1 //===--- BlockGenerators.cpp - Generate code for statements -----*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the BlockGenerator and VectorBlockGenerator classes,
11 // which generate sequential code and vectorized code for a polyhedral
12 // statement, respectively.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "polly/ScopInfo.h"
17 #include "polly/CodeGen/BlockGenerators.h"
18 #include "polly/CodeGen/CodeGeneration.h"
19 #include "polly/CodeGen/IslExprBuilder.h"
20 #include "polly/CodeGen/RuntimeDebugBuilder.h"
21 #include "polly/Options.h"
22 #include "polly/Support/GICHelper.h"
23 #include "polly/Support/SCEVValidator.h"
24 #include "polly/Support/ScopHelper.h"
25 #include "llvm/Analysis/LoopInfo.h"
26 #include "llvm/Analysis/RegionInfo.h"
27 #include "llvm/Analysis/ScalarEvolution.h"
28 #include "llvm/IR/IntrinsicInst.h"
29 #include "llvm/IR/Module.h"
30 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
31 #include "llvm/Transforms/Utils/Local.h"
32 #include "isl/aff.h"
33 #include "isl/ast.h"
34 #include "isl/ast_build.h"
35 #include "isl/set.h"
36 #include <deque>
37 
38 using namespace llvm;
39 using namespace polly;
40 
41 static cl::opt<bool> Aligned("enable-polly-aligned",
42                              cl::desc("Assumed aligned memory accesses."),
43                              cl::Hidden, cl::init(false), cl::ZeroOrMore,
44                              cl::cat(PollyCategory));
45 
46 static cl::opt<bool> DebugPrinting(
47     "polly-codegen-add-debug-printing",
48     cl::desc("Add printf calls that show the values loaded/stored."),
49     cl::Hidden, cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory));
50 
51 BlockGenerator::BlockGenerator(PollyIRBuilder &B, LoopInfo &LI,
52                                ScalarEvolution &SE, DominatorTree &DT,
53                                ScalarAllocaMapTy &ScalarMap,
54                                ScalarAllocaMapTy &PHIOpMap,
55                                EscapeUsersAllocaMapTy &EscapeMap,
56                                ValueMapT &GlobalMap,
57                                IslExprBuilder *ExprBuilder)
58     : Builder(B), LI(LI), SE(SE), ExprBuilder(ExprBuilder), DT(DT),
59       EntryBB(nullptr), PHIOpMap(PHIOpMap), ScalarMap(ScalarMap),
60       EscapeMap(EscapeMap), GlobalMap(GlobalMap) {}
61 
62 Value *BlockGenerator::trySynthesizeNewValue(ScopStmt &Stmt, Value *Old,
63                                              ValueMapT &BBMap,
64                                              LoopToScevMapT &LTS,
65                                              Loop *L) const {
66   if (SE.isSCEVable(Old->getType()))
67     if (const SCEV *Scev = SE.getSCEVAtScope(const_cast<Value *>(Old), L)) {
68       if (!isa<SCEVCouldNotCompute>(Scev)) {
69         const SCEV *NewScev = apply(Scev, LTS, SE);
70         ValueMapT VTV;
71         VTV.insert(BBMap.begin(), BBMap.end());
72         VTV.insert(GlobalMap.begin(), GlobalMap.end());
73 
74         Scop &S = *Stmt.getParent();
75         const DataLayout &DL =
76             S.getRegion().getEntry()->getParent()->getParent()->getDataLayout();
77         auto IP = Builder.GetInsertPoint();
78 
79         assert(IP != Builder.GetInsertBlock()->end() &&
80                "Only instructions can be insert points for SCEVExpander");
81         Value *Expanded = expandCodeFor(S, SE, DL, "polly", NewScev,
82                                         Old->getType(), IP, &VTV);
83 
84         BBMap[Old] = Expanded;
85         return Expanded;
86       }
87     }
88 
89   return nullptr;
90 }
91 
92 Value *BlockGenerator::getNewValue(ScopStmt &Stmt, Value *Old, ValueMapT &BBMap,
93                                    LoopToScevMapT &LTS, Loop *L) const {
94   // We assume constants never change.
95   // This avoids map lookups for many calls to this function.
96   if (isa<Constant>(Old))
97     return const_cast<Value *>(Old);
98 
99   if (Value *New = GlobalMap.lookup(Old)) {
100     if (Value *NewRemapped = GlobalMap.lookup(New))
101       New = NewRemapped;
102     if (Old->getType()->getScalarSizeInBits() <
103         New->getType()->getScalarSizeInBits())
104       New = Builder.CreateTruncOrBitCast(New, Old->getType());
105 
106     return New;
107   }
108 
109   if (Value *New = BBMap.lookup(Old))
110     return New;
111 
112   if (Value *New = trySynthesizeNewValue(Stmt, Old, BBMap, LTS, L))
113     return New;
114 
115   // A scop-constant value defined by a global or a function parameter.
116   if (isa<GlobalValue>(Old) || isa<Argument>(Old))
117     return const_cast<Value *>(Old);
118 
119   // A scop-constant value defined by an instruction executed outside the scop.
120   if (const Instruction *Inst = dyn_cast<Instruction>(Old))
121     if (!Stmt.getParent()->getRegion().contains(Inst->getParent()))
122       return const_cast<Value *>(Old);
123 
124   // The scalar dependence is neither available nor SCEVCodegenable.
125   llvm_unreachable("Unexpected scalar dependence in region!");
126   return nullptr;
127 }
128 
129 void BlockGenerator::copyInstScalar(ScopStmt &Stmt, Instruction *Inst,
130                                     ValueMapT &BBMap, LoopToScevMapT &LTS) {
131   // We do not generate debug intrinsics as we did not investigate how to
132   // copy them correctly. At the current state, they just crash the code
133   // generation as the meta-data operands are not correctly copied.
134   if (isa<DbgInfoIntrinsic>(Inst))
135     return;
136 
137   Instruction *NewInst = Inst->clone();
138 
139   // Replace old operands with the new ones.
140   for (Value *OldOperand : Inst->operands()) {
141     Value *NewOperand =
142         getNewValue(Stmt, OldOperand, BBMap, LTS, getLoopForInst(Inst));
143 
144     if (!NewOperand) {
145       assert(!isa<StoreInst>(NewInst) &&
146              "Store instructions are always needed!");
147       delete NewInst;
148       return;
149     }
150 
151     NewInst->replaceUsesOfWith(OldOperand, NewOperand);
152   }
153 
154   Builder.Insert(NewInst);
155   BBMap[Inst] = NewInst;
156 
157   if (!NewInst->getType()->isVoidTy())
158     NewInst->setName("p_" + Inst->getName());
159 }
160 
161 Value *BlockGenerator::generateLocationAccessed(
162     ScopStmt &Stmt, const Instruction *Inst, Value *Pointer, ValueMapT &BBMap,
163     LoopToScevMapT &LTS, isl_id_to_ast_expr *NewAccesses) {
164   const MemoryAccess &MA = Stmt.getAccessFor(Inst);
165 
166   isl_ast_expr *AccessExpr = isl_id_to_ast_expr_get(NewAccesses, MA.getId());
167 
168   if (AccessExpr) {
169     AccessExpr = isl_ast_expr_address_of(AccessExpr);
170     auto Address = ExprBuilder->create(AccessExpr);
171 
172     // Cast the address of this memory access to a pointer type that has the
173     // same element type as the original access, but uses the address space of
174     // the newly generated pointer.
