1 //===--- BlockGenerators.cpp - Generate code for statements -----*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the BlockGenerator and VectorBlockGenerator classes, 11 // which generate sequential code and vectorized code for a polyhedral 12 // statement, respectively. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "polly/CodeGen/BlockGenerators.h" 17 #include "polly/CodeGen/CodeGeneration.h" 18 #include "polly/CodeGen/IslExprBuilder.h" 19 #include "polly/CodeGen/RuntimeDebugBuilder.h" 20 #include "polly/Options.h" 21 #include "polly/ScopInfo.h" 22 #include "polly/Support/GICHelper.h" 23 #include "polly/Support/SCEVValidator.h" 24 #include "polly/Support/ScopHelper.h" 25 #include "polly/Support/VirtualInstruction.h" 26 #include "llvm/Analysis/LoopInfo.h" 27 #include "llvm/Analysis/RegionInfo.h" 28 #include "llvm/Analysis/ScalarEvolution.h" 29 #include "llvm/IR/IntrinsicInst.h" 30 #include "llvm/IR/Module.h" 31 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 32 #include "llvm/Transforms/Utils/Local.h" 33 #include "isl/aff.h" 34 #include "isl/ast.h" 35 #include "isl/ast_build.h" 36 #include "isl/set.h" 37 #include <deque> 38 39 using namespace llvm; 40 using namespace polly; 41 42 static cl::opt<bool> Aligned("enable-polly-aligned", 43 cl::desc("Assumed aligned memory accesses."), 44 cl::Hidden, cl::init(false), cl::ZeroOrMore, 45 cl::cat(PollyCategory)); 46 47 bool PollyDebugPrinting; 48 static cl::opt<bool, true> DebugPrintingX( 49 "polly-codegen-add-debug-printing", 50 cl::desc("Add printf calls that show the values loaded/stored."), 51 cl::location(PollyDebugPrinting), cl::Hidden, cl::init(false), 52 cl::ZeroOrMore, cl::cat(PollyCategory)); 53 54 BlockGenerator::BlockGenerator( 55 PollyIRBuilder &B, LoopInfo &LI, ScalarEvolution &SE, DominatorTree &DT, 56 AllocaMapTy &ScalarMap, EscapeUsersAllocaMapTy &EscapeMap, 57 ValueMapT &GlobalMap, IslExprBuilder *ExprBuilder, BasicBlock *StartBlock) 58 : Builder(B), LI(LI), SE(SE), ExprBuilder(ExprBuilder), DT(DT), 59 EntryBB(nullptr), ScalarMap(ScalarMap), EscapeMap(EscapeMap), 60 GlobalMap(GlobalMap), StartBlock(StartBlock) {} 61 62 Value *BlockGenerator::trySynthesizeNewValue(ScopStmt &Stmt, Value *Old, 63 ValueMapT &BBMap, 64 LoopToScevMapT <S, 65 Loop *L) const { 66 if (!SE.isSCEVable(Old->getType())) 67 return nullptr; 68 69 const SCEV *Scev = SE.getSCEVAtScope(Old, L); 70 if (!Scev) 71 return nullptr; 72 73 if (isa<SCEVCouldNotCompute>(Scev)) 74 return nullptr; 75 76 const SCEV *NewScev = SCEVLoopAddRecRewriter::rewrite(Scev, LTS, SE); 77 ValueMapT VTV; 78 VTV.insert(BBMap.begin(), BBMap.end()); 79 VTV.insert(GlobalMap.begin(), GlobalMap.end()); 80 81 Scop &S = *Stmt.getParent(); 82 const DataLayout &DL = S.getFunction().getParent()->getDataLayout(); 83 auto IP = Builder.GetInsertPoint(); 84 85 assert(IP != Builder.GetInsertBlock()->end() && 86 "Only instructions can be insert points for SCEVExpander"); 87 Value *Expanded = 88 expandCodeFor(S, SE, DL, "polly", NewScev, Old->getType(), &*IP, &VTV, 89 StartBlock->getSinglePredecessor()); 90 91 BBMap[Old] = Expanded; 92 return Expanded; 93 } 94 95 Value *BlockGenerator::getNewValue(ScopStmt &Stmt, Value *Old, ValueMapT &BBMap, 96 LoopToScevMapT <S, Loop *L) const { 97 98 auto lookupGlobally = [this](Value *Old) -> Value * { 99 Value *New = GlobalMap.lookup(Old); 100 if (!New) 101 return nullptr; 102 103 // Required by: 104 // * Isl/CodeGen/OpenMP/invariant_base_pointer_preloaded.ll 105 // * Isl/CodeGen/OpenMP/invariant_base_pointer_preloaded_different_bb.ll 106 // * Isl/CodeGen/OpenMP/invariant_base_pointer_preloaded_pass_only_needed.ll 107 // * Isl/CodeGen/OpenMP/invariant_base_pointers_preloaded.ll 108 // * Isl/CodeGen/OpenMP/loop-body-references-outer-values-3.ll 109 // * Isl/CodeGen/OpenMP/single_loop_with_loop_invariant_baseptr.ll 110 // GlobalMap should be a mapping from (value in original SCoP) to (copied 111 // value in generated SCoP), without intermediate mappings, which might 112 // easily require transitiveness as well. 113 if (Value *NewRemapped = GlobalMap.lookup(New)) 114 New = NewRemapped; 115 116 // No test case for this code. 117 if (Old->getType()->getScalarSizeInBits() < 118 New->getType()->getScalarSizeInBits()) 119 New = Builder.CreateTruncOrBitCast(New, Old->getType()); 120 121 return New; 122 }; 123 124 Value *New = nullptr; 125 auto VUse = VirtualUse::create(&Stmt, L, Old, true); 126 switch (VUse.getKind()) { 127 case VirtualUse::Block: 128 // BasicBlock are constants, but the BlockGenerator copies them. 129 New = BBMap.lookup(Old); 130 break; 131 132 case VirtualUse::Constant: 133 // Used by: 134 // * Isl/CodeGen/OpenMP/reference-argument-from-non-affine-region.ll 135 // Constants should not be redefined. In this case, the GlobalMap just 136 // contains a mapping to the same constant, which is unnecessary, but 137 // harmless. 138 if ((New = lookupGlobally(Old))) 139 break; 140 141 assert(!BBMap.count(Old)); 142 New = Old; 143 break; 144 145 case VirtualUse::ReadOnly: 146 assert(!GlobalMap.count(Old)); 147 148 // Required for: 149 // * Isl/CodeGen/MemAccess/create_arrays.ll 150 // * Isl/CodeGen/read-only-scalars.ll 151 // * ScheduleOptimizer/pattern-matching-based-opts_10.ll 152 // For some reason these reload a read-only value. The reloaded value ends 153 // up in BBMap, buts its value should be identical. 154 // 155 // Required for: 156 // * Isl/CodeGen/OpenMP/single_loop_with_param.ll 157 // The parallel subfunctions need to reference the read-only value from the 158 // parent function, this is done by reloading them locally. 159 if ((New = BBMap.lookup(Old))) 160 break; 161 162 New = Old; 163 break; 164 165 case VirtualUse::Synthesizable: 166 // Used by: 167 // * Isl/CodeGen/OpenMP/loop-body-references-outer-values-3.ll 168 // * Isl/CodeGen/OpenMP/recomputed-srem.ll 169 // * Isl/CodeGen/OpenMP/reference-other-bb.ll 170 // * Isl/CodeGen/OpenMP/two-parallel-loops-reference-outer-indvar.ll 171 // For some reason synthesizable values end up in GlobalMap. Their values 172 // are the same as trySynthesizeNewValue would return. The legacy 173 // implementation prioritized GlobalMap, so this is what we do here as well. 174 // Ideally, synthesizable values should not end up in GlobalMap. 175 if ((New = lookupGlobally(Old))) 176 break; 177 178 // Required for: 179 // * Isl/CodeGen/RuntimeDebugBuilder/combine_different_values.ll 180 // * Isl/CodeGen/getNumberOfIterations.ll 181 // * Isl/CodeGen/non_affine_float_compare.ll 182 // * ScheduleOptimizer/pattern-matching-based-opts_10.ll 183 // Ideally, synthesizable values are synthesized by trySynthesizeNewValue, 184 // not precomputed (SCEVExpander has its own caching mechanism). 185 // These tests fail without this, but I think trySynthesizeNewValue would 186 // just re-synthesize the same instructions. 187 if ((New = BBMap.lookup(Old))) 188 break; 189 190 New = trySynthesizeNewValue(Stmt, Old, BBMap, LTS, L); 191 break; 192 193 case VirtualUse::Hoisted: 194 // TODO: Hoisted invariant loads should be found in GlobalMap only, but not 195 // redefined locally (which will be ignored anyway). That is, the following 196 // assertion should apply: assert(!BBMap.count(Old)) 197 198 New = lookupGlobally(Old); 199 break; 200 201 case VirtualUse::Intra: 202 case VirtualUse::Inter: 203 assert(!GlobalMap.count(Old) && 204 "Intra and inter-stmt values are never global"); 205 New = BBMap.lookup(Old); 206 break; 207 } 208 assert(New && "Unexpected scalar dependence in region!"); 209 return New; 210 } 211 212 void BlockGenerator::copyInstScalar(ScopStmt &Stmt, Instruction *Inst, 213 ValueMapT &BBMap, LoopToScevMapT <S) { 214 // We do not generate debug intrinsics as we did not investigate how to 215 // copy them correctly. At the current state, they just crash the code 216 // generation as the meta-data operands are not correctly copied. 