1 //===--- BlockGenerators.cpp - Generate code for statements -----*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the BlockGenerator and VectorBlockGenerator classes, 11 // which generate sequential code and vectorized code for a polyhedral 12 // statement, respectively. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "polly/CodeGen/BlockGenerators.h" 17 #include "polly/CodeGen/CodeGeneration.h" 18 #include "polly/CodeGen/IslExprBuilder.h" 19 #include "polly/CodeGen/RuntimeDebugBuilder.h" 20 #include "polly/Options.h" 21 #include "polly/ScopInfo.h" 22 #include "polly/Support/GICHelper.h" 23 #include "polly/Support/SCEVValidator.h" 24 #include "polly/Support/ScopHelper.h" 25 #include "polly/Support/VirtualInstruction.h" 26 #include "llvm/Analysis/LoopInfo.h" 27 #include "llvm/Analysis/RegionInfo.h" 28 #include "llvm/Analysis/ScalarEvolution.h" 29 #include "llvm/IR/IntrinsicInst.h" 30 #include "llvm/IR/Module.h" 31 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 32 #include "llvm/Transforms/Utils/Local.h" 33 #include "isl/aff.h" 34 #include "isl/ast.h" 35 #include "isl/ast_build.h" 36 #include "isl/set.h" 37 #include <deque> 38 39 using namespace llvm; 40 using namespace polly; 41 42 static cl::opt<bool> Aligned("enable-polly-aligned", 43 cl::desc("Assumed aligned memory accesses."), 44 cl::Hidden, cl::init(false), cl::ZeroOrMore, 45 cl::cat(PollyCategory)); 46 47 bool PollyDebugPrinting; 48 static cl::opt<bool, true> DebugPrintingX( 49 "polly-codegen-add-debug-printing", 50 cl::desc("Add printf calls that show the values loaded/stored."), 51 cl::location(PollyDebugPrinting), cl::Hidden, cl::init(false), 52 cl::ZeroOrMore, cl::cat(PollyCategory)); 53 54 static cl::opt<bool> TraceStmts( 55 "polly-codegen-trace-stmts", 56 cl::desc("Add printf calls that print the statement being executed"), 57 cl::Hidden, cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory)); 58 59 static cl::opt<bool> TraceScalars( 60 "polly-codegen-trace-scalars", 61 cl::desc("Add printf calls that print the values of all scalar values " 62 "used in a statement. Requires -polly-codegen-trace-stmts."), 63 cl::Hidden, cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory)); 64 65 BlockGenerator::BlockGenerator( 66 PollyIRBuilder &B, LoopInfo &LI, ScalarEvolution &SE, DominatorTree &DT, 67 AllocaMapTy &ScalarMap, EscapeUsersAllocaMapTy &EscapeMap, 68 ValueMapT &GlobalMap, IslExprBuilder *ExprBuilder, BasicBlock *StartBlock) 69 : Builder(B), LI(LI), SE(SE), ExprBuilder(ExprBuilder), DT(DT), 70 EntryBB(nullptr), ScalarMap(ScalarMap), EscapeMap(EscapeMap), 71 GlobalMap(GlobalMap), StartBlock(StartBlock) {} 72 73 Value *BlockGenerator::trySynthesizeNewValue(ScopStmt &Stmt, Value *Old, 74 ValueMapT &BBMap, 75 LoopToScevMapT <S, 76 Loop *L) const { 77 if (!SE.isSCEVable(Old->getType())) 78 return nullptr; 79 80 const SCEV *Scev = SE.getSCEVAtScope(Old, L); 81 if (!Scev) 82 return nullptr; 83 84 if (isa<SCEVCouldNotCompute>(Scev)) 85 return nullptr; 86 87 const SCEV *NewScev = SCEVLoopAddRecRewriter::rewrite(Scev, LTS, SE); 88 ValueMapT VTV; 89 VTV.insert(BBMap.begin(), BBMap.end()); 90 VTV.insert(GlobalMap.begin(), GlobalMap.end()); 91 92 Scop &S = *Stmt.getParent(); 93 const DataLayout &DL = S.getFunction().getParent()->getDataLayout(); 94 auto IP = Builder.GetInsertPoint(); 95 96 assert(IP != Builder.GetInsertBlock()->end() && 97 "Only instructions can be insert points for SCEVExpander"); 98 Value *Expanded = 99 expandCodeFor(S, SE, DL, "polly", NewScev, Old->getType(), &*IP, &VTV, 100 StartBlock->getSinglePredecessor()); 101 102 BBMap[Old] = Expanded; 103 return Expanded; 104 } 105 106 Value *BlockGenerator::getNewValue(ScopStmt &Stmt, Value *Old, ValueMapT &BBMap, 107 LoopToScevMapT <S, Loop *L) const { 108 109 auto lookupGlobally = [this](Value *Old) -> Value * { 110 Value *New = GlobalMap.lookup(Old); 111 if (!New) 112 return nullptr; 113 114 // Required by: 115 // * Isl/CodeGen/OpenMP/invariant_base_pointer_preloaded.ll 116 // * Isl/CodeGen/OpenMP/invariant_base_pointer_preloaded_different_bb.ll 117 // * Isl/CodeGen/OpenMP/invariant_base_pointer_preloaded_pass_only_needed.ll 118 // * Isl/CodeGen/OpenMP/invariant_base_pointers_preloaded.ll 119 // * Isl/CodeGen/OpenMP/loop-body-references-outer-values-3.ll 120 // * Isl/CodeGen/OpenMP/single_loop_with_loop_invariant_baseptr.ll 121 // GlobalMap should be a mapping from (value in original SCoP) to (copied 122 // value in generated SCoP), without intermediate mappings, which might 123 // easily require transitiveness as well. 124 if (Value *NewRemapped = GlobalMap.lookup(New)) 125 New = NewRemapped; 126 127 // No test case for this code. 128 if (Old->getType()->getScalarSizeInBits() < 129 New->getType()->getScalarSizeInBits()) 130 New = Builder.CreateTruncOrBitCast(New, Old->getType()); 131 132 return New; 133 }; 134 135 Value *New = nullptr; 136 auto VUse = VirtualUse::create(&Stmt, L, Old, true); 137 switch (VUse.getKind()) { 138 case VirtualUse::Block: 139 // BasicBlock are constants, but the BlockGenerator copies them. 140 New = BBMap.lookup(Old); 141 break; 142 143 case VirtualUse::Constant: 144 // Used by: 145 // * Isl/CodeGen/OpenMP/reference-argument-from-non-affine-region.ll 146 // Constants should not be redefined. In this case, the GlobalMap just 147 // contains a mapping to the same constant, which is unnecessary, but 148 // harmless. 149 if ((New = lookupGlobally(Old))) 150 break; 151 152 assert(!BBMap.count(Old)); 153 New = Old; 154 break; 155 156 case VirtualUse::ReadOnly: 157 assert(!GlobalMap.count(Old)); 158 159 // Required for: 160 // * Isl/CodeGen/MemAccess/create_arrays.ll 161 // * Isl/CodeGen/read-only-scalars.ll 162 // * ScheduleOptimizer/pattern-matching-based-opts_10.ll 163 // For some reason these reload a read-only value. The reloaded value ends 164 // up in BBMap, buts its value should be identical. 165 // 166 // Required for: 167 // * Isl/CodeGen/OpenMP/single_loop_with_param.ll 168 // The parallel subfunctions need to reference the read-only value from the 169 // parent function, this is done by reloading them locally. 170 if ((New = BBMap.lookup(Old))) 171 break; 172 173 New = Old; 174 break; 175 176 case VirtualUse::Synthesizable: 177 // Used by: 178 // * Isl/CodeGen/OpenMP/loop-body-references-outer-values-3.ll 179 // * Isl/CodeGen/OpenMP/recomputed-srem.ll 180 // * Isl/CodeGen/OpenMP/reference-other-bb.ll 181 // * Isl/CodeGen/OpenMP/two-parallel-loops-reference-outer-indvar.ll 182 // For some reason synthesizable values end up in GlobalMap. Their values 183 // are the same as trySynthesizeNewValue would return. The legacy 184 // implementation prioritized GlobalMap, so this is what we do here as well. 185 // Ideally, synthesizable values should not end up in GlobalMap. 186 if ((New = lookupGlobally(Old))) 187 break; 188 189 // Required for: 190 // * Isl/CodeGen/RuntimeDebugBuilder/combine_different_values.ll 191 // * Isl/CodeGen/getNumberOfIterations.ll 192 // * Isl/CodeGen/non_affine_float_compare.ll 193 // * ScheduleOptimizer/pattern-matching-based-opts_10.ll 194 // Ideally, synthesizable values are synthesized by trySynthesizeNewValue, 195 // not precomputed (SCEVExpander has its own caching mechanism). 196 // These tests fail without this, but I think trySynthesizeNewValue would 197 // just re-synthesize the same instructions. 198 if ((New = BBMap.lookup(Old))) 199 break; 200 201 New = trySynthesizeNewValue(Stmt, Old, BBMap, LTS, L); 202 break; 203 204 case VirtualUse::Hoisted: 205 // TODO: Hoisted invariant loads should be found in GlobalMap only, but not 206 // redefined locally (which will be ignored anyway). That is, the following 207 // assertion should apply: assert(!BBMap.count(Old)) 208 209 New = lookupGlobally(Old); 210 break; 211 212 case VirtualUse::Intra: 213 case VirtualUse::Inter: 214 assert(!GlobalMap.count(Old) && 215 "Intra and inter-stmt values are never global"); 216 New = BBMap.lookup(Old); 217 break; 218 } 219 assert(New && "Unexpected scalar dependence in region!"); 220 return New; 221 } 222 223 void BlockGenerator::copyInstScalar(ScopStmt &Stmt, Instruction *Inst, 224 ValueMapT &BBMap, LoopToScevMapT <S) { 225 // We do not generate debug intrinsics as we did not investigate how to 226 // copy them correctly. At the current state, they just crash the code 227 // generation as the meta-data operands are not correctly copied. 