175     auto OldPtrTy = MA.getAccessValue()->getType()->getPointerTo();
176     auto NewPtrTy = Address->getType();
177     OldPtrTy = PointerType::get(OldPtrTy->getElementType(),
178                                 NewPtrTy->getPointerAddressSpace());
179 
180     if (OldPtrTy != NewPtrTy) {
181       assert(OldPtrTy->getPointerElementType()->getPrimitiveSizeInBits() ==
182                  NewPtrTy->getPointerElementType()->getPrimitiveSizeInBits() &&
183              "Pointer types to elements with different size found");
184       Address = Builder.CreateBitOrPointerCast(Address, OldPtrTy);
185     }
186     return Address;
187   }
188 
189   return getNewValue(Stmt, Pointer, BBMap, LTS, getLoopForInst(Inst));
190 }
191 
192 Loop *BlockGenerator::getLoopForInst(const llvm::Instruction *Inst) {
193   return LI.getLoopFor(Inst->getParent());
194 }
195 
196 Value *BlockGenerator::generateScalarLoad(ScopStmt &Stmt, LoadInst *Load,
197                                           ValueMapT &BBMap, LoopToScevMapT &LTS,
198                                           isl_id_to_ast_expr *NewAccesses) {
199   if (Value *PreloadLoad = GlobalMap.lookup(Load))
200     return PreloadLoad;
201 
202   auto *Pointer = Load->getPointerOperand();
203   Value *NewPointer =
204       generateLocationAccessed(Stmt, Load, Pointer, BBMap, LTS, NewAccesses);
205   Value *ScalarLoad = Builder.CreateAlignedLoad(
206       NewPointer, Load->getAlignment(), Load->getName() + "_p_scalar_");
207 
208   if (DebugPrinting)
209     RuntimeDebugBuilder::createCPUPrinter(Builder, "Load from ", NewPointer,
210                                           ": ", ScalarLoad, "\n");
211 
212   return ScalarLoad;
213 }
214 
215 void BlockGenerator::generateScalarStore(ScopStmt &Stmt, StoreInst *Store,
216                                          ValueMapT &BBMap, LoopToScevMapT &LTS,
217                                          isl_id_to_ast_expr *NewAccesses) {
218   auto *Pointer = Store->getPointerOperand();
219   Value *NewPointer =
220       generateLocationAccessed(Stmt, Store, Pointer, BBMap, LTS, NewAccesses);
221   Value *ValueOperand = getNewValue(Stmt, Store->getValueOperand(), BBMap, LTS,
222                                     getLoopForInst(Store));
223 
224   if (DebugPrinting)
225     RuntimeDebugBuilder::createCPUPrinter(Builder, "Store to  ", NewPointer,
226                                           ": ", ValueOperand, "\n");
227 
228   Builder.CreateAlignedStore(ValueOperand, NewPointer, Store->getAlignment());
229 }
230 
231 void BlockGenerator::copyInstruction(ScopStmt &Stmt, Instruction *Inst,
232                                      ValueMapT &BBMap, LoopToScevMapT &LTS,
233                                      isl_id_to_ast_expr *NewAccesses) {
234   // Terminator instructions control the control flow. They are explicitly
235   // expressed in the clast and do not need to be copied.
236   if (Inst->isTerminator())
237     return;
238 
239   Loop *L = getLoopForInst(Inst);
240   if ((Stmt.isBlockStmt() || !Stmt.getRegion()->contains(L)) &&
241       canSynthesize(Inst, &LI, &SE, &Stmt.getParent()->getRegion())) {
242     // Synthesizable statements will be generated on-demand.
243     return;
244   }
245 
246   if (auto *Load = dyn_cast<LoadInst>(Inst)) {
247     Value *NewLoad = generateScalarLoad(Stmt, Load, BBMap, LTS, NewAccesses);
248     // Compute NewLoad before its insertion in BBMap to make the insertion
249     // deterministic.
250     BBMap[Load] = NewLoad;
251     return;
252   }
253 
254   if (auto *Store = dyn_cast<StoreInst>(Inst)) {
255     generateScalarStore(Stmt, Store, BBMap, LTS, NewAccesses);
256     return;
257   }
258 
259   if (auto *PHI = dyn_cast<PHINode>(Inst)) {
260     copyPHIInstruction(Stmt, PHI, BBMap, LTS);
261     return;
262   }
263 
264   // Skip some special intrinsics for which we do not adjust the semantics to
265   // the new schedule. All others are handled like every other instruction.
266   if (isIgnoredIntrinsic(Inst))
267     return;
268 
269   copyInstScalar(Stmt, Inst, BBMap, LTS);
270 }
271 
272 void BlockGenerator::copyStmt(ScopStmt &Stmt, LoopToScevMapT &LTS,
273                               isl_id_to_ast_expr *NewAccesses) {
274   assert(Stmt.isBlockStmt() &&
275          "Only block statements can be copied by the block generator");
276 
277   ValueMapT BBMap;
278 
279   BasicBlock *BB = Stmt.getBasicBlock();
280   copyBB(Stmt, BB, BBMap, LTS, NewAccesses);
281 }
282 
283 BasicBlock *BlockGenerator::splitBB(BasicBlock *BB) {
284   BasicBlock *CopyBB =
285       SplitBlock(Builder.GetInsertBlock(), Builder.GetInsertPoint(), &DT, &LI);
286   CopyBB->setName("polly.stmt." + BB->getName());
287   return CopyBB;
288 }
289 
290 BasicBlock *BlockGenerator::copyBB(ScopStmt &Stmt, BasicBlock *BB,
291                                    ValueMapT &BBMap, LoopToScevMapT &LTS,
292                                    isl_id_to_ast_expr *NewAccesses) {
293   BasicBlock *CopyBB = splitBB(BB);
294   Builder.SetInsertPoint(CopyBB->begin());
295   generateScalarLoads(Stmt, BBMap);
296 
297   copyBB(Stmt, BB, CopyBB, BBMap, LTS, NewAccesses);
298 
299   // After a basic block was copied store all scalars that escape this block in
300   // their alloca.
301   generateScalarStores(Stmt, LTS, BBMap);
302   return CopyBB;
303 }
304 
305 void BlockGenerator::copyBB(ScopStmt &Stmt, BasicBlock *BB, BasicBlock *CopyBB,
306                             ValueMapT &BBMap, LoopToScevMapT &LTS,
307                             isl_id_to_ast_expr *NewAccesses) {
308   EntryBB = &CopyBB->getParent()->getEntryBlock();
309 
310   for (Instruction &Inst : *BB)
311     copyInstruction(Stmt, &Inst, BBMap, LTS, NewAccesses);
312 }
313 
314 Value *BlockGenerator::getOrCreateAlloca(Value *ScalarBase,
315                                          ScalarAllocaMapTy &Map,
316                                          const char *NameExt) {
317   // If no alloca was found create one and insert it in the entry block.