217 if (isa<DbgInfoIntrinsic>(Inst)) 218 return; 219 220 Instruction *NewInst = Inst->clone(); 221 222 // Replace old operands with the new ones. 223 for (Value *OldOperand : Inst->operands()) { 224 Value *NewOperand = 225 getNewValue(Stmt, OldOperand, BBMap, LTS, getLoopForStmt(Stmt)); 226 227 if (!NewOperand) { 228 assert(!isa<StoreInst>(NewInst) && 229 "Store instructions are always needed!"); 230 NewInst->deleteValue(); 231 return; 232 } 233 234 NewInst->replaceUsesOfWith(OldOperand, NewOperand); 235 } 236 237 Builder.Insert(NewInst); 238 BBMap[Inst] = NewInst; 239 240 // When copying the instruction onto the Module meant for the GPU, 241 // debug metadata attached to an instruction causes all related 242 // metadata to be pulled into the Module. This includes the DICompileUnit, 243 // which will not be listed in llvm.dbg.cu of the Module since the Module 244 // doesn't contain one. This fails the verification of the Module and the 245 // subsequent generation of the ASM string. 246 if (NewInst->getModule() != Inst->getModule()) 247 NewInst->setDebugLoc(llvm::DebugLoc()); 248 249 if (!NewInst->getType()->isVoidTy()) 250 NewInst->setName("p_" + Inst->getName()); 251 } 252 253 Value * 254 BlockGenerator::generateLocationAccessed(ScopStmt &Stmt, MemAccInst Inst, 255 ValueMapT &BBMap, LoopToScevMapT <S, 256 isl_id_to_ast_expr *NewAccesses) { 257 const MemoryAccess &MA = Stmt.getArrayAccessFor(Inst); 258 return generateLocationAccessed( 259 Stmt, getLoopForStmt(Stmt), 260 Inst.isNull() ? nullptr : Inst.getPointerOperand(), BBMap, LTS, 261 NewAccesses, MA.getId().release(), MA.getAccessValue()->getType()); 262 } 263 264 Value *BlockGenerator::generateLocationAccessed( 265 ScopStmt &Stmt, Loop *L, Value *Pointer, ValueMapT &BBMap, 266 LoopToScevMapT <S, isl_id_to_ast_expr *NewAccesses, __isl_take isl_id *Id, 267 Type *ExpectedType) { 268 isl_ast_expr *AccessExpr = isl_id_to_ast_expr_get(NewAccesses, Id); 269 270 if (AccessExpr) { 271 AccessExpr = isl_ast_expr_address_of(AccessExpr); 272 auto Address = ExprBuilder->create(AccessExpr); 273 274 // Cast the address of this memory access to a pointer type that has the 275 // same element type as the original access, but uses the address space of 276 // the newly generated pointer. 277 auto OldPtrTy = ExpectedType->getPointerTo(); 278 auto NewPtrTy = Address->getType(); 279 OldPtrTy = PointerType::get(OldPtrTy->getElementType(), 280 NewPtrTy->getPointerAddressSpace()); 281 282 if (OldPtrTy != NewPtrTy) 283 Address = Builder.CreateBitOrPointerCast(Address, OldPtrTy); 284 return Address; 285 } 286 assert( 287 Pointer && 288 "If expression was not generated, must use the original pointer value"); 289 return getNewValue(Stmt, Pointer, BBMap, LTS, L); 290 } 291 292 Value * 293 BlockGenerator::getImplicitAddress(MemoryAccess &Access, Loop *L, 294 LoopToScevMapT <S, ValueMapT &BBMap, 295 __isl_keep isl_id_to_ast_expr *NewAccesses) { 296 if (Access.isLatestArrayKind()) 297 return generateLocationAccessed(*Access.getStatement(), L, nullptr, BBMap, 298 LTS, NewAccesses, Access.getId().release(), 299 Access.getAccessValue()->getType()); 300 301 return getOrCreateAlloca(Access); 302 } 303 304 Loop *BlockGenerator::getLoopForStmt(const ScopStmt &Stmt) const { 305 auto *StmtBB = Stmt.getEntryBlock(); 306 return LI.getLoopFor(StmtBB); 307 } 308 309 Value *BlockGenerator::generateArrayLoad(ScopStmt &Stmt, LoadInst *Load, 310 ValueMapT &BBMap, LoopToScevMapT <S, 311 isl_id_to_ast_expr *NewAccesses) { 312 if (Value *PreloadLoad = GlobalMap.lookup(Load)) 313 return PreloadLoad; 314 315 Value *NewPointer = 316 generateLocationAccessed(Stmt, Load, BBMap, LTS, NewAccesses); 317 Value *ScalarLoad = Builder.CreateAlignedLoad( 318 NewPointer, Load->getAlignment(), Load->getName() + "_p_scalar_"); 319 320 if (PollyDebugPrinting) 321 RuntimeDebugBuilder::createCPUPrinter(Builder, "Load from ", NewPointer, 322 ": ", ScalarLoad, "\n"); 323 324 return ScalarLoad; 325 } 326 327 void BlockGenerator::generateArrayStore(ScopStmt &Stmt, StoreInst *Store, 328 ValueMapT &BBMap, LoopToScevMapT <S, 329 isl_id_to_ast_expr *NewAccesses) { 330 MemoryAccess &MA = Stmt.getArrayAccessFor(Store); 331 isl::set AccDom = MA.getAccessRelation().domain(); 332 std::string Subject = MA.getId().get_name(); 333 334 generateConditionalExecution(Stmt, AccDom, Subject.c_str(), [&, this]() { 335 Value *NewPointer = 336 generateLocationAccessed(Stmt, Store, BBMap, LTS, NewAccesses); 337 Value *ValueOperand = getNewValue(Stmt, Store->getValueOperand(), BBMap, 338 LTS, getLoopForStmt(Stmt)); 339 340 if (PollyDebugPrinting) 341 RuntimeDebugBuilder::createCPUPrinter(Builder, "Store to ", NewPointer, 342 ": ", ValueOperand, "\n"); 343 344 Builder.CreateAlignedStore(ValueOperand, NewPointer, Store->getAlignment()); 345 }); 346 } 347 348 bool BlockGenerator::canSyntheziseInStmt(ScopStmt &Stmt, Instruction *Inst) { 349 Loop *L = getLoopForStmt(Stmt); 350 return (Stmt.isBlockStmt() || !Stmt.getRegion()->contains(L)) && 351 canSynthesize(Inst, *Stmt.getParent(), &SE, L); 352 } 353 354 void BlockGenerator::copyInstruction(ScopStmt &Stmt, Instruction *Inst, 355 ValueMapT &BBMap, LoopToScevMapT <S, 356 isl_id_to_ast_expr *NewAccesses) { 357 // Terminator instructions control the control flow. They are explicitly 358 // expressed in the clast and do not need to be copied. 359 if (Inst->isTerminator()) 360 return; 361 362 // Synthesizable statements will be generated on-demand. 363 if (canSyntheziseInStmt(Stmt, Inst)) 364 return; 365 366 if (auto *Load = dyn_cast<LoadInst>(Inst)) { 367 Value *NewLoad = generateArrayLoad(Stmt, Load, BBMap, LTS, NewAccesses); 368 // Compute NewLoad before its insertion in BBMap to make the insertion 369 // deterministic. 370 BBMap[Load] = NewLoad; 371 return; 372 } 373 374 if (auto *Store = dyn_cast<StoreInst>(Inst)) { 375 // Identified as redundant by -polly-simplify. 376 if (!Stmt.getArrayAccessOrNULLFor(Store)) 377 return; 378 379 generateArrayStore(Stmt, Store, BBMap, LTS, NewAccesses); 380 return; 381 } 382 383 if (auto *PHI = dyn_cast<PHINode>(Inst)) { 384 copyPHIInstruction(Stmt, PHI, BBMap, LTS); 385 return; 386 } 387 388 // Skip some special intrinsics for which we do not adjust the semantics to 389 // the new schedule. All others are handled like every other instruction. 390 if (isIgnoredIntrinsic(Inst)) 391 return; 392 393 copyInstScalar(Stmt, Inst, BBMap, LTS); 394 } 395 396 void BlockGenerator::removeDeadInstructions(BasicBlock *BB, ValueMapT &BBMap) { 397 auto NewBB = Builder.GetInsertBlock(); 398 for (auto I = NewBB->rbegin(); I != NewBB->rend(); I++) { 399 Instruction *NewInst = &*I; 400 401 if (!isInstructionTriviallyDead(NewInst)) 402 continue; 403 404 for (auto Pair : BBMap) 405 if (Pair.second == NewInst) { 406 BBMap.erase(Pair.first); 407 } 408 409 NewInst->eraseFromParent(); 410 I = NewBB->rbegin(); 411 } 412 } 413 414 void BlockGenerator::copyStmt(ScopStmt &Stmt, LoopToScevMapT <S, 415 isl_id_to_ast_expr *NewAccesses) { 416 assert(Stmt.isBlockStmt() && 417 "Only block statements can be copied by the block generator"); 418 419 ValueMapT BBMap; 420 421 BasicBlock *BB = Stmt.getBasicBlock(); 422 copyBB(Stmt, BB, BBMap, LTS, NewAccesses); 423 removeDeadInstructions(BB, BBMap); 424 } 425 426 BasicBlock *BlockGenerator::splitBB(BasicBlock *BB) { 427 BasicBlock *CopyBB = SplitBlock(Builder.GetInsertBlock(), 428 &*Builder.GetInsertPoint(), &DT, &LI); 429 CopyBB->setName("polly.stmt." + BB->getName()); 430 return CopyBB; 431 } 432 433 BasicBlock *BlockGenerator::copyBB(ScopStmt &Stmt, BasicBlock *BB, 434 ValueMapT &BBMap, LoopToScevMapT <S, 435 isl_id_to_ast_expr *NewAccesses) { 436 BasicBlock *CopyBB = splitBB(BB); 437 Builder.SetInsertPoint(&CopyBB->front()); 438 generateScalarLoads(Stmt, LTS, BBMap, NewAccesses); 439 440 copyBB(Stmt, BB, CopyBB, BBMap, LTS, NewAccesses); 441 442 // After a basic block was copied store all scalars that escape this block in 443 // their alloca. 