228 if (isa<DbgInfoIntrinsic>(Inst)) 229 return; 230 231 Instruction *NewInst = Inst->clone(); 232 233 // Replace old operands with the new ones. 234 for (Value *OldOperand : Inst->operands()) { 235 Value *NewOperand = 236 getNewValue(Stmt, OldOperand, BBMap, LTS, getLoopForStmt(Stmt)); 237 238 if (!NewOperand) { 239 assert(!isa<StoreInst>(NewInst) && 240 "Store instructions are always needed!"); 241 NewInst->deleteValue(); 242 return; 243 } 244 245 NewInst->replaceUsesOfWith(OldOperand, NewOperand); 246 } 247 248 Builder.Insert(NewInst); 249 BBMap[Inst] = NewInst; 250 251 // When copying the instruction onto the Module meant for the GPU, 252 // debug metadata attached to an instruction causes all related 253 // metadata to be pulled into the Module. This includes the DICompileUnit, 254 // which will not be listed in llvm.dbg.cu of the Module since the Module 255 // doesn't contain one. This fails the verification of the Module and the 256 // subsequent generation of the ASM string. 257 if (NewInst->getModule() != Inst->getModule()) 258 NewInst->setDebugLoc(llvm::DebugLoc()); 259 260 if (!NewInst->getType()->isVoidTy()) 261 NewInst->setName("p_" + Inst->getName()); 262 } 263 264 Value * 265 BlockGenerator::generateLocationAccessed(ScopStmt &Stmt, MemAccInst Inst, 266 ValueMapT &BBMap, LoopToScevMapT <S, 267 isl_id_to_ast_expr *NewAccesses) { 268 const MemoryAccess &MA = Stmt.getArrayAccessFor(Inst); 269 return generateLocationAccessed( 270 Stmt, getLoopForStmt(Stmt), 271 Inst.isNull() ? nullptr : Inst.getPointerOperand(), BBMap, LTS, 272 NewAccesses, MA.getId().release(), MA.getAccessValue()->getType()); 273 } 274 275 Value *BlockGenerator::generateLocationAccessed( 276 ScopStmt &Stmt, Loop *L, Value *Pointer, ValueMapT &BBMap, 277 LoopToScevMapT <S, isl_id_to_ast_expr *NewAccesses, __isl_take isl_id *Id, 278 Type *ExpectedType) { 279 isl_ast_expr *AccessExpr = isl_id_to_ast_expr_get(NewAccesses, Id); 280 281 if (AccessExpr) { 282 AccessExpr = isl_ast_expr_address_of(AccessExpr); 283 auto Address = ExprBuilder->create(AccessExpr); 284 285 // Cast the address of this memory access to a pointer type that has the 286 // same element type as the original access, but uses the address space of 287 // the newly generated pointer. 288 auto OldPtrTy = ExpectedType->getPointerTo(); 289 auto NewPtrTy = Address->getType(); 290 OldPtrTy = PointerType::get(OldPtrTy->getElementType(), 291 NewPtrTy->getPointerAddressSpace()); 292 293 if (OldPtrTy != NewPtrTy) 294 Address = Builder.CreateBitOrPointerCast(Address, OldPtrTy); 295 return Address; 296 } 297 assert( 298 Pointer && 299 "If expression was not generated, must use the original pointer value"); 300 return getNewValue(Stmt, Pointer, BBMap, LTS, L); 301 } 302 303 Value * 304 BlockGenerator::getImplicitAddress(MemoryAccess &Access, Loop *L, 305 LoopToScevMapT <S, ValueMapT &BBMap, 306 __isl_keep isl_id_to_ast_expr *NewAccesses) { 307 if (Access.isLatestArrayKind()) 308 return generateLocationAccessed(*Access.getStatement(), L, nullptr, BBMap, 309 LTS, NewAccesses, Access.getId().release(), 310 Access.getAccessValue()->getType()); 311 312 return getOrCreateAlloca(Access); 313 } 314 315 Loop *BlockGenerator::getLoopForStmt(const ScopStmt &Stmt) const { 316 auto *StmtBB = Stmt.getEntryBlock(); 317 return LI.getLoopFor(StmtBB); 318 } 319 320 Value *BlockGenerator::generateArrayLoad(ScopStmt &Stmt, LoadInst *Load, 321 ValueMapT &BBMap, LoopToScevMapT <S, 322 isl_id_to_ast_expr *NewAccesses) { 323 if (Value *PreloadLoad = GlobalMap.lookup(Load)) 324 return PreloadLoad; 325 326 Value *NewPointer = 327 generateLocationAccessed(Stmt, Load, BBMap, LTS, NewAccesses); 