1 //===--- BlockGenerators.cpp - Generate code for statements -----*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the BlockGenerator and VectorBlockGenerator classes, 11 // which generate sequential code and vectorized code for a polyhedral 12 // statement, respectively. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "polly/CodeGen/BlockGenerators.h" 17 #include "polly/CodeGen/CodeGeneration.h" 18 #include "polly/CodeGen/IslExprBuilder.h" 19 #include "polly/CodeGen/RuntimeDebugBuilder.h" 20 #include "polly/Options.h" 21 #include "polly/ScopInfo.h" 22 #include "polly/Support/GICHelper.h" 23 #include "polly/Support/SCEVValidator.h" 24 #include "polly/Support/ScopHelper.h" 25 #include "polly/Support/VirtualInstruction.h" 26 #include "llvm/Analysis/LoopInfo.h" 27 #include "llvm/Analysis/RegionInfo.h" 28 #include "llvm/Analysis/ScalarEvolution.h" 29 #include "llvm/IR/IntrinsicInst.h" 30 #include "llvm/IR/Module.h" 31 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 32 #include "llvm/Transforms/Utils/Local.h" 33 #include "isl/aff.h" 34 #include "isl/ast.h" 35 #include "isl/ast_build.h" 36 #include "isl/set.h" 37 #include <deque> 38 39 using namespace llvm; 40 using namespace polly; 41 42 static cl::opt<bool> Aligned("enable-polly-aligned", 43 cl::desc("Assumed aligned memory accesses."), 44 cl::Hidden, cl::init(false), cl::ZeroOrMore, 45 cl::cat(PollyCategory)); 46 47 bool PollyDebugPrinting; 48 static cl::opt<bool, true> DebugPrintingX( 49 "polly-codegen-add-debug-printing", 50 cl::desc("Add printf calls that show the values loaded/stored."), 51 cl::location(PollyDebugPrinting), cl::Hidden, cl::init(false), 52 cl::ZeroOrMore, cl::cat(PollyCategory)); 53 54 BlockGenerator::BlockGenerator( 55 PollyIRBuilder &B, LoopInfo &LI, ScalarEvolution &SE, DominatorTree &DT, 56 AllocaMapTy &ScalarMap, EscapeUsersAllocaMapTy &EscapeMap, 57 ValueMapT &GlobalMap, IslExprBuilder *ExprBuilder, BasicBlock *StartBlock) 58 : Builder(B), LI(LI), SE(SE), ExprBuilder(ExprBuilder), DT(DT), 59 EntryBB(nullptr), ScalarMap(ScalarMap), EscapeMap(EscapeMap), 60 GlobalMap(GlobalMap), StartBlock(StartBlock) {} 61 62 Value *BlockGenerator::trySynthesizeNewValue(ScopStmt &Stmt, Value *Old, 63 ValueMapT &BBMap, 64 LoopToScevMapT <S, 65 Loop *L) const { 66 if (!SE.isSCEVable(Old->getType())) 67 return nullptr; 68 69 const SCEV *Scev = SE.getSCEVAtScope(Old, L); 70 if (!Scev) 71 return nullptr; 72 73 if (isa<SCEVCouldNotCompute>(Scev)) 74 return nullptr; 75 76 const SCEV *NewScev = SCEVLoopAddRecRewriter::rewrite(Scev, LTS, SE); 77 ValueMapT VTV; 78 VTV.insert(BBMap.begin(), BBMap.end()); 79 VTV.insert(GlobalMap.begin(), GlobalMap.end()); 80 81 Scop &S = *Stmt.getParent(); 82 const DataLayout &DL = S.getFunction().getParent()->getDataLayout(); 83 auto IP = Builder.GetInsertPoint(); 84 85 assert(IP != Builder.GetInsertBlock()->end() && 86 "Only instructions can be insert points for SCEVExpander"); 87 Value *Expanded = 88 expandCodeFor(S, SE, DL, "polly", NewScev, Old->getType(), &*IP, &VTV, 89 StartBlock->getSinglePredecessor()); 90 91 BBMap[Old] = Expanded; 92 return Expanded; 93 } 94 95 Value *BlockGenerator::getNewValue(ScopStmt &Stmt, Value *Old, ValueMapT &BBMap, 96 LoopToScevMapT <S, Loop *L) const { 97 98 auto lookupGlobally = [this](Value *Old) -> Value * { 99 Value *New = GlobalMap.lookup(Old); 100 if (!New) 101 return nullptr; 102 103 // Required by: 104 // * Isl/CodeGen/OpenMP/invariant_base_pointer_preloaded.ll 105 // * Isl/CodeGen/OpenMP/invariant_base_pointer_preloaded_different_bb.ll 106 // * Isl/CodeGen/OpenMP/invariant_base_pointer_preloaded_pass_only_needed.ll 107 // * Isl/CodeGen/OpenMP/invariant_base_pointers_preloaded.ll 108 // * Isl/CodeGen/OpenMP/loop-body-references-outer-values-3.ll 109 // * Isl/CodeGen/OpenMP/single_loop_with_loop_invariant_baseptr.ll 110 // GlobalMap should be a mapping from (value in original SCoP) to (copied 111 // value in generated SCoP), without intermediate mappings, which might 112 // easily require transitiveness as well. 113 if (Value *NewRemapped = GlobalMap.lookup(New)) 114 New = NewRemapped; 115 116 // No test case for this code. 117 if (Old->getType()->getScalarSizeInBits() < 118 New->getType()->getScalarSizeInBits()) 119 New = Builder.CreateTruncOrBitCast(New, Old->getType()); 120 121 return New; 122 }; 123 124 Value *New = nullptr; 125 auto VUse = VirtualUse::create(&Stmt, L, Old, true); 126 switch (VUse.getKind()) { 127 case VirtualUse::Block: 128 // BasicBlock are constants, but the BlockGenerator copies them. 129 New = BBMap.lookup(Old); 130 break; 131 132 case VirtualUse::Constant: 133 // Used by: 134 // * Isl/CodeGen/OpenMP/reference-argument-from-non-affine-region.ll 135 // Constants should not be redefined. In this case, the GlobalMap just 136 // contains a mapping to the same constant, which is unnecessary, but 137 // harmless. 138 if ((New = lookupGlobally(Old))) 139 break; 140 141 assert(!BBMap.count(Old)); 142 New = Old; 143 break; 144 145 case VirtualUse::ReadOnly: 146 assert(!GlobalMap.count(Old)); 147 148 // Required for: 149 // * Isl/CodeGen/MemAccess/create_arrays.ll 150 // * Isl/CodeGen/read-only-scalars.ll 151 // * ScheduleOptimizer/pattern-matching-based-opts_10.ll 152 // For some reason these reload a read-only value. The reloaded value ends 153 // up in BBMap, buts its value should be identical. 154 // 155 // Required for: 156 // * Isl/CodeGen/OpenMP/single_loop_with_param.ll 157 // The parallel subfunctions need to reference the read-only value from the 158 // parent function, this is done by reloading them locally. 159 if ((New = BBMap.lookup(Old))) 160 break; 161 162 New = Old; 163 break; 164 165 case VirtualUse::Synthesizable: 166 // Used by: 167 // * Isl/CodeGen/OpenMP/loop-body-references-outer-values-3.ll 168 // * Isl/CodeGen/OpenMP/recomputed-srem.ll 169 // * Isl/CodeGen/OpenMP/reference-other-bb.ll 170 // * Isl/CodeGen/OpenMP/two-parallel-loops-reference-outer-indvar.ll 171 // For some reason synthesizable values end up in GlobalMap. Their values 172 // are the same as trySynthesizeNewValue would return. The legacy 173 // implementation prioritized GlobalMap, so this is what we do here as well. 174 // Ideally, synthesizable values should not end up in GlobalMap. 175 if ((New = lookupGlobally(Old))) 176 break; 177 178 // Required for: 179 // * Isl/CodeGen/RuntimeDebugBuilder/combine_different_values.ll 180 // * Isl/CodeGen/getNumberOfIterations.ll 181 // * Isl/CodeGen/non_affine_float_compare.ll 182 // * ScheduleOptimizer/pattern-matching-based-opts_10.ll 183 // Ideally, synthesizable values are synthesized by trySynthesizeNewValue, 184 // not precomputed (SCEVExpander has its own caching mechanism). 185 // These tests fail without this, but I think trySynthesizeNewValue would 186 // just re-synthesize the same instructions. 187 if ((New = BBMap.lookup(Old))) 188 break; 189 190 New = trySynthesizeNewValue(Stmt, Old, BBMap, LTS, L); 191 break; 192 193 case VirtualUse::Hoisted: 194 // TODO: Hoisted invariant loads should be found in GlobalMap only, but not 195 // redefined locally (which will be ignored anyway). That is, the following 196 // assertion should apply: assert(!BBMap.count(Old)) 197 198 New = lookupGlobally(Old); 199 break; 200 201 case VirtualUse::Intra: 202 case VirtualUse::Inter: 203 assert(!GlobalMap.count(Old) && 204 "Intra and inter-stmt values are never global"); 205 New = BBMap.lookup(Old); 206 break; 207 } 208 assert(New && "Unexpected scalar dependence in region!"); 209 return New; 210 } 211 212 void BlockGenerator::copyInstScalar(ScopStmt &Stmt, Instruction *Inst, 213 ValueMapT &BBMap, LoopToScevMapT <S) { 214 // We do not generate debug intrinsics as we did not investigate how to 215 // copy them correctly. At the current state, they just crash the code 216 // generation as the meta-data operands are not correctly copied. 217 if (isa<DbgInfoIntrinsic>(Inst)) 218 return; 219 220 Instruction *NewInst = Inst->clone(); 221 222 // Replace old operands with the new ones. 223 for (Value *OldOperand : Inst->operands()) { 224 Value *NewOperand = 225 getNewValue(Stmt, OldOperand, BBMap, LTS, getLoopForStmt(Stmt)); 226 227 if (!NewOperand) { 228 assert(!isa<StoreInst>(NewInst) && 229 "Store instructions are always needed!"); 230 NewInst->deleteValue(); 231 return; 232 } 233 234 NewInst->replaceUsesOfWith(OldOperand, NewOperand); 235 } 236 237 Builder.Insert(NewInst); 238 BBMap[Inst] = NewInst; 239 240 if (!NewInst->getType()->isVoidTy()) 241 NewInst->setName("p_" + Inst->getName()); 242 } 243 244 Value * 245 BlockGenerator::generateLocationAccessed(ScopStmt &Stmt, MemAccInst Inst, 246 ValueMapT &BBMap, LoopToScevMapT <S, 247 isl_id_to_ast_expr *NewAccesses) { 248 const MemoryAccess &MA = Stmt.getArrayAccessFor(Inst); 249 return generateLocationAccessed( 250 Stmt, getLoopForStmt(Stmt), 251 Inst.isNull() ? nullptr : Inst.getPointerOperand(), BBMap, LTS, 252 NewAccesses, MA.getId().release(), MA.getAccessValue()->getType()); 253 } 254 255 Value *BlockGenerator::generateLocationAccessed( 256 ScopStmt &Stmt, Loop *L, Value *Pointer, ValueMapT &BBMap, 257 LoopToScevMapT <S, isl_id_to_ast_expr *NewAccesses, __isl_take isl_id *Id, 258 Type *ExpectedType) { 259 isl_ast_expr *AccessExpr = isl_id_to_ast_expr_get(NewAccesses, Id); 260 261 if (AccessExpr) { 262 AccessExpr = isl_ast_expr_address_of(AccessExpr); 263 auto Address = ExprBuilder->create(AccessExpr); 264 265 // Cast the address of this memory access to a pointer type that has the 266 // same element type as the original access, but uses the address space of 267 // the newly generated pointer. 268 auto OldPtrTy = ExpectedType->getPointerTo(); 269 auto NewPtrTy = Address->getType(); 270 OldPtrTy = PointerType::get(OldPtrTy->getElementType(), 271 NewPtrTy->getPointerAddressSpace()); 272 273 if (OldPtrTy != NewPtrTy) 274 Address = Builder.CreateBitOrPointerCast(Address, OldPtrTy); 275 return Address; 276 } 277 assert( 278 Pointer && 279 "If expression was not generated, must use the original pointer value"); 280 return getNewValue(Stmt, Pointer, BBMap, LTS, L); 281 } 282 283 Value * 284 BlockGenerator::getImplicitAddress(MemoryAccess &Access, Loop *L, 285 LoopToScevMapT <S, ValueMapT &BBMap, 286 __isl_keep isl_id_to_ast_expr *NewAccesses) { 287 if (Access.isLatestArrayKind()) 288 return generateLocationAccessed(*Access.getStatement(), L, nullptr, BBMap, 289 LTS, NewAccesses, Access.getId().release(), 290 Access.getAccessValue()->getType()); 291 292 return getOrCreateAlloca(Access); 293 } 294 295 Loop *BlockGenerator::getLoopForStmt(const ScopStmt &Stmt) const { 296 auto *StmtBB = Stmt.getEntryBlock(); 297 return LI.getLoopFor(StmtBB); 298 } 299 300 Value *BlockGenerator::generateArrayLoad(ScopStmt &Stmt, LoadInst *Load, 301 ValueMapT &BBMap, LoopToScevMapT <S, 302 isl_id_to_ast_expr *NewAccesses) { 303 if (Value *PreloadLoad = GlobalMap.lookup(Load)) 304 return PreloadLoad; 305 306 Value *NewPointer = 307 generateLocationAccessed(Stmt, Load, BBMap, LTS, NewAccesses); 308 Value *ScalarLoad = Builder.CreateAlignedLoad( 309 NewPointer, Load->getAlignment(), Load->getName() + "_p_scalar_"); 310 311 if (PollyDebugPrinting) 312 RuntimeDebugBuilder::createCPUPrinter(Builder, "Load from ", NewPointer, 313 ": ", ScalarLoad, "\n"); 314 315 return ScalarLoad; 316 } 317 318 void BlockGenerator::generateArrayStore(ScopStmt &Stmt, StoreInst *Store, 319 ValueMapT &BBMap, LoopToScevMapT <S, 320 isl_id_to_ast_expr *NewAccesses) { 321 MemoryAccess &MA = Stmt.getArrayAccessFor(Store); 322 isl::set AccDom = MA.getAccessRelation().domain(); 323 std::string Subject = MA.getId().get_name(); 324 325 generateConditionalExecution(Stmt, AccDom, Subject.c_str(), [&, this]() { 326 Value *NewPointer = 327 generateLocationAccessed(Stmt, Store, BBMap, LTS, NewAccesses); 328 Value *ValueOperand = getNewValue(Stmt, Store->getValueOperand(), BBMap, 329 LTS, getLoopForStmt(Stmt)); 330 331 if (PollyDebugPrinting) 332 RuntimeDebugBuilder::createCPUPrinter(Builder, "Store to ", NewPointer, 333 ": ", ValueOperand, "\n"); 334 335 Builder.CreateAlignedStore(ValueOperand, NewPointer, Store->getAlignment()); 336 }); 337 } 338 339 bool BlockGenerator::canSyntheziseInStmt(ScopStmt &Stmt, Instruction *Inst) { 340 Loop *L = getLoopForStmt(Stmt); 341 return (Stmt.isBlockStmt() || !Stmt.getRegion()->contains(L)) && 342 canSynthesize(Inst, *Stmt.getParent(), &SE, L); 343 } 344 345 void BlockGenerator::copyInstruction(ScopStmt &Stmt, Instruction *Inst, 346 ValueMapT &BBMap, LoopToScevMapT <S, 347 isl_id_to_ast_expr *NewAccesses) { 348 // Terminator instructions control the control flow. They are explicitly 349 // expressed in the clast and do not need to be copied. 350 if (Inst->isTerminator()) 351 return; 352 353 // Synthesizable statements will be generated on-demand. 354 if (canSyntheziseInStmt(Stmt, Inst)) 355 return; 356 357 if (auto *Load = dyn_cast<LoadInst>(Inst)) { 358 Value *NewLoad = generateArrayLoad(Stmt, Load, BBMap, LTS, NewAccesses); 359 // Compute NewLoad before its insertion in BBMap to make the insertion 360 // deterministic. 361 BBMap[Load] = NewLoad; 362 return; 363 } 364 365 if (auto *Store = dyn_cast<StoreInst>(Inst)) { 366 // Identified as redundant by -polly-simplify. 367 if (!Stmt.getArrayAccessOrNULLFor(Store)) 368 return; 369 370 generateArrayStore(Stmt, Store, BBMap, LTS, NewAccesses); 371 return; 372 } 373 374 if (auto *PHI = dyn_cast<PHINode>(Inst)) { 375 copyPHIInstruction(Stmt, PHI, BBMap, LTS); 376 return; 377 } 378 379 // Skip some special intrinsics for which we do not adjust the semantics to 380 // the new schedule. All others are handled like every other instruction. 381 if (isIgnoredIntrinsic(Inst)) 382 return; 383 384 copyInstScalar(Stmt, Inst, BBMap, LTS); 385 } 386 387 void BlockGenerator::removeDeadInstructions(BasicBlock *BB, ValueMapT &BBMap) { 388 auto NewBB = Builder.GetInsertBlock(); 389 for (auto I = NewBB->rbegin(); I != NewBB->rend(); I++) { 390 Instruction *NewInst = &*I; 391 392 if (!isInstructionTriviallyDead(NewInst)) 393 continue; 394 395 for (auto Pair : BBMap) 396 if (Pair.second == NewInst) { 397 BBMap.erase(Pair.first); 398 } 399 400 NewInst->eraseFromParent(); 401 I = NewBB->rbegin(); 402 } 403 } 404 405 void BlockGenerator::copyStmt(ScopStmt &Stmt, LoopToScevMapT <S, 406 isl_id_to_ast_expr *NewAccesses) { 407 assert(Stmt.isBlockStmt() && 408 "Only block statements can be copied by the block generator"); 409 410 ValueMapT BBMap; 411 412 BasicBlock *BB = Stmt.getBasicBlock(); 413 copyBB(Stmt, BB, BBMap, LTS, NewAccesses); 414 removeDeadInstructions(BB, BBMap); 415 } 416 417 BasicBlock *BlockGenerator::splitBB(BasicBlock *BB) { 418 BasicBlock *CopyBB = SplitBlock(Builder.GetInsertBlock(), 419 &*Builder.GetInsertPoint(), &DT, &LI); 420 CopyBB->setName("polly.stmt." + BB->getName()); 421 return CopyBB; 422 } 423 424 BasicBlock *BlockGenerator::copyBB(ScopStmt &Stmt, BasicBlock *BB, 425 ValueMapT &BBMap, LoopToScevMapT <S, 426 isl_id_to_ast_expr *NewAccesses) { 427 BasicBlock *CopyBB = splitBB(BB); 428 Builder.SetInsertPoint(&CopyBB->front()); 429 generateScalarLoads(Stmt, LTS, BBMap, NewAccesses); 430 431 copyBB(Stmt, BB, CopyBB, BBMap, LTS, NewAccesses); 432 433 // After a basic block was copied store all scalars that escape this block in 434 // their alloca. 435 generateScalarStores(Stmt, LTS, BBMap, NewAccesses); 436 return CopyBB; 437 } 438 439 void BlockGenerator::copyBB(ScopStmt &Stmt, BasicBlock *BB, BasicBlock *CopyBB, 440 ValueMapT &BBMap, LoopToScevMapT <S, 441 isl_id_to_ast_expr *NewAccesses) { 442 EntryBB = &CopyBB->getParent()->getEntryBlock(); 443 444 if (Stmt.isBlockStmt()) 445 for (Instruction *Inst : Stmt.getInstructions()) 446 copyInstruction(Stmt, Inst, BBMap, LTS, NewAccesses); 447 else 448 for (Instruction &Inst : *BB) 449 copyInstruction(Stmt, &Inst, BBMap, LTS, NewAccesses); 450 } 451 452 Value *BlockGenerator::getOrCreateAlloca(const MemoryAccess &Access) { 453 assert(!Access.isLatestArrayKind() && "Trying to get alloca for array kind"); 454 455 return getOrCreateAlloca(Access.getLatestScopArrayInfo()); 456 } 457 458 Value *BlockGenerator::getOrCreateAlloca(const ScopArrayInfo *Array) { 459 assert(!Array->isArrayKind() && "Trying to get alloca for array kind"); 460 461 auto &Addr = ScalarMap[Array]; 462 463 if (Addr) { 464 // Allow allocas to be (temporarily) redirected once by adding a new 465 // old-alloca-addr to new-addr mapping to GlobalMap. This functionality 466 // is used for example by the OpenMP code generation where a first use 467 // of a scalar while still in the host code allocates a normal alloca with 468 // getOrCreateAlloca. When the values of this scalar are accessed during 469 // the generation of the parallel subfunction, these values are copied over 470 // to the parallel subfunction and each request for a scalar alloca slot 471 // must be forwarded to the temporary in-subfunction slot. This mapping is 472 // removed when the subfunction has been generated and again normal host 473 // code is generated. Due to the following reasons it is not possible to 474 // perform the GlobalMap lookup right after creating the alloca below, but 475 // instead we need to check GlobalMap at each call to getOrCreateAlloca: 476 // 477 // 1) GlobalMap may be changed multiple times (for each parallel loop), 478 // 2) The temporary mapping is commonly only known after the initial 479 // alloca has already been generated, and 480 // 3) The original alloca value must be restored after leaving the 481 // sub-function. 482 if (Value *NewAddr = GlobalMap.lookup(&*Addr)) 483 return NewAddr; 484 return Addr; 485 } 486 487 Type *Ty = Array->getElementType(); 488 Value *ScalarBase = Array->getBasePtr(); 489 std::string NameExt; 490 if (Array->isPHIKind()) 491 NameExt = ".phiops"; 492 else 493 NameExt = ".s2a"; 494 495 const DataLayout &DL = Builder.GetInsertBlock()->getModule()->getDataLayout(); 496 497 Addr = new AllocaInst(Ty, DL.getAllocaAddrSpace(), 498 ScalarBase->getName() + NameExt); 499 EntryBB = &Builder.GetInsertBlock()->getParent()->getEntryBlock(); 500 Addr->insertBefore(&*EntryBB->getFirstInsertionPt()); 501 502 return Addr; 503 } 504 505 void BlockGenerator::handleOutsideUsers(const Scop &S, ScopArrayInfo *Array) { 506 Instruction *Inst = cast<Instruction>(Array->getBasePtr()); 507 508 // If there are escape users we get the alloca for this instruction and put it 509 // in the EscapeMap for later finalization. Lastly, if the instruction was 510 // copied multiple times we already did this and can exit. 511 if (EscapeMap.count(Inst)) 512 return; 513 514 EscapeUserVectorTy EscapeUsers; 515 for (User *U : Inst->users()) { 516 517 // Non-instruction user will never escape. 518 Instruction *UI = dyn_cast<Instruction>(U); 519 if (!UI) 520 continue; 521 522 if (S.contains(UI)) 523 continue; 524 525 EscapeUsers.push_back(UI); 526 } 527 528 // Exit if no escape uses were found. 529 if (EscapeUsers.empty()) 530 return; 531 532 // Get or create an escape alloca for this instruction. 533 auto *ScalarAddr = getOrCreateAlloca(Array); 534 535 // Remember that this instruction has escape uses and the escape alloca. 536 EscapeMap[Inst] = std::make_pair(ScalarAddr, std::move(EscapeUsers)); 537 } 538 539 void BlockGenerator::generateScalarLoads( 540 ScopStmt &Stmt, LoopToScevMapT <S, ValueMapT &BBMap, 541 __isl_keep isl_id_to_ast_expr *NewAccesses) { 542 for (MemoryAccess *MA : Stmt) { 543 if (MA->isOriginalArrayKind() || MA->isWrite()) 544 continue; 545 546 #ifndef NDEBUG 547 auto *StmtDom = Stmt.getDomain(); 548 auto *AccDom = isl_map_domain(MA->getAccessRelation().release()); 549 assert(isl_set_is_subset(StmtDom, AccDom) && 550 "Scalar must be loaded in all statement instances"); 551 isl_set_free(StmtDom); 552 isl_set_free(AccDom); 553 #endif 554 555 auto *Address = 556 getImplicitAddress(*MA, getLoopForStmt(Stmt), LTS, BBMap, NewAccesses); 557 assert((!isa<Instruction>(Address) || 558 DT.dominates(cast<Instruction>(Address)->getParent(), 559 Builder.GetInsertBlock())) && 560 "Domination violation"); 561 BBMap[MA->getAccessValue()] = 562 Builder.CreateLoad(Address, Address->getName() + ".reload"); 563 } 564 } 565 566 Value *BlockGenerator::buildContainsCondition(ScopStmt &Stmt, 567 const isl::set &Subdomain) { 568 isl::ast_build AstBuild = give(isl_ast_build_copy(Stmt.getAstBuild())); 569 isl::set Domain = give(Stmt.getDomain()); 570 571 isl::union_map USchedule = AstBuild.get_schedule(); 572 USchedule = USchedule.intersect_domain(Domain); 573 574 assert(!USchedule.is_empty()); 575 isl::map Schedule = isl::map::from_union_map(USchedule); 576 577 isl::set ScheduledDomain = Schedule.range(); 578 isl::set ScheduledSet = Subdomain.apply(Schedule); 579 580 isl::ast_build RestrictedBuild = AstBuild.restrict(ScheduledDomain); 581 582 isl::ast_expr IsInSet = RestrictedBuild.expr_from(ScheduledSet); 583 Value *IsInSetExpr = ExprBuilder->create(IsInSet.copy()); 584 IsInSetExpr = Builder.CreateICmpNE( 585 IsInSetExpr, ConstantInt::get(IsInSetExpr->getType(), 0)); 586 587 return IsInSetExpr; 588 } 589 590 void BlockGenerator::generateConditionalExecution( 591 ScopStmt &Stmt, const isl::set &Subdomain, StringRef Subject, 592 const std::function<void()> &GenThenFunc) { 593 isl::set StmtDom = give(Stmt.getDomain()); 594 595 // Don't call GenThenFunc if it is never executed. An ast index expression 596 // might not be defined in this case. 597 if (Subdomain.is_empty()) 598 return; 599 600 // If the condition is a tautology, don't generate a condition around the 601 // code. 602 bool IsPartialWrite = 603 !StmtDom.intersect_params(give(Stmt.getParent()->getContext())) 604 .is_subset(Subdomain); 605 if (!IsPartialWrite) { 606 GenThenFunc(); 607 return; 608 } 609 610 // Generate the condition. 611 Value *Cond = buildContainsCondition(Stmt, Subdomain); 612 BasicBlock *HeadBlock = Builder.GetInsertBlock(); 613 StringRef BlockName = HeadBlock->getName(); 614 615 // Generate the conditional block. 616 SplitBlockAndInsertIfThen(Cond, &*Builder.GetInsertPoint(), false, nullptr, 617 &DT, &LI); 618 BranchInst *Branch = cast<BranchInst>(HeadBlock->getTerminator()); 619 BasicBlock *ThenBlock = Branch->getSuccessor(0); 620 BasicBlock *TailBlock = Branch->getSuccessor(1); 621 622 // Assign descriptive names. 623 if (auto *CondInst = dyn_cast<Instruction>(Cond)) 624 CondInst->setName("polly." + Subject + ".cond"); 625 ThenBlock->setName(BlockName + "." + Subject + ".partial"); 626 TailBlock->setName(BlockName + ".cont"); 627 628 // Put the client code into the conditional block and continue in the merge 629 // block afterwards. 630 Builder.SetInsertPoint(ThenBlock, ThenBlock->getFirstInsertionPt()); 631 GenThenFunc(); 632 Builder.SetInsertPoint(TailBlock, TailBlock->getFirstInsertionPt()); 633 } 634 635 void BlockGenerator::generateScalarStores( 636 ScopStmt &Stmt, LoopToScevMapT <S, ValueMapT &BBMap, 637 __isl_keep isl_id_to_ast_expr *NewAccesses) { 638 Loop *L = LI.getLoopFor(Stmt.getBasicBlock()); 639 640 assert(Stmt.isBlockStmt() && 641 "Region statements need to use the generateScalarStores() function in " 642 "the RegionGenerator"); 643 644 for (MemoryAccess *MA : Stmt) { 645 if (MA->isOriginalArrayKind() || MA->isRead()) 646 continue; 647 648 isl::set AccDom = MA->getAccessRelation().domain(); 649 std::string Subject = MA->getId().get_name(); 650 651 generateConditionalExecution( 652 Stmt, AccDom, Subject.c_str(), [&, this, MA]() { 653 Value *Val = MA->getAccessValue(); 654 if (MA->isAnyPHIKind()) { 655 assert(MA->getIncoming().size() >= 1 && 656 "Block statements have exactly one exiting block, or " 657 "multiple but " 658 "with same incoming block and value"); 659 assert(std::all_of(MA->getIncoming().begin(), 660 MA->getIncoming().end(), 661 [&](std::pair<BasicBlock *, Value *> p) -> bool { 662 return p.first == Stmt.getBasicBlock(); 663 }) && 664 "Incoming block must be statement's block"); 665 Val = MA->getIncoming()[0].second; 666 } 667 auto Address = getImplicitAddress(*MA, getLoopForStmt(Stmt), LTS, 668 BBMap, NewAccesses); 669 670 Val = getNewValue(Stmt, Val, BBMap, LTS, L); 671 assert((!isa<Instruction>(Val) || 672 DT.dominates(cast<Instruction>(Val)->getParent(), 673 Builder.GetInsertBlock())) && 674 "Domination violation"); 675 assert((!isa<Instruction>(Address) || 676 DT.dominates(cast<Instruction>(Address)->getParent(), 677 Builder.GetInsertBlock())) && 678 "Domination violation"); 679 Builder.CreateStore(Val, Address); 680 681 }); 682 } 683 } 684 685 void BlockGenerator::createScalarInitialization(Scop &S) { 686 BasicBlock *ExitBB = S.getExit(); 687 BasicBlock *PreEntryBB = S.getEnteringBlock(); 688 689 Builder.SetInsertPoint(&*StartBlock->begin()); 690 691 for (auto &Array : S.arrays()) { 692 if (Array->getNumberOfDimensions() != 0) 693 continue; 694 if (Array->isPHIKind()) { 695 // For PHI nodes, the only values we need to store are the ones that 696 // reach the PHI node from outside the region. In general there should 697 // only be one such incoming edge and this edge should enter through 698 // 'PreEntryBB'. 699 auto PHI = cast<PHINode>(Array->getBasePtr()); 700 701 for (auto BI = PHI->block_begin(), BE = PHI->block_end(); BI != BE; BI++) 702 if (!S.contains(*BI) && *BI != PreEntryBB) 703 llvm_unreachable("Incoming edges from outside the scop should always " 704 "come from PreEntryBB"); 705 706 int Idx = PHI->getBasicBlockIndex(PreEntryBB); 707 if (Idx < 0) 708 continue; 709 710 Value *ScalarValue = PHI->getIncomingValue(Idx); 711 712 Builder.CreateStore(ScalarValue, getOrCreateAlloca(Array)); 713 continue; 714 } 715 716 auto *Inst = dyn_cast<Instruction>(Array->getBasePtr()); 717 718 if (Inst && S.contains(Inst)) 719 continue; 720 721 // PHI nodes that are not marked as such in their SAI object are either exit 722 // PHI nodes we model as common scalars but without initialization, or 723 // incoming phi nodes that need to be initialized. Check if the first is the 724 // case for Inst and do not create and initialize memory if so. 725 if (auto *PHI = dyn_cast_or_null<PHINode>(Inst)) 726 if (!S.hasSingleExitEdge() && PHI->getBasicBlockIndex(ExitBB) >= 0) 727 continue; 728 729 Builder.CreateStore(Array->getBasePtr(), getOrCreateAlloca(Array)); 730 } 731 } 732 733 void BlockGenerator::createScalarFinalization(Scop &S) { 734 // The exit block of the __unoptimized__ region. 735 BasicBlock *ExitBB = S.getExitingBlock(); 736 // The merge block __just after__ the region and the optimized region. 737 BasicBlock *MergeBB = S.getExit(); 738 739 // The exit block of the __optimized__ region. 740 BasicBlock *OptExitBB = *(pred_begin(MergeBB)); 741 if (OptExitBB == ExitBB) 742 OptExitBB = *(++pred_begin(MergeBB)); 743 744 Builder.SetInsertPoint(OptExitBB->getTerminator()); 745 for (const auto &EscapeMapping : EscapeMap) { 746 // Extract the escaping instruction and the escaping users as well as the 747 // alloca the instruction was demoted to. 748 Instruction *EscapeInst = EscapeMapping.first; 749 const auto &EscapeMappingValue = EscapeMapping.second; 750 const EscapeUserVectorTy &EscapeUsers = EscapeMappingValue.second; 751 Value *ScalarAddr = EscapeMappingValue.first; 752 753 // Reload the demoted instruction in the optimized version of the SCoP. 754 Value *EscapeInstReload = 755 Builder.CreateLoad(ScalarAddr, EscapeInst->getName() + ".final_reload"); 756 EscapeInstReload = 757 Builder.CreateBitOrPointerCast(EscapeInstReload, EscapeInst->getType()); 758 759 // Create the merge PHI that merges the optimized and unoptimized version. 760 PHINode *MergePHI = PHINode::Create(EscapeInst->getType(), 2, 761 EscapeInst->getName() + ".merge"); 762 MergePHI->insertBefore(&*MergeBB->getFirstInsertionPt()); 763 764 // Add the respective values to the merge PHI. 765 MergePHI->addIncoming(EscapeInstReload, OptExitBB); 766 MergePHI->addIncoming(EscapeInst, ExitBB); 767 768 // The information of scalar evolution about the escaping instruction needs 769 // to be revoked so the new merged instruction will be used. 770 if (SE.isSCEVable(EscapeInst->getType())) 771 SE.forgetValue(EscapeInst); 772 773 // Replace all uses of the demoted instruction with the merge PHI. 774 for (Instruction *EUser : EscapeUsers) 775 EUser->replaceUsesOfWith(EscapeInst, MergePHI); 776 } 777 } 778 779 void BlockGenerator::findOutsideUsers(Scop &S) { 780 for (auto &Array : S.arrays()) { 781 782 if (Array->getNumberOfDimensions() != 0) 783 continue; 784 785 if (Array->isPHIKind()) 786 continue; 787 788 auto *Inst = dyn_cast<Instruction>(Array->getBasePtr()); 789 790 if (!Inst) 791 continue; 792 793 // Scop invariant hoisting moves some of the base pointers out of the scop. 794 // We can ignore these, as the invariant load hoisting already registers the 795 // relevant outside users. 796 if (!S.contains(Inst)) 797 continue; 798 799 handleOutsideUsers(S, Array); 800 } 801 } 802 803 void BlockGenerator::createExitPHINodeMerges(Scop &S) { 804 if (S.hasSingleExitEdge()) 805 return; 806 807 auto *ExitBB = S.getExitingBlock(); 808 auto *MergeBB = S.getExit(); 809 auto *AfterMergeBB = MergeBB->getSingleSuccessor(); 810 BasicBlock *OptExitBB = *(pred_begin(MergeBB)); 811 if (OptExitBB == ExitBB) 812 OptExitBB = *(++pred_begin(MergeBB)); 813 814 Builder.SetInsertPoint(OptExitBB->getTerminator()); 815 816 for (auto &SAI : S.arrays()) { 817 auto *Val = SAI->getBasePtr(); 818 819 // Only Value-like scalars need a merge PHI. Exit block PHIs receive either 820 // the original PHI's value or the reloaded incoming values from the 821 // generated code. An llvm::Value is merged between the original code's 822 // value or the generated one. 823 if (!SAI->isExitPHIKind()) 824 continue; 825 826 PHINode *PHI = dyn_cast<PHINode>(Val); 827 if (!PHI) 828 continue; 829 830 if (PHI->getParent() != AfterMergeBB) 831 continue; 832 833 std::string Name = PHI->getName(); 834 Value *ScalarAddr = getOrCreateAlloca(SAI); 835 Value *Reload = Builder.CreateLoad(ScalarAddr, Name + ".ph.final_reload"); 836 Reload = Builder.CreateBitOrPointerCast(Reload, PHI->getType()); 837 Value *OriginalValue = PHI->getIncomingValueForBlock(MergeBB); 838 assert((!isa<Instruction>(OriginalValue) || 839 cast<Instruction>(OriginalValue)->getParent() != MergeBB) && 840 "Original value must no be one we just generated."); 841 auto *MergePHI = PHINode::Create(PHI->getType(), 2, Name + ".ph.merge"); 842 MergePHI->insertBefore(&*MergeBB->getFirstInsertionPt()); 843 MergePHI->addIncoming(Reload, OptExitBB); 844 MergePHI->addIncoming(OriginalValue, ExitBB); 845 int Idx = PHI->getBasicBlockIndex(MergeBB); 846 PHI->setIncomingValue(Idx, MergePHI); 847 } 848 } 849 850 void BlockGenerator::invalidateScalarEvolution(Scop &S) { 851 for (auto &Stmt : S) 852 if (Stmt.isCopyStmt()) 853 continue; 854 else if (Stmt.isBlockStmt()) 855 for (auto &Inst : *Stmt.getBasicBlock()) 856 SE.forgetValue(&Inst); 857 else if (Stmt.isRegionStmt()) 858 for (auto *BB : Stmt.getRegion()->blocks()) 859 for (auto &Inst : *BB) 860 SE.forgetValue(&Inst); 861 else 862 llvm_unreachable("Unexpected statement type found"); 863 864 // Invalidate SCEV of loops surrounding the EscapeUsers. 865 for (const auto &EscapeMapping : EscapeMap) { 866 const EscapeUserVectorTy &EscapeUsers = EscapeMapping.second.second; 867 for (Instruction *EUser : EscapeUsers) { 868 if (Loop *L = LI.getLoopFor(EUser->getParent())) 869 while (L) { 870 SE.forgetLoop(L); 871 L = L->getParentLoop(); 872 } 873 } 874 } 875 } 876 877 void BlockGenerator::finalizeSCoP(Scop &S) { 878 findOutsideUsers(S); 879 createScalarInitialization(S); 880 createExitPHINodeMerges(S); 881 createScalarFinalization(S); 882 invalidateScalarEvolution(S); 883 } 884 885 VectorBlockGenerator::VectorBlockGenerator(BlockGenerator &BlockGen, 886 std::vector<LoopToScevMapT> &VLTS, 887 isl_map *Schedule) 888 : BlockGenerator(BlockGen), VLTS(VLTS), Schedule(Schedule) { 889 assert(Schedule && "No statement domain provided"); 890 } 891 892 Value *VectorBlockGenerator::getVectorValue(ScopStmt &Stmt, Value *Old, 893 ValueMapT &VectorMap, 894 VectorValueMapT &ScalarMaps, 895 Loop *L) { 896 if (Value *NewValue = VectorMap.lookup(Old)) 897 return NewValue; 898 899 int Width = getVectorWidth(); 900 901 Value *Vector = UndefValue::get(VectorType::get(Old->getType(), Width)); 902 903 for (int Lane = 0; Lane < Width; Lane++) 904 Vector = Builder.CreateInsertElement( 905 Vector, getNewValue(Stmt, Old, ScalarMaps[Lane], VLTS[Lane], L), 906 Builder.getInt32(Lane)); 907 908 VectorMap[Old] = Vector; 909 910 return Vector; 911 } 912 913 Type *VectorBlockGenerator::getVectorPtrTy(const Value *Val, int Width) { 914 PointerType *PointerTy = dyn_cast<PointerType>(Val->getType()); 915 assert(PointerTy && "PointerType expected"); 916 917 Type *ScalarType = PointerTy->getElementType(); 918 VectorType *VectorType = VectorType::get(ScalarType, Width); 919 920 return PointerType::getUnqual(VectorType); 921 } 922 923 Value *VectorBlockGenerator::generateStrideOneLoad( 924 ScopStmt &Stmt, LoadInst *Load, VectorValueMapT &ScalarMaps, 925 __isl_keep isl_id_to_ast_expr *NewAccesses, bool NegativeStride = false) { 926 unsigned VectorWidth = getVectorWidth(); 927 auto *Pointer = Load->getPointerOperand(); 928 Type *VectorPtrType = getVectorPtrTy(Pointer, VectorWidth); 929 unsigned Offset = NegativeStride ? VectorWidth - 1 : 0; 930 931 Value *NewPointer = generateLocationAccessed(Stmt, Load, ScalarMaps[Offset], 932 VLTS[Offset], NewAccesses); 933 Value *VectorPtr = 934 Builder.CreateBitCast(NewPointer, VectorPtrType, "vector_ptr"); 935 LoadInst *VecLoad = 936 Builder.CreateLoad(VectorPtr, Load->getName() + "_p_vec_full"); 937 if (!Aligned) 938 VecLoad->setAlignment(8); 939 940 if (NegativeStride) { 941 SmallVector<Constant *, 16> Indices; 942 for (int i = VectorWidth - 1; i >= 0; i--) 943 Indices.push_back(ConstantInt::get(Builder.getInt32Ty(), i)); 944 Constant *SV = llvm::ConstantVector::get(Indices); 945 Value *RevVecLoad = Builder.CreateShuffleVector( 946 VecLoad, VecLoad, SV, Load->getName() + "_reverse"); 947 return RevVecLoad; 948 } 949 950 return VecLoad; 951 } 952 953 Value *VectorBlockGenerator::generateStrideZeroLoad( 954 ScopStmt &Stmt, LoadInst *Load, ValueMapT &BBMap, 955 __isl_keep isl_id_to_ast_expr *NewAccesses) { 956 auto *Pointer = Load->getPointerOperand(); 957 Type *VectorPtrType = getVectorPtrTy(Pointer, 1); 958 Value *NewPointer = 959 generateLocationAccessed(Stmt, Load, BBMap, VLTS[0], NewAccesses); 960 Value *VectorPtr = Builder.CreateBitCast(NewPointer, VectorPtrType, 961 Load->getName() + "_p_vec_p"); 962 LoadInst *ScalarLoad = 963 Builder.CreateLoad(VectorPtr, Load->getName() + "_p_splat_one"); 964 965 if (!Aligned) 966 ScalarLoad->setAlignment(8); 967 968 Constant *SplatVector = Constant::getNullValue( 969 VectorType::get(Builder.getInt32Ty(), getVectorWidth())); 970 971 Value *VectorLoad = Builder.CreateShuffleVector( 972 ScalarLoad, ScalarLoad, SplatVector, Load->getName() + "_p_splat"); 973 return VectorLoad; 974 } 975 976 Value *VectorBlockGenerator::generateUnknownStrideLoad( 977 ScopStmt &Stmt, LoadInst *Load, VectorValueMapT &ScalarMaps, 978 __isl_keep isl_id_to_ast_expr *NewAccesses) { 979 int VectorWidth = getVectorWidth(); 980 auto *Pointer = Load->getPointerOperand(); 981 VectorType *VectorType = VectorType::get( 982 dyn_cast<PointerType>(Pointer->getType())->getElementType(), VectorWidth); 983 984 Value *Vector = UndefValue::get(VectorType); 985 986 for (int i = 0; i < VectorWidth; i++) { 987 Value *NewPointer = generateLocationAccessed(Stmt, Load, ScalarMaps[i], 988 VLTS[i], NewAccesses); 989 Value *ScalarLoad = 990 Builder.CreateLoad(NewPointer, Load->getName() + "_p_scalar_"); 991 Vector = Builder.CreateInsertElement( 992 Vector, ScalarLoad, Builder.getInt32(i), Load->getName() + "_p_vec_"); 993 } 994 995 return Vector; 996 } 997 998 void VectorBlockGenerator::generateLoad( 999 ScopStmt &Stmt, LoadInst *Load, ValueMapT &VectorMap, 1000 VectorValueMapT &ScalarMaps, __isl_keep isl_id_to_ast_expr *NewAccesses) { 1001 if (Value *PreloadLoad = GlobalMap.lookup(Load)) { 1002 VectorMap[Load] = Builder.CreateVectorSplat(getVectorWidth(), PreloadLoad, 1003 Load->getName() + "_p"); 1004 return; 1005 } 1006 1007 if (!VectorType::isValidElementType(Load->getType())) { 1008 for (int i = 0; i < getVectorWidth(); i++) 1009 ScalarMaps[i][Load] = 1010 generateArrayLoad(Stmt, Load, ScalarMaps[i], VLTS[i], NewAccesses); 1011 return; 1012 } 1013 1014 const MemoryAccess &Access = Stmt.getArrayAccessFor(Load); 1015 1016 // Make sure we have scalar values available to access the pointer to 1017 // the data location. 1018 extractScalarValues(Load, VectorMap, ScalarMaps); 1019 1020 Value *NewLoad; 1021 if (Access.isStrideZero(isl::manage(isl_map_copy(Schedule)))) 1022 NewLoad = generateStrideZeroLoad(Stmt, Load, ScalarMaps[0], NewAccesses); 1023 else if (Access.isStrideOne(isl::manage(isl_map_copy(Schedule)))) 1024 NewLoad = generateStrideOneLoad(Stmt, Load, ScalarMaps, NewAccesses); 1025 else if (Access.isStrideX(isl::manage(isl_map_copy(Schedule)), -1)) 1026 NewLoad = generateStrideOneLoad(Stmt, Load, ScalarMaps, NewAccesses, true); 1027 else 1028 NewLoad = generateUnknownStrideLoad(Stmt, Load, ScalarMaps, NewAccesses); 1029 1030 VectorMap[Load] = NewLoad; 1031 } 1032 1033 void VectorBlockGenerator::copyUnaryInst(ScopStmt &Stmt, UnaryInstruction *Inst, 1034 ValueMapT &VectorMap, 1035 VectorValueMapT &ScalarMaps) { 1036 int VectorWidth = getVectorWidth(); 1037 Value *NewOperand = getVectorValue(Stmt, Inst->getOperand(0), VectorMap, 1038 ScalarMaps, getLoopForStmt(Stmt)); 1039 1040 assert(isa<CastInst>(Inst) && "Can not generate vector code for instruction"); 1041 1042 const CastInst *Cast = dyn_cast<CastInst>(Inst); 1043 VectorType *DestType = VectorType::get(Inst->getType(), VectorWidth); 1044 VectorMap[Inst] = Builder.CreateCast(Cast->getOpcode(), NewOperand, DestType); 1045 } 1046 1047 void VectorBlockGenerator::copyBinaryInst(ScopStmt &Stmt, BinaryOperator *Inst, 1048 ValueMapT &VectorMap, 1049 VectorValueMapT &ScalarMaps) { 1050 Loop *L = getLoopForStmt(Stmt); 1051 Value *OpZero = Inst->getOperand(0); 1052 Value *OpOne = Inst->getOperand(1); 1053 1054 Value *NewOpZero, *NewOpOne; 1055 NewOpZero = getVectorValue(Stmt, OpZero, VectorMap, ScalarMaps, L); 1056 NewOpOne = getVectorValue(Stmt, OpOne, VectorMap, ScalarMaps, L); 1057 1058 Value *NewInst = Builder.CreateBinOp(Inst->getOpcode(), NewOpZero, NewOpOne, 1059 Inst->getName() + "p_vec"); 1060 VectorMap[Inst] = NewInst; 1061 } 1062 1063 void VectorBlockGenerator::copyStore( 1064 ScopStmt &Stmt, StoreInst *Store, ValueMapT &VectorMap, 1065 VectorValueMapT &ScalarMaps, __isl_keep isl_id_to_ast_expr *NewAccesses) { 1066 const MemoryAccess &Access = Stmt.getArrayAccessFor(Store); 1067 1068 auto *Pointer = Store->getPointerOperand(); 1069 Value *Vector = getVectorValue(Stmt, Store->getValueOperand(), VectorMap, 1070 ScalarMaps, getLoopForStmt(Stmt)); 1071 1072 // Make sure we have scalar values available to access the pointer to 1073 // the data location. 1074 extractScalarValues(Store, VectorMap, ScalarMaps); 1075 1076 if (Access.isStrideOne(isl::manage(isl_map_copy(Schedule)))) { 1077 Type *VectorPtrType = getVectorPtrTy(Pointer, getVectorWidth()); 1078 Value *NewPointer = generateLocationAccessed(Stmt, Store, ScalarMaps[0], 1079 VLTS[0], NewAccesses); 1080 1081 Value *VectorPtr = 1082 Builder.CreateBitCast(NewPointer, VectorPtrType, "vector_ptr"); 1083 StoreInst *Store = Builder.CreateStore(Vector, VectorPtr); 1084 1085 if (!Aligned) 1086 Store->setAlignment(8); 1087 } else { 1088 for (unsigned i = 0; i < ScalarMaps.size(); i++) { 1089 Value *Scalar = Builder.CreateExtractElement(Vector, Builder.getInt32(i)); 1090 Value *NewPointer = generateLocationAccessed(Stmt, Store, ScalarMaps[i], 1091 VLTS[i], NewAccesses); 1092 Builder.CreateStore(Scalar, NewPointer); 1093 } 1094 } 1095 } 1096 1097 bool VectorBlockGenerator::hasVectorOperands(const Instruction *Inst, 1098 ValueMapT &VectorMap) { 1099 for (Value *Operand : Inst->operands()) 1100 if (VectorMap.count(Operand)) 1101 return true; 1102 return false; 1103 } 1104 1105 bool VectorBlockGenerator::extractScalarValues(const Instruction *Inst, 1106 ValueMapT &VectorMap, 1107 VectorValueMapT &ScalarMaps) { 1108 bool HasVectorOperand = false; 1109 int VectorWidth = getVectorWidth(); 1110 1111 for (Value *Operand : Inst->operands()) { 1112 ValueMapT::iterator VecOp = VectorMap.find(Operand); 1113 1114 if (VecOp == VectorMap.end()) 1115 continue; 1116 1117 HasVectorOperand = true; 1118 Value *NewVector = VecOp->second; 1119 1120 for (int i = 0; i < VectorWidth; ++i) { 1121 ValueMapT &SM = ScalarMaps[i]; 1122 1123 // If there is one scalar extracted, all scalar elements should have 1124 // already been extracted by the code here. So no need to check for the 1125 // existence of all of them. 1126 if (SM.count(Operand)) 1127 break; 1128 1129 SM[Operand] = 1130 Builder.CreateExtractElement(NewVector, Builder.getInt32(i)); 1131 } 1132 } 1133 1134 return HasVectorOperand; 1135 } 1136 1137 void VectorBlockGenerator::copyInstScalarized( 1138 ScopStmt &Stmt, Instruction *Inst, ValueMapT &VectorMap, 1139 VectorValueMapT &ScalarMaps, __isl_keep isl_id_to_ast_expr *NewAccesses) { 1140 bool HasVectorOperand; 1141 int VectorWidth = getVectorWidth(); 1142 1143 HasVectorOperand = extractScalarValues(Inst, VectorMap, ScalarMaps); 1144 1145 for (int VectorLane = 0; VectorLane < getVectorWidth(); VectorLane++) 1146 BlockGenerator::copyInstruction(Stmt, Inst, ScalarMaps[VectorLane], 1147 VLTS[VectorLane], NewAccesses); 1148 1149 if (!VectorType::isValidElementType(Inst->getType()) || !HasVectorOperand) 1150 return; 1151 1152 // Make the result available as vector value. 1153 VectorType *VectorType = VectorType::get(Inst->getType(), VectorWidth); 1154 Value *Vector = UndefValue::get(VectorType); 1155 1156 for (int i = 0; i < VectorWidth; i++) 1157 Vector = Builder.CreateInsertElement(Vector, ScalarMaps[i][Inst], 1158 Builder.getInt32(i)); 1159 1160 VectorMap[Inst] = Vector; 1161 } 1162 1163 int VectorBlockGenerator::getVectorWidth() { return VLTS.size(); } 1164 1165 void VectorBlockGenerator::copyInstruction( 1166 ScopStmt &Stmt, Instruction *Inst, ValueMapT &VectorMap, 1167 VectorValueMapT &ScalarMaps, __isl_keep isl_id_to_ast_expr *NewAccesses) { 1168 // Terminator instructions control the control flow. They are explicitly 1169 // expressed in the clast and do not need to be copied. 1170 if (Inst->isTerminator()) 1171 return; 1172 1173 if (canSyntheziseInStmt(Stmt, Inst)) 1174 return; 1175 1176 if (auto *Load = dyn_cast<LoadInst>(Inst)) { 1177 generateLoad(Stmt, Load, VectorMap, ScalarMaps, NewAccesses); 1178 return; 1179 } 1180 1181 if (hasVectorOperands(Inst, VectorMap)) { 1182 if (auto *Store = dyn_cast<StoreInst>(Inst)) { 1183 // Identified as redundant by -polly-simplify. 1184 if (!Stmt.getArrayAccessOrNULLFor(Store)) 1185 return; 1186 1187 copyStore(Stmt, Store, VectorMap, ScalarMaps, NewAccesses); 1188 return; 1189 } 1190 1191 if (auto *Unary = dyn_cast<UnaryInstruction>(Inst)) { 1192 copyUnaryInst(Stmt, Unary, VectorMap, ScalarMaps); 1193 return; 1194 } 1195 1196 if (auto *Binary = dyn_cast<BinaryOperator>(Inst)) { 1197 copyBinaryInst(Stmt, Binary, VectorMap, ScalarMaps); 1198 return; 1199 } 1200 1201 // Fallthrough: We generate scalar instructions, if we don't know how to 1202 // generate vector code. 1203 } 1204 1205 copyInstScalarized(Stmt, Inst, VectorMap, ScalarMaps, NewAccesses); 1206 } 1207 1208 void VectorBlockGenerator::generateScalarVectorLoads( 1209 ScopStmt &Stmt, ValueMapT &VectorBlockMap) { 1210 for (MemoryAccess *MA : Stmt) { 1211 if (MA->isArrayKind() || MA->isWrite()) 1212 continue; 1213 1214 auto *Address = getOrCreateAlloca(*MA); 1215 Type *VectorPtrType = getVectorPtrTy(Address, 1); 1216 Value *VectorPtr = Builder.CreateBitCast(Address, VectorPtrType, 1217 Address->getName() + "_p_vec_p"); 1218 auto *Val = Builder.CreateLoad(VectorPtr, Address->getName() + ".reload"); 1219 Constant *SplatVector = Constant::getNullValue( 1220 VectorType::get(Builder.getInt32Ty(), getVectorWidth())); 1221 1222 Value *VectorVal = Builder.CreateShuffleVector( 1223 Val, Val, SplatVector, Address->getName() + "_p_splat"); 1224 VectorBlockMap[MA->getAccessValue()] = VectorVal; 1225 } 1226 } 1227 1228 void VectorBlockGenerator::verifyNoScalarStores(ScopStmt &Stmt) { 1229 for (MemoryAccess *MA : Stmt) { 1230 if (MA->isArrayKind() || MA->isRead()) 1231 continue; 1232 1233 llvm_unreachable("Scalar stores not expected in vector loop"); 1234 } 1235 } 1236 1237 void VectorBlockGenerator::copyStmt( 1238 ScopStmt &Stmt, __isl_keep isl_id_to_ast_expr *NewAccesses) { 1239 assert(Stmt.isBlockStmt() && 1240 "TODO: Only block statements can be copied by the vector block " 1241 "generator"); 1242 1243 BasicBlock *BB = Stmt.getBasicBlock(); 1244 BasicBlock *CopyBB = SplitBlock(Builder.GetInsertBlock(), 1245 &*Builder.GetInsertPoint(), &DT, &LI); 1246 CopyBB->setName("polly.stmt." + BB->getName()); 1247 Builder.SetInsertPoint(&CopyBB->front()); 1248 1249 // Create two maps that store the mapping from the original instructions of 1250 // the old basic block to their copies in the new basic block. Those maps 1251 // are basic block local. 1252 // 1253 // As vector code generation is supported there is one map for scalar values 1254 // and one for vector values. 1255 // 1256 // In case we just do scalar code generation, the vectorMap is not used and 1257 // the scalarMap has just one dimension, which contains the mapping. 1258 // 1259 // In case vector code generation is done, an instruction may either appear 1260 // in the vector map once (as it is calculating >vectorwidth< values at a 1261 // time. Or (if the values are calculated using scalar operations), it 1262 // appears once in every dimension of the scalarMap. 1263 VectorValueMapT ScalarBlockMap(getVectorWidth()); 1264 ValueMapT VectorBlockMap; 1265 1266 generateScalarVectorLoads(Stmt, VectorBlockMap); 1267 1268 for (Instruction &Inst : *BB) 1269 copyInstruction(Stmt, &Inst, VectorBlockMap, ScalarBlockMap, NewAccesses); 1270 1271 verifyNoScalarStores(Stmt); 1272 } 1273 1274 BasicBlock *RegionGenerator::repairDominance(BasicBlock *BB, 1275 BasicBlock *BBCopy) { 1276 1277 BasicBlock *BBIDom = DT.getNode(BB)->getIDom()->getBlock(); 1278 BasicBlock *BBCopyIDom = EndBlockMap.lookup(BBIDom); 1279 1280 if (BBCopyIDom) 1281 DT.changeImmediateDominator(BBCopy, BBCopyIDom); 1282 1283 return StartBlockMap.lookup(BBIDom); 1284 } 1285 1286 // This is to determine whether an llvm::Value (defined in @p BB) is usable when 1287 // leaving a subregion. The straight-forward DT.dominates(BB, R->getExitBlock()) 1288 // does not work in cases where the exit block has edges from outside the 1289 // region. In that case the llvm::Value would never be usable in in the exit 1290 // block. The RegionGenerator however creates an new exit block ('ExitBBCopy') 1291 // for the subregion's exiting edges only. We need to determine whether an 1292 // llvm::Value is usable in there. We do this by checking whether it dominates 1293 // all exiting blocks individually. 1294 static bool isDominatingSubregionExit(const DominatorTree &DT, Region *R, 1295 BasicBlock *BB) { 1296 for (auto ExitingBB : predecessors(R->getExit())) { 1297 // Check for non-subregion incoming edges. 1298 if (!R->contains(ExitingBB)) 1299 continue; 1300 1301 if (!DT.dominates(BB, ExitingBB)) 1302 return false; 1303 } 1304 1305 return true; 1306 } 1307 1308 // Find the direct dominator of the subregion's exit block if the subregion was 1309 // simplified. 1310 static BasicBlock *findExitDominator(DominatorTree &DT, Region *R) { 1311 BasicBlock *Common = nullptr; 1312 for (auto ExitingBB : predecessors(R->getExit())) { 1313 // Check for non-subregion incoming edges. 1314 if (!R->contains(ExitingBB)) 1315 continue; 1316 1317 // First exiting edge. 1318 if (!Common) { 1319 Common = ExitingBB; 1320 continue; 1321 } 1322 1323 Common = DT.findNearestCommonDominator(Common, ExitingBB); 1324 } 1325 1326 assert(Common && R->contains(Common)); 1327 return Common; 1328 } 1329 1330 void RegionGenerator::copyStmt(ScopStmt &Stmt, LoopToScevMapT <S, 1331 isl_id_to_ast_expr *IdToAstExp) { 1332 assert(Stmt.isRegionStmt() && 1333 "Only region statements can be copied by the region generator"); 1334 1335 // Forget all old mappings. 1336 StartBlockMap.clear(); 1337 EndBlockMap.clear(); 1338 RegionMaps.clear(); 1339 IncompletePHINodeMap.clear(); 1340 1341 // Collection of all values related to this subregion. 1342 ValueMapT ValueMap; 1343 1344 // The region represented by the statement. 1345 Region *R = Stmt.getRegion(); 1346 1347 // Create a dedicated entry for the region where we can reload all demoted 1348 // inputs. 1349 BasicBlock *EntryBB = R->getEntry(); 1350 BasicBlock *EntryBBCopy = SplitBlock(Builder.GetInsertBlock(), 1351 &*Builder.GetInsertPoint(), &DT, &LI); 1352 EntryBBCopy->setName("polly.stmt." + EntryBB->getName() + ".entry"); 1353 Builder.SetInsertPoint(&EntryBBCopy->front()); 1354 1355 ValueMapT &EntryBBMap = RegionMaps[EntryBBCopy]; 1356 generateScalarLoads(Stmt, LTS, EntryBBMap, IdToAstExp); 1357 1358 for (auto PI = pred_begin(EntryBB), PE = pred_end(EntryBB); PI != PE; ++PI) 1359 if (!R->contains(*PI)) { 1360 StartBlockMap[*PI] = EntryBBCopy; 1361 EndBlockMap[*PI] = EntryBBCopy; 1362 } 1363 1364 // Iterate over all blocks in the region in a breadth-first search. 1365 std::deque<BasicBlock *> Blocks; 1366 SmallSetVector<BasicBlock *, 8> SeenBlocks; 1367 Blocks.push_back(EntryBB); 1368 SeenBlocks.insert(EntryBB); 1369 1370 while (!Blocks.empty()) { 1371 BasicBlock *BB = Blocks.front(); 1372 Blocks.pop_front(); 1373 1374 // First split the block and update dominance information. 1375 BasicBlock *BBCopy = splitBB(BB); 1376 BasicBlock *BBCopyIDom = repairDominance(BB, BBCopy); 1377 1378 // Get the mapping for this block and initialize it with either the scalar 1379 // loads from the generated entering block (which dominates all blocks of 1380 // this subregion) or the maps of the immediate dominator, if part of the 1381 // subregion. The latter necessarily includes the former. 1382 ValueMapT *InitBBMap; 1383 if (BBCopyIDom) { 1384 assert(RegionMaps.count(BBCopyIDom)); 1385 InitBBMap = &RegionMaps[BBCopyIDom]; 1386 } else 1387 InitBBMap = &EntryBBMap; 1388 auto Inserted = RegionMaps.insert(std::make_pair(BBCopy, *InitBBMap)); 1389 ValueMapT &RegionMap = Inserted.first->second; 1390 1391 // Copy the block with the BlockGenerator. 1392 Builder.SetInsertPoint(&BBCopy->front()); 1393 copyBB(Stmt, BB, BBCopy, RegionMap, LTS, IdToAstExp); 1394 1395 // In order to remap PHI nodes we store also basic block mappings. 1396 StartBlockMap[BB] = BBCopy; 1397 EndBlockMap[BB] = Builder.GetInsertBlock(); 1398 1399 // Add values to incomplete PHI nodes waiting for this block to be copied. 1400 for (const PHINodePairTy &PHINodePair : IncompletePHINodeMap[BB]) 1401 addOperandToPHI(Stmt, PHINodePair.first, PHINodePair.second, BB, LTS); 1402 IncompletePHINodeMap[BB].clear(); 1403 1404 // And continue with new successors inside the region. 1405 for (auto SI = succ_begin(BB), SE = succ_end(BB); SI != SE; SI++) 1406 if (R->contains(*SI) && SeenBlocks.insert(*SI)) 1407 Blocks.push_back(*SI); 1408 1409 // Remember value in case it is visible after this subregion. 1410 if (isDominatingSubregionExit(DT, R, BB)) 1411 ValueMap.insert(RegionMap.begin(), RegionMap.end()); 1412 } 1413 1414 // Now create a new dedicated region exit block and add it to the region map. 1415 BasicBlock *ExitBBCopy = SplitBlock(Builder.GetInsertBlock(), 1416 &*Builder.GetInsertPoint(), &DT, &LI); 1417 ExitBBCopy->setName("polly.stmt." + R->getExit()->getName() + ".exit"); 1418 StartBlockMap[R->getExit()] = ExitBBCopy; 1419 EndBlockMap[R->getExit()] = ExitBBCopy; 1420 1421 BasicBlock *ExitDomBBCopy = EndBlockMap.lookup(findExitDominator(DT, R)); 1422 assert(ExitDomBBCopy && 1423 "Common exit dominator must be within region; at least the entry node " 1424 "must match"); 1425 DT.changeImmediateDominator(ExitBBCopy, ExitDomBBCopy); 1426 1427 // As the block generator doesn't handle control flow we need to add the 1428 // region control flow by hand after all blocks have been copied. 1429 for (BasicBlock *BB : SeenBlocks) { 1430 1431 BasicBlock *BBCopyStart = StartBlockMap[BB]; 1432 BasicBlock *BBCopyEnd = EndBlockMap[BB]; 1433 TerminatorInst *TI = BB->getTerminator(); 1434 if (isa<UnreachableInst>(TI)) { 1435 while (!BBCopyEnd->empty()) 1436 BBCopyEnd->begin()->eraseFromParent(); 1437 new UnreachableInst(BBCopyEnd->getContext(), BBCopyEnd); 1438 continue; 1439 } 1440 1441 Instruction *BICopy = BBCopyEnd->getTerminator(); 1442 1443 ValueMapT &RegionMap = RegionMaps[BBCopyStart]; 1444 RegionMap.insert(StartBlockMap.begin(), StartBlockMap.end()); 1445 1446 Builder.SetInsertPoint(BICopy); 1447 copyInstScalar(Stmt, TI, RegionMap, LTS); 1448 BICopy->eraseFromParent(); 1449 } 1450 1451 // Add counting PHI nodes to all loops in the region that can be used as 1452 // replacement for SCEVs referring to the old loop. 1453 for (BasicBlock *BB : SeenBlocks) { 1454 Loop *L = LI.getLoopFor(BB); 1455 if (L == nullptr || L->getHeader() != BB || !R->contains(L)) 1456 continue; 1457 1458 BasicBlock *BBCopy = StartBlockMap[BB]; 1459 Value *NullVal = Builder.getInt32(0); 1460 PHINode *LoopPHI = 1461 PHINode::Create(Builder.getInt32Ty(), 2, "polly.subregion.iv"); 1462 Instruction *LoopPHIInc = BinaryOperator::CreateAdd( 1463 LoopPHI, Builder.getInt32(1), "polly.subregion.iv.inc"); 1464 LoopPHI->insertBefore(&BBCopy->front()); 1465 LoopPHIInc->insertBefore(BBCopy->getTerminator()); 1466 1467 for (auto *PredBB : make_range(pred_begin(BB), pred_end(BB))) { 1468 if (!R->contains(PredBB)) 1469 continue; 1470 if (L->contains(PredBB)) 1471 LoopPHI->addIncoming(LoopPHIInc, EndBlockMap[PredBB]); 1472 else 1473 LoopPHI->addIncoming(NullVal, EndBlockMap[PredBB]); 1474 } 1475 1476 for (auto *PredBBCopy : make_range(pred_begin(BBCopy), pred_end(BBCopy))) 1477 if (LoopPHI->getBasicBlockIndex(PredBBCopy) < 0) 1478 LoopPHI->addIncoming(NullVal, PredBBCopy); 1479 1480 LTS[L] = SE.getUnknown(LoopPHI); 1481 } 1482 1483 // Continue generating code in the exit block. 