444 generateScalarStores(Stmt, LTS, BBMap, NewAccesses); 445 return CopyBB; 446 } 447 448 void BlockGenerator::copyBB(ScopStmt &Stmt, BasicBlock *BB, BasicBlock *CopyBB, 449 ValueMapT &BBMap, LoopToScevMapT <S, 450 isl_id_to_ast_expr *NewAccesses) { 451 EntryBB = &CopyBB->getParent()->getEntryBlock(); 452 453 if (Stmt.isBlockStmt()) 454 for (Instruction *Inst : Stmt.getInstructions()) 455 copyInstruction(Stmt, Inst, BBMap, LTS, NewAccesses); 456 else 457 for (Instruction &Inst : *BB) 458 copyInstruction(Stmt, &Inst, BBMap, LTS, NewAccesses); 459 } 460 461 Value *BlockGenerator::getOrCreateAlloca(const MemoryAccess &Access) { 462 assert(!Access.isLatestArrayKind() && "Trying to get alloca for array kind"); 463 464 return getOrCreateAlloca(Access.getLatestScopArrayInfo()); 465 } 466 467 Value *BlockGenerator::getOrCreateAlloca(const ScopArrayInfo *Array) { 468 assert(!Array->isArrayKind() && "Trying to get alloca for array kind"); 469 470 auto &Addr = ScalarMap[Array]; 471 472 if (Addr) { 473 // Allow allocas to be (temporarily) redirected once by adding a new 474 // old-alloca-addr to new-addr mapping to GlobalMap. This functionality 475 // is used for example by the OpenMP code generation where a first use 476 // of a scalar while still in the host code allocates a normal alloca with 477 // getOrCreateAlloca. When the values of this scalar are accessed during 478 // the generation of the parallel subfunction, these values are copied over 479 // to the parallel subfunction and each request for a scalar alloca slot 480 // must be forwarded to the temporary in-subfunction slot. This mapping is 481 // removed when the subfunction has been generated and again normal host 482 // code is generated. Due to the following reasons it is not possible to 483 // perform the GlobalMap lookup right after creating the alloca below, but 484 // instead we need to check GlobalMap at each call to getOrCreateAlloca: 485 // 486 // 1) GlobalMap may be changed multiple times (for each parallel loop), 487 // 2) The temporary mapping is commonly only known after the initial 488 // alloca has already been generated, and 489 // 3) The original alloca value must be restored after leaving the 490 // sub-function. 491 if (Value *NewAddr = GlobalMap.lookup(&*Addr)) 492 return NewAddr; 493 return Addr; 494 } 495 496 Type *Ty = Array->getElementType(); 497 Value *ScalarBase = Array->getBasePtr(); 498 std::string NameExt; 499 if (Array->isPHIKind()) 500 NameExt = ".phiops"; 501 else 502 NameExt = ".s2a"; 503 504 const DataLayout &DL = Builder.GetInsertBlock()->getModule()->getDataLayout(); 505 506 Addr = new AllocaInst(Ty, DL.getAllocaAddrSpace(), 507 ScalarBase->getName() + NameExt); 508 EntryBB = &Builder.GetInsertBlock()->getParent()->getEntryBlock(); 509 Addr->insertBefore(&*EntryBB->getFirstInsertionPt()); 510 511 return Addr; 512 } 513 514 void BlockGenerator::handleOutsideUsers(const Scop &S, ScopArrayInfo *Array) { 515 Instruction *Inst = cast<Instruction>(Array->getBasePtr()); 516 517 // If there are escape users we get the alloca for this instruction and put it 518 // in the EscapeMap for later finalization. Lastly, if the instruction was 519 // copied multiple times we already did this and can exit. 520 if (EscapeMap.count(Inst)) 521 return; 522 523 EscapeUserVectorTy EscapeUsers; 524 for (User *U : Inst->users()) { 525 526 // Non-instruction user will never escape. 527 Instruction *UI = dyn_cast<Instruction>(U); 528 if (!UI) 529 continue; 530 531 if (S.contains(UI)) 532 continue; 533 534 EscapeUsers.push_back(UI); 535 } 536 537 // Exit if no escape uses were found. 538 if (EscapeUsers.empty()) 539 return; 540 541 // Get or create an escape alloca for this instruction. 542 auto *ScalarAddr = getOrCreateAlloca(Array); 543 544 // Remember that this instruction has escape uses and the escape alloca. 545 EscapeMap[Inst] = std::make_pair(ScalarAddr, std::move(EscapeUsers)); 546 } 547 548 void BlockGenerator::generateScalarLoads( 549 ScopStmt &Stmt, LoopToScevMapT <S, ValueMapT &BBMap, 550 __isl_keep isl_id_to_ast_expr *NewAccesses) { 551 for (MemoryAccess *MA : Stmt) { 552 if (MA->isOriginalArrayKind() || MA->isWrite()) 553 continue; 554 555 #ifndef NDEBUG 556 auto *StmtDom = Stmt.getDomain().release(); 557 auto *AccDom = isl_map_domain(MA->getAccessRelation().release()); 558 assert(isl_set_is_subset(StmtDom, AccDom) && 559 "Scalar must be loaded in all statement instances"); 560 isl_set_free(StmtDom); 561 isl_set_free(AccDom); 562 #endif 563 564 auto *Address = 565 getImplicitAddress(*MA, getLoopForStmt(Stmt), LTS, BBMap, NewAccesses); 566 assert((!isa<Instruction>(Address) || 567 DT.dominates(cast<Instruction>(Address)->getParent(), 568 Builder.GetInsertBlock())) && 569 "Domination violation"); 570 BBMap[MA->getAccessValue()] = 571 Builder.CreateLoad(Address, Address->getName() + ".reload"); 572 } 573 } 574 575 Value *BlockGenerator::buildContainsCondition(ScopStmt &Stmt, 576 const isl::set &Subdomain) { 577 isl::ast_build AstBuild = Stmt.getAstBuild(); 578 isl::set Domain = Stmt.getDomain(); 579 580 isl::union_map USchedule = AstBuild.get_schedule(); 581 USchedule = USchedule.intersect_domain(Domain); 582 583 assert(!USchedule.is_empty()); 584 isl::map Schedule = isl::map::from_union_map(USchedule); 585 586 isl::set ScheduledDomain = Schedule.range(); 587 isl::set ScheduledSet = Subdomain.apply(Schedule); 588 589 isl::ast_build RestrictedBuild = AstBuild.restrict(ScheduledDomain); 590 591 isl::ast_expr IsInSet = RestrictedBuild.expr_from(ScheduledSet); 592 Value *IsInSetExpr = ExprBuilder->create(IsInSet.copy()); 593 IsInSetExpr = Builder.CreateICmpNE( 594 IsInSetExpr, ConstantInt::get(IsInSetExpr->getType(), 0)); 595 596 return IsInSetExpr; 597 } 598 599 void BlockGenerator::generateConditionalExecution( 600 ScopStmt &Stmt, const isl::set &Subdomain, StringRef Subject, 601 const std::function<void()> &GenThenFunc) { 602 isl::set StmtDom = Stmt.getDomain(); 603 604 // Don't call GenThenFunc if it is never executed. An ast index expression 605 // might not be defined in this case. 606 if (Subdomain.is_empty()) 607 return; 608 609 // If the condition is a tautology, don't generate a condition around the 610 // code. 611 bool IsPartialWrite = 612 !StmtDom.intersect_params(Stmt.getParent()->getContext()) 613 .is_subset(Subdomain); 614 if (!IsPartialWrite) { 615 GenThenFunc(); 616 return; 617 } 618 619 // Generate the condition. 620 Value *Cond = buildContainsCondition(Stmt, Subdomain); 621 BasicBlock *HeadBlock = Builder.GetInsertBlock(); 622 StringRef BlockName = HeadBlock->getName(); 623 624 // Generate the conditional block. 625 SplitBlockAndInsertIfThen(Cond, &*Builder.GetInsertPoint(), false, nullptr, 626 &DT, &LI); 627 BranchInst *Branch = cast<BranchInst>(HeadBlock->getTerminator()); 628 BasicBlock *ThenBlock = Branch->getSuccessor(0); 629 BasicBlock *TailBlock = Branch->getSuccessor(1); 630 631 // Assign descriptive names. 632 if (auto *CondInst = dyn_cast<Instruction>(Cond)) 633 CondInst->setName("polly." + Subject + ".cond"); 634 ThenBlock->setName(BlockName + "." + Subject + ".partial"); 635 TailBlock->setName(BlockName + ".cont"); 636 637 // Put the client code into the conditional block and continue in the merge 638 // block afterwards. 