1 //===--- BlockGenerators.cpp - Generate code for statements -----*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the BlockGenerator and VectorBlockGenerator classes, 11 // which generate sequential code and vectorized code for a polyhedral 12 // statement, respectively. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "polly/CodeGen/BlockGenerators.h" 17 #include "polly/CodeGen/CodeGeneration.h" 18 #include "polly/CodeGen/IslExprBuilder.h" 19 #include "polly/CodeGen/RuntimeDebugBuilder.h" 20 #include "polly/Options.h" 21 #include "polly/ScopInfo.h" 22 #include "polly/Support/GICHelper.h" 23 #include "polly/Support/SCEVValidator.h" 24 #include "polly/Support/ScopHelper.h" 25 #include "polly/Support/VirtualInstruction.h" 26 #include "llvm/Analysis/LoopInfo.h" 27 #include "llvm/Analysis/RegionInfo.h" 28 #include "llvm/Analysis/ScalarEvolution.h" 29 #include "llvm/IR/IntrinsicInst.h" 30 #include "llvm/IR/Module.h" 31 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 32 #include "llvm/Transforms/Utils/Local.h" 33 #include "isl/aff.h" 34 #include "isl/ast.h" 35 #include "isl/ast_build.h" 36 #include "isl/set.h" 37 #include <deque> 38 39 using namespace llvm; 40 using namespace polly; 41 42 static cl::opt<bool> Aligned("enable-polly-aligned", 43 cl::desc("Assumed aligned memory accesses."), 44 cl::Hidden, cl::init(false), cl::ZeroOrMore, 45 cl::cat(PollyCategory)); 46 47 bool PollyDebugPrinting; 48 static cl::opt<bool, true> DebugPrintingX( 49 "polly-codegen-add-debug-printing", 50 cl::desc("Add printf calls that show the values loaded/stored."), 51 cl::location(PollyDebugPrinting), cl::Hidden, cl::init(false), 52 cl::ZeroOrMore, cl::cat(PollyCategory)); 53 54 BlockGenerator::BlockGenerator( 55 PollyIRBuilder &B, LoopInfo &LI, ScalarEvolution &SE, DominatorTree &DT, 56 AllocaMapTy &ScalarMap, EscapeUsersAllocaMapTy &EscapeMap, 57 ValueMapT &GlobalMap, IslExprBuilder *ExprBuilder, BasicBlock *StartBlock) 58 : Builder(B), LI(LI), SE(SE), ExprBuilder(ExprBuilder), DT(DT), 59 EntryBB(nullptr), ScalarMap(ScalarMap), EscapeMap(EscapeMap), 60 GlobalMap(GlobalMap), StartBlock(StartBlock) {} 61 62 Value *BlockGenerator::trySynthesizeNewValue(ScopStmt &Stmt, Value *Old, 63 ValueMapT &BBMap, 64 LoopToScevMapT <S, 65 Loop *L) const { 66 if (!SE.isSCEVable(Old->getType())) 67 return nullptr; 68 69 const SCEV *Scev = SE.getSCEVAtScope(Old, L); 70 if (!Scev) 71 return nullptr; 72 73 if (isa<SCEVCouldNotCompute>(Scev)) 74 return nullptr; 75 76 const SCEV *NewScev = SCEVLoopAddRecRewriter::rewrite(Scev, LTS, SE); 77 ValueMapT VTV; 78 VTV.insert(BBMap.begin(), BBMap.end()); 79 VTV.insert(GlobalMap.begin(), GlobalMap.end()); 80 81 Scop &S = *Stmt.getParent(); 82 const DataLayout &DL = S.getFunction().getParent()->getDataLayout(); 83 auto IP = Builder.GetInsertPoint(); 84 85 assert(IP != Builder.GetInsertBlock()->end() && 86 "Only instructions can be insert points for SCEVExpander"); 87 Value *Expanded = 88 expandCodeFor(S, SE, DL, "polly", NewScev, Old->getType(), &*IP, &VTV, 89 StartBlock->getSinglePredecessor()); 90 91 BBMap[Old] = Expanded; 92 return Expanded; 93 } 94 95 Value *BlockGenerator::getNewValue(ScopStmt &Stmt, Value *Old, ValueMapT &BBMap, 96 LoopToScevMapT <S, Loop *L) const { 97 98 auto lookupGlobally = [this](Value *Old) -> Value * { 99 Value *New = GlobalMap.lookup(Old); 100 if (!New) 101 return nullptr; 102 103 // Required by: 104 // * Isl/CodeGen/OpenMP/invariant_base_pointer_preloaded.ll 105 // * Isl/CodeGen/OpenMP/invariant_base_pointer_preloaded_different_bb.ll 106 // * Isl/CodeGen/OpenMP/invariant_base_pointer_preloaded_pass_only_needed.ll 107 // * Isl/CodeGen/OpenMP/invariant_base_pointers_preloaded.ll 108 // * Isl/CodeGen/OpenMP/loop-body-references-outer-values-3.ll 109 // * Isl/CodeGen/OpenMP/single_loop_with_loop_invariant_baseptr.ll 110 // GlobalMap should be a mapping from (value in original SCoP) to (copied 111 // value in generated SCoP), without intermediate mappings, which might 112 // easily require transitiveness as well. 113 if (Value *NewRemapped = GlobalMap.lookup(New)) 114 New = NewRemapped; 115 116 // No test case for this code. 117 if (Old->getType()->getScalarSizeInBits() < 118 New->getType()->getScalarSizeInBits()) 119 New = Builder.CreateTruncOrBitCast(New, Old->getType()); 120 121 return New; 122 }; 123 124 Value *New = nullptr; 125 auto VUse = VirtualUse::create(&Stmt, L, Old, true); 126 switch (VUse.getKind()) { 127 case VirtualUse::Block: 128 // BasicBlock are constants, but the BlockGenerator copies them. 129 New = BBMap.lookup(Old); 130 break; 131 132 case VirtualUse::Constant: 133 // Used by: 134 // * Isl/CodeGen/OpenMP/reference-argument-from-non-affine-region.ll 135 // Constants should not be redefined. In this case, the GlobalMap just 136 // contains a mapping to the same constant, which is unnecessary, but 137 // harmless. 138 if ((New = lookupGlobally(Old))) 139 break; 140 141 assert(!BBMap.count(Old)); 142 New = Old; 143 break; 144 145 case VirtualUse::ReadOnly: 146 assert(!GlobalMap.count(Old)); 147 148 // Required for: 149 // * Isl/CodeGen/MemAccess/create_arrays.ll 150 // * Isl/CodeGen/read-only-scalars.ll 151 // * ScheduleOptimizer/pattern-matching-based-opts_10.ll 152 // For some reason these reload a read-only value. The reloaded value ends 153 // up in BBMap, buts its value should be identical. 154 // 155 // Required for: 156 // * Isl/CodeGen/OpenMP/single_loop_with_param.ll 157 // The parallel subfunctions need to reference the read-only value from the 158 // parent function, this is done by reloading them locally. 159 if ((New = BBMap.lookup(Old))) 160 break; 161 162 New = Old; 163 break; 164 165 case VirtualUse::Synthesizable: 166 // Used by: 167 // * Isl/CodeGen/OpenMP/loop-body-references-outer-values-3.ll 168 // * Isl/CodeGen/OpenMP/recomputed-srem.ll 169 // * Isl/CodeGen/OpenMP/reference-other-bb.ll 170 // * Isl/CodeGen/OpenMP/two-parallel-loops-reference-outer-indvar.ll 171 // For some reason synthesizable values end up in GlobalMap. Their values 172 // are the same as trySynthesizeNewValue would return. The legacy 173 // implementation prioritized GlobalMap, so this is what we do here as well. 174 // Ideally, synthesizable values should not end up in GlobalMap. 175 if ((New = lookupGlobally(Old))) 176 break; 177 178 // Required for: 179 // * Isl/CodeGen/RuntimeDebugBuilder/combine_different_values.ll 180 // * Isl/CodeGen/getNumberOfIterations.ll 181 // * Isl/CodeGen/non_affine_float_compare.ll 182 // * ScheduleOptimizer/pattern-matching-based-opts_10.ll 183 // Ideally, synthesizable values are synthesized by trySynthesizeNewValue, 184 // not precomputed (SCEVExpander has its own caching mechanism). 185 // These tests fail without this, but I think trySynthesizeNewValue would 186 // just re-synthesize the same instructions. 187 if ((New = BBMap.lookup(Old))) 188 break; 189 190 New = trySynthesizeNewValue(Stmt, Old, BBMap, LTS, L); 191 break; 192 193 case VirtualUse::Hoisted: 194 // TODO: Hoisted invariant loads should be found in GlobalMap only, but not 195 // redefined locally (which will be ignored anyway). That is, the following 196 // assertion should apply: assert(!BBMap.count(Old)) 197 198 New = lookupGlobally(Old); 199 break; 200 201 case VirtualUse::Intra: 202 case VirtualUse::Inter: 203 assert(!GlobalMap.count(Old) && 204 "Intra and inter-stmt values are never global"); 205 New = BBMap.lookup(Old); 206 break; 207 } 208 assert(New && "Unexpected scalar dependence in region!"); 209 return New; 210 } 211 212 void BlockGenerator::copyInstScalar(ScopStmt &Stmt, Instruction *Inst, 213 ValueMapT &BBMap, LoopToScevMapT <S) { 214 // We do not generate debug intrinsics as we did not investigate how to 215 // copy them correctly. At the current state, they just crash the code 216 // generation as the meta-data operands are not correctly copied. 