1 //===--- BlockGenerators.cpp - Generate code for statements -----*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the BlockGenerator and VectorBlockGenerator classes, 11 // which generate sequential code and vectorized code for a polyhedral 12 // statement, respectively. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "polly/ScopInfo.h" 17 #include "polly/CodeGen/BlockGenerators.h" 18 #include "polly/CodeGen/CodeGeneration.h" 19 #include "polly/CodeGen/IslExprBuilder.h" 20 #include "polly/CodeGen/RuntimeDebugBuilder.h" 21 #include "polly/Options.h" 22 #include "polly/Support/GICHelper.h" 23 #include "polly/Support/SCEVValidator.h" 24 #include "polly/Support/ScopHelper.h" 25 #include "llvm/Analysis/LoopInfo.h" 26 #include "llvm/Analysis/RegionInfo.h" 27 #include "llvm/Analysis/ScalarEvolution.h" 28 #include "llvm/IR/IntrinsicInst.h" 29 #include "llvm/IR/Module.h" 30 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 31 #include "llvm/Transforms/Utils/Local.h" 32 #include "isl/aff.h" 33 #include "isl/ast.h" 34 #include "isl/ast_build.h" 35 #include "isl/set.h" 36 #include <deque> 37 38 using namespace llvm; 39 using namespace polly; 40 41 static cl::opt<bool> Aligned("enable-polly-aligned", 42 cl::desc("Assumed aligned memory accesses."), 43 cl::Hidden, cl::init(false), cl::ZeroOrMore, 44 cl::cat(PollyCategory)); 45 46 static cl::opt<bool> DebugPrinting( 47 "polly-codegen-add-debug-printing", 48 cl::desc("Add printf calls that show the values loaded/stored."), 49 cl::Hidden, cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory)); 50 51 BlockGenerator::BlockGenerator(PollyIRBuilder &B, LoopInfo &LI, 52 ScalarEvolution &SE, DominatorTree &DT, 53 ScalarAllocaMapTy &ScalarMap, 54 ScalarAllocaMapTy &PHIOpMap, 55 EscapeUsersAllocaMapTy &EscapeMap, 56 ValueMapT &GlobalMap, 57 IslExprBuilder *ExprBuilder) 58 : Builder(B), LI(LI), SE(SE), ExprBuilder(ExprBuilder), DT(DT), 59 EntryBB(nullptr), PHIOpMap(PHIOpMap), ScalarMap(ScalarMap), 60 EscapeMap(EscapeMap), GlobalMap(GlobalMap) {} 61 62 Value *BlockGenerator::trySynthesizeNewValue(ScopStmt &Stmt, Value *Old, 63 ValueMapT &BBMap, 64 LoopToScevMapT <S, 65 Loop *L) const { 66 if (SE.isSCEVable(Old->getType())) 67 if (const SCEV *Scev = SE.getSCEVAtScope(const_cast<Value *>(Old), L)) { 68 if (!isa<SCEVCouldNotCompute>(Scev)) { 69 const SCEV *NewScev = apply(Scev, LTS, SE); 70 ValueMapT VTV; 71 VTV.insert(BBMap.begin(), BBMap.end()); 72 VTV.insert(GlobalMap.begin(), GlobalMap.end()); 73 74 Scop &S = *Stmt.getParent(); 75 const DataLayout &DL = 76 S.getRegion().getEntry()->getParent()->getParent()->getDataLayout(); 77 auto IP = Builder.GetInsertPoint(); 78 79 assert(IP != Builder.GetInsertBlock()->end() && 80 "Only instructions can be insert points for SCEVExpander"); 81 Value *Expanded = expandCodeFor(S, SE, DL, "polly", NewScev, 82 Old->getType(), IP, &VTV); 83 84 BBMap[Old] = Expanded; 85 return Expanded; 86 } 87 } 88 89 return nullptr; 90 } 91 92 Value *BlockGenerator::getNewValue(ScopStmt &Stmt, Value *Old, ValueMapT &BBMap, 93 LoopToScevMapT <S, Loop *L) const { 94 // We assume constants never change. 95 // This avoids map lookups for many calls to this function. 96 if (isa<Constant>(Old)) 97 return const_cast<Value *>(Old); 98 99 if (Value *New = GlobalMap.lookup(Old)) { 100 if (Value *NewRemapped = GlobalMap.lookup(New)) 101 New = NewRemapped; 102 if (Old->getType()->getScalarSizeInBits() < 103 New->getType()->getScalarSizeInBits()) 104 New = Builder.CreateTruncOrBitCast(New, Old->getType()); 105 106 return New; 107 } 108 109 if (Value *New = BBMap.lookup(Old)) 110 return New; 111 112 if (Value *New = trySynthesizeNewValue(Stmt, Old, BBMap, LTS, L)) 113 return New; 114 115 // A scop-constant value defined by a global or a function parameter. 116 if (isa<GlobalValue>(Old) || isa<Argument>(Old)) 117 return const_cast<Value *>(Old); 118 119 // A scop-constant value defined by an instruction executed outside the scop. 120 if (const Instruction *Inst = dyn_cast<Instruction>(Old)) 121 if (!Stmt.getParent()->getRegion().contains(Inst->getParent())) 122 return const_cast<Value *>(Old); 123 124 // The scalar dependence is neither available nor SCEVCodegenable. 125 llvm_unreachable("Unexpected scalar dependence in region!"); 126 return nullptr; 127 } 128 129 void BlockGenerator::copyInstScalar(ScopStmt &Stmt, Instruction *Inst, 130 ValueMapT &BBMap, LoopToScevMapT <S) { 131 // We do not generate debug intrinsics as we did not investigate how to 132 // copy them correctly. At the current state, they just crash the code 133 // generation as the meta-data operands are not correctly copied. 134 if (isa<DbgInfoIntrinsic>(Inst)) 135 return; 136 137 Instruction *NewInst = Inst->clone(); 138 139 // Replace old operands with the new ones. 140 for (Value *OldOperand : Inst->operands()) { 141 Value *NewOperand = 142 getNewValue(Stmt, OldOperand, BBMap, LTS, getLoopForInst(Inst)); 143 144 if (!NewOperand) { 145 assert(!isa<StoreInst>(NewInst) && 146 "Store instructions are always needed!"); 147 delete NewInst; 148 return; 149 } 150 151 NewInst->replaceUsesOfWith(OldOperand, NewOperand); 152 } 153 154 Builder.Insert(NewInst); 155 BBMap[Inst] = NewInst; 156 157 if (!NewInst->getType()->isVoidTy()) 158 NewInst->setName("p_" + Inst->getName()); 159 } 160 161 Value *BlockGenerator::generateLocationAccessed( 162 ScopStmt &Stmt, const Instruction *Inst, Value *Pointer, ValueMapT &BBMap, 163 LoopToScevMapT <S, isl_id_to_ast_expr *NewAccesses) { 164 const MemoryAccess &MA = Stmt.getAccessFor(Inst); 165 166 isl_ast_expr *AccessExpr = isl_id_to_ast_expr_get(NewAccesses, MA.getId()); 167 168 if (AccessExpr) { 169 AccessExpr = isl_ast_expr_address_of(AccessExpr); 170 auto Address = ExprBuilder->create(AccessExpr); 171 172 // Cast the address of this memory access to a pointer type that has the 173 // same element type as the original access, but uses the address space of 174 // the newly generated pointer. 