639 Builder.SetInsertPoint(ThenBlock, ThenBlock->getFirstInsertionPt()); 640 GenThenFunc(); 641 Builder.SetInsertPoint(TailBlock, TailBlock->getFirstInsertionPt()); 642 } 643 644 void BlockGenerator::generateScalarStores( 645 ScopStmt &Stmt, LoopToScevMapT <S, ValueMapT &BBMap, 646 __isl_keep isl_id_to_ast_expr *NewAccesses) { 647 Loop *L = LI.getLoopFor(Stmt.getBasicBlock()); 648 649 assert(Stmt.isBlockStmt() && 650 "Region statements need to use the generateScalarStores() function in " 651 "the RegionGenerator"); 652 653 for (MemoryAccess *MA : Stmt) { 654 if (MA->isOriginalArrayKind() || MA->isRead()) 655 continue; 656 657 isl::set AccDom = MA->getAccessRelation().domain(); 658 std::string Subject = MA->getId().get_name(); 659 660 generateConditionalExecution( 661 Stmt, AccDom, Subject.c_str(), [&, this, MA]() { 662 Value *Val = MA->getAccessValue(); 663 if (MA->isAnyPHIKind()) { 664 assert(MA->getIncoming().size() >= 1 && 665 "Block statements have exactly one exiting block, or " 666 "multiple but " 667 "with same incoming block and value"); 668 assert(std::all_of(MA->getIncoming().begin(), 669 MA->getIncoming().end(), 670 [&](std::pair<BasicBlock *, Value *> p) -> bool { 671 return p.first == Stmt.getBasicBlock(); 672 }) && 673 "Incoming block must be statement's block"); 674 Val = MA->getIncoming()[0].second; 675 } 676 auto Address = getImplicitAddress(*MA, getLoopForStmt(Stmt), LTS, 677 BBMap, NewAccesses); 678 679 Val = getNewValue(Stmt, Val, BBMap, LTS, L); 680 assert((!isa<Instruction>(Val) || 681 DT.dominates(cast<Instruction>(Val)->getParent(), 682 Builder.GetInsertBlock())) && 683 "Domination violation"); 684 assert((!isa<Instruction>(Address) || 685 DT.dominates(cast<Instruction>(Address)->getParent(), 686 Builder.GetInsertBlock())) && 687 "Domination violation"); 688 Builder.CreateStore(Val, Address); 689 690 }); 691 } 692 } 693 694 void BlockGenerator::createScalarInitialization(Scop &S) { 695 BasicBlock *ExitBB = S.getExit(); 696 BasicBlock *PreEntryBB = S.getEnteringBlock(); 697 698 Builder.SetInsertPoint(&*StartBlock->begin()); 699 700 for (auto &Array : S.arrays()) { 701 if (Array->getNumberOfDimensions() != 0) 702 continue; 703 if (Array->isPHIKind()) { 704 // For PHI nodes, the only values we need to store are the ones that 705 // reach the PHI node from outside the region. In general there should 706 // only be one such incoming edge and this edge should enter through 707 // 'PreEntryBB'. 708 auto PHI = cast<PHINode>(Array->getBasePtr()); 709 710 for (auto BI = PHI->block_begin(), BE = PHI->block_end(); BI != BE; BI++) 711 if (!S.contains(*BI) && *BI != PreEntryBB) 712 llvm_unreachable("Incoming edges from outside the scop should always " 713 "come from PreEntryBB"); 714 715 int Idx = PHI->getBasicBlockIndex(PreEntryBB); 716 if (Idx < 0) 717 continue; 718 719 Value *ScalarValue = PHI->getIncomingValue(Idx); 720 721 Builder.CreateStore(ScalarValue, getOrCreateAlloca(Array)); 722 continue; 723 } 724 725 auto *Inst = dyn_cast<Instruction>(Array->getBasePtr()); 726 727 if (Inst && S.contains(Inst)) 728 continue; 729 730 // PHI nodes that are not marked as such in their SAI object are either exit 731 // PHI nodes we model as common scalars but without initialization, or 732 // incoming phi nodes that need to be initialized. Check if the first is the 733 // case for Inst and do not create and initialize memory if so. 734 if (auto *PHI = dyn_cast_or_null<PHINode>(Inst)) 735 if (!S.hasSingleExitEdge() && PHI->getBasicBlockIndex(ExitBB) >= 0) 736 continue; 737 738 Builder.CreateStore(Array->getBasePtr(), getOrCreateAlloca(Array)); 739 } 740 } 741 742 void BlockGenerator::createScalarFinalization(Scop &S) { 743 // The exit block of the __unoptimized__ region. 744 BasicBlock *ExitBB = S.getExitingBlock(); 745 // The merge block __just after__ the region and the optimized region. 746 BasicBlock *MergeBB = S.getExit(); 747 748 // The exit block of the __optimized__ region. 749 BasicBlock *OptExitBB = *(pred_begin(MergeBB)); 750 if (OptExitBB == ExitBB) 751 OptExitBB = *(++pred_begin(MergeBB)); 752 753 Builder.SetInsertPoint(OptExitBB->getTerminator()); 754 for (const auto &EscapeMapping : EscapeMap) { 755 // Extract the escaping instruction and the escaping users as well as the 756 // alloca the instruction was demoted to. 757 Instruction *EscapeInst = EscapeMapping.first; 758 const auto &EscapeMappingValue = EscapeMapping.second; 759 const EscapeUserVectorTy &EscapeUsers = EscapeMappingValue.second; 760 Value *ScalarAddr = EscapeMappingValue.first; 761 762 // Reload the demoted instruction in the optimized version of the SCoP. 763 Value *EscapeInstReload = 764 Builder.CreateLoad(ScalarAddr, EscapeInst->getName() + ".final_reload"); 765 EscapeInstReload = 766 Builder.CreateBitOrPointerCast(EscapeInstReload, EscapeInst->getType()); 767 768 // Create the merge PHI that merges the optimized and unoptimized version. 769 PHINode *MergePHI = PHINode::Create(EscapeInst->getType(), 2, 770 EscapeInst->getName() + ".merge"); 771 MergePHI->insertBefore(&*MergeBB->getFirstInsertionPt()); 772 773 // Add the respective values to the merge PHI. 774 MergePHI->addIncoming(EscapeInstReload, OptExitBB); 775 MergePHI->addIncoming(EscapeInst, ExitBB); 776 777 // The information of scalar evolution about the escaping instruction needs 778 // to be revoked so the new merged instruction will be used. 779 if (SE.isSCEVable(EscapeInst->getType())) 780 SE.forgetValue(EscapeInst); 781 782 // Replace all uses of the demoted instruction with the merge PHI. 783 for (Instruction *EUser : EscapeUsers) 784 EUser->replaceUsesOfWith(EscapeInst, MergePHI); 785 } 786 } 787 788 void BlockGenerator::findOutsideUsers(Scop &S) { 789 for (auto &Array : S.arrays()) { 790 791 if (Array->getNumberOfDimensions() != 0) 792 continue; 793 794 if (Array->isPHIKind()) 795 continue; 796 797 auto *Inst = dyn_cast<Instruction>(Array->getBasePtr()); 798 799 if (!Inst) 800 continue; 801 802 // Scop invariant hoisting moves some of the base pointers out of the scop. 803 // We can ignore these, as the invariant load hoisting already registers the 804 // relevant outside users. 805 if (!S.contains(Inst)) 806 continue; 807 808 handleOutsideUsers(S, Array); 809 } 810 } 811 812 void BlockGenerator::createExitPHINodeMerges(Scop &S) { 813 if (S.hasSingleExitEdge()) 814 return; 815 816 auto *ExitBB = S.getExitingBlock(); 817 auto *MergeBB = S.getExit(); 818 auto *AfterMergeBB = MergeBB->getSingleSuccessor(); 819 BasicBlock *OptExitBB = *(pred_begin(MergeBB)); 820 if (OptExitBB == ExitBB) 821 OptExitBB = *(++pred_begin(MergeBB)); 822 823 Builder.SetInsertPoint(OptExitBB->getTerminator()); 824 825 for (auto &SAI : S.arrays()) { 826 auto *Val = SAI->getBasePtr(); 827 828 // Only Value-like scalars need a merge PHI. Exit block PHIs receive either 829 // the original PHI's value or the reloaded incoming values from the 830 // generated code. An llvm::Value is merged between the original code's 831 // value or the generated one. 832 if (!SAI->isExitPHIKind()) 833 continue; 834 835 PHINode *PHI = dyn_cast<PHINode>(Val); 836 if (!PHI) 837 continue; 838 839 if (PHI->getParent() != AfterMergeBB) 840 continue; 841 842 std::string Name = PHI->getName(); 843 Value *ScalarAddr = getOrCreateAlloca(SAI); 844 Value *Reload = Builder.CreateLoad(ScalarAddr, Name + ".ph.final_reload"); 845 Reload = Builder.CreateBitOrPointerCast(Reload, PHI->getType()); 846 Value *OriginalValue = PHI->getIncomingValueForBlock(MergeBB); 847 assert((!isa<Instruction>(OriginalValue) || 848 cast<Instruction>(OriginalValue)->getParent() != MergeBB) && 849 "Original value must no be one we just generated."); 850 auto *MergePHI = PHINode::Create(PHI->getType(), 2, Name + ".ph.merge"); 851 MergePHI->insertBefore(&*MergeBB->getFirstInsertionPt()); 852 MergePHI->addIncoming(Reload, OptExitBB); 853 MergePHI->addIncoming(OriginalValue, ExitBB); 854 int Idx = PHI->getBasicBlockIndex(MergeBB); 855 PHI->setIncomingValue(Idx, MergePHI); 856 } 857 } 858 859 void BlockGenerator::invalidateScalarEvolution(Scop &S) { 860 for (auto &Stmt : S) 861 if (Stmt.isCopyStmt()) 862 continue; 863 else if (Stmt.isBlockStmt()) 864 for (auto &Inst : *Stmt.getBasicBlock()) 865 SE.forgetValue(&Inst); 866 else if (Stmt.isRegionStmt()) 867 for (auto *BB : Stmt.getRegion()->blocks()) 868 for (auto &Inst : *BB) 869 SE.forgetValue(&Inst); 870 else 871 llvm_unreachable("Unexpected statement type found"); 872 873 // Invalidate SCEV of loops surrounding the EscapeUsers. 