318   if (!Map.count(ScalarBase)) {
319     auto *Ty = ScalarBase->getType();
320     auto NewAddr = new AllocaInst(Ty, ScalarBase->getName() + NameExt);
321     EntryBB = &Builder.GetInsertBlock()->getParent()->getEntryBlock();
322     NewAddr->insertBefore(EntryBB->getFirstInsertionPt());
323     Map[ScalarBase] = NewAddr;
324   }
325 
326   auto Addr = Map[ScalarBase];
327 
328   if (GlobalMap.count(Addr))
329     return GlobalMap[Addr];
330 
331   return Addr;
332 }
333 
334 Value *BlockGenerator::getOrCreateAlloca(MemoryAccess &Access) {
335   if (Access.isPHI())
336     return getOrCreatePHIAlloca(Access.getBaseAddr());
337   else
338     return getOrCreateScalarAlloca(Access.getBaseAddr());
339 }
340 
341 Value *BlockGenerator::getOrCreateAlloca(const ScopArrayInfo *Array) {
342   if (Array->isPHI())
343     return getOrCreatePHIAlloca(Array->getBasePtr());
344   else
345     return getOrCreateScalarAlloca(Array->getBasePtr());
346 }
347 
348 Value *BlockGenerator::getOrCreateScalarAlloca(Value *ScalarBase) {
349   return getOrCreateAlloca(ScalarBase, ScalarMap, ".s2a");
350 }
351 
352 Value *BlockGenerator::getOrCreatePHIAlloca(Value *ScalarBase) {
353   return getOrCreateAlloca(ScalarBase, PHIOpMap, ".phiops");
354 }
355 
356 void BlockGenerator::handleOutsideUsers(const Region &R, Instruction *Inst,
357                                         Value *Address) {
358   // If there are escape users we get the alloca for this instruction and put it
359   // in the EscapeMap for later finalization. Lastly, if the instruction was
360   // copied multiple times we already did this and can exit.
361   if (EscapeMap.count(Inst))
362     return;
363 
364   EscapeUserVectorTy EscapeUsers;
365   for (User *U : Inst->users()) {
366 
367     // Non-instruction user will never escape.
368     Instruction *UI = dyn_cast<Instruction>(U);
369     if (!UI)
370       continue;
371 
372     if (R.contains(UI))
373       continue;
374 
375     EscapeUsers.push_back(UI);
376   }
377 
378   // Exit if no escape uses were found.
379   if (EscapeUsers.empty())
380     return;
381 
382   // Get or create an escape alloca for this instruction.
383   auto *ScalarAddr = Address ? Address : getOrCreateScalarAlloca(Inst);
384 
385   // Remember that this instruction has escape uses and the escape alloca.
386   EscapeMap[Inst] = std::make_pair(ScalarAddr, std::move(EscapeUsers));
387 }
388 
389 void BlockGenerator::generateScalarLoads(ScopStmt &Stmt, ValueMapT &BBMap) {
390   for (MemoryAccess *MA : Stmt) {
391     if (MA->isExplicit() || MA->isWrite())
392       continue;
393 
394     auto *Address = getOrCreateAlloca(*MA);
395     BBMap[MA->getBaseAddr()] =
396         Builder.CreateLoad(Address, Address->getName() + ".reload");
397   }
398 }
399 
400 Value *BlockGenerator::getNewScalarValue(Value *ScalarValue, const Region &R,
401                                          ScopStmt &Stmt, LoopToScevMapT &LTS,
402                                          ValueMapT &BBMap) {
403   // If the value we want to store is an instruction we might have demoted it
404   // in order to make it accessible here. In such a case a reload is
405   // necessary. If it is no instruction it will always be a value that
406   // dominates the current point and we can just use it. In total there are 4
407   // options:
408   //  (1) The value is no instruction ==> use the value.
409   //  (2) The value is an instruction that was split out of the region prior to
410   //      code generation  ==> use the instruction as it dominates the region.
411   //  (3) The value is an instruction:
412   //      (a) The value was defined in the current block, thus a copy is in
413   //          the BBMap ==> use the mapped value.
414   //      (b) The value was defined in a previous block, thus we demoted it
415   //          earlier ==> use the reloaded value.
416   Instruction *ScalarValueInst = dyn_cast<Instruction>(ScalarValue);
417   if (!ScalarValueInst)
418     return ScalarValue;
419 
420   if (!R.contains(ScalarValueInst)) {
421     if (Value *ScalarValueCopy = GlobalMap.lookup(ScalarValueInst))
422       return /* Case (3a) */ ScalarValueCopy;
423     else
424       return /* Case 2 */ ScalarValue;
425   }
426 
427   if (Value *ScalarValueCopy = BBMap.lookup(ScalarValueInst))
428     return /* Case (3a) */ ScalarValueCopy;
429 
430   if ((Stmt.isBlockStmt() &&
431        Stmt.getBasicBlock() == ScalarValueInst->getParent()) ||
432       (Stmt.isRegionStmt() && Stmt.getRegion()->contains(ScalarValueInst))) {
433     auto SynthesizedValue = trySynthesizeNewValue(
434         Stmt, ScalarValueInst, BBMap, LTS, getLoopForInst(ScalarValueInst));
435 
436     if (SynthesizedValue)
437       return SynthesizedValue;
438   }
439 
440   // Case (3b)
441   Value *Address = getOrCreateScalarAlloca(ScalarValueInst);
442   ScalarValue = Builder.CreateLoad(Address, Address->getName() + ".reload");
443 
444   return ScalarValue;
445 }
446 
447 void BlockGenerator::generateScalarStores(ScopStmt &Stmt, LoopToScevMapT &LTS,
448                                           ValueMapT &BBMap) {
449   const Region &R = Stmt.getParent()->getRegion();
450 
451   assert(Stmt.isBlockStmt() && "Region statements need to use the "
452                                "generateScalarStores() function in the "
453                                "RegionGenerator");
454 
455   for (MemoryAccess *MA : Stmt) {
456     if (MA->isExplicit() || MA->isRead())
457       continue;
458 
459     Value *Val = MA->getAccessValue();
460     auto *Address = getOrCreateAlloca(*MA);
461 
462     Val = getNewScalarValue(Val, R, Stmt, LTS, BBMap);
463     Builder.CreateStore(Val, Address);
464   }
465 }
466 
467 void BlockGenerator::createScalarInitialization(Scop &S) {
468   Region &R = S.getRegion();
469   // The split block __just before__ the region and optimized region.
470   BasicBlock *SplitBB = R.getEnteringBlock();
471   BranchInst *SplitBBTerm = cast<BranchInst>(SplitBB->getTerminator());
472   assert(SplitBBTerm->getNumSuccessors() == 2 && "Bad region entering block!");
473 
474   // Get the start block of the __optimized__ region.
475   BasicBlock *StartBB = SplitBBTerm->getSuccessor(0);
476   if (StartBB == R.getEntry())
477     StartBB = SplitBBTerm->getSuccessor(1);
478 
479   Builder.SetInsertPoint(StartBB->getTerminator());
480 
481   for (auto &Pair : S.arrays()) {
482     auto &Array = Pair.second;
483     if (Array->getNumberOfDimensions() != 0)
484       continue;
485     if (Array->isPHI()) {
486       // For PHI nodes, the only values we need to store are the ones that
487       // reach the PHI node from outside the region. In general there should
488       // only be one such incoming edge and this edge should enter through
489       // 'SplitBB'.
