1 //===--- BlockGenerators.cpp - Generate code for statements -----*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the BlockGenerator and VectorBlockGenerator classes,
11 // which generate sequential code and vectorized code for a polyhedral
12 // statement, respectively.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "polly/ScopInfo.h"
17 #include "polly/CodeGen/BlockGenerators.h"
18 #include "polly/CodeGen/CodeGeneration.h"
19 #include "polly/CodeGen/IslExprBuilder.h"
20 #include "polly/CodeGen/RuntimeDebugBuilder.h"
21 #include "polly/Options.h"
22 #include "polly/Support/GICHelper.h"
23 #include "polly/Support/SCEVValidator.h"
24 #include "polly/Support/ScopHelper.h"
25 #include "llvm/Analysis/LoopInfo.h"
26 #include "llvm/Analysis/RegionInfo.h"
27 #include "llvm/Analysis/ScalarEvolution.h"
28 #include "llvm/IR/IntrinsicInst.h"
29 #include "llvm/IR/Module.h"
30 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
31 #include "llvm/Transforms/Utils/Local.h"
32 #include "isl/aff.h"
33 #include "isl/ast.h"
34 #include "isl/ast_build.h"
35 #include "isl/set.h"
36 #include <deque>
37 
38 using namespace llvm;
39 using namespace polly;
40 
41 static cl::opt<bool> Aligned("enable-polly-aligned",
42                              cl::desc("Assumed aligned memory accesses."),
43                              cl::Hidden, cl::init(false), cl::ZeroOrMore,
44                              cl::cat(PollyCategory));
45 
46 static cl::opt<bool> DebugPrinting(
47     "polly-codegen-add-debug-printing",
48     cl::desc("Add printf calls that show the values loaded/stored."),
49     cl::Hidden, cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory));
50 
51 bool polly::canSynthesize(const Value *V, const llvm::LoopInfo *LI,
52                           ScalarEvolution *SE, const Region *R) {
53   if (!V || !SE->isSCEVable(V->getType()))
54     return false;
55 
56   if (const SCEV *Scev = SE->getSCEV(const_cast<Value *>(V)))
57     if (!isa<SCEVCouldNotCompute>(Scev))
58       if (!hasScalarDepsInsideRegion(Scev, R))
59         return true;
60 
61   return false;
62 }
63 
64 bool polly::isIgnoredIntrinsic(const Value *V) {
65   if (auto *IT = dyn_cast<IntrinsicInst>(V)) {
66     switch (IT->getIntrinsicID()) {
67     // Lifetime markers are supported/ignored.
68     case llvm::Intrinsic::lifetime_start:
69     case llvm::Intrinsic::lifetime_end:
70     // Invariant markers are supported/ignored.
71     case llvm::Intrinsic::invariant_start:
72     case llvm::Intrinsic::invariant_end:
73     // Some misc annotations are supported/ignored.
74     case llvm::Intrinsic::var_annotation:
75     case llvm::Intrinsic::ptr_annotation:
76     case llvm::Intrinsic::annotation:
77     case llvm::Intrinsic::donothing:
78     case llvm::Intrinsic::assume:
79     case llvm::Intrinsic::expect:
80     // Some debug info intrisics are supported/ignored.
81     case llvm::Intrinsic::dbg_value:
82     case llvm::Intrinsic::dbg_declare:
83       return true;
84     default:
85       break;
86     }
87   }
88   return false;
89 }
90 
91 BlockGenerator::BlockGenerator(PollyIRBuilder &B, LoopInfo &LI,
92                                ScalarEvolution &SE, DominatorTree &DT,
93                                ScalarAllocaMapTy &ScalarMap,
94                                ScalarAllocaMapTy &PHIOpMap,
95                                EscapeUsersAllocaMapTy &EscapeMap,
96                                ValueToValueMap &GlobalMap,
97                                IslExprBuilder *ExprBuilder)
98     : Builder(B), LI(LI), SE(SE), ExprBuilder(ExprBuilder), DT(DT),
99       EntryBB(nullptr), PHIOpMap(PHIOpMap), ScalarMap(ScalarMap),
100       EscapeMap(EscapeMap), GlobalMap(GlobalMap) {}
101 
102 Value *BlockGenerator::trySynthesizeNewValue(ScopStmt &Stmt, const Value *Old,
103                                              ValueMapT &BBMap,
104                                              LoopToScevMapT &LTS,
105                                              Loop *L) const {
106   if (SE.isSCEVable(Old->getType()))
107     if (const SCEV *Scev = SE.getSCEVAtScope(const_cast<Value *>(Old), L)) {
108       if (!isa<SCEVCouldNotCompute>(Scev)) {
109         const SCEV *NewScev = apply(Scev, LTS, SE);
110         ValueToValueMap VTV;
111         VTV.insert(BBMap.begin(), BBMap.end());
112         VTV.insert(GlobalMap.begin(), GlobalMap.end());
113 
114         Scop &S = *Stmt.getParent();
115         const DataLayout &DL =
116             S.getRegion().getEntry()->getParent()->getParent()->getDataLayout();
117         auto IP = Builder.GetInsertPoint();
118 
119         assert(IP != Builder.GetInsertBlock()->end() &&
120                "Only instructions can be insert points for SCEVExpander");
121         Value *Expanded = expandCodeFor(S, SE, DL, "polly", NewScev,
122                                         Old->getType(), IP, &VTV);
123 
124         BBMap[Old] = Expanded;
125         return Expanded;
126       }
127     }
128 
129   return nullptr;
130 }
131 
132 Value *BlockGenerator::getNewValue(ScopStmt &Stmt, const Value *Old,
133                                    ValueMapT &BBMap, LoopToScevMapT &LTS,
134                                    Loop *L) const {
135   // We assume constants never change.
136   // This avoids map lookups for many calls to this function.
137   if (isa<Constant>(Old))
138     return const_cast<Value *>(Old);
139 
140   if (Value *New = GlobalMap.lookup(Old)) {
141     if (Value *NewRemapped = GlobalMap.lookup(New))
142       New = NewRemapped;
143     if (Old->getType()->getScalarSizeInBits() <
144         New->getType()->getScalarSizeInBits())
145       New = Builder.CreateTruncOrBitCast(New, Old->getType());
146 
147     return New;
148   }
149 
150   if (Value *New = BBMap.lookup(Old))
151     return New;
152 
153   if (Value *New = trySynthesizeNewValue(Stmt, Old, BBMap, LTS, L))
154     return New;
155 
156   // A scop-constant value defined by a global or a function parameter.
157   if (isa<GlobalValue>(Old) || isa<Argument>(Old))
158     return const_cast<Value *>(Old);
159 
160   // A scop-constant value defined by an instruction executed outside the scop.
161   if (const Instruction *Inst = dyn_cast<Instruction>(Old))
162     if (!Stmt.getParent()->getRegion().contains(Inst->getParent()))
163       return const_cast<Value *>(Old);
164 
165   // The scalar dependence is neither available nor SCEVCodegenable.