175 auto OldPtrTy = MA.getAccessValue()->getType()->getPointerTo(); 176 auto NewPtrTy = Address->getType(); 177 OldPtrTy = PointerType::get(OldPtrTy->getElementType(), 178 NewPtrTy->getPointerAddressSpace()); 179 180 if (OldPtrTy != NewPtrTy) { 181 assert(OldPtrTy->getPointerElementType()->getPrimitiveSizeInBits() == 182 NewPtrTy->getPointerElementType()->getPrimitiveSizeInBits() && 183 "Pointer types to elements with different size found"); 184 Address = Builder.CreateBitOrPointerCast(Address, OldPtrTy); 185 } 186 return Address; 187 } 188 189 return getNewValue(Stmt, Pointer, BBMap, LTS, getLoopForInst(Inst)); 190 } 191 192 Loop *BlockGenerator::getLoopForInst(const llvm::Instruction *Inst) { 193 return LI.getLoopFor(Inst->getParent()); 194 } 195 196 Value *BlockGenerator::generateScalarLoad(ScopStmt &Stmt, LoadInst *Load, 197 ValueMapT &BBMap, LoopToScevMapT <S, 198 isl_id_to_ast_expr *NewAccesses) { 199 if (Value *PreloadLoad = GlobalMap.lookup(Load)) 200 return PreloadLoad; 201 202 auto *Pointer = Load->getPointerOperand(); 203 Value *NewPointer = 204 generateLocationAccessed(Stmt, Load, Pointer, BBMap, LTS, NewAccesses); 205 Value *ScalarLoad = Builder.CreateAlignedLoad( 206 NewPointer, Load->getAlignment(), Load->getName() + "_p_scalar_"); 207 208 if (DebugPrinting) 209 RuntimeDebugBuilder::createCPUPrinter(Builder, "Load from ", NewPointer, 210 ": ", ScalarLoad, "\n"); 211 212 return ScalarLoad; 213 } 214 215 void BlockGenerator::generateScalarStore(ScopStmt &Stmt, StoreInst *Store, 216 ValueMapT &BBMap, LoopToScevMapT <S, 217 isl_id_to_ast_expr *NewAccesses) { 218 auto *Pointer = Store->getPointerOperand(); 219 Value *NewPointer = 220 generateLocationAccessed(Stmt, Store, Pointer, BBMap, LTS, NewAccesses); 221 Value *ValueOperand = getNewValue(Stmt, Store->getValueOperand(), BBMap, LTS, 222 getLoopForInst(Store)); 223 224 if (DebugPrinting) 225 RuntimeDebugBuilder::createCPUPrinter(Builder, "Store to ", NewPointer, 226 ": ", ValueOperand, "\n"); 227 228 Builder.CreateAlignedStore(ValueOperand, NewPointer, Store->getAlignment()); 229 } 230 231 void BlockGenerator::copyInstruction(ScopStmt &Stmt, Instruction *Inst, 232 ValueMapT &BBMap, LoopToScevMapT <S, 233 isl_id_to_ast_expr *NewAccesses) { 234 // Terminator instructions control the control flow. They are explicitly 235 // expressed in the clast and do not need to be copied. 236 if (Inst->isTerminator()) 237 return; 238 239 Loop *L = getLoopForInst(Inst); 240 if ((Stmt.isBlockStmt() || !Stmt.getRegion()->contains(L)) && 241 canSynthesize(Inst, &LI, &SE, &Stmt.getParent()->getRegion())) { 242 // Synthesizable statements will be generated on-demand. 243 return; 244 } 245 246 if (auto *Load = dyn_cast<LoadInst>(Inst)) { 247 Value *NewLoad = generateScalarLoad(Stmt, Load, BBMap, LTS, NewAccesses); 248 // Compute NewLoad before its insertion in BBMap to make the insertion 249 // deterministic. 250 BBMap[Load] = NewLoad; 251 return; 252 } 253 254 if (auto *Store = dyn_cast<StoreInst>(Inst)) { 255 generateScalarStore(Stmt, Store, BBMap, LTS, NewAccesses); 256 return; 257 } 258 259 if (auto *PHI = dyn_cast<PHINode>(Inst)) { 260 copyPHIInstruction(Stmt, PHI, BBMap, LTS); 261 return; 262 } 263 264 // Skip some special intrinsics for which we do not adjust the semantics to 265 // the new schedule. All others are handled like every other instruction. 266 if (isIgnoredIntrinsic(Inst)) 267 return; 268 269 copyInstScalar(Stmt, Inst, BBMap, LTS); 270 } 271 272 void BlockGenerator::copyStmt(ScopStmt &Stmt, LoopToScevMapT <S, 273 isl_id_to_ast_expr *NewAccesses) { 274 assert(Stmt.isBlockStmt() && 275 "Only block statements can be copied by the block generator"); 276 277 ValueMapT BBMap; 278 279 BasicBlock *BB = Stmt.getBasicBlock(); 280 copyBB(Stmt, BB, BBMap, LTS, NewAccesses); 281 } 282 283 BasicBlock *BlockGenerator::splitBB(BasicBlock *BB) { 284 BasicBlock *CopyBB = 285 SplitBlock(Builder.GetInsertBlock(), Builder.GetInsertPoint(), &DT, &LI); 286 CopyBB->setName("polly.stmt." + BB->getName()); 287 return CopyBB; 288 } 289 290 BasicBlock *BlockGenerator::copyBB(ScopStmt &Stmt, BasicBlock *BB, 291 ValueMapT &BBMap, LoopToScevMapT <S, 292 isl_id_to_ast_expr *NewAccesses) { 293 BasicBlock *CopyBB = splitBB(BB); 294 Builder.SetInsertPoint(CopyBB->begin()); 295 generateScalarLoads(Stmt, BBMap); 296 297 copyBB(Stmt, BB, CopyBB, BBMap, LTS, NewAccesses); 298 299 // After a basic block was copied store all scalars that escape this block in 300 // their alloca. 301 generateScalarStores(Stmt, LTS, BBMap); 302 return CopyBB; 303 } 304 305 void BlockGenerator::copyBB(ScopStmt &Stmt, BasicBlock *BB, BasicBlock *CopyBB, 306 ValueMapT &BBMap, LoopToScevMapT <S, 307 isl_id_to_ast_expr *NewAccesses) { 308 EntryBB = &CopyBB->getParent()->getEntryBlock(); 309 310 for (Instruction &Inst : *BB) 311 copyInstruction(Stmt, &Inst, BBMap, LTS, NewAccesses); 312 } 313 314 Value *BlockGenerator::getOrCreateAlloca(Value *ScalarBase, 315 ScalarAllocaMapTy &Map, 316 const char *NameExt) { 317 // If no alloca was found create one and insert it in the entry block. 