1 //===--- BlockGenerators.cpp - Generate code for statements -----*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the BlockGenerator and VectorBlockGenerator classes, 11 // which generate sequential code and vectorized code for a polyhedral 12 // statement, respectively. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "polly/CodeGen/BlockGenerators.h" 17 #include "polly/CodeGen/CodeGeneration.h" 18 #include "polly/CodeGen/IslExprBuilder.h" 19 #include "polly/CodeGen/RuntimeDebugBuilder.h" 20 #include "polly/Options.h" 21 #include "polly/ScopInfo.h" 22 #include "polly/Support/GICHelper.h" 23 #include "polly/Support/SCEVValidator.h" 24 #include "polly/Support/ScopHelper.h" 25 #include "llvm/Analysis/LoopInfo.h" 26 #include "llvm/Analysis/RegionInfo.h" 27 #include "llvm/Analysis/ScalarEvolution.h" 28 #include "llvm/IR/IntrinsicInst.h" 29 #include "llvm/IR/Module.h" 30 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 31 #include "llvm/Transforms/Utils/Local.h" 32 #include "isl/aff.h" 33 #include "isl/ast.h" 34 #include "isl/ast_build.h" 35 #include "isl/set.h" 36 #include <deque> 37 38 using namespace llvm; 39 using namespace polly; 40 41 static cl::opt<bool> Aligned("enable-polly-aligned", 42 cl::desc("Assumed aligned memory accesses."), 43 cl::Hidden, cl::init(false), cl::ZeroOrMore, 44 cl::cat(PollyCategory)); 45 46 static cl::opt<bool> DebugPrinting( 47 "polly-codegen-add-debug-printing", 48 cl::desc("Add printf calls that show the values loaded/stored."), 49 cl::Hidden, cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory)); 50 51 BlockGenerator::BlockGenerator(PollyIRBuilder &B, LoopInfo &LI, 52 ScalarEvolution &SE, DominatorTree &DT, 53 ScalarAllocaMapTy &ScalarMap, 54 ScalarAllocaMapTy &PHIOpMap, 55 EscapeUsersAllocaMapTy &EscapeMap, 56 ValueMapT &GlobalMap, 57 IslExprBuilder *ExprBuilder) 58 : Builder(B), LI(LI), SE(SE), ExprBuilder(ExprBuilder), DT(DT), 59 EntryBB(nullptr), PHIOpMap(PHIOpMap), ScalarMap(ScalarMap), 60 EscapeMap(EscapeMap), GlobalMap(GlobalMap) {} 61 62 Value *BlockGenerator::trySynthesizeNewValue(ScopStmt &Stmt, Value *Old, 63 ValueMapT &BBMap, 64 LoopToScevMapT <S, 65 Loop *L) const { 66 if (!SE.isSCEVable(Old->getType())) 67 return nullptr; 68 69 const SCEV *Scev = SE.getSCEVAtScope(Old, L); 70 if (!Scev) 71 return nullptr; 72 73 if (isa<SCEVCouldNotCompute>(Scev)) 74 return nullptr; 75 76 const SCEV *NewScev = SCEVLoopAddRecRewriter::rewrite(Scev, LTS, SE); 77 ValueMapT VTV; 78 VTV.insert(BBMap.begin(), BBMap.end()); 79 VTV.insert(GlobalMap.begin(), GlobalMap.end()); 80 81 Scop &S = *Stmt.getParent(); 82 const DataLayout &DL = S.getFunction().getParent()->getDataLayout(); 83 auto IP = Builder.GetInsertPoint(); 84 85 assert(IP != Builder.GetInsertBlock()->end() && 86 "Only instructions can be insert points for SCEVExpander"); 87 Value *Expanded = 88 expandCodeFor(S, SE, DL, "polly", NewScev, Old->getType(), &*IP, &VTV); 89 90 BBMap[Old] = Expanded; 91 return Expanded; 92 } 93 94 Value *BlockGenerator::getNewValue(ScopStmt &Stmt, Value *Old, ValueMapT &BBMap, 95 LoopToScevMapT <S, Loop *L) const { 96 // Constants that do not reference any named value can always remain 97 // unchanged. Handle them early to avoid expensive map lookups. We do not take 98 // the fast-path for external constants which are referenced through globals 99 // as these may need to be rewritten when distributing code accross different 100 // LLVM modules. 101 if (isa<Constant>(Old) && !isa<GlobalValue>(Old)) 102 return Old; 103 104 // Inline asm is like a constant to us. 105 if (isa<InlineAsm>(Old)) 106 return Old; 107 108 if (Value *New = GlobalMap.lookup(Old)) { 109 if (Value *NewRemapped = GlobalMap.lookup(New)) 110 New = NewRemapped; 111 if (Old->getType()->getScalarSizeInBits() < 112 New->getType()->getScalarSizeInBits()) 113 New = Builder.CreateTruncOrBitCast(New, Old->getType()); 114 115 return New; 116 } 117 118 if (Value *New = BBMap.lookup(Old)) 119 return New; 120 121 if (Value *New = trySynthesizeNewValue(Stmt, Old, BBMap, LTS, L)) 122 return New; 123 124 // A scop-constant value defined by a global or a function parameter. 125 if (isa<GlobalValue>(Old) || isa<Argument>(Old)) 126 return Old; 127 128 // A scop-constant value defined by an instruction executed outside the scop. 129 if (const Instruction *Inst = dyn_cast<Instruction>(Old)) 130 if (!Stmt.getParent()->contains(Inst->getParent())) 131 return Old; 132 133 // The scalar dependence is neither available nor SCEVCodegenable. 134 llvm_unreachable("Unexpected scalar dependence in region!"); 135 return nullptr; 136 } 137 138 void BlockGenerator::copyInstScalar(ScopStmt &Stmt, Instruction *Inst, 139 ValueMapT &BBMap, LoopToScevMapT <S) { 140 // We do not generate debug intrinsics as we did not investigate how to 141 // copy them correctly. At the current state, they just crash the code 142 // generation as the meta-data operands are not correctly copied. 143 if (isa<DbgInfoIntrinsic>(Inst)) 144 return; 145 146 Instruction *NewInst = Inst->clone(); 147 148 // Replace old operands with the new ones. 149 for (Value *OldOperand : Inst->operands()) { 150 Value *NewOperand = 151 getNewValue(Stmt, OldOperand, BBMap, LTS, getLoopForStmt(Stmt)); 152 153 if (!NewOperand) { 154 assert(!isa<StoreInst>(NewInst) && 155 "Store instructions are always needed!"); 156 delete NewInst; 157 return; 158 } 159 160 NewInst->replaceUsesOfWith(OldOperand, NewOperand); 161 } 162 163 Builder.Insert(NewInst); 164 BBMap[Inst] = NewInst; 165 166 if (!NewInst->getType()->isVoidTy()) 167 NewInst->setName("p_" + Inst->getName()); 168 } 169 170 Value * 171 BlockGenerator::generateLocationAccessed(ScopStmt &Stmt, MemAccInst Inst, 172 ValueMapT &BBMap, LoopToScevMapT <S, 173 isl_id_to_ast_expr *NewAccesses) { 174 const MemoryAccess &MA = Stmt.getArrayAccessFor(Inst); 175 176 isl_ast_expr *AccessExpr = isl_id_to_ast_expr_get(NewAccesses, MA.getId()); 177 178 if (AccessExpr) { 179 AccessExpr = isl_ast_expr_address_of(AccessExpr); 180 auto Address = ExprBuilder->create(AccessExpr); 181 182 // Cast the address of this memory access to a pointer type that has the 183 // same element type as the original access, but uses the address space of 184 // the newly generated pointer. 