166   llvm_unreachable("Unexpected scalar dependence in region!");
167   return nullptr;
168 }
169 
170 void BlockGenerator::copyInstScalar(ScopStmt &Stmt, const Instruction *Inst,
171                                     ValueMapT &BBMap, LoopToScevMapT &LTS) {
172   // We do not generate debug intrinsics as we did not investigate how to
173   // copy them correctly. At the current state, they just crash the code
174   // generation as the meta-data operands are not correctly copied.
175   if (isa<DbgInfoIntrinsic>(Inst))
176     return;
177 
178   Instruction *NewInst = Inst->clone();
179 
180   // Replace old operands with the new ones.
181   for (Value *OldOperand : Inst->operands()) {
182     Value *NewOperand =
183         getNewValue(Stmt, OldOperand, BBMap, LTS, getLoopForInst(Inst));
184 
185     if (!NewOperand) {
186       assert(!isa<StoreInst>(NewInst) &&
187              "Store instructions are always needed!");
188       delete NewInst;
189       return;
190     }
191 
192     NewInst->replaceUsesOfWith(OldOperand, NewOperand);
193   }
194 
195   Builder.Insert(NewInst);
196   BBMap[Inst] = NewInst;
197 
198   if (!NewInst->getType()->isVoidTy())
199     NewInst->setName("p_" + Inst->getName());
200 }
201 
202 Value *BlockGenerator::generateLocationAccessed(
203     ScopStmt &Stmt, const Instruction *Inst, const Value *Pointer,
204     ValueMapT &BBMap, LoopToScevMapT &LTS, isl_id_to_ast_expr *NewAccesses) {
205   const MemoryAccess &MA = Stmt.getAccessFor(Inst);
206 
207   isl_ast_expr *AccessExpr = isl_id_to_ast_expr_get(NewAccesses, MA.getId());
208 
209   if (AccessExpr) {
210     AccessExpr = isl_ast_expr_address_of(AccessExpr);
211     auto Address = ExprBuilder->create(AccessExpr);
212 
213     // Cast the address of this memory access to a pointer type that has the
214     // same element type as the original access, but uses the address space of
215     // the newly generated pointer.
216     auto OldPtrTy = MA.getAccessValue()->getType()->getPointerTo();
217     auto NewPtrTy = Address->getType();
218     OldPtrTy = PointerType::get(OldPtrTy->getElementType(),
219                                 NewPtrTy->getPointerAddressSpace());
220 
221     if (OldPtrTy != NewPtrTy) {
222       assert(OldPtrTy->getPointerElementType()->getPrimitiveSizeInBits() ==
223                  NewPtrTy->getPointerElementType()->getPrimitiveSizeInBits() &&
224              "Pointer types to elements with different size found");
225       Address = Builder.CreateBitOrPointerCast(Address, OldPtrTy);
226     }
227     return Address;
228   }
229 
230   return getNewValue(Stmt, Pointer, BBMap, LTS, getLoopForInst(Inst));
231 }
232 
233 Loop *BlockGenerator::getLoopForInst(const llvm::Instruction *Inst) {
234   return LI.getLoopFor(Inst->getParent());
235 }
236 
237 Value *BlockGenerator::generateScalarLoad(ScopStmt &Stmt, const LoadInst *Load,
238                                           ValueMapT &BBMap, LoopToScevMapT &LTS,
239                                           isl_id_to_ast_expr *NewAccesses) {
240   if (Value *PreloadLoad = GlobalMap.lookup(Load))
241     return PreloadLoad;
242 
243   const Value *Pointer = Load->getPointerOperand();
244   Value *NewPointer =
245       generateLocationAccessed(Stmt, Load, Pointer, BBMap, LTS, NewAccesses);
246   Value *ScalarLoad = Builder.CreateAlignedLoad(
247       NewPointer, Load->getAlignment(), Load->getName() + "_p_scalar_");
248 
249   if (DebugPrinting)
250     RuntimeDebugBuilder::createCPUPrinter(Builder, "Load from ", NewPointer,
251                                           ": ", ScalarLoad, "\n");
252 
253   return ScalarLoad;
254 }
255 
256 void BlockGenerator::generateScalarStore(ScopStmt &Stmt, const StoreInst *Store,
257                                          ValueMapT &BBMap, LoopToScevMapT &LTS,
258                                          isl_id_to_ast_expr *NewAccesses) {
259   const Value *Pointer = Store->getPointerOperand();
260   Value *NewPointer =
261       generateLocationAccessed(Stmt, Store, Pointer, BBMap, LTS, NewAccesses);
262   Value *ValueOperand = getNewValue(Stmt, Store->getValueOperand(), BBMap, LTS,
263                                     getLoopForInst(Store));
264 
265   if (DebugPrinting)
266     RuntimeDebugBuilder::createCPUPrinter(Builder, "Store to  ", NewPointer,
267                                           ": ", ValueOperand, "\n");
268 
269   Builder.CreateAlignedStore(ValueOperand, NewPointer, Store->getAlignment());
270 }
271 
272 void BlockGenerator::copyInstruction(ScopStmt &Stmt, const Instruction *Inst,
273                                      ValueMapT &BBMap, LoopToScevMapT &LTS,
274                                      isl_id_to_ast_expr *NewAccesses) {
275 
276   // First check for possible scalar dependences for this instruction.
277   generateScalarLoads(Stmt, Inst, BBMap);
278 
279   // Terminator instructions control the control flow. They are explicitly
280   // expressed in the clast and do not need to be copied.
281   if (Inst->isTerminator())
282     return;
283 
284   Loop *L = getLoopForInst(Inst);
285   if ((Stmt.isBlockStmt() || !Stmt.getRegion()->contains(L)) &&
286       canSynthesize(Inst, &LI, &SE, &Stmt.getParent()->getRegion())) {
287     // Synthesizable statements will be generated on-demand.
288     return;
289   }
290 
291   if (const LoadInst *Load = dyn_cast<LoadInst>(Inst)) {
292     Value *NewLoad = generateScalarLoad(Stmt, Load, BBMap, LTS, NewAccesses);
293     // Compute NewLoad before its insertion in BBMap to make the insertion
294     // deterministic.
295     BBMap[Load] = NewLoad;
296     return;
297   }
298 
299   if (const StoreInst *Store = dyn_cast<StoreInst>(Inst)) {
300     generateScalarStore(Stmt, Store, BBMap, LTS, NewAccesses);
301     return;
302   }
303 
304   if (const PHINode *PHI = dyn_cast<PHINode>(Inst)) {
305     copyPHIInstruction(Stmt, PHI, BBMap, LTS);
306     return;
307   }
308 
309   // Skip some special intrinsics for which we do not adjust the semantics to
310   // the new schedule. All others are handled like every other instruction.
