMaps[BBCopy];
1142     RegionMap.insert(BlockMap.begin(), BlockMap.end());
1143 
1144     Builder.SetInsertPoint(BICopy);
1145     copyInstScalar(Stmt, TI, RegionMap, LTS);
1146     BICopy->eraseFromParent();
1147   }
1148 
1149   // Add counting PHI nodes to all loops in the region that can be used as
1150   // replacement for SCEVs refering to the old loop.
1151   for (BasicBlock *BB : SeenBlocks) {
1152     Loop *L = LI.getLoopFor(BB);
1153     if (L == nullptr || L->getHeader() != BB || !R->contains(L))
1154       continue;
1155 
1156     BasicBlock *BBCopy = BlockMap[BB];
1157     Value *NullVal = Builder.getInt32(0);
1158     PHINode *LoopPHI =
1159         PHINode::Create(Builder.getInt32Ty(), 2, "polly.subregion.iv");
1160     Instruction *LoopPHIInc = BinaryOperator::CreateAdd(
1161         LoopPHI, Builder.getInt32(1), "polly.subregion.iv.inc");
1162     LoopPHI->insertBefore(&BBCopy->front());
1163     LoopPHIInc->insertBefore(BBCopy->getTerminator());
1164 
1165     for (auto *PredBB : make_range(pred_begin(BB), pred_end(BB))) {
1166       if (!R->contains(PredBB))
1167         continue;
1168       if (L->contains(PredBB))
1169         LoopPHI->addIncoming(LoopPHIInc, BlockMap[PredBB]);
1170       else
1171         LoopPHI->addIncoming(NullVal, BlockMap[PredBB]);
1172     }
1173 
1174     for (auto *PredBBCopy : make_range(pred_begin(BBCopy), pred_end(BBCopy)))
1175       if (LoopPHI->getBasicBlockIndex(PredBBCopy) < 0)
1176         LoopPHI->addIncoming(NullVal, PredBBCopy);
1177 
1178     LTS[L] = SE.getUnknown(LoopPHI);
1179   }
1180 
1181   // Continue generating code in the exit block.
1182   Builder.SetInsertPoint(&*ExitBBCopy->getFirstInsertionPt());
1183 
1184   // Write values visible to other statements.
1185   generateScalarStores(Stmt, LTS, ValueMap);
1186   BlockMap.clear();
1187   RegionMaps.clear();
1188   IncompletePHINodeMap.clear();
1189 }
1190 
1191 PHINode *RegionGenerator::buildExitPHI(MemoryAccess *MA, LoopToScevMapT &LTS,
1192                                        ValueMapT &BBMap, Loop *L) {
1193   ScopStmt *Stmt = MA->getStatement();
1194   Region *SubR = Stmt->getRegion();
1195   auto Incoming = MA->getIncoming();
1196 
1197   PollyIRBuilder::InsertPointGuard IPGuard(Builder);
1198   PHINode *OrigPHI = cast<PHINode>(MA->getAccessInstruction());
1199   BasicBlock *NewSubregionExit = Builder.GetInsertBlock();
1200 
1201   // This can happen if the subregion is simplified after the ScopStmts
1202   // have been created; simplification happens as part of CodeGeneration.
1203   if (OrigPHI->getParent() != SubR->getExit()) {
1204     BasicBlock *FormerExit = SubR->getExitingBlock();
1205     if (FormerExit)
1206       NewSubregionExit = BlockMap.lookup(FormerExit);
1207   }
1208 
1209   PHINode *NewPHI = PHINode::Create(OrigPHI->getType(), Incoming.size(),
1210                                     "polly." + OrigPHI->getName(),
1211                                     NewSubregionExit->getFirstNonPHI());
1212 
1213   // Add the incoming values to the PHI.
1214   for (auto &Pair : Incoming) {
1215     BasicBlock *OrigIncomingBlock = Pair.first;
1216     BasicBlock *NewIncomingBlock = BlockMap.lookup(OrigIncomingBlock);
1217     Builder.SetInsertPoint(NewIncomingBlock->getTerminator());
1218     assert(RegionMaps.count(NewIncomingBlock));
1219     ValueMapT *LocalBBMap = &RegionMaps[NewIncomingBlock];
1220 
1221     Value *OrigIncomingValue = Pair.second;
1222     Value *NewIncomingValue =
1223         getNewValue(*Stmt, OrigIncomingValue, *LocalBBMap, LTS, L);
1224     NewPHI->addIncoming(NewIncomingValue, NewIncomingBlock);
1225   }
1226 
1227   return NewPHI;
1228 }
1229 
1230 Value *RegionGenerator::getExitScalar(MemoryAccess *MA, LoopToScevMapT &LTS,
1231                                       ValueMapT &BBMap) {
1232   ScopStmt *Stmt = MA->getStatement();
1233 
1234   // TODO: Add some test cases that ensure this is really the right choice.
1235   Loop *L = LI.getLoopFor(Stmt->getRegion()->getExit());
1236 
1237   if (MA->isAnyPHIKind()) {
1238     auto Incoming = MA->getIncoming();
1239     assert(!Incoming.empty() &&
1240            "PHI WRITEs must have originate from at least one incoming block");
1241 
1242     // If there is only one incoming value, we do not need to create a PHI.
1243     if (Incoming.size() == 1) {
1244       Value *OldVal = Incoming[0].second;
1245       return getNewValue(*Stmt, OldVal, BBMap, LTS, L);
1246     }
1247 
1248     return buildExitPHI(MA, LTS, BBMap, L);
1249   }
1250 
1251   // MK_Value accesses leaving the subregion must dominate the exit block; just
1252   // pass the copied value
1253   Value *OldVal = MA->getAccessValue();
1254   return getNewValue(*Stmt, OldVal, BBMap, LTS, L);
1255 }
1256 
1257 void RegionGenerator::generateScalarStores(ScopStmt &Stmt, LoopToScevMapT &LTS,
1258                                            ValueMapT &BBMap) {
1259   assert(Stmt.getRegion() &&
1260          "Block statements need to use the generateScalarStores() "
1261          "function in the BlockGenerator");
1262 
1263   for (MemoryAccess *MA : Stmt) {
1264     if (MA->isArrayKind() || MA->isRead())
1265       continue;
1266 
1267     Value *NewVal = getExitScalar(MA, LTS, BBMap);
1268     Value *Address = getOrCreateAlloca(*MA);
1269     Builder.CreateStore(NewVal, Address);
1270   }
1271 }
1272 
1273 void RegionGenerator::addOperandToPHI(ScopStmt &Stmt, const PHINode *PHI,
1274                                       PHINode *PHICopy, BasicBlock *IncomingBB,
1275                                       LoopToScevMapT &LTS) {
1276   Region *StmtR = Stmt.getRegion();
1277 
1278   // If the incoming block was not yet copied mark this PHI as incomplete.
1279   // Once the block will be copied the incoming value will be added.
1280   BasicBlock *BBCopy = BlockMap[IncomingBB];
1281   if (!BBCopy) {
1282     assert(StmtR->contains(IncomingBB) &&
1283            "Bad incoming block for PHI in non-affine region");
1284     IncompletePHINodeMap[IncomingBB].push_back(std::make_pair(PHI, PHICopy));
1285     return;
1286   }
1287 
1288   Value *OpCopy = nullptr;
1289   if (StmtR->contains(IncomingBB)) {
1290     assert(RegionMaps.count(BBCopy) &&
1291            "Incoming PHI block did not have a BBMap");
1292     ValueMapT &BBCopyMap = RegionMaps[BBCopy];
1293 
1294     Value *Op = PHI->getIncomingValueForBlock(IncomingBB);
1295 
1296     BasicBlock *OldBlock = Builder.GetInsertBlock();
1297     auto OldIP = Builder.GetInsertPoint();
1298     Builder.SetInsertPoint(BBCopy->getTerminator());
1299     OpCopy = getNewValue(Stmt, Op, BBCopyMap, LTS, getLoopForStmt(Stmt));
1300     Builder.SetInsertPoint(OldBlock, OldIP);
1301   } else {
1302 
1303     if (PHICopy->getBasicBlockIndex(BBCopy) >= 0)
1304       return;
1305 
1306     Value *PHIOpAddr = getOrCreatePHIAlloca(const_cast<PHINode *>(PHI));
1307     OpCopy = new LoadInst(PHIOpAddr, PHIOpAddr->getName() + ".reload",
1308                           BlockMap[IncomingBB]->getTerminator());
1309   }
1310 
1311   assert(OpCopy && "Incoming PHI value was not copied properly");
1312   assert(BBCopy && "Incoming PHI block was not copied properly");
1313   PHICopy->addIncoming(OpCopy, BBCopy);
1314 }
1315 
1316 void RegionGenerator::copyPHIInstruction(ScopStmt &Stmt, PHINode *PHI,
1317                                          ValueMapT &BBMap,
1318                                          LoopToScevMapT &LTS) {
1319   unsigned NumIncoming = PHI->getNumIncomingValues();
1320   PHINode *PHICopy =
1321       Builder.CreatePHI(PHI->getType(), NumIncoming, "polly." + PHI->getName());
1322   PHICopy->moveBefore(PHICopy->getParent()->getFirstNonPHI());
1323   BBMap[PHI] = PHICopy;
1324 
1325   for (unsigned u = 0; u < NumIncoming; u++)
1326     addOperandToPHI(Stmt, PHI, PHICopy, PHI->getIncomingBlock(u), LTS);
1327 }
1328