185 auto OldPtrTy = MA.getAccessValue()->getType()->getPointerTo(); 186 auto NewPtrTy = Address->getType(); 187 OldPtrTy = PointerType::get(OldPtrTy->getElementType(), 188 NewPtrTy->getPointerAddressSpace()); 189 190 if (OldPtrTy != NewPtrTy) 191 Address = Builder.CreateBitOrPointerCast(Address, OldPtrTy); 192 return Address; 193 } 194 195 return getNewValue(Stmt, Inst.getPointerOperand(), BBMap, LTS, 196 getLoopForStmt(Stmt)); 197 } 198 199 Loop *BlockGenerator::getLoopForStmt(const ScopStmt &Stmt) const { 200 auto *StmtBB = Stmt.getEntryBlock(); 201 return LI.getLoopFor(StmtBB); 202 } 203 204 Value *BlockGenerator::generateScalarLoad(ScopStmt &Stmt, LoadInst *Load, 205 ValueMapT &BBMap, LoopToScevMapT <S, 206 isl_id_to_ast_expr *NewAccesses) { 207 if (Value *PreloadLoad = GlobalMap.lookup(Load)) 208 return PreloadLoad; 209 210 Value *NewPointer = 211 generateLocationAccessed(Stmt, Load, BBMap, LTS, NewAccesses); 212 Value *ScalarLoad = Builder.CreateAlignedLoad( 213 NewPointer, Load->getAlignment(), Load->getName() + "_p_scalar_"); 214 215 if (DebugPrinting) 216 RuntimeDebugBuilder::createCPUPrinter(Builder, "Load from ", NewPointer, 217 ": ", ScalarLoad, "\n"); 218 219 return ScalarLoad; 220 } 221 222 void BlockGenerator::generateScalarStore(ScopStmt &Stmt, StoreInst *Store, 223 ValueMapT &BBMap, LoopToScevMapT <S, 224 isl_id_to_ast_expr *NewAccesses) { 225 Value *NewPointer = 226 generateLocationAccessed(Stmt, Store, BBMap, LTS, NewAccesses); 227 Value *ValueOperand = getNewValue(Stmt, Store->getValueOperand(), BBMap, LTS, 228 getLoopForStmt(Stmt)); 229 230 if (DebugPrinting) 231 RuntimeDebugBuilder::createCPUPrinter(Builder, "Store to ", NewPointer, 232 ": ", ValueOperand, "\n"); 233 234 Builder.CreateAlignedStore(ValueOperand, NewPointer, Store->getAlignment()); 235 } 236 237 bool BlockGenerator::canSyntheziseInStmt(ScopStmt &Stmt, Instruction *Inst) { 238 Loop *L = getLoopForStmt(Stmt); 239 return (Stmt.isBlockStmt() || !Stmt.getRegion()->contains(L)) && 240 canSynthesize(Inst, *Stmt.getParent(), &LI, &SE, L); 241 } 242 243 void BlockGenerator::copyInstruction(ScopStmt &Stmt, Instruction *Inst, 244 ValueMapT &BBMap, LoopToScevMapT <S, 245 isl_id_to_ast_expr *NewAccesses) { 246 // Terminator instructions control the control flow. They are explicitly 247 // expressed in the clast and do not need to be copied. 248 if (Inst->isTerminator()) 249 return; 250 251 // Synthesizable statements will be generated on-demand. 252 if (canSyntheziseInStmt(Stmt, Inst)) 253 return; 254 255 if (auto *Load = dyn_cast<LoadInst>(Inst)) { 256 Value *NewLoad = generateScalarLoad(Stmt, Load, BBMap, LTS, NewAccesses); 257 // Compute NewLoad before its insertion in BBMap to make the insertion 258 // deterministic. 259 BBMap[Load] = NewLoad; 260 return; 261 } 262 263 if (auto *Store = dyn_cast<StoreInst>(Inst)) { 264 generateScalarStore(Stmt, Store, BBMap, LTS, NewAccesses); 265 return; 266 } 267 268 if (auto *PHI = dyn_cast<PHINode>(Inst)) { 269 copyPHIInstruction(Stmt, PHI, BBMap, LTS); 270 return; 271 } 272 273 // Skip some special intrinsics for which we do not adjust the semantics to 274 // the new schedule. All others are handled like every other instruction. 275 if (isIgnoredIntrinsic(Inst)) 276 return; 277 278 copyInstScalar(Stmt, Inst, BBMap, LTS); 279 } 280 281 void BlockGenerator::removeDeadInstructions(BasicBlock *BB, ValueMapT &BBMap) { 282 auto NewBB = Builder.GetInsertBlock(); 283 for (auto I = NewBB->rbegin(); I != NewBB->rend(); I++) { 284 Instruction *NewInst = &*I; 285 286 if (!isInstructionTriviallyDead(NewInst)) 287 continue; 288 289 for (auto Pair : BBMap) 290 if (Pair.second == NewInst) { 291 BBMap.erase(Pair.first); 292 } 293 294 NewInst->eraseFromParent(); 295 I = NewBB->rbegin(); 296 } 297 } 298 299 void BlockGenerator::copyStmt(ScopStmt &Stmt, LoopToScevMapT <S, 300 isl_id_to_ast_expr *NewAccesses) { 301 assert(Stmt.isBlockStmt() && 302 "Only block statements can be copied by the block generator"); 303 304 ValueMapT BBMap; 305 306 BasicBlock *BB = Stmt.getBasicBlock(); 307 copyBB(Stmt, BB, BBMap, LTS, NewAccesses); 308 removeDeadInstructions(BB, BBMap); 309 } 310 311 BasicBlock *BlockGenerator::splitBB(BasicBlock *BB) { 312 BasicBlock *CopyBB = SplitBlock(Builder.GetInsertBlock(), 313 &*Builder.GetInsertPoint(), &DT, &LI); 314 CopyBB->setName("polly.stmt." + BB->getName()); 315 return CopyBB; 316 } 317 318 BasicBlock *BlockGenerator::copyBB(ScopStmt &Stmt, BasicBlock *BB, 319 ValueMapT &BBMap, LoopToScevMapT <S, 320 isl_id_to_ast_expr *NewAccesses) { 321 BasicBlock *CopyBB = splitBB(BB); 322 Builder.SetInsertPoint(&CopyBB->front()); 323 generateScalarLoads(Stmt, BBMap); 324 325 copyBB(Stmt, BB, CopyBB, BBMap, LTS, NewAccesses); 326 327 // After a basic block was copied store all scalars that escape this block in 328 // their alloca. 329 generateScalarStores(Stmt, LTS, BBMap); 330 return CopyBB; 331 } 332 333 void BlockGenerator::copyBB(ScopStmt &Stmt, BasicBlock *BB, BasicBlock *CopyBB, 334 ValueMapT &BBMap, LoopToScevMapT <S, 335 isl_id_to_ast_expr *NewAccesses) { 336 EntryBB = &CopyBB->getParent()->getEntryBlock(); 337 338 for (Instruction &Inst : *BB) 339 copyInstruction(Stmt, &Inst, BBMap, LTS, NewAccesses); 340 } 341 342 Value *BlockGenerator::getOrCreateAlloca(Value *ScalarBase, 343 ScalarAllocaMapTy &Map, 344 const char *NameExt) { 345 // If no alloca was found create one and insert it in the entry block. 346 if (!Map.count(ScalarBase)) { 347 auto *Ty = ScalarBase->getType(); 348 auto NewAddr = new AllocaInst(Ty, ScalarBase->getName() + NameExt); 349 EntryBB = &Builder.GetInsertBlock()->getParent()->getEntryBlock(); 350 NewAddr->insertBefore(&*EntryBB->getFirstInsertionPt()); 351 Map[ScalarBase] = NewAddr; 352 } 353 354 auto Addr = Map[ScalarBase]; 355 356 if (auto NewAddr = GlobalMap.lookup(Addr)) 357 return NewAddr; 358 359 return Addr; 360 } 361 362 Value *BlockGenerator::getOrCreateAlloca(const MemoryAccess &Access) { 363 assert(!Access.isArrayKind() && "Trying to get alloca for array kind"); 364 365 if (Access.isPHIKind()) 366 return getOrCreatePHIAlloca(Access.getBaseAddr()); 367 else 368 return getOrCreateScalarAlloca(Access.getBaseAddr()); 369 } 370 371 Value *BlockGenerator::getOrCreateAlloca(const ScopArrayInfo *Array) { 372 assert(!Array->isArrayKind() && "Trying to get alloca for array kind"); 373 374 if (Array->isPHIKind()) 375 return getOrCreatePHIAlloca(Array->getBasePtr()); 376 else 377 return getOrCreateScalarAlloca(Array->getBasePtr()); 378 } 379 380 Value *BlockGenerator::getOrCreateScalarAlloca(Value *ScalarBase) { 381 return getOrCreateAlloca(ScalarBase, ScalarMap, ".s2a"); 382 } 383 384 Value *BlockGenerator::getOrCreatePHIAlloca(Value *ScalarBase) { 385 return getOrCreateAlloca(ScalarBase, PHIOpMap, ".phiops"); 386 } 387 388 void BlockGenerator::handleOutsideUsers(const Scop &S, Instruction *Inst) { 389 // If there are escape users we get the alloca for this instruction and put it 390 // in the EscapeMap for later finalization. Lastly, if the instruction was 391 // copied multiple times we already did this and can exit. 392 if (EscapeMap.count(Inst)) 393 return; 394 395 EscapeUserVectorTy EscapeUsers; 396 for (User *U : Inst->users()) { 397 398 // Non-instruction user will never escape. 