328 Value *ScalarLoad = Builder.CreateAlignedLoad( 329 NewPointer, Load->getAlignment(), Load->getName() + "_p_scalar_"); 330 331 if (PollyDebugPrinting) 332 RuntimeDebugBuilder::createCPUPrinter(Builder, "Load from ", NewPointer, 333 ": ", ScalarLoad, "\n"); 334 335 return ScalarLoad; 336 } 337 338 void BlockGenerator::generateArrayStore(ScopStmt &Stmt, StoreInst *Store, 339 ValueMapT &BBMap, LoopToScevMapT <S, 340 isl_id_to_ast_expr *NewAccesses) { 341 MemoryAccess &MA = Stmt.getArrayAccessFor(Store); 342 isl::set AccDom = MA.getAccessRelation().domain(); 343 std::string Subject = MA.getId().get_name(); 344 345 generateConditionalExecution(Stmt, AccDom, Subject.c_str(), [&, this]() { 346 Value *NewPointer = 347 generateLocationAccessed(Stmt, Store, BBMap, LTS, NewAccesses); 348 Value *ValueOperand = getNewValue(Stmt, Store->getValueOperand(), BBMap, 349 LTS, getLoopForStmt(Stmt)); 350 351 if (PollyDebugPrinting) 352 RuntimeDebugBuilder::createCPUPrinter(Builder, "Store to ", NewPointer, 353 ": ", ValueOperand, "\n"); 354 355 Builder.CreateAlignedStore(ValueOperand, NewPointer, Store->getAlignment()); 356 }); 357 } 358 359 bool BlockGenerator::canSyntheziseInStmt(ScopStmt &Stmt, Instruction *Inst) { 360 Loop *L = getLoopForStmt(Stmt); 361 return (Stmt.isBlockStmt() || !Stmt.getRegion()->contains(L)) && 362 canSynthesize(Inst, *Stmt.getParent(), &SE, L); 363 } 364 365 void BlockGenerator::copyInstruction(ScopStmt &Stmt, Instruction *Inst, 366 ValueMapT &BBMap, LoopToScevMapT <S, 367 isl_id_to_ast_expr *NewAccesses) { 368 // Terminator instructions control the control flow. They are explicitly 369 // expressed in the clast and do not need to be copied. 370 if (Inst->isTerminator()) 371 return; 372 373 // Synthesizable statements will be generated on-demand. 374 if (canSyntheziseInStmt(Stmt, Inst)) 375 return; 376 377 if (auto *Load = dyn_cast<LoadInst>(Inst)) { 378 Value *NewLoad = generateArrayLoad(Stmt, Load, BBMap, LTS, NewAccesses); 379 // Compute NewLoad before its insertion in BBMap to make the insertion 380 // deterministic. 381 BBMap[Load] = NewLoad; 382 return; 383 } 384 385 if (auto *Store = dyn_cast<StoreInst>(Inst)) { 386 // Identified as redundant by -polly-simplify. 387 if (!Stmt.getArrayAccessOrNULLFor(Store)) 388 return; 389 390 generateArrayStore(Stmt, Store, BBMap, LTS, NewAccesses); 391 return; 392 } 393 394 if (auto *PHI = dyn_cast<PHINode>(Inst)) { 395 copyPHIInstruction(Stmt, PHI, BBMap, LTS); 396 return; 397 } 398 399 // Skip some special intrinsics for which we do not adjust the semantics to 400 // the new schedule. All others are handled like every other instruction. 401 if (isIgnoredIntrinsic(Inst)) 402 return; 403 404 copyInstScalar(Stmt, Inst, BBMap, LTS); 405 } 406 407 void BlockGenerator::removeDeadInstructions(BasicBlock *BB, ValueMapT &BBMap) { 408 auto NewBB = Builder.GetInsertBlock(); 409 for (auto I = NewBB->rbegin(); I != NewBB->rend(); I++) { 410 Instruction *NewInst = &*I; 411 412 if (!isInstructionTriviallyDead(NewInst)) 413 continue; 414 415 for (auto Pair : BBMap) 416 if (Pair.second == NewInst) { 417 BBMap.erase(Pair.first); 418 } 419 420 NewInst->eraseFromParent(); 421 I = NewBB->rbegin(); 422 } 423 } 424 425 void BlockGenerator::copyStmt(ScopStmt &Stmt, LoopToScevMapT <S, 426 isl_id_to_ast_expr *NewAccesses) { 427 assert(Stmt.isBlockStmt() && 428 "Only block statements can be copied by the block generator"); 429 430 ValueMapT BBMap; 431 432 BasicBlock *BB = Stmt.getBasicBlock(); 433 copyBB(Stmt, BB, BBMap, LTS, NewAccesses); 434 removeDeadInstructions(BB, BBMap); 435 } 436 437 BasicBlock *BlockGenerator::splitBB(BasicBlock *BB) { 438 BasicBlock *CopyBB = SplitBlock(Builder.GetInsertBlock(), 439 &*Builder.GetInsertPoint(), &DT, &LI); 440 CopyBB->setName("polly.stmt." + BB->getName()); 441 return CopyBB; 442 } 443 444 BasicBlock *BlockGenerator::copyBB(ScopStmt &Stmt, BasicBlock *BB, 445 ValueMapT &BBMap, LoopToScevMapT <S, 446 isl_id_to_ast_expr *NewAccesses) { 447 BasicBlock *CopyBB = splitBB(BB); 448 Builder.SetInsertPoint(&CopyBB->front()); 449 generateScalarLoads(Stmt, LTS, BBMap, NewAccesses); 450 generateBeginStmtTrace(Stmt, LTS, BBMap); 451 452 copyBB(Stmt, BB, CopyBB, BBMap, LTS, NewAccesses); 453 454 // After a basic block was copied store all scalars that escape this block in 455 // their alloca. 