311   if (isIgnoredIntrinsic(Inst))
312     return;
313 
314   copyInstScalar(Stmt, Inst, BBMap, LTS);
315 }
316 
317 void BlockGenerator::copyStmt(ScopStmt &Stmt, LoopToScevMapT &LTS,
318                               isl_id_to_ast_expr *NewAccesses) {
319   assert(Stmt.isBlockStmt() &&
320          "Only block statements can be copied by the block generator");
321 
322   ValueMapT BBMap;
323 
324   BasicBlock *BB = Stmt.getBasicBlock();
325   copyBB(Stmt, BB, BBMap, LTS, NewAccesses);
326 }
327 
328 BasicBlock *BlockGenerator::splitBB(BasicBlock *BB) {
329   BasicBlock *CopyBB =
330       SplitBlock(Builder.GetInsertBlock(), Builder.GetInsertPoint(), &DT, &LI);
331   CopyBB->setName("polly.stmt." + BB->getName());
332   return CopyBB;
333 }
334 
335 BasicBlock *BlockGenerator::copyBB(ScopStmt &Stmt, BasicBlock *BB,
336                                    ValueMapT &BBMap, LoopToScevMapT &LTS,
337                                    isl_id_to_ast_expr *NewAccesses) {
338   BasicBlock *CopyBB = splitBB(BB);
339   copyBB(Stmt, BB, CopyBB, BBMap, LTS, NewAccesses);
340   return CopyBB;
341 }
342 
343 void BlockGenerator::copyBB(ScopStmt &Stmt, BasicBlock *BB, BasicBlock *CopyBB,
344                             ValueMapT &BBMap, LoopToScevMapT &LTS,
345                             isl_id_to_ast_expr *NewAccesses) {
346   Builder.SetInsertPoint(CopyBB->begin());
347   EntryBB = &CopyBB->getParent()->getEntryBlock();
348 
349   for (Instruction &Inst : *BB)
350     copyInstruction(Stmt, &Inst, BBMap, LTS, NewAccesses);
351 
352   // After a basic block was copied store all scalars that escape this block
353   // in their alloca. First the scalars that have dependences inside the SCoP,
354   // then the ones that might escape the SCoP.
355   generateScalarStores(Stmt, BB, LTS, BBMap);
356 
357   const Region &R = Stmt.getParent()->getRegion();
358   for (Instruction &Inst : *BB)
359     handleOutsideUsers(R, &Inst, BBMap[&Inst]);
360 }
361 
362 Value *BlockGenerator::getOrCreateAlloca(Value *ScalarBase,
363                                          ScalarAllocaMapTy &Map,
364                                          const char *NameExt) {
365   // Check if an alloca was cached for the base instruction.
366   Value *&Addr = Map[ScalarBase];
367 
368   // If no alloca was found create one and insert it in the entry block.
369   if (!Addr) {
370     auto *Ty = ScalarBase->getType();
371     auto NewAddr = new AllocaInst(Ty, ScalarBase->getName() + NameExt);
372     EntryBB = &Builder.GetInsertBlock()->getParent()->getEntryBlock();
373     NewAddr->insertBefore(EntryBB->getFirstInsertionPt());
374     Addr = NewAddr;
375   }
376 
377   if (GlobalMap.count(Addr))
378     return GlobalMap[Addr];
379 
380   return Addr;
381 }
382 
383 Value *BlockGenerator::getOrCreateAlloca(MemoryAccess &Access) {
384   if (Access.getScopArrayInfo()->isPHI())
385     return getOrCreatePHIAlloca(Access.getBaseAddr());
386   else
387     return getOrCreateScalarAlloca(Access.getBaseAddr());
388 }
389 
390 Value *BlockGenerator::getOrCreateScalarAlloca(Value *ScalarBase) {
391   return getOrCreateAlloca(ScalarBase, ScalarMap, ".s2a");
392 }
393 
394 Value *BlockGenerator::getOrCreatePHIAlloca(Value *ScalarBase) {
395   return getOrCreateAlloca(ScalarBase, PHIOpMap, ".phiops");
396 }
397 
398 void BlockGenerator::handleOutsideUsers(const Region &R, Instruction *Inst,
399                                         Value *InstCopy, Value *Address) {
400   // If there are escape users we get the alloca for this instruction and put it
401   // in the EscapeMap for later finalization. Lastly, if the instruction was
402   // copied multiple times we already did this and can exit.
403   if (EscapeMap.count(Inst))
404     return;
405 
406   EscapeUserVectorTy EscapeUsers;
407   for (User *U : Inst->users()) {
408 
409     // Non-instruction user will never escape.
410     Instruction *UI = dyn_cast<Instruction>(U);
411     if (!UI)
412       continue;
413 
414     if (R.contains(UI))
415       continue;
416 
417     EscapeUsers.push_back(UI);
418   }
419 
420   // Exit if no escape uses were found.
421   if (EscapeUsers.empty())
422     return;
423 
424   // Get or create an escape alloca for this instruction.
425   auto *ScalarAddr = Address ? Address : getOrCreateScalarAlloca(Inst);
426 
427   // Remember that this instruction has escape uses and the escape alloca.
428   EscapeMap[Inst] = std::make_pair(ScalarAddr, std::move(EscapeUsers));
429 }
430 
431 void BlockGenerator::generateScalarLoads(ScopStmt &Stmt,
432                                          const Instruction *Inst,
433                                          ValueMapT &BBMap) {
434   auto *MAL = Stmt.lookupAccessesFor(Inst);
435 
436   if (!MAL)
437     return;
438 
439   for (MemoryAccess *MA : *MAL) {
440     if (MA->isExplicit() || !MA->isRead())
441       continue;
442 
443     auto *Address = getOrCreateAlloca(*MA);
444     BBMap[MA->getBaseAddr()] =
445         Builder.CreateLoad(Address, Address->getName() + ".reload");
446   }
447 }
448 
449 Value *BlockGenerator::getNewScalarValue(Value *ScalarValue, const Region &R,
450                                          ScopStmt &Stmt, LoopToScevMapT &LTS,
451                                          ValueMapT &BBMap) {
452   // If the value we want to store is an instruction we might have demoted it
453   // in order to make it accessible here. In such a case a reload is
454   // necessary. If it is no instruction it will always be a value that
455   // dominates the current point and we can just use it. In total there are 4
456   // options:
457   //  (1) The value is no instruction ==> use the value.
458   //  (2) The value is an instruction that was split out of the region prior to
459   //      code generation  ==> use the instruction as it dominates the region.
460   //  (3) The value is an instruction:
461   //      (a) The value was defined in the current block, thus a copy is in
462   //          the BBMap ==> use the mapped value.
463   //      (b) The value was defined in a previous block, thus we demoted it
464   //          earlier ==> use the reloaded value.