399 Instruction *UI = dyn_cast<Instruction>(U); 400 if (!UI) 401 continue; 402 403 if (S.contains(UI)) 404 continue; 405 406 EscapeUsers.push_back(UI); 407 } 408 409 // Exit if no escape uses were found. 410 if (EscapeUsers.empty()) 411 return; 412 413 // Get or create an escape alloca for this instruction. 414 auto *ScalarAddr = getOrCreateScalarAlloca(Inst); 415 416 // Remember that this instruction has escape uses and the escape alloca. 417 EscapeMap[Inst] = std::make_pair(ScalarAddr, std::move(EscapeUsers)); 418 } 419 420 void BlockGenerator::generateScalarLoads(ScopStmt &Stmt, ValueMapT &BBMap) { 421 for (MemoryAccess *MA : Stmt) { 422 if (MA->isArrayKind() || MA->isWrite()) 423 continue; 424 425 auto *Address = getOrCreateAlloca(*MA); 426 assert((!isa<Instruction>(Address) || 427 DT.dominates(cast<Instruction>(Address)->getParent(), 428 Builder.GetInsertBlock())) && 429 "Domination violation"); 430 BBMap[MA->getBaseAddr()] = 431 Builder.CreateLoad(Address, Address->getName() + ".reload"); 432 } 433 } 434 435 void BlockGenerator::generateScalarStores(ScopStmt &Stmt, LoopToScevMapT <S, 436 ValueMapT &BBMap) { 437 Loop *L = LI.getLoopFor(Stmt.getBasicBlock()); 438 439 assert(Stmt.isBlockStmt() && "Region statements need to use the " 440 "generateScalarStores() function in the " 441 "RegionGenerator"); 442 443 for (MemoryAccess *MA : Stmt) { 444 if (MA->isArrayKind() || MA->isRead()) 445 continue; 446 447 Value *Val = MA->getAccessValue(); 448 if (MA->isAnyPHIKind()) { 449 assert(MA->getIncoming().size() >= 1 && 450 "Block statements have exactly one exiting block, or multiple but " 451 "with same incoming block and value"); 452 assert(std::all_of(MA->getIncoming().begin(), MA->getIncoming().end(), 453 [&](std::pair<BasicBlock *, Value *> p) -> bool { 454 return p.first == Stmt.getBasicBlock(); 455 }) && 456 "Incoming block must be statement's block"); 457 Val = MA->getIncoming()[0].second; 458 } 459 auto *Address = getOrCreateAlloca(*MA); 460 461 Val = getNewValue(Stmt, Val, BBMap, LTS, L); 462 assert((!isa<Instruction>(Val) || 463 DT.dominates(cast<Instruction>(Val)->getParent(), 464 Builder.GetInsertBlock())) && 465 "Domination violation"); 466 assert((!isa<Instruction>(Address) || 467 DT.dominates(cast<Instruction>(Address)->getParent(), 468 Builder.GetInsertBlock())) && 469 "Domination violation"); 470 Builder.CreateStore(Val, Address); 471 } 472 } 473 474 void BlockGenerator::createScalarInitialization(Scop &S) { 475 BasicBlock *ExitBB = S.getExit(); 476 477 // The split block __just before__ the region and optimized region. 478 BasicBlock *SplitBB = S.getEnteringBlock(); 479 BranchInst *SplitBBTerm = cast<BranchInst>(SplitBB->getTerminator()); 480 assert(SplitBBTerm->getNumSuccessors() == 2 && "Bad region entering block!"); 481 482 // Get the start block of the __optimized__ region. 483 BasicBlock *StartBB = SplitBBTerm->getSuccessor(0); 484 if (StartBB == S.getEntry()) 485 StartBB = SplitBBTerm->getSuccessor(1); 486 487 Builder.SetInsertPoint(&*StartBB->begin()); 488 489 for (auto &Array : S.arrays()) { 490 if (Array->getNumberOfDimensions() != 0) 491 continue; 492 if (Array->isPHIKind()) { 493 // For PHI nodes, the only values we need to store are the ones that 494 // reach the PHI node from outside the region. In general there should 495 // only be one such incoming edge and this edge should enter through 496 // 'SplitBB'. 497 auto PHI = cast<PHINode>(Array->getBasePtr()); 498 499 for (auto BI = PHI->block_begin(), BE = PHI->block_end(); BI != BE; BI++) 500 if (!S.contains(*BI) && *BI != SplitBB) 501 llvm_unreachable("Incoming edges from outside the scop should always " 502 "come from SplitBB"); 503 504 int Idx = PHI->getBasicBlockIndex(SplitBB); 505 if (Idx < 0) 506 continue; 507 508 Value *ScalarValue = PHI->getIncomingValue(Idx); 509 510 Builder.CreateStore(ScalarValue, getOrCreatePHIAlloca(PHI)); 511 continue; 512 } 513 514 auto *Inst = dyn_cast<Instruction>(Array->getBasePtr()); 515 516 if (Inst && S.contains(Inst)) 517 continue; 518 519 // PHI nodes that are not marked as such in their SAI object are either exit 520 // PHI nodes we model as common scalars but without initialization, or 521 // incoming phi nodes that need to be initialized. Check if the first is the 522 // case for Inst and do not create and initialize memory if so. 523 if (auto *PHI = dyn_cast_or_null<PHINode>(Inst)) 524 if (!S.hasSingleExitEdge() && PHI->getBasicBlockIndex(ExitBB) >= 0) 525 continue; 526 527 Builder.CreateStore(Array->getBasePtr(), 528 getOrCreateScalarAlloca(Array->getBasePtr())); 529 } 530 } 531 532 void BlockGenerator::createScalarFinalization(Scop &S) { 533 // The exit block of the __unoptimized__ region. 534 BasicBlock *ExitBB = S.getExitingBlock(); 535 // The merge block __just after__ the region and the optimized region. 536 BasicBlock *MergeBB = S.getExit(); 537 538 // The exit block of the __optimized__ region. 539 BasicBlock *OptExitBB = *(pred_begin(MergeBB)); 540 if (OptExitBB == ExitBB) 541 OptExitBB = *(++pred_begin(MergeBB)); 542 543 Builder.SetInsertPoint(OptExitBB->getTerminator()); 544 for (const auto &EscapeMapping : EscapeMap) { 545 // Extract the escaping instruction and the escaping users as well as the 546 // alloca the instruction was demoted to. 547 Instruction *EscapeInst = EscapeMapping.first; 548 const auto &EscapeMappingValue = EscapeMapping.second; 549 const EscapeUserVectorTy &EscapeUsers = EscapeMappingValue.second; 550 Value *ScalarAddr = EscapeMappingValue.first; 551 552 // Reload the demoted instruction in the optimized version of the SCoP. 553 Value *EscapeInstReload = 554 Builder.CreateLoad(ScalarAddr, EscapeInst->getName() + ".final_reload"); 555 EscapeInstReload = 556 Builder.CreateBitOrPointerCast(EscapeInstReload, EscapeInst->getType()); 557 558 // Create the merge PHI that merges the optimized and unoptimized version. 