456 generateScalarStores(Stmt, LTS, BBMap, NewAccesses); 457 return CopyBB; 458 } 459 460 void BlockGenerator::copyBB(ScopStmt &Stmt, BasicBlock *BB, BasicBlock *CopyBB, 461 ValueMapT &BBMap, LoopToScevMapT <S, 462 isl_id_to_ast_expr *NewAccesses) { 463 EntryBB = &CopyBB->getParent()->getEntryBlock(); 464 465 // Block statements and the entry blocks of region statement are code 466 // generated from instruction lists. This allow us to optimize the 467 // instructions that belong to a certain scop statement. As the code 468 // structure of region statements might be arbitrary complex, optimizing the 469 // instruction list is not yet supported. 470 if (Stmt.isBlockStmt() || (Stmt.isRegionStmt() && Stmt.getEntryBlock() == BB)) 471 for (Instruction *Inst : Stmt.getInstructions()) 472 copyInstruction(Stmt, Inst, BBMap, LTS, NewAccesses); 473 else 474 for (Instruction &Inst : *BB) 475 copyInstruction(Stmt, &Inst, BBMap, LTS, NewAccesses); 476 } 477 478 Value *BlockGenerator::getOrCreateAlloca(const MemoryAccess &Access) { 479 assert(!Access.isLatestArrayKind() && "Trying to get alloca for array kind"); 480 481 return getOrCreateAlloca(Access.getLatestScopArrayInfo()); 482 } 483 484 Value *BlockGenerator::getOrCreateAlloca(const ScopArrayInfo *Array) { 485 assert(!Array->isArrayKind() && "Trying to get alloca for array kind"); 486 487 auto &Addr = ScalarMap[Array]; 488 489 if (Addr) { 490 // Allow allocas to be (temporarily) redirected once by adding a new 491 // old-alloca-addr to new-addr mapping to GlobalMap. This functionality 492 // is used for example by the OpenMP code generation where a first use 493 // of a scalar while still in the host code allocates a normal alloca with 494 // getOrCreateAlloca. When the values of this scalar are accessed during 495 // the generation of the parallel subfunction, these values are copied over 496 // to the parallel subfunction and each request for a scalar alloca slot 497 // must be forwarded to the temporary in-subfunction slot. This mapping is 498 // removed when the subfunction has been generated and again normal host 499 // code is generated. Due to the following reasons it is not possible to 500 // perform the GlobalMap lookup right after creating the alloca below, but 501 // instead we need to check GlobalMap at each call to getOrCreateAlloca: 502 // 503 // 1) GlobalMap may be changed multiple times (for each parallel loop), 504 // 2) The temporary mapping is commonly only known after the initial 505 // alloca has already been generated, and 506 // 3) The original alloca value must be restored after leaving the 507 // sub-function. 508 if (Value *NewAddr = GlobalMap.lookup(&*Addr)) 509 return NewAddr; 510 return Addr; 511 } 512 513 Type *Ty = Array->getElementType(); 514 Value *ScalarBase = Array->getBasePtr(); 515 std::string NameExt; 516 if (Array->isPHIKind()) 517 NameExt = ".phiops"; 518 else 519 NameExt = ".s2a"; 520 521 const DataLayout &DL = Builder.GetInsertBlock()->getModule()->getDataLayout(); 522 523 Addr = new AllocaInst(Ty, DL.getAllocaAddrSpace(), 524 ScalarBase->getName() + NameExt); 525 EntryBB = &Builder.GetInsertBlock()->getParent()->getEntryBlock(); 526 Addr->insertBefore(&*EntryBB->getFirstInsertionPt()); 527 528 return Addr; 529 } 530 531 void BlockGenerator::handleOutsideUsers(const Scop &S, ScopArrayInfo *Array) { 532 Instruction *Inst = cast<Instruction>(Array->getBasePtr()); 533 534 // If there are escape users we get the alloca for this instruction and put it 535 // in the EscapeMap for later finalization. Lastly, if the instruction was 536 // copied multiple times we already did this and can exit. 537 if (EscapeMap.count(Inst)) 538 return; 539 540 EscapeUserVectorTy EscapeUsers; 541 for (User *U : Inst->users()) { 542 543 // Non-instruction user will never escape. 