490       auto PHI = cast<PHINode>(Array->getBasePtr());
491 
492       for (auto BI = PHI->block_begin(), BE = PHI->block_end(); BI != BE; BI++)
493         if (!R.contains(*BI) && *BI != SplitBB)
494           llvm_unreachable("Incoming edges from outside the scop should always "
495                            "come from SplitBB");
496 
497       int Idx = PHI->getBasicBlockIndex(SplitBB);
498       if (Idx < 0)
499         continue;
500 
501       Value *ScalarValue = PHI->getIncomingValue(Idx);
502 
503       Builder.CreateStore(ScalarValue, getOrCreatePHIAlloca(PHI));
504       continue;
505     }
506 
507     auto *Inst = dyn_cast<Instruction>(Array->getBasePtr());
508 
509     if (Inst && R.contains(Inst))
510       continue;
511 
512     // PHI nodes that are not marked as such in their SAI object are exit PHI
513     // nodes we model as common scalars but do not need to initialize.
514     if (Inst && isa<PHINode>(Inst))
515       continue;
516 
517     ValueMapT EmptyMap;
518     Builder.CreateStore(Array->getBasePtr(),
519                         getOrCreateScalarAlloca(Array->getBasePtr()));
520   }
521 }
522 
523 void BlockGenerator::createScalarFinalization(Region &R) {
524   // The exit block of the __unoptimized__ region.
525   BasicBlock *ExitBB = R.getExitingBlock();
526   // The merge block __just after__ the region and the optimized region.
527   BasicBlock *MergeBB = R.getExit();
528 
529   // The exit block of the __optimized__ region.
530   BasicBlock *OptExitBB = *(pred_begin(MergeBB));
531   if (OptExitBB == ExitBB)
532     OptExitBB = *(++pred_begin(MergeBB));
533 
534   Builder.SetInsertPoint(OptExitBB->getTerminator());
535   for (const auto &EscapeMapping : EscapeMap) {
536     // Extract the escaping instruction and the escaping users as well as the
537     // alloca the instruction was demoted to.
538     Instruction *EscapeInst = EscapeMapping.getFirst();
539     const auto &EscapeMappingValue = EscapeMapping.getSecond();
540     const EscapeUserVectorTy &EscapeUsers = EscapeMappingValue.second;
541     Value *ScalarAddr = EscapeMappingValue.first;
542 
543     // Reload the demoted instruction in the optimized version of the SCoP.
544     Value *EscapeInstReload =
545         Builder.CreateLoad(ScalarAddr, EscapeInst->getName() + ".final_reload");
546     EscapeInstReload =
547         Builder.CreateBitOrPointerCast(EscapeInstReload, EscapeInst->getType());
548 
549     // Create the merge PHI that merges the optimized and unoptimized version.
550     PHINode *MergePHI = PHINode::Create(EscapeInst->getType(), 2,
551                                         EscapeInst->getName() + ".merge");
552     MergePHI->insertBefore(MergeBB->getFirstInsertionPt());
553 
554     // Add the respective values to the merge PHI.
555     MergePHI->addIncoming(EscapeInstReload, OptExitBB);
556     MergePHI->addIncoming(EscapeInst, ExitBB);
557 
558     // The information of scalar evolution about the escaping instruction needs
559     // to be revoked so the new merged instruction will be used.
560     if (SE.isSCEVable(EscapeInst->getType()))
561       SE.forgetValue(EscapeInst);
562 
563     // Replace all uses of the demoted instruction with the merge PHI.
564     for (Instruction *EUser : EscapeUsers)
565       EUser->replaceUsesOfWith(EscapeInst, MergePHI);
566   }
567 }
568 
569 void BlockGenerator::findOutsideUsers(Scop &S) {
570   auto &R = S.getRegion();
571   for (auto &Pair : S.arrays()) {
572     auto &Array = Pair.second;
573 
574     if (Array->getNumberOfDimensions() != 0)
575       continue;
576 
577     if (Array->isPHI())
578       continue;
579 
580     auto *Inst = dyn_cast<Instruction>(Array->getBasePtr());
581 
582     if (!Inst)
583       continue;
584 
585     // Scop invariant hoisting moves some of the base pointers out of the scop.
586     // We can ignore these, as the invariant load hoisting already registers the
587     // relevant outside users.
588     if (!R.contains(Inst))
589       continue;
590 
591     handleOutsideUsers(R, Inst, nullptr);
592   }
593 }
594 
595 void BlockGenerator::createExitPHINodeMerges(Scop &S) {
596   if (S.hasSingleExitEdge())
597     return;
598 
599   Region &R = S.getRegion();
600 
601   auto *ExitBB = R.getExitingBlock();
602   auto *MergeBB = R.getExit();
603   auto *AfterMergeBB = MergeBB->getSingleSuccessor();
604   BasicBlock *OptExitBB = *(pred_begin(MergeBB));
605   if (OptExitBB == ExitBB)
606     OptExitBB = *(++pred_begin(MergeBB));
607 
608   Builder.SetInsertPoint(OptExitBB->getTerminator());
609 
610   for (auto &Pair : S.arrays()) {
611     auto &SAI = Pair.second;
612     auto *Val = SAI->getBasePtr();
613 
614     PHINode *PHI = dyn_cast<PHINode>(Val);
615     if (!PHI)
616       continue;
617 
618     if (PHI->getParent() != AfterMergeBB)
619       continue;
620 
621     std::string Name = PHI->getName();
622     Value *ScalarAddr = getOrCreateScalarAlloca(PHI);
623     Value *Reload = Builder.CreateLoad(ScalarAddr, Name + ".ph.final_reload");
624     Reload = Builder.CreateBitOrPointerCast(Reload, PHI->getType());
625     Value *OriginalValue = PHI->getIncomingValueForBlock(MergeBB);
626     auto *MergePHI = PHINode::Create(PHI->getType(), 2, Name + ".ph.merge");
627     MergePHI->insertBefore(MergeBB->getFirstInsertionPt());
628     MergePHI->addIncoming(Reload, OptExitBB);
629     MergePHI->addIncoming(OriginalValue, ExitBB);
630     int Idx = PHI->getBasicBlockIndex(MergeBB);
631     PHI->setIncomingValue(Idx, MergePHI);
632   }
633 }
634 
635 void BlockGenerator::finalizeSCoP(Scop &S) {
636   findOutsideUsers(S);
637   createScalarInitialization(S);
638   createExitPHINodeMerges(S);
639   createScalarFinalization(S.getRegion());
640 }
641 
642 VectorBlockGenerator::VectorBlockGenerator(BlockGenerator &BlockGen,
643                                            std::vector<LoopToScevMapT> &VLTS,
644                                            isl_map *Schedule)
645     : BlockGenerator(BlockGen), VLTS(VLTS), Schedule(Schedule) {
646   assert(Schedule && "No statement domain provided");
647 }
648 
649 Value *VectorBlockGenerator::getVectorValue(ScopStmt &Stmt, Value *Old,
650                                             ValueMapT &VectorMap,
651                                             VectorValueMapT &ScalarMaps,
652                                             Loop *L) {
653   if (Value *NewValue = VectorMap.lookup(Old))
654     return NewValue;
655 
656   int Width = getVectorWidth();
657 
658   Value *Vector = UndefValue::get(VectorType::get(Old->getType(), Width));
659 
660   for (int Lane = 0; Lane < Width; Lane++)
661     Vector = Builder.CreateInsertElement(
662         Vector, getNewValue(Stmt, Old, ScalarMaps[Lane], VLTS[Lane], L),
663         Builder.getInt32(Lane));
664 
665   VectorMap[Old] = Vector;
666 
667   return Vector;
668 }
669 
670 Type *VectorBlockGenerator::getVectorPtrTy(const Value *Val, int Width) {
671   PointerType *PointerTy = dyn_cast<PointerType>(Val->getType());
672   assert(PointerTy && "PointerType expected");
673 
674   Type *ScalarType = PointerTy->getElementType();
675   VectorType *VectorType = VectorType::get(ScalarType, Width);
676 
677   return PointerType::getUnqual(VectorType);
678 }
679 
680 Value *VectorBlockGenerator::generateStrideOneLoad(
681     ScopStmt &Stmt, LoadInst *Load, VectorValueMapT &ScalarMaps,
682     __isl_keep isl_id_to_ast_expr *NewAccesses, bool NegativeStride = false) {
683   unsigned VectorWidth = getVectorWidth();
684   auto *Pointer = Load->getPointerOperand();
685   Type *VectorPtrType = getVectorPtrTy(Pointer, VectorWidth);
686   unsigned Offset = NegativeStride ? VectorWidth - 1 : 0;
687 
688   Value *NewPointer = nullptr;
689   NewPointer = generateLocationAccessed(Stmt, Load, Pointer, ScalarMaps[Offset],
690                                         VLTS[Offset], NewAccesses);
691   Value *VectorPtr =
692       Builder.CreateBitCast(NewPointer, VectorPtrType, "vector_ptr");
693   LoadInst *VecLoad =
694       Builder.CreateLoad(VectorPtr, Load->getName() + "_p_vec_full");
695   if (!Aligned)
696     VecLoad->setAlignment(8);
697 
698   if (NegativeStride) {
699     SmallVector<Constant *, 16> Indices;
700     for (int i = VectorWidth - 1; i >= 0; i--)
701       Indices.push_back(ConstantInt::get(Builder.getInt32Ty(), i));
702     Constant *SV = llvm::ConstantVector::get(Indices);
703     Value *RevVecLoad = Builder.CreateShuffleVector(
704         VecLoad, VecLoad, SV, Load->getName() + "_reverse");
705     return RevVecLoad;
706   }
707 
708   return VecLoad;
709 }
710 
711 Value *VectorBlockGenerator::generateStrideZeroLoad(
712     ScopStmt &Stmt, LoadInst *Load, ValueMapT &BBMap,
713     __isl_keep isl_id_to_ast_expr *NewAccesses) {
714   auto *Pointer = Load->getPointerOperand();
715   Type *VectorPtrType = getVectorPtrTy(Pointer, 1);
716   Value *NewPointer = generateLocationAccessed(Stmt, Load, Pointer, BBMap,
717                                                VLTS[0], NewAccesses);
718   Value *VectorPtr = Builder.CreateBitCast(NewPointer, VectorPtrType,
719                                            Load->getName() + "_p_vec_p");
720   LoadInst *ScalarLoad =
721       Builder.CreateLoad(VectorPtr, Load->getName() + "_p_splat_one");
722 
723   if (!Aligned)
724     ScalarLoad->setAlignment(8);
725 
726   Constant *SplatVector = Constant::getNullValue(
727       VectorType::get(Builder.getInt32Ty(), getVectorWidth()));
728 
729   Value *VectorLoad = Builder.CreateShuffleVector(
730       ScalarLoad, ScalarLoad, SplatVector, Load->getName() + "_p_splat");
731   return VectorLoad;
732 }
733 
734 Value *VectorBlockGenerator::generateUnknownStrideLoad(
735     ScopStmt &Stmt, LoadInst *Load, VectorValueMapT &ScalarMaps,
736     __isl_keep isl_id_to_ast_expr *NewAccesses) {
737   int VectorWidth = getVectorWidth();
738   auto *Pointer = Load->getPointerOperand();
739   VectorType *VectorType = VectorType::get(
740       dyn_cast<PointerType>(Pointer->getType())->getElementType(), VectorWidth);
741 
742   Value *Vector = UndefValue::get(VectorType);
743 
744   for (int i = 0; i < VectorWidth; i++) {
745     Value *NewPointer = generateLocationAccessed(
746         Stmt, Load, Pointer, ScalarMaps[i], VLTS[i], NewAccesses);
747     Value *ScalarLoad =
748         Builder.CreateLoad(NewPointer, Load->getName() + "_p_scalar_");
749     Vector = Builder.CreateInsertElement(
750         Vector, ScalarLoad, Builder.getInt32(i), Load->getName() + "_p_vec_");
751   }
752 
753   return Vector;
754 }
755 
756 void VectorBlockGenerator::generateLoad(
757     ScopStmt &Stmt, LoadInst *Load, ValueMapT &VectorMap,
758     VectorValueMapT &ScalarMaps, __isl_keep isl_id_to_ast_expr *NewAccesses) {
759   if (Value *PreloadLoad = GlobalMap.lookup(Load)) {
760     VectorMap[Load] = Builder.CreateVectorSplat(getVectorWidth(), PreloadLoad,
761                                                 Load->getName() + "_p");
762     return;
763   }
764 
765   if (!VectorType::isValidElementType(Load->getType())) {
766     for (int i = 0; i < getVectorWidth(); i++)
767       ScalarMaps[i][Load] =
768           generateScalarLoad(Stmt, Load, ScalarMaps[i], VLTS[i], NewAccesses);
769     return;
770   }
771 
772   const MemoryAccess &Access = Stmt.getAccessFor(Load);
773 
774   // Make sure we have scalar values available to access the pointer to
775   // the data location.
776   extractScalarValues(Load, VectorMap, ScalarMaps);
777 
778   Value *NewLoad;
779   if (Access.isStrideZero(isl_map_copy(Schedule)))
780     NewLoad = generateStrideZeroLoad(Stmt, Load, ScalarMaps[0], NewAccesses);
781   else if (Access.isStrideOne(isl_map_copy(Schedule)))
782     NewLoad = generateStrideOneLoad(Stmt, Load, ScalarMaps, NewAccesses);
783   else if (Access.isStrideX(isl_map_copy(Schedule), -1))
784     NewLoad = generateStrideOneLoad(Stmt, Load, ScalarMaps, NewAccesses, true);
785   else
786     NewLoad = generateUnknownStrideLoad(Stmt, Load, ScalarMaps, NewAccesses);
787 
788   VectorMap[Load] = NewLoad;
789 }
790 
791 void VectorBlockGenerator::copyUnaryInst(ScopStmt &Stmt, UnaryInstruction *Inst,
792                                          ValueMapT &VectorMap,
793                                          VectorValueMapT &ScalarMaps) {
794   int VectorWidth = getVectorWidth();
795   Value *NewOperand = getVectorValue(Stmt, Inst->getOperand(0), VectorMap,
796                                      ScalarMaps, getLoopForInst(Inst));
797 
798   assert(isa<CastInst>(Inst) && "Can not generate vector code for instruction");
799 
800   const CastInst *Cast = dyn_cast<CastInst>(Inst);
801   VectorType *DestType = VectorType::get(Inst->getType(), VectorWidth);
802   VectorMap[Inst] = Builder.CreateCast(Cast->getOpcode(), NewOperand, DestType);
803 }
804 
805 void VectorBlockGenerator::copyBinaryInst(ScopStmt &Stmt, BinaryOperator *Inst,
806                                           ValueMapT &VectorMap,
807                                           VectorValueMapT &ScalarMaps) {
808   Loop *L = getLoopForInst(Inst);
809   Value *OpZero = Inst->getOperand(0);
810   Value *OpOne = Inst->getOperand(1);
811 
812   Value *NewOpZero, *NewOpOne;
813   NewOpZero = getVectorValue(Stmt, OpZero, VectorMap, ScalarMaps, L);
814   NewOpOne = getVectorValue(Stmt, OpOne, VectorMap, ScalarMaps, L);
815 
816   Value *NewInst = Builder.CreateBinOp(Inst->getOpcode(), NewOpZero, NewOpOne,
817                                        Inst->getName() + "p_vec");
818   VectorMap[Inst] = NewInst;
819 }
820 
821 void VectorBlockGenerator::copyStore(
822     ScopStmt &Stmt, StoreInst *Store, ValueMapT &VectorMap,
823     VectorValueMapT &ScalarMaps, __isl_keep isl_id_to_ast_expr *NewAccesses) {
824   const MemoryAccess &Access = Stmt.getAccessFor(Store);
825 
826   auto *Pointer = Store->getPointerOperand();
827   Value *Vector = getVectorValue(Stmt, Store->getValueOperand(), VectorMap,
828                                  ScalarMaps, getLoopForInst(Store));
829 
830   // Make sure we have scalar values available to access the pointer to
831   // the data location.
832   extractScalarValues(Store, VectorMap, ScalarMaps);
833 
834   if (Access.isStrideOne(isl_map_copy(Schedule))) {
835     Type *VectorPtrType = getVectorPtrTy(Pointer, getVectorWidth());
836     Value *NewPointer = generateLocationAccessed(
837         Stmt, Store, Pointer, ScalarMaps[0], VLTS[0], NewAccesses);
838 
839     Value *VectorPtr =
840         Builder.CreateBitCast(NewPointer, VectorPtrType, "vector_ptr");
841     StoreInst *Store = Builder.CreateStore(Vector, VectorPtr);
842 
843     if (!Aligned)
844       Store->setAlignment(8);
845   } else {
846     for (unsigned i = 0; i < ScalarMaps.size(); i++) {
847       Value *Scalar = Builder.CreateExtractElement(Vector, Builder.getInt32(i));
848       Value *NewPointer = generateLocationAccessed(
849           Stmt, Store, Pointer, ScalarMaps[i], VLTS[i], NewAccesses);
850       Builder.CreateStore(Scalar, NewPointer);
851     }
852   }
853 }
854 
855 bool VectorBlockGenerator::hasVectorOperands(const Instruction *Inst,
856                                              ValueMapT &VectorMap) {
857   for (Value *Operand : Inst->operands())
858     if (VectorMap.count(Operand))
859       return true;
860   return false;
861 }
862 
863 bool VectorBlockGenerator::extractScalarValues(const Instruction *Inst,
864                                                ValueMapT &VectorMap,
865                                                VectorValueMapT &ScalarMaps) {
866   bool HasVectorOperand = false;
867   int VectorWidth = getVectorWidth();
868 
869   for (Value *Operand : Inst->operands()) {
870     ValueMapT::iterator VecOp = VectorMap.find(Operand);
871 
872     if (VecOp == VectorMap.end())
873       continue;
874 
875     HasVectorOperand = true;
876     Value *NewVector = VecOp->second;
877 
878     for (int i = 0; i < VectorWidth; ++i) {
879       ValueMapT &SM = ScalarMaps[i];
880 
881       // If there is one scalar extracted, all scalar elements should have
882       // already been extracted by the code here. So no need to check for the
883       // existance of all of them.
884       if (SM.count(Operand))
885         break;
886 
887       SM[Operand] =
888           Builder.CreateExtractElement(NewVector, Builder.getInt32(i));
889     }
890   }
891 
892   return HasVectorOperand;
893 }
894 
895 void VectorBlockGenerator::copyInstScalarized(
896     ScopStmt &Stmt, Instruction *Inst, ValueMapT &VectorMap,
897     VectorValueMapT &ScalarMaps, __isl_keep isl_id_to_ast_expr *NewAccesses) {
898   bool HasVectorOperand;
899   int VectorWidth = getVectorWidth();
900 
901   HasVectorOperand = extractScalarValues(Inst, VectorMap, ScalarMaps);
902 
903   for (int VectorLane = 0; VectorLane < getVectorWidth(); VectorLane++)
904     BlockGenerator::copyInstruction(Stmt, Inst, ScalarMaps[VectorLane],
905                                     VLTS[VectorLane], NewAccesses);
906 
907   if (!VectorType::isValidElementType(Inst->getType()) || !HasVectorOperand)
908     return;
909 
910   // Make the result available as vector value.
911   VectorType *VectorType = VectorType::get(Inst->getType(), VectorWidth);
912   Value *Vector = UndefValue::get(VectorType);
913 
914   for (int i = 0; i < VectorWidth; i++)
915     Vector = Builder.CreateInsertElement(Vector, ScalarMaps[i][Inst],
916                                          Builder.getInt32(i));
917 
918   VectorMap[Inst] = Vector;
919 }
920 
921 int VectorBlockGenerator::getVectorWidth() { return VLTS.size(); }
922 
923 void VectorBlockGenerator::copyInstruction(
924     ScopStmt &Stmt, Instruction *Inst, ValueMapT &VectorMap,
925     VectorValueMapT &ScalarMaps, __isl_keep isl_id_to_ast_expr *NewAccesses) {
926   // Terminator instructions control the control flow. They are explicitly
927   // expressed in the clast and do not need to be copied.
928   if (Inst->isTerminator())
929     return;
930 
931   if (canSynthesize(Inst, &LI, &SE, &Stmt.getParent()->getRegion()))
932     return;
933 
934   if (auto *Load = dyn_cast<LoadInst>(Inst)) {
935     generateLoad(Stmt, Load, VectorMap, ScalarMaps, NewAccesses);
936     return;
937   }
938 
939   if (hasVectorOperands(Inst, VectorMap)) {
940     if (auto *Store = dyn_cast<StoreInst>(Inst)) {
941       copyStore(Stmt, Store, VectorMap, ScalarMaps, NewAccesses);
942       return;
943     }
944 
945     if (auto *Unary = dyn_cast<UnaryInstruction>(Inst)) {
946       copyUnaryInst(Stmt, Unary, VectorMap, ScalarMaps);
947       return;
948     }
949 
950     if (auto *Binary = dyn_cast<BinaryOperator>(Inst)) {
951       copyBinaryInst(Stmt, Binary, VectorMap, ScalarMaps);
952       return;
953     }
954 
955     // Falltrough: We generate scalar instructions, if we don't know how to
956     // generate vector code.
957   }
958 
959   copyInstScalarized(Stmt, Inst, VectorMap, ScalarMaps, NewAccesses);
960 }
961 
962 void VectorBlockGenerator::copyStmt(
963     ScopStmt &Stmt, __isl_keep isl_id_to_ast_expr *NewAccesses) {
964   assert(Stmt.isBlockStmt() && "TODO: Only block statements can be copied by "
965                                "the vector block generator");
966 
967   BasicBlock *BB = Stmt.getBasicBlock();
968   BasicBlock *CopyBB =
969       SplitBlock(Builder.GetInsertBlock(), Builder.GetInsertPoint(), &DT, &LI);
970   CopyBB->setName("polly.stmt." + BB->getName());
971   Builder.SetInsertPoint(CopyBB->begin());
972 
973   // Create two maps that store the mapping from the original instructions of
974   // the old basic block to their copies in the new basic block. Those maps
975   // are basic block local.
976   //
977   // As vector code generation is supported there is one map for scalar values
978   // and one for vector values.
979   //
980   // In case we just do scalar code generation, the vectorMap is not used and
981   // the scalarMap has just one dimension, which contains the mapping.
982   //
983   // In case vector code generation is done, an instruction may either appear
984   // in the vector map once (as it is calculating >vectorwidth< values at a
985   // time. Or (if the values are calculated using scalar operations), it
986   // appears once in every dimension of the scalarMap.
987   VectorValueMapT ScalarBlockMap(getVectorWidth());
988   ValueMapT VectorBlockMap;
989 
990   for (Instruction &Inst : *BB)
991     copyInstruction(Stmt, &Inst, VectorBlockMap, ScalarBlockMap, NewAccesses);
992 }
993 
994 BasicBlock *RegionGenerator::repairDominance(BasicBlock *BB,
995                                              BasicBlock *BBCopy) {
996 
997   BasicBlock *BBIDom = DT.getNode(BB)->getIDom()->getBlock();
998   BasicBlock *BBCopyIDom = BlockMap.lookup(BBIDom);
999 
1000   if (BBCopyIDom)
1001     DT.changeImmediateDominator(BBCopy, BBCopyIDom);
1002 
1003   return BBCopyIDom;
1004 }
1005 
1006 void RegionGenerator::copyStmt(ScopStmt &Stmt, LoopToScevMapT &LTS,
1007                                isl_id_to_ast_expr *IdToAstExp) {
1008   assert(Stmt.isRegionStmt() &&
1009          "Only region statements can be copied by the region generator");
1010 
1011   // Forget all old mappings.
1012   BlockMap.clear();
1013   RegionMaps.clear();
1014   IncompletePHINodeMap.clear();
1015 
1016   // Collection of all values related to this subregion.
1017   ValueMapT ValueMap;
1018 
1019   // The region represented by the statement.
1020   Region *R = Stmt.getRegion();
1021 
1022   // Create a dedicated entry for the region where we can reload all demoted
1023   // inputs.
1024   BasicBlock *EntryBB = R->getEntry();
1025   BasicBlock *EntryBBCopy =
1026       SplitBlock(Builder.GetInsertBlock(), Builder.GetInsertPoint(), &DT, &LI);
1027   EntryBBCopy->setName("polly.stmt." + EntryBB->getName() + ".entry");
1028   Builder.SetInsertPoint(EntryBBCopy->begin());
1029 
1030   generateScalarLoads(Stmt, RegionMaps[EntryBBCopy]);
1031 
1032   for (auto PI = pred_begin(EntryBB), PE = pred_end(EntryBB); PI != PE; ++PI)
1033     if (!R->contains(*PI))
1034       BlockMap[*PI] = EntryBBCopy;
1035 
1036   // Iterate over all blocks in the region in a breadth-first search.
1037   std::deque<BasicBlock *> Blocks;
1038   SmallPtrSet<BasicBlock *, 8> SeenBlocks;
1039   Blocks.push_back(EntryBB);
1040   SeenBlocks.insert(EntryBB);
1041 
1042   while (!Blocks.empty()) {
1043     BasicBlock *BB = Blocks.front();
1044     Blocks.pop_front();
1045 
1046     // First split the block and update dominance information.
1047     BasicBlock *BBCopy = splitBB(BB);
1048     BasicBlock *BBCopyIDom = repairDominance(BB, BBCopy);
1049 
1050     // In order to remap PHI nodes we store also basic block mappings.
1051     BlockMap[BB] = BBCopy;
1052 
1053     // Get the mapping for this block and initialize it with the mapping
1054     // available at its immediate dominator (in the new region).
1055     ValueMapT &RegionMap = RegionMaps[BBCopy];
1056     if (BBCopy != EntryBBCopy)
1057       RegionMap = RegionMaps[BBCopyIDom];
1058 
1059     // Copy the block with the BlockGenerator.
1060     Builder.SetInsertPoint(BBCopy->begin());
1061     copyBB(Stmt, BB, BBCopy, RegionMap, LTS, IdToAstExp);
1062 
1063     // In order to remap PHI nodes we store also basic block mappings.
1064     BlockMap[BB] = BBCopy;
1065 
1066     // Add values to incomplete PHI nodes waiting for this block to be copied.
1067     for (const PHINodePairTy &PHINodePair : IncompletePHINodeMap[BB])
1068       addOperandToPHI(Stmt, PHINodePair.first, PHINodePair.second, BB, LTS);
1069     IncompletePHINodeMap[BB].clear();
1070 
1071     // And continue with new successors inside the region.
1072     for (auto SI = succ_begin(BB), SE = succ_end(BB); SI != SE; SI++)
1073       if (R->contains(*SI) && SeenBlocks.insert(*SI).second)
1074         Blocks.push_back(*SI);
1075 
1076     // Remember value in case it is visible after this subregion.
1077     ValueMap.insert(RegionMap.begin(), RegionMap.end());
1078   }
1079 
1080   // Now create a new dedicated region exit block and add it to the region map.
1081   BasicBlock *ExitBBCopy =
1082       SplitBlock(Builder.GetInsertBlock(), Builder.GetInsertPoint(), &DT, &LI);
1083   ExitBBCopy->setName("polly.stmt." + R->getExit()->getName() + ".exit");
1084   BlockMap[R->getExit()] = ExitBBCopy;
1085 
1086   repairDominance(R->getExit(), ExitBBCopy);
1087 
1088   // As the block generator doesn't handle control flow we need to add the
1089   // region control flow by hand after all blocks have been copied.
1090   for (BasicBlock *BB : SeenBlocks) {
1091 
1092     BasicBlock *BBCopy = BlockMap[BB];
1093     TerminatorInst *TI = BB->getTerminator();
1094     if (isa<UnreachableInst>(TI)) {
1095       while (!BBCopy->empty())
1096         BBCopy->begin()->eraseFromParent();
1097       new UnreachableInst(BBCopy->getContext(), BBCopy);
1098       continue;
1099     }
1100 
1101     Instruction *BICopy = BBCopy->getTerminator();
1102 
1103     ValueMapT &RegionMap = RegionMaps[BBCopy];
1104     RegionMap.insert(BlockMap.begin(), BlockMap.end());
1105 
1106     Builder.SetInsertPoint(BICopy);
1107     copyInstScalar(Stmt, TI, RegionMap, LTS);
1108     BICopy->eraseFromParent();
1109   }
1110 
1111   // Add counting PHI nodes to all loops in the region that can be used as
1112   // replacement for SCEVs refering to the old loop.
1113   for (BasicBlock *BB : SeenBlocks) {
1114     Loop *L = LI.getLoopFor(BB);
1115     if (L == nullptr || L->getHeader() != BB)
1116       continue;
1117 
1118     BasicBlock *BBCopy = BlockMap[BB];
1119     Value *NullVal = Builder.getInt32(0);
1120     PHINode *LoopPHI =
1121         PHINode::Create(Builder.getInt32Ty(), 2, "polly.subregion.iv");
1122     Instruction *LoopPHIInc = BinaryOperator::CreateAdd(
1123         LoopPHI, Builder.getInt32(1), "polly.subregion.iv.inc");
1124     LoopPHI->insertBefore(BBCopy->begin());
1125     LoopPHIInc->insertBefore(BBCopy->getTerminator());
1126 
1127     for (auto *PredBB : make_range(pred_begin(BB), pred_end(BB))) {
1128       if (!R->contains(PredBB))
1129         continue;
1130       if (L->contains(PredBB))
1131         LoopPHI->addIncoming(LoopPHIInc, BlockMap[PredBB]);
1132       else
1133         LoopPHI->addIncoming(NullVal, BlockMap[PredBB]);
1134     }
1135 
1136     for (auto *PredBBCopy : make_range(pred_begin(BBCopy), pred_end(BBCopy)))
1137       if (LoopPHI->getBasicBlockIndex(PredBBCopy) < 0)
1138         LoopPHI->addIncoming(NullVal, PredBBCopy);
1139 
1140     LTS[L] = SE.getUnknown(LoopPHI);
1141   }
1142 
1143   // Continue generating code in the exit block.
1144   Builder.SetInsertPoint(ExitBBCopy->getFirstInsertionPt());
1145 
1146   // Write values visible to other statements.
1147   generateScalarStores(Stmt, LTS, ValueMap);
1148   BlockMap.clear();
1149   RegionMaps.clear();
1150   IncompletePHINodeMap.clear();
1151 }
1152 
1153 void RegionGenerator::generateScalarStores(ScopStmt &Stmt, LoopToScevMapT &LTS,
1154                                            ValueMapT &BBMap) {
1155   const Region &R = Stmt.getParent()->getRegion();
1156 
1157   assert(Stmt.getRegion() &&
1158          "Block statements need to use the generateScalarStores() "
1159          "function in the BlockGenerator");
1160 
1161   for (MemoryAccess *MA : Stmt) {
1162     if (MA->isExplicit() || MA->isRead())
1163       continue;
1164 
1165     Instruction *ScalarInst = MA->getAccessInstruction();
1166     Value *Val = MA->getAccessValue();
1167 
1168     // In case we add the store into an exiting block, we need to restore the
1169     // position for stores in the exit node.
1170     auto SavedInsertionPoint = Builder.GetInsertPoint();
1171 
1172     // Implicit writes induced by PHIs must be written in the incoming blocks.
1173     if (isa<TerminatorInst>(ScalarInst)) {
1174       BasicBlock *ExitingBB = ScalarInst->getParent();
1175       BasicBlock *ExitingBBCopy = BlockMap[ExitingBB];
1176       Builder.SetInsertPoint(ExitingBBCopy->getTerminator());
1177     }
1178 
1179     auto Address = getOrCreateAlloca(*MA);
1180 
1181     Val = getNewScalarValue(Val, R, Stmt, LTS, BBMap);
1182     Builder.CreateStore(Val, Address);
1183 
1184     // Restore the insertion point if necessary.
1185     if (isa<TerminatorInst>(ScalarInst))
1186       Builder.SetInsertPoint(SavedInsertionPoint);
1187   }
1188 }
1189 
1190 void RegionGenerator::addOperandToPHI(ScopStmt &Stmt, const PHINode *PHI,
1191                                       PHINode *PHICopy, BasicBlock *IncomingBB,
1192                                       LoopToScevMapT &LTS) {
1193   Region *StmtR = Stmt.getRegion();
1194 
1195   // If the incoming block was not yet copied mark this PHI as incomplete.
1196   // Once the block will be copied the incoming value will be added.
1197   BasicBlock *BBCopy = BlockMap[IncomingBB];
1198   if (!BBCopy) {
1199     assert(StmtR->contains(IncomingBB) &&
1200            "Bad incoming block for PHI in non-affine region");
1201     IncompletePHINodeMap[IncomingBB].push_back(std::make_pair(PHI, PHICopy));
1202     return;
1203   }
1204 
1205   Value *OpCopy = nullptr;
1206   if (StmtR->contains(IncomingBB)) {
1207     assert(RegionMaps.count(BBCopy) &&
1208            "Incoming PHI block did not have a BBMap");
1209     ValueMapT &BBCopyMap = RegionMaps[BBCopy];
1210 
1211     Value *Op = PHI->getIncomingValueForBlock(IncomingBB);
1212 
1213     auto OldIP = Builder.GetInsertPoint();
1214     Builder.SetInsertPoint(BBCopy->getTerminator());
1215     OpCopy = getNewValue(Stmt, Op, BBCopyMap, LTS, getLoopForInst(PHI));
1216     Builder.SetInsertPoint(OldIP);
1217   } else {
1218 
1219     if (PHICopy->getBasicBlockIndex(BBCopy) >= 0)
1220       return;
1221 
1222     Value *PHIOpAddr = getOrCreatePHIAlloca(const_cast<PHINode *>(PHI));
1223     OpCopy = new LoadInst(PHIOpAddr, PHIOpAddr->getName() + ".reload",
1224                           BlockMap[IncomingBB]->getTerminator());
1225   }
1226 
1227   assert(OpCopy && "Incoming PHI value was not copied properly");
1228   assert(BBCopy && "Incoming PHI block was not copied properly");
1229   PHICopy->addIncoming(OpCopy, BBCopy);
1230 }
1231 
1232 Value *RegionGenerator::copyPHIInstruction(ScopStmt &Stmt, PHINode *PHI,
1233                                            ValueMapT &BBMap,
1234                                            LoopToScevMapT &LTS) {
1235   unsigned NumIncoming = PHI->getNumIncomingValues();
1236   PHINode *PHICopy =
1237       Builder.CreatePHI(PHI->getType(), NumIncoming, "polly." + PHI->getName());
1238   PHICopy->moveBefore(PHICopy->getParent()->getFirstNonPHI());
1239   BBMap[PHI] = PHICopy;
1240 
1241   for (unsigned u = 0; u < NumIncoming; u++)
1242     addOperandToPHI(Stmt, PHI, PHICopy, PHI->getIncomingBlock(u), LTS);
1243   return PHICopy;
1244 }
1245