1484 Builder.SetInsertPoint(&*ExitBBCopy->getFirstInsertionPt()); 1485 1486 // Write values visible to other statements. 1487 generateScalarStores(Stmt, LTS, ValueMap, IdToAstExp); 1488 StartBlockMap.clear(); 1489 EndBlockMap.clear(); 1490 RegionMaps.clear(); 1491 IncompletePHINodeMap.clear(); 1492 } 1493 1494 PHINode *RegionGenerator::buildExitPHI(MemoryAccess *MA, LoopToScevMapT <S, 1495 ValueMapT &BBMap, Loop *L) { 1496 ScopStmt *Stmt = MA->getStatement(); 1497 Region *SubR = Stmt->getRegion(); 1498 auto Incoming = MA->getIncoming(); 1499 1500 PollyIRBuilder::InsertPointGuard IPGuard(Builder); 1501 PHINode *OrigPHI = cast<PHINode>(MA->getAccessInstruction()); 1502 BasicBlock *NewSubregionExit = Builder.GetInsertBlock(); 1503 1504 // This can happen if the subregion is simplified after the ScopStmts 1505 // have been created; simplification happens as part of CodeGeneration. 1506 if (OrigPHI->getParent() != SubR->getExit()) { 1507 BasicBlock *FormerExit = SubR->getExitingBlock(); 1508 if (FormerExit) 1509 NewSubregionExit = StartBlockMap.lookup(FormerExit); 1510 } 1511 1512 PHINode *NewPHI = PHINode::Create(OrigPHI->getType(), Incoming.size(), 1513 "polly." + OrigPHI->getName(), 1514 NewSubregionExit->getFirstNonPHI()); 1515 1516 // Add the incoming values to the PHI. 1517 for (auto &Pair : Incoming) { 1518 BasicBlock *OrigIncomingBlock = Pair.first; 1519 BasicBlock *NewIncomingBlockStart = StartBlockMap.lookup(OrigIncomingBlock); 1520 BasicBlock *NewIncomingBlockEnd = EndBlockMap.lookup(OrigIncomingBlock); 1521 Builder.SetInsertPoint(NewIncomingBlockEnd->getTerminator()); 1522 assert(RegionMaps.count(NewIncomingBlockStart)); 1523 assert(RegionMaps.count(NewIncomingBlockEnd)); 1524 ValueMapT *LocalBBMap = &RegionMaps[NewIncomingBlockStart]; 1525 1526 Value *OrigIncomingValue = Pair.second; 1527 Value *NewIncomingValue = 1528 getNewValue(*Stmt, OrigIncomingValue, *LocalBBMap, LTS, L); 1529 NewPHI->addIncoming(NewIncomingValue, NewIncomingBlockEnd); 1530 } 1531 1532 return NewPHI; 1533 } 1534 1535 Value *RegionGenerator::getExitScalar(MemoryAccess *MA, LoopToScevMapT <S, 1536 ValueMapT &BBMap) { 1537 ScopStmt *Stmt = MA->getStatement(); 1538 1539 // TODO: Add some test cases that ensure this is really the right choice. 1540 Loop *L = LI.getLoopFor(Stmt->getRegion()->getExit()); 1541 1542 if (MA->isAnyPHIKind()) { 1543 auto Incoming = MA->getIncoming(); 1544 assert(!Incoming.empty() && 1545 "PHI WRITEs must have originate from at least one incoming block"); 1546 1547 // If there is only one incoming value, we do not need to create a PHI. 1548 if (Incoming.size() == 1) { 1549 Value *OldVal = Incoming[0].second; 1550 return getNewValue(*Stmt, OldVal, BBMap, LTS, L); 1551 } 1552 1553 return buildExitPHI(MA, LTS, BBMap, L); 1554 } 1555 1556 // MemoryKind::Value accesses leaving the subregion must dominate the exit 1557 // block; just pass the copied value. 1558 Value *OldVal = MA->getAccessValue(); 1559 return getNewValue(*Stmt, OldVal, BBMap, LTS, L); 1560 } 1561 1562 void RegionGenerator::generateScalarStores( 1563 ScopStmt &Stmt, LoopToScevMapT <S, ValueMapT &BBMap, 1564 __isl_keep isl_id_to_ast_expr *NewAccesses) { 1565 assert(Stmt.getRegion() && 1566 "Block statements need to use the generateScalarStores() " 1567 "function in the BlockGenerator"); 1568 1569 for (MemoryAccess *MA : Stmt) { 1570 if (MA->isOriginalArrayKind() || MA->isRead()) 1571 continue; 1572 1573 isl::set AccDom = MA->getAccessRelation().domain(); 1574 std::string Subject = MA->getId().get_name(); 1575 generateConditionalExecution( 1576 Stmt, AccDom, Subject.c_str(), [&, this, MA]() { 1577 1578 Value *NewVal = getExitScalar(MA, LTS, BBMap); 1579 Value *Address = getImplicitAddress(*MA, getLoopForStmt(Stmt), LTS, 1580 BBMap, NewAccesses); 1581 assert((!isa<Instruction>(NewVal) || 1582 DT.dominates(cast<Instruction>(NewVal)->getParent(), 1583 Builder.GetInsertBlock())) && 1584 "Domination violation"); 1585 assert((!isa<Instruction>(Address) || 1586 DT.dominates(cast<Instruction>(Address)->getParent(), 1587 Builder.GetInsertBlock())) && 1588 "Domination violation"); 1589 Builder.CreateStore(NewVal, Address); 1590 }); 1591 } 1592 } 1593 1594 void RegionGenerator::addOperandToPHI(ScopStmt &Stmt, PHINode *PHI, 1595 PHINode *PHICopy, BasicBlock *IncomingBB, 1596 LoopToScevMapT <S) { 1597 // If the incoming block was not yet copied mark this PHI as incomplete. 1598 // Once the block will be copied the incoming value will be added. 1599 BasicBlock *BBCopyStart = StartBlockMap[IncomingBB]; 1600 BasicBlock *BBCopyEnd = EndBlockMap[IncomingBB]; 1601 if (!BBCopyStart) { 1602 assert(!BBCopyEnd); 1603 assert(Stmt.represents(IncomingBB) && 1604 "Bad incoming block for PHI in non-affine region"); 1605 IncompletePHINodeMap[IncomingBB].push_back(std::make_pair(PHI, PHICopy)); 1606 return; 1607 } 1608 1609 assert(RegionMaps.count(BBCopyStart) && 1610 "Incoming PHI block did not have a BBMap"); 1611 ValueMapT &BBCopyMap = RegionMaps[BBCopyStart]; 1612 1613 Value *OpCopy = nullptr; 1614 1615 if (Stmt.represents(IncomingBB)) { 1616 Value *Op = PHI->getIncomingValueForBlock(IncomingBB); 1617 1618 // If the current insert block is different from the PHIs incoming block 1619 // change it, otherwise do not. 1620 auto IP = Builder.GetInsertPoint(); 1621 if (IP->getParent() != BBCopyEnd) 1622 Builder.SetInsertPoint(BBCopyEnd->getTerminator()); 1623 OpCopy = getNewValue(Stmt, Op, BBCopyMap, LTS, getLoopForStmt(Stmt)); 1624 if (IP->getParent() != BBCopyEnd) 1625 Builder.SetInsertPoint(&*IP); 1626 } else { 1627 // All edges from outside the non-affine region become a single edge 1628 // in the new copy of the non-affine region. Make sure to only add the 1629 // corresponding edge the first time we encounter a basic block from 1630 // outside the non-affine region. 1631 if (PHICopy->getBasicBlockIndex(BBCopyEnd) >= 0) 1632 return; 1633 1634 // Get the reloaded value. 1635 OpCopy = getNewValue(Stmt, PHI, BBCopyMap, LTS, getLoopForStmt(Stmt)); 1636 } 1637 1638 assert(OpCopy && "Incoming PHI value was not copied properly"); 1639 PHICopy->addIncoming(OpCopy, BBCopyEnd); 1640 } 1641 1642 void RegionGenerator::copyPHIInstruction(ScopStmt &Stmt, PHINode *PHI, 1643 ValueMapT &BBMap, 1644 LoopToScevMapT <S) { 1645 unsigned NumIncoming = PHI->getNumIncomingValues(); 1646 PHINode *PHICopy = 1647 Builder.CreatePHI(PHI->getType(), NumIncoming, "polly." + PHI->getName()); 1648 PHICopy->moveBefore(PHICopy->getParent()->getFirstNonPHI()); 1649 BBMap[PHI] = PHICopy; 1650 1651 for (BasicBlock *IncomingBB : PHI->blocks()) 1652 addOperandToPHI(Stmt, PHI, PHICopy, IncomingBB, LTS); 1653 } 1654