1 //===--- BlockGenerators.cpp - Generate code for statements -----*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the BlockGenerator and VectorBlockGenerator classes,
11 // which generate sequential code and vectorized code for a polyhedral
12 // statement, respectively.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "polly/CodeGen/BlockGenerators.h"
17 #include "polly/CodeGen/CodeGeneration.h"
18 #include "polly/CodeGen/IslExprBuilder.h"
19 #include "polly/CodeGen/RuntimeDebugBuilder.h"
20 #include "polly/Options.h"
21 #include "polly/ScopInfo.h"
22 #include "polly/Support/GICHelper.h"
23 #include "polly/Support/SCEVValidator.h"
24 #include "polly/Support/ScopHelper.h"
25 #include "polly/Support/VirtualInstruction.h"
26 #include "llvm/Analysis/LoopInfo.h"
27 #include "llvm/Analysis/RegionInfo.h"
28 #include "llvm/Analysis/ScalarEvolution.h"
29 #include "llvm/IR/IntrinsicInst.h"
30 #include "llvm/IR/Module.h"
31 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
32 #include "llvm/Transforms/Utils/Local.h"
33 #include "isl/aff.h"
34 #include "isl/ast.h"
35 #include "isl/ast_build.h"
36 #include "isl/set.h"
37 #include <deque>
38 
39 using namespace llvm;
40 using namespace polly;
41 
42 static cl::opt<bool> Aligned("enable-polly-aligned",
43                              cl::desc("Assumed aligned memory accesses."),
44                              cl::Hidden, cl::init(false), cl::ZeroOrMore,
45                              cl::cat(PollyCategory));
46 
47 bool PollyDebugPrinting;
48 static cl::opt<bool, true> DebugPrintingX(
49     "polly-codegen-add-debug-printing",
50     cl::desc("Add printf calls that show the values loaded/stored."),
51     cl::location(PollyDebugPrinting), cl::Hidden, cl::init(false),
52     cl::ZeroOrMore, cl::cat(PollyCategory));
53 
54 BlockGenerator::BlockGenerator(
55     PollyIRBuilder &B, LoopInfo &LI, ScalarEvolution &SE, DominatorTree &DT,
56     AllocaMapTy &ScalarMap, EscapeUsersAllocaMapTy &EscapeMap,
57     ValueMapT &GlobalMap, IslExprBuilder *ExprBuilder, BasicBlock *StartBlock)
58     : Builder(B), LI(LI), SE(SE), ExprBuilder(ExprBuilder), DT(DT),
59       EntryBB(nullptr), ScalarMap(ScalarMap), EscapeMap(EscapeMap),
60       GlobalMap(GlobalMap), StartBlock(StartBlock) {}
61 
62 Value *BlockGenerator::trySynthesizeNewValue(ScopStmt &Stmt, Value *Old,
63                                              ValueMapT &BBMap,
64                                              LoopToScevMapT &LTS,
65                                              Loop *L) const {
66   if (!SE.isSCEVable(Old->getType()))
67     return nullptr;
68 
69   const SCEV *Scev = SE.getSCEVAtScope(Old, L);
70   if (!Scev)
71     return nullptr;
72 
73   if (isa<SCEVCouldNotCompute>(Scev))
74     return nullptr;
75 
76   const SCEV *NewScev = SCEVLoopAddRecRewriter::rewrite(Scev, LTS, SE);
77   ValueMapT VTV;
78   VTV.insert(BBMap.begin(), BBMap.end());
79   VTV.insert(GlobalMap.begin(), GlobalMap.end());
80 
81   Scop &S = *Stmt.getParent();
82   const DataLayout &DL = S.getFunction().getParent()->getDataLayout();
83   auto IP = Builder.GetInsertPoint();
84 
85   assert(IP != Builder.GetInsertBlock()->end() &&
86          "Only instructions can be insert points for SCEVExpander");
87   Value *Expanded =
88       expandCodeFor(S, SE, DL, "polly", NewScev, Old->getType(), &*IP, &VTV,
89                     StartBlock->getSinglePredecessor());
90 
91   BBMap[Old] = Expanded;
92   return Expanded;
93 }
94 
95 Value *BlockGenerator::getNewValue(ScopStmt &Stmt, Value *Old, ValueMapT &BBMap,
96                                    LoopToScevMapT &LTS, Loop *L) const {
97 
98   auto lookupGlobally = [this](Value *Old) -> Value * {
99     Value *New = GlobalMap.lookup(Old);
100     if (!New)
101       return nullptr;
102 
103     // Required by:
104     // * Isl/CodeGen/OpenMP/invariant_base_pointer_preloaded.ll
105     // * Isl/CodeGen/OpenMP/invariant_base_pointer_preloaded_different_bb.ll
106     // * Isl/CodeGen/OpenMP/invariant_base_pointer_preloaded_pass_only_needed.ll
107     // * Isl/CodeGen/OpenMP/invariant_base_pointers_preloaded.ll
108     // * Isl/CodeGen/OpenMP/loop-body-references-outer-values-3.ll
109     // * Isl/CodeGen/OpenMP/single_loop_with_loop_invariant_baseptr.ll
110     // GlobalMap should be a mapping from (value in original SCoP) to (copied
111     // value in generated SCoP), without intermediate mappings, which might
112     // easily require transitiveness as well.
113     if (Value *NewRemapped = GlobalMap.lookup(New))
114       New = NewRemapped;
115 
116     // No test case for this code.
117     if (Old->getType()->getScalarSizeInBits() <
118         New->getType()->getScalarSizeInBits())
119       New = Builder.CreateTruncOrBitCast(New, Old->getType());
120 
121     return New;
122   };
123 
124   Value *New = nullptr;
125   auto VUse = VirtualUse::create(&Stmt, L, Old, true);
126   switch (VUse.getKind()) {
127   case VirtualUse::Block:
128     // BasicBlock are constants, but the BlockGenerator copies them.
129     New = BBMap.lookup(Old);
130     break;
131 
132   case VirtualUse::Constant:
133     // Used by:
134     // * Isl/CodeGen/OpenMP/reference-argument-from-non-affine-region.ll
135     // Constants should not be redefined. In this case, the GlobalMap just
136     // contains a mapping to the same constant, which is unnecessary, but
137     // harmless.
138     if ((New = lookupGlobally(Old)))
139       break;
140 
141     assert(!BBMap.count(Old));
142     New = Old;
143     break;
144 
145   case VirtualUse::ReadOnly:
146     assert(!GlobalMap.count(Old));
147 
148     // Required for:
149     // * Isl/CodeGen/MemAccess/create_arrays.ll
150     // * Isl/CodeGen/read-only-scalars.ll
151     // * ScheduleOptimizer/pattern-matching-based-opts_10.ll
152     // For some reason these reload a read-only value. The reloaded value ends
153     // up in BBMap, buts its value should be identical.
154     //
155     // Required for:
156     // * Isl/CodeGen/OpenMP/single_loop_with_param.ll
157     // The parallel subfunctions need to reference the read-only value from the
158     // parent function, this is done by reloading them locally.
159     if ((New = BBMap.lookup(Old)))
160       break;
161 
162     New = Old;
163     break;
164 
165   case VirtualUse::Synthesizable:
166     // Used by:
167     // * Isl/CodeGen/OpenMP/loop-body-references-outer-values-3.ll
168     // * Isl/CodeGen/OpenMP/recomputed-srem.ll
169     // * Isl/CodeGen/OpenMP/reference-other-bb.ll
170     // * Isl/CodeGen/OpenMP/two-parallel-loops-reference-outer-indvar.ll
171     // For some reason synthesizable values end up in GlobalMap. Their values
172     // are the same as trySynthesizeNewValue would return. The legacy
173     // implementation prioritized GlobalMap, so this is what we do here as well.
174     // Ideally, synthesizable values should not end up in GlobalMap.
175     if ((New = lookupGlobally(Old)))
176       break;
177 
178     // Required for:
179     // * Isl/CodeGen/RuntimeDebugBuilder/combine_different_values.ll
180     // * Isl/CodeGen/getNumberOfIterations.ll
181     // * Isl/CodeGen/non_affine_float_compare.ll
182     // * ScheduleOptimizer/pattern-matching-based-opts_10.ll
183     // Ideally, synthesizable values are synthesized by trySynthesizeNewValue,
184     // not precomputed (SCEVExpander has its own caching mechanism).
185     // These tests fail without this, but I think trySynthesizeNewValue would
186     // just re-synthesize the same instructions.
187     if ((New = BBMap.lookup(Old)))
188       break;
189 
190     New = trySynthesizeNewValue(Stmt, Old, BBMap, LTS, L);
191     break;
192 
193   case VirtualUse::Hoisted:
194     // TODO: Hoisted invariant loads should be found in GlobalMap only, but not
195     // redefined locally (which will be ignored anyway). That is, the following
196     // assertion should apply: assert(!BBMap.count(Old))
197 
198     New = lookupGlobally(Old);
199     break;
200 
201   case VirtualUse::Intra:
202   case VirtualUse::Inter:
203     assert(!GlobalMap.count(Old) &&
204            "Intra and inter-stmt values are never global");
205     New = BBMap.lookup(Old);
206     break;
207   }
208   assert(New && "Unexpected scalar dependence in region!");
209   return New;
210 }
211 
212 void BlockGenerator::copyInstScalar(ScopStmt &Stmt, Instruction *Inst,
213                                     ValueMapT &BBMap, LoopToScevMapT &LTS) {
214   // We do not generate debug intrinsics as we did not investigate how to
215   // copy them correctly. At the current state, they just crash the code
216   // generation as the meta-data operands are not correctly copied.
217   if (isa<DbgInfoIntrinsic>(Inst))
218     return;
219 
220   Instruction *NewInst = Inst->clone();
221 
222   // Replace old operands with the new ones.
223   for (Value *OldOperand : Inst->operands()) {
224     Value *NewOperand =
225         getNewValue(Stmt, OldOperand, BBMap, LTS, getLoopForStmt(Stmt));
226 
227     if (!NewOperand) {
228       assert(!isa<StoreInst>(NewInst) &&
229              "Store instructions are always needed!");
230       NewInst->deleteValue();
231       return;
232     }
233 
234     NewInst->replaceUsesOfWith(OldOperand, NewOperand);
235   }
236 
237   Builder.Insert(NewInst);
238   BBMap[Inst] = NewInst;
239 
240   if (!NewInst->getType()->isVoidTy())
241     NewInst->setName("p_" + Inst->getName());
242 }
243 
244 Value *
245 BlockGenerator::generateLocationAccessed(ScopStmt &Stmt, MemAccInst Inst,
246                                          ValueMapT &BBMap, LoopToScevMapT &LTS,
247                                          isl_id_to_ast_expr *NewAccesses) {
248   const MemoryAccess &MA = Stmt.getArrayAccessFor(Inst);
249   return generateLocationAccessed(
250       Stmt, getLoopForStmt(Stmt),
251       Inst.isNull() ? nullptr : Inst.getPointerOperand(), BBMap, LTS,
252       NewAccesses, MA.getId().release(), MA.getAccessValue()->getType());
253 }
254 
255 Value *BlockGenerator::generateLocationAccessed(
256     ScopStmt &Stmt, Loop *L, Value *Pointer, ValueMapT &BBMap,
257     LoopToScevMapT &LTS, isl_id_to_ast_expr *NewAccesses, __isl_take isl_id *Id,
258     Type *ExpectedType) {
259   isl_ast_expr *AccessExpr = isl_id_to_ast_expr_get(NewAccesses, Id);
260 
261   if (AccessExpr) {
262     AccessExpr = isl_ast_expr_address_of(AccessExpr);
263     auto Address = ExprBuilder->create(AccessExpr);
264 
265     // Cast the address of this memory access to a pointer type that has the
266     // same element type as the original access, but uses the address space of
267     // the newly generated pointer.
268     auto OldPtrTy = ExpectedType->getPointerTo();
269     auto NewPtrTy = Address->getType();
270     OldPtrTy = PointerType::get(OldPtrTy->getElementType(),
271                                 NewPtrTy->getPointerAddressSpace());
272 
273     if (OldPtrTy != NewPtrTy)
274       Address = Builder.CreateBitOrPointerCast(Address, OldPtrTy);
275     return Address;
276   }
277   assert(
278       Pointer &&
279       "If expression was not generated, must use the original pointer value");
280   return getNewValue(Stmt, Pointer, BBMap, LTS, L);
281 }
282 
283 Value *
284 BlockGenerator::getImplicitAddress(MemoryAccess &Access, Loop *L,
285                                    LoopToScevMapT &LTS, ValueMapT &BBMap,
286                                    __isl_keep isl_id_to_ast_expr *NewAccesses) {
287   if (Access.isLatestArrayKind())
288     return generateLocationAccessed(*Access.getStatement(), L, nullptr, BBMap,
289                                     LTS, NewAccesses, Access.getId().release(),
290                                     Access.getAccessValue()->getType());
291 
292   return getOrCreateAlloca(Access);
293 }
294 
295 Loop *BlockGenerator::getLoopForStmt(const ScopStmt &Stmt) const {
296   auto *StmtBB = Stmt.getEntryBlock();
297   return LI.getLoopFor(StmtBB);
298 }
299 
300 Value *BlockGenerator::generateArrayLoad(ScopStmt &Stmt, LoadInst *Load,
301                                          ValueMapT &BBMap, LoopToScevMapT &LTS,
302                                          isl_id_to_ast_expr *NewAccesses) {
303   if (Value *PreloadLoad = GlobalMap.lookup(Load))
304     return PreloadLoad;
305 
306   Value *NewPointer =
307       generateLocationAccessed(Stmt, Load, BBMap, LTS, NewAccesses);
308   Value *ScalarLoad = Builder.CreateAlignedLoad(
309       NewPointer, Load->getAlignment(), Load->getName() + "_p_scalar_");
310 
311   if (PollyDebugPrinting)
312     RuntimeDebugBuilder::createCPUPrinter(Builder, "Load from ", NewPointer,
313                                           ": ", ScalarLoad, "\n");
314 
315   return ScalarLoad;
316 }
317 
318 void BlockGenerator::generateArrayStore(ScopStmt &Stmt, StoreInst *Store,
319                                         ValueMapT &BBMap, LoopToScevMapT &LTS,
320                                         isl_id_to_ast_expr *NewAccesses) {
321   MemoryAccess &MA = Stmt.getArrayAccessFor(Store);
322   isl::set AccDom = MA.getAccessRelation().domain();
323   std::string Subject = MA.getId().get_name();
324 
325   generateConditionalExecution(Stmt, AccDom, Subject.c_str(), [&, this]() {
326     Value *NewPointer =
327         generateLocationAccessed(Stmt, Store, BBMap, LTS, NewAccesses);
328     Value *ValueOperand = getNewValue(Stmt, Store->getValueOperand(), BBMap,
329                                       LTS, getLoopForStmt(Stmt));
330 
331     if (PollyDebugPrinting)
332       RuntimeDebugBuilder::createCPUPrinter(Builder, "Store to  ", NewPointer,
333                                             ": ", ValueOperand, "\n");
334 
335     Builder.CreateAlignedStore(ValueOperand, NewPointer, Store->getAlignment());
336   });
337 }
338 
339 bool BlockGenerator::canSyntheziseInStmt(ScopStmt &Stmt, Instruction *Inst) {
340   Loop *L = getLoopForStmt(Stmt);
341   return (Stmt.isBlockStmt() || !Stmt.getRegion()->contains(L)) &&
342          canSynthesize(Inst, *Stmt.getParent(), &SE, L);
343 }
344 
345 void BlockGenerator::copyInstruction(ScopStmt &Stmt, Instruction *Inst,
346                                      ValueMapT &BBMap, LoopToScevMapT &LTS,
347                                      isl_id_to_ast_expr *NewAccesses) {
348   // Terminator instructions control the control flow. They are explicitly
349   // expressed in the clast and do not need to be copied.
350   if (Inst->isTerminator())
351     return;
352 
353   // Synthesizable statements will be generated on-demand.
354   if (canSyntheziseInStmt(Stmt, Inst))
355     return;
356 
357   if (auto *Load = dyn_cast<LoadInst>(Inst)) {
358     Value *NewLoad = generateArrayLoad(Stmt, Load, BBMap, LTS, NewAccesses);
359     // Compute NewLoad before its insertion in BBMap to make the insertion
360     // deterministic.
361     BBMap[Load] = NewLoad;
362     return;
363   }
364 
365   if (auto *Store = dyn_cast<StoreInst>(Inst)) {
366     // Identified as redundant by -polly-simplify.
367     if (!Stmt.getArrayAccessOrNULLFor(Store))
368       return;
369 
370     generateArrayStore(Stmt, Store, BBMap, LTS, NewAccesses);
371     return;
372   }
373 
374   if (auto *PHI = dyn_cast<PHINode>(Inst)) {
375     copyPHIInstruction(Stmt, PHI, BBMap, LTS);
376     return;
377   }
378 
379   // Skip some special intrinsics for which we do not adjust the semantics to
380   // the new schedule. All others are handled like every other instruction.
381   if (isIgnoredIntrinsic(Inst))
382     return;
383 
384   copyInstScalar(Stmt, Inst, BBMap, LTS);
385 }
386 
387 void BlockGenerator::removeDeadInstructions(BasicBlock *BB, ValueMapT &BBMap) {
388   auto NewBB = Builder.GetInsertBlock();
389   for (auto I = NewBB->rbegin(); I != NewBB->rend(); I++) {
390     Instruction *NewInst = &*I;
391 
392     if (!isInstructionTriviallyDead(NewInst))
393       continue;
394 
395     for (auto Pair : BBMap)
396       if (Pair.second == NewInst) {
397         BBMap.erase(Pair.first);
398       }
399 
400     NewInst->eraseFromParent();
401     I = NewBB->rbegin();
402   }
403 }
404 
405 void BlockGenerator::copyStmt(ScopStmt &Stmt, LoopToScevMapT &LTS,
406                               isl_id_to_ast_expr *NewAccesses) {
407   assert(Stmt.isBlockStmt() &&
408          "Only block statements can be copied by the block generator");
409 
410   ValueMapT BBMap;
411 
412   BasicBlock *BB = Stmt.getBasicBlock();
413   copyBB(Stmt, BB, BBMap, LTS, NewAccesses);
414   removeDeadInstructions(BB, BBMap);
415 }
416 
417 BasicBlock *BlockGenerator::splitBB(BasicBlock *BB) {
418   BasicBlock *CopyBB = SplitBlock(Builder.GetInsertBlock(),
419                                   &*Builder.GetInsertPoint(), &DT, &LI);
420   CopyBB->setName("polly.stmt." + BB->getName());
421   return CopyBB;
422 }
423 
424 BasicBlock *BlockGenerator::copyBB(ScopStmt &Stmt, BasicBlock *BB,
425                                    ValueMapT &BBMap, LoopToScevMapT &LTS,
426                                    isl_id_to_ast_expr *NewAccesses) {
427   BasicBlock *CopyBB = splitBB(BB);
428   Builder.SetInsertPoint(&CopyBB->front());
429   generateScalarLoads(Stmt, LTS, BBMap, NewAccesses);
430 
431   copyBB(Stmt, BB, CopyBB, BBMap, LTS, NewAccesses);
432 
433   // After a basic block was copied store all scalars that escape this block in
434   // their alloca.
435   generateScalarStores(Stmt, LTS, BBMap, NewAccesses);
436   return CopyBB;
437 }
438 
439 void BlockGenerator::copyBB(ScopStmt &Stmt, BasicBlock *BB, BasicBlock *CopyBB,
440                             ValueMapT &BBMap, LoopToScevMapT &LTS,
441                             isl_id_to_ast_expr *NewAccesses) {
442   EntryBB = &CopyBB->getParent()->getEntryBlock();
443 
444   if (Stmt.isBlockStmt())
445     for (Instruction *Inst : Stmt.getInstructions())
446       copyInstruction(Stmt, Inst, BBMap, LTS, NewAccesses);
447   else
448     for (Instruction &Inst : *BB)
449       copyInstruction(Stmt, &Inst, BBMap, LTS, NewAccesses);
450 }
451 
452 Value *BlockGenerator::getOrCreateAlloca(const MemoryAccess &Access) {
453   assert(!Access.isLatestArrayKind() && "Trying to get alloca for array kind");
454 
455   return getOrCreateAlloca(Access.getLatestScopArrayInfo());
456 }
457 
458 Value *BlockGenerator::getOrCreateAlloca(const ScopArrayInfo *Array) {
459   assert(!Array->isArrayKind() && "Trying to get alloca for array kind");
460 
461   auto &Addr = ScalarMap[Array];
462 
463   if (Addr) {
464     // Allow allocas to be (temporarily) redirected once by adding a new
465     // old-alloca-addr to new-addr mapping to GlobalMap. This functionality
466     // is used for example by the OpenMP code generation where a first use
467     // of a scalar while still in the host code allocates a normal alloca with
468     // getOrCreateAlloca. When the values of this scalar are accessed during
469     // the generation of the parallel subfunction, these values are copied over
470     // to the parallel subfunction and each request for a scalar alloca slot
471     // must be forwarded to the temporary in-subfunction slot. This mapping is
472     // removed when the subfunction has been generated and again normal host
473     // code is generated. Due to the following reasons it is not possible to
474     // perform the GlobalMap lookup right after creating the alloca below, but
475     // instead we need to check GlobalMap at each call to getOrCreateAlloca:
476     //
477     //   1) GlobalMap may be changed multiple times (for each parallel loop),
478     //   2) The temporary mapping is commonly only known after the initial
479     //      alloca has already been generated, and
480     //   3) The original alloca value must be restored after leaving the
481     //      sub-function.
482     if (Value *NewAddr = GlobalMap.lookup(&*Addr))
483       return NewAddr;
484     return Addr;
485   }
486 
487   Type *Ty = Array->getElementType();
488   Value *ScalarBase = Array->getBasePtr();
489   std::string NameExt;
490   if (Array->isPHIKind())
491     NameExt = ".phiops";
492   else
493     NameExt = ".s2a";
494 
495   const DataLayout &DL = Builder.GetInsertBlock()->getModule()->getDataLayout();
496 
497   Addr = new AllocaInst(Ty, DL.getAllocaAddrSpace(),
498                         ScalarBase->getName() + NameExt);
499   EntryBB = &Builder.GetInsertBlock()->getParent()->getEntryBlock();
500   Addr->insertBefore(&*EntryBB->getFirstInsertionPt());
501 
502   return Addr;
503 }
504 
505 void BlockGenerator::handleOutsideUsers(const Scop &S, ScopArrayInfo *Array) {
506   Instruction *Inst = cast<Instruction>(Array->getBasePtr());
507 
508   // If there are escape users we get the alloca for this instruction and put it
509   // in the EscapeMap for later finalization. Lastly, if the instruction was
510   // copied multiple times we already did this and can exit.
511   if (EscapeMap.count(Inst))
512     return;
513 
514   EscapeUserVectorTy EscapeUsers;
515   for (User *U : Inst->users()) {
516 
517     // Non-instruction user will never escape.
518     Instruction *UI = dyn_cast<Instruction>(U);
519     if (!UI)
520       continue;
521 
522     if (S.contains(UI))
523       continue;
524 
525     EscapeUsers.push_back(UI);
526   }
527 
528   // Exit if no escape uses were found.
529   if (EscapeUsers.empty())
530     return;
531 
532   // Get or create an escape alloca for this instruction.
533   auto *ScalarAddr = getOrCreateAlloca(Array);
534 
535   // Remember that this instruction has escape uses and the escape alloca.
536   EscapeMap[Inst] = std::make_pair(ScalarAddr, std::move(EscapeUsers));
537 }
538 
539 void BlockGenerator::generateScalarLoads(
540     ScopStmt &Stmt, LoopToScevMapT &LTS, ValueMapT &BBMap,
541     __isl_keep isl_id_to_ast_expr *NewAccesses) {
542   for (MemoryAccess *MA : Stmt) {
543     if (MA->isOriginalArrayKind() || MA->isWrite())
544       continue;
545 
546 #ifndef NDEBUG
547     auto *StmtDom = Stmt.getDomain();
548     auto *AccDom = isl_map_domain(MA->getAccessRelation().release());
549     assert(isl_set_is_subset(StmtDom, AccDom) &&
550            "Scalar must be loaded in all statement instances");
551     isl_set_free(StmtDom);
552     isl_set_free(AccDom);
553 #endif
554 
555     auto *Address =
556         getImplicitAddress(*MA, getLoopForStmt(Stmt), LTS, BBMap, NewAccesses);
557     assert((!isa<Instruction>(Address) ||
558             DT.dominates(cast<Instruction>(Address)->getParent(),
559                          Builder.GetInsertBlock())) &&
560            "Domination violation");
561     BBMap[MA->getAccessValue()] =
562         Builder.CreateLoad(Address, Address->getName() + ".reload");
563   }
564 }
565 
566 Value *BlockGenerator::buildContainsCondition(ScopStmt &Stmt,
567                                               const isl::set &Subdomain) {
568   isl::ast_build AstBuild = give(isl_ast_build_copy(Stmt.getAstBuild()));
569   isl::set Domain = give(Stmt.getDomain());
570 
571   isl::union_map USchedule = AstBuild.get_schedule();
572   USchedule = USchedule.intersect_domain(Domain);
573 
574   assert(!USchedule.is_empty());
575   isl::map Schedule = isl::map::from_union_map(USchedule);
576 
577   isl::set ScheduledDomain = Schedule.range();
578   isl::set ScheduledSet = Subdomain.apply(Schedule);
579 
580   isl::ast_build RestrictedBuild = AstBuild.restrict(ScheduledDomain);
581 
582   isl::ast_expr IsInSet = RestrictedBuild.expr_from(ScheduledSet);
583   Value *IsInSetExpr = ExprBuilder->create(IsInSet.copy());
584   IsInSetExpr = Builder.CreateICmpNE(
585       IsInSetExpr, ConstantInt::get(IsInSetExpr->getType(), 0));
586 
587   return IsInSetExpr;
588 }
589 
590 void BlockGenerator::generateConditionalExecution(
591     ScopStmt &Stmt, const isl::set &Subdomain, StringRef Subject,
592     const std::function<void()> &GenThenFunc) {
593   isl::set StmtDom = give(Stmt.getDomain());
594 
595   // Don't call GenThenFunc if it is never executed. An ast index expression
596   // might not be defined in this case.
597   if (Subdomain.is_empty())
598     return;
599 
600   // If the condition is a tautology, don't generate a condition around the
601   // code.
602   bool IsPartialWrite =
603       !StmtDom.intersect_params(give(Stmt.getParent()->getContext()))
604            .is_subset(Subdomain);
605   if (!IsPartialWrite) {
606     GenThenFunc();
607     return;
608   }
609 
610   // Generate the condition.
611   Value *Cond = buildContainsCondition(Stmt, Subdomain);
612   BasicBlock *HeadBlock = Builder.GetInsertBlock();
613   StringRef BlockName = HeadBlock->getName();
614 
615   // Generate the conditional block.
616   SplitBlockAndInsertIfThen(Cond, &*Builder.GetInsertPoint(), false, nullptr,
617                             &DT, &LI);
618   BranchInst *Branch = cast<BranchInst>(HeadBlock->getTerminator());
619   BasicBlock *ThenBlock = Branch->getSuccessor(0);
620   BasicBlock *TailBlock = Branch->getSuccessor(1);
621 
622   // Assign descriptive names.
623   if (auto *CondInst = dyn_cast<Instruction>(Cond))
624     CondInst->setName("polly." + Subject + ".cond");
625   ThenBlock->setName(BlockName + "." + Subject + ".partial");
626   TailBlock->setName(BlockName + ".cont");
627 
628   // Put the client code into the conditional block and continue in the merge
629   // block afterwards.
630   Builder.SetInsertPoint(ThenBlock, ThenBlock->getFirstInsertionPt());
631   GenThenFunc();
632   Builder.SetInsertPoint(TailBlock, TailBlock->getFirstInsertionPt());
633 }
634 
635 void BlockGenerator::generateScalarStores(
636     ScopStmt &Stmt, LoopToScevMapT &LTS, ValueMapT &BBMap,
637     __isl_keep isl_id_to_ast_expr *NewAccesses) {
638   Loop *L = LI.getLoopFor(Stmt.getBasicBlock());
639 
640   assert(Stmt.isBlockStmt() &&
641          "Region statements need to use the generateScalarStores() function in "
642          "the RegionGenerator");
643 
644   for (MemoryAccess *MA : Stmt) {
645     if (MA->isOriginalArrayKind() || MA->isRead())
646       continue;
647 
648     isl::set AccDom = MA->getAccessRelation().domain();
649     std::string Subject = MA->getId().get_name();
650 
651     generateConditionalExecution(
652         Stmt, AccDom, Subject.c_str(), [&, this, MA]() {
653           Value *Val = MA->getAccessValue();
654           if (MA->isAnyPHIKind()) {
655             assert(MA->getIncoming().size() >= 1 &&
656                    "Block statements have exactly one exiting block, or "
657                    "multiple but "
658                    "with same incoming block and value");
659             assert(std::all_of(MA->getIncoming().begin(),
660                                MA->getIncoming().end(),
661                                [&](std::pair<BasicBlock *, Value *> p) -> bool {
662                                  return p.first == Stmt.getBasicBlock();
663                                }) &&
664                    "Incoming block must be statement's block");
665             Val = MA->getIncoming()[0].second;
666           }
667           auto Address = getImplicitAddress(*MA, getLoopForStmt(Stmt), LTS,
668                                             BBMap, NewAccesses);
669 
670           Val = getNewValue(Stmt, Val, BBMap, LTS, L);
671           assert((!isa<Instruction>(Val) ||
672                   DT.dominates(cast<Instruction>(Val)->getParent(),
673                                Builder.GetInsertBlock())) &&
674                  "Domination violation");
675           assert((!isa<Instruction>(Address) ||
676                   DT.dominates(cast<Instruction>(Address)->getParent(),
677                                Builder.GetInsertBlock())) &&
678                  "Domination violation");
679           Builder.CreateStore(Val, Address);
680 
681         });
682   }
683 }
684 
685 void BlockGenerator::createScalarInitialization(Scop &S) {
686   BasicBlock *ExitBB = S.getExit();
687   BasicBlock *PreEntryBB = S.getEnteringBlock();
688 
689   Builder.SetInsertPoint(&*StartBlock->begin());
690 
691   for (auto &Array : S.arrays()) {
692     if (Array->getNumberOfDimensions() != 0)
693       continue;
694     if (Array->isPHIKind()) {
695       // For PHI nodes, the only values we need to store are the ones that
696       // reach the PHI node from outside the region. In general there should
697       // only be one such incoming edge and this edge should enter through
698       // 'PreEntryBB'.
699       auto PHI = cast<PHINode>(Array->getBasePtr());
700 
701       for (auto BI = PHI->block_begin(), BE = PHI->block_end(); BI != BE; BI++)
702         if (!S.contains(*BI) && *BI != PreEntryBB)
703           llvm_unreachable("Incoming edges from outside the scop should always "
704                            "come from PreEntryBB");
705 
706       int Idx = PHI->getBasicBlockIndex(PreEntryBB);
707       if (Idx < 0)
708         continue;
709 
710       Value *ScalarValue = PHI->getIncomingValue(Idx);
711 
712       Builder.CreateStore(ScalarValue, getOrCreateAlloca(Array));
713       continue;
714     }
715 
716     auto *Inst = dyn_cast<Instruction>(Array->getBasePtr());
717 
718     if (Inst && S.contains(Inst))
719       continue;
720 
721     // PHI nodes that are not marked as such in their SAI object are either exit
722     // PHI nodes we model as common scalars but without initialization, or
723     // incoming phi nodes that need to be initialized. Check if the first is the
724     // case for Inst and do not create and initialize memory if so.
725     if (auto *PHI = dyn_cast_or_null<PHINode>(Inst))
726       if (!S.hasSingleExitEdge() && PHI->getBasicBlockIndex(ExitBB) >= 0)
727         continue;
728 
729     Builder.CreateStore(Array->getBasePtr(), getOrCreateAlloca(Array));
730   }
731 }
732 
733 void BlockGenerator::createScalarFinalization(Scop &S) {
734   // The exit block of the __unoptimized__ region.
735   BasicBlock *ExitBB = S.getExitingBlock();
736   // The merge block __just after__ the region and the optimized region.
737   BasicBlock *MergeBB = S.getExit();
738 
739   // The exit block of the __optimized__ region.
740   BasicBlock *OptExitBB = *(pred_begin(MergeBB));
741   if (OptExitBB == ExitBB)
742     OptExitBB = *(++pred_begin(MergeBB));
743 
744   Builder.SetInsertPoint(OptExitBB->getTerminator());
745   for (const auto &EscapeMapping : EscapeMap) {
746     // Extract the escaping instruction and the escaping users as well as the
747     // alloca the instruction was demoted to.
748     Instruction *EscapeInst = EscapeMapping.first;
749     const auto &EscapeMappingValue = EscapeMapping.second;
750     const EscapeUserVectorTy &EscapeUsers = EscapeMappingValue.second;
751     Value *ScalarAddr = EscapeMappingValue.first;
752 
753     // Reload the demoted instruction in the optimized version of the SCoP.
754     Value *EscapeInstReload =
755         Builder.CreateLoad(ScalarAddr, EscapeInst->getName() + ".final_reload");
756     EscapeInstReload =
757         Builder.CreateBitOrPointerCast(EscapeInstReload, EscapeInst->getType());
758 
759     // Create the merge PHI that merges the optimized and unoptimized version.
760     PHINode *MergePHI = PHINode::Create(EscapeInst->getType(), 2,
761                                         EscapeInst->getName() + ".merge");
762     MergePHI->insertBefore(&*MergeBB->getFirstInsertionPt());
763 
764     // Add the respective values to the merge PHI.
765     MergePHI->addIncoming(EscapeInstReload, OptExitBB);
766     MergePHI->addIncoming(EscapeInst, ExitBB);
767 
768     // The information of scalar evolution about the escaping instruction needs
769     // to be revoked so the new merged instruction will be used.
770     if (SE.isSCEVable(EscapeInst->getType()))
771       SE.forgetValue(EscapeInst);
772 
773     // Replace all uses of the demoted instruction with the merge PHI.
774     for (Instruction *EUser : EscapeUsers)
775       EUser->replaceUsesOfWith(EscapeInst, MergePHI);
776   }
777 }
778 
779 void BlockGenerator::findOutsideUsers(Scop &S) {
780   for (auto &Array : S.arrays()) {
781 
782     if (Array->getNumberOfDimensions() != 0)
783       continue;
784 
785     if (Array->isPHIKind())
786       continue;
787 
788     auto *Inst = dyn_cast<Instruction>(Array->getBasePtr());
789 
790     if (!Inst)
791       continue;
792 
793     // Scop invariant hoisting moves some of the base pointers out of the scop.
794     // We can ignore these, as the invariant load hoisting already registers the
795     // relevant outside users.
796     if (!S.contains(Inst))
797       continue;
798 
799     handleOutsideUsers(S, Array);
800   }
801 }
802 
803 void BlockGenerator::createExitPHINodeMerges(Scop &S) {
804   if (S.hasSingleExitEdge())
805     return;
806 
807   auto *ExitBB = S.getExitingBlock();
808   auto *MergeBB = S.getExit();
809   auto *AfterMergeBB = MergeBB->getSingleSuccessor();
810   BasicBlock *OptExitBB = *(pred_begin(MergeBB));
811   if (OptExitBB == ExitBB)
812     OptExitBB = *(++pred_begin(MergeBB));
813 
814   Builder.SetInsertPoint(OptExitBB->getTerminator());
815 
816   for (auto &SAI : S.arrays()) {
817     auto *Val = SAI->getBasePtr();
818 
819     // Only Value-like scalars need a merge PHI. Exit block PHIs receive either
820     // the original PHI's value or the reloaded incoming values from the
821     // generated code. An llvm::Value is merged between the original code's
822     // value or the generated one.
823     if (!SAI->isExitPHIKind())
824       continue;
825 
826     PHINode *PHI = dyn_cast<PHINode>(Val);
827     if (!PHI)
828       continue;
829 
830     if (PHI->getParent() != AfterMergeBB)
831       continue;
832 
833     std::string Name = PHI->getName();
834     Value *ScalarAddr = getOrCreateAlloca(SAI);
835     Value *Reload = Builder.CreateLoad(ScalarAddr, Name + ".ph.final_reload");
836     Reload = Builder.CreateBitOrPointerCast(Reload, PHI->getType());
837     Value *OriginalValue = PHI->getIncomingValueForBlock(MergeBB);
838     assert((!isa<Instruction>(OriginalValue) ||
839             cast<Instruction>(OriginalValue)->getParent() != MergeBB) &&
840            "Original value must no be one we just generated.");
841     auto *MergePHI = PHINode::Create(PHI->getType(), 2, Name + ".ph.merge");
842     MergePHI->insertBefore(&*MergeBB->getFirstInsertionPt());
843     MergePHI->addIncoming(Reload, OptExitBB);
844     MergePHI->addIncoming(OriginalValue, ExitBB);
845     int Idx = PHI->getBasicBlockIndex(MergeBB);
846     PHI->setIncomingValue(Idx, MergePHI);
847   }
848 }
849 
850 void BlockGenerator::invalidateScalarEvolution(Scop &S) {
851   for (auto &Stmt : S)
852     if (Stmt.isCopyStmt())
853       continue;
854     else if (Stmt.isBlockStmt())
855       for (auto &Inst : *Stmt.getBasicBlock())
856         SE.forgetValue(&Inst);
857     else if (Stmt.isRegionStmt())
858       for (auto *BB : Stmt.getRegion()->blocks())
859         for (auto &Inst : *BB)
860           SE.forgetValue(&Inst);
861     else
862       llvm_unreachable("Unexpected statement type found");
863 
864   // Invalidate SCEV of loops surrounding the EscapeUsers.
865   for (const auto &EscapeMapping : EscapeMap) {
866     const EscapeUserVectorTy &EscapeUsers = EscapeMapping.second.second;
867     for (Instruction *EUser : EscapeUsers) {
868       if (Loop *L = LI.getLoopFor(EUser->getParent()))
869         while (L) {
870           SE.forgetLoop(L);
871           L = L->getParentLoop();
872         }
873     }
874   }
875 }
876 
877 void BlockGenerator::finalizeSCoP(Scop &S) {
878   findOutsideUsers(S);
879   createScalarInitialization(S);
880   createExitPHINodeMerges(S);
881   createScalarFinalization(S);
882   invalidateScalarEvolution(S);
883 }
884 
885 VectorBlockGenerator::VectorBlockGenerator(BlockGenerator &BlockGen,
886                                            std::vector<LoopToScevMapT> &VLTS,
887                                            isl_map *Schedule)
888     : BlockGenerator(BlockGen), VLTS(VLTS), Schedule(Schedule) {
889   assert(Schedule && "No statement domain provided");
890 }
891 
892 Value *VectorBlockGenerator::getVectorValue(ScopStmt &Stmt, Value *Old,
893                                             ValueMapT &VectorMap,
894                                             VectorValueMapT &ScalarMaps,
895                                             Loop *L) {
896   if (Value *NewValue = VectorMap.lookup(Old))
897     return NewValue;
898 
899   int Width = getVectorWidth();
900 
901   Value *Vector = UndefValue::get(VectorType::get(Old->getType(), Width));
902 
903   for (int Lane = 0; Lane < Width; Lane++)
904     Vector = Builder.CreateInsertElement(
905         Vector, getNewValue(Stmt, Old, ScalarMaps[Lane], VLTS[Lane], L),
906         Builder.getInt32(Lane));
907 
908   VectorMap[Old] = Vector;
909 
910   return Vector;
911 }
912 
913 Type *VectorBlockGenerator::getVectorPtrTy(const Value *Val, int Width) {
914   PointerType *PointerTy = dyn_cast<PointerType>(Val->getType());
915   assert(PointerTy && "PointerType expected");
916 
917   Type *ScalarType = PointerTy->getElementType();
918   VectorType *VectorType = VectorType::get(ScalarType, Width);
919 
920   return PointerType::getUnqual(VectorType);
921 }
922 
923 Value *VectorBlockGenerator::generateStrideOneLoad(
924     ScopStmt &Stmt, LoadInst *Load, VectorValueMapT &ScalarMaps,
925     __isl_keep isl_id_to_ast_expr *NewAccesses, bool NegativeStride = false) {
926   unsigned VectorWidth = getVectorWidth();
927   auto *Pointer = Load->getPointerOperand();
928   Type *VectorPtrType = getVectorPtrTy(Pointer, VectorWidth);
929   unsigned Offset = NegativeStride ? VectorWidth - 1 : 0;
930 
931   Value *NewPointer = generateLocationAccessed(Stmt, Load, ScalarMaps[Offset],
932                                                VLTS[Offset], NewAccesses);
933   Value *VectorPtr =
934       Builder.CreateBitCast(NewPointer, VectorPtrType, "vector_ptr");
935   LoadInst *VecLoad =
936       Builder.CreateLoad(VectorPtr, Load->getName() + "_p_vec_full");
937   if (!Aligned)
938     VecLoad->setAlignment(8);
939 
940   if (NegativeStride) {
941     SmallVector<Constant *, 16> Indices;
942     for (int i = VectorWidth - 1; i >= 0; i--)
943       Indices.push_back(ConstantInt::get(Builder.getInt32Ty(), i));
944     Constant *SV = llvm::ConstantVector::get(Indices);
945     Value *RevVecLoad = Builder.CreateShuffleVector(
946         VecLoad, VecLoad, SV, Load->getName() + "_reverse");
947     return RevVecLoad;
948   }
949 
950   return VecLoad;
951 }
952 
953 Value *VectorBlockGenerator::generateStrideZeroLoad(
954     ScopStmt &Stmt, LoadInst *Load, ValueMapT &BBMap,
955     __isl_keep isl_id_to_ast_expr *NewAccesses) {
956   auto *Pointer = Load->getPointerOperand();
957   Type *VectorPtrType = getVectorPtrTy(Pointer, 1);
958   Value *NewPointer =
959       generateLocationAccessed(Stmt, Load, BBMap, VLTS[0], NewAccesses);
960   Value *VectorPtr = Builder.CreateBitCast(NewPointer, VectorPtrType,
961                                            Load->getName() + "_p_vec_p");
962   LoadInst *ScalarLoad =
963       Builder.CreateLoad(VectorPtr, Load->getName() + "_p_splat_one");
964 
965   if (!Aligned)
966     ScalarLoad->setAlignment(8);
967 
968   Constant *SplatVector = Constant::getNullValue(
969       VectorType::get(Builder.getInt32Ty(), getVectorWidth()));
970 
971   Value *VectorLoad = Builder.CreateShuffleVector(
972       ScalarLoad, ScalarLoad, SplatVector, Load->getName() + "_p_splat");
973   return VectorLoad;
974 }
975 
976 Value *VectorBlockGenerator::generateUnknownStrideLoad(
977     ScopStmt &Stmt, LoadInst *Load, VectorValueMapT &ScalarMaps,
978     __isl_keep isl_id_to_ast_expr *NewAccesses) {
979   int VectorWidth = getVectorWidth();
980   auto *Pointer = Load->getPointerOperand();
981   VectorType *VectorType = VectorType::get(
982       dyn_cast<PointerType>(Pointer->getType())->getElementType(), VectorWidth);
983 
984   Value *Vector = UndefValue::get(VectorType);
985 
986   for (int i = 0; i < VectorWidth; i++) {
987     Value *NewPointer = generateLocationAccessed(Stmt, Load, ScalarMaps[i],
988                                                  VLTS[i], NewAccesses);
989     Value *ScalarLoad =
990         Builder.CreateLoad(NewPointer, Load->getName() + "_p_scalar_");
991     Vector = Builder.CreateInsertElement(
992         Vector, ScalarLoad, Builder.getInt32(i), Load->getName() + "_p_vec_");
993   }
994 
995   return Vector;
996 }
997 
998 void VectorBlockGenerator::generateLoad(
999     ScopStmt &Stmt, LoadInst *Load, ValueMapT &VectorMap,
1000     VectorValueMapT &ScalarMaps, __isl_keep isl_id_to_ast_expr *NewAccesses) {
1001   if (Value *PreloadLoad = GlobalMap.lookup(Load)) {
1002     VectorMap[Load] = Builder.CreateVectorSplat(getVectorWidth(), PreloadLoad,
1003                                                 Load->getName() + "_p");
1004     return;
1005   }
1006 
1007   if (!VectorType::isValidElementType(Load->getType())) {
1008     for (int i = 0; i < getVectorWidth(); i++)
1009       ScalarMaps[i][Load] =
1010           generateArrayLoad(Stmt, Load, ScalarMaps[i], VLTS[i], NewAccesses);
1011     return;
1012   }
1013 
1014   const MemoryAccess &Access = Stmt.getArrayAccessFor(Load);
1015 
1016   // Make sure we have scalar values available to access the pointer to
1017   // the data location.
1018   extractScalarValues(Load, VectorMap, ScalarMaps);
1019 
1020   Value *NewLoad;
1021   if (Access.isStrideZero(isl::manage(isl_map_copy(Schedule))))
1022     NewLoad = generateStrideZeroLoad(Stmt, Load, ScalarMaps[0], NewAccesses);
1023   else if (Access.isStrideOne(isl::manage(isl_map_copy(Schedule))))
1024     NewLoad = generateStrideOneLoad(Stmt, Load, ScalarMaps, NewAccesses);
1025   else if (Access.isStrideX(isl::manage(isl_map_copy(Schedule)), -1))
1026     NewLoad = generateStrideOneLoad(Stmt, Load, ScalarMaps, NewAccesses, true);
1027   else
1028     NewLoad = generateUnknownStrideLoad(Stmt, Load, ScalarMaps, NewAccesses);
1029 
1030   VectorMap[Load] = NewLoad;
1031 }
1032 
1033 void VectorBlockGenerator::copyUnaryInst(ScopStmt &Stmt, UnaryInstruction *Inst,
1034                                          ValueMapT &VectorMap,
1035                                          VectorValueMapT &ScalarMaps) {
1036   int VectorWidth = getVectorWidth();
1037   Value *NewOperand = getVectorValue(Stmt, Inst->getOperand(0), VectorMap,
1038                                      ScalarMaps, getLoopForStmt(Stmt));
1039 
1040   assert(isa<CastInst>(Inst) && "Can not generate vector code for instruction");
1041 
1042   const CastInst *Cast = dyn_cast<CastInst>(Inst);
1043   VectorType *DestType = VectorType::get(Inst->getType(), VectorWidth);
1044   VectorMap[Inst] = Builder.CreateCast(Cast->getOpcode(), NewOperand, DestType);
1045 }
1046 
1047 void VectorBlockGenerator::copyBinaryInst(ScopStmt &Stmt, BinaryOperator *Inst,
1048                                           ValueMapT &VectorMap,
1049                                           VectorValueMapT &ScalarMaps) {
1050   Loop *L = getLoopForStmt(Stmt);
1051   Value *OpZero = Inst->getOperand(0);
1052   Value *OpOne = Inst->getOperand(1);
1053 
1054   Value *NewOpZero, *NewOpOne;
1055   NewOpZero = getVectorValue(Stmt, OpZero, VectorMap, ScalarMaps, L);
1056   NewOpOne = getVectorValue(Stmt, OpOne, VectorMap, ScalarMaps, L);
1057 
1058   Value *NewInst = Builder.CreateBinOp(Inst->getOpcode(), NewOpZero, NewOpOne,
1059                                        Inst->getName() + "p_vec");
1060   VectorMap[Inst] = NewInst;
1061 }
1062 
1063 void VectorBlockGenerator::copyStore(
1064     ScopStmt &Stmt, StoreInst *Store, ValueMapT &VectorMap,
1065     VectorValueMapT &ScalarMaps, __isl_keep isl_id_to_ast_expr *NewAccesses) {
1066   const MemoryAccess &Access = Stmt.getArrayAccessFor(Store);
1067 
1068   auto *Pointer = Store->getPointerOperand();
1069   Value *Vector = getVectorValue(Stmt, Store->getValueOperand(), VectorMap,
1070                                  ScalarMaps, getLoopForStmt(Stmt));
1071 
1072   // Make sure we have scalar values available to access the pointer to
1073   // the data location.
1074   extractScalarValues(Store, VectorMap, ScalarMaps);
1075 
1076   if (Access.isStrideOne(isl::manage(isl_map_copy(Schedule)))) {
1077     Type *VectorPtrType = getVectorPtrTy(Pointer, getVectorWidth());
1078     Value *NewPointer = generateLocationAccessed(Stmt, Store, ScalarMaps[0],
1079                                                  VLTS[0], NewAccesses);
1080 
1081     Value *VectorPtr =
1082         Builder.CreateBitCast(NewPointer, VectorPtrType, "vector_ptr");
1083     StoreInst *Store = Builder.CreateStore(Vector, VectorPtr);
1084 
1085     if (!Aligned)
1086       Store->setAlignment(8);
1087   } else {
1088     for (unsigned i = 0; i < ScalarMaps.size(); i++) {
1089       Value *Scalar = Builder.CreateExtractElement(Vector, Builder.getInt32(i));
1090       Value *NewPointer = generateLocationAccessed(Stmt, Store, ScalarMaps[i],
1091                                                    VLTS[i], NewAccesses);
1092       Builder.CreateStore(Scalar, NewPointer);
1093     }
1094   }
1095 }
1096 
1097 bool VectorBlockGenerator::hasVectorOperands(const Instruction *Inst,
1098                                              ValueMapT &VectorMap) {
1099   for (Value *Operand : Inst->operands())
1100     if (VectorMap.count(Operand))
1101       return true;
1102   return false;
1103 }
1104 
1105 bool VectorBlockGenerator::extractScalarValues(const Instruction *Inst,
1106                                                ValueMapT &VectorMap,
1107                                                VectorValueMapT &ScalarMaps) {
1108   bool HasVectorOperand = false;
1109   int VectorWidth = getVectorWidth();
1110 
1111   for (Value *Operand : Inst->operands()) {
1112     ValueMapT::iterator VecOp = VectorMap.find(Operand);
1113 
1114     if (VecOp == VectorMap.end())
1115       continue;
1116 
1117     HasVectorOperand = true;
1118     Value *NewVector = VecOp->second;
1119 
1120     for (int i = 0; i < VectorWidth; ++i) {
1121       ValueMapT &SM = ScalarMaps[i];
1122 
1123       // If there is one scalar extracted, all scalar elements should have
1124       // already been extracted by the code here. So no need to check for the
1125       // existence of all of them.
1126       if (SM.count(Operand))
1127         break;
1128 
1129       SM[Operand] =
1130           Builder.CreateExtractElement(NewVector, Builder.getInt32(i));
1131     }
1132   }
1133 
1134   return HasVectorOperand;
1135 }
1136 
1137 void VectorBlockGenerator::copyInstScalarized(
1138     ScopStmt &Stmt, Instruction *Inst, ValueMapT &VectorMap,
1139     VectorValueMapT &ScalarMaps, __isl_keep isl_id_to_ast_expr *NewAccesses) {
1140   bool HasVectorOperand;
1141   int VectorWidth = getVectorWidth();
1142 
1143   HasVectorOperand = extractScalarValues(Inst, VectorMap, ScalarMaps);
1144 
1145   for (int VectorLane = 0; VectorLane < getVectorWidth(); VectorLane++)
1146     BlockGenerator::copyInstruction(Stmt, Inst, ScalarMaps[VectorLane],
1147                                     VLTS[VectorLane], NewAccesses);
1148 
1149   if (!VectorType::isValidElementType(Inst->getType()) || !HasVectorOperand)
1150     return;
1151 
1152   // Make the result available as vector value.
1153   VectorType *VectorType = VectorType::get(Inst->getType(), VectorWidth);
1154   Value *Vector = UndefValue::get(VectorType);
1155 
1156   for (int i = 0; i < VectorWidth; i++)
1157     Vector = Builder.CreateInsertElement(Vector, ScalarMaps[i][Inst],
1158                                          Builder.getInt32(i));
1159 
1160   VectorMap[Inst] = Vector;
1161 }
1162 
1163 int VectorBlockGenerator::getVectorWidth() { return VLTS.size(); }
1164 
1165 void VectorBlockGenerator::copyInstruction(
1166     ScopStmt &Stmt, Instruction *Inst, ValueMapT &VectorMap,
1167     VectorValueMapT &ScalarMaps, __isl_keep isl_id_to_ast_expr *NewAccesses) {
1168   // Terminator instructions control the control flow. They are explicitly
1169   // expressed in the clast and do not need to be copied.
1170   if (Inst->isTerminator())
1171     return;
1172 
1173   if (canSyntheziseInStmt(Stmt, Inst))
1174     return;
1175 
1176   if (auto *Load = dyn_cast<LoadInst>(Inst)) {
1177     generateLoad(Stmt, Load, VectorMap, ScalarMaps, NewAccesses);
1178     return;
1179   }
1180 
1181   if (hasVectorOperands(Inst, VectorMap)) {
1182     if (auto *Store = dyn_cast<StoreInst>(Inst)) {
1183       // Identified as redundant by -polly-simplify.
1184       if (!Stmt.getArrayAccessOrNULLFor(Store))
1185         return;
1186 
1187       copyStore(Stmt, Store, VectorMap, ScalarMaps, NewAccesses);
1188       return;
1189     }
1190 
1191     if (auto *Unary = dyn_cast<UnaryInstruction>(Inst)) {
1192       copyUnaryInst(Stmt, Unary, VectorMap, ScalarMaps);
1193       return;
1194     }
1195 
1196     if (auto *Binary = dyn_cast<BinaryOperator>(Inst)) {
1197       copyBinaryInst(Stmt, Binary, VectorMap, ScalarMaps);
1198       return;
1199     }
1200 
1201     // Fallthrough: We generate scalar instructions, if we don't know how to
1202     // generate vector code.
1203   }
1204 
1205   copyInstScalarized(Stmt, Inst, VectorMap, ScalarMaps, NewAccesses);
1206 }
1207 
1208 void VectorBlockGenerator::generateScalarVectorLoads(
1209     ScopStmt &Stmt, ValueMapT &VectorBlockMap) {
1210   for (MemoryAccess *MA : Stmt) {
1211     if (MA->isArrayKind() || MA->isWrite())
1212       continue;
1213 
1214     auto *Address = getOrCreateAlloca(*MA);
1215     Type *VectorPtrType = getVectorPtrTy(Address, 1);
1216     Value *VectorPtr = Builder.CreateBitCast(Address, VectorPtrType,
1217                                              Address->getName() + "_p_vec_p");
1218     auto *Val = Builder.CreateLoad(VectorPtr, Address->getName() + ".reload");
1219     Constant *SplatVector = Constant::getNullValue(
1220         VectorType::get(Builder.getInt32Ty(), getVectorWidth()));
1221 
1222     Value *VectorVal = Builder.CreateShuffleVector(
1223         Val, Val, SplatVector, Address->getName() + "_p_splat");
1224     VectorBlockMap[MA->getAccessValue()] = VectorVal;
1225   }
1226 }
1227 
1228 void VectorBlockGenerator::verifyNoScalarStores(ScopStmt &Stmt) {
1229   for (MemoryAccess *MA : Stmt) {
1230     if (MA->isArrayKind() || MA->isRead())
1231       continue;
1232 
1233     llvm_unreachable("Scalar stores not expected in vector loop");
1234   }
1235 }
1236 
1237 void VectorBlockGenerator::copyStmt(
1238     ScopStmt &Stmt, __isl_keep isl_id_to_ast_expr *NewAccesses) {
1239   assert(Stmt.isBlockStmt() &&
1240          "TODO: Only block statements can be copied by the vector block "
1241          "generator");
1242 
1243   BasicBlock *BB = Stmt.getBasicBlock();
1244   BasicBlock *CopyBB = SplitBlock(Builder.GetInsertBlock(),
1245                                   &*Builder.GetInsertPoint(), &DT, &LI);
1246   CopyBB->setName("polly.stmt." + BB->getName());
1247   Builder.SetInsertPoint(&CopyBB->front());
1248 
1249   // Create two maps that store the mapping from the original instructions of
1250   // the old basic block to their copies in the new basic block. Those maps
1251   // are basic block local.
1252   //
1253   // As vector code generation is supported there is one map for scalar values
1254   // and one for vector values.
1255   //
1256   // In case we just do scalar code generation, the vectorMap is not used and
1257   // the scalarMap has just one dimension, which contains the mapping.
1258   //
1259   // In case vector code generation is done, an instruction may either appear
1260   // in the vector map once (as it is calculating >vectorwidth< values at a
1261   // time. Or (if the values are calculated using scalar operations), it
1262   // appears once in every dimension of the scalarMap.
1263   VectorValueMapT ScalarBlockMap(getVectorWidth());
1264   ValueMapT VectorBlockMap;
1265 
1266   generateScalarVectorLoads(Stmt, VectorBlockMap);
1267 
1268   for (Instruction &Inst : *BB)
1269     copyInstruction(Stmt, &Inst, VectorBlockMap, ScalarBlockMap, NewAccesses);
1270 
1271   verifyNoScalarStores(Stmt);
1272 }
1273 
1274 BasicBlock *RegionGenerator::repairDominance(BasicBlock *BB,
1275                                              BasicBlock *BBCopy) {
1276 
1277   BasicBlock *BBIDom = DT.getNode(BB)->getIDom()->getBlock();
1278   BasicBlock *BBCopyIDom = EndBlockMap.lookup(BBIDom);
1279 
1280   if (BBCopyIDom)
1281     DT.changeImmediateDominator(BBCopy, BBCopyIDom);
1282 
1283   return StartBlockMap.lookup(BBIDom);
1284 }
1285 
1286 // This is to determine whether an llvm::Value (defined in @p BB) is usable when
1287 // leaving a subregion. The straight-forward DT.dominates(BB, R->getExitBlock())
1288 // does not work in cases where the exit block has edges from outside the
1289 // region. In that case the llvm::Value would never be usable in in the exit
1290 // block. The RegionGenerator however creates an new exit block ('ExitBBCopy')
1291 // for the subregion's exiting edges only. We need to determine whether an
1292 // llvm::Value is usable in there. We do this by checking whether it dominates
1293 // all exiting blocks individually.
1294 static bool isDominatingSubregionExit(const DominatorTree &DT, Region *R,
1295                                       BasicBlock *BB) {
1296   for (auto ExitingBB : predecessors(R->getExit())) {
1297     // Check for non-subregion incoming edges.
1298     if (!R->contains(ExitingBB))
1299       continue;
1300 
1301     if (!DT.dominates(BB, ExitingBB))
1302       return false;
1303   }
1304 
1305   return true;
1306 }
1307 
1308 // Find the direct dominator of the subregion's exit block if the subregion was
1309 // simplified.
1310 static BasicBlock *findExitDominator(DominatorTree &DT, Region *R) {
1311   BasicBlock *Common = nullptr;
1312   for (auto ExitingBB : predecessors(R->getExit())) {
1313     // Check for non-subregion incoming edges.
1314     if (!R->contains(ExitingBB))
1315       continue;
1316 
1317     // First exiting edge.
1318     if (!Common) {
1319       Common = ExitingBB;
1320       continue;
1321     }
1322 
1323     Common = DT.findNearestCommonDominator(Common, ExitingBB);
1324   }
1325 
1326   assert(Common && R->contains(Common));
1327   return Common;
1328 }
1329 
1330 void RegionGenerator::copyStmt(ScopStmt &Stmt, LoopToScevMapT &LTS,
1331                                isl_id_to_ast_expr *IdToAstExp) {
1332   assert(Stmt.isRegionStmt() &&
1333          "Only region statements can be copied by the region generator");
1334 
1335   // Forget all old mappings.
1336   StartBlockMap.clear();
1337   EndBlockMap.clear();
1338   RegionMaps.clear();
1339   IncompletePHINodeMap.clear();
1340 
1341   // Collection of all values related to this subregion.
1342   ValueMapT ValueMap;
1343 
1344   // The region represented by the statement.
1345   Region *R = Stmt.getRegion();
1346 
1347   // Create a dedicated entry for the region where we can reload all demoted
1348   // inputs.
1349   BasicBlock *EntryBB = R->getEntry();
1350   BasicBlock *EntryBBCopy = SplitBlock(Builder.GetInsertBlock(),
1351                                        &*Builder.GetInsertPoint(), &DT, &LI);
1352   EntryBBCopy->setName("polly.stmt." + EntryBB->getName() + ".entry");
1353   Builder.SetInsertPoint(&EntryBBCopy->front());
1354 
1355   ValueMapT &EntryBBMap = RegionMaps[EntryBBCopy];
1356   generateScalarLoads(Stmt, LTS, EntryBBMap, IdToAstExp);
1357 
1358   for (auto PI = pred_begin(EntryBB), PE = pred_end(EntryBB); PI != PE; ++PI)
1359     if (!R->contains(*PI)) {
1360       StartBlockMap[*PI] = EntryBBCopy;
1361       EndBlockMap[*PI] = EntryBBCopy;
1362     }
1363 
1364   // Iterate over all blocks in the region in a breadth-first search.
1365   std::deque<BasicBlock *> Blocks;
1366   SmallSetVector<BasicBlock *, 8> SeenBlocks;
1367   Blocks.push_back(EntryBB);
1368   SeenBlocks.insert(EntryBB);
1369 
1370   while (!Blocks.empty()) {
1371     BasicBlock *BB = Blocks.front();
1372     Blocks.pop_front();
1373 
1374     // First split the block and update dominance information.
1375     BasicBlock *BBCopy = splitBB(BB);
1376     BasicBlock *BBCopyIDom = repairDominance(BB, BBCopy);
1377 
1378     // Get the mapping for this block and initialize it with either the scalar
1379     // loads from the generated entering block (which dominates all blocks of
1380     // this subregion) or the maps of the immediate dominator, if part of the
1381     // subregion. The latter necessarily includes the former.
1382     ValueMapT *InitBBMap;
1383     if (BBCopyIDom) {
1384       assert(RegionMaps.count(BBCopyIDom));
1385       InitBBMap = &RegionMaps[BBCopyIDom];
1386     } else
1387       InitBBMap = &EntryBBMap;
1388     auto Inserted = RegionMaps.insert(std::make_pair(BBCopy, *InitBBMap));
1389     ValueMapT &RegionMap = Inserted.first->second;
1390 
1391     // Copy the block with the BlockGenerator.
1392     Builder.SetInsertPoint(&BBCopy->front());
1393     copyBB(Stmt, BB, BBCopy, RegionMap, LTS, IdToAstExp);
1394 
1395     // In order to remap PHI nodes we store also basic block mappings.
1396     StartBlockMap[BB] = BBCopy;
1397     EndBlockMap[BB] = Builder.GetInsertBlock();
1398 
1399     // Add values to incomplete PHI nodes waiting for this block to be copied.
1400     for (const PHINodePairTy &PHINodePair : IncompletePHINodeMap[BB])
1401       addOperandToPHI(Stmt, PHINodePair.first, PHINodePair.second, BB, LTS);
1402     IncompletePHINodeMap[BB].clear();
1403 
1404     // And continue with new successors inside the region.
1405     for (auto SI = succ_begin(BB), SE = succ_end(BB); SI != SE; SI++)
1406       if (R->contains(*SI) && SeenBlocks.insert(*SI))
1407         Blocks.push_back(*SI);
1408 
1409     // Remember value in case it is visible after this subregion.
1410     if (isDominatingSubregionExit(DT, R, BB))
1411       ValueMap.insert(RegionMap.begin(), RegionMap.end());
1412   }
1413 
1414   // Now create a new dedicated region exit block and add it to the region map.
1415   BasicBlock *ExitBBCopy = SplitBlock(Builder.GetInsertBlock(),
1416                                       &*Builder.GetInsertPoint(), &DT, &LI);
1417   ExitBBCopy->setName("polly.stmt." + R->getExit()->getName() + ".exit");
1418   StartBlockMap[R->getExit()] = ExitBBCopy;
1419   EndBlockMap[R->getExit()] = ExitBBCopy;
1420 
1421   BasicBlock *ExitDomBBCopy = EndBlockMap.lookup(findExitDominator(DT, R));
1422   assert(ExitDomBBCopy &&
1423          "Common exit dominator must be within region; at least the entry node "
1424          "must match");
1425   DT.changeImmediateDominator(ExitBBCopy, ExitDomBBCopy);
1426 
1427   // As the block generator doesn't handle control flow we need to add the
1428   // region control flow by hand after all blocks have been copied.
1429   for (BasicBlock *BB : SeenBlocks) {
1430 
1431     BasicBlock *BBCopyStart = StartBlockMap[BB];
1432     BasicBlock *BBCopyEnd = EndBlockMap[BB];
1433     TerminatorInst *TI = BB->getTerminator();
1434     if (isa<UnreachableInst>(TI)) {
1435       while (!BBCopyEnd->empty())
1436         BBCopyEnd->begin()->eraseFromParent();
1437       new UnreachableInst(BBCopyEnd->getContext(), BBCopyEnd);
1438       continue;
1439     }
1440 
1441     Instruction *BICopy = BBCopyEnd->getTerminator();
1442 
1443     ValueMapT &RegionMap = RegionMaps[BBCopyStart];
1444     RegionMap.insert(StartBlockMap.begin(), StartBlockMap.end());
1445 
1446     Builder.SetInsertPoint(BICopy);
1447     copyInstScalar(Stmt, TI, RegionMap, LTS);
1448     BICopy->eraseFromParent();
1449   }
1450 
1451   // Add counting PHI nodes to all loops in the region that can be used as
1452   // replacement for SCEVs referring to the old loop.
1453   for (BasicBlock *BB : SeenBlocks) {
1454     Loop *L = LI.getLoopFor(BB);
1455     if (L == nullptr || L->getHeader() != BB || !R->contains(L))
1456       continue;
1457 
1458     BasicBlock *BBCopy = StartBlockMap[BB];
1459     Value *NullVal = Builder.getInt32(0);
1460     PHINode *LoopPHI =
1461         PHINode::Create(Builder.getInt32Ty(), 2, "polly.subregion.iv");
1462     Instruction *LoopPHIInc = BinaryOperator::CreateAdd(
1463         LoopPHI, Builder.getInt32(1), "polly.subregion.iv.inc");
1464     LoopPHI->insertBefore(&BBCopy->front());
1465     LoopPHIInc->insertBefore(BBCopy->getTerminator());
1466 
1467     for (auto *PredBB : make_range(pred_begin(BB), pred_end(BB))) {
1468       if (!R->contains(PredBB))
1469         continue;
1470       if (L->contains(PredBB))
1471         LoopPHI->addIncoming(LoopPHIInc, EndBlockMap[PredBB]);
1472       else
1473         LoopPHI->addIncoming(NullVal, EndBlockMap[PredBB]);
1474     }
1475 
1476     for (auto *PredBBCopy : make_range(pred_begin(BBCopy), pred_end(BBCopy)))
1477       if (LoopPHI->getBasicBlockIndex(PredBBCopy) < 0)
1478         LoopPHI->addIncoming(NullVal, PredBBCopy);
1479 
1480     LTS[L] = SE.getUnknown(LoopPHI);
1481   }
1482 
1483   // Continue generating code in the exit block.
1484   Builder.SetInsertPoint(&*ExitBBCopy->getFirstInsertionPt());
1485 
1486   // Write values visible to other statements.
1487   generateScalarStores(Stmt, LTS, ValueMap, IdToAstExp);
1488   StartBlockMap.clear();
1489   EndBlockMap.clear();
1490   RegionMaps.clear();
1491   IncompletePHINodeMap.clear();
1492 }
1493 
1494 PHINode *RegionGenerator::buildExitPHI(MemoryAccess *MA, LoopToScevMapT &LTS,
1495                                        ValueMapT &BBMap, Loop *L) {
1496   ScopStmt *Stmt = MA->getStatement();
1497   Region *SubR = Stmt->getRegion();
1498   auto Incoming = MA->getIncoming();
1499 
1500   PollyIRBuilder::InsertPointGuard IPGuard(Builder);
1501   PHINode *OrigPHI = cast<PHINode>(MA->getAccessInstruction());
1502   BasicBlock *NewSubregionExit = Builder.GetInsertBlock();
1503 
1504   // This can happen if the subregion is simplified after the ScopStmts
1505   // have been created; simplification happens as part of CodeGeneration.
1506   if (OrigPHI->getParent() != SubR->getExit()) {
1507     BasicBlock *FormerExit = SubR->getExitingBlock();
1508     if (FormerExit)
1509       NewSubregionExit = StartBlockMap.lookup(FormerExit);
1510   }
1511 
1512   PHINode *NewPHI = PHINode::Create(OrigPHI->getType(), Incoming.size(),
1513                                     "polly." + OrigPHI->getName(),
1514                                     NewSubregionExit->getFirstNonPHI());
1515 
1516   // Add the incoming values to the PHI.
1517   for (auto &Pair : Incoming) {
1518     BasicBlock *OrigIncomingBlock = Pair.first;
1519     BasicBlock *NewIncomingBlockStart = StartBlockMap.lookup(OrigIncomingBlock);
1520     BasicBlock *NewIncomingBlockEnd = EndBlockMap.lookup(OrigIncomingBlock);
1521     Builder.SetInsertPoint(NewIncomingBlockEnd->getTerminator());
1522     assert(RegionMaps.count(NewIncomingBlockStart));
1523     assert(RegionMaps.count(NewIncomingBlockEnd));
1524     ValueMapT *LocalBBMap = &RegionMaps[NewIncomingBlockStart];
1525 
1526     Value *OrigIncomingValue = Pair.second;
1527     Value *NewIncomingValue =
1528         getNewValue(*Stmt, OrigIncomingValue, *LocalBBMap, LTS, L);
1529     NewPHI->addIncoming(NewIncomingValue, NewIncomingBlockEnd);
1530   }
1531 
1532   return NewPHI;
1533 }
1534 
1535 Value *RegionGenerator::getExitScalar(MemoryAccess *MA, LoopToScevMapT &LTS,
1536                                       ValueMapT &BBMap) {
1537   ScopStmt *Stmt = MA->getStatement();
1538 
1539   // TODO: Add some test cases that ensure this is really the right choice.
1540   Loop *L = LI.getLoopFor(Stmt->getRegion()->getExit());
1541 
1542   if (MA->isAnyPHIKind()) {
1543     auto Incoming = MA->getIncoming();
1544     assert(!Incoming.empty() &&
1545            "PHI WRITEs must have originate from at least one incoming block");
1546 
1547     // If there is only one incoming value, we do not need to create a PHI.
1548     if (Incoming.size() == 1) {
1549       Value *OldVal = Incoming[0].second;
1550       return getNewValue(*Stmt, OldVal, BBMap, LTS, L);
1551     }
1552 
1553     return buildExitPHI(MA, LTS, BBMap, L);
1554   }
1555 
1556   // MemoryKind::Value accesses leaving the subregion must dominate the exit
1557   // block; just pass the copied value.
1558   Value *OldVal = MA->getAccessValue();
1559   return getNewValue(*Stmt, OldVal, BBMap, LTS, L);
1560 }
1561 
1562 void RegionGenerator::generateScalarStores(
1563     ScopStmt &Stmt, LoopToScevMapT &LTS, ValueMapT &BBMap,
1564     __isl_keep isl_id_to_ast_expr *NewAccesses) {
1565   assert(Stmt.getRegion() &&
1566          "Block statements need to use the generateScalarStores() "
1567          "function in the BlockGenerator");
1568 
1569   for (MemoryAccess *MA : Stmt) {
1570     if (MA->isOriginalArrayKind() || MA->isRead())
1571       continue;
1572 
1573     isl::set AccDom = MA->getAccessRelation().domain();
1574     std::string Subject = MA->getId().get_name();
1575     generateConditionalExecution(
1576         Stmt, AccDom, Subject.c_str(), [&, this, MA]() {
1577 
1578           Value *NewVal = getExitScalar(MA, LTS, BBMap);
1579           Value *Address = getImplicitAddress(*MA, getLoopForStmt(Stmt), LTS,
1580                                               BBMap, NewAccesses);
1581           assert((!isa<Instruction>(NewVal) ||
1582                   DT.dominates(cast<Instruction>(NewVal)->getParent(),
1583                                Builder.GetInsertBlock())) &&
1584                  "Domination violation");
1585           assert((!isa<Instruction>(Address) ||
1586                   DT.dominates(cast<Instruction>(Address)->getParent(),
1587                                Builder.GetInsertBlock())) &&
1588                  "Domination violation");
1589           Builder.CreateStore(NewVal, Address);
1590         });
1591   }
1592 }
1593 
1594 void RegionGenerator::addOperandToPHI(ScopStmt &Stmt, PHINode *PHI,
1595                                       PHINode *PHICopy, BasicBlock *IncomingBB,
1596                                       LoopToScevMapT &LTS) {
1597   // If the incoming block was not yet copied mark this PHI as incomplete.
1598   // Once the block will be copied the incoming value will be added.
1599   BasicBlock *BBCopyStart = StartBlockMap[IncomingBB];
1600   BasicBlock *BBCopyEnd = EndBlockMap[IncomingBB];
1601   if (!BBCopyStart) {
1602     assert(!BBCopyEnd);
1603     assert(Stmt.represents(IncomingBB) &&
1604            "Bad incoming block for PHI in non-affine region");
1605     IncompletePHINodeMap[IncomingBB].push_back(std::make_pair(PHI, PHICopy));
1606     return;
1607   }
1608 
1609   assert(RegionMaps.count(BBCopyStart) &&
1610          "Incoming PHI block did not have a BBMap");
1611   ValueMapT &BBCopyMap = RegionMaps[BBCopyStart];
1612 
1613   Value *OpCopy = nullptr;
1614 
1615   if (Stmt.represents(IncomingBB)) {
1616     Value *Op = PHI->getIncomingValueForBlock(IncomingBB);
1617 
1618     // If the current insert block is different from the PHIs incoming block
1619     // change it, otherwise do not.
1620     auto IP = Builder.GetInsertPoint();
1621     if (IP->getParent() != BBCopyEnd)
1622       Builder.SetInsertPoint(BBCopyEnd->getTerminator());
1623     OpCopy = getNewValue(Stmt, Op, BBCopyMap, LTS, getLoopForStmt(Stmt));
1624     if (IP->getParent() != BBCopyEnd)
1625       Builder.SetInsertPoint(&*IP);
1626   } else {
1627     // All edges from outside the non-affine region become a single edge
1628     // in the new copy of the non-affine region. Make sure to only add the
1629     // corresponding edge the first time we encounter a basic block from
1630     // outside the non-affine region.
1631     if (PHICopy->getBasicBlockIndex(BBCopyEnd) >= 0)
1632       return;
1633 
1634     // Get the reloaded value.
1635     OpCopy = getNewValue(Stmt, PHI, BBCopyMap, LTS, getLoopForStmt(Stmt));
1636   }
1637 
1638   assert(OpCopy && "Incoming PHI value was not copied properly");
1639   PHICopy->addIncoming(OpCopy, BBCopyEnd);
1640 }
1641 
1642 void RegionGenerator::copyPHIInstruction(ScopStmt &Stmt, PHINode *PHI,
1643                                          ValueMapT &BBMap,
1644                                          LoopToScevMapT &LTS) {
1645   unsigned NumIncoming = PHI->getNumIncomingValues();
1646   PHINode *PHICopy =
1647       Builder.CreatePHI(PHI->getType(), NumIncoming, "polly." + PHI->getName());
1648   PHICopy->moveBefore(PHICopy->getParent()->getFirstNonPHI());
1649   BBMap[PHI] = PHICopy;
1650 
1651   for (BasicBlock *IncomingBB : PHI->blocks())
1652     addOperandToPHI(Stmt, PHI, PHICopy, IncomingBB, LTS);
1653 }
1654