217 if (isa<DbgInfoIntrinsic>(Inst)) 218 return; 219 220 Instruction *NewInst = Inst->clone(); 221 222 // Replace old operands with the new ones. 223 for (Value *OldOperand : Inst->operands()) { 224 Value *NewOperand = 225 getNewValue(Stmt, OldOperand, BBMap, LTS, getLoopForStmt(Stmt)); 226 227 if (!NewOperand) { 228 assert(!isa<StoreInst>(NewInst) && 229 "Store instructions are always needed!"); 230 NewInst->deleteValue(); 231 return; 232 } 233 234 NewInst->replaceUsesOfWith(OldOperand, NewOperand); 235 } 236 237 Builder.Insert(NewInst); 238 BBMap[Inst] = NewInst; 239 240 // When copying the instruction onto the Module meant for the GPU, 241 // debug metadata attached to an instruction causes all related 242 // metadata to be pulled into the Module. This includes the DICompileUnit, 243 // which will not be listed in llvm.dbg.cu of the Module since the Module 244 // doesn't contain one. This fails the verification of the Module and the 245 // subsequent generation of the ASM string. 246 if (NewInst->getModule() != Inst->getModule()) 247 NewInst->setDebugLoc(llvm::DebugLoc()); 248 249 if (!NewInst->getType()->isVoidTy()) 250 NewInst->setName("p_" + Inst->getName()); 251 } 252 253 Value * 254 BlockGenerator::generateLocationAccessed(ScopStmt &Stmt, MemAccInst Inst, 255 ValueMapT &BBMap, LoopToScevMapT <S, 256 isl_id_to_ast_expr *NewAccesses) { 257 const MemoryAccess &MA = Stmt.getArrayAccessFor(Inst); 258 return generateLocationAccessed( 259 Stmt, getLoopForStmt(Stmt), 260 Inst.isNull() ? nullptr : Inst.getPointerOperand(), BBMap, LTS, 261 NewAccesses, MA.getId().release(), MA.getAccessValue()->getType()); 262 } 263 264 Value *BlockGenerator::generateLocationAccessed( 265 ScopStmt &Stmt, Loop *L, Value *Pointer, ValueMapT &BBMap, 266 LoopToScevMapT <S, isl_id_to_ast_expr *NewAccesses, __isl_take isl_id *Id, 267 Type *ExpectedType) { 268 isl_ast_expr *AccessExpr = isl_id_to_ast_expr_get(NewAccesses, Id); 269 270 if (AccessExpr) { 271 AccessExpr = isl_ast_expr_address_of(AccessExpr); 272 auto Address = ExprBuilder->create(AccessExpr); 273 274 // Cast the address of this memory access to a pointer type that has the 275 // same element type as the original access, but uses the address space of 276 // the newly generated pointer. 277 auto OldPtrTy = ExpectedType->getPointerTo(); 278 auto NewPtrTy = Address->getType(); 279 OldPtrTy = PointerType::get(OldPtrTy->getElementType(), 280 NewPtrTy->getPointerAddressSpace()); 281 282 if (OldPtrTy != NewPtrTy) 283 Address = Builder.CreateBitOrPointerCast(Address, OldPtrTy); 284 return Address; 285 } 286 assert( 287 Pointer && 288 "If expression was not generated, must use the original pointer value"); 289 return getNewValue(Stmt, Pointer, BBMap, LTS, L); 290 } 291 292 Value * 293 BlockGenerator::getImplicitAddress(MemoryAccess &Access, Loop *L, 294 LoopToScevMapT <S, ValueMapT &BBMap, 295 __isl_keep isl_id_to_ast_expr *NewAccesses) { 296 if (Access.isLatestArrayKind()) 297 return generateLocationAccessed(*Access.getStatement(), L, nullptr, BBMap, 298 LTS, NewAccesses, Access.getId().release(), 299 Access.getAccessValue()->getType()); 300 301 return getOrCreateAlloca(Access); 302 } 303 304 Loop *BlockGenerator::getLoopForStmt(const ScopStmt &Stmt) const { 305 auto *StmtBB = Stmt.getEntryBlock(); 306 return LI.getLoopFor(StmtBB); 307 } 308 309 Value *BlockGenerator::generateArrayLoad(ScopStmt &Stmt, LoadInst *Load, 310 ValueMapT &BBMap, LoopToScevMapT <S, 311 isl_id_to_ast_expr *NewAccesses) { 312 if (Value *PreloadLoad = GlobalMap.lookup(Load)) 313 return PreloadLoad; 314 315 Value *NewPointer = 316 generateLocationAccessed(Stmt, Load, BBMap, LTS, NewAccesses); 317 Value *ScalarLoad = Builder.CreateAlignedLoad( 318 NewPointer, Load->getAlignment(), Load->getName() + "_p_scalar_"); 319 320 if (PollyDebugPrinting) 321 RuntimeDebugBuilder::createCPUPrinter(Builder, "Load from ", NewPointer, 322 ": ", ScalarLoad, "\n"); 323 324 return ScalarLoad; 325 } 326 327 void BlockGenerator::generateArrayStore(ScopStmt &Stmt, StoreInst *Store, 328 ValueMapT &BBMap, LoopToScevMapT <S, 329 isl_id_to_ast_expr *NewAccesses) { 330 MemoryAccess &MA = Stmt.getArrayAccessFor(Store); 331 isl::set AccDom = MA.getAccessRelation().domain(); 332 std::string Subject = MA.getId().get_name(); 333 334 generateConditionalExecution(Stmt, AccDom, Subject.c_str(), [&, this]() { 335 Value *NewPointer = 336 generateLocationAccessed(Stmt, Store, BBMap, LTS, NewAccesses); 337 Value *ValueOperand = getNewValue(Stmt, Store->getValueOperand(), BBMap, 338 LTS, getLoopForStmt(Stmt)); 339 340 if (PollyDebugPrinting) 341 RuntimeDebugBuilder::createCPUPrinter(Builder, "Store to ", NewPointer, 342 ": ", ValueOperand, "\n"); 343 344 Builder.CreateAlignedStore(ValueOperand, NewPointer, Store->getAlignment()); 345 }); 346 } 347 348 bool BlockGenerator::canSyntheziseInStmt(ScopStmt &Stmt, Instruction *Inst) { 349 Loop *L = getLoopForStmt(Stmt); 350 return (Stmt.isBlockStmt() || !Stmt.getRegion()->contains(L)) && 351 canSynthesize(Inst, *Stmt.getParent(), &SE, L); 352 } 353 354 void BlockGenerator::copyInstruction(ScopStmt &Stmt, Instruction *Inst, 355 ValueMapT &BBMap, LoopToScevMapT <S, 356 isl_id_to_ast_expr *NewAccesses) { 357 // Terminator instructions control the control flow. They are explicitly 358 // expressed in the clast and do not need to be copied. 359 if (Inst->isTerminator()) 360 return; 361 362 // Synthesizable statements will be generated on-demand. 363 if (canSyntheziseInStmt(Stmt, Inst)) 364 return; 365 366 if (auto *Load = dyn_cast<LoadInst>(Inst)) { 367 Value *NewLoad = generateArrayLoad(Stmt, Load, BBMap, LTS, NewAccesses); 368 // Compute NewLoad before its insertion in BBMap to make the insertion 369 // deterministic. 370 BBMap[Load] = NewLoad; 371 return; 372 } 373 374 if (auto *Store = dyn_cast<StoreInst>(Inst)) { 375 // Identified as redundant by -polly-simplify. 376 if (!Stmt.getArrayAccessOrNULLFor(Store)) 377 return; 378 379 generateArrayStore(Stmt, Store, BBMap, LTS, NewAccesses); 380 return; 381 } 382 383 if (auto *PHI = dyn_cast<PHINode>(Inst)) { 384 copyPHIInstruction(Stmt, PHI, BBMap, LTS); 385 return; 386 } 387 388 // Skip some special intrinsics for which we do not adjust the semantics to 389 // the new schedule. All others are handled like every other instruction. 390 if (isIgnoredIntrinsic(Inst)) 391 return; 392 393 copyInstScalar(Stmt, Inst, BBMap, LTS); 394 } 395 396 void BlockGenerator::removeDeadInstructions(BasicBlock *BB, ValueMapT &BBMap) { 397 auto NewBB = Builder.GetInsertBlock(); 398 for (auto I = NewBB->rbegin(); I != NewBB->rend(); I++) { 399 Instruction *NewInst = &*I; 400 401 if (!isInstructionTriviallyDead(NewInst)) 402 continue; 403 404 for (auto Pair : BBMap) 405 if (Pair.second == NewInst) { 406 BBMap.erase(Pair.first); 407 } 408 409 NewInst->eraseFromParent(); 410 I = NewBB->rbegin(); 411 } 412 } 413 414 void BlockGenerator::copyStmt(ScopStmt &Stmt, LoopToScevMapT <S, 415 isl_id_to_ast_expr *NewAccesses) { 416 assert(Stmt.isBlockStmt() && 417 "Only block statements can be copied by the block generator"); 418 419 ValueMapT BBMap; 420 421 BasicBlock *BB = Stmt.getBasicBlock(); 422 copyBB(Stmt, BB, BBMap, LTS, NewAccesses); 423 removeDeadInstructions(BB, BBMap); 424 } 425 426 BasicBlock *BlockGenerator::splitBB(BasicBlock *BB) { 427 BasicBlock *CopyBB = SplitBlock(Builder.GetInsertBlock(), 428 &*Builder.GetInsertPoint(), &DT, &LI); 429 CopyBB->setName("polly.stmt." + BB->getName()); 430 return CopyBB; 431 } 432 433 BasicBlock *BlockGenerator::copyBB(ScopStmt &Stmt, BasicBlock *BB, 434 ValueMapT &BBMap, LoopToScevMapT <S, 435 isl_id_to_ast_expr *NewAccesses) { 436 BasicBlock *CopyBB = splitBB(BB); 437 Builder.SetInsertPoint(&CopyBB->front()); 438 generateScalarLoads(Stmt, LTS, BBMap, NewAccesses); 439 440 copyBB(Stmt, BB, CopyBB, BBMap, LTS, NewAccesses); 441 442 // After a basic block was copied store all scalars that escape this block in 443 // their alloca. 