544 Instruction *UI = dyn_cast<Instruction>(U); 545 if (!UI) 546 continue; 547 548 if (S.contains(UI)) 549 continue; 550 551 EscapeUsers.push_back(UI); 552 } 553 554 // Exit if no escape uses were found. 555 if (EscapeUsers.empty()) 556 return; 557 558 // Get or create an escape alloca for this instruction. 559 auto *ScalarAddr = getOrCreateAlloca(Array); 560 561 // Remember that this instruction has escape uses and the escape alloca. 562 EscapeMap[Inst] = std::make_pair(ScalarAddr, std::move(EscapeUsers)); 563 } 564 565 void BlockGenerator::generateScalarLoads( 566 ScopStmt &Stmt, LoopToScevMapT <S, ValueMapT &BBMap, 567 __isl_keep isl_id_to_ast_expr *NewAccesses) { 568 for (MemoryAccess *MA : Stmt) { 569 if (MA->isOriginalArrayKind() || MA->isWrite()) 570 continue; 571 572 #ifndef NDEBUG 573 auto StmtDom = 574 Stmt.getDomain().intersect_params(Stmt.getParent()->getContext()); 575 auto AccDom = MA->getAccessRelation().domain(); 576 assert(!StmtDom.is_subset(AccDom).is_false() && 577 "Scalar must be loaded in all statement instances"); 578 #endif 579 580 auto *Address = 581 getImplicitAddress(*MA, getLoopForStmt(Stmt), LTS, BBMap, NewAccesses); 582 assert((!isa<Instruction>(Address) || 583 DT.dominates(cast<Instruction>(Address)->getParent(), 584 Builder.GetInsertBlock())) && 585 "Domination violation"); 586 BBMap[MA->getAccessValue()] = 587 Builder.CreateLoad(Address, Address->getName() + ".reload"); 588 } 589 } 590 591 Value *BlockGenerator::buildContainsCondition(ScopStmt &Stmt, 592 const isl::set &Subdomain) { 593 isl::ast_build AstBuild = Stmt.getAstBuild(); 594 isl::set Domain = Stmt.getDomain(); 595 596 isl::union_map USchedule = AstBuild.get_schedule(); 597 USchedule = USchedule.intersect_domain(Domain); 598 599 assert(!USchedule.is_empty()); 600 isl::map Schedule = isl::map::from_union_map(USchedule); 601 602 isl::set ScheduledDomain = Schedule.range(); 603 isl::set ScheduledSet = Subdomain.apply(Schedule); 604 605 isl::ast_build RestrictedBuild = AstBuild.restrict(ScheduledDomain); 606 607 isl::ast_expr IsInSet = RestrictedBuild.expr_from(ScheduledSet); 608 Value *IsInSetExpr = ExprBuilder->create(IsInSet.copy()); 609 IsInSetExpr = Builder.CreateICmpNE( 610 IsInSetExpr, ConstantInt::get(IsInSetExpr->getType(), 0)); 611 612 return IsInSetExpr; 613 } 614 615 void BlockGenerator::generateConditionalExecution( 616 ScopStmt &Stmt, const isl::set &Subdomain, StringRef Subject, 617 const std::function<void()> &GenThenFunc) { 618 isl::set StmtDom = Stmt.getDomain(); 619 620 // If the condition is a tautology, don't generate a condition around the 621 // code. 622 bool IsPartialWrite = 623 !StmtDom.intersect_params(Stmt.getParent()->getContext()) 624 .is_subset(Subdomain); 625 if (!IsPartialWrite) { 626 GenThenFunc(); 627 return; 628 } 629 630 // Generate the condition. 631 Value *Cond = buildContainsCondition(Stmt, Subdomain); 632 633 // Don't call GenThenFunc if it is never executed. An ast index expression 634 // might not be defined in this case. 635 if (auto *Const = dyn_cast<ConstantInt>(Cond)) 636 if (Const->isZero()) 637 return; 638 639 BasicBlock *HeadBlock = Builder.GetInsertBlock(); 640 StringRef BlockName = HeadBlock->getName(); 641 642 // Generate the conditional block. 643 SplitBlockAndInsertIfThen(Cond, &*Builder.GetInsertPoint(), false, nullptr, 644 &DT, &LI); 645 BranchInst *Branch = cast<BranchInst>(HeadBlock->getTerminator()); 646 BasicBlock *ThenBlock = Branch->getSuccessor(0); 647 BasicBlock *TailBlock = Branch->getSuccessor(1); 648 649 // Assign descriptive names. 650 if (auto *CondInst = dyn_cast<Instruction>(Cond)) 651 CondInst->setName("polly." + Subject + ".cond"); 652 ThenBlock->setName(BlockName + "." + Subject + ".partial"); 653 TailBlock->setName(BlockName + ".cont"); 654 655 // Put the client code into the conditional block and continue in the merge 656 // block afterwards. 