874 for (const auto &EscapeMapping : EscapeMap) { 875 const EscapeUserVectorTy &EscapeUsers = EscapeMapping.second.second; 876 for (Instruction *EUser : EscapeUsers) { 877 if (Loop *L = LI.getLoopFor(EUser->getParent())) 878 while (L) { 879 SE.forgetLoop(L); 880 L = L->getParentLoop(); 881 } 882 } 883 } 884 } 885 886 void BlockGenerator::finalizeSCoP(Scop &S) { 887 findOutsideUsers(S); 888 createScalarInitialization(S); 889 createExitPHINodeMerges(S); 890 createScalarFinalization(S); 891 invalidateScalarEvolution(S); 892 } 893 894 VectorBlockGenerator::VectorBlockGenerator(BlockGenerator &BlockGen, 895 std::vector<LoopToScevMapT> &VLTS, 896 isl_map *Schedule) 897 : BlockGenerator(BlockGen), VLTS(VLTS), Schedule(Schedule) { 898 assert(Schedule && "No statement domain provided"); 899 } 900 901 Value *VectorBlockGenerator::getVectorValue(ScopStmt &Stmt, Value *Old, 902 ValueMapT &VectorMap, 903 VectorValueMapT &ScalarMaps, 904 Loop *L) { 905 if (Value *NewValue = VectorMap.lookup(Old)) 906 return NewValue; 907 908 int Width = getVectorWidth(); 909 910 Value *Vector = UndefValue::get(VectorType::get(Old->getType(), Width)); 911 912 for (int Lane = 0; Lane < Width; Lane++) 913 Vector = Builder.CreateInsertElement( 914 Vector, getNewValue(Stmt, Old, ScalarMaps[Lane], VLTS[Lane], L), 915 Builder.getInt32(Lane)); 916 917 VectorMap[Old] = Vector; 918 919 return Vector; 920 } 921 922 Type *VectorBlockGenerator::getVectorPtrTy(const Value *Val, int Width) { 923 PointerType *PointerTy = dyn_cast<PointerType>(Val->getType()); 924 assert(PointerTy && "PointerType expected"); 925 926 Type *ScalarType = PointerTy->getElementType(); 927 VectorType *VectorType = VectorType::get(ScalarType, Width); 928 929 return PointerType::getUnqual(VectorType); 930 } 931 932 Value *VectorBlockGenerator::generateStrideOneLoad( 933 ScopStmt &Stmt, LoadInst *Load, VectorValueMapT &ScalarMaps, 934 __isl_keep isl_id_to_ast_expr *NewAccesses, bool NegativeStride = false) { 935 unsigned VectorWidth = getVectorWidth(); 936 auto *Pointer = Load->getPointerOperand(); 937 Type *VectorPtrType = getVectorPtrTy(Pointer, VectorWidth); 938 unsigned Offset = NegativeStride ? VectorWidth - 1 : 0; 939 940 Value *NewPointer = generateLocationAccessed(Stmt, Load, ScalarMaps[Offset], 941 VLTS[Offset], NewAccesses); 942 Value *VectorPtr = 943 Builder.CreateBitCast(NewPointer, VectorPtrType, "vector_ptr"); 944 LoadInst *VecLoad = 945 Builder.CreateLoad(VectorPtr, Load->getName() + "_p_vec_full"); 946 if (!Aligned) 947 VecLoad->setAlignment(8); 948 949 if (NegativeStride) { 950 SmallVector<Constant *, 16> Indices; 951 for (int i = VectorWidth - 1; i >= 0; i--) 952 Indices.push_back(ConstantInt::get(Builder.getInt32Ty(), i)); 953 Constant *SV = llvm::ConstantVector::get(Indices); 954 Value *RevVecLoad = Builder.CreateShuffleVector( 955 VecLoad, VecLoad, SV, Load->getName() + "_reverse"); 956 return RevVecLoad; 957 } 958 959 return VecLoad; 960 } 961 962 Value *VectorBlockGenerator::generateStrideZeroLoad( 963 ScopStmt &Stmt, LoadInst *Load, ValueMapT &BBMap, 964 __isl_keep isl_id_to_ast_expr *NewAccesses) { 965 auto *Pointer = Load->getPointerOperand(); 966 Type *VectorPtrType = getVectorPtrTy(Pointer, 1); 967 Value *NewPointer = 968 generateLocationAccessed(Stmt, Load, BBMap, VLTS[0], NewAccesses); 969 Value *VectorPtr = Builder.CreateBitCast(NewPointer, VectorPtrType, 970 Load->getName() + "_p_vec_p"); 971 LoadInst *ScalarLoad = 972 Builder.CreateLoad(VectorPtr, Load->getName() + "_p_splat_one"); 973 974 if (!Aligned) 975 ScalarLoad->setAlignment(8); 976 977 Constant *SplatVector = Constant::getNullValue( 978 VectorType::get(Builder.getInt32Ty(), getVectorWidth())); 979 980 Value *VectorLoad = Builder.CreateShuffleVector( 981 ScalarLoad, ScalarLoad, SplatVector, Load->getName() + "_p_splat"); 982 return VectorLoad; 983 } 984 985 Value *VectorBlockGenerator::generateUnknownStrideLoad( 986 ScopStmt &Stmt, LoadInst *Load, VectorValueMapT &ScalarMaps, 987 __isl_keep isl_id_to_ast_expr *NewAccesses) { 988 int VectorWidth = getVectorWidth(); 989 auto *Pointer = Load->getPointerOperand(); 990 VectorType *VectorType = VectorType::get( 991 dyn_cast<PointerType>(Pointer->getType())->getElementType(), VectorWidth); 992 993 Value *Vector = UndefValue::get(VectorType); 994 995 for (int i = 0; i < VectorWidth; i++) { 996 Value *NewPointer = generateLocationAccessed(Stmt, Load, ScalarMaps[i], 997 VLTS[i], NewAccesses); 998 Value *ScalarLoad = 999 Builder.CreateLoad(NewPointer, Load->getName() + "_p_scalar_"); 1000 Vector = Builder.CreateInsertElement( 1001 Vector, ScalarLoad, Builder.getInt32(i), Load->getName() + "_p_vec_"); 1002 } 1003 1004 return Vector; 1005 } 1006 1007 void VectorBlockGenerator::generateLoad( 1008 ScopStmt &Stmt, LoadInst *Load, ValueMapT &VectorMap, 1009 VectorValueMapT &ScalarMaps, __isl_keep isl_id_to_ast_expr *NewAccesses) { 1010 if (Value *PreloadLoad = GlobalMap.lookup(Load)) { 1011 VectorMap[Load] = Builder.CreateVectorSplat(getVectorWidth(), PreloadLoad, 1012 Load->getName() + "_p"); 1013 return; 1014 } 1015 1016 if (!VectorType::isValidElementType(Load->getType())) { 1017 for (int i = 0; i < getVectorWidth(); i++) 1018 ScalarMaps[i][Load] = 1019 generateArrayLoad(Stmt, Load, ScalarMaps[i], VLTS[i], NewAccesses); 1020 return; 1021 } 1022 1023 const MemoryAccess &Access = Stmt.getArrayAccessFor(Load); 1024 1025 // Make sure we have scalar values available to access the pointer to 1026 // the data location. 1027 extractScalarValues(Load, VectorMap, ScalarMaps); 1028 1029 Value *NewLoad; 1030 if (Access.isStrideZero(isl::manage(isl_map_copy(Schedule)))) 1031 NewLoad = generateStrideZeroLoad(Stmt, Load, ScalarMaps[0], NewAccesses); 1032 else if (Access.isStrideOne(isl::manage(isl_map_copy(Schedule)))) 1033 NewLoad = generateStrideOneLoad(Stmt, Load, ScalarMaps, NewAccesses); 1034 else if (Access.isStrideX(isl::manage(isl_map_copy(Schedule)), -1)) 1035 NewLoad = generateStrideOneLoad(Stmt, Load, ScalarMaps, NewAccesses, true); 1036 else 1037 NewLoad = generateUnknownStrideLoad(Stmt, Load, ScalarMaps, NewAccesses); 1038 1039 VectorMap[Load] = NewLoad; 1040 } 1041 1042 void VectorBlockGenerator::copyUnaryInst(ScopStmt &Stmt, UnaryInstruction *Inst, 1043 ValueMapT &VectorMap, 1044 VectorValueMapT &ScalarMaps) { 1045 int VectorWidth = getVectorWidth(); 1046 Value *NewOperand = getVectorValue(Stmt, Inst->getOperand(0), VectorMap, 1047 ScalarMaps, getLoopForStmt(Stmt)); 1048 1049 assert(isa<CastInst>(Inst) && "Can not generate vector code for instruction"); 1050 1051 const CastInst *Cast = dyn_cast<CastInst>(Inst); 1052 VectorType *DestType = VectorType::get(Inst->getType(), VectorWidth); 1053 VectorMap[Inst] = Builder.CreateCast(Cast->getOpcode(), NewOperand, DestType); 1054 } 1055 1056 void VectorBlockGenerator::copyBinaryInst(ScopStmt &Stmt, BinaryOperator *Inst, 1057 ValueMapT &VectorMap, 1058 VectorValueMapT &ScalarMaps) { 1059 Loop *L = getLoopForStmt(Stmt); 1060 Value *OpZero = Inst->getOperand(0); 1061 Value *OpOne = Inst->getOperand(1); 1062 1063 Value *NewOpZero, *NewOpOne; 1064 NewOpZero = getVectorValue(Stmt, OpZero, VectorMap, ScalarMaps, L); 1065 NewOpOne = getVectorValue(Stmt, OpOne, VectorMap, ScalarMaps, L); 1066 1067 Value *NewInst = Builder.CreateBinOp(Inst->getOpcode(), NewOpZero, NewOpOne, 1068 Inst->getName() + "p_vec"); 1069 VectorMap[Inst] = NewInst; 1070 } 1071 1072 void VectorBlockGenerator::copyStore( 1073 ScopStmt &Stmt, StoreInst *Store, ValueMapT &VectorMap, 1074 VectorValueMapT &ScalarMaps, __isl_keep isl_id_to_ast_expr *NewAccesses) { 1075 const MemoryAccess &Access = Stmt.getArrayAccessFor(Store); 1076 1077 auto *Pointer = Store->getPointerOperand(); 1078 Value *Vector = getVectorValue(Stmt, Store->getValueOperand(), VectorMap, 1079 ScalarMaps, getLoopForStmt(Stmt)); 1080 1081 // Make sure we have scalar values available to access the pointer to 1082 // the data location. 