444 generateScalarStores(Stmt, LTS, BBMap, NewAccesses); 445 return CopyBB; 446 } 447 448 void BlockGenerator::copyBB(ScopStmt &Stmt, BasicBlock *BB, BasicBlock *CopyBB, 449 ValueMapT &BBMap, LoopToScevMapT <S, 450 isl_id_to_ast_expr *NewAccesses) { 451 EntryBB = &CopyBB->getParent()->getEntryBlock(); 452 453 // Block statements and the entry blocks of region statement are code 454 // generated from instruction lists. This allow us to optimize the 455 // instructions that belong to a certain scop statement. As the code 456 // structure of region statements might be arbitrary complex, optimizing the 457 // instruction list is not yet supported. 458 if (Stmt.isBlockStmt() || (Stmt.isRegionStmt() && Stmt.getEntryBlock() == BB)) 459 for (Instruction *Inst : Stmt.getInstructions()) 460 copyInstruction(Stmt, Inst, BBMap, LTS, NewAccesses); 461 else 462 for (Instruction &Inst : *BB) 463 copyInstruction(Stmt, &Inst, BBMap, LTS, NewAccesses); 464 } 465 466 Value *BlockGenerator::getOrCreateAlloca(const MemoryAccess &Access) { 467 assert(!Access.isLatestArrayKind() && "Trying to get alloca for array kind"); 468 469 return getOrCreateAlloca(Access.getLatestScopArrayInfo()); 470 } 471 472 Value *BlockGenerator::getOrCreateAlloca(const ScopArrayInfo *Array) { 473 assert(!Array->isArrayKind() && "Trying to get alloca for array kind"); 474 475 auto &Addr = ScalarMap[Array]; 476 477 if (Addr) { 478 // Allow allocas to be (temporarily) redirected once by adding a new 479 // old-alloca-addr to new-addr mapping to GlobalMap. This functionality 480 // is used for example by the OpenMP code generation where a first use 481 // of a scalar while still in the host code allocates a normal alloca with 482 // getOrCreateAlloca. When the values of this scalar are accessed during 483 // the generation of the parallel subfunction, these values are copied over 484 // to the parallel subfunction and each request for a scalar alloca slot 485 // must be forwarded to the temporary in-subfunction slot. This mapping is 486 // removed when the subfunction has been generated and again normal host 487 // code is generated. Due to the following reasons it is not possible to 488 // perform the GlobalMap lookup right after creating the alloca below, but 489 // instead we need to check GlobalMap at each call to getOrCreateAlloca: 490 // 491 // 1) GlobalMap may be changed multiple times (for each parallel loop), 492 // 2) The temporary mapping is commonly only known after the initial 493 // alloca has already been generated, and 494 // 3) The original alloca value must be restored after leaving the 495 // sub-function. 496 if (Value *NewAddr = GlobalMap.lookup(&*Addr)) 497 return NewAddr; 498 return Addr; 499 } 500 501 Type *Ty = Array->getElementType(); 502 Value *ScalarBase = Array->getBasePtr(); 503 std::string NameExt; 504 if (Array->isPHIKind()) 505 NameExt = ".phiops"; 506 else 507 NameExt = ".s2a"; 508 509 const DataLayout &DL = Builder.GetInsertBlock()->getModule()->getDataLayout(); 510 511 Addr = new AllocaInst(Ty, DL.getAllocaAddrSpace(), 512 ScalarBase->getName() + NameExt); 513 EntryBB = &Builder.GetInsertBlock()->getParent()->getEntryBlock(); 514 Addr->insertBefore(&*EntryBB->getFirstInsertionPt()); 515 516 return Addr; 517 } 518 519 void BlockGenerator::handleOutsideUsers(const Scop &S, ScopArrayInfo *Array) { 520 Instruction *Inst = cast<Instruction>(Array->getBasePtr()); 521 522 // If there are escape users we get the alloca for this instruction and put it 523 // in the EscapeMap for later finalization. Lastly, if the instruction was 524 // copied multiple times we already did this and can exit. 525 if (EscapeMap.count(Inst)) 526 return; 527 528 EscapeUserVectorTy EscapeUsers; 529 for (User *U : Inst->users()) { 530 531 // Non-instruction user will never escape. 532 Instruction *UI = dyn_cast<Instruction>(U); 533 if (!UI) 534 continue; 535 536 if (S.contains(UI)) 537 continue; 538 539 EscapeUsers.push_back(UI); 540 } 541 542 // Exit if no escape uses were found. 543 if (EscapeUsers.empty()) 544 return; 545 546 // Get or create an escape alloca for this instruction. 547 auto *ScalarAddr = getOrCreateAlloca(Array); 548 549 // Remember that this instruction has escape uses and the escape alloca. 550 EscapeMap[Inst] = std::make_pair(ScalarAddr, std::move(EscapeUsers)); 551 } 552 553 void BlockGenerator::generateScalarLoads( 554 ScopStmt &Stmt, LoopToScevMapT <S, ValueMapT &BBMap, 555 __isl_keep isl_id_to_ast_expr *NewAccesses) { 556 for (MemoryAccess *MA : Stmt) { 557 if (MA->isOriginalArrayKind() || MA->isWrite()) 558 continue; 559 560 #ifndef NDEBUG 561 auto *StmtDom = Stmt.getDomain().release(); 562 auto *AccDom = isl_map_domain(MA->getAccessRelation().release()); 563 assert(isl_set_is_subset(StmtDom, AccDom) && 564 "Scalar must be loaded in all statement instances"); 565 isl_set_free(StmtDom); 566 isl_set_free(AccDom); 567 #endif 568 569 auto *Address = 570 getImplicitAddress(*MA, getLoopForStmt(Stmt), LTS, BBMap, NewAccesses); 571 assert((!isa<Instruction>(Address) || 572 DT.dominates(cast<Instruction>(Address)->getParent(), 573 Builder.GetInsertBlock())) && 574 "Domination violation"); 575 BBMap[MA->getAccessValue()] = 576 Builder.CreateLoad(Address, Address->getName() + ".reload"); 577 } 578 } 579 580 Value *BlockGenerator::buildContainsCondition(ScopStmt &Stmt, 581 const isl::set &Subdomain) { 582 isl::ast_build AstBuild = Stmt.getAstBuild(); 583 isl::set Domain = Stmt.getDomain(); 584 585 isl::union_map USchedule = AstBuild.get_schedule(); 586 USchedule = USchedule.intersect_domain(Domain); 587 588 assert(!USchedule.is_empty()); 589 isl::map Schedule = isl::map::from_union_map(USchedule); 590 591 isl::set ScheduledDomain = Schedule.range(); 592 isl::set ScheduledSet = Subdomain.apply(Schedule); 593 594 isl::ast_build RestrictedBuild = AstBuild.restrict(ScheduledDomain); 595 596 isl::ast_expr IsInSet = RestrictedBuild.expr_from(ScheduledSet); 597 Value *IsInSetExpr = ExprBuilder->create(IsInSet.copy()); 598 IsInSetExpr = Builder.CreateICmpNE( 599 IsInSetExpr, ConstantInt::get(IsInSetExpr->getType(), 0)); 600 601 return IsInSetExpr; 602 } 603 604 void BlockGenerator::generateConditionalExecution( 605 ScopStmt &Stmt, const isl::set &Subdomain, StringRef Subject, 606 const std::function<void()> &GenThenFunc) { 607 isl::set StmtDom = Stmt.getDomain(); 608 609 // If the condition is a tautology, don't generate a condition around the 610 // code. 611 bool IsPartialWrite = 612 !StmtDom.intersect_params(Stmt.getParent()->getContext()) 613 .is_subset(Subdomain); 614 if (!IsPartialWrite) { 615 GenThenFunc(); 616 return; 617 } 618 619 // Generate the condition. 620 Value *Cond = buildContainsCondition(Stmt, Subdomain); 621 622 // Don't call GenThenFunc if it is never executed. An ast index expression 623 // might not be defined in this case. 624 if (auto *Const = dyn_cast<ConstantInt>(Cond)) 625 if (Const->isZero()) 626 return; 627 628 BasicBlock *HeadBlock = Builder.GetInsertBlock(); 629 StringRef BlockName = HeadBlock->getName(); 630 631 // Generate the conditional block. 632 SplitBlockAndInsertIfThen(Cond, &*Builder.GetInsertPoint(), false, nullptr, 633 &DT, &LI); 634 BranchInst *Branch = cast<BranchInst>(HeadBlock->getTerminator()); 635 BasicBlock *ThenBlock = Branch->getSuccessor(0); 636 BasicBlock *TailBlock = Branch->getSuccessor(1); 637 638 // Assign descriptive names. 