657 Builder.SetInsertPoint(ThenBlock, ThenBlock->getFirstInsertionPt()); 658 GenThenFunc(); 659 Builder.SetInsertPoint(TailBlock, TailBlock->getFirstInsertionPt()); 660 } 661 662 static std::string getInstName(Value *Val) { 663 std::string Result; 664 raw_string_ostream OS(Result); 665 Val->printAsOperand(OS, false); 666 return OS.str(); 667 } 668 669 void BlockGenerator::generateBeginStmtTrace(ScopStmt &Stmt, LoopToScevMapT <S, 670 ValueMapT &BBMap) { 671 if (!TraceStmts) 672 return; 673 674 Scop *S = Stmt.getParent(); 675 const char *BaseName = Stmt.getBaseName(); 676 677 isl::ast_build AstBuild = Stmt.getAstBuild(); 678 isl::set Domain = Stmt.getDomain(); 679 680 isl::union_map USchedule = AstBuild.get_schedule().intersect_domain(Domain); 681 isl::map Schedule = isl::map::from_union_map(USchedule); 682 assert(Schedule.is_empty().is_false() && 683 "The stmt must have a valid instance"); 684 685 isl::multi_pw_aff ScheduleMultiPwAff = 686 isl::pw_multi_aff::from_map(Schedule.reverse()); 687 isl::ast_build RestrictedBuild = AstBuild.restrict(Schedule.range()); 688 689 // Sequence of strings to print. 690 SmallVector<llvm::Value *, 8> Values; 691 692 // Print the name of the statement. 693 // TODO: Indent by the depth of the statement instance in the schedule tree. 694 Values.push_back(RuntimeDebugBuilder::getPrintableString(Builder, BaseName)); 695 Values.push_back(RuntimeDebugBuilder::getPrintableString(Builder, "(")); 696 697 // Add the coordinate of the statement instance. 698 int DomDims = ScheduleMultiPwAff.dim(isl::dim::out); 699 for (int i = 0; i < DomDims; i += 1) { 700 if (i > 0) 701 Values.push_back(RuntimeDebugBuilder::getPrintableString(Builder, ",")); 702 703 isl::ast_expr IsInSet = 704 RestrictedBuild.expr_from(ScheduleMultiPwAff.get_pw_aff(i)); 705 Values.push_back(ExprBuilder->create(IsInSet.copy())); 706 } 707 708 if (TraceScalars) { 709 Values.push_back(RuntimeDebugBuilder::getPrintableString(Builder, ")")); 710 DenseSet<Instruction *> Encountered; 711 712 // Add the value of each scalar (and the result of PHIs) used in the 713 // statement. 714 // TODO: Values used in region-statements. 715 for (Instruction *Inst : Stmt.insts()) { 716 if (!RuntimeDebugBuilder::isPrintable(Inst->getType())) 717 continue; 718 719 if (isa<PHINode>(Inst)) { 720 Values.push_back(RuntimeDebugBuilder::getPrintableString(Builder, " ")); 721 Values.push_back(RuntimeDebugBuilder::getPrintableString( 722 Builder, getInstName(Inst))); 723 Values.push_back(RuntimeDebugBuilder::getPrintableString(Builder, "=")); 724 Values.push_back(getNewValue(Stmt, Inst, BBMap, LTS, 725 LI.getLoopFor(Inst->getParent()))); 726 } else { 727 for (Value *Op : Inst->operand_values()) { 728 // Do not print values that cannot change during the execution of the 729 // SCoP. 730 auto *OpInst = dyn_cast<Instruction>(Op); 731 if (!OpInst) 732 continue; 733 if (!S->contains(OpInst)) 734 continue; 735 736 // Print each scalar at most once, and exclude values defined in the 737 // statement itself. 738 if (Encountered.count(OpInst)) 739 continue; 740 741 Values.push_back( 742 RuntimeDebugBuilder::getPrintableString(Builder, " ")); 743 Values.push_back(RuntimeDebugBuilder::getPrintableString( 744 Builder, getInstName(OpInst))); 745 Values.push_back( 746 RuntimeDebugBuilder::getPrintableString(Builder, "=")); 747 Values.push_back(getNewValue(Stmt, OpInst, BBMap, LTS, 748 LI.getLoopFor(Inst->getParent()))); 749 Encountered.insert(OpInst); 750 } 751 } 752 753 Encountered.insert(Inst); 754 } 755 756 Values.push_back(RuntimeDebugBuilder::getPrintableString(Builder, "\n")); 757 } else { 758 Values.push_back(RuntimeDebugBuilder::getPrintableString(Builder, ")\n")); 759 } 760 761 RuntimeDebugBuilder::createCPUPrinter(Builder, ArrayRef<Value *>(Values)); 762 } 763 764 void BlockGenerator::generateScalarStores( 765 ScopStmt &Stmt, LoopToScevMapT <S, ValueMapT &BBMap, 766 __isl_keep isl_id_to_ast_expr *NewAccesses) { 767 Loop *L = LI.getLoopFor(Stmt.getBasicBlock()); 768 769 