318 if (!Map.count(ScalarBase)) { 319 auto *Ty = ScalarBase->getType(); 320 auto NewAddr = new AllocaInst(Ty, ScalarBase->getName() + NameExt); 321 EntryBB = &Builder.GetInsertBlock()->getParent()->getEntryBlock(); 322 NewAddr->insertBefore(EntryBB->getFirstInsertionPt()); 323 Map[ScalarBase] = NewAddr; 324 } 325 326 auto Addr = Map[ScalarBase]; 327 328 if (GlobalMap.count(Addr)) 329 return GlobalMap[Addr]; 330 331 return Addr; 332 } 333 334 Value *BlockGenerator::getOrCreateAlloca(MemoryAccess &Access) { 335 if (Access.isPHI()) 336 return getOrCreatePHIAlloca(Access.getBaseAddr()); 337 else 338 return getOrCreateScalarAlloca(Access.getBaseAddr()); 339 } 340 341 Value *BlockGenerator::getOrCreateAlloca(const ScopArrayInfo *Array) { 342 if (Array->isPHI()) 343 return getOrCreatePHIAlloca(Array->getBasePtr()); 344 else 345 return getOrCreateScalarAlloca(Array->getBasePtr()); 346 } 347 348 Value *BlockGenerator::getOrCreateScalarAlloca(Value *ScalarBase) { 349 return getOrCreateAlloca(ScalarBase, ScalarMap, ".s2a"); 350 } 351 352 Value *BlockGenerator::getOrCreatePHIAlloca(Value *ScalarBase) { 353 return getOrCreateAlloca(ScalarBase, PHIOpMap, ".phiops"); 354 } 355 356 void BlockGenerator::handleOutsideUsers(const Region &R, Instruction *Inst, 357 Value *Address) { 358 // If there are escape users we get the alloca for this instruction and put it 359 // in the EscapeMap for later finalization. Lastly, if the instruction was 360 // copied multiple times we already did this and can exit. 361 if (EscapeMap.count(Inst)) 362 return; 363 364 EscapeUserVectorTy EscapeUsers; 365 for (User *U : Inst->users()) { 366 367 // Non-instruction user will never escape. 368 Instruction *UI = dyn_cast<Instruction>(U); 369 if (!UI) 370 continue; 371 372 if (R.contains(UI)) 373 continue; 374 375 EscapeUsers.push_back(UI); 376 } 377 378 // Exit if no escape uses were found. 379 if (EscapeUsers.empty()) 380 return; 381 382 // Get or create an escape alloca for this instruction. 383 auto *ScalarAddr = Address ? Address : getOrCreateScalarAlloca(Inst); 384 385 // Remember that this instruction has escape uses and the escape alloca. 386 EscapeMap[Inst] = std::make_pair(ScalarAddr, std::move(EscapeUsers)); 387 } 388 389 void BlockGenerator::generateScalarLoads(ScopStmt &Stmt, ValueMapT &BBMap) { 390 for (MemoryAccess *MA : Stmt) { 391 if (MA->isExplicit() || MA->isWrite()) 392 continue; 393 394 auto *Address = getOrCreateAlloca(*MA); 395 BBMap[MA->getBaseAddr()] = 396 Builder.CreateLoad(Address, Address->getName() + ".reload"); 397 } 398 } 399 400 Value *BlockGenerator::getNewScalarValue(Value *ScalarValue, const Region &R, 401 ScopStmt &Stmt, LoopToScevMapT <S, 402 ValueMapT &BBMap) { 403 // If the value we want to store is an instruction we might have demoted it 404 // in order to make it accessible here. In such a case a reload is 405 // necessary. If it is no instruction it will always be a value that 406 // dominates the current point and we can just use it. In total there are 4 407 // options: 408 // (1) The value is no instruction ==> use the value. 409 // (2) The value is an instruction that was split out of the region prior to 410 // code generation ==> use the instruction as it dominates the region. 411 // (3) The value is an instruction: 412 // (a) The value was defined in the current block, thus a copy is in 413 // the BBMap ==> use the mapped value. 414 // (b) The value was defined in a previous block, thus we demoted it 415 // earlier ==> use the reloaded value. 416 Instruction *ScalarValueInst = dyn_cast<Instruction>(ScalarValue); 417 if (!ScalarValueInst) 418 return ScalarValue; 419 420 if (!R.contains(ScalarValueInst)) { 421 if (Value *ScalarValueCopy = GlobalMap.lookup(ScalarValueInst)) 422 return /* Case (3a) */ ScalarValueCopy; 423 else 424 return /* Case 2 */ ScalarValue; 425 } 426 427 if (Value *ScalarValueCopy = BBMap.lookup(ScalarValueInst)) 428 return /* Case (3a) */ ScalarValueCopy; 429 430 if ((Stmt.isBlockStmt() && 431 Stmt.getBasicBlock() == ScalarValueInst->getParent()) || 432 (Stmt.isRegionStmt() && Stmt.getRegion()->contains(ScalarValueInst))) { 433 auto SynthesizedValue = trySynthesizeNewValue( 434 Stmt, ScalarValueInst, BBMap, LTS, getLoopForInst(ScalarValueInst)); 435 436 if (SynthesizedValue) 437 return SynthesizedValue; 438 } 439 440 // Case (3b) 441 Value *Address = getOrCreateScalarAlloca(ScalarValueInst); 442 ScalarValue = Builder.CreateLoad(Address, Address->getName() + ".reload"); 443 444 return ScalarValue; 445 } 446 447 void BlockGenerator::generateScalarStores(ScopStmt &Stmt, LoopToScevMapT <S, 448 ValueMapT &BBMap) { 449 const Region &R = Stmt.getParent()->getRegion(); 450 451 assert(Stmt.isBlockStmt() && "Region statements need to use the " 452 "generateScalarStores() function in the " 453 "RegionGenerator"); 454 455 for (MemoryAccess *MA : Stmt) { 456 if (MA->isExplicit() || MA->isRead()) 457 continue; 458 459 Value *Val = MA->getAccessValue(); 460 auto *Address = getOrCreateAlloca(*MA); 461 462 Val = getNewScalarValue(Val, R, Stmt, LTS, BBMap); 463 Builder.CreateStore(Val, Address); 464 } 465 } 466 467 void BlockGenerator::createScalarInitialization(Scop &S) { 468 Region &R = S.getRegion(); 469 // The split block __just before__ the region and optimized region. 470 BasicBlock *SplitBB = R.getEnteringBlock(); 471 BranchInst *SplitBBTerm = cast<BranchInst>(SplitBB->getTerminator()); 472 assert(SplitBBTerm->getNumSuccessors() == 2 && "Bad region entering block!"); 473 474 // Get the start block of the __optimized__ region. 475 BasicBlock *StartBB = SplitBBTerm->getSuccessor(0); 476 if (StartBB == R.getEntry()) 477 StartBB = SplitBBTerm->getSuccessor(1); 478 479 Builder.SetInsertPoint(StartBB->getTerminator()); 480 481 for (auto &Pair : S.arrays()) { 482 auto &Array = Pair.second; 483 if (Array->getNumberOfDimensions() != 0) 484 continue; 485 if (Array->isPHI()) { 486 // For PHI nodes, the only values we need to store are the ones that 487 // reach the PHI node from outside the region. In general there should 488 // only be one such incoming edge and this edge should enter through 489 // 'SplitBB'. 490 auto PHI = cast<PHINode>(Array->getBasePtr()); 491 492 for (auto BI = PHI->block_begin(), BE = PHI->block_end(); BI != BE; BI++) 493 if (!R.contains(*BI) && *BI != SplitBB) 494 llvm_unreachable("Incoming edges from outside the scop should always " 495 "come from SplitBB"); 496 497 int Idx = PHI->getBasicBlockIndex(SplitBB); 498 if (Idx < 0) 499 continue; 500 501 Value *ScalarValue = PHI->getIncomingValue(Idx); 502 503 Builder.CreateStore(ScalarValue, getOrCreatePHIAlloca(PHI)); 504 continue; 505 } 506 507 auto *Inst = dyn_cast<Instruction>(Array->getBasePtr()); 508 509 if (Inst && R.contains(Inst)) 510 continue; 511 512 // PHI nodes that are not marked as such in their SAI object are exit PHI 513 // nodes we model as common scalars but do not need to initialize. 514 if (Inst && isa<PHINode>(Inst)) 515 continue; 516 517 ValueMapT EmptyMap; 518 Builder.CreateStore(Array->getBasePtr(), 519 getOrCreateScalarAlloca(Array->getBasePtr())); 520 } 521 } 522 523 void BlockGenerator::createScalarFinalization(Region &R) { 524 // The exit block of the __unoptimized__ region. 525 BasicBlock *ExitBB = R.getExitingBlock(); 526 // The merge block __just after__ the region and the optimized region. 527 BasicBlock *MergeBB = R.getExit(); 528 529 // The exit block of the __optimized__ region. 530 BasicBlock *OptExitBB = *(pred_begin(MergeBB)); 531 if (OptExitBB == ExitBB) 532 OptExitBB = *(++pred_begin(MergeBB)); 533 534 Builder.SetInsertPoint(OptExitBB->getTerminator()); 535 for (const auto &EscapeMapping : EscapeMap) { 536 // Extract the escaping instruction and the escaping users as well as the 537 // alloca the instruction was demoted to. 538 Instruction *EscapeInst = EscapeMapping.getFirst(); 539 const auto &EscapeMappingValue = EscapeMapping.getSecond(); 540 const EscapeUserVectorTy &EscapeUsers = EscapeMappingValue.second; 541 Value *ScalarAddr = EscapeMappingValue.first; 542 543 // Reload the demoted instruction in the optimized version of the SCoP. 544 Value *EscapeInstReload = 545 Builder.CreateLoad(ScalarAddr, EscapeInst->getName() + ".final_reload"); 546 EscapeInstReload = 547 Builder.CreateBitOrPointerCast(EscapeInstReload, EscapeInst->getType()); 548 549 // Create the merge PHI that merges the optimized and unoptimized version. 550 PHINode *MergePHI = PHINode::Create(EscapeInst->getType(), 2, 551 EscapeInst->getName() + ".merge"); 552 MergePHI->insertBefore(MergeBB->getFirstInsertionPt()); 553 554 // Add the respective values to the merge PHI. 555 MergePHI->addIncoming(EscapeInstReload, OptExitBB); 556 MergePHI->addIncoming(EscapeInst, ExitBB); 557 558 // The information of scalar evolution about the escaping instruction needs 559 // to be revoked so the new merged instruction will be used. 560 if (SE.isSCEVable(EscapeInst->getType())) 561 SE.forgetValue(EscapeInst); 562 563 // Replace all uses of the demoted instruction with the merge PHI. 564 for (Instruction *EUser : EscapeUsers) 565 EUser->replaceUsesOfWith(EscapeInst, MergePHI); 566 } 567 } 568 569 void BlockGenerator::findOutsideUsers(Scop &S) { 570 auto &R = S.getRegion(); 571 for (auto &Pair : S.arrays()) { 572 auto &Array = Pair.second; 573 574 if (Array->getNumberOfDimensions() != 0) 575 continue; 576 577 if (Array->isPHI()) 578 continue; 579 580 auto *Inst = dyn_cast<Instruction>(Array->getBasePtr()); 581 582 if (!Inst) 583 continue; 584 585 // Scop invariant hoisting moves some of the base pointers out of the scop. 586 // We can ignore these, as the invariant load hoisting already registers the 587 // relevant outside users. 588 if (!R.contains(Inst)) 589 continue; 590 591 handleOutsideUsers(R, Inst, nullptr); 592 } 593 } 594 595 void BlockGenerator::createExitPHINodeMerges(Scop &S) { 596 if (S.hasSingleExitEdge()) 597 return; 598 599 Region &R = S.getRegion(); 600 601 auto *ExitBB = R.getExitingBlock(); 602 auto *MergeBB = R.getExit(); 603 auto *AfterMergeBB = MergeBB->getSingleSuccessor(); 604 BasicBlock *OptExitBB = *(pred_begin(MergeBB)); 605 if (OptExitBB == ExitBB) 606 OptExitBB = *(++pred_begin(MergeBB)); 607 608 Builder.SetInsertPoint(OptExitBB->getTerminator()); 609 610 for (auto &Pair : S.arrays()) { 611 auto &SAI = Pair.second; 612 auto *Val = SAI->getBasePtr(); 613 614 PHINode *PHI = dyn_cast<PHINode>(Val); 615 if (!PHI) 616 continue; 617 618 if (PHI->getParent() != AfterMergeBB) 619 continue; 620 621 std::string Name = PHI->getName(); 622 Value *ScalarAddr = getOrCreateScalarAlloca(PHI); 623 Value *Reload = Builder.CreateLoad(ScalarAddr, Name + ".ph.final_reload"); 624 Reload = Builder.CreateBitOrPointerCast(Reload, PHI->getType()); 625 Value *OriginalValue = PHI->getIncomingValueForBlock(MergeBB); 626 auto *MergePHI = PHINode::Create(PHI->getType(), 2, Name + ".ph.merge"); 627 MergePHI->insertBefore(MergeBB->getFirstInsertionPt()); 628 MergePHI->addIncoming(Reload, OptExitBB); 629 MergePHI->addIncoming(OriginalValue, ExitBB); 630 int Idx = PHI->getBasicBlockIndex(MergeBB); 631 PHI->setIncomingValue(Idx, MergePHI); 632 } 633 } 634 635 void BlockGenerator::finalizeSCoP(Scop &S) { 636 findOutsideUsers(S); 637 createScalarInitialization(S); 638 createExitPHINodeMerges(S); 639 createScalarFinalization(S.getRegion()); 640 } 641 642 VectorBlockGenerator::VectorBlockGenerator(BlockGenerator &BlockGen, 643 std::vector<LoopToScevMapT> &VLTS, 644 isl_map *Schedule) 645 : BlockGenerator(BlockGen), VLTS(VLTS), Schedule(Schedule) { 646 assert(Schedule && "No statement domain provided"); 647 } 648 649 Value *VectorBlockGenerator::getVectorValue(ScopStmt &Stmt, Value *Old, 650 ValueMapT &VectorMap, 651 VectorValueMapT &ScalarMaps, 652 Loop *L) { 653 if (Value *NewValue = VectorMap.lookup(Old)) 654 return NewValue; 655 656 int Width = getVectorWidth(); 657 658 Value *Vector = UndefValue::get(VectorType::get(Old->getType(), Width)); 659 660 for (int Lane = 0; Lane < Width; Lane++) 661 Vector = Builder.CreateInsertElement( 662 Vector, getNewValue(Stmt, Old, ScalarMaps[Lane], VLTS[Lane], L), 663 Builder.getInt32(Lane)); 664 665 VectorMap[Old] = Vector; 666 667 return Vector; 668 } 669 670 Type *VectorBlockGenerator::getVectorPtrTy(const Value *Val, int Width) { 671 PointerType *PointerTy = dyn_cast<PointerType>(Val->getType()); 672 assert(PointerTy && "PointerType expected"); 673 674 Type *ScalarType = PointerTy->getElementType(); 675 VectorType *VectorType = VectorType::get(ScalarType, Width); 676 677 return PointerType::getUnqual(VectorType); 678 } 679 680 Value *VectorBlockGenerator::generateStrideOneLoad( 681 ScopStmt &Stmt, LoadInst *Load, VectorValueMapT &ScalarMaps, 682 __isl_keep isl_id_to_ast_expr *NewAccesses, bool NegativeStride = false) { 683 unsigned VectorWidth = getVectorWidth(); 684 auto *Pointer = Load->getPointerOperand(); 685 Type *VectorPtrType = getVectorPtrTy(Pointer, VectorWidth); 686 unsigned Offset = NegativeStride ? VectorWidth - 1 : 0; 687 688 Value *NewPointer = nullptr; 689 NewPointer = generateLocationAccessed(Stmt, Load, Pointer, ScalarMaps[Offset], 690 VLTS[Offset], NewAccesses); 691 Value *VectorPtr = 692 Builder.CreateBitCast(NewPointer, VectorPtrType, "vector_ptr"); 693 LoadInst *VecLoad = 694 Builder.CreateLoad(VectorPtr, Load->getName() + "_p_vec_full"); 695 if (!Aligned) 696 VecLoad->setAlignment(8); 697 698 if (NegativeStride) { 699 SmallVector<Constant *, 16> Indices; 700 for (int i = VectorWidth - 1; i >= 0; i--) 701 Indices.push_back(ConstantInt::get(Builder.getInt32Ty(), i)); 702 Constant *SV = llvm::ConstantVector::get(Indices); 703 Value *RevVecLoad = Builder.CreateShuffleVector( 704 VecLoad, VecLoad, SV, Load->getName() + "_reverse"); 705 return RevVecLoad; 706 } 707 708 return VecLoad; 709 } 710 711 Value *VectorBlockGenerator::generateStrideZeroLoad( 712 ScopStmt &Stmt, LoadInst *Load, ValueMapT &BBMap, 713 __isl_keep isl_id_to_ast_expr *NewAccesses) { 714 auto *Pointer = Load->getPointerOperand(); 715 Type *VectorPtrType = getVectorPtrTy(Pointer, 1); 716 Value *NewPointer = generateLocationAccessed(Stmt, Load, Pointer, BBMap, 717 VLTS[0], NewAccesses); 718 Value *VectorPtr = Builder.CreateBitCast(NewPointer, VectorPtrType, 719 Load->getName() + "_p_vec_p"); 720 LoadInst *ScalarLoad = 721 Builder.CreateLoad(VectorPtr, Load->getName() + "_p_splat_one"); 722 723 if (!Aligned) 724 ScalarLoad->setAlignment(8); 725 726 Constant *SplatVector = Constant::getNullValue( 727 VectorType::get(Builder.getInt32Ty(), getVectorWidth())); 728 729 Value *VectorLoad = Builder.CreateShuffleVector( 730 ScalarLoad, ScalarLoad, SplatVector, Load->getName() + "_p_splat"); 731 return VectorLoad; 732 } 733 734 Value *VectorBlockGenerator::generateUnknownStrideLoad( 735 ScopStmt &Stmt, LoadInst *Load, VectorValueMapT &ScalarMaps, 736 __isl_keep isl_id_to_ast_expr *NewAccesses) { 737 int VectorWidth = getVectorWidth(); 738 auto *Pointer = Load->getPointerOperand(); 739 VectorType *VectorType = VectorType::get( 740 dyn_cast<PointerType>(Pointer->getType())->getElementType(), VectorWidth); 741 742 Value *Vector = UndefValue::get(VectorType); 743 744 for (int i = 0; i < VectorWidth; i++) { 745 Value *NewPointer = generateLocationAccessed( 746 Stmt, Load, Pointer, ScalarMaps[i], VLTS[i], NewAccesses); 747 Value *ScalarLoad = 748 Builder.CreateLoad(NewPointer, Load->getName() + "_p_scalar_"); 749 Vector = Builder.CreateInsertElement( 750 Vector, ScalarLoad, Builder.getInt32(i), Load->getName() + "_p_vec_"); 751 } 752 753 return Vector; 754 } 755 756 void VectorBlockGenerator::generateLoad( 757 ScopStmt &Stmt, LoadInst *Load, ValueMapT &VectorMap, 758 VectorValueMapT &ScalarMaps, __isl_keep isl_id_to_ast_expr *NewAccesses) { 759 if (Value *PreloadLoad = GlobalMap.lookup(Load)) { 760 VectorMap[Load] = Builder.CreateVectorSplat(getVectorWidth(), PreloadLoad, 761 Load->getName() + "_p"); 762 return; 763 } 764 765 if (!VectorType::isValidElementType(Load->getType())) { 766 for (int i = 0; i < getVectorWidth(); i++) 767 ScalarMaps[i][Load] = 768 generateScalarLoad(Stmt, Load, ScalarMaps[i], VLTS[i], NewAccesses); 769 return; 770 } 771 772 const MemoryAccess &Access = Stmt.getAccessFor(Load); 773 774 // Make sure we have scalar values available to access the pointer to 775 // the data location. 776 extractScalarValues(Load, VectorMap, ScalarMaps); 777 778 Value *NewLoad; 779 if (Access.isStrideZero(isl_map_copy(Schedule))) 780 NewLoad = generateStrideZeroLoad(Stmt, Load, ScalarMaps[0], NewAccesses); 781 else if (Access.isStrideOne(isl_map_copy(Schedule))) 782 NewLoad = generateStrideOneLoad(Stmt, Load, ScalarMaps, NewAccesses); 783 else if (Access.isStrideX(isl_map_copy(Schedule), -1)) 784 NewLoad = generateStrideOneLoad(Stmt, Load, ScalarMaps, NewAccesses, true); 785 else 786 NewLoad = generateUnknownStrideLoad(Stmt, Load, ScalarMaps, NewAccesses); 787 788 VectorMap[Load] = NewLoad; 789 } 790 791 void VectorBlockGenerator::copyUnaryInst(ScopStmt &Stmt, UnaryInstruction *Inst, 792 ValueMapT &VectorMap, 793 VectorValueMapT &ScalarMaps) { 794 int VectorWidth = getVectorWidth(); 795 Value *NewOperand = getVectorValue(Stmt, Inst->getOperand(0), VectorMap, 796 ScalarMaps, getLoopForInst(Inst)); 797 798 assert(isa<CastInst>(Inst) && "Can not generate vector code for instruction"); 799 800 const CastInst *Cast = dyn_cast<CastInst>(Inst); 801 VectorType *DestType = VectorType::get(Inst->getType(), VectorWidth); 802 VectorMap[Inst] = Builder.CreateCast(Cast->getOpcode(), NewOperand, DestType); 803 } 804 805 void VectorBlockGenerator::copyBinaryInst(ScopStmt &Stmt, BinaryOperator *Inst, 806 ValueMapT &VectorMap, 807 VectorValueMapT &ScalarMaps) { 808 Loop *L = getLoopForInst(Inst); 809 Value *OpZero = Inst->getOperand(0); 810 Value *OpOne = Inst->getOperand(1); 811 812 Value *NewOpZero, *NewOpOne; 813 NewOpZero = getVectorValue(Stmt, OpZero, VectorMap, ScalarMaps, L); 814 NewOpOne = getVectorValue(Stmt, OpOne, VectorMap, ScalarMaps, L); 815 816 Value *NewInst = Builder.CreateBinOp(Inst->getOpcode(), NewOpZero, NewOpOne, 817 Inst->getName() + "p_vec"); 818 VectorMap[Inst] = NewInst; 819 } 820 821 void VectorBlockGenerator::copyStore( 822 ScopStmt &Stmt, StoreInst *Store, ValueMapT &VectorMap, 823 VectorValueMapT &ScalarMaps, __isl_keep isl_id_to_ast_expr *NewAccesses) { 824 const MemoryAccess &Access = Stmt.getAccessFor(Store); 825 826 auto *Pointer = Store->getPointerOperand(); 827 Value *Vector = getVectorValue(Stmt, Store->getValueOperand(), VectorMap, 828 ScalarMaps, getLoopForInst(Store)); 829 830 // Make sure we have scalar values available to access the pointer to 831 // the data location. 832 extractScalarValues(Store, VectorMap, ScalarMaps); 833 834 if (Access.isStrideOne(isl_map_copy(Schedule))) { 835 Type *VectorPtrType = getVectorPtrTy(Pointer, getVectorWidth()); 836 Value *NewPointer = generateLocationAccessed( 837 Stmt, Store, Pointer, ScalarMaps[0], VLTS[0], NewAccesses); 838 839 Value *VectorPtr = 840 Builder.CreateBitCast(NewPointer, VectorPtrType, "vector_ptr"); 841 StoreInst *Store = Builder.CreateStore(Vector, VectorPtr); 842 843 if (!Aligned) 844 Store->setAlignment(8); 845 } else { 846 for (unsigned i = 0; i < ScalarMaps.size(); i++) { 847 Value *Scalar = Builder.CreateExtractElement(Vector, Builder.getInt32(i)); 848 Value *NewPointer = generateLocationAccessed( 849 Stmt, Store, Pointer, ScalarMaps[i], VLTS[i], NewAccesses); 850 Builder.CreateStore(Scalar, NewPointer); 851 } 852 } 853 } 854 855 bool VectorBlockGenerator::hasVectorOperands(const Instruction *Inst, 856 ValueMapT &VectorMap) { 857 for (Value *Operand : Inst->operands()) 858 if (VectorMap.count(Operand)) 859 return true; 860 return false; 861 } 862 863 bool VectorBlockGenerator::extractScalarValues(const Instruction *Inst, 864 ValueMapT &VectorMap, 865 VectorValueMapT &ScalarMaps) { 866 bool HasVectorOperand = false; 867 int VectorWidth = getVectorWidth(); 868 869 for (Value *Operand : Inst->operands()) { 870 ValueMapT::iterator VecOp = VectorMap.find(Operand); 871 872 if (VecOp == VectorMap.end()) 873 continue; 874 875 HasVectorOperand = true; 876 Value *NewVector = VecOp->second; 877 878 for (int i = 0; i < VectorWidth; ++i) { 879 ValueMapT &SM = ScalarMaps[i]; 880 881 // If there is one scalar extracted, all scalar elements should have 882 // already been extracted by the code here. So no need to check for the 883 // existance of all of them. 884 if (SM.count(Operand)) 885 break; 886 887 SM[Operand] = 888 Builder.CreateExtractElement(NewVector, Builder.getInt32(i)); 889 } 890 } 891 892 return HasVectorOperand; 893 } 894 895 void VectorBlockGenerator::copyInstScalarized( 896 ScopStmt &Stmt, Instruction *Inst, ValueMapT &VectorMap, 897 VectorValueMapT &ScalarMaps, __isl_keep isl_id_to_ast_expr *NewAccesses) { 898 bool HasVectorOperand; 899 int VectorWidth = getVectorWidth(); 900 901 HasVectorOperand = extractScalarValues(Inst, VectorMap, ScalarMaps); 902 903 for (int VectorLane = 0; VectorLane < getVectorWidth(); VectorLane++) 904 BlockGenerator::copyInstruction(Stmt, Inst, ScalarMaps[VectorLane], 905 VLTS[VectorLane], NewAccesses); 906 907 if (!VectorType::isValidElementType(Inst->getType()) || !HasVectorOperand) 908 return; 909 910 // Make the result available as vector value. 911 VectorType *VectorType = VectorType::get(Inst->getType(), VectorWidth); 912 Value *Vector = UndefValue::get(VectorType); 913 914 for (int i = 0; i < VectorWidth; i++) 915 Vector = Builder.CreateInsertElement(Vector, ScalarMaps[i][Inst], 916 Builder.getInt32(i)); 917 918 VectorMap[Inst] = Vector; 919 } 920 921 int VectorBlockGenerator::getVectorWidth() { return VLTS.size(); } 922 923 void VectorBlockGenerator::copyInstruction( 924 ScopStmt &Stmt, Instruction *Inst, ValueMapT &VectorMap, 925 VectorValueMapT &ScalarMaps, __isl_keep isl_id_to_ast_expr *NewAccesses) { 926 // Terminator instructions control the control flow. They are explicitly 927 // expressed in the clast and do not need to be copied. 928 if (Inst->isTerminator()) 929 return; 930 931 if (canSynthesize(Inst, &LI, &SE, &Stmt.getParent()->getRegion())) 932 return; 933 934 if (auto *Load = dyn_cast<LoadInst>(Inst)) { 935 generateLoad(Stmt, Load, VectorMap, ScalarMaps, NewAccesses); 936 return; 937 } 938 939 if (hasVectorOperands(Inst, VectorMap)) { 940 if (auto *Store = dyn_cast<StoreInst>(Inst)) { 941 copyStore(Stmt, Store, VectorMap, ScalarMaps, NewAccesses); 942 return; 943 } 944 945 if (auto *Unary = dyn_cast<UnaryInstruction>(Inst)) { 946 copyUnaryInst(Stmt, Unary, VectorMap, ScalarMaps); 947 return; 948 } 949 950 if (auto *Binary = dyn_cast<BinaryOperator>(Inst)) { 951 copyBinaryInst(Stmt, Binary, VectorMap, ScalarMaps); 952 return; 953 } 954 955 // Falltrough: We generate scalar instructions, if we don't know how to 956 // generate vector code. 957 } 958 959 copyInstScalarized(Stmt, Inst, VectorMap, ScalarMaps, NewAccesses); 960 } 961 962 void VectorBlockGenerator::copyStmt( 963 ScopStmt &Stmt, __isl_keep isl_id_to_ast_expr *NewAccesses) { 964 assert(Stmt.isBlockStmt() && "TODO: Only block statements can be copied by " 965 "the vector block generator"); 966 967 BasicBlock *BB = Stmt.getBasicBlock(); 968 BasicBlock *CopyBB = 969 SplitBlock(Builder.GetInsertBlock(), Builder.GetInsertPoint(), &DT, &LI); 970 CopyBB->setName("polly.stmt." + BB->getName()); 971 Builder.SetInsertPoint(CopyBB->begin()); 972 973 // Create two maps that store the mapping from the original instructions of 974 // the old basic block to their copies in the new basic block. Those maps 975 // are basic block local. 976 // 977 // As vector code generation is supported there is one map for scalar values 978 // and one for vector values. 979 // 980 // In case we just do scalar code generation, the vectorMap is not used and 981 // the scalarMap has just one dimension, which contains the mapping. 982 // 983 // In case vector code generation is done, an instruction may either appear 984 // in the vector map once (as it is calculating >vectorwidth< values at a 985 // time. Or (if the values are calculated using scalar operations), it 986 // appears once in every dimension of the scalarMap. 987 VectorValueMapT ScalarBlockMap(getVectorWidth()); 988 ValueMapT VectorBlockMap; 989 990 for (Instruction &Inst : *BB) 991 copyInstruction(Stmt, &Inst, VectorBlockMap, ScalarBlockMap, NewAccesses); 992 } 993 994 BasicBlock *RegionGenerator::repairDominance(BasicBlock *BB, 995 BasicBlock *BBCopy) { 996 997 BasicBlock *BBIDom = DT.getNode(BB)->getIDom()->getBlock(); 998 BasicBlock *BBCopyIDom = BlockMap.lookup(BBIDom); 999 1000 if (BBCopyIDom) 1001 DT.changeImmediateDominator(BBCopy, BBCopyIDom); 1002 1003 return BBCopyIDom; 1004 } 1005 1006 void RegionGenerator::copyStmt(ScopStmt &Stmt, LoopToScevMapT <S, 1007 isl_id_to_ast_expr *IdToAstExp) { 1008 assert(Stmt.isRegionStmt() && 1009 "Only region statements can be copied by the region generator"); 1010 1011 // Forget all old mappings. 1012 BlockMap.clear(); 1013 RegionMaps.clear(); 1014 IncompletePHINodeMap.clear(); 1015 1016 // Collection of all values related to this subregion. 1017 ValueMapT ValueMap; 1018 1019 // The region represented by the statement. 1020 Region *R = Stmt.getRegion(); 1021 1022 // Create a dedicated entry for the region where we can reload all demoted 1023 // inputs. 1024 BasicBlock *EntryBB = R->getEntry(); 1025 BasicBlock *EntryBBCopy = 1026 SplitBlock(Builder.GetInsertBlock(), Builder.GetInsertPoint(), &DT, &LI); 1027 EntryBBCopy->setName("polly.stmt." + EntryBB->getName() + ".entry"); 1028 Builder.SetInsertPoint(EntryBBCopy->begin()); 1029 1030 generateScalarLoads(Stmt, RegionMaps[EntryBBCopy]); 1031 1032 for (auto PI = pred_begin(EntryBB), PE = pred_end(EntryBB); PI != PE; ++PI) 1033 if (!R->contains(*PI)) 1034 BlockMap[*PI] = EntryBBCopy; 1035 1036 // Iterate over all blocks in the region in a breadth-first search. 1037 std::deque<BasicBlock *> Blocks; 1038 SmallPtrSet<BasicBlock *, 8> SeenBlocks; 1039 Blocks.push_back(EntryBB); 1040 SeenBlocks.insert(EntryBB); 1041 1042 while (!Blocks.empty()) { 1043 BasicBlock *BB = Blocks.front(); 1044 Blocks.pop_front(); 1045 1046 // First split the block and update dominance information. 1047 BasicBlock *BBCopy = splitBB(BB); 1048 BasicBlock *BBCopyIDom = repairDominance(BB, BBCopy); 1049 1050 // In order to remap PHI nodes we store also basic block mappings. 1051 BlockMap[BB] = BBCopy; 1052 1053 // Get the mapping for this block and initialize it with the mapping 1054 // available at its immediate dominator (in the new region). 1055 ValueMapT &RegionMap = RegionMaps[BBCopy]; 1056 if (BBCopy != EntryBBCopy) 1057 RegionMap = RegionMaps[BBCopyIDom]; 1058 1059 // Copy the block with the BlockGenerator. 1060 Builder.SetInsertPoint(BBCopy->begin()); 1061 copyBB(Stmt, BB, BBCopy, RegionMap, LTS, IdToAstExp); 1062 1063 // In order to remap PHI nodes we store also basic block mappings. 1064 BlockMap[BB] = BBCopy; 1065 1066 // Add values to incomplete PHI nodes waiting for this block to be copied. 1067 for (const PHINodePairTy &PHINodePair : IncompletePHINodeMap[BB]) 1068 addOperandToPHI(Stmt, PHINodePair.first, PHINodePair.second, BB, LTS); 1069 IncompletePHINodeMap[BB].clear(); 1070 1071 // And continue with new successors inside the region. 1072 for (auto SI = succ_begin(BB), SE = succ_end(BB); SI != SE; SI++) 1073 if (R->contains(*SI) && SeenBlocks.insert(*SI).second) 1074 Blocks.push_back(*SI); 1075 1076 // Remember value in case it is visible after this subregion. 1077 ValueMap.insert(RegionMap.begin(), RegionMap.end()); 1078 } 1079 1080 // Now create a new dedicated region exit block and add it to the region map. 1081 BasicBlock *ExitBBCopy = 1082 SplitBlock(Builder.GetInsertBlock(), Builder.GetInsertPoint(), &DT, &LI); 1083 ExitBBCopy->setName("polly.stmt." + R->getExit()->getName() + ".exit"); 1084 BlockMap[R->getExit()] = ExitBBCopy; 1085 1086 repairDominance(R->getExit(), ExitBBCopy); 1087 1088 // As the block generator doesn't handle control flow we need to add the 1089 // region control flow by hand after all blocks have been copied. 1090 for (BasicBlock *BB : SeenBlocks) { 1091 1092 BasicBlock *BBCopy = BlockMap[BB]; 1093 TerminatorInst *TI = BB->getTerminator(); 1094 if (isa<UnreachableInst>(TI)) { 1095 while (!BBCopy->empty()) 1096 BBCopy->begin()->eraseFromParent(); 1097 new UnreachableInst(BBCopy->getContext(), BBCopy); 1098 continue; 1099 } 1100 1101 Instruction *BICopy = BBCopy->getTerminator(); 1102 1103 ValueMapT &RegionMap = RegionMaps[BBCopy]; 1104 RegionMap.insert(BlockMap.begin(), BlockMap.end()); 1105 1106 Builder.SetInsertPoint(BICopy); 1107 copyInstScalar(Stmt, TI, RegionMap, LTS); 1108 BICopy->eraseFromParent(); 1109 } 1110 1111 // Add counting PHI nodes to all loops in the region that can be used as 1112 // replacement for SCEVs refering to the old loop. 1113 for (BasicBlock *BB : SeenBlocks) { 1114 Loop *L = LI.getLoopFor(BB); 1115 if (L == nullptr || L->getHeader() != BB) 1116 continue; 1117 1118 BasicBlock *BBCopy = BlockMap[BB]; 1119 Value *NullVal = Builder.getInt32(0); 1120 PHINode *LoopPHI = 1121 PHINode::Create(Builder.getInt32Ty(), 2, "polly.subregion.iv"); 1122 Instruction *LoopPHIInc = BinaryOperator::CreateAdd( 1123 LoopPHI, Builder.getInt32(1), "polly.subregion.iv.inc"); 1124 LoopPHI->insertBefore(BBCopy->begin()); 1125 LoopPHIInc->insertBefore(BBCopy->getTerminator()); 1126 1127 for (auto *PredBB : make_range(pred_begin(BB), pred_end(BB))) { 1128 if (!R->contains(PredBB)) 1129 continue; 1130 if (L->contains(PredBB)) 1131 LoopPHI->addIncoming(LoopPHIInc, BlockMap[PredBB]); 1132 else 1133 LoopPHI->addIncoming(NullVal, BlockMap[PredBB]); 1134 } 1135 1136 for (auto *PredBBCopy : make_range(pred_begin(BBCopy), pred_end(BBCopy))) 1137 if (LoopPHI->getBasicBlockIndex(PredBBCopy) < 0) 1138 LoopPHI->addIncoming(NullVal, PredBBCopy); 1139 1140 LTS[L] = SE.getUnknown(LoopPHI); 1141 } 1142 1143 // Continue generating code in the exit block. 1144 Builder.SetInsertPoint(ExitBBCopy->getFirstInsertionPt()); 1145 1146 // Write values visible to other statements. 1147 generateScalarStores(Stmt, LTS, ValueMap); 1148 BlockMap.clear(); 1149 RegionMaps.clear(); 1150 IncompletePHINodeMap.clear(); 1151 } 1152 1153 void RegionGenerator::generateScalarStores(ScopStmt &Stmt, LoopToScevMapT <S, 1154 ValueMapT &BBMap) { 1155 const Region &R = Stmt.getParent()->getRegion(); 1156 1157 assert(Stmt.getRegion() && 1158 "Block statements need to use the generateScalarStores() " 1159 "function in the BlockGenerator"); 1160 1161 for (MemoryAccess *MA : Stmt) { 1162 if (MA->isExplicit() || MA->isRead()) 1163 continue; 1164 1165 Instruction *ScalarInst = MA->getAccessInstruction(); 1166 Value *Val = MA->getAccessValue(); 1167 1168 // In case we add the store into an exiting block, we need to restore the 1169 // position for stores in the exit node. 1170 auto SavedInsertionPoint = Builder.GetInsertPoint(); 1171 1172 // Implicit writes induced by PHIs must be written in the incoming blocks. 1173 if (isa<TerminatorInst>(ScalarInst)) { 1174 BasicBlock *ExitingBB = ScalarInst->getParent(); 1175 BasicBlock *ExitingBBCopy = BlockMap[ExitingBB]; 1176 Builder.SetInsertPoint(ExitingBBCopy->getTerminator()); 1177 } 1178 1179 auto Address = getOrCreateAlloca(*MA); 1180 1181 Val = getNewScalarValue(Val, R, Stmt, LTS, BBMap); 1182 Builder.CreateStore(Val, Address); 1183 1184 // Restore the insertion point if necessary. 1185 if (isa<TerminatorInst>(ScalarInst)) 1186 Builder.SetInsertPoint(SavedInsertionPoint); 1187 } 1188 } 1189 1190 void RegionGenerator::addOperandToPHI(ScopStmt &Stmt, const PHINode *PHI, 1191 PHINode *PHICopy, BasicBlock *IncomingBB, 1192 LoopToScevMapT <S) { 1193 Region *StmtR = Stmt.getRegion(); 1194 1195 // If the incoming block was not yet copied mark this PHI as incomplete. 1196 // Once the block will be copied the incoming value will be added. 1197 BasicBlock *BBCopy = BlockMap[IncomingBB]; 1198 if (!BBCopy) { 1199 assert(StmtR->contains(IncomingBB) && 1200 "Bad incoming block for PHI in non-affine region"); 1201 IncompletePHINodeMap[IncomingBB].push_back(std::make_pair(PHI, PHICopy)); 1202 return; 1203 } 1204 1205 Value *OpCopy = nullptr; 1206 if (StmtR->contains(IncomingBB)) { 1207 assert(RegionMaps.count(BBCopy) && 1208 "Incoming PHI block did not have a BBMap"); 1209 ValueMapT &BBCopyMap = RegionMaps[BBCopy]; 1210 1211 Value *Op = PHI->getIncomingValueForBlock(IncomingBB); 1212 1213 auto OldIP = Builder.GetInsertPoint(); 1214 Builder.SetInsertPoint(BBCopy->getTerminator()); 1215 OpCopy = getNewValue(Stmt, Op, BBCopyMap, LTS, getLoopForInst(PHI)); 1216 Builder.SetInsertPoint(OldIP); 1217 } else { 1218 1219 if (PHICopy->getBasicBlockIndex(BBCopy) >= 0) 1220 return; 1221 1222 Value *PHIOpAddr = getOrCreatePHIAlloca(const_cast<PHINode *>(PHI)); 1223 OpCopy = new LoadInst(PHIOpAddr, PHIOpAddr->getName() + ".reload", 1224 BlockMap[IncomingBB]->getTerminator()); 1225 } 1226 1227 assert(OpCopy && "Incoming PHI value was not copied properly"); 1228 assert(BBCopy && "Incoming PHI block was not copied properly"); 1229 PHICopy->addIncoming(OpCopy, BBCopy); 1230 } 1231 1232 Value *RegionGenerator::copyPHIInstruction(ScopStmt &Stmt, PHINode *PHI, 1233 ValueMapT &BBMap, 1234 LoopToScevMapT <S) { 1235 unsigned NumIncoming = PHI->getNumIncomingValues(); 1236 PHINode *PHICopy = 1237 Builder.CreatePHI(PHI->getType(), NumIncoming, "polly." + PHI->getName()); 1238 PHICopy->moveBefore(PHICopy->getParent()->getFirstNonPHI()); 1239 BBMap[PHI] = PHICopy; 1240 1241 for (unsigned u = 0; u < NumIncoming; u++) 1242 addOperandToPHI(Stmt, PHI, PHICopy, PHI->getIncomingBlock(u), LTS); 1243 return PHICopy; 1244 } 1245