465   Instruction *ScalarValueInst = dyn_cast<Instruction>(ScalarValue);
466   if (!ScalarValueInst)
467     return ScalarValue;
468 
469   if (!R.contains(ScalarValueInst)) {
470     if (Value *ScalarValueCopy = GlobalMap.lookup(ScalarValueInst))
471       return /* Case (3a) */ ScalarValueCopy;
472     else
473       return /* Case 2 */ ScalarValue;
474   }
475 
476   if (Value *ScalarValueCopy = BBMap.lookup(ScalarValueInst))
477     return /* Case (3a) */ ScalarValueCopy;
478 
479   if ((Stmt.isBlockStmt() &&
480        Stmt.getBasicBlock() == ScalarValueInst->getParent()) ||
481       (Stmt.isRegionStmt() && Stmt.getRegion()->contains(ScalarValueInst))) {
482     auto SynthesizedValue = trySynthesizeNewValue(
483         Stmt, ScalarValueInst, BBMap, LTS, getLoopForInst(ScalarValueInst));
484 
485     if (SynthesizedValue)
486       return SynthesizedValue;
487   }
488 
489   // Case (3b)
490   Value *Address = getOrCreateScalarAlloca(ScalarValueInst);
491   ScalarValue = Builder.CreateLoad(Address, Address->getName() + ".reload");
492 
493   return ScalarValue;
494 }
495 
496 void BlockGenerator::generateScalarStores(ScopStmt &Stmt, BasicBlock *BB,
497                                           LoopToScevMapT &LTS,
498                                           ValueMapT &BBMap) {
499   const Region &R = Stmt.getParent()->getRegion();
500 
501   assert(Stmt.isBlockStmt() && BB == Stmt.getBasicBlock() &&
502          "Region statements need to use the generateScalarStores() "
503          "function in the RegionGenerator");
504 
505   for (MemoryAccess *MA : Stmt) {
506     if (MA->isExplicit() || MA->isRead())
507       continue;
508 
509     Value *Val = MA->getAccessValue();
510     auto *Address = getOrCreateAlloca(*MA);
511 
512     Val = getNewScalarValue(Val, R, Stmt, LTS, BBMap);
513     Builder.CreateStore(Val, Address);
514   }
515 }
516 
517 void BlockGenerator::createScalarInitialization(Scop &S) {
518   Region &R = S.getRegion();
519   // The split block __just before__ the region and optimized region.
520   BasicBlock *SplitBB = R.getEnteringBlock();
521   BranchInst *SplitBBTerm = cast<BranchInst>(SplitBB->getTerminator());
522   assert(SplitBBTerm->getNumSuccessors() == 2 && "Bad region entering block!");
523 
524   // Get the start block of the __optimized__ region.
525   BasicBlock *StartBB = SplitBBTerm->getSuccessor(0);
526   if (StartBB == R.getEntry())
527     StartBB = SplitBBTerm->getSuccessor(1);
528 
529   Builder.SetInsertPoint(StartBB->getTerminator());
530 
531   for (auto &Pair : S.arrays()) {
532     auto &Array = Pair.second;
533     if (Array->getNumberOfDimensions() != 0)
534       continue;
535     if (Array->isPHI()) {
536       // For PHI nodes, the only values we need to store are the ones that
537       // reach the PHI node from outside the region. In general there should
538       // only be one such incoming edge and this edge should enter through
539       // 'SplitBB'.
540       auto PHI = cast<PHINode>(Array->getBasePtr());
541 
542       for (auto BI = PHI->block_begin(), BE = PHI->block_end(); BI != BE; BI++)
543         if (!R.contains(*BI) && *BI != SplitBB)
544           llvm_unreachable("Incoming edges from outside the scop should always "
545                            "come from SplitBB");
546 
547       int Idx = PHI->getBasicBlockIndex(SplitBB);
548       if (Idx < 0)
549         continue;
550 
551       Value *ScalarValue = PHI->getIncomingValue(Idx);
552 
553       Builder.CreateStore(ScalarValue, getOrCreatePHIAlloca(PHI));
554       continue;
555     }
556 
557     auto *Inst = dyn_cast<Instruction>(Array->getBasePtr());
558 
559     if (Inst && R.contains(Inst))
560       continue;
561 
562     // PHI nodes that are not marked as such in their SAI object are exit PHI
563     // nodes we model as common scalars but do not need to initialize.
564     if (Inst && isa<PHINode>(Inst))
565       continue;
566 
567     ValueMapT EmptyMap;
568     Builder.CreateStore(Array->getBasePtr(),
569                         getOrCreateScalarAlloca(Array->getBasePtr()));
570   }
571 }
572 
573 void BlockGenerator::createScalarFinalization(Region &R) {
574   // The exit block of the __unoptimized__ region.
575   BasicBlock *ExitBB = R.getExitingBlock();
576   // The merge block __just after__ the region and the optimized region.
577   BasicBlock *MergeBB = R.getExit();
578 
579   // The exit block of the __optimized__ region.
580   BasicBlock *OptExitBB = *(pred_begin(MergeBB));
581   if (OptExitBB == ExitBB)
582     OptExitBB = *(++pred_begin(MergeBB));
583 
584   Builder.SetInsertPoint(OptExitBB->getTerminator());
585   for (const auto &EscapeMapping : EscapeMap) {
586     // Extract the escaping instruction and the escaping users as well as the
587     // alloca the instruction was demoted to.
588     Instruction *EscapeInst = EscapeMapping.getFirst();
589     const auto &EscapeMappingValue = EscapeMapping.getSecond();
590     const EscapeUserVectorTy &EscapeUsers = EscapeMappingValue.second;
591     Value *ScalarAddr = EscapeMappingValue.first;
592 
593     // Reload the demoted instruction in the optimized version of the SCoP.
594     Instruction *EscapeInstReload =
595         Builder.CreateLoad(ScalarAddr, EscapeInst->getName() + ".final_reload");
596 
597     // Create the merge PHI that merges the optimized and unoptimized version.
598     PHINode *MergePHI = PHINode::Create(EscapeInst->getType(), 2,
599                                         EscapeInst->getName() + ".merge");
600     MergePHI->insertBefore(MergeBB->getFirstInsertionPt());
601 
602     // Add the respective values to the merge PHI.
603     MergePHI->addIncoming(EscapeInstReload, OptExitBB);
604     MergePHI->addIncoming(EscapeInst, ExitBB);
605 
606     // The information of scalar evolution about the escaping instruction needs
607     // to be revoked so the new merged instruction will be used.
608     if (SE.isSCEVable(EscapeInst->getType()))
609       SE.forgetValue(EscapeInst);
610 
611     // Replace all uses of the demoted instruction with the merge PHI.
612     for (Instruction *EUser : EscapeUsers)
613       EUser->replaceUsesOfWith(EscapeInst, MergePHI);
614   }
615 }
616 
617 void BlockGenerator::finalizeSCoP(Scop &S) {
618 
619   // Handle PHI nodes that were in the original exit and are now
620   // moved into the region exiting block.