assert(Stmt.isBlockStmt() && 770 "Region statements need to use the generateScalarStores() function in " 771 "the RegionGenerator"); 772 773 for (MemoryAccess *MA : Stmt) { 774 if (MA->isOriginalArrayKind() || MA->isRead()) 775 continue; 776 777 isl::set AccDom = MA->getAccessRelation().domain(); 778 std::string Subject = MA->getId().get_name(); 779 780 generateConditionalExecution( 781 Stmt, AccDom, Subject.c_str(), [&, this, MA]() { 782 Value *Val = MA->getAccessValue(); 783 if (MA->isAnyPHIKind()) { 784 assert(MA->getIncoming().size() >= 1 && 785 "Block statements have exactly one exiting block, or " 786 "multiple but " 787 "with same incoming block and value"); 788 assert(std::all_of(MA->getIncoming().begin(), 789 MA->getIncoming().end(), 790 [&](std::pair<BasicBlock *, Value *> p) -> bool { 791 return p.first == Stmt.getBasicBlock(); 792 }) && 793 "Incoming block must be statement's block"); 794 Val = MA->getIncoming()[0].second; 795 } 796 auto Address = getImplicitAddress(*MA, getLoopForStmt(Stmt), LTS, 797 BBMap, NewAccesses); 798 799 Val = getNewValue(Stmt, Val, BBMap, LTS, L); 800 assert((!isa<Instruction>(Val) || 801 DT.dominates(cast<Instruction>(Val)->getParent(), 802 Builder.GetInsertBlock())) && 803 "Domination violation"); 804 assert((!isa<Instruction>(Address) || 805 DT.dominates(cast<Instruction>(Address)->getParent(), 806 Builder.GetInsertBlock())) && 807 "Domination violation"); 808 809 // The new Val might have a different type than the old Val due to 810 // ScalarEvolution looking through bitcasts. 811 if (Val->getType() != Address->getType()->getPointerElementType()) 812 Address = Builder.CreateBitOrPointerCast( 813 Address, Val->getType()->getPointerTo()); 814 815 Builder.CreateStore(Val, Address); 816 }); 817 } 818 } 819 820 void BlockGenerator::createScalarInitialization(Scop &S) { 821 BasicBlock *ExitBB = S.getExit(); 822 BasicBlock *PreEntryBB = S.getEnteringBlock(); 823 824 Builder.SetInsertPoint(&*StartBlock->begin()); 825 826 for (auto &Array : S.arrays()) { 827 if (Array->getNumberOfDimensions() != 0) 828 continue; 829 if (Array->isPHIKind()) { 830 // For PHI nodes, the only values we need to store are the ones that 831 // reach the PHI node from outside the region. In general there should 832 // only be one such incoming edge and this edge should enter through 833 // 'PreEntryBB'. 834 auto PHI = cast<PHINode>(Array->getBasePtr()); 835 836 for (auto BI = PHI->block_begin(), BE = PHI->block_end(); BI != BE; BI++) 837 if (!S.contains(*BI) && *BI != PreEntryBB) 838 llvm_unreachable("Incoming edges from outside the scop should always " 839 "come from PreEntryBB"); 840 841 int Idx = PHI->getBasicBlockIndex(PreEntryBB); 842 if (Idx < 0) 843 continue; 844 845 Value *ScalarValue = PHI->getIncomingValue(Idx); 846 847 Builder.CreateStore(ScalarValue, getOrCreateAlloca(Array)); 848 continue; 849 } 850 851 auto *Inst = dyn_cast<Instruction>(Array->getBasePtr()); 852 853 if (Inst && S.contains(Inst)) 854 continue; 855 856 // PHI nodes that are not marked as such in their SAI object are either exit 857 // PHI nodes we model as common scalars but without initialization, or 858 // incoming phi nodes that need to be initialized. Check if the first is the 859 // case for Inst and do not create and initialize memory if so. 860 if (auto *PHI = dyn_cast_or_null<PHINode>(Inst)) 861 if (!S.hasSingleExitEdge() && PHI->getBasicBlockIndex(ExitBB) >= 0) 862 continue; 863 864 Builder.CreateStore(Array->getBasePtr(), getOrCreateAlloca(Array)); 865 } 866 } 867 868 void BlockGenerator::createScalarFinalization(Scop &S) { 869 // The exit block of the __unoptimized__ region. 870 BasicBlock *ExitBB = S.getExitingBlock(); 871 // The merge block __just after__ the region and the optimized region. 872 BasicBlock *MergeBB = S.getExit(); 873 874 // The exit block of the __optimized__ region. 875 BasicBlock *OptExitBB = *(pred_begin(MergeBB)); 876 if (OptExitBB == ExitBB) 877 OptExitBB = *(++pred_begin(MergeBB)); 878 879 Builder.SetInsertPoint(OptExitