1 //===--- BlockGenerators.cpp - Generate code for statements -----*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the BlockGenerator and VectorBlockGenerator classes, 11 // which generate sequential code and vectorized code for a polyhedral 12 // statement, respectively. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "polly/ScopInfo.h" 17 #include "polly/CodeGen/BlockGenerators.h" 18 #include "polly/CodeGen/CodeGeneration.h" 19 #include "polly/CodeGen/IslExprBuilder.h" 20 #include "polly/CodeGen/RuntimeDebugBuilder.h" 21 #include "polly/Options.h" 22 #include "polly/Support/GICHelper.h" 23 #include "polly/Support/SCEVValidator.h" 24 #include "polly/Support/ScopHelper.h" 25 #include "llvm/Analysis/LoopInfo.h" 26 #include "llvm/Analysis/RegionInfo.h" 27 #include "llvm/Analysis/ScalarEvolution.h" 28 #include "llvm/IR/IntrinsicInst.h" 29 #include "llvm/IR/Module.h" 30 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 31 #include "llvm/Transforms/Utils/Local.h" 32 #include "isl/aff.h" 33 #include "isl/ast.h" 34 #include "isl/ast_build.h" 35 #include "isl/set.h" 36 #include <deque> 37 38 using namespace llvm; 39 using namespace polly; 40 41 static cl::opt<bool> Aligned("enable-polly-aligned", 42 cl::desc("Assumed aligned memory accesses."), 43 cl::Hidden, cl::init(false), cl::ZeroOrMore, 44 cl::cat(PollyCategory)); 45 46 static cl::opt<bool> DebugPrinting( 47 "polly-codegen-add-debug-printing", 48 cl::desc("Add printf calls that show the values loaded/stored."), 49 cl::Hidden, cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory)); 50 51 bool polly::canSynthesize(const Value *V, const llvm::LoopInfo *LI, 52 ScalarEvolution *SE, const Region *R) { 53 if (!V || !SE->isSCEVable(V->getType())) 54 return false; 55 56 if (const SCEV *Scev = SE->getSCEV(const_cast<Value *>(V))) 57 if (!isa<SCEVCouldNotCompute>(Scev)) 58 if (!hasScalarDepsInsideRegion(Scev, R)) 59 return true; 60 61 return false; 62 } 63 64 bool polly::isIgnoredIntrinsic(const Value *V) { 65 if (auto *IT = dyn_cast<IntrinsicInst>(V)) { 66 switch (IT->getIntrinsicID()) { 67 // Lifetime markers are supported/ignored. 68 case llvm::Intrinsic::lifetime_start: 69 case llvm::Intrinsic::lifetime_end: 70 // Invariant markers are supported/ignored. 71 case llvm::Intrinsic::invariant_start: 72 case llvm::Intrinsic::invariant_end: 73 // Some misc annotations are supported/ignored. 74 case llvm::Intrinsic::var_annotation: 75 case llvm::Intrinsic::ptr_annotation: 76 case llvm::Intrinsic::annotation: 77 case llvm::Intrinsic::donothing: 78 case llvm::Intrinsic::assume: 79 case llvm::Intrinsic::expect: 80 // Some debug info intrisics are supported/ignored. 81 case llvm::Intrinsic::dbg_value: 82 case llvm::Intrinsic::dbg_declare: 83 return true; 84 default: 85 break; 86 } 87 } 88 return false; 89 } 90 91 BlockGenerator::BlockGenerator(PollyIRBuilder &B, LoopInfo &LI, 92 ScalarEvolution &SE, DominatorTree &DT, 93 ScalarAllocaMapTy &ScalarMap, 94 ScalarAllocaMapTy &PHIOpMap, 95 EscapeUsersAllocaMapTy &EscapeMap, 96 ValueToValueMap &GlobalMap, 97 IslExprBuilder *ExprBuilder) 98 : Builder(B), LI(LI), SE(SE), ExprBuilder(ExprBuilder), DT(DT), 99 EntryBB(nullptr), PHIOpMap(PHIOpMap), ScalarMap(ScalarMap), 100 EscapeMap(EscapeMap), GlobalMap(GlobalMap) {} 101 102 Value *BlockGenerator::trySynthesizeNewValue(ScopStmt &Stmt, const Value *Old, 103 ValueMapT &BBMap, 104 LoopToScevMapT <S, 105 Loop *L) const { 106 if (SE.isSCEVable(Old->getType())) 107 if (const SCEV *Scev = SE.getSCEVAtScope(const_cast<Value *>(Old), L)) { 108 if (!isa<SCEVCouldNotCompute>(Scev)) { 109 const SCEV *NewScev = apply(Scev, LTS, SE); 110 ValueToValueMap VTV; 111 VTV.insert(BBMap.begin(), BBMap.end()); 112 VTV.insert(GlobalMap.begin(), GlobalMap.end()); 113 114 Scop &S = *Stmt.getParent(); 115 const DataLayout &DL = 116 S.getRegion().getEntry()->getParent()->getParent()->getDataLayout(); 117 auto IP = Builder.GetInsertPoint(); 118 119 assert(IP != Builder.GetInsertBlock()->end() && 120 "Only instructions can be insert points for SCEVExpander"); 121 Value *Expanded = expandCodeFor(S, SE, DL, "polly", NewScev, 122 Old->getType(), IP, &VTV); 123 124 BBMap[Old] = Expanded; 125 return Expanded; 126 } 127 } 128 129 return nullptr; 130 } 131 132 Value *BlockGenerator::getNewValue(ScopStmt &Stmt, const Value *Old, 133 ValueMapT &BBMap, LoopToScevMapT <S, 134 Loop *L) const { 135 // We assume constants never change. 136 // This avoids map lookups for many calls to this function. 137 if (isa<Constant>(Old)) 138 return const_cast<Value *>(Old); 139 140 if (Value *New = GlobalMap.lookup(Old)) { 141 if (Value *NewRemapped = GlobalMap.lookup(New)) 142 New = NewRemapped; 143 if (Old->getType()->getScalarSizeInBits() < 144 New->getType()->getScalarSizeInBits()) 145 New = Builder.CreateTruncOrBitCast(New, Old->getType()); 146 147 return New; 148 } 149 150 if (Value *New = BBMap.lookup(Old)) 151 return New; 152 153 if (Value *New = trySynthesizeNewValue(Stmt, Old, BBMap, LTS, L)) 154 return New; 155 156 // A scop-constant value defined by a global or a function parameter. 157 if (isa<GlobalValue>(Old) || isa<Argument>(Old)) 158 return const_cast<Value *>(Old); 159 160 // A scop-constant value defined by an instruction executed outside the scop. 161 if (const Instruction *Inst = dyn_cast<Instruction>(Old)) 162 if (!Stmt.getParent()->getRegion().contains(Inst->getParent())) 163 return const_cast<Value *>(Old); 164 165 // The scalar dependence is neither available nor SCEVCodegenable. 166 llvm_unreachable("Unexpected scalar dependence in region!"); 167 return nullptr; 168 } 169 170 void BlockGenerator::copyInstScalar(ScopStmt &Stmt, const Instruction *Inst, 171 ValueMapT &BBMap, LoopToScevMapT <S) { 172 // We do not generate debug intrinsics as we did not investigate how to 173 // copy them correctly. At the current state, they just crash the code 174 // generation as the meta-data operands are not correctly copied. 175 if (isa<DbgInfoIntrinsic>(Inst)) 176 return; 177 178 Instruction *NewInst = Inst->clone(); 179 180 // Replace old operands with the new ones. 181 for (Value *OldOperand : Inst->operands()) { 182 Value *NewOperand = 183 getNewValue(Stmt, OldOperand, BBMap, LTS, getLoopForInst(Inst)); 184 185 if (!NewOperand) { 186 assert(!isa<StoreInst>(NewInst) && 187 "Store instructions are always needed!"); 188 delete NewInst; 189 return; 190 } 191 192 NewInst->replaceUsesOfWith(OldOperand, NewOperand); 193 } 194 195 Builder.Insert(NewInst); 196 BBMap[Inst] = NewInst; 197 198 if (!NewInst->getType()->isVoidTy()) 199 NewInst->setName("p_" + Inst->getName()); 200 } 201 202 Value *BlockGenerator::generateLocationAccessed( 203 ScopStmt &Stmt, const Instruction *Inst, const Value *Pointer, 204 ValueMapT &BBMap, LoopToScevMapT <S, isl_id_to_ast_expr *NewAccesses) { 205 const MemoryAccess &MA = Stmt.getAccessFor(Inst); 206 207 isl_ast_expr *AccessExpr = isl_id_to_ast_expr_get(NewAccesses, MA.getId()); 208 209 if (AccessExpr) { 210 AccessExpr = isl_ast_expr_address_of(AccessExpr); 211 auto Address = ExprBuilder->create(AccessExpr); 212 213 // Cast the address of this memory access to a pointer type that has the 214 // same element type as the original access, but uses the address space of 215 // the newly generated pointer. 216 auto OldPtrTy = MA.getAccessValue()->getType()->getPointerTo(); 217 auto NewPtrTy = Address->getType(); 218 OldPtrTy = PointerType::get(OldPtrTy->getElementType(), 219 NewPtrTy->getPointerAddressSpace()); 220 221 if (OldPtrTy != NewPtrTy) { 222 assert(OldPtrTy->getPointerElementType()->getPrimitiveSizeInBits() == 223 NewPtrTy->getPointerElementType()->getPrimitiveSizeInBits() && 224 "Pointer types to elements with different size found"); 225 Address = Builder.CreateBitOrPointerCast(Address, OldPtrTy); 226 } 227 return Address; 228 } 229 230 return getNewValue(Stmt, Pointer, BBMap, LTS, getLoopForInst(Inst)); 231 } 232 233 Loop *BlockGenerator::getLoopForInst(const llvm::Instruction *Inst) { 234 return LI.getLoopFor(Inst->getParent()); 235 } 236 237 Value *BlockGenerator::generateScalarLoad(ScopStmt &Stmt, const LoadInst *Load, 238 ValueMapT &BBMap, LoopToScevMapT <S, 239 isl_id_to_ast_expr *NewAccesses) { 240 if (Value *PreloadLoad = GlobalMap.lookup(Load)) 241 return PreloadLoad; 242 243 const Value *Pointer = Load->getPointerOperand(); 244 Value *NewPointer = 245 generateLocationAccessed(Stmt, Load, Pointer, BBMap, LTS, NewAccesses); 246 Value *ScalarLoad = Builder.CreateAlignedLoad( 247 NewPointer, Load->getAlignment(), Load->getName() + "_p_scalar_"); 248 249 if (DebugPrinting) 250 RuntimeDebugBuilder::createCPUPrinter(Builder, "Load from ", NewPointer, 251 ": ", ScalarLoad, "\n"); 252 253 return ScalarLoad; 254 } 255 256 void BlockGenerator::generateScalarStore(ScopStmt &Stmt, const StoreInst *Store, 257 ValueMapT &BBMap, LoopToScevMapT <S, 258 isl_id_to_ast_expr *NewAccesses) { 259 const Value *Pointer = Store->getPointerOperand(); 260 Value *NewPointer = 261 generateLocationAccessed(Stmt, Store, Pointer, BBMap, LTS, NewAccesses); 262 Value *ValueOperand = getNewValue(Stmt, Store->getValueOperand(), BBMap, LTS, 263 getLoopForInst(Store)); 264 265 if (DebugPrinting) 266 RuntimeDebugBuilder::createCPUPrinter(Builder, "Store to ", NewPointer, 267 ": ", ValueOperand, "\n"); 268 269 Builder.CreateAlignedStore(ValueOperand, NewPointer, Store->getAlignment()); 270 } 271 272 void BlockGenerator::copyInstruction(ScopStmt &Stmt, const Instruction *Inst, 273 ValueMapT &BBMap, LoopToScevMapT <S, 274 isl_id_to_ast_expr *NewAccesses) { 275 276 // First check for possible scalar dependences for this instruction. 277 generateScalarLoads(Stmt, Inst, BBMap); 278 279 // Terminator instructions control the control flow. They are explicitly 280 // expressed in the clast and do not need to be copied. 281 if (Inst->isTerminator()) 282 return; 283 284 Loop *L = getLoopForInst(Inst); 285 if ((Stmt.isBlockStmt() || !Stmt.getRegion()->contains(L)) && 286 canSynthesize(Inst, &LI, &SE, &Stmt.getParent()->getRegion())) { 287 // Synthesizable statements will be generated on-demand. 288 return; 289 } 290 291 if (const LoadInst *Load = dyn_cast<LoadInst>(Inst)) { 292 Value *NewLoad = generateScalarLoad(Stmt, Load, BBMap, LTS, NewAccesses); 293 // Compute NewLoad before its insertion in BBMap to make the insertion 294 // deterministic. 295 BBMap[Load] = NewLoad; 296 return; 297 } 298 299 if (const StoreInst *Store = dyn_cast<StoreInst>(Inst)) { 300 generateScalarStore(Stmt, Store, BBMap, LTS, NewAccesses); 301 return; 302 } 303 304 if (const PHINode *PHI = dyn_cast<PHINode>(Inst)) { 305 copyPHIInstruction(Stmt, PHI, BBMap, LTS); 306 return; 307 } 308 309 // Skip some special intrinsics for which we do not adjust the semantics to 310 // the new schedule. All others are handled like every other instruction. 311 if (isIgnoredIntrinsic(Inst)) 312 return; 313 314 copyInstScalar(Stmt, Inst, BBMap, LTS); 315 } 316 317 void BlockGenerator::copyStmt(ScopStmt &Stmt, LoopToScevMapT <S, 318 isl_id_to_ast_expr *NewAccesses) { 319 assert(Stmt.isBlockStmt() && 320 "Only block statements can be copied by the block generator"); 321 322 ValueMapT BBMap; 323 324 BasicBlock *BB = Stmt.getBasicBlock(); 325 copyBB(Stmt, BB, BBMap, LTS, NewAccesses); 326 } 327 328 BasicBlock *BlockGenerator::splitBB(BasicBlock *BB) { 329 BasicBlock *CopyBB = 330 SplitBlock(Builder.GetInsertBlock(), Builder.GetInsertPoint(), &DT, &LI); 331 CopyBB->setName("polly.stmt." + BB->getName()); 332 return CopyBB; 333 } 334 335 BasicBlock *BlockGenerator::copyBB(ScopStmt &Stmt, BasicBlock *BB, 336 ValueMapT &BBMap, LoopToScevMapT <S, 337 isl_id_to_ast_expr *NewAccesses) { 338 BasicBlock *CopyBB = splitBB(BB); 339 copyBB(Stmt, BB, CopyBB, BBMap, LTS, NewAccesses); 340 return CopyBB; 341 } 342 343 void BlockGenerator::copyBB(ScopStmt &Stmt, BasicBlock *BB, BasicBlock *CopyBB, 344 ValueMapT &BBMap, LoopToScevMapT <S, 345 isl_id_to_ast_expr *NewAccesses) { 346 Builder.SetInsertPoint(CopyBB->begin()); 347 EntryBB = &CopyBB->getParent()->getEntryBlock(); 348 349 for (Instruction &Inst : *BB) 350 copyInstruction(Stmt, &Inst, BBMap, LTS, NewAccesses); 351 352 // After a basic block was copied store all scalars that escape this block 353 // in their alloca. First the scalars that have dependences inside the SCoP, 354 // then the ones that might escape the SCoP. 355 generateScalarStores(Stmt, BB, LTS, BBMap); 356 357 const Region &R = Stmt.getParent()->getRegion(); 358 for (Instruction &Inst : *BB) 359 handleOutsideUsers(R, &Inst, BBMap[&Inst]); 360 } 361 362 Value *BlockGenerator::getOrCreateAlloca(Value *ScalarBase, 363 ScalarAllocaMapTy &Map, 364 const char *NameExt) { 365 // Check if an alloca was cached for the base instruction. 366 Value *&Addr = Map[ScalarBase]; 367 368 // If no alloca was found create one and insert it in the entry block. 369 if (!Addr) { 370 auto *Ty = ScalarBase->getType(); 371 auto NewAddr = new AllocaInst(Ty, ScalarBase->getName() + NameExt); 372 EntryBB = &Builder.GetInsertBlock()->getParent()->getEntryBlock(); 373 NewAddr->insertBefore(EntryBB->getFirstInsertionPt()); 374 Addr = NewAddr; 375 } 376 377 if (GlobalMap.count(Addr)) 378 return GlobalMap[Addr]; 379 380 return Addr; 381 } 382 383 Value *BlockGenerator::getOrCreateAlloca(MemoryAccess &Access) { 384 if (Access.getScopArrayInfo()->isPHI()) 385 return getOrCreatePHIAlloca(Access.getBaseAddr()); 386 else 387 return getOrCreateScalarAlloca(Access.getBaseAddr()); 388 } 389 390 Value *BlockGenerator::getOrCreateScalarAlloca(Value *ScalarBase) { 391 return getOrCreateAlloca(ScalarBase, ScalarMap, ".s2a"); 392 } 393 394 Value *BlockGenerator::getOrCreatePHIAlloca(Value *ScalarBase) { 395 return getOrCreateAlloca(ScalarBase, PHIOpMap, ".phiops"); 396 } 397 398 void BlockGenerator::handleOutsideUsers(const Region &R, Instruction *Inst, 399 Value *InstCopy, Value *Address) { 400 // If there are escape users we get the alloca for this instruction and put it 401 // in the EscapeMap for later finalization. Lastly, if the instruction was 402 // copied multiple times we already did this and can exit. 403 if (EscapeMap.count(Inst)) 404 return; 405 406 EscapeUserVectorTy EscapeUsers; 407 for (User *U : Inst->users()) { 408 409 // Non-instruction user will never escape. 410 Instruction *UI = dyn_cast<Instruction>(U); 411 if (!UI) 412 continue; 413 414 if (R.contains(UI)) 415 continue; 416 417 EscapeUsers.push_back(UI); 418 } 419 420 // Exit if no escape uses were found. 421 if (EscapeUsers.empty()) 422 return; 423 424 // Get or create an escape alloca for this instruction. 425 auto *ScalarAddr = Address ? Address : getOrCreateScalarAlloca(Inst); 426 427 // Remember that this instruction has escape uses and the escape alloca. 428 EscapeMap[Inst] = std::make_pair(ScalarAddr, std::move(EscapeUsers)); 429 } 430 431 void BlockGenerator::generateScalarLoads(ScopStmt &Stmt, 432 const Instruction *Inst, 433 ValueMapT &BBMap) { 434 auto *MAL = Stmt.lookupAccessesFor(Inst); 435 436 if (!MAL) 437 return; 438 439 for (MemoryAccess *MA : *MAL) { 440 if (MA->isExplicit() || !MA->isRead()) 441 continue; 442 443 auto *Address = getOrCreateAlloca(*MA); 444 BBMap[MA->getBaseAddr()] = 445 Builder.CreateLoad(Address, Address->getName() + ".reload"); 446 } 447 } 448 449 Value *BlockGenerator::getNewScalarValue(Value *ScalarValue, const Region &R, 450 ScopStmt &Stmt, LoopToScevMapT <S, 451 ValueMapT &BBMap) { 452 // If the value we want to store is an instruction we might have demoted it 453 // in order to make it accessible here. In such a case a reload is 454 // necessary. If it is no instruction it will always be a value that 455 // dominates the current point and we can just use it. In total there are 4 456 // options: 457 // (1) The value is no instruction ==> use the value. 458 // (2) The value is an instruction that was split out of the region prior to 459 // code generation ==> use the instruction as it dominates the region. 460 // (3) The value is an instruction: 461 // (a) The value was defined in the current block, thus a copy is in 462 // the BBMap ==> use the mapped value. 463 // (b) The value was defined in a previous block, thus we demoted it 464 // earlier ==> use the reloaded value. 465 Instruction *ScalarValueInst = dyn_cast<Instruction>(ScalarValue); 466 if (!ScalarValueInst) 467 return ScalarValue; 468 469 if (!R.contains(ScalarValueInst)) { 470 if (Value *ScalarValueCopy = GlobalMap.lookup(ScalarValueInst)) 471 return /* Case (3a) */ ScalarValueCopy; 472 else 473 return /* Case 2 */ ScalarValue; 474 } 475 476 if (Value *ScalarValueCopy = BBMap.lookup(ScalarValueInst)) 477 return /* Case (3a) */ ScalarValueCopy; 478 479 if ((Stmt.isBlockStmt() && 480 Stmt.getBasicBlock() == ScalarValueInst->getParent()) || 481 (Stmt.isRegionStmt() && Stmt.getRegion()->contains(ScalarValueInst))) { 482 auto SynthesizedValue = trySynthesizeNewValue( 483 Stmt, ScalarValueInst, BBMap, LTS, getLoopForInst(ScalarValueInst)); 484 485 if (SynthesizedValue) 486 return SynthesizedValue; 487 } 488 489 // Case (3b) 490 Value *Address = getOrCreateScalarAlloca(ScalarValueInst); 491 ScalarValue = Builder.CreateLoad(Address, Address->getName() + ".reload"); 492 493 return ScalarValue; 494 } 495 496 void BlockGenerator::generateScalarStores(ScopStmt &Stmt, BasicBlock *BB, 497 LoopToScevMapT <S, 498 ValueMapT &BBMap) { 499 const Region &R = Stmt.getParent()->getRegion(); 500 501 assert(Stmt.isBlockStmt() && BB == Stmt.getBasicBlock() && 502 "Region statements need to use the generateScalarStores() " 503 "function in the RegionGenerator"); 504 505 for (MemoryAccess *MA : Stmt) { 506 if (MA->isExplicit() || MA->isRead()) 507 continue; 508 509 Value *Val = MA->getAccessValue(); 510 auto *Address = getOrCreateAlloca(*MA); 511 512 Val = getNewScalarValue(Val, R, Stmt, LTS, BBMap); 513 Builder.CreateStore(Val, Address); 514 } 515 } 516 517 void BlockGenerator::createScalarInitialization(Scop &S) { 518 Region &R = S.getRegion(); 519 // The split block __just before__ the region and optimized region. 520 BasicBlock *SplitBB = R.getEnteringBlock(); 521 BranchInst *SplitBBTerm = cast<BranchInst>(SplitBB->getTerminator()); 522 assert(SplitBBTerm->getNumSuccessors() == 2 && "Bad region entering block!"); 523 524 // Get the start block of the __optimized__ region. 525 BasicBlock *StartBB = SplitBBTerm->getSuccessor(0); 526 if (StartBB == R.getEntry()) 527 StartBB = SplitBBTerm->getSuccessor(1); 528 529 Builder.SetInsertPoint(StartBB->getTerminator()); 530 531 for (auto &Pair : S.arrays()) { 532 auto &Array = Pair.second; 533 if (Array->getNumberOfDimensions() != 0) 534 continue; 535 if (Array->isPHI()) { 536 // For PHI nodes, the only values we need to store are the ones that 537 // reach the PHI node from outside the region. In general there should 538 // only be one such incoming edge and this edge should enter through 539 // 'SplitBB'. 540 auto PHI = cast<PHINode>(Array->getBasePtr()); 541 542 for (auto BI = PHI->block_begin(), BE = PHI->block_end(); BI != BE; BI++) 543 if (!R.contains(*BI) && *BI != SplitBB) 544 llvm_unreachable("Incoming edges from outside the scop should always " 545 "come from SplitBB"); 546 547 int Idx = PHI->getBasicBlockIndex(SplitBB); 548 if (Idx < 0) 549 continue; 550 551 Value *ScalarValue = PHI->getIncomingValue(Idx); 552 553 Builder.CreateStore(ScalarValue, getOrCreatePHIAlloca(PHI)); 554 continue; 555 } 556 557 auto *Inst = dyn_cast<Instruction>(Array->getBasePtr()); 558 559 if (Inst && R.contains(Inst)) 560 continue; 561 562 // PHI nodes that are not marked as such in their SAI object are exit PHI 563 // nodes we model as common scalars but do not need to initialize. 564 if (Inst && isa<PHINode>(Inst)) 565 continue; 566 567 ValueMapT EmptyMap; 568 Builder.CreateStore(Array->getBasePtr(), 569 getOrCreateScalarAlloca(Array->getBasePtr())); 570 } 571 } 572 573 void BlockGenerator::createScalarFinalization(Region &R) { 574 // The exit block of the __unoptimized__ region. 575 BasicBlock *ExitBB = R.getExitingBlock(); 576 // The merge block __just after__ the region and the optimized region. 577 BasicBlock *MergeBB = R.getExit(); 578 579 // The exit block of the __optimized__ region. 580 BasicBlock *OptExitBB = *(pred_begin(MergeBB)); 581 if (OptExitBB == ExitBB) 582 OptExitBB = *(++pred_begin(MergeBB)); 583 584 Builder.SetInsertPoint(OptExitBB->getTerminator()); 585 for (const auto &EscapeMapping : EscapeMap) { 586 // Extract the escaping instruction and the escaping users as well as the 587 // alloca the instruction was demoted to. 588 Instruction *EscapeInst = EscapeMapping.getFirst(); 589 const auto &EscapeMappingValue = EscapeMapping.getSecond(); 590 const EscapeUserVectorTy &EscapeUsers = EscapeMappingValue.second; 591 Value *ScalarAddr = EscapeMappingValue.first; 592 593 // Reload the demoted instruction in the optimized version of the SCoP. 594 Instruction *EscapeInstReload = 595 Builder.CreateLoad(ScalarAddr, EscapeInst->getName() + ".final_reload"); 596 597 // Create the merge PHI that merges the optimized and unoptimized version. 598 PHINode *MergePHI = PHINode::Create(EscapeInst->getType(), 2, 599 EscapeInst->getName() + ".merge"); 600 MergePHI->insertBefore(MergeBB->getFirstInsertionPt()); 601 602 // Add the respective values to the merge PHI. 603 MergePHI->addIncoming(EscapeInstReload, OptExitBB); 604 MergePHI->addIncoming(EscapeInst, ExitBB); 605 606 // The information of scalar evolution about the escaping instruction needs 607 // to be revoked so the new merged instruction will be used. 608 if (SE.isSCEVable(EscapeInst->getType())) 609 SE.forgetValue(EscapeInst); 610 611 // Replace all uses of the demoted instruction with the merge PHI. 612 for (Instruction *EUser : EscapeUsers) 613 EUser->replaceUsesOfWith(EscapeInst, MergePHI); 614 } 615 } 616 617 void BlockGenerator::finalizeSCoP(Scop &S) { 618 619 // Handle PHI nodes that were in the original exit and are now 620 // moved into the region exiting block. 621 if (!S.hasSingleExitEdge()) { 622 for (Instruction &I : *S.getRegion().getExitingBlock()) { 623 PHINode *PHI = dyn_cast<PHINode>(&I); 624 if (!PHI) 625 break; 626 627 assert(PHI->getNumUses() == 1); 628 assert(ScalarMap.count(PHI->user_back())); 629 630 handleOutsideUsers(S.getRegion(), PHI, nullptr, 631 ScalarMap[PHI->user_back()]); 632 } 633 } 634 635 createScalarInitialization(S); 636 createScalarFinalization(S.getRegion()); 637 } 638 639 VectorBlockGenerator::VectorBlockGenerator(BlockGenerator &BlockGen, 640 std::vector<LoopToScevMapT> &VLTS, 641 isl_map *Schedule) 642 : BlockGenerator(BlockGen), VLTS(VLTS), Schedule(Schedule) { 643 assert(Schedule && "No statement domain provided"); 644 } 645 646 Value *VectorBlockGenerator::getVectorValue(ScopStmt &Stmt, const Value *Old, 647 ValueMapT &VectorMap, 648 VectorValueMapT &ScalarMaps, 649 Loop *L) { 650 if (Value *NewValue = VectorMap.lookup(Old)) 651 return NewValue; 652 653 int Width = getVectorWidth(); 654 655 Value *Vector = UndefValue::get(VectorType::get(Old->getType(), Width)); 656 657 for (int Lane = 0; Lane < Width; Lane++) 658 Vector = Builder.CreateInsertElement( 659 Vector, getNewValue(Stmt, Old, ScalarMaps[Lane], VLTS[Lane], L), 660 Builder.getInt32(Lane)); 661 662 VectorMap[Old] = Vector; 663 664 return Vector; 665 } 666 667 Type *VectorBlockGenerator::getVectorPtrTy(const Value *Val, int Width) { 668 PointerType *PointerTy = dyn_cast<PointerType>(Val->getType()); 669 assert(PointerTy && "PointerType expected"); 670 671 Type *ScalarType = PointerTy->getElementType(); 672 VectorType *VectorType = VectorType::get(ScalarType, Width); 673 674 return PointerType::getUnqual(VectorType); 675 } 676 677 Value *VectorBlockGenerator::generateStrideOneLoad( 678 ScopStmt &Stmt, const LoadInst *Load, VectorValueMapT &ScalarMaps, 679 __isl_keep isl_id_to_ast_expr *NewAccesses, bool NegativeStride = false) { 680 unsigned VectorWidth = getVectorWidth(); 681 const Value *Pointer = Load->getPointerOperand(); 682 Type *VectorPtrType = getVectorPtrTy(Pointer, VectorWidth); 683 unsigned Offset = NegativeStride ? VectorWidth - 1 : 0; 684 685 Value *NewPointer = nullptr; 686 NewPointer = generateLocationAccessed(Stmt, Load, Pointer, ScalarMaps[Offset], 687 VLTS[Offset], NewAccesses); 688 Value *VectorPtr = 689 Builder.CreateBitCast(NewPointer, VectorPtrType, "vector_ptr"); 690 LoadInst *VecLoad = 691 Builder.CreateLoad(VectorPtr, Load->getName() + "_p_vec_full"); 692 if (!Aligned) 693 VecLoad->setAlignment(8); 694 695 if (NegativeStride) { 696 SmallVector<Constant *, 16> Indices; 697 for (int i = VectorWidth - 1; i >= 0; i--) 698 Indices.push_back(ConstantInt::get(Builder.getInt32Ty(), i)); 699 Constant *SV = llvm::ConstantVector::get(Indices); 700 Value *RevVecLoad = Builder.CreateShuffleVector( 701 VecLoad, VecLoad, SV, Load->getName() + "_reverse"); 702 return RevVecLoad; 703 } 704 705 return VecLoad; 706 } 707 708 Value *VectorBlockGenerator::generateStrideZeroLoad( 709 ScopStmt &Stmt, const LoadInst *Load, ValueMapT &BBMap, 710 __isl_keep isl_id_to_ast_expr *NewAccesses) { 711 const Value *Pointer = Load->getPointerOperand(); 712 Type *VectorPtrType = getVectorPtrTy(Pointer, 1); 713 Value *NewPointer = generateLocationAccessed(Stmt, Load, Pointer, BBMap, 714 VLTS[0], NewAccesses); 715 Value *VectorPtr = Builder.CreateBitCast(NewPointer, VectorPtrType, 716 Load->getName() + "_p_vec_p"); 717 LoadInst *ScalarLoad = 718 Builder.CreateLoad(VectorPtr, Load->getName() + "_p_splat_one"); 719 720 if (!Aligned) 721 ScalarLoad->setAlignment(8); 722 723 Constant *SplatVector = Constant::getNullValue( 724 VectorType::get(Builder.getInt32Ty(), getVectorWidth())); 725 726 Value *VectorLoad = Builder.CreateShuffleVector( 727 ScalarLoad, ScalarLoad, SplatVector, Load->getName() + "_p_splat"); 728 return VectorLoad; 729 } 730 731 Value *VectorBlockGenerator::generateUnknownStrideLoad( 732 ScopStmt &Stmt, const LoadInst *Load, VectorValueMapT &ScalarMaps, 733 __isl_keep isl_id_to_ast_expr *NewAccesses 734 735 ) { 736 int VectorWidth = getVectorWidth(); 737 const Value *Pointer = Load->getPointerOperand(); 738 VectorType *VectorType = VectorType::get( 739 dyn_cast<PointerType>(Pointer->getType())->getElementType(), VectorWidth); 740 741 Value *Vector = UndefValue::get(VectorType); 742 743 for (int i = 0; i < VectorWidth; i++) { 744 Value *NewPointer = generateLocationAccessed( 745 Stmt, Load, Pointer, ScalarMaps[i], VLTS[i], NewAccesses); 746 Value *ScalarLoad = 747 Builder.CreateLoad(NewPointer, Load->getName() + "_p_scalar_"); 748 Vector = Builder.CreateInsertElement( 749 Vector, ScalarLoad, Builder.getInt32(i), Load->getName() + "_p_vec_"); 750 } 751 752 return Vector; 753 } 754 755 void VectorBlockGenerator::generateLoad( 756 ScopStmt &Stmt, const LoadInst *Load, ValueMapT &VectorMap, 757 VectorValueMapT &ScalarMaps, __isl_keep isl_id_to_ast_expr *NewAccesses) { 758 if (Value *PreloadLoad = GlobalMap.lookup(Load)) { 759 VectorMap[Load] = Builder.CreateVectorSplat(getVectorWidth(), PreloadLoad, 760 Load->getName() + "_p"); 761 return; 762 } 763 764 if (!VectorType::isValidElementType(Load->getType())) { 765 for (int i = 0; i < getVectorWidth(); i++) 766 ScalarMaps[i][Load] = 767 generateScalarLoad(Stmt, Load, ScalarMaps[i], VLTS[i], NewAccesses); 768 return; 769 } 770 771 const MemoryAccess &Access = Stmt.getAccessFor(Load); 772 773 // Make sure we have scalar values available to access the pointer to 774 // the data location. 775 extractScalarValues(Load, VectorMap, ScalarMaps); 776 777 Value *NewLoad; 778 if (Access.isStrideZero(isl_map_copy(Schedule))) 779 NewLoad = generateStrideZeroLoad(Stmt, Load, ScalarMaps[0], NewAccesses); 780 else if (Access.isStrideOne(isl_map_copy(Schedule))) 781 NewLoad = generateStrideOneLoad(Stmt, Load, ScalarMaps, NewAccesses); 782 else if (Access.isStrideX(isl_map_copy(Schedule), -1)) 783 NewLoad = generateStrideOneLoad(Stmt, Load, ScalarMaps, NewAccesses, true); 784 else 785 NewLoad = generateUnknownStrideLoad(Stmt, Load, ScalarMaps, NewAccesses); 786 787 VectorMap[Load] = NewLoad; 788 } 789 790 void VectorBlockGenerator::copyUnaryInst(ScopStmt &Stmt, 791 const UnaryInstruction *Inst, 792 ValueMapT &VectorMap, 793 VectorValueMapT &ScalarMaps) { 794 int VectorWidth = getVectorWidth(); 795 Value *NewOperand = getVectorValue(Stmt, Inst->getOperand(0), VectorMap, 796 ScalarMaps, getLoopForInst(Inst)); 797 798 assert(isa<CastInst>(Inst) && "Can not generate vector code for instruction"); 799 800 const CastInst *Cast = dyn_cast<CastInst>(Inst); 801 VectorType *DestType = VectorType::get(Inst->getType(), VectorWidth); 802 VectorMap[Inst] = Builder.CreateCast(Cast->getOpcode(), NewOperand, DestType); 803 } 804 805 void VectorBlockGenerator::copyBinaryInst(ScopStmt &Stmt, 806 const BinaryOperator *Inst, 807 ValueMapT &VectorMap, 808 VectorValueMapT &ScalarMaps) { 809 Loop *L = getLoopForInst(Inst); 810 Value *OpZero = Inst->getOperand(0); 811 Value *OpOne = Inst->getOperand(1); 812 813 Value *NewOpZero, *NewOpOne; 814 NewOpZero = getVectorValue(Stmt, OpZero, VectorMap, ScalarMaps, L); 815 NewOpOne = getVectorValue(Stmt, OpOne, VectorMap, ScalarMaps, L); 816 817 Value *NewInst = Builder.CreateBinOp(Inst->getOpcode(), NewOpZero, NewOpOne, 818 Inst->getName() + "p_vec"); 819 VectorMap[Inst] = NewInst; 820 } 821 822 void VectorBlockGenerator::copyStore( 823 ScopStmt &Stmt, const StoreInst *Store, ValueMapT &VectorMap, 824 VectorValueMapT &ScalarMaps, __isl_keep isl_id_to_ast_expr *NewAccesses) { 825 const MemoryAccess &Access = Stmt.getAccessFor(Store); 826 827 const Value *Pointer = Store->getPointerOperand(); 828 Value *Vector = getVectorValue(Stmt, Store->getValueOperand(), VectorMap, 829 ScalarMaps, getLoopForInst(Store)); 830 831 // Make sure we have scalar values available to access the pointer to 832 // the data location. 833 extractScalarValues(Store, VectorMap, ScalarMaps); 834 835 if (Access.isStrideOne(isl_map_copy(Schedule))) { 836 Type *VectorPtrType = getVectorPtrTy(Pointer, getVectorWidth()); 837 Value *NewPointer = generateLocationAccessed( 838 Stmt, Store, Pointer, ScalarMaps[0], VLTS[0], NewAccesses); 839 840 Value *VectorPtr = 841 Builder.CreateBitCast(NewPointer, VectorPtrType, "vector_ptr"); 842 StoreInst *Store = Builder.CreateStore(Vector, VectorPtr); 843 844 if (!Aligned) 845 Store->setAlignment(8); 846 } else { 847 for (unsigned i = 0; i < ScalarMaps.size(); i++) { 848 Value *Scalar = Builder.CreateExtractElement(Vector, Builder.getInt32(i)); 849 Value *NewPointer = generateLocationAccessed( 850 Stmt, Store, Pointer, ScalarMaps[i], VLTS[i], NewAccesses); 851 Builder.CreateStore(Scalar, NewPointer); 852 } 853 } 854 } 855 856 bool VectorBlockGenerator::hasVectorOperands(const Instruction *Inst, 857 ValueMapT &VectorMap) { 858 for (Value *Operand : Inst->operands()) 859 if (VectorMap.count(Operand)) 860 return true; 861 return false; 862 } 863 864 bool VectorBlockGenerator::extractScalarValues(const Instruction *Inst, 865 ValueMapT &VectorMap, 866 VectorValueMapT &ScalarMaps) { 867 bool HasVectorOperand = false; 868 int VectorWidth = getVectorWidth(); 869 870 for (Value *Operand : Inst->operands()) { 871 ValueMapT::iterator VecOp = VectorMap.find(Operand); 872 873 if (VecOp == VectorMap.end()) 874 continue; 875 876 HasVectorOperand = true; 877 Value *NewVector = VecOp->second; 878 879 for (int i = 0; i < VectorWidth; ++i) { 880 ValueMapT &SM = ScalarMaps[i]; 881 882 // If there is one scalar extracted, all scalar elements should have 883 // already been extracted by the code here. So no need to check for the 884 // existance of all of them. 885 if (SM.count(Operand)) 886 break; 887 888 SM[Operand] = 889 Builder.CreateExtractElement(NewVector, Builder.getInt32(i)); 890 } 891 } 892 893 return HasVectorOperand; 894 } 895 896 void VectorBlockGenerator::copyInstScalarized( 897 ScopStmt &Stmt, const Instruction *Inst, ValueMapT &VectorMap, 898 VectorValueMapT &ScalarMaps, __isl_keep isl_id_to_ast_expr *NewAccesses) { 899 bool HasVectorOperand; 900 int VectorWidth = getVectorWidth(); 901 902 HasVectorOperand = extractScalarValues(Inst, VectorMap, ScalarMaps); 903 904 for (int VectorLane = 0; VectorLane < getVectorWidth(); VectorLane++) 905 BlockGenerator::copyInstruction(Stmt, Inst, ScalarMaps[VectorLane], 906 VLTS[VectorLane], NewAccesses); 907 908 if (!VectorType::isValidElementType(Inst->getType()) || !HasVectorOperand) 909 return; 910 911 // Make the result available as vector value. 912 VectorType *VectorType = VectorType::get(Inst->getType(), VectorWidth); 913 Value *Vector = UndefValue::get(VectorType); 914 915 for (int i = 0; i < VectorWidth; i++) 916 Vector = Builder.CreateInsertElement(Vector, ScalarMaps[i][Inst], 917 Builder.getInt32(i)); 918 919 VectorMap[Inst] = Vector; 920 } 921 922 int VectorBlockGenerator::getVectorWidth() { return VLTS.size(); } 923 924 void VectorBlockGenerator::copyInstruction( 925 ScopStmt &Stmt, const Instruction *Inst, ValueMapT &VectorMap, 926 VectorValueMapT &ScalarMaps, __isl_keep isl_id_to_ast_expr *NewAccesses) { 927 // Terminator instructions control the control flow. They are explicitly 928 // expressed in the clast and do not need to be copied. 929 if (Inst->isTerminator()) 930 return; 931 932 if (canSynthesize(Inst, &LI, &SE, &Stmt.getParent()->getRegion())) 933 return; 934 935 if (const LoadInst *Load = dyn_cast<LoadInst>(Inst)) { 936 generateLoad(Stmt, Load, VectorMap, ScalarMaps, NewAccesses); 937 return; 938 } 939 940 if (hasVectorOperands(Inst, VectorMap)) { 941 if (const StoreInst *Store = dyn_cast<StoreInst>(Inst)) { 942 copyStore(Stmt, Store, VectorMap, ScalarMaps, NewAccesses); 943 return; 944 } 945 946 if (const UnaryInstruction *Unary = dyn_cast<UnaryInstruction>(Inst)) { 947 copyUnaryInst(Stmt, Unary, VectorMap, ScalarMaps); 948 return; 949 } 950 951 if (const BinaryOperator *Binary = dyn_cast<BinaryOperator>(Inst)) { 952 copyBinaryInst(Stmt, Binary, VectorMap, ScalarMaps); 953 return; 954 } 955 956 // Falltrough: We generate scalar instructions, if we don't know how to 957 // generate vector code. 958 } 959 960 copyInstScalarized(Stmt, Inst, VectorMap, ScalarMaps, NewAccesses); 961 } 962 963 void VectorBlockGenerator::copyStmt( 964 ScopStmt &Stmt, __isl_keep isl_id_to_ast_expr *NewAccesses) { 965 assert(Stmt.isBlockStmt() && "TODO: Only block statements can be copied by " 966 "the vector block generator"); 967 968 BasicBlock *BB = Stmt.getBasicBlock(); 969 BasicBlock *CopyBB = 970 SplitBlock(Builder.GetInsertBlock(), Builder.GetInsertPoint(), &DT, &LI); 971 CopyBB->setName("polly.stmt." + BB->getName()); 972 Builder.SetInsertPoint(CopyBB->begin()); 973 974 // Create two maps that store the mapping from the original instructions of 975 // the old basic block to their copies in the new basic block. Those maps 976 // are basic block local. 977 // 978 // As vector code generation is supported there is one map for scalar values 979 // and one for vector values. 980 // 981 // In case we just do scalar code generation, the vectorMap is not used and 982 // the scalarMap has just one dimension, which contains the mapping. 983 // 984 // In case vector code generation is done, an instruction may either appear 985 // in the vector map once (as it is calculating >vectorwidth< values at a 986 // time. Or (if the values are calculated using scalar operations), it 987 // appears once in every dimension of the scalarMap. 988 VectorValueMapT ScalarBlockMap(getVectorWidth()); 989 ValueMapT VectorBlockMap; 990 991 for (Instruction &Inst : *BB) 992 copyInstruction(Stmt, &Inst, VectorBlockMap, ScalarBlockMap, NewAccesses); 993 } 994 995 BasicBlock *RegionGenerator::repairDominance(BasicBlock *BB, 996 BasicBlock *BBCopy) { 997 998 BasicBlock *BBIDom = DT.getNode(BB)->getIDom()->getBlock(); 999 BasicBlock *BBCopyIDom = BlockMap.lookup(BBIDom); 1000 1001 if (BBCopyIDom) 1002 DT.changeImmediateDominator(BBCopy, BBCopyIDom); 1003 1004 return BBCopyIDom; 1005 } 1006 1007 void RegionGenerator::copyStmt(ScopStmt &Stmt, LoopToScevMapT <S, 1008 isl_id_to_ast_expr *IdToAstExp) { 1009 assert(Stmt.isRegionStmt() && 1010 "Only region statements can be copied by the region generator"); 1011 1012 // Forget all old mappings. 1013 BlockMap.clear(); 1014 RegionMaps.clear(); 1015 IncompletePHINodeMap.clear(); 1016 1017 // The region represented by the statement. 1018 Region *R = Stmt.getRegion(); 1019 1020 // Create a dedicated entry for the region where we can reload all demoted 1021 // inputs. 1022 BasicBlock *EntryBB = R->getEntry(); 1023 BasicBlock *EntryBBCopy = 1024 SplitBlock(Builder.GetInsertBlock(), Builder.GetInsertPoint(), &DT, &LI); 1025 EntryBBCopy->setName("polly.stmt." + EntryBB->getName() + ".entry"); 1026 Builder.SetInsertPoint(EntryBBCopy->begin()); 1027 1028 for (auto PI = pred_begin(EntryBB), PE = pred_end(EntryBB); PI != PE; ++PI) 1029 if (!R->contains(*PI)) 1030 BlockMap[*PI] = EntryBBCopy; 1031 1032 // Iterate over all blocks in the region in a breadth-first search. 1033 std::deque<BasicBlock *> Blocks; 1034 SmallPtrSet<BasicBlock *, 8> SeenBlocks; 1035 Blocks.push_back(EntryBB); 1036 SeenBlocks.insert(EntryBB); 1037 1038 while (!Blocks.empty()) { 1039 BasicBlock *BB = Blocks.front(); 1040 Blocks.pop_front(); 1041 1042 // First split the block and update dominance information. 1043 BasicBlock *BBCopy = splitBB(BB); 1044 BasicBlock *BBCopyIDom = repairDominance(BB, BBCopy); 1045 1046 // In order to remap PHI nodes we store also basic block mappings. 1047 BlockMap[BB] = BBCopy; 1048 1049 // Get the mapping for this block and initialize it with the mapping 1050 // available at its immediate dominator (in the new region). 1051 ValueMapT &RegionMap = RegionMaps[BBCopy]; 1052 RegionMap = RegionMaps[BBCopyIDom]; 1053 1054 // Copy the block with the BlockGenerator. 1055 copyBB(Stmt, BB, BBCopy, RegionMap, LTS, IdToAstExp); 1056 1057 // In order to remap PHI nodes we store also basic block mappings. 1058 BlockMap[BB] = BBCopy; 1059 1060 // Add values to incomplete PHI nodes waiting for this block to be copied. 1061 for (const PHINodePairTy &PHINodePair : IncompletePHINodeMap[BB]) 1062 addOperandToPHI(Stmt, PHINodePair.first, PHINodePair.second, BB, LTS); 1063 IncompletePHINodeMap[BB].clear(); 1064 1065 // And continue with new successors inside the region. 1066 for (auto SI = succ_begin(BB), SE = succ_end(BB); SI != SE; SI++) 1067 if (R->contains(*SI) && SeenBlocks.insert(*SI).second) 1068 Blocks.push_back(*SI); 1069 } 1070 1071 // Now create a new dedicated region exit block and add it to the region map. 1072 BasicBlock *ExitBBCopy = 1073 SplitBlock(Builder.GetInsertBlock(), Builder.GetInsertPoint(), &DT, &LI); 1074 ExitBBCopy->setName("polly.stmt." + R->getExit()->getName() + ".exit"); 1075 BlockMap[R->getExit()] = ExitBBCopy; 1076 1077 repairDominance(R->getExit(), ExitBBCopy); 1078 1079 // As the block generator doesn't handle control flow we need to add the 1080 // region control flow by hand after all blocks have been copied. 1081 for (BasicBlock *BB : SeenBlocks) { 1082 1083 BasicBlock *BBCopy = BlockMap[BB]; 1084 TerminatorInst *TI = BB->getTerminator(); 1085 if (isa<UnreachableInst>(TI)) { 1086 while (!BBCopy->empty()) 1087 BBCopy->begin()->eraseFromParent(); 1088 new UnreachableInst(BBCopy->getContext(), BBCopy); 1089 continue; 1090 } 1091 1092 Instruction *BICopy = BBCopy->getTerminator(); 1093 1094 ValueMapT &RegionMap = RegionMaps[BBCopy]; 1095 RegionMap.insert(BlockMap.begin(), BlockMap.end()); 1096 1097 Builder.SetInsertPoint(BICopy); 1098 copyInstScalar(Stmt, TI, RegionMap, LTS); 1099 BICopy->eraseFromParent(); 1100 } 1101 1102 // Add counting PHI nodes to all loops in the region that can be used as 1103 // replacement for SCEVs refering to the old loop. 1104 for (BasicBlock *BB : SeenBlocks) { 1105 Loop *L = LI.getLoopFor(BB); 1106 if (L == nullptr || L->getHeader() != BB) 1107 continue; 1108 1109 BasicBlock *BBCopy = BlockMap[BB]; 1110 Value *NullVal = Builder.getInt32(0); 1111 PHINode *LoopPHI = 1112 PHINode::Create(Builder.getInt32Ty(), 2, "polly.subregion.iv"); 1113 Instruction *LoopPHIInc = BinaryOperator::CreateAdd( 1114 LoopPHI, Builder.getInt32(1), "polly.subregion.iv.inc"); 1115 LoopPHI->insertBefore(BBCopy->begin()); 1116 LoopPHIInc->insertBefore(BBCopy->getTerminator()); 1117 1118 for (auto *PredBB : make_range(pred_begin(BB), pred_end(BB))) { 1119 if (!R->contains(PredBB)) 1120 continue; 1121 if (L->contains(PredBB)) 1122 LoopPHI->addIncoming(LoopPHIInc, BlockMap[PredBB]); 1123 else 1124 LoopPHI->addIncoming(NullVal, BlockMap[PredBB]); 1125 } 1126 1127 for (auto *PredBBCopy : make_range(pred_begin(BBCopy), pred_end(BBCopy))) 1128 if (LoopPHI->getBasicBlockIndex(PredBBCopy) < 0) 1129 LoopPHI->addIncoming(NullVal, PredBBCopy); 1130 1131 LTS[L] = SE.getUnknown(LoopPHI); 1132 } 1133 1134 // Reset the old insert point for the build. 1135 Builder.SetInsertPoint(ExitBBCopy->begin()); 1136 } 1137 1138 void RegionGenerator::generateScalarLoads(ScopStmt &Stmt, 1139 const Instruction *Inst, 1140 ValueMapT &BBMap) { 1141 1142 // Inside a non-affine region PHI nodes are copied not demoted. Once the 1143 // phi is copied it will reload all inputs from outside the region, hence 1144 // we do not need to generate code for the read access of the operands of a 1145 // PHI. 1146 if (isa<PHINode>(Inst)) 1147 return; 1148 1149 return BlockGenerator::generateScalarLoads(Stmt, Inst, BBMap); 1150 } 1151 1152 void RegionGenerator::generateScalarStores(ScopStmt &Stmt, BasicBlock *BB, 1153 LoopToScevMapT <S, 1154 ValueMapT &BBMap) { 1155 const Region &R = Stmt.getParent()->getRegion(); 1156 1157 assert(Stmt.getRegion() && 1158 "Block statements need to use the generateScalarStores() " 1159 "function in the BlockGenerator"); 1160 1161 for (MemoryAccess *MA : Stmt) { 1162 1163 if (MA->isExplicit() || MA->isRead()) 1164 continue; 1165 1166 Instruction *ScalarInst = MA->getAccessInstruction(); 1167 1168 // Only generate accesses that belong to this basic block. 1169 if (ScalarInst->getParent() != BB) 1170 continue; 1171 1172 Value *Val = MA->getAccessValue(); 1173 1174 auto Address = getOrCreateAlloca(*MA); 1175 1176 Val = getNewScalarValue(Val, R, Stmt, LTS, BBMap); 1177 Builder.CreateStore(Val, Address); 1178 } 1179 } 1180 1181 void RegionGenerator::addOperandToPHI(ScopStmt &Stmt, const PHINode *PHI, 1182 PHINode *PHICopy, BasicBlock *IncomingBB, 1183 LoopToScevMapT <S) { 1184 Region *StmtR = Stmt.getRegion(); 1185 1186 // If the incoming block was not yet copied mark this PHI as incomplete. 1187 // Once the block will be copied the incoming value will be added. 1188 BasicBlock *BBCopy = BlockMap[IncomingBB]; 1189 if (!BBCopy) { 1190 assert(StmtR->contains(IncomingBB) && 1191 "Bad incoming block for PHI in non-affine region"); 1192 IncompletePHINodeMap[IncomingBB].push_back(std::make_pair(PHI, PHICopy)); 1193 return; 1194 } 1195 1196 Value *OpCopy = nullptr; 1197 if (StmtR->contains(IncomingBB)) { 1198 assert(RegionMaps.count(BBCopy) && 1199 "Incoming PHI block did not have a BBMap"); 1200 ValueMapT &BBCopyMap = RegionMaps[BBCopy]; 1201 1202 Value *Op = PHI->getIncomingValueForBlock(IncomingBB); 1203 OpCopy = getNewValue(Stmt, Op, BBCopyMap, LTS, getLoopForInst(PHI)); 1204 } else { 1205 1206 if (PHICopy->getBasicBlockIndex(BBCopy) >= 0) 1207 return; 1208 1209 Value *PHIOpAddr = getOrCreatePHIAlloca(const_cast<PHINode *>(PHI)); 1210 OpCopy = new LoadInst(PHIOpAddr, PHIOpAddr->getName() + ".reload", 1211 BlockMap[IncomingBB]->getTerminator()); 1212 } 1213 1214 assert(OpCopy && "Incoming PHI value was not copied properly"); 1215 assert(BBCopy && "Incoming PHI block was not copied properly"); 1216 PHICopy->addIncoming(OpCopy, BBCopy); 1217 } 1218 1219 Value *RegionGenerator::copyPHIInstruction(ScopStmt &Stmt, const PHINode *PHI, 1220 ValueMapT &BBMap, 1221 LoopToScevMapT <S) { 1222 unsigned NumIncoming = PHI->getNumIncomingValues(); 1223 PHINode *PHICopy = 1224 Builder.CreatePHI(PHI->getType(), NumIncoming, "polly." + PHI->getName()); 1225 PHICopy->moveBefore(PHICopy->getParent()->getFirstNonPHI()); 1226 BBMap[PHI] = PHICopy; 1227 1228 for (unsigned u = 0; u < NumIncoming; u++) 1229 addOperandToPHI(Stmt, PHI, PHICopy, PHI->getIncomingBlock(u), LTS); 1230 return PHICopy; 1231 } 1232