1083 extractScalarValues(Store, VectorMap, ScalarMaps); 1084 1085 if (Access.isStrideOne(isl::manage(isl_map_copy(Schedule)))) { 1086 Type *VectorPtrType = getVectorPtrTy(Pointer, getVectorWidth()); 1087 Value *NewPointer = generateLocationAccessed(Stmt, Store, ScalarMaps[0], 1088 VLTS[0], NewAccesses); 1089 1090 Value *VectorPtr = 1091 Builder.CreateBitCast(NewPointer, VectorPtrType, "vector_ptr"); 1092 StoreInst *Store = Builder.CreateStore(Vector, VectorPtr); 1093 1094 if (!Aligned) 1095 Store->setAlignment(8); 1096 } else { 1097 for (unsigned i = 0; i < ScalarMaps.size(); i++) { 1098 Value *Scalar = Builder.CreateExtractElement(Vector, Builder.getInt32(i)); 1099 Value *NewPointer = generateLocationAccessed(Stmt, Store, ScalarMaps[i], 1100 VLTS[i], NewAccesses); 1101 Builder.CreateStore(Scalar, NewPointer); 1102 } 1103 } 1104 } 1105 1106 bool VectorBlockGenerator::hasVectorOperands(const Instruction *Inst, 1107 ValueMapT &VectorMap) { 1108 for (Value *Operand : Inst->operands()) 1109 if (VectorMap.count(Operand)) 1110 return true; 1111 return false; 1112 } 1113 1114 bool VectorBlockGenerator::extractScalarValues(const Instruction *Inst, 1115 ValueMapT &VectorMap, 1116 VectorValueMapT &ScalarMaps) { 1117 bool HasVectorOperand = false; 1118 int VectorWidth = getVectorWidth(); 1119 1120 for (Value *Operand : Inst->operands()) { 1121 ValueMapT::iterator VecOp = VectorMap.find(Operand); 1122 1123 if (VecOp == VectorMap.end()) 1124 continue; 1125 1126 HasVectorOperand = true; 1127 Value *NewVector = VecOp->second; 1128 1129 for (int i = 0; i < VectorWidth; ++i) { 1130 ValueMapT &SM = ScalarMaps[i]; 1131 1132 // If there is one scalar extracted, all scalar elements should have 1133 // already been extracted by the code here. So no need to check for the 1134 // existence of all of them. 1135 if (SM.count(Operand)) 1136 break; 1137 1138 SM[Operand] = 1139 Builder.CreateExtractElement(NewVector, Builder.getInt32(i)); 1140 } 1141 } 1142 1143 return HasVectorOperand; 1144 } 1145 1146 void VectorBlockGenerator::copyInstScalarized( 1147 ScopStmt &Stmt, Instruction *Inst, ValueMapT &VectorMap, 1148 VectorValueMapT &ScalarMaps, __isl_keep isl_id_to_ast_expr *NewAccesses) { 1149 bool HasVectorOperand; 1150 int VectorWidth = getVectorWidth(); 1151 1152 HasVectorOperand = extractScalarValues(Inst, VectorMap, ScalarMaps); 1153 1154 for (int VectorLane = 0; VectorLane < getVectorWidth(); VectorLane++) 1155 BlockGenerator::copyInstruction(Stmt, Inst, ScalarMaps[VectorLane], 1156 VLTS[VectorLane], NewAccesses); 1157 1158 if (!VectorType::isValidElementType(Inst->getType()) || !HasVectorOperand) 1159 return; 1160 1161 // Make the result available as vector value. 1162 VectorType *VectorType = VectorType::get(Inst->getType(), VectorWidth); 1163 Value *Vector = UndefValue::get(VectorType); 1164 1165 for (int i = 0; i < VectorWidth; i++) 1166 Vector = Builder.CreateInsertElement(Vector, ScalarMaps[i][Inst], 1167 Builder.getInt32(i)); 1168 1169 VectorMap[Inst] = Vector; 1170 } 1171 1172 int VectorBlockGenerator::getVectorWidth() { return VLTS.size(); } 1173 1174 void VectorBlockGenerator::copyInstruction( 1175 ScopStmt &Stmt, Instruction *Inst, ValueMapT &VectorMap, 1176 VectorValueMapT &ScalarMaps, __isl_keep isl_id_to_ast_expr *NewAccesses) { 1177 // Terminator instructions control the control flow. They are explicitly 1178 // expressed in the clast and do not need to be copied. 1179 if (Inst->isTerminator()) 1180 return; 1181 1182 if (canSyntheziseInStmt(Stmt, Inst)) 1183 return; 1184 1185 if (auto *Load = dyn_cast<LoadInst>(Inst)) { 1186 generateLoad(Stmt, Load, VectorMap, ScalarMaps, NewAccesses); 1187 return; 1188 } 1189 1190 if (hasVectorOperands(Inst, VectorMap)) { 1191 if (auto *Store = dyn_cast<StoreInst>(Inst)) { 1192 // Identified as redundant by -polly-simplify. 1193 if (!Stmt.getArrayAccessOrNULLFor(Store)) 1194 return; 1195 1196 copyStore(Stmt, Store, VectorMap, ScalarMaps, NewAccesses); 1197 return; 1198 } 1199 1200 if (auto *Unary = dyn_cast<UnaryInstruction>(Inst)) { 1201 copyUnaryInst(Stmt, Unary, VectorMap, ScalarMaps); 1202 return; 1203 } 1204 1205 if (auto *Binary = dyn_cast<BinaryOperator>(Inst)) { 1206 copyBinaryInst(Stmt, Binary, VectorMap, ScalarMaps); 1207 return; 1208 } 1209 1210 // Fallthrough: We generate scalar instructions, if we don't know how to 1211 // generate vector code. 1212 } 1213 1214 copyInstScalarized(Stmt, Inst, VectorMap, ScalarMaps, NewAccesses); 1215 } 1216 1217 void VectorBlockGenerator::generateScalarVectorLoads( 1218 ScopStmt &Stmt, ValueMapT &VectorBlockMap) { 1219 for (MemoryAccess *MA : Stmt) { 1220 if (MA->isArrayKind() || MA->isWrite()) 1221 continue; 1222 1223 auto *Address = getOrCreateAlloca(*MA); 1224 Type *VectorPtrType = getVectorPtrTy(Address, 1); 1225 Value *VectorPtr = Builder.CreateBitCast(Address, VectorPtrType, 1226 Address->getName() + "_p_vec_p"); 1227 auto *Val = Builder.CreateLoad(VectorPtr, Address->getName() + ".reload"); 1228 Constant *SplatVector = Constant::getNullValue( 1229 VectorType::get(Builder.getInt32Ty(), getVectorWidth())); 1230 1231 Value *VectorVal = Builder.CreateShuffleVector( 1232 Val, Val, SplatVector, Address->getName() + "_p_splat"); 1233 VectorBlockMap[MA->getAccessValue()] = VectorVal; 1234 } 1235 } 1236 1237 void VectorBlockGenerator::verifyNoScalarStores(ScopStmt &Stmt) { 1238 for (MemoryAccess *MA : Stmt) { 1239 if (MA->isArrayKind() || MA->isRead()) 1240 continue; 1241 1242 llvm_unreachable("Scalar stores not expected in vector loop"); 1243 } 1244 } 1245 1246 void VectorBlockGenerator::copyStmt( 1247 ScopStmt &Stmt, __isl_keep isl_id_to_ast_expr *NewAccesses) { 1248 assert(Stmt.isBlockStmt() && 1249 "TODO: Only block statements can be copied by the vector block " 1250 "generator"); 1251 1252 BasicBlock *BB = Stmt.getBasicBlock(); 1253 BasicBlock *CopyBB = SplitBlock(Builder.GetInsertBlock(), 1254 &*Builder.GetInsertPoint(), &DT, &LI); 1255 CopyBB->setName("polly.stmt." + BB->getName()); 1256 Builder.SetInsertPoint(&CopyBB->front()); 1257 1258 // Create two maps that store the mapping from the original instructions of 1259 // the old basic block to their copies in the new basic block. Those maps 1260 // are basic block local. 1261 // 1262 // As vector code generation is supported there is one map for scalar values 1263 // and one for vector values. 1264 // 1265 // In case we just do scalar code generation, the vectorMap is not used and 1266 // the scalarMap has just one dimension, which contains the mapping. 1267 // 1268 // In case vector code generation is done, an instruction may either appear 1269 // in the vector map once (as it is calculating >vectorwidth< values at a 1270 // time. Or (if the values are calculated using scalar operations), it 1271 // appears once in every dimension of the scalarMap. 1272 VectorValueMapT ScalarBlockMap(getVectorWidth()); 1273 ValueMapT VectorBlockMap; 1274 1275 generateScalarVectorLoads(Stmt, VectorBlockMap); 1276 1277 for (Instruction &Inst : *BB) 1278 copyInstruction(Stmt, &Inst, VectorBlockMap, ScalarBlockMap, NewAccesses); 1279 1280 verifyNoScalarStores(Stmt); 1281 } 1282 1283 BasicBlock *RegionGenerator::repairDominance(BasicBlock *BB, 1284 BasicBlock *BBCopy) { 1285 1286 BasicBlock *BBIDom = DT.getNode(BB)->getIDom()->getBlock(); 1287 BasicBlock *BBCopyIDom = EndBlockMap.lookup(BBIDom); 1288 1289 if (BBCopyIDom) 1290 DT.changeImmediateDominator(BBCopy, BBCopyIDom); 1291 1292 return StartBlockMap.lookup(BBIDom); 1293 } 1294 1295 // This is to determine whether an llvm::Value (defined in @p BB) is usable when 1296 // leaving a subregion. The straight-forward DT.dominates(BB, R->getExitBlock()) 1297 // does not work in cases where the exit block has edges from outside the 1298 // region. In that case the llvm::Value would never be usable in in the exit 1299 // block. The RegionGenerator however creates an new exit block ('ExitBBCopy') 1300 // for the subregion's exiting edges only. We need to determine whether an 1301 // llvm::Value is usable in there. We do this by checking whether it dominates 1302 // all exiting blocks individually. 1303 static bool isDominatingSubregionExit(const DominatorTree &DT, Region *R, 1304 BasicBlock *BB) { 1305 for (auto ExitingBB : predecessors(R->getExit())) { 1306 // Check for non-subregion incoming edges. 1307 if (!R->contains(ExitingBB)) 1308 continue; 1309 1310 if (!DT.dominates(BB, ExitingBB)) 1311 return false; 1312 } 1313 1314 return true; 1315 } 1316 1317 // Find the direct dominator of the subregion's exit block if the subregion was 1318 // simplified. 1319 static BasicBlock *findExitDominator(DominatorTree &DT, Region *R) { 1320 BasicBlock *Common = nullptr; 1321 for (auto ExitingBB : predecessors(R->getExit())) { 1322 // Check for non-subregion incoming edges. 1323 if (!R->contains(ExitingBB)) 1324 continue; 1325 1326 // First exiting edge. 1327 if (!Common) { 1328 Common = ExitingBB; 1329 continue; 1330 } 1331 1332 Common = DT.findNearestCommonDominator(Common, ExitingBB); 1333 } 1334 1335 assert(Common && R->contains(Common)); 1336 return Common; 1337 } 1338 1339 void RegionGenerator::copyStmt(ScopStmt &Stmt, LoopToScevMapT <S, 1340 isl_id_to_ast_expr *IdToAstExp) { 1341 assert(Stmt.isRegionStmt() && 1342 "Only region statements can be copied by the region generator"); 1343 1344 // Forget all old mappings. 1345 StartBlockMap.clear(); 1346 EndBlockMap.clear(); 1347 RegionMaps.clear(); 1348 IncompletePHINodeMap.clear(); 1349 1350 // Collection of all values related to this subregion. 1351 ValueMapT ValueMap; 1352 1353 // The region represented by the statement. 1354 Region *R = Stmt.getRegion(); 1355 1356 // Create a dedicated entry for the region where we can reload all demoted 1357 // inputs. 1358 BasicBlock *EntryBB = R->getEntry(); 1359 BasicBlock *EntryBBCopy = SplitBlock(Builder.GetInsertBlock(), 1360 &*Builder.GetInsertPoint(), &DT, &LI); 1361 EntryBBCopy->setName("polly.stmt." + EntryBB->getName() + ".entry"); 1362 Builder.SetInsertPoint(&EntryBBCopy->front()); 1363 1364 ValueMapT &EntryBBMap = RegionMaps[EntryBBCopy]; 1365 generateScalarLoads(Stmt, LTS, EntryBBMap, IdToAstExp); 1366 1367 for (auto PI = pred_begin(EntryBB), PE = pred_end(EntryBB); PI != PE; ++PI) 1368 if (!R->contains(*PI)) { 1369 StartBlockMap[*PI] = EntryBBCopy; 1370 EndBlockMap[*PI] = EntryBBCopy; 1371 } 1372 1373 // Iterate over all blocks in the region in a breadth-first search. 1374 std::deque<BasicBlock *> Blocks; 1375 SmallSetVector<BasicBlock *, 8> SeenBlocks; 1376 Blocks.push_back(EntryBB); 1377 SeenBlocks.insert(EntryBB); 1378 1379 while (!Blocks.empty()) { 1380 BasicBlock *BB = Blocks.front(); 1381 Blocks.pop_front(); 1382 1383 // First split the block and update dominance information. 1384 BasicBlock *BBCopy = splitBB(BB); 1385 BasicBlock *BBCopyIDom = repairDominance(BB, BBCopy); 1386 1387 // Get the mapping for this block and initialize it with either the scalar 1388 // loads from the generated entering block (which dominates all blocks of 1389 // this subregion) or the maps of the immediate dominator, if part of the 1390 // subregion. The latter necessarily includes the former. 1391 ValueMapT *InitBBMap; 1392 if (BBCopyIDom) { 1393 assert(RegionMaps.count(BBCopyIDom)); 1394 InitBBMap = &RegionMaps[BBCopyIDom]; 1395 } else 1396 InitBBMap = &EntryBBMap; 1397 auto Inserted = RegionMaps.insert(std::make_pair(BBCopy, *InitBBMap)); 1398 ValueMapT &RegionMap = Inserted.first->second; 1399 1400 // Copy the block with the BlockGenerator. 1401 Builder.SetInsertPoint(&BBCopy->front()); 1402 copyBB(Stmt, BB, BBCopy, RegionMap, LTS, IdToAstExp); 1403 1404 // In order to remap PHI nodes we store also basic block mappings. 1405 StartBlockMap[BB] = BBCopy; 1406 EndBlockMap[BB] = Builder.GetInsertBlock(); 1407 1408 // Add values to incomplete PHI nodes waiting for this block to be copied. 1409 for (const PHINodePairTy &PHINodePair : IncompletePHINodeMap[BB]) 1410 addOperandToPHI(Stmt, PHINodePair.first, PHINodePair.second, BB, LTS); 1411 IncompletePHINodeMap[BB].clear(); 1412 1413 // And continue with new successors inside the region. 1414 for (auto SI = succ_begin(BB), SE = succ_end(BB); SI != SE; SI++) 1415 if (R->contains(*SI) && SeenBlocks.insert(*SI)) 1416 Blocks.push_back(*SI); 1417 1418 // Remember value in case it is visible after this subregion. 1419 if (isDominatingSubregionExit(DT, R, BB)) 1420 ValueMap.insert(RegionMap.begin(), RegionMap.end()); 1421 } 1422 1423 // Now create a new dedicated region exit block and add it to the region map. 1424 BasicBlock *ExitBBCopy = SplitBlock(Builder.GetInsertBlock(), 1425 &*Builder.GetInsertPoint(), &DT, &LI); 1426 ExitBBCopy->setName("polly.stmt." + R->getExit()->getName() + ".exit"); 1427 StartBlockMap[R->getExit()] = ExitBBCopy; 1428 EndBlockMap[R->getExit()] = ExitBBCopy; 1429 1430 BasicBlock *ExitDomBBCopy = EndBlockMap.lookup(findExitDominator(DT, R)); 1431 assert(ExitDomBBCopy && 1432 "Common exit dominator must be within region; at least the entry node " 1433 "must match"); 1434 DT.changeImmediateDominator(ExitBBCopy, ExitDomBBCopy); 1435 1436 // As the block generator doesn't handle control flow we need to add the 1437 // region control flow by hand after all blocks have been copied. 1438 for (BasicBlock *BB : SeenBlocks) { 1439 1440 BasicBlock *BBCopyStart = StartBlockMap[BB]; 1441 BasicBlock *BBCopyEnd = EndBlockMap[BB]; 1442 TerminatorInst *TI = BB->getTerminator(); 1443 if (isa<UnreachableInst>(TI)) { 1444 while (!BBCopyEnd->empty()) 1445 BBCopyEnd->begin()->eraseFromParent(); 1446 new UnreachableInst(BBCopyEnd->getContext(), BBCopyEnd); 1447 continue; 1448 } 1449 1450 Instruction *BICopy = BBCopyEnd->getTerminator(); 1451 1452 ValueMapT &RegionMap = RegionMaps[BBCopyStart]; 1453 RegionMap.insert(StartBlockMap.begin(), StartBlockMap.end()); 1454 1455 Builder.SetInsertPoint(BICopy); 1456 copyInstScalar(Stmt, TI, RegionMap, LTS); 1457 BICopy->eraseFromParent(); 1458 } 1459 1460 // Add counting PHI nodes to all loops in the region that can be used as 1461 // replacement for SCEVs referring to the old loop. 1462 for (BasicBlock *BB : SeenBlocks) { 1463 Loop *L = LI.getLoopFor(BB); 1464 if (L == nullptr || L->getHeader() != BB || !R->contains(L)) 1465 continue; 1466 1467 BasicBlock *BBCopy = StartBlockMap[BB]; 1468 Value *NullVal = Builder.getInt32(0); 1469 PHINode *LoopPHI = 1470 PHINode::Create(Builder.getInt32Ty(), 2, "polly.subregion.iv"); 1471 Instruction *LoopPHIInc = BinaryOperator::CreateAdd( 1472 LoopPHI, Builder.getInt32(1), "polly.subregion.iv.inc"); 1473 LoopPHI->insertBefore(&BBCopy->front()); 1474 LoopPHIInc->insertBefore(BBCopy->getTerminator()); 1475 1476 for (auto *PredBB : make_range(pred_begin(BB), pred_end(BB))) { 1477 if (!R->contains(PredBB)) 1478 continue; 1479 if (L->contains(PredBB)) 1480 LoopPHI->addIncoming(LoopPHIInc, EndBlockMap[PredBB]); 1481 else 1482 LoopPHI->addIncoming(NullVal, EndBlockMap[PredBB]); 1483 } 1484 1485 for (auto *PredBBCopy : make_range(pred_begin(BBCopy), pred_end(BBCopy))) 1486 if (LoopPHI->getBasicBlockIndex(PredBBCopy) < 0) 1487 LoopPHI->addIncoming(NullVal, PredBBCopy); 1488 1489 LTS[L] = SE.getUnknown(LoopPHI); 1490 } 1491 1492 // Continue generating code in the exit block. 1493 Builder.SetInsertPoint(&*ExitBBCopy->getFirstInsertionPt()); 1494 1495 // Write values visible to other statements. 1496 generateScalarStores(Stmt, LTS, ValueMap, IdToAstExp); 1497 StartBlockMap.clear(); 1498 EndBlockMap.clear(); 1499 RegionMaps.clear(); 1500 IncompletePHINodeMap.clear(); 1501 } 1502 1503 PHINode *RegionGenerator::buildExitPHI(MemoryAccess *MA, LoopToScevMapT <S, 1504 ValueMapT &BBMap, Loop *L) { 1505 ScopStmt *Stmt = MA->getStatement(); 1506 Region *SubR = Stmt->getRegion(); 1507 auto Incoming = MA->getIncoming(); 1508 1509 PollyIRBuilder::InsertPointGuard IPGuard(Builder); 1510 PHINode *OrigPHI = cast<PHINode>(MA->getAccessInstruction()); 1511 BasicBlock *NewSubregionExit = Builder.GetInsertBlock(); 1512 1513 // This can happen if the subregion is simplified after the ScopStmts 1514 // have been created; simplification happens as part of CodeGeneration. 1515 if (OrigPHI->getParent() != SubR->getExit()) { 1516 BasicBlock *FormerExit = SubR->getExitingBlock(); 1517 if (FormerExit) 1518 NewSubregionExit = StartBlockMap.lookup(FormerExit); 1519 } 1520 1521 PHINode *NewPHI = PHINode::Create(OrigPHI->getType(), Incoming.size(), 1522 "polly." + OrigPHI->getName(), 1523 NewSubregionExit->getFirstNonPHI()); 1524 1525 // Add the incoming values to the PHI. 1526 for (auto &Pair : Incoming) { 1527 BasicBlock *OrigIncomingBlock = Pair.first; 1528 BasicBlock *NewIncomingBlockStart = StartBlockMap.lookup(OrigIncomingBlock); 1529 BasicBlock *NewIncomingBlockEnd = EndBlockMap.lookup(OrigIncomingBlock); 1530 Builder.SetInsertPoint(NewIncomingBlockEnd->getTerminator()); 1531 assert(RegionMaps.count(NewIncomingBlockStart)); 1532 assert(RegionMaps.count(NewIncomingBlockEnd)); 1533 ValueMapT *LocalBBMap = &RegionMaps[NewIncomingBlockStart]; 1534 1535 Value *OrigIncomingValue = Pair.second; 1536 Value *NewIncomingValue = 1537 getNewValue(*Stmt, OrigIncomingValue, *LocalBBMap, LTS, L); 1538 NewPHI->addIncoming(NewIncomingValue, NewIncomingBlockEnd); 1539 } 1540 1541 return NewPHI; 1542 } 1543 1544 Value *RegionGenerator::getExitScalar(MemoryAccess *MA, LoopToScevMapT <S, 1545 ValueMapT &BBMap) { 1546 ScopStmt *Stmt = MA->getStatement(); 1547 1548 // TODO: Add some test cases that ensure this is really the right choice. 1549 Loop *L = LI.getLoopFor(Stmt->getRegion()->getExit()); 1550 1551 if (MA->isAnyPHIKind()) { 1552 auto Incoming = MA->getIncoming(); 1553 assert(!Incoming.empty() && 1554 "PHI WRITEs must have originate from at least one incoming block"); 1555 1556 // If there is only one incoming value, we do not need to create a PHI. 1557 if (Incoming.size() == 1) { 1558 Value *OldVal = Incoming[0].second; 1559 return getNewValue(*Stmt, OldVal, BBMap, LTS, L); 1560 } 1561 1562 return buildExitPHI(MA, LTS, BBMap, L); 1563 } 1564 1565 // MemoryKind::Value accesses leaving the subregion must dominate the exit 1566 // block; just pass the copied value. 1567 Value *OldVal = MA->getAccessValue(); 1568 return getNewValue(*Stmt, OldVal, BBMap, LTS, L); 1569 } 1570 1571 void RegionGenerator::generateScalarStores( 1572 ScopStmt &Stmt, LoopToScevMapT <S, ValueMapT &BBMap, 1573 __isl_keep isl_id_to_ast_expr *NewAccesses) { 1574 assert(Stmt.getRegion() && 1575 "Block statements need to use the generateScalarStores() " 1576 "function in the BlockGenerator"); 1577 1578 for (MemoryAccess *MA : Stmt) { 1579 if (MA->isOriginalArrayKind() || MA->isRead()) 1580 continue; 1581 1582 isl::set AccDom = MA->getAccessRelation().domain(); 1583 std::string Subject = MA->getId().get_name(); 1584 generateConditionalExecution( 1585 Stmt, AccDom, Subject.c_str(), [&, this, MA]() { 1586 1587 Value *NewVal = getExitScalar(MA, LTS, BBMap); 1588 Value *Address = getImplicitAddress(*MA, getLoopForStmt(Stmt), LTS, 1589 BBMap, NewAccesses); 1590 assert((!isa<Instruction>(NewVal) || 1591 DT.dominates(cast<Instruction>(NewVal)->getParent(), 1592 Builder.GetInsertBlock())) && 1593 "Domination violation"); 1594 assert((!isa<Instruction>(Address) || 1595 DT.dominates(cast<Instruction>(Address)->getParent(), 1596 Builder.GetInsertBlock())) && 1597 "Domination violation"); 1598 Builder.CreateStore(NewVal, Address); 1599 }); 1600 } 1601 } 1602 1603 void RegionGenerator::addOperandToPHI(ScopStmt &Stmt, PHINode *PHI, 1604 PHINode *PHICopy, BasicBlock *IncomingBB, 1605 LoopToScevMapT <S) { 1606 // If the incoming block was not yet copied mark this PHI as incomplete. 1607 // Once the block will be copied the incoming value will be added. 1608 BasicBlock *BBCopyStart = StartBlockMap[IncomingBB]; 1609 BasicBlock *BBCopyEnd = EndBlockMap[IncomingBB]; 1610 if (!BBCopyStart) { 1611 assert(!BBCopyEnd); 1612 assert(Stmt.represents(IncomingBB) && 1613 "Bad incoming block for PHI in non-affine region"); 1614 IncompletePHINodeMap[IncomingBB].push_back(std::make_pair(PHI, PHICopy)); 1615 return; 1616 } 1617 1618 assert(RegionMaps.count(BBCopyStart) && 1619 "Incoming PHI block did not have a BBMap"); 1620 ValueMapT &BBCopyMap = RegionMaps[BBCopyStart]; 1621 1622 Value *OpCopy = nullptr; 1623 1624 if (Stmt.represents(IncomingBB)) { 1625 Value *Op = PHI->getIncomingValueForBlock(IncomingBB); 1626 1627 // If the current insert block is different from the PHIs incoming block 1628 // change it, otherwise do not. 1629 auto IP = Builder.GetInsertPoint(); 1630 if (IP->getParent() != BBCopyEnd) 1631 Builder.SetInsertPoint(BBCopyEnd->getTerminator()); 1632 OpCopy = getNewValue(Stmt, Op, BBCopyMap, LTS, getLoopForStmt(Stmt)); 1633 if (IP->getParent() != BBCopyEnd) 1634 Builder.SetInsertPoint(&*IP); 1635 } else { 1636 // All edges from outside the non-affine region become a single edge 1637 // in the new copy of the non-affine region. Make sure to only add the 1638 // corresponding edge the first time we encounter a basic block from 1639 // outside the non-affine region. 1640 if (PHICopy->getBasicBlockIndex(BBCopyEnd) >= 0) 1641 return; 1642 1643 // Get the reloaded value. 1644 OpCopy = getNewValue(Stmt, PHI, BBCopyMap, LTS, getLoopForStmt(Stmt)); 1645 } 1646 1647 assert(OpCopy && "Incoming PHI value was not copied properly"); 1648 PHICopy->addIncoming(OpCopy, BBCopyEnd); 1649 } 1650 1651 void RegionGenerator::copyPHIInstruction(ScopStmt &Stmt, PHINode *PHI, 1652 ValueMapT &BBMap, 1653 LoopToScevMapT <S) { 1654 unsigned NumIncoming = PHI->getNumIncomingValues(); 1655 PHINode *PHICopy = 1656 Builder.CreatePHI(PHI->getType(), NumIncoming, "polly." + PHI->getName()); 1657 PHICopy->moveBefore(PHICopy->getParent()->getFirstNonPHI()); 1658 BBMap[PHI] = PHICopy; 1659 1660 for (BasicBlock *IncomingBB : PHI->blocks()) 1661 addOperandToPHI(Stmt, PHI, PHICopy, IncomingBB, LTS); 1662 } 1663