621   if (!S.hasSingleExitEdge()) {
622     for (Instruction &I : *S.getRegion().getExitingBlock()) {
623       PHINode *PHI = dyn_cast<PHINode>(&I);
624       if (!PHI)
625         break;
626 
627       assert(PHI->getNumUses() == 1);
628       assert(ScalarMap.count(PHI->user_back()));
629 
630       handleOutsideUsers(S.getRegion(), PHI, nullptr,
631                          ScalarMap[PHI->user_back()]);
632     }
633   }
634 
635   createScalarInitialization(S);
636   createScalarFinalization(S.getRegion());
637 }
638 
639 VectorBlockGenerator::VectorBlockGenerator(BlockGenerator &BlockGen,
640                                            std::vector<LoopToScevMapT> &VLTS,
641                                            isl_map *Schedule)
642     : BlockGenerator(BlockGen), VLTS(VLTS), Schedule(Schedule) {
643   assert(Schedule && "No statement domain provided");
644 }
645 
646 Value *VectorBlockGenerator::getVectorValue(ScopStmt &Stmt, const Value *Old,
647                                             ValueMapT &VectorMap,
648                                             VectorValueMapT &ScalarMaps,
649                                             Loop *L) {
650   if (Value *NewValue = VectorMap.lookup(Old))
651     return NewValue;
652 
653   int Width = getVectorWidth();
654 
655   Value *Vector = UndefValue::get(VectorType::get(Old->getType(), Width));
656 
657   for (int Lane = 0; Lane < Width; Lane++)
658     Vector = Builder.CreateInsertElement(
659         Vector, getNewValue(Stmt, Old, ScalarMaps[Lane], VLTS[Lane], L),
660         Builder.getInt32(Lane));
661 
662   VectorMap[Old] = Vector;
663 
664   return Vector;
665 }
666 
667 Type *VectorBlockGenerator::getVectorPtrTy(const Value *Val, int Width) {
668   PointerType *PointerTy = dyn_cast<PointerType>(Val->getType());
669   assert(PointerTy && "PointerType expected");
670 
671   Type *ScalarType = PointerTy->getElementType();
672   VectorType *VectorType = VectorType::get(ScalarType, Width);
673 
674   return PointerType::getUnqual(VectorType);
675 }
676 
677 Value *VectorBlockGenerator::generateStrideOneLoad(
678     ScopStmt &Stmt, const LoadInst *Load, VectorValueMapT &ScalarMaps,
679     __isl_keep isl_id_to_ast_expr *NewAccesses, bool NegativeStride = false) {
680   unsigned VectorWidth = getVectorWidth();
681   const Value *Pointer = Load->getPointerOperand();
682   Type *VectorPtrType = getVectorPtrTy(Pointer, VectorWidth);
683   unsigned Offset = NegativeStride ? VectorWidth - 1 : 0;
684 
685   Value *NewPointer = nullptr;
686   NewPointer = generateLocationAccessed(Stmt, Load, Pointer, ScalarMaps[Offset],
687                                         VLTS[Offset], NewAccesses);
688   Value *VectorPtr =
689       Builder.CreateBitCast(NewPointer, VectorPtrType, "vector_ptr");
690   LoadInst *VecLoad =
691       Builder.CreateLoad(VectorPtr, Load->getName() + "_p_vec_full");
692   if (!Aligned)
693     VecLoad->setAlignment(8);
694 
695   if (NegativeStride) {
696     SmallVector<Constant *, 16> Indices;
697     for (int i = VectorWidth - 1; i >= 0; i--)
698       Indices.push_back(ConstantInt::get(Builder.getInt32Ty(), i));
699     Constant *SV = llvm::ConstantVector::get(Indices);
700     Value *RevVecLoad = Builder.CreateShuffleVector(
701         VecLoad, VecLoad, SV, Load->getName() + "_reverse");
702     return RevVecLoad;
703   }
704 
705   return VecLoad;
706 }
707 
708 Value *VectorBlockGenerator::generateStrideZeroLoad(
709     ScopStmt &Stmt, const LoadInst *Load, ValueMapT &BBMap,
710     __isl_keep isl_id_to_ast_expr *NewAccesses) {
711   const Value *Pointer = Load->getPointerOperand();
712   Type *VectorPtrType = getVectorPtrTy(Pointer, 1);
713   Value *NewPointer = generateLocationAccessed(Stmt, Load, Pointer, BBMap,
714                                                VLTS[0], NewAccesses);
715   Value *VectorPtr = Builder.CreateBitCast(NewPointer, VectorPtrType,
716                                            Load->getName() + "_p_vec_p");
717   LoadInst *ScalarLoad =
718       Builder.CreateLoad(VectorPtr, Load->getName() + "_p_splat_one");
719 
720   if (!Aligned)
721     ScalarLoad->setAlignment(8);
722 
723   Constant *SplatVector = Constant::getNullValue(
724       VectorType::get(Builder.getInt32Ty(), getVectorWidth()));
725 
726   Value *VectorLoad = Builder.CreateShuffleVector(
727       ScalarLoad, ScalarLoad, SplatVector, Load->getName() + "_p_splat");
728   return VectorLoad;
729 }
730 
731 Value *VectorBlockGenerator::generateUnknownStrideLoad(
732     ScopStmt &Stmt, const LoadInst *Load, VectorValueMapT &ScalarMaps,
733     __isl_keep isl_id_to_ast_expr *NewAccesses
734 
735     ) {
736   int VectorWidth = getVectorWidth();
737   const Value *Pointer = Load->getPointerOperand();
738   VectorType *VectorType = VectorType::get(
739       dyn_cast<PointerType>(Pointer->getType())->getElementType(), VectorWidth);
740 
741   Value *Vector = UndefValue::get(VectorType);
742 
743   for (int i = 0; i < VectorWidth; i++) {
744     Value *NewPointer = generateLocationAccessed(
745         Stmt, Load, Pointer, ScalarMaps[i], VLTS[i], NewAccesses);
746     Value *ScalarLoad =
747         Builder.CreateLoad(NewPointer, Load->getName() + "_p_scalar_");
748     Vector = Builder.CreateInsertElement(
749         Vector, ScalarLoad, Builder.getInt32(i), Load->getName() + "_p_vec_");
750   }
751 
752   return Vector;
753 }
754 
755 void VectorBlockGenerator::generateLoad(
756     ScopStmt &Stmt, const LoadInst *Load, ValueMapT &VectorMap,
757     VectorValueMapT &ScalarMaps, __isl_keep isl_id_to_ast_expr *NewAccesses) {
758   if (Value *PreloadLoad = GlobalMap.lookup(Load)) {
759     VectorMap[Load] = Builder.CreateVectorSplat(getVectorWidth(), PreloadLoad,
760                                                 Load->getName() + "_p");
761     return;
762   }
763 
764   if (!VectorType::isValidElementType(Load->getType())) {
765     for (int i = 0; i < getVectorWidth(); i++)
766       ScalarMaps[i][Load] =
767           generateScalarLoad(Stmt, Load, ScalarMaps[i], VLTS[i], NewAccesses);
768     return;
769   }
770 
771   const MemoryAccess &Access = Stmt.getAccessFor(Load);
772 
773   // Make sure we have scalar values available to access the pointer to
774   // the data location.