639 if (auto *CondInst = dyn_cast<Instruction>(Cond)) 640 CondInst->setName("polly." + Subject + ".cond"); 641 ThenBlock->setName(BlockName + "." + Subject + ".partial"); 642 TailBlock->setName(BlockName + ".cont"); 643 644 // Put the client code into the conditional block and continue in the merge 645 // block afterwards. 646 Builder.SetInsertPoint(ThenBlock, ThenBlock->getFirstInsertionPt()); 647 GenThenFunc(); 648 Builder.SetInsertPoint(TailBlock, TailBlock->getFirstInsertionPt()); 649 } 650 651 void BlockGenerator::generateScalarStores( 652 ScopStmt &Stmt, LoopToScevMapT <S, ValueMapT &BBMap, 653 __isl_keep isl_id_to_ast_expr *NewAccesses) { 654 Loop *L = LI.getLoopFor(Stmt.getBasicBlock()); 655 656 assert(Stmt.isBlockStmt() && 657 "Region statements need to use the generateScalarStores() function in " 658 "the RegionGenerator"); 659 660 for (MemoryAccess *MA : Stmt) { 661 if (MA->isOriginalArrayKind() || MA->isRead()) 662 continue; 663 664 isl::set AccDom = MA->getAccessRelation().domain(); 665 std::string Subject = MA->getId().get_name(); 666 667 generateConditionalExecution( 668 Stmt, AccDom, Subject.c_str(), [&, this, MA]() { 669 Value *Val = MA->getAccessValue(); 670 if (MA->isAnyPHIKind()) { 671 assert(MA->getIncoming().size() >= 1 && 672 "Block statements have exactly one exiting block, or " 673 "multiple but " 674 "with same incoming block and value"); 675 assert(std::all_of(MA->getIncoming().begin(), 676 MA->getIncoming().end(), 677 [&](std::pair<BasicBlock *, Value *> p) -> bool { 678 return p.first == Stmt.getBasicBlock(); 679 }) && 680 "Incoming block must be statement's block"); 681 Val = MA->getIncoming()[0].second; 682 } 683 auto Address = getImplicitAddress(*MA, getLoopForStmt(Stmt), LTS, 684 BBMap, NewAccesses); 685 686 Val = getNewValue(Stmt, Val, BBMap, LTS, L); 687 assert((!isa<Instruction>(Val) || 688 DT.dominates(cast<Instruction>(Val)->getParent(), 689 Builder.GetInsertBlock())) && 690 "Domination violation"); 691 assert((!isa<Instruction>(Address) || 692 DT.dominates(cast<Instruction>(Address)->getParent(), 693 Builder.GetInsertBlock())) && 694 "Domination violation"); 695 696 // The new Val might have a different type than the old Val due to 697 // ScalarEvolution looking through bitcasts. 698 if (Val->getType() != Address->getType()->getPointerElementType()) 699 Address = Builder.CreateBitOrPointerCast( 700 Address, Val->getType()->getPointerTo()); 701 702 Builder.CreateStore(Val, Address); 703 }); 704 } 705 } 706 707 void BlockGenerator::createScalarInitialization(Scop &S) { 708 BasicBlock *ExitBB = S.getExit(); 709 BasicBlock *PreEntryBB = S.getEnteringBlock(); 710 711 Builder.SetInsertPoint(&*StartBlock->begin()); 712 713 for (auto &Array : S.arrays()) { 714 if (Array->getNumberOfDimensions() != 0) 715 continue; 716 if (Array->isPHIKind()) { 717 // For PHI nodes, the only values we need to store are the ones that 718 // reach the PHI node from outside the region. In general there should 719 // only be one such incoming edge and this edge should enter through 720 // 'PreEntryBB'. 721 auto PHI = cast<PHINode>(Array->getBasePtr()); 722 723 for (auto BI = PHI->block_begin(), BE = PHI->block_end(); BI != BE; BI++) 724 if (!S.contains(*BI) && *BI != PreEntryBB) 725 llvm_unreachable("Incoming edges from outside the scop should always " 726 "come from PreEntryBB"); 727 728 int Idx = PHI->getBasicBlockIndex(PreEntryBB); 729 if (Idx < 0) 730 continue; 731 732 Value *ScalarValue = PHI->getIncomingValue(Idx); 733 734 Builder.CreateStore(ScalarValue, getOrCreateAlloca(Array)); 735 continue; 736 } 737 738 auto *Inst = dyn_cast<Instruction>(Array->getBasePtr()); 739 740 if (Inst && S.contains(Inst)) 741 continue; 742 743 // PHI nodes that are not marked as such in their SAI object are either exit 744 // PHI nodes we model as common scalars but without initialization, or 745 // incoming phi nodes that need to be initialized. Check if the first is the 746 // case for Inst and do not create and initialize memory if so. 747 if (auto *PHI = dyn_cast_or_null<PHINode>(Inst)) 748 if (!S.hasSingleExitEdge() && PHI->getBasicBlockIndex(ExitBB) >= 0) 749 continue; 750 751 Builder.CreateStore(Array->getBasePtr(), getOrCreateAlloca(Array)); 752 } 753 } 754 755 void BlockGenerator::createScalarFinalization(Scop &S) { 756 // The exit block of the __unoptimized__ region. 757 BasicBlock *ExitBB = S.getExitingBlock(); 758 // The merge block __just after__ the region and the optimized region. 759 BasicBlock *MergeBB = S.getExit(); 760 761 // The exit block of the __optimized__ region. 762 BasicBlock *OptExitBB = *(pred_begin(MergeBB)); 763 if (OptExitBB == ExitBB) 764 OptExitBB = *(++pred_begin(MergeBB)); 765 766 Builder.SetInsertPoint(OptExitBB->getTerminator()); 767 for (const auto &EscapeMapping : EscapeMap) { 768 // Extract the escaping instruction and the escaping users as well as the 769 // alloca the instruction was demoted to. 770 Instruction *EscapeInst = EscapeMapping.first; 771 const auto &EscapeMappingValue = EscapeMapping.second; 772 const EscapeUserVectorTy &EscapeUsers = EscapeMappingValue.second; 773 Value *ScalarAddr = EscapeMappingValue.first; 774 775 // Reload the demoted instruction in the optimized version of the SCoP. 776 Value *EscapeInstReload = 777 Builder.CreateLoad(ScalarAddr, EscapeInst->getName() + ".final_reload"); 778 EscapeInstReload = 779 Builder.CreateBitOrPointerCast(EscapeInstReload, EscapeInst->getType()); 780 781 // Create the merge PHI that merges the optimized and unoptimized version. 782 PHINode *MergePHI = PHINode::Create(EscapeInst->getType(), 2, 783 EscapeInst->getName() + ".merge"); 784 MergePHI->insertBefore(&*MergeBB->getFirstInsertionPt()); 785 786 // Add the respective values to the merge PHI. 787 MergePHI->addIncoming(EscapeInstReload, OptExitBB); 788 MergePHI->addIncoming(EscapeInst, ExitBB); 789 790 // The information of scalar evolution about the escaping instruction needs 791 // to be revoked so the new merged instruction will be used. 792 if (SE.isSCEVable(EscapeInst->getType())) 793 SE.forgetValue(EscapeInst); 794 795 // Replace all uses of the demoted instruction with the merge PHI. 796 for (Instruction *EUser : EscapeUsers) 797 EUser->replaceUsesOfWith(EscapeInst, MergePHI); 798 } 799 } 800 801 void BlockGenerator::findOutsideUsers(Scop &S) { 802 for (auto &Array : S.arrays()) { 803 804 if (Array->getNumberOfDimensions() != 0) 805 continue; 806 807 if (Array->isPHIKind()) 808 continue; 809 810 auto *Inst = dyn_cast<Instruction>(Array->getBasePtr()); 811 812 if (!Inst) 813 continue; 814 815 // Scop invariant hoisting moves some of the base pointers out of the scop. 816 // We can ignore these, as the invariant load hoisting already registers the 817 // relevant outside users. 