559 PHINode *MergePHI = PHINode::Create(EscapeInst->getType(), 2, 560 EscapeInst->getName() + ".merge"); 561 MergePHI->insertBefore(&*MergeBB->getFirstInsertionPt()); 562 563 // Add the respective values to the merge PHI. 564 MergePHI->addIncoming(EscapeInstReload, OptExitBB); 565 MergePHI->addIncoming(EscapeInst, ExitBB); 566 567 // The information of scalar evolution about the escaping instruction needs 568 // to be revoked so the new merged instruction will be used. 569 if (SE.isSCEVable(EscapeInst->getType())) 570 SE.forgetValue(EscapeInst); 571 572 // Replace all uses of the demoted instruction with the merge PHI. 573 for (Instruction *EUser : EscapeUsers) 574 EUser->replaceUsesOfWith(EscapeInst, MergePHI); 575 } 576 } 577 578 void BlockGenerator::findOutsideUsers(Scop &S) { 579 for (auto &Array : S.arrays()) { 580 581 if (Array->getNumberOfDimensions() != 0) 582 continue; 583 584 if (Array->isPHIKind()) 585 continue; 586 587 auto *Inst = dyn_cast<Instruction>(Array->getBasePtr()); 588 589 if (!Inst) 590 continue; 591 592 // Scop invariant hoisting moves some of the base pointers out of the scop. 593 // We can ignore these, as the invariant load hoisting already registers the 594 // relevant outside users. 595 if (!S.contains(Inst)) 596 continue; 597 598 handleOutsideUsers(S, Inst); 599 } 600 } 601 602 void BlockGenerator::createExitPHINodeMerges(Scop &S) { 603 if (S.hasSingleExitEdge()) 604 return; 605 606 auto *ExitBB = S.getExitingBlock(); 607 auto *MergeBB = S.getExit(); 608 auto *AfterMergeBB = MergeBB->getSingleSuccessor(); 609 BasicBlock *OptExitBB = *(pred_begin(MergeBB)); 610 if (OptExitBB == ExitBB) 611 OptExitBB = *(++pred_begin(MergeBB)); 612 613 Builder.SetInsertPoint(OptExitBB->getTerminator()); 614 615 for (auto &SAI : S.arrays()) { 616 auto *Val = SAI->getBasePtr(); 617 618 // Only Value-like scalars need a merge PHI. Exit block PHIs receive either 619 // the original PHI's value or the reloaded incoming values from the 620 // generated code. An llvm::Value is merged between the original code's 621 // value or the generated one. 622 if (!SAI->isValueKind() && !SAI->isExitPHIKind()) 623 continue; 624 625 PHINode *PHI = dyn_cast<PHINode>(Val); 626 if (!PHI) 627 continue; 628 629 if (PHI->getParent() != AfterMergeBB) 630 continue; 631 632 std::string Name = PHI->getName(); 633 Value *ScalarAddr = getOrCreateScalarAlloca(PHI); 634 Value *Reload = Builder.CreateLoad(ScalarAddr, Name + ".ph.final_reload"); 635 Reload = Builder.CreateBitOrPointerCast(Reload, PHI->getType()); 636 Value *OriginalValue = PHI->getIncomingValueForBlock(MergeBB); 637 assert((!isa<Instruction>(OriginalValue) || 638 cast<Instruction>(OriginalValue)->getParent() != MergeBB) && 639 "Original value must no be one we just generated."); 640 auto *MergePHI = PHINode::Create(PHI->getType(), 2, Name + ".ph.merge"); 641 MergePHI->insertBefore(&*MergeBB->getFirstInsertionPt()); 642 MergePHI->addIncoming(Reload, OptExitBB); 643 MergePHI->addIncoming(OriginalValue, ExitBB); 644 int Idx = PHI->getBasicBlockIndex(MergeBB); 645 PHI->setIncomingValue(Idx, MergePHI); 646 } 647 } 648 649 void BlockGenerator::finalizeSCoP(Scop &S) { 650 findOutsideUsers(S); 651 createScalarInitialization(S); 652 createExitPHINodeMerges(S); 653 createScalarFinalization(S); 654 } 655 656 VectorBlockGenerator::VectorBlockGenerator(BlockGenerator &BlockGen, 657 std::vector<LoopToScevMapT> &VLTS, 658 isl_map *Schedule) 659 : BlockGenerator(BlockGen), VLTS(VLTS), Schedule(Schedule) { 660 assert(Schedule && "No statement domain provided"); 661 } 662 663 Value *VectorBlockGenerator::getVectorValue(ScopStmt &Stmt, Value *Old, 664 ValueMapT &VectorMap, 665 VectorValueMapT &ScalarMaps, 666 Loop *L) { 667 if (Value *NewValue = VectorMap.lookup(Old)) 668 return NewValue; 669 670 int Width = getVectorWidth(); 671 672 Value *Vector = UndefValue::get(VectorType::get(Old->getType(), Width)); 673 674 for (int Lane = 0; Lane < Width; Lane++) 675 Vector = Builder.CreateInsertElement( 676 Vector, getNewValue(Stmt, Old, ScalarMaps[Lane], VLTS[Lane], L), 677 Builder.getInt32(Lane)); 678 679 VectorMap[Old] = Vector; 680 681 return Vector; 682 } 683 684 Type *VectorBlockGenerator::getVectorPtrTy(const Value *Val, int Width) { 685 PointerType *PointerTy = dyn_cast<PointerType>(Val->getType()); 686 assert(PointerTy && "PointerType expected"); 687 688 Type *ScalarType = PointerTy->getElementType(); 689 VectorType *VectorType = VectorType::get(ScalarType, Width); 690 691 return PointerType::getUnqual(VectorType); 692 } 693 694 Value *VectorBlockGenerator::generateStrideOneLoad( 695 ScopStmt &Stmt, LoadInst *Load, VectorValueMapT &ScalarMaps, 696 __isl_keep isl_id_to_ast_expr *NewAccesses, bool NegativeStride = false) { 697 unsigned VectorWidth = getVectorWidth(); 698 auto *Pointer = Load->getPointerOperand(); 699 Type *VectorPtrType = getVectorPtrTy(Pointer, VectorWidth); 700 unsigned Offset = NegativeStride ? VectorWidth - 1 : 0; 701 702 Value *NewPointer = generateLocationAccessed(Stmt, Load, ScalarMaps[Offset], 703 VLTS[Offset], NewAccesses); 704 Value *VectorPtr = 705 Builder.CreateBitCast(NewPointer, VectorPtrType, "vector_ptr"); 706 LoadInst *VecLoad = 707 Builder.CreateLoad(VectorPtr, Load->getName() + "_p_vec_full"); 708 if (!Aligned) 709 VecLoad->setAlignment(8); 710 711 if (NegativeStride) { 712 SmallVector<Constant *, 16> Indices; 713 for (int i = VectorWidth - 1; i >= 0; i--) 714 Indices.push_back(ConstantInt::get(Builder.getInt32Ty(), i)); 715 Constant *SV = llvm::ConstantVector::get(Indices); 716 Value *RevVecLoad = Builder.CreateShuffleVector( 717 VecLoad, VecLoad, SV, Load->getName() + "_reverse"); 718 return RevVecLoad; 719 } 720 721 return VecLoad; 722 } 723 724 Value *VectorBlockGenerator::generateStrideZeroLoad( 725 ScopStmt &Stmt, LoadInst *Load, ValueMapT &BBMap, 726 __isl_keep isl_id_to_ast_expr *NewAccesses) { 727 auto *Pointer = Load->getPointerOperand(); 728 Type *VectorPtrType = getVectorPtrTy(Pointer, 1); 729 Value *NewPointer = 730 generateLocationAccessed(Stmt, Load, BBMap, VLTS[0], NewAccesses); 731 Value *VectorPtr = Builder.CreateBitCast(NewPointer, VectorPtrType, 732 Load->getName() + "_p_vec_p"); 733 LoadInst *ScalarLoad = 734 Builder.CreateLoad(VectorPtr, Load->getName() + "_p_splat_one"); 735 736 if (!Aligned) 737 ScalarLoad->setAlignment(8); 738 739 Constant *SplatVector = Constant::getNullValue( 740 VectorType::get(Builder.getInt32Ty(), getVectorWidth())); 741 742 Value *VectorLoad = Builder.CreateShuffleVector( 743 ScalarLoad, ScalarLoad, SplatVector, Load->getName() + "_p_splat"); 744 return VectorLoad; 745 } 746 747 Value *VectorBlockGenerator::generateUnknownStrideLoad( 748 ScopStmt &Stmt, LoadInst *Load, VectorValueMapT &ScalarMaps, 749 __isl_keep isl_id_to_ast_expr *NewAccesses) { 750 int VectorWidth = getVectorWidth(); 751 auto *Pointer = Load->getPointerOperand(); 752 VectorType *VectorType = VectorType::get( 753 dyn_cast<PointerType>(Pointer->getType())->getElementType(), VectorWidth); 754 755 Value *Vector = UndefValue::get(VectorType); 756 757 for (int i = 0; i < VectorWidth; i++) { 758 Value *NewPointer = generateLocationAccessed(Stmt, Load, ScalarMaps[i], 759 VLTS[i], NewAccesses); 760 Value *ScalarLoad = 761 Builder.CreateLoad(NewPointer, Load->getName() + "_p_scalar_"); 762 Vector = Builder.CreateInsertElement( 763 Vector, ScalarLoad, Builder.getInt32(i), Load->getName() + "_p_vec_"); 764 } 765 766 return Vector; 767 } 768 769 void VectorBlockGenerator::generateLoad( 770 ScopStmt &Stmt, LoadInst *Load, ValueMapT &VectorMap, 771 VectorValueMapT &ScalarMaps, __isl_keep isl_id_to_ast_expr *NewAccesses) { 772 if (Value *PreloadLoad = GlobalMap.lookup(Load)) { 773 VectorMap[Load] = Builder.CreateVectorSplat(getVectorWidth(), PreloadLoad, 774 Load->getName() + "_p"); 775 return; 776 } 777 778 if (!VectorType::isValidElementType(Load->getType())) { 779 for (int i = 0; i < getVectorWidth(); i++) 780 ScalarMaps[i][Load] = 781 generateScalarLoad(Stmt, Load, ScalarMaps[i], VLTS[i], NewAccesses); 782 return; 783 } 784 785 const MemoryAccess &Access = Stmt.getArrayAccessFor(Load); 786 787 // Make sure we have scalar values available to access the pointer to 788 // the data location. 789 extractScalarValues(Load, VectorMap, ScalarMaps); 790 791 Value *NewLoad; 792 if (Access.isStrideZero(isl_map_copy(Schedule))) 793 NewLoad = generateStrideZeroLoad(Stmt, Load, ScalarMaps[0], NewAccesses); 794 else if (Access.isStrideOne(isl_map_copy(Schedule))) 795 NewLoad = generateStrideOneLoad(Stmt, Load, ScalarMaps, NewAccesses); 796 else if (Access.isStrideX(isl_map_copy(Schedule), -1)) 797 NewLoad = generateStrideOneLoad(Stmt, Load, ScalarMaps, NewAccesses, true); 798 else 799 NewLoad = generateUnknownStrideLoad(Stmt, Load, ScalarMaps, NewAccesses); 800 801 VectorMap[Load] = NewLoad; 802 } 803 804 void VectorBlockGenerator::copyUnaryInst(ScopStmt &Stmt, UnaryInstruction *Inst, 805 ValueMapT &VectorMap, 806 VectorValueMapT &ScalarMaps) { 807 int VectorWidth = getVectorWidth(); 808 Value *NewOperand = getVectorValue(Stmt, Inst->getOperand(0), VectorMap, 809 ScalarMaps, getLoopForStmt(Stmt)); 810 811 assert(isa<CastInst>(Inst) && "Can not generate vector code for instruction"); 812 813 const CastInst *Cast = dyn_cast<CastInst>(Inst); 814 VectorType *DestType = VectorType::get(Inst->getType(), VectorWidth); 815 VectorMap[Inst] = Builder.CreateCast(Cast->getOpcode(), NewOperand, DestType); 816 } 817 818 void VectorBlockGenerator::copyBinaryInst(ScopStmt &Stmt, BinaryOperator *Inst, 819 ValueMapT &VectorMap, 820 VectorValueMapT &ScalarMaps) { 821 Loop *L = getLoopForStmt(Stmt); 822 Value *OpZero = Inst->getOperand(0); 823 Value *OpOne = Inst->getOperand(1); 824 825 Value *NewOpZero, *NewOpOne; 826 NewOpZero = getVectorValue(Stmt, OpZero, VectorMap, ScalarMaps, L); 827 NewOpOne = getVectorValue(Stmt, OpOne, VectorMap, ScalarMaps, L); 828 829 Value *NewInst = Builder.CreateBinOp(Inst->getOpcode(), NewOpZero, NewOpOne, 830 Inst->getName() + "p_vec"); 831 VectorMap[Inst] = NewInst; 832 } 833 834 void VectorBlockGenerator::copyStore( 835 ScopStmt &Stmt, StoreInst *Store, ValueMapT &VectorMap, 836 VectorValueMapT &ScalarMaps, __isl_keep isl_id_to_ast_expr *NewAccesses) { 837 const MemoryAccess &Access = Stmt.getArrayAccessFor(Store); 838 839 auto *Pointer = Store->getPointerOperand(); 840 Value *Vector = getVectorValue(Stmt, Store->getValueOperand(), VectorMap, 841 ScalarMaps, getLoopForStmt(Stmt)); 842 843 // Make sure we have scalar values available to access the pointer to 844 // the data location. 845 extractScalarValues(Store, VectorMap, ScalarMaps); 846 847 if (Access.isStrideOne(isl_map_copy(Schedule))) { 848 Type *VectorPtrType = getVectorPtrTy(Pointer, getVectorWidth()); 849 Value *NewPointer = generateLocationAccessed(Stmt, Store, ScalarMaps[0], 850 VLTS[0], NewAccesses); 851 852 Value *VectorPtr = 853 Builder.CreateBitCast(NewPointer, VectorPtrType, "vector_ptr"); 854 StoreInst *Store = Builder.CreateStore(Vector, VectorPtr); 855 856 if (!Aligned) 857 Store->setAlignment(8); 858 } else { 859 for (unsigned i = 0; i < ScalarMaps.size(); i++) { 860 Value *Scalar = Builder.CreateExtractElement(Vector, Builder.getInt32(i)); 861 Value *NewPointer = generateLocationAccessed(Stmt, Store, ScalarMaps[i], 862 VLTS[i], NewAccesses); 863 Builder.CreateStore(Scalar, NewPointer); 864 } 865 } 866 } 867 868 bool VectorBlockGenerator::hasVectorOperands(const Instruction *Inst, 869 ValueMapT &VectorMap) { 870 for (Value *Operand : Inst->operands()) 871 if (VectorMap.count(Operand)) 872 return true; 873 return false; 874 } 875 876 bool VectorBlockGenerator::extractScalarValues(const Instruction *Inst, 877 ValueMapT &VectorMap, 878 VectorValueMapT &ScalarMaps) { 879 bool HasVectorOperand = false; 880 int VectorWidth = getVectorWidth(); 881 882 for (Value *Operand : Inst->operands()) { 883 ValueMapT::iterator VecOp = VectorMap.find(Operand); 884 885 if (VecOp == VectorMap.end()) 886 continue; 887 888 HasVectorOperand = true; 889 Value *NewVector = VecOp->second; 890 891 for (int i = 0; i < VectorWidth; ++i) { 892 ValueMapT &SM = ScalarMaps[i]; 893 894 // If there is one scalar extracted, all scalar elements should have 895 // already been extracted by the code here. So no need to check for the 896 // existence of all of them. 897 if (SM.count(Operand)) 898 break; 899 900 SM[Operand] = 901 Builder.CreateExtractElement(NewVector, Builder.getInt32(i)); 902 } 903 } 904 905 return HasVectorOperand; 906 } 907 908 void VectorBlockGenerator::copyInstScalarized( 909 ScopStmt &Stmt, Instruction *Inst, ValueMapT &VectorMap, 910 VectorValueMapT &ScalarMaps, __isl_keep isl_id_to_ast_expr *NewAccesses) { 911 bool HasVectorOperand; 912 int VectorWidth = getVectorWidth(); 913 914 HasVectorOperand = extractScalarValues(Inst, VectorMap, ScalarMaps); 915 916 for (int VectorLane = 0; VectorLane < getVectorWidth(); VectorLane++) 917 BlockGenerator::copyInstruction(Stmt, Inst, ScalarMaps[VectorLane], 918 VLTS[VectorLane], NewAccesses); 919 920 if (!VectorType::isValidElementType(Inst->getType()) || !HasVectorOperand) 921 return; 922 923 // Make the result available as vector value. 924 VectorType *VectorType = VectorType::get(Inst->getType(), VectorWidth); 925 Value *Vector = UndefValue::get(VectorType); 926 927 for (int i = 0; i < VectorWidth; i++) 928 Vector = Builder.CreateInsertElement(Vector, ScalarMaps[i][Inst], 929 Builder.getInt32(i)); 930 931 VectorMap[Inst] = Vector; 932 } 933 934 int VectorBlockGenerator::getVectorWidth() { return VLTS.size(); } 935 936 void VectorBlockGenerator::copyInstruction( 937 ScopStmt &Stmt, Instruction *Inst, ValueMapT &VectorMap, 938 VectorValueMapT &ScalarMaps, __isl_keep isl_id_to_ast_expr *NewAccesses) { 939 // Terminator instructions control the control flow. They are explicitly 940 // expressed in the clast and do not need to be copied. 941 if (Inst->isTerminator()) 942 return; 943 944 if (canSyntheziseInStmt(Stmt, Inst)) 945 return; 946 947 if (auto *Load = dyn_cast<LoadInst>(Inst)) { 948 generateLoad(Stmt, Load, VectorMap, ScalarMaps, NewAccesses); 949 return; 950 } 951 952 if (hasVectorOperands(Inst, VectorMap)) { 953 if (auto *Store = dyn_cast<StoreInst>(Inst)) { 954 copyStore(Stmt, Store, VectorMap, ScalarMaps, NewAccesses); 955 return; 956 } 957 958 if (auto *Unary = dyn_cast<UnaryInstruction>(Inst)) { 959 copyUnaryInst(Stmt, Unary, VectorMap, ScalarMaps); 960 return; 961 } 962 963 if (auto *Binary = dyn_cast<BinaryOperator>(Inst)) { 964 copyBinaryInst(Stmt, Binary, VectorMap, ScalarMaps); 965 return; 966 } 967 968 // Falltrough: We generate scalar instructions, if we don't know how to 969 // generate vector code. 970 } 971 972 copyInstScalarized(Stmt, Inst, VectorMap, ScalarMaps, NewAccesses); 973 } 974 975 void VectorBlockGenerator::generateScalarVectorLoads( 976 ScopStmt &Stmt, ValueMapT &VectorBlockMap) { 977 for (MemoryAccess *MA : Stmt) { 978 if (MA->isArrayKind() || MA->isWrite()) 979 continue; 980 981 auto *Address = getOrCreateAlloca(*MA); 982 Type *VectorPtrType = getVectorPtrTy(Address, 1); 983 Value *VectorPtr = Builder.CreateBitCast(Address, VectorPtrType, 984 Address->getName() + "_p_vec_p"); 985 auto *Val = Builder.CreateLoad(VectorPtr, Address->getName() + ".reload"); 986 Constant *SplatVector = Constant::getNullValue( 987 VectorType::get(Builder.getInt32Ty(), getVectorWidth())); 988 989 Value *VectorVal = Builder.CreateShuffleVector( 990 Val, Val, SplatVector, Address->getName() + "_p_splat"); 991 VectorBlockMap[MA->getBaseAddr()] = VectorVal; 992 } 993 } 994 995 void VectorBlockGenerator::verifyNoScalarStores(ScopStmt &Stmt) { 996 for (MemoryAccess *MA : Stmt) { 997 if (MA->isArrayKind() || MA->isRead()) 998 continue; 999 1000 llvm_unreachable("Scalar stores not expected in vector loop"); 1001 } 1002 } 1003 1004 void VectorBlockGenerator::copyStmt( 1005 ScopStmt &Stmt, __isl_keep isl_id_to_ast_expr *NewAccesses) { 1006 assert(Stmt.isBlockStmt() && "TODO: Only block statements can be copied by " 1007 "the vector block generator"); 1008 1009 BasicBlock *BB = Stmt.getBasicBlock(); 1010 BasicBlock *CopyBB = SplitBlock(Builder.GetInsertBlock(), 1011 &*Builder.GetInsertPoint(), &DT, &LI); 1012 CopyBB->setName("polly.stmt." + BB->getName()); 1013 Builder.SetInsertPoint(&CopyBB->front()); 1014 1015 // Create two maps that store the mapping from the original instructions of 1016 // the old basic block to their copies in the new basic block. Those maps 1017 // are basic block local. 1018 // 1019 // As vector code generation is supported there is one map for scalar values 1020 // and one for vector values. 1021 // 1022 // In case we just do scalar code generation, the vectorMap is not used and 1023 // the scalarMap has just one dimension, which contains the mapping. 1024 // 1025 // In case vector code generation is done, an instruction may either appear 1026 // in the vector map once (as it is calculating >vectorwidth< values at a 1027 // time. Or (if the values are calculated using scalar operations), it 1028 // appears once in every dimension of the scalarMap. 1029 VectorValueMapT ScalarBlockMap(getVectorWidth()); 1030 ValueMapT VectorBlockMap; 1031 1032 generateScalarVectorLoads(Stmt, VectorBlockMap); 1033 1034 for (Instruction &Inst : *BB) 1035 copyInstruction(Stmt, &Inst, VectorBlockMap, ScalarBlockMap, NewAccesses); 1036 1037 verifyNoScalarStores(Stmt); 1038 } 1039 1040 BasicBlock *RegionGenerator::repairDominance(BasicBlock *BB, 1041 BasicBlock *BBCopy) { 1042 1043 BasicBlock *BBIDom = DT.getNode(BB)->getIDom()->getBlock(); 1044 BasicBlock *BBCopyIDom = BlockMap.lookup(BBIDom); 1045 1046 if (BBCopyIDom) 1047 DT.changeImmediateDominator(BBCopy, BBCopyIDom); 1048 1049 return BBCopyIDom; 1050 } 1051 1052 // This is to determine whether an llvm::Value (defined in @p BB) is usable when 1053 // leaving a subregion. The straight-forward DT.dominates(BB, R->getExitBlock()) 1054 // does not work in cases where the exit block has edges from outside the 1055 // region. In that case the llvm::Value would never be usable in in the exit 1056 // block. The RegionGenerator however creates an new exit block ('ExitBBCopy') 1057 // for the subregion's exiting edges only. We need to determine whether an 1058 // llvm::Value is usable in there. We do this by checking whether it dominates 1059 // all exiting blocks individually. 1060 static bool isDominatingSubregionExit(const DominatorTree &DT, Region *R, 1061 BasicBlock *BB) { 1062 for (auto ExitingBB : predecessors(R->getExit())) { 1063 // Check for non-subregion incoming edges. 1064 if (!R->contains(ExitingBB)) 1065 continue; 1066 1067 if (!DT.dominates(BB, ExitingBB)) 1068 return false; 1069 } 1070 1071 return true; 1072 } 1073 1074 // Find the direct dominator of the subregion's exit block if the subregion was 1075 // simplified. 1076 static BasicBlock *findExitDominator(DominatorTree &DT, Region *R) { 1077 BasicBlock *Common = nullptr; 1078 for (auto ExitingBB : predecessors(R->getExit())) { 1079 // Check for non-subregion incoming edges. 1080 if (!R->contains(ExitingBB)) 1081 continue; 1082 1083 // First exiting edge. 1084 if (!Common) { 1085 Common = ExitingBB; 1086 continue; 1087 } 1088 1089 Common = DT.findNearestCommonDominator(Common, ExitingBB); 1090 } 1091 1092 assert(Common && R->contains(Common)); 1093 return Common; 1094 } 1095 1096 void RegionGenerator::copyStmt(ScopStmt &Stmt, LoopToScevMapT <S, 1097 isl_id_to_ast_expr *IdToAstExp) { 1098 assert(Stmt.isRegionStmt() && 1099 "Only region statements can be copied by the region generator"); 1100 1101 // Forget all old mappings. 1102 BlockMap.clear(); 1103 RegionMaps.clear(); 1104 IncompletePHINodeMap.clear(); 1105 1106 // Collection of all values related to this subregion. 1107 ValueMapT ValueMap; 1108 1109 // The region represented by the statement. 1110 Region *R = Stmt.getRegion(); 1111 1112 // Create a dedicated entry for the region where we can reload all demoted 1113 // inputs. 1114 BasicBlock *EntryBB = R->getEntry(); 1115 BasicBlock *EntryBBCopy = SplitBlock(Builder.GetInsertBlock(), 1116 &*Builder.GetInsertPoint(), &DT, &LI); 1117 EntryBBCopy->setName("polly.stmt." + EntryBB->getName() + ".entry"); 1118 Builder.SetInsertPoint(&EntryBBCopy->front()); 1119 1120 ValueMapT &EntryBBMap = RegionMaps[EntryBBCopy]; 1121 generateScalarLoads(Stmt, EntryBBMap); 1122 1123 for (auto PI = pred_begin(EntryBB), PE = pred_end(EntryBB); PI != PE; ++PI) 1124 if (!R->contains(*PI)) 1125 BlockMap[*PI] = EntryBBCopy; 1126 1127 // Iterate over all blocks in the region in a breadth-first search. 1128 std::deque<BasicBlock *> Blocks; 1129 SmallPtrSet<BasicBlock *, 8> SeenBlocks; 1130 Blocks.push_back(EntryBB); 1131 SeenBlocks.insert(EntryBB); 1132 1133 while (!Blocks.empty()) { 1134 BasicBlock *BB = Blocks.front(); 1135 Blocks.pop_front(); 1136 1137 // First split the block and update dominance information. 1138 BasicBlock *BBCopy = splitBB(BB); 1139 BasicBlock *BBCopyIDom = repairDominance(BB, BBCopy); 1140 1141 // Get the mapping for this block and initialize it with either the scalar 1142 // loads from the generated entering block (which dominates all blocks of 1143 // this subregion) or the maps of the immediate dominator, if part of the 1144 // subregion. The latter necessarily includes the former. 1145 ValueMapT *InitBBMap; 1146 if (BBCopyIDom) { 1147 assert(RegionMaps.count(BBCopyIDom)); 1148 InitBBMap = &RegionMaps[BBCopyIDom]; 1149 } else 1150 InitBBMap = &EntryBBMap; 1151 auto Inserted = RegionMaps.insert(std::make_pair(BBCopy, *InitBBMap)); 1152 ValueMapT &RegionMap = Inserted.first->second; 1153 1154 // Copy the block with the BlockGenerator. 1155 Builder.SetInsertPoint(&BBCopy->front()); 1156 copyBB(Stmt, BB, BBCopy, RegionMap, LTS, IdToAstExp); 1157 1158 // In order to remap PHI nodes we store also basic block mappings. 1159 BlockMap[BB] = BBCopy; 1160 1161 // Add values to incomplete PHI nodes waiting for this block to be copied. 1162 for (const PHINodePairTy &PHINodePair : IncompletePHINodeMap[BB]) 1163 addOperandToPHI(Stmt, PHINodePair.first, PHINodePair.second, BB, LTS); 1164 IncompletePHINodeMap[BB].clear(); 1165 1166 // And continue with new successors inside the region. 1167 for (auto SI = succ_begin(BB), SE = succ_end(BB); SI != SE; SI++) 1168 if (R->contains(*SI) && SeenBlocks.insert(*SI).second) 1169 Blocks.push_back(*SI); 1170 1171 // Remember value in case it is visible after this subregion. 1172 if (isDominatingSubregionExit(DT, R, BB)) 1173 ValueMap.insert(RegionMap.begin(), RegionMap.end()); 1174 } 1175 1176 // Now create a new dedicated region exit block and add it to the region map. 1177 BasicBlock *ExitBBCopy = SplitBlock(Builder.GetInsertBlock(), 1178 &*Builder.GetInsertPoint(), &DT, &LI); 1179 ExitBBCopy->setName("polly.stmt." + R->getExit()->getName() + ".exit"); 1180 BlockMap[R->getExit()] = ExitBBCopy; 1181 1182 BasicBlock *ExitDomBBCopy = BlockMap.lookup(findExitDominator(DT, R)); 1183 assert(ExitDomBBCopy && "Common exit dominator must be within region; at " 1184 "least the entry node must match"); 1185 DT.changeImmediateDominator(ExitBBCopy, ExitDomBBCopy); 1186 1187 // As the block generator doesn't handle control flow we need to add the 1188 // region control flow by hand after all blocks have been copied. 1189 for (BasicBlock *BB : SeenBlocks) { 1190 1191 BasicBlock *BBCopy = BlockMap[BB]; 1192 TerminatorInst *TI = BB->getTerminator(); 1193 if (isa<UnreachableInst>(TI)) { 1194 while (!BBCopy->empty()) 1195 BBCopy->begin()->eraseFromParent(); 1196 new UnreachableInst(BBCopy->getContext(), BBCopy); 1197 continue; 1198 } 1199 1200 Instruction *BICopy = BBCopy->getTerminator(); 1201 1202 ValueMapT &RegionMap = RegionMaps[BBCopy]; 1203 RegionMap.insert(BlockMap.begin(), BlockMap.end()); 1204 1205 Builder.SetInsertPoint(BICopy); 1206 copyInstScalar(Stmt, TI, RegionMap, LTS); 1207 BICopy->eraseFromParent(); 1208 } 1209 1210 // Add counting PHI nodes to all loops in the region that can be used as 1211 // replacement for SCEVs refering to the old loop. 1212 for (BasicBlock *BB : SeenBlocks) { 1213 Loop *L = LI.getLoopFor(BB); 1214 if (L == nullptr || L->getHeader() != BB || !R->contains(L)) 1215 continue; 1216 1217 BasicBlock *BBCopy = BlockMap[BB]; 1218 Value *NullVal = Builder.getInt32(0); 1219 PHINode *LoopPHI = 1220 PHINode::Create(Builder.getInt32Ty(), 2, "polly.subregion.iv"); 1221 Instruction *LoopPHIInc = BinaryOperator::CreateAdd( 1222 LoopPHI, Builder.getInt32(1), "polly.subregion.iv.inc"); 1223 LoopPHI->insertBefore(&BBCopy->front()); 1224 LoopPHIInc->insertBefore(BBCopy->getTerminator()); 1225 1226 for (auto *PredBB : make_range(pred_begin(BB), pred_end(BB))) { 1227 if (!R->contains(PredBB)) 1228 continue; 1229 if (L->contains(PredBB)) 1230 LoopPHI->addIncoming(LoopPHIInc, BlockMap[PredBB]); 1231 else 1232 LoopPHI->addIncoming(NullVal, BlockMap[PredBB]); 1233 } 1234 1235 for (auto *PredBBCopy : make_range(pred_begin(BBCopy), pred_end(BBCopy))) 1236 if (LoopPHI->getBasicBlockIndex(PredBBCopy) < 0) 1237 LoopPHI->addIncoming(NullVal, PredBBCopy); 1238 1239 LTS[L] = SE.getUnknown(LoopPHI); 1240 } 1241 1242 // Continue generating code in the exit block. 