775   extractScalarValues(Load, VectorMap, ScalarMaps);
776 
777   Value *NewLoad;
778   if (Access.isStrideZero(isl_map_copy(Schedule)))
779     NewLoad = generateStrideZeroLoad(Stmt, Load, ScalarMaps[0], NewAccesses);
780   else if (Access.isStrideOne(isl_map_copy(Schedule)))
781     NewLoad = generateStrideOneLoad(Stmt, Load, ScalarMaps, NewAccesses);
782   else if (Access.isStrideX(isl_map_copy(Schedule), -1))
783     NewLoad = generateStrideOneLoad(Stmt, Load, ScalarMaps, NewAccesses, true);
784   else
785     NewLoad = generateUnknownStrideLoad(Stmt, Load, ScalarMaps, NewAccesses);
786 
787   VectorMap[Load] = NewLoad;
788 }
789 
790 void VectorBlockGenerator::copyUnaryInst(ScopStmt &Stmt,
791                                          const UnaryInstruction *Inst,
792                                          ValueMapT &VectorMap,
793                                          VectorValueMapT &ScalarMaps) {
794   int VectorWidth = getVectorWidth();
795   Value *NewOperand = getVectorValue(Stmt, Inst->getOperand(0), VectorMap,
796                                      ScalarMaps, getLoopForInst(Inst));
797 
798   assert(isa<CastInst>(Inst) && "Can not generate vector code for instruction");
799 
800   const CastInst *Cast = dyn_cast<CastInst>(Inst);
801   VectorType *DestType = VectorType::get(Inst->getType(), VectorWidth);
802   VectorMap[Inst] = Builder.CreateCast(Cast->getOpcode(), NewOperand, DestType);
803 }
804 
805 void VectorBlockGenerator::copyBinaryInst(ScopStmt &Stmt,
806                                           const BinaryOperator *Inst,
807                                           ValueMapT &VectorMap,
808                                           VectorValueMapT &ScalarMaps) {
809   Loop *L = getLoopForInst(Inst);
810   Value *OpZero = Inst->getOperand(0);
811   Value *OpOne = Inst->getOperand(1);
812 
813   Value *NewOpZero, *NewOpOne;
814   NewOpZero = getVectorValue(Stmt, OpZero, VectorMap, ScalarMaps, L);
815   NewOpOne = getVectorValue(Stmt, OpOne, VectorMap, ScalarMaps, L);
816 
817   Value *NewInst = Builder.CreateBinOp(Inst->getOpcode(), NewOpZero, NewOpOne,
818                                        Inst->getName() + "p_vec");
819   VectorMap[Inst] = NewInst;
820 }
821 
822 void VectorBlockGenerator::copyStore(
823     ScopStmt &Stmt, const StoreInst *Store, ValueMapT &VectorMap,
824     VectorValueMapT &ScalarMaps, __isl_keep isl_id_to_ast_expr *NewAccesses) {
825   const MemoryAccess &Access = Stmt.getAccessFor(Store);
826 
827   const Value *Pointer = Store->getPointerOperand();
828   Value *Vector = getVectorValue(Stmt, Store->getValueOperand(), VectorMap,
829                                  ScalarMaps, getLoopForInst(Store));
830 
831   // Make sure we have scalar values available to access the pointer to
832   // the data location.
833   extractScalarValues(Store, VectorMap, ScalarMaps);
834 
835   if (Access.isStrideOne(isl_map_copy(Schedule))) {
836     Type *VectorPtrType = getVectorPtrTy(Pointer, getVectorWidth());
837     Value *NewPointer = generateLocationAccessed(
838         Stmt, Store, Pointer, ScalarMaps[0], VLTS[0], NewAccesses);
839 
840     Value *VectorPtr =
841         Builder.CreateBitCast(NewPointer, VectorPtrType, "vector_ptr");
842     StoreInst *Store = Builder.CreateStore(Vector, VectorPtr);
843 
844     if (!Aligned)
845       Store->setAlignment(8);
846   } else {
847     for (unsigned i = 0; i < ScalarMaps.size(); i++) {
848       Value *Scalar = Builder.CreateExtractElement(Vector, Builder.getInt32(i));
849       Value *NewPointer = generateLocationAccessed(
850           Stmt, Store, Pointer, ScalarMaps[i], VLTS[i], NewAccesses);
851       Builder.CreateStore(Scalar, NewPointer);
852     }
853   }
854 }
855 
856 bool VectorBlockGenerator::hasVectorOperands(const Instruction *Inst,
857                                              ValueMapT &VectorMap) {
858   for (Value *Operand : Inst->operands())
859     if (VectorMap.count(Operand))
860       return true;
861   return false;
862 }
863 
864 bool VectorBlockGenerator::extractScalarValues(const Instruction *Inst,
865                                                ValueMapT &VectorMap,
866                                                VectorValueMapT &ScalarMaps) {
867   bool HasVectorOperand = false;
868   int VectorWidth = getVectorWidth();
869 
870   for (Value *Operand : Inst->operands()) {
871     ValueMapT::iterator VecOp = VectorMap.find(Operand);
872 
873     if (VecOp == VectorMap.end())
874       continue;
875 
876     HasVectorOperand = true;
877     Value *NewVector = VecOp->second;
878 
879     for (int i = 0; i < VectorWidth; ++i) {
880       ValueMapT &SM = ScalarMaps[i];
881 
882       // If there is one scalar extracted, all scalar elements should have
883       // already been extracted by the code here. So no need to check for the
884       // existance of all of them.
885       if (SM.count(Operand))
886         break;
887 
888       SM[Operand] =
889           Builder.CreateExtractElement(NewVector, Builder.getInt32(i));
890     }
891   }
892 
893   return HasVectorOperand;
894 }
895 
896 void VectorBlockGenerator::copyInstScalarized(
897     ScopStmt &Stmt, const Instruction *Inst, ValueMapT &VectorMap,
898     VectorValueMapT &ScalarMaps, __isl_keep isl_id_to_ast_expr *NewAccesses) {
899   bool HasVectorOperand;
900   int VectorWidth = getVectorWidth();
901 
902   HasVectorOperand = extractScalarValues(Inst, VectorMap, ScalarMaps);
903 
904   for (int VectorLane = 0; VectorLane < getVectorWidth(); VectorLane++)
905     BlockGenerator::copyInstruction(Stmt, Inst, ScalarMaps[VectorLane],
906                                     VLTS[VectorLane], NewAccesses);
907 
908   if (!VectorType::isValidElementType(Inst->getType()) || !HasVectorOperand)
909     return;
910 
911   // Make the result available as vector value.
912   VectorType *VectorType = VectorType::get(Inst->getType(), VectorWidth);
913   Value *Vector = UndefValue::get(VectorType);
914 
915   for (int i = 0; i < VectorWidth; i++)
916     Vector = Builder.CreateInsertElement(Vector, ScalarMaps[i][Inst],
917                                          Builder.getInt32(i));
918 
919   VectorMap[Inst] = Vector;
920 }
921 
922 int VectorBlockGenerator::getVectorWidth() { return VLTS.size(); }
923 
924 void VectorBlockGenerator::copyInstruction(
925     ScopStmt &Stmt, const Instruction *Inst, ValueMapT &VectorMap,
926     VectorValueMapT &ScalarMaps, __isl_keep isl_id_to_ast_expr *NewAccesses) {
927   // Terminator instructions control the control flow. They are explicitly
928   // expressed in the clast and do not need to be copied.