818 if (!S.contains(Inst)) 819 continue; 820 821 handleOutsideUsers(S, Array); 822 } 823 } 824 825 void BlockGenerator::createExitPHINodeMerges(Scop &S) { 826 if (S.hasSingleExitEdge()) 827 return; 828 829 auto *ExitBB = S.getExitingBlock(); 830 auto *MergeBB = S.getExit(); 831 auto *AfterMergeBB = MergeBB->getSingleSuccessor(); 832 BasicBlock *OptExitBB = *(pred_begin(MergeBB)); 833 if (OptExitBB == ExitBB) 834 OptExitBB = *(++pred_begin(MergeBB)); 835 836 Builder.SetInsertPoint(OptExitBB->getTerminator()); 837 838 for (auto &SAI : S.arrays()) { 839 auto *Val = SAI->getBasePtr(); 840 841 // Only Value-like scalars need a merge PHI. Exit block PHIs receive either 842 // the original PHI's value or the reloaded incoming values from the 843 // generated code. An llvm::Value is merged between the original code's 844 // value or the generated one. 845 if (!SAI->isExitPHIKind()) 846 continue; 847 848 PHINode *PHI = dyn_cast<PHINode>(Val); 849 if (!PHI) 850 continue; 851 852 if (PHI->getParent() != AfterMergeBB) 853 continue; 854 855 std::string Name = PHI->getName(); 856 Value *ScalarAddr = getOrCreateAlloca(SAI); 857 Value *Reload = Builder.CreateLoad(ScalarAddr, Name + ".ph.final_reload"); 858 Reload = Builder.CreateBitOrPointerCast(Reload, PHI->getType()); 859 Value *OriginalValue = PHI->getIncomingValueForBlock(MergeBB); 860 assert((!isa<Instruction>(OriginalValue) || 861 cast<Instruction>(OriginalValue)->getParent() != MergeBB) && 862 "Original value must no be one we just generated."); 863 auto *MergePHI = PHINode::Create(PHI->getType(), 2, Name + ".ph.merge"); 864 MergePHI->insertBefore(&*MergeBB->getFirstInsertionPt()); 865 MergePHI->addIncoming(Reload, OptExitBB); 866 MergePHI->addIncoming(OriginalValue, ExitBB); 867 int Idx = PHI->getBasicBlockIndex(MergeBB); 868 PHI->setIncomingValue(Idx, MergePHI); 869 } 870 } 871 872 void BlockGenerator::invalidateScalarEvolution(Scop &S) { 873 for (auto &Stmt : S) 874 if (Stmt.isCopyStmt()) 875 continue; 876 else if (Stmt.isBlockStmt()) 877 for (auto &Inst : *Stmt.getBasicBlock()) 878 SE.forgetValue(&Inst); 879 else if (Stmt.isRegionStmt()) 880 for (auto *BB : Stmt.getRegion()->blocks()) 881 for (auto &Inst : *BB) 882 SE.forgetValue(&Inst); 883 else 884 llvm_unreachable("Unexpected statement type found"); 885 886 // Invalidate SCEV of loops surrounding the EscapeUsers. 887 for (const auto &EscapeMapping : EscapeMap) { 888 const EscapeUserVectorTy &EscapeUsers = EscapeMapping.second.second; 889 for (Instruction *EUser : EscapeUsers) { 890 if (Loop *L = LI.getLoopFor(EUser->getParent())) 891 while (L) { 892 SE.forgetLoop(L); 893 L = L->getParentLoop(); 894 } 895 } 896 } 897 } 898 899 void BlockGenerator::finalizeSCoP(Scop &S) { 900 findOutsideUsers(S); 901 createScalarInitialization(S); 902 createExitPHINodeMerges(S); 903 createScalarFinalization(S); 904 invalidateScalarEvolution(S); 905 } 906 907 VectorBlockGenerator::VectorBlockGenerator(BlockGenerator &BlockGen, 908 std::vector<LoopToScevMapT> &VLTS, 909 isl_map *Schedule) 910 : BlockGenerator(BlockGen), VLTS(VLTS), Schedule(Schedule) { 911 assert(Schedule && "No statement domain provided"); 912 } 913 914 Value *VectorBlockGenerator::getVectorValue(ScopStmt &Stmt, Value *Old, 915 ValueMapT &VectorMap, 916 VectorValueMapT &ScalarMaps, 917 Loop *L) { 918 if (Value *NewValue = VectorMap.lookup(Old)) 919 return NewValue; 920 921 int Width = getVectorWidth(); 922 923 Value *Vector = UndefValue::get(VectorType::get(Old->getType(), Width)); 924 925 for (int Lane = 0; Lane < Width; Lane++) 926 Vector = Builder.CreateInsertElement( 927 Vector, getNewValue(Stmt, Old, ScalarMaps[Lane], VLTS[Lane], L), 928 Builder.getInt32(Lane)); 929 930 VectorMap[Old] = Vector; 931 932 return Vector; 933 } 934 935 Type *VectorBlockGenerator::getVectorPtrTy(const Value *Val, int Width) { 936 PointerType *PointerTy = dyn_cast<PointerType>(Val->getType()); 937 assert(PointerTy && "PointerType expected"); 938 939 Type *ScalarType = PointerTy->getElementType(); 940 VectorType *VectorType = VectorType::get(ScalarType, Width); 941 942 return PointerType::getUnqual(VectorType); 943 } 944 945 Value *VectorBlockGenerator::generateStrideOneLoad( 946 ScopStmt &Stmt, LoadInst *Load, VectorValueMapT &ScalarMaps, 947 __isl_keep isl_id_to_ast_expr *NewAccesses, bool NegativeStride = false) { 948 unsigned VectorWidth = getVectorWidth(); 949 auto *Pointer = Load->getPointerOperand(); 950 Type *VectorPtrType = getVectorPtrTy(Pointer, VectorWidth); 951 unsigned Offset = NegativeStride ? VectorWidth - 1 : 0; 952 953 Value *NewPointer = generateLocationAccessed(Stmt, Load, ScalarMaps[Offset], 954 VLTS[Offset], NewAccesses); 955 Value *VectorPtr = 956 Builder.CreateBitCast(NewPointer, VectorPtrType, "vector_ptr"); 957 LoadInst *VecLoad = 958 Builder.CreateLoad(VectorPtr, Load->getName() + "_p_vec_full"); 959 if (!Aligned) 960 VecLoad->setAlignment(8); 961 962 if (NegativeStride) { 963 SmallVector<Constant *, 16> Indices; 964 for (int i = VectorWidth - 1; i >= 0; i--) 965 Indices.push_back(ConstantInt::get(Builder.getInt32Ty(), i)); 966 Constant *SV = llvm::ConstantVector::get(Indices); 967 Value *RevVecLoad = Builder.CreateShuffleVector( 968 VecLoad, VecLoad, SV, Load->getName() + "_reverse"); 969 return RevVecLoad; 970 } 971 972 return VecLoad; 973 } 974 975 Value *VectorBlockGenerator::generateStrideZeroLoad( 976 ScopStmt &Stmt, LoadInst *Load, ValueMapT &BBMap, 977 __isl_keep isl_id_to_ast_expr *NewAccesses) { 978 auto *Pointer = Load->getPointerOperand(); 979 Type *VectorPtrType = getVectorPtrTy(Pointer, 1); 980 Value *NewPointer = 981 generateLocationAccessed(Stmt, Load, BBMap, VLTS[0], NewAccesses); 982 Value *VectorPtr = Builder.CreateBitCast(NewPointer, VectorPtrType, 983 Load->getName() + "_p_vec_p"); 984 LoadInst *ScalarLoad = 985 Builder.CreateLoad(VectorPtr, Load->getName() + "_p_splat_one"); 986 987 if (!Aligned) 988 ScalarLoad->setAlignment(8); 989 990 Constant *SplatVector = Constant::getNullValue( 991 VectorType::get(Builder.getInt32Ty(), getVectorWidth())); 992 993 Value *VectorLoad = Builder.CreateShuffleVector( 994 ScalarLoad, ScalarLoad, SplatVector, Load->getName() + "_p_splat"); 995 return VectorLoad; 996 } 997 998 Value *VectorBlockGenerator::generateUnknownStrideLoad( 999 ScopStmt &Stmt, LoadInst *Load, VectorValueMapT &ScalarMaps, 1000 __isl_keep isl_id_to_ast_expr *NewAccesses) { 1001 int VectorWidth = getVectorWidth(); 1002 auto *Pointer = Load->getPointerOperand(); 1003 VectorType *VectorType = VectorType::get( 1004 dyn_cast<PointerType>(Pointer->getType())->getElementType(), VectorWidth); 1005 1006 Value *Vector = UndefValue::get(VectorType); 1007 1008 for (int i = 0; i < VectorWidth; i++) { 1009 Value *NewPointer = generateLocationAccessed(Stmt, Load, ScalarMaps[i], 1010 VLTS[i], NewAccesses); 1011 Value *ScalarLoad = 1012 Builder.CreateLoad(NewPointer, Load->getName() + "_p_scalar_"); 1013 Vector = Builder.CreateInsertElement( 1014 Vector, ScalarLoad, Builder.getInt32(i), Load->getName() + "_p_vec_"); 1015 } 1016 1017 return Vector; 1018 } 1019 1020 void VectorBlockGenerator::generateLoad( 1021 ScopStmt &Stmt, LoadInst *Load, ValueMapT &VectorMap, 1022 VectorValueMapT &ScalarMaps, __isl_keep isl_id_to_ast_expr *NewAccesses) { 1023 if (Value *PreloadLoad = GlobalMap.lookup(Load)) { 1024 VectorMap[Load] = Builder.CreateVectorSplat(getVectorWidth(), PreloadLoad, 1025 Load->getName() + "_p"); 1026 return; 1027 } 1028 1029 if (!VectorType::isValidElementType(Load->getType())) { 1030 for (int i = 0; i < getVectorWidth(); i++) 1031 ScalarMaps[i][Load] = 1032 generateArrayLoad(Stmt, Load, ScalarMaps[i], VLTS[i], NewAccesses); 1033 return; 1034 } 1035 1036 const MemoryAccess &Access = Stmt.getArrayAccessFor(Load); 1037 1038 // Make sure we have scalar values available to access the pointer to 1039 // the data location. 