1243 Builder.SetInsertPoint(&*ExitBBCopy->getFirstInsertionPt()); 1244 1245 // Write values visible to other statements. 1246 generateScalarStores(Stmt, LTS, ValueMap); 1247 BlockMap.clear(); 1248 RegionMaps.clear(); 1249 IncompletePHINodeMap.clear(); 1250 } 1251 1252 PHINode *RegionGenerator::buildExitPHI(MemoryAccess *MA, LoopToScevMapT <S, 1253 ValueMapT &BBMap, Loop *L) { 1254 ScopStmt *Stmt = MA->getStatement(); 1255 Region *SubR = Stmt->getRegion(); 1256 auto Incoming = MA->getIncoming(); 1257 1258 PollyIRBuilder::InsertPointGuard IPGuard(Builder); 1259 PHINode *OrigPHI = cast<PHINode>(MA->getAccessInstruction()); 1260 BasicBlock *NewSubregionExit = Builder.GetInsertBlock(); 1261 1262 // This can happen if the subregion is simplified after the ScopStmts 1263 // have been created; simplification happens as part of CodeGeneration. 1264 if (OrigPHI->getParent() != SubR->getExit()) { 1265 BasicBlock *FormerExit = SubR->getExitingBlock(); 1266 if (FormerExit) 1267 NewSubregionExit = BlockMap.lookup(FormerExit); 1268 } 1269 1270 PHINode *NewPHI = PHINode::Create(OrigPHI->getType(), Incoming.size(), 1271 "polly." + OrigPHI->getName(), 1272 NewSubregionExit->getFirstNonPHI()); 1273 1274 // Add the incoming values to the PHI. 1275 for (auto &Pair : Incoming) { 1276 BasicBlock *OrigIncomingBlock = Pair.first; 1277 BasicBlock *NewIncomingBlock = BlockMap.lookup(OrigIncomingBlock); 1278 Builder.SetInsertPoint(NewIncomingBlock->getTerminator()); 1279 assert(RegionMaps.count(NewIncomingBlock)); 1280 ValueMapT *LocalBBMap = &RegionMaps[NewIncomingBlock]; 1281 1282 Value *OrigIncomingValue = Pair.second; 1283 Value *NewIncomingValue = 1284 getNewValue(*Stmt, OrigIncomingValue, *LocalBBMap, LTS, L); 1285 NewPHI->addIncoming(NewIncomingValue, NewIncomingBlock); 1286 } 1287 1288 return NewPHI; 1289 } 1290 1291 Value *RegionGenerator::getExitScalar(MemoryAccess *MA, LoopToScevMapT <S, 1292 ValueMapT &BBMap) { 1293 ScopStmt *Stmt = MA->getStatement(); 1294 1295 // TODO: Add some test cases that ensure this is really the right choice. 1296 Loop *L = LI.getLoopFor(Stmt->getRegion()->getExit()); 1297 1298 if (MA->isAnyPHIKind()) { 1299 auto Incoming = MA->getIncoming(); 1300 assert(!Incoming.empty() && 1301 "PHI WRITEs must have originate from at least one incoming block"); 1302 1303 // If there is only one incoming value, we do not need to create a PHI. 1304 if (Incoming.size() == 1) { 1305 Value *OldVal = Incoming[0].second; 1306 return getNewValue(*Stmt, OldVal, BBMap, LTS, L); 1307 } 1308 1309 return buildExitPHI(MA, LTS, BBMap, L); 1310 } 1311 1312 // MK_Value accesses leaving the subregion must dominate the exit block; just 1313 // pass the copied value 1314 Value *OldVal = MA->getAccessValue(); 1315 return getNewValue(*Stmt, OldVal, BBMap, LTS, L); 1316 } 1317 1318 void RegionGenerator::generateScalarStores(ScopStmt &Stmt, LoopToScevMapT <S, 1319 ValueMapT &BBMap) { 1320 assert(Stmt.getRegion() && 1321 "Block statements need to use the generateScalarStores() " 1322 "function in the BlockGenerator"); 1323 1324 for (MemoryAccess *MA : Stmt) { 1325 if (MA->isArrayKind() || MA->isRead()) 1326 continue; 1327 1328 Value *NewVal = getExitScalar(MA, LTS, BBMap); 1329 Value *Address = getOrCreateAlloca(*MA); 1330 assert((!isa<Instruction>(NewVal) || 1331 DT.dominates(cast<Instruction>(NewVal)->getParent(), 1332 Builder.GetInsertBlock())) && 1333 "Domination violation"); 1334 assert((!isa<Instruction>(Address) || 1335 DT.dominates(cast<Instruction>(Address)->getParent(), 1336 Builder.GetInsertBlock())) && 1337 "Domination violation"); 1338 Builder.CreateStore(NewVal, Address); 1339 } 1340 } 1341 1342 void RegionGenerator::addOperandToPHI(ScopStmt &Stmt, const PHINode *PHI, 1343 PHINode *PHICopy, BasicBlock *IncomingBB, 1344 LoopToScevMapT <S) { 1345 Region *StmtR = Stmt.getRegion(); 1346 1347 // If the incoming block was not yet copied mark this PHI as incomplete. 1348 // Once the block will be copied the incoming value will be added. 1349 BasicBlock *BBCopy = BlockMap[IncomingBB]; 1350 if (!BBCopy) { 1351 assert(StmtR->contains(IncomingBB) && 1352 "Bad incoming block for PHI in non-affine region"); 1353 IncompletePHINodeMap[IncomingBB].push_back(std::make_pair(PHI, PHICopy)); 1354 return; 1355 } 1356 1357 Value *OpCopy = nullptr; 1358 if (StmtR->contains(IncomingBB)) { 1359 assert(RegionMaps.count(BBCopy) && 1360 "Incoming PHI block did not have a BBMap"); 1361 ValueMapT &BBCopyMap = RegionMaps[BBCopy]; 1362 1363 Value *Op = PHI->getIncomingValueForBlock(IncomingBB); 1364 1365 // If the current insert block is different from the PHIs incoming block 1366 // change it, otherwise do not. 1367 auto IP = Builder.GetInsertPoint(); 1368 if (IP->getParent() != BBCopy) 1369 Builder.SetInsertPoint(BBCopy->getTerminator()); 1370 OpCopy = getNewValue(Stmt, Op, BBCopyMap, LTS, getLoopForStmt(Stmt)); 1371 if (IP->getParent() != BBCopy) 1372 Builder.SetInsertPoint(&*IP); 1373 } else { 1374 1375 if (PHICopy->getBasicBlockIndex(BBCopy) >= 0) 1376 return; 1377 1378 Value *PHIOpAddr = getOrCreatePHIAlloca(const_cast<PHINode *>(PHI)); 1379 OpCopy = new LoadInst(PHIOpAddr, PHIOpAddr->getName() + ".reload", 1380 BlockMap[IncomingBB]->getTerminator()); 1381 } 1382 1383 assert(OpCopy && "Incoming PHI value was not copied properly"); 1384 assert(BBCopy && "Incoming PHI block was not copied properly"); 1385 PHICopy->addIncoming(OpCopy, BBCopy); 1386 } 1387 1388 void RegionGenerator::copyPHIInstruction(ScopStmt &Stmt, PHINode *PHI, 1389 ValueMapT &BBMap, 1390 LoopToScevMapT <S) { 1391 unsigned NumIncoming = PHI->getNumIncomingValues(); 1392 PHINode *PHICopy = 1393 Builder.CreatePHI(PHI->getType(), NumIncoming, "polly." + PHI->getName()); 1394 PHICopy->moveBefore(PHICopy->getParent()->getFirstNonPHI()); 1395 BBMap[PHI] = PHICopy; 1396 1397 for (unsigned u = 0; u < NumIncoming; u++) 1398 addOperandToPHI(Stmt, PHI, PHICopy, PHI->getIncomingBlock(u), LTS); 1399 } 1400