929   if (Inst->isTerminator())
930     return;
931 
932   if (canSynthesize(Inst, &LI, &SE, &Stmt.getParent()->getRegion()))
933     return;
934 
935   if (const LoadInst *Load = dyn_cast<LoadInst>(Inst)) {
936     generateLoad(Stmt, Load, VectorMap, ScalarMaps, NewAccesses);
937     return;
938   }
939 
940   if (hasVectorOperands(Inst, VectorMap)) {
941     if (const StoreInst *Store = dyn_cast<StoreInst>(Inst)) {
942       copyStore(Stmt, Store, VectorMap, ScalarMaps, NewAccesses);
943       return;
944     }
945 
946     if (const UnaryInstruction *Unary = dyn_cast<UnaryInstruction>(Inst)) {
947       copyUnaryInst(Stmt, Unary, VectorMap, ScalarMaps);
948       return;
949     }
950 
951     if (const BinaryOperator *Binary = dyn_cast<BinaryOperator>(Inst)) {
952       copyBinaryInst(Stmt, Binary, VectorMap, ScalarMaps);
953       return;
954     }
955 
956     // Falltrough: We generate scalar instructions, if we don't know how to
957     // generate vector code.
958   }
959 
960   copyInstScalarized(Stmt, Inst, VectorMap, ScalarMaps, NewAccesses);
961 }
962 
963 void VectorBlockGenerator::copyStmt(
964     ScopStmt &Stmt, __isl_keep isl_id_to_ast_expr *NewAccesses) {
965   assert(Stmt.isBlockStmt() && "TODO: Only block statements can be copied by "
966                                "the vector block generator");
967 
968   BasicBlock *BB = Stmt.getBasicBlock();
969   BasicBlock *CopyBB =
970       SplitBlock(Builder.GetInsertBlock(), Builder.GetInsertPoint(), &DT, &LI);
971   CopyBB->setName("polly.stmt." + BB->getName());
972   Builder.SetInsertPoint(CopyBB->begin());
973 
974   // Create two maps that store the mapping from the original instructions of
975   // the old basic block to their copies in the new basic block. Those maps
976   // are basic block local.
977   //
978   // As vector code generation is supported there is one map for scalar values
979   // and one for vector values.
980   //
981   // In case we just do scalar code generation, the vectorMap is not used and
982   // the scalarMap has just one dimension, which contains the mapping.
983   //
984   // In case vector code generation is done, an instruction may either appear
985   // in the vector map once (as it is calculating >vectorwidth< values at a
986   // time. Or (if the values are calculated using scalar operations), it
987   // appears once in every dimension of the scalarMap.
988   VectorValueMapT ScalarBlockMap(getVectorWidth());
989   ValueMapT VectorBlockMap;
990 
991   for (Instruction &Inst : *BB)
992     copyInstruction(Stmt, &Inst, VectorBlockMap, ScalarBlockMap, NewAccesses);
993 }
994 
995 BasicBlock *RegionGenerator::repairDominance(BasicBlock *BB,
996                                              BasicBlock *BBCopy) {
997 
998   BasicBlock *BBIDom = DT.getNode(BB)->getIDom()->getBlock();
999   BasicBlock *BBCopyIDom = BlockMap.lookup(BBIDom);
1000 
1001   if (BBCopyIDom)
1002     DT.changeImmediateDominator(BBCopy, BBCopyIDom);
1003 
1004   return BBCopyIDom;
1005 }
1006 
1007 void RegionGenerator::copyStmt(ScopStmt &Stmt, LoopToScevMapT &LTS,
1008                                isl_id_to_ast_expr *IdToAstExp) {
1009   assert(Stmt.isRegionStmt() &&
1010          "Only region statements can be copied by the region generator");
1011 
1012   // Forget all old mappings.
1013   BlockMap.clear();
1014   RegionMaps.clear();
1015   IncompletePHINodeMap.clear();
1016 
1017   // The region represented by the statement.
1018   Region *R = Stmt.getRegion();
1019 
1020   // Create a dedicated entry for the region where we can reload all demoted
1021   // inputs.
1022   BasicBlock *EntryBB = R->getEntry();
1023   BasicBlock *EntryBBCopy =
1024       SplitBlock(Builder.GetInsertBlock(), Builder.GetInsertPoint(), &DT, &LI);
1025   EntryBBCopy->setName("polly.stmt." + EntryBB->getName() + ".entry");
1026   Builder.SetInsertPoint(EntryBBCopy->begin());
1027 
1028   for (auto PI = pred_begin(EntryBB), PE = pred_end(EntryBB); PI != PE; ++PI)
1029     if (!R->contains(*PI))
1030       BlockMap[*PI] = EntryBBCopy;
1031 
1032   // Iterate over all blocks in the region in a breadth-first search.
1033   std::deque<BasicBlock *> Blocks;
1034   SmallPtrSet<BasicBlock *, 8> SeenBlocks;
1035   Blocks.push_back(EntryBB);
1036   SeenBlocks.insert(EntryBB);
1037 
1038   while (!Blocks.empty()) {
1039     BasicBlock *BB = Blocks.front();
1040     Blocks.pop_front();
1041 
1042     // First split the block and update dominance information.
1043     BasicBlock *BBCopy = splitBB(BB);
1044     BasicBlock *BBCopyIDom = repairDominance(BB, BBCopy);
1045 
1046     // In order to remap PHI nodes we store also basic block mappings.
1047     BlockMap[BB] = BBCopy;
1048 
1049     // Get the mapping for this block and initialize it with the mapping
1050     // available at its immediate dominator (in the new region).
1051     ValueMapT &RegionMap = RegionMaps[BBCopy];
1052     RegionMap = RegionMaps[BBCopyIDom];
1053 
1054     // Copy the block with the BlockGenerator.
1055     copyBB(Stmt, BB, BBCopy, RegionMap, LTS, IdToAstExp);
1056 
1057     // In order to remap PHI nodes we store also basic block mappings.
1058     BlockMap[BB] = BBCopy;
1059 
1060     // Add values to incomplete PHI nodes waiting for this block to be copied.
1061     for (const PHINodePairTy &PHINodePair : IncompletePHINodeMap[BB])
1062       addOperandToPHI(Stmt, PHINodePair.first, PHINodePair.second, BB, LTS);
1063     IncompletePHINodeMap[BB].clear();
1064 
1065     // And continue with new successors inside the region.
1066     for (auto SI = succ_begin(BB), SE = succ_end(BB); SI != SE; SI++)
1067       if (R->contains(*SI) && SeenBlocks.insert(*SI).second)
1068         Blocks.push_back(*SI);
1069   }
1070 
1071   // Now create a new dedicated region exit block and add it to the region map.
1072   BasicBlock *ExitBBCopy =
1073       SplitBlock(Builder.GetInsertBlock(), Builder.GetInsertPoint(), &DT, &LI);
1074   ExitBBCopy->setName("polly.stmt." + R->getExit()->getName() + ".exit");
1075   BlockMap[R->getExit()] = ExitBBCopy;
1076 
1077   repairDominance(R->getExit(), ExitBBCopy);
1078 
1079   // As the block generator doesn't handle control flow we need to add the
1080   // region control flow by hand after all blocks have been copied.
1081   for (BasicBlock *BB : SeenBlocks) {
1082 
1083     BasicBlock *BBCopy = BlockMap[BB];
1084     TerminatorInst *TI = BB->getTerminator();
1085     if (isa<UnreachableInst>(TI)) {
1086       while (!BBCopy->empty())
1087         BBCopy->begin()->eraseFromParent();
1088       new UnreachableInst(BBCopy->getContext(), BBCopy);
1089       continue;
1090     }
1091 
1092     Instruction *BICopy = BBCopy->getTerminator();
1093 
1094     ValueMapT &RegionMap = RegionMaps[BBCopy];
1095     RegionMap.insert(BlockMap.begin(), BlockMap.end());
1096 
1097     Builder.SetInsertPoint(BICopy);
1098     copyInstScalar(Stmt, TI, RegionMap, LTS);
1099     BICopy->eraseFromParent();
1100   }
1101 
1102   // Add counting PHI nodes to all loops in the region that can be used as
1103   // replacement for SCEVs refering to the old loop.
1104   for (BasicBlock *BB : SeenBlocks) {
1105     Loop *L = LI.getLoopFor(BB);
1106     if (L == nullptr || L->getHeader() != BB)
1107       continue;
1108 
1109     BasicBlock *BBCopy = BlockMap[BB];
1110     Value *NullVal = Builder.getInt32(0);
1111     PHINode *LoopPHI =
1112         PHINode::Create(Builder.getInt32Ty(), 2, "polly.subregion.iv");
1113     Instruction *LoopPHIInc = BinaryOperator::CreateAdd(
1114         LoopPHI, Builder.getInt32(1), "polly.subregion.iv.inc");
1115     LoopPHI->insertBefore(BBCopy->begin());
1116     LoopPHIInc->insertBefore(BBCopy->getTerminator());
1117 
1118     for (auto *PredBB : make_range(pred_begin(BB), pred_end(BB))) {
1119       if (!R->contains(PredBB))
1120         continue;
1121       if (L->contains(PredBB))
1122         LoopPHI->addIncoming(LoopPHIInc, BlockMap[PredBB]);
1123       else
1124         LoopPHI->addIncoming(NullVal, BlockMap[PredBB]);
1125     }
1126 
1127     for (auto *PredBBCopy : make_range(pred_begin(BBCopy), pred_end(BBCopy)))
1128       if (LoopPHI->getBasicBlockIndex(PredBBCopy) < 0)
1129         LoopPHI->addIncoming(NullVal, PredBBCopy);
1130 
1131     LTS[L] = SE.getUnknown(LoopPHI);
1132   }
1133 
1134   // Reset the old insert point for the build.
1135   Builder.SetInsertPoint(ExitBBCopy->begin());
1136 }
1137 
1138 void RegionGenerator::generateScalarLoads(ScopStmt &Stmt,
1139                                           const Instruction *Inst,
1140                                           ValueMapT &BBMap) {
1141 
1142   // Inside a non-affine region PHI nodes are copied not demoted. Once the
1143   // phi is copied it will reload all inputs from outside the region, hence
1144   // we do not need to generate code for the read access of the operands of a
1145   // PHI.
1146   if (isa<PHINode>(Inst))
1147     return;
1148 
1149   return BlockGenerator::generateScalarLoads(Stmt, Inst, BBMap);
1150 }
1151 
1152 void RegionGenerator::generateScalarStores(ScopStmt &Stmt, BasicBlock *BB,
1153                                            LoopToScevMapT &LTS,
1154                                            ValueMapT &BBMap) {
1155   const Region &R = Stmt.getParent()->getRegion();
1156 
1157   assert(Stmt.getRegion() &&
1158          "Block statements need to use the generateScalarStores() "
1159          "function in the BlockGenerator");
1160 
1161   for (MemoryAccess *MA : Stmt) {
1162 
1163     if (MA->isExplicit() || MA->isRead())
1164       continue;
1165 
1166     Instruction *ScalarInst = MA->getAccessInstruction();
1167 
1168     // Only generate accesses that belong to this basic block.
1169     if (ScalarInst->getParent() != BB)
1170       continue;
1171 
1172     Value *Val = MA->getAccessValue();
1173 
1174     auto Address = getOrCreateAlloca(*MA);
1175 
1176     Val = getNewScalarValue(Val, R, Stmt, LTS, BBMap);
1177     Builder.CreateStore(Val, Address);
1178   }
1179 }
1180 
1181 void RegionGenerator::addOperandToPHI(ScopStmt &Stmt, const PHINode *PHI,
1182                                       PHINode *PHICopy, BasicBlock *IncomingBB,
1183                                       LoopToScevMapT &LTS) {
1184   Region *StmtR = Stmt.getRegion();
1185 
1186   // If the incoming block was not yet copied mark this PHI as incomplete.
1187   // Once the block will be copied the incoming value will be added.
1188   BasicBlock *BBCopy = BlockMap[IncomingBB];
1189   if (!BBCopy) {
1190     assert(StmtR->contains(IncomingBB) &&
1191            "Bad incoming block for PHI in non-affine region");
1192     IncompletePHINodeMap[IncomingBB].push_back(std::make_pair(PHI, PHICopy));
1193     return;
1194   }
1195 
1196   Value *OpCopy = nullptr;
1197   if (StmtR->contains(IncomingBB)) {
1198     assert(RegionMaps.count(BBCopy) &&
1199            "Incoming PHI block did not have a BBMap");
1200     ValueMapT &BBCopyMap = RegionMaps[BBCopy];
1201 
1202     Value *Op = PHI->getIncomingValueForBlock(IncomingBB);
1203     OpCopy = getNewValue(Stmt, Op, BBCopyMap, LTS, getLoopForInst(PHI));
1204   } else {
1205 
1206     if (PHICopy->getBasicBlockIndex(BBCopy) >= 0)
1207       return;
1208 
1209     Value *PHIOpAddr = getOrCreatePHIAlloca(const_cast<PHINode *>(PHI));
1210     OpCopy = new LoadInst(PHIOpAddr, PHIOpAddr->getName() + ".reload",
1211                           BlockMap[IncomingBB]->getTerminator());
1212   }
1213 
1214   assert(OpCopy && "Incoming PHI value was not copied properly");
1215   assert(BBCopy && "Incoming PHI block was not copied properly");
1216   PHICopy->addIncoming(OpCopy, BBCopy);
1217 }
1218 
1219 Value *RegionGenerator::copyPHIInstruction(ScopStmt &Stmt, const PHINode *PHI,
1220                                            ValueMapT &BBMap,
1221                                            LoopToScevMapT &LTS) {
1222   unsigned NumIncoming = PHI->getNumIncomingValues();
1223   PHINode *PHICopy =
1224       Builder.CreatePHI(PHI->getType(), NumIncoming, "polly." + PHI->getName());
1225   PHICopy->moveBefore(PHICopy->getParent()->getFirstNonPHI());
1226   BBMap[PHI] = PHICopy;
1227 
1228   for (unsigned u = 0; u < NumIncoming; u++)
1229     addOperandToPHI(Stmt, PHI, PHICopy, PHI->getIncomingBlock(u), LTS);
1230   return PHICopy;
1231 }
1232