1040 extractScalarValues(Load, VectorMap, ScalarMaps); 1041 1042 Value *NewLoad; 1043 if (Access.isStrideZero(isl::manage(isl_map_copy(Schedule)))) 1044 NewLoad = generateStrideZeroLoad(Stmt, Load, ScalarMaps[0], NewAccesses); 1045 else if (Access.isStrideOne(isl::manage(isl_map_copy(Schedule)))) 1046 NewLoad = generateStrideOneLoad(Stmt, Load, ScalarMaps, NewAccesses); 1047 else if (Access.isStrideX(isl::manage(isl_map_copy(Schedule)), -1)) 1048 NewLoad = generateStrideOneLoad(Stmt, Load, ScalarMaps, NewAccesses, true); 1049 else 1050 NewLoad = generateUnknownStrideLoad(Stmt, Load, ScalarMaps, NewAccesses); 1051 1052 VectorMap[Load] = NewLoad; 1053 } 1054 1055 void VectorBlockGenerator::copyUnaryInst(ScopStmt &Stmt, UnaryInstruction *Inst, 1056 ValueMapT &VectorMap, 1057 VectorValueMapT &ScalarMaps) { 1058 int VectorWidth = getVectorWidth(); 1059 Value *NewOperand = getVectorValue(Stmt, Inst->getOperand(0), VectorMap, 1060 ScalarMaps, getLoopForStmt(Stmt)); 1061 1062 assert(isa<CastInst>(Inst) && "Can not generate vector code for instruction"); 1063 1064 const CastInst *Cast = dyn_cast<CastInst>(Inst); 1065 VectorType *DestType = VectorType::get(Inst->getType(), VectorWidth); 1066 VectorMap[Inst] = Builder.CreateCast(Cast->getOpcode(), NewOperand, DestType); 1067 } 1068 1069 void VectorBlockGenerator::copyBinaryInst(ScopStmt &Stmt, BinaryOperator *Inst, 1070 ValueMapT &VectorMap, 1071 VectorValueMapT &ScalarMaps) { 1072 Loop *L = getLoopForStmt(Stmt); 1073 Value *OpZero = Inst->getOperand(0); 1074 Value *OpOne = Inst->getOperand(1); 1075 1076 Value *NewOpZero, *NewOpOne; 1077 NewOpZero = getVectorValue(Stmt, OpZero, VectorMap, ScalarMaps, L); 1078 NewOpOne = getVectorValue(Stmt, OpOne, VectorMap, ScalarMaps, L); 1079 1080 Value *NewInst = Builder.CreateBinOp(Inst->getOpcode(), NewOpZero, NewOpOne, 1081 Inst->getName() + "p_vec"); 1082 VectorMap[Inst] = NewInst; 1083 } 1084 1085 void VectorBlockGenerator::copyStore( 1086 ScopStmt &Stmt, StoreInst *Store, ValueMapT &VectorMap, 1087 VectorValueMapT &ScalarMaps, __isl_keep isl_id_to_ast_expr *NewAccesses) { 1088 const MemoryAccess &Access = Stmt.getArrayAccessFor(Store); 1089 1090 auto *Pointer = Store->getPointerOperand(); 1091 Value *Vector = getVectorValue(Stmt, Store->getValueOperand(), VectorMap, 1092 ScalarMaps, getLoopForStmt(Stmt)); 1093 1094 // Make sure we have scalar values available to access the pointer to 1095 // the data location. 1096 extractScalarValues(Store, VectorMap, ScalarMaps); 1097 1098 if (Access.isStrideOne(isl::manage(isl_map_copy(Schedule)))) { 1099 Type *VectorPtrType = getVectorPtrTy(Pointer, getVectorWidth()); 1100 Value *NewPointer = generateLocationAccessed(Stmt, Store, ScalarMaps[0], 1101 VLTS[0], NewAccesses); 1102 1103 Value *VectorPtr = 1104 Builder.CreateBitCast(NewPointer, VectorPtrType, "vector_ptr"); 1105 StoreInst *Store = Builder.CreateStore(Vector, VectorPtr); 1106 1107 if (!Aligned) 1108 Store->setAlignment(8); 1109 } else { 1110 for (unsigned i = 0; i < ScalarMaps.size(); i++) { 1111 Value *Scalar = Builder.CreateExtractElement(Vector, Builder.getInt32(i)); 1112 Value *NewPointer = generateLocationAccessed(Stmt, Store, ScalarMaps[i], 1113 VLTS[i], NewAccesses); 1114 Builder.CreateStore(Scalar, NewPointer); 1115 } 1116 } 1117 } 1118 1119 bool VectorBlockGenerator::hasVectorOperands(const Instruction *Inst, 1120 ValueMapT &VectorMap) { 1121 for (Value *Operand : Inst->operands()) 1122 if (VectorMap.count(Operand)) 1123 return true; 1124 return false; 1125 } 1126 1127 bool VectorBlockGenerator::extractScalarValues(const Instruction *Inst, 1128 ValueMapT &VectorMap, 1129 VectorValueMapT &ScalarMaps) { 1130 bool HasVectorOperand = false; 1131 int VectorWidth = getVectorWidth(); 1132 1133 for (Value *Operand : Inst->operands()) { 1134 ValueMapT::iterator VecOp = VectorMap.find(Operand); 1135 1136 if (VecOp == VectorMap.end()) 1137 continue; 1138 1139 HasVectorOperand = true; 1140 Value *NewVector = VecOp->second; 1141 1142 for (int i = 0; i < VectorWidth; ++i) { 1143 ValueMapT &SM = ScalarMaps[i]; 1144 1145 // If there is one scalar extracted, all scalar elements should have 1146 // already been extracted by the code here. So no need to check for the 1147 // existence of all of them. 1148 if (SM.count(Operand)) 1149 break; 1150 1151 SM[Operand] = 1152 Builder.CreateExtractElement(NewVector, Builder.getInt32(i)); 1153 } 1154 } 1155 1156 return HasVectorOperand; 1157 } 1158 1159 void VectorBlockGenerator::copyInstScalarized( 1160 ScopStmt &Stmt, Instruction *Inst, ValueMapT &VectorMap, 1161 VectorValueMapT &ScalarMaps, __isl_keep isl_id_to_ast_expr *NewAccesses) { 1162 bool HasVectorOperand; 1163 int VectorWidth = getVectorWidth(); 1164 1165 HasVectorOperand = extractScalarValues(Inst, VectorMap, ScalarMaps); 1166 1167 for (int VectorLane = 0; VectorLane < getVectorWidth(); VectorLane++) 1168 BlockGenerator::copyInstruction(Stmt, Inst, ScalarMaps[VectorLane], 1169 VLTS[VectorLane], NewAccesses); 1170 1171 if (!VectorType::isValidElementType(Inst->getType()) || !HasVectorOperand) 1172 return; 1173 1174 // Make the result available as vector value. 1175 VectorType *VectorType = VectorType::get(Inst->getType(), VectorWidth); 1176 Value *Vector = UndefValue::get(VectorType); 1177 1178 for (int i = 0; i < VectorWidth; i++) 1179 Vector = Builder.CreateInsertElement(Vector, ScalarMaps[i][Inst], 1180 Builder.getInt32(i)); 1181 1182 VectorMap[Inst] = Vector; 1183 } 1184 1185 int VectorBlockGenerator::getVectorWidth() { return VLTS.size(); } 1186 1187 void VectorBlockGenerator::copyInstruction( 1188 ScopStmt &Stmt, Instruction *Inst, ValueMapT &VectorMap, 1189 VectorValueMapT &ScalarMaps, __isl_keep isl_id_to_ast_expr *NewAccesses) { 1190 // Terminator instructions control the control flow. They are explicitly 1191 // expressed in the clast and do not need to be copied. 1192 if (Inst->isTerminator()) 1193 return; 1194 1195 if (canSyntheziseInStmt(Stmt, Inst)) 1196 return; 1197 1198 if (auto *Load = dyn_cast<LoadInst>(Inst)) { 1199 generateLoad(Stmt, Load, VectorMap, ScalarMaps, NewAccesses); 1200 return; 1201 } 1202 1203 if (hasVectorOperands(Inst, VectorMap)) { 1204 if (auto *Store = dyn_cast<StoreInst>(Inst)) { 1205 // Identified as redundant by -polly-simplify. 1206 if (!Stmt.getArrayAccessOrNULLFor(Store)) 1207 return; 1208 1209 copyStore(Stmt, Store, VectorMap, ScalarMaps, NewAccesses); 1210 return; 1211 } 1212 1213 if (auto *Unary = dyn_cast<UnaryInstruction>(Inst)) { 1214 copyUnaryInst(Stmt, Unary, VectorMap, ScalarMaps); 1215 return; 1216 } 1217 1218 if (auto *Binary = dyn_cast<BinaryOperator>(Inst)) { 1219 copyBinaryInst(Stmt, Binary, VectorMap, ScalarMaps); 1220 return; 1221 } 1222 1223 // Fallthrough: We generate scalar instructions, if we don't know how to 1224 // generate vector code. 1225 } 1226 1227 copyInstScalarized(Stmt, Inst, VectorMap, ScalarMaps, NewAccesses); 1228 } 1229 1230 void VectorBlockGenerator::generateScalarVectorLoads( 1231 ScopStmt &Stmt, ValueMapT &VectorBlockMap) { 1232 for (MemoryAccess *MA : Stmt) { 1233 if (MA->isArrayKind() || MA->isWrite()) 1234 continue; 1235 1236 auto *Address = getOrCreateAlloca(*MA); 1237 Type *VectorPtrType = getVectorPtrTy(Address, 1); 1238 Value *VectorPtr = Builder.CreateBitCast(Address, VectorPtrType, 1239 Address->getName() + "_p_vec_p"); 1240 auto *Val = Builder.CreateLoad(VectorPtr, Address->getName() + ".reload"); 1241 Constant *SplatVector = Constant::getNullValue( 1242 VectorType::get(Builder.getInt32Ty(), getVectorWidth())); 1243 1244 Value *VectorVal = Builder.CreateShuffleVector( 1245 Val, Val, SplatVector, Address->getName() + "_p_splat"); 1246 VectorBlockMap[MA->getAccessValue()] = VectorVal; 1247 } 1248 } 1249 1250 void VectorBlockGenerator::verifyNoScalarStores(ScopStmt &Stmt) { 1251 for (MemoryAccess *MA : Stmt) { 1252 if (MA->isArrayKind() || MA->isRead()) 1253 continue; 1254 1255 llvm_unreachable("Scalar stores not expected in vector loop"); 1256 } 1257 } 1258 1259 void VectorBlockGenerator::copyStmt( 1260 ScopStmt &Stmt, __isl_keep isl_id_to_ast_expr *NewAccesses) { 1261 assert(Stmt.isBlockStmt() && 1262 "TODO: Only block statements can be copied by the vector block " 1263 "generator"); 1264 1265 BasicBlock *BB = Stmt.getBasicBlock(); 1266 BasicBlock *CopyBB = SplitBlock(Builder.GetInsertBlock(), 1267 &*Builder.GetInsertPoint(), &DT, &LI); 1268 CopyBB->setName("polly.stmt." + BB->getName()); 1269 Builder.SetInsertPoint(&CopyBB->front()); 1270 1271 // Create two maps that store the mapping from the original instructions of 1272 // the old basic block to their copies in the new basic block. Those maps 1273 // are basic block local. 1274 // 1275 // As vector code generation is supported there is one map for scalar values 1276 // and one for vector values. 1277 // 1278 // In case we just do scalar code generation, the vectorMap is not used and 1279 // the scalarMap has just one dimension, which contains the mapping. 1280 // 1281 // In case vector code generation is done, an instruction may either appear 1282 // in the vector map once (as it is calculating >vectorwidth< values at a 1283 // time. Or (if the values are calculated using scalar operations), it 1284 // appears once in every dimension of the scalarMap. 1285 VectorValueMapT ScalarBlockMap(getVectorWidth()); 1286 ValueMapT VectorBlockMap; 1287 1288 generateScalarVectorLoads(Stmt, VectorBlockMap); 1289 1290 for (Instruction &Inst : *BB) 1291 copyInstruction(Stmt, &Inst, VectorBlockMap, ScalarBlockMap, NewAccesses); 1292 1293 verifyNoScalarStores(Stmt); 1294 } 1295 1296 BasicBlock *RegionGenerator::repairDominance(BasicBlock *BB, 1297 BasicBlock *BBCopy) { 1298 1299 BasicBlock *BBIDom = DT.getNode(BB)->getIDom()->getBlock(); 1300 BasicBlock *BBCopyIDom = EndBlockMap.lookup(BBIDom); 1301 1302 if (BBCopyIDom) 1303 DT.changeImmediateDominator(BBCopy, BBCopyIDom); 1304 1305 return StartBlockMap.lookup(BBIDom); 1306 } 1307 1308 // This is to determine whether an llvm::Value (defined in @p BB) is usable when 1309 // leaving a subregion. The straight-forward DT.dominates(BB, R->getExitBlock()) 1310 // does not work in cases where the exit block has edges from outside the 1311 // region. In that case the llvm::Value would never be usable in in the exit 1312 // block. The RegionGenerator however creates an new exit block ('ExitBBCopy') 1313 // for the subregion's exiting edges only. We need to determine whether an 1314 // llvm::Value is usable in there. We do this by checking whether it dominates 1315 // all exiting blocks individually. 1316 static bool isDominatingSubregionExit(const DominatorTree &DT, Region *R, 1317 BasicBlock *BB) { 1318 for (auto ExitingBB : predecessors(R->getExit())) { 1319 // Check for non-subregion incoming edges. 1320 if (!R->contains(ExitingBB)) 1321 continue; 1322 1323 if (!DT.dominates(BB, ExitingBB)) 1324 return false; 1325 } 1326 1327 return true; 1328 } 1329 1330 // Find the direct dominator of the subregion's exit block if the subregion was 1331 // simplified. 1332 static BasicBlock *findExitDominator(DominatorTree &DT, Region *R) { 1333 BasicBlock *Common = nullptr; 1334 for (auto ExitingBB : predecessors(R->getExit())) { 1335 // Check for non-subregion incoming edges. 1336 if (!R->contains(ExitingBB)) 1337 continue; 1338 1339 // First exiting edge. 1340 if (!Common) { 1341 Common = ExitingBB; 1342 continue; 1343 } 1344 1345 Common = DT.findNearestCommonDominator(Common, ExitingBB); 1346 } 1347 1348 assert(Common && R->contains(Common)); 1349 return Common; 1350 } 1351 1352 void RegionGenerator::copyStmt(ScopStmt &Stmt, LoopToScevMapT <S, 1353 isl_id_to_ast_expr *IdToAstExp) { 1354 assert(Stmt.isRegionStmt() && 1355 "Only region statements can be copied by the region generator"); 1356 1357 // Forget all old mappings. 1358 StartBlockMap.clear(); 1359 EndBlockMap.clear(); 1360 RegionMaps.clear(); 1361 IncompletePHINodeMap.clear(); 1362 1363 // Collection of all values related to this subregion. 1364 ValueMapT ValueMap; 1365 1366 // The region represented by the statement. 1367 Region *R = Stmt.getRegion(); 1368 1369 // Create a dedicated entry for the region where we can reload all demoted 1370 // inputs. 1371 BasicBlock *EntryBB = R->getEntry(); 1372 BasicBlock *EntryBBCopy = SplitBlock(Builder.GetInsertBlock(), 1373 &*Builder.GetInsertPoint(), &DT, &LI); 1374 EntryBBCopy->setName("polly.stmt." + EntryBB->getName() + ".entry"); 1375 Builder.SetInsertPoint(&EntryBBCopy->front()); 1376 1377 ValueMapT &EntryBBMap = RegionMaps[EntryBBCopy]; 1378 generateScalarLoads(Stmt, LTS, EntryBBMap, IdToAstExp); 1379 1380 for (auto PI = pred_begin(EntryBB), PE = pred_end(EntryBB); PI != PE; ++PI) 1381 if (!R->contains(*PI)) { 1382 StartBlockMap[*PI] = EntryBBCopy; 1383 EndBlockMap[*PI] = EntryBBCopy; 1384 } 1385 1386 // Iterate over all blocks in the region in a breadth-first search. 1387 std::deque<BasicBlock *> Blocks; 1388 SmallSetVector<BasicBlock *, 8> SeenBlocks; 1389 Blocks.push_back(EntryBB); 1390 SeenBlocks.insert(EntryBB); 1391 1392 while (!Blocks.empty()) { 1393 BasicBlock *BB = Blocks.front(); 1394 Blocks.pop_front(); 1395 1396 // First split the block and update dominance information. 1397 BasicBlock *BBCopy = splitBB(BB); 1398 BasicBlock *BBCopyIDom = repairDominance(BB, BBCopy); 1399 1400 // Get the mapping for this block and initialize it with either the scalar 1401 // loads from the generated entering block (which dominates all blocks of 1402 // this subregion) or the maps of the immediate dominator, if part of the 1403 // subregion. The latter necessarily includes the former. 1404 ValueMapT *InitBBMap; 1405 if (BBCopyIDom) { 1406 assert(RegionMaps.count(BBCopyIDom)); 1407 InitBBMap = &RegionMaps[BBCopyIDom]; 1408 } else 1409 InitBBMap = &EntryBBMap; 1410 auto Inserted = RegionMaps.insert(std::make_pair(BBCopy, *InitBBMap)); 1411 ValueMapT &RegionMap = Inserted.first->second; 1412 1413 // Copy the block with the BlockGenerator. 1414 Builder.SetInsertPoint(&BBCopy->front()); 1415 copyBB(Stmt, BB, BBCopy, RegionMap, LTS, IdToAstExp); 1416 1417 // In order to remap PHI nodes we store also basic block mappings. 1418 StartBlockMap[BB] = BBCopy; 1419 EndBlockMap[BB] = Builder.GetInsertBlock(); 1420 1421 // Add values to incomplete PHI nodes waiting for this block to be copied. 1422 for (const PHINodePairTy &PHINodePair : IncompletePHINodeMap[BB]) 1423 addOperandToPHI(Stmt, PHINodePair.first, PHINodePair.second, BB, LTS); 1424 IncompletePHINodeMap[BB].clear(); 1425 1426 // And continue with new successors inside the region. 1427 for (auto SI = succ_begin(BB), SE = succ_end(BB); SI != SE; SI++) 1428 if (R->contains(*SI) && SeenBlocks.insert(*SI)) 1429 Blocks.push_back(*SI); 1430 1431 // Remember value in case it is visible after this subregion. 1432 if (isDominatingSubregionExit(DT, R, BB)) 1433 ValueMap.insert(RegionMap.begin(), RegionMap.end()); 1434 } 1435 1436 // Now create a new dedicated region exit block and add it to the region map. 1437 BasicBlock *ExitBBCopy = SplitBlock(Builder.GetInsertBlock(), 1438 &*Builder.GetInsertPoint(), &DT, &LI); 1439 ExitBBCopy->setName("polly.stmt." + R->getExit()->getName() + ".exit"); 1440 StartBlockMap[R->getExit()] = ExitBBCopy; 1441 EndBlockMap[R->getExit()] = ExitBBCopy; 1442 1443 BasicBlock *ExitDomBBCopy = EndBlockMap.lookup(findExitDominator(DT, R)); 1444 assert(ExitDomBBCopy && 1445 "Common exit dominator must be within region; at least the entry node " 1446 "must match"); 1447 DT.changeImmediateDominator(ExitBBCopy, ExitDomBBCopy); 1448 1449 // As the block generator doesn't handle control flow we need to add the 1450 // region control flow by hand after all blocks have been copied. 1451 for (BasicBlock *BB : SeenBlocks) { 1452 1453 BasicBlock *BBCopyStart = StartBlockMap[BB]; 1454 BasicBlock *BBCopyEnd = EndBlockMap[BB]; 1455 TerminatorInst *TI = BB->getTerminator(); 1456 if (isa<UnreachableInst>(TI)) { 1457 while (!BBCopyEnd->empty()) 1458 BBCopyEnd->begin()->eraseFromParent(); 1459 new UnreachableInst(BBCopyEnd->getContext(), BBCopyEnd); 1460 continue; 1461 } 1462 1463 Instruction *BICopy = BBCopyEnd->getTerminator(); 1464 1465 ValueMapT &RegionMap = RegionMaps[BBCopyStart]; 1466 RegionMap.insert(StartBlockMap.begin(), StartBlockMap.end()); 1467 1468 Builder.SetInsertPoint(BICopy); 1469 copyInstScalar(Stmt, TI, RegionMap, LTS); 1470 BICopy->eraseFromParent(); 1471 } 1472 1473 // Add counting PHI nodes to all loops in the region that can be used as 1474 // replacement for SCEVs referring to the old loop. 1475 for (BasicBlock *BB : SeenBlocks) { 1476 Loop *L = LI.getLoopFor(BB); 1477 if (L == nullptr || L->getHeader() != BB || !R->contains(L)) 1478 continue; 1479 1480 BasicBlock *BBCopy = StartBlockMap[BB]; 1481 Value *NullVal = Builder.getInt32(0); 1482 PHINode *LoopPHI = 1483 PHINode::Create(Builder.getInt32Ty(), 2, "polly.subregion.iv"); 1484 Instruction *LoopPHIInc = BinaryOperator::CreateAdd( 1485 LoopPHI, Builder.getInt32(1), "polly.subregion.iv.inc"); 1486 LoopPHI->insertBefore(&BBCopy->front()); 1487 LoopPHIInc->insertBefore(BBCopy->getTerminator()); 1488 1489 for (auto *PredBB : make_range(pred_begin(BB), pred_end(BB))) { 1490 if (!R->contains(PredBB)) 1491 continue; 1492 if (L->contains(PredBB)) 1493 LoopPHI->addIncoming(LoopPHIInc, EndBlockMap[PredBB]); 1494 else 1495 LoopPHI->addIncoming(NullVal, EndBlockMap[PredBB]); 1496 } 1497 1498 for (auto *PredBBCopy : make_range(pred_begin(BBCopy), pred_end(BBCopy))) 1499 if (LoopPHI->getBasicBlockIndex(PredBBCopy) < 0) 1500 LoopPHI->addIncoming(NullVal, PredBBCopy); 1501 1502 LTS[L] = SE.getUnknown(LoopPHI); 1503 } 1504 1505 // Continue generating code in the exit block. 1506 Builder.SetInsertPoint(&*ExitBBCopy->getFirstInsertionPt()); 1507 1508 // Write values visible to other statements. 1509 generateScalarStores(Stmt, LTS, ValueMap, IdToAstExp); 1510 StartBlockMap.clear(); 1511 EndBlockMap.clear(); 1512 RegionMaps.clear(); 1513 IncompletePHINodeMap.clear(); 1514 } 1515 1516 PHINode *RegionGenerator::buildExitPHI(MemoryAccess *MA, LoopToScevMapT <S, 1517 ValueMapT &BBMap, Loop *L) { 1518 ScopStmt *Stmt = MA->getStatement(); 1519 Region *SubR = Stmt->getRegion(); 1520 auto Incoming = MA->getIncoming(); 1521 1522 PollyIRBuilder::InsertPointGuard IPGuard(Builder); 1523 PHINode *OrigPHI = cast<PHINode>(MA->getAccessInstruction()); 1524 BasicBlock *NewSubregionExit = Builder.GetInsertBlock(); 1525 1526 // This can happen if the subregion is simplified after the ScopStmts 1527 // have been created; simplification happens as part of CodeGeneration. 1528 if (OrigPHI->getParent() != SubR->getExit()) { 1529 BasicBlock *FormerExit = SubR->getExitingBlock(); 1530 if (FormerExit) 1531 NewSubregionExit = StartBlockMap.lookup(FormerExit); 1532 } 1533 1534 PHINode *NewPHI = PHINode::Create(OrigPHI->getType(), Incoming.size(), 1535 "polly." + OrigPHI->getName(), 1536 NewSubregionExit->getFirstNonPHI()); 1537 1538 // Add the incoming values to the PHI. 1539 for (auto &Pair : Incoming) { 1540 BasicBlock *OrigIncomingBlock = Pair.first; 1541 BasicBlock *NewIncomingBlockStart = StartBlockMap.lookup(OrigIncomingBlock); 1542 BasicBlock *NewIncomingBlockEnd = EndBlockMap.lookup(OrigIncomingBlock); 1543 Builder.SetInsertPoint(NewIncomingBlockEnd->getTerminator()); 1544 assert(RegionMaps.count(NewIncomingBlockStart)); 1545 assert(RegionMaps.count(NewIncomingBlockEnd)); 1546 ValueMapT *LocalBBMap = &RegionMaps[NewIncomingBlockStart]; 1547 1548 Value *OrigIncomingValue = Pair.second; 1549 Value *NewIncomingValue = 1550 getNewValue(*Stmt, OrigIncomingValue, *LocalBBMap, LTS, L); 1551 NewPHI->addIncoming(NewIncomingValue, NewIncomingBlockEnd); 1552 } 1553 1554 return NewPHI; 1555 } 1556 1557 Value *RegionGenerator::getExitScalar(MemoryAccess *MA, LoopToScevMapT <S, 1558 ValueMapT &BBMap) { 1559 ScopStmt *Stmt = MA->getStatement(); 1560 1561 // TODO: Add some test cases that ensure this is really the right choice. 1562 Loop *L = LI.getLoopFor(Stmt->getRegion()->getExit()); 1563 1564 if (MA->isAnyPHIKind()) { 1565 auto Incoming = MA->getIncoming(); 1566 assert(!Incoming.empty() && 1567 "PHI WRITEs must have originate from at least one incoming block"); 1568 1569 // If there is only one incoming value, we do not need to create a PHI. 1570 if (Incoming.size() == 1) { 1571 Value *OldVal = Incoming[0].second; 1572 return getNewValue(*Stmt, OldVal, BBMap, LTS, L); 1573 } 1574 1575 return buildExitPHI(MA, LTS, BBMap, L); 1576 } 1577 1578 // MemoryKind::Value accesses leaving the subregion must dominate the exit 1579 // block; just pass the copied value. 1580 Value *OldVal = MA->getAccessValue(); 1581 return getNewValue(*Stmt, OldVal, BBMap, LTS, L); 1582 } 1583 1584 void RegionGenerator::generateScalarStores( 1585 ScopStmt &Stmt, LoopToScevMapT <S, ValueMapT &BBMap, 1586 __isl_keep isl_id_to_ast_expr *NewAccesses) { 1587 assert(Stmt.getRegion() && 1588 "Block statements need to use the generateScalarStores() " 1589 "function in the BlockGenerator"); 1590 1591 for (MemoryAccess *MA : Stmt) { 1592 if (MA->isOriginalArrayKind() || MA->isRead()) 1593 continue; 1594 1595 isl::set AccDom = MA->getAccessRelation().domain(); 1596 std::string Subject = MA->getId().get_name(); 1597 generateConditionalExecution( 1598 Stmt, AccDom, Subject.c_str(), [&, this, MA]() { 1599 Value *NewVal = getExitScalar(MA, LTS, BBMap); 1600 Value *Address = getImplicitAddress(*MA, getLoopForStmt(Stmt), LTS, 1601 BBMap, NewAccesses); 1602 assert((!isa<Instruction>(NewVal) || 1603 DT.dominates(cast<Instruction>(NewVal)->getParent(), 1604 Builder.GetInsertBlock())) && 1605 "Domination violation"); 1606 assert((!isa<Instruction>(Address) || 1607 DT.dominates(cast<Instruction>(Address)->getParent(), 1608 Builder.GetInsertBlock())) && 1609 "Domination violation"); 1610 Builder.CreateStore(NewVal, Address); 1611 }); 1612 } 1613 } 1614 1615 void RegionGenerator::addOperandToPHI(ScopStmt &Stmt, PHINode *PHI, 1616 PHINode *PHICopy, BasicBlock *IncomingBB, 1617 LoopToScevMapT <S) { 1618 // If the incoming block was not yet copied mark this PHI as incomplete. 1619 // Once the block will be copied the incoming value will be added. 1620 BasicBlock *BBCopyStart = StartBlockMap[IncomingBB]; 1621 BasicBlock *BBCopyEnd = EndBlockMap[IncomingBB]; 1622 if (!BBCopyStart) { 1623 assert(!BBCopyEnd); 1624 assert(Stmt.represents(IncomingBB) && 1625 "Bad incoming block for PHI in non-affine region"); 1626 IncompletePHINodeMap[IncomingBB].push_back(std::make_pair(PHI, PHICopy)); 1627 return; 1628 } 1629 1630 assert(RegionMaps.count(BBCopyStart) && 1631 "Incoming PHI block did not have a BBMap"); 1632 ValueMapT &BBCopyMap = RegionMaps[BBCopyStart]; 1633 1634 Value *OpCopy = nullptr; 1635 1636 if (Stmt.represents(IncomingBB)) { 1637 Value *Op = PHI->getIncomingValueForBlock(IncomingBB); 1638 1639 // If the current insert block is different from the PHIs incoming block 1640 // change it, otherwise do not. 1641 auto IP = Builder.GetInsertPoint(); 1642 if (IP->getParent() != BBCopyEnd) 1643 Builder.SetInsertPoint(BBCopyEnd->getTerminator()); 1644 OpCopy = getNewValue(Stmt, Op, BBCopyMap, LTS, getLoopForStmt(Stmt)); 1645 if (IP->getParent() != BBCopyEnd) 1646 Builder.SetInsertPoint(&*IP); 1647 } else { 1648 // All edges from outside the non-affine region become a single edge 1649 // in the new copy of the non-affine region. Make sure to only add the 1650 // corresponding edge the first time we encounter a basic block from 1651 // outside the non-affine region. 1652 if (PHICopy->getBasicBlockIndex(BBCopyEnd) >= 0) 1653 return; 1654 1655 // Get the reloaded value. 1656 OpCopy = getNewValue(Stmt, PHI, BBCopyMap, LTS, getLoopForStmt(Stmt)); 1657 } 1658 1659 assert(OpCopy && "Incoming PHI value was not copied properly"); 1660 PHICopy->addIncoming(OpCopy, BBCopyEnd); 1661 } 1662 1663 void RegionGenerator::copyPHIInstruction(ScopStmt &Stmt, PHINode *PHI, 1664 ValueMapT &BBMap, 1665 LoopToScevMapT <S) { 1666 unsigned NumIncoming = PHI->getNumIncomingValues(); 1667 PHINode *PHICopy = 1668 Builder.CreatePHI(PHI->getType(), NumIncoming, "polly." + PHI->getName()); 1669 PHICopy->moveBefore(PHICopy->getParent()->getFirstNonPHI()); 1670 BBMap[PHI] = PHICopy; 1671 1672 for (BasicBlock *IncomingBB : PHI->blocks()) 1673 addOperandToPHI(Stmt, PHI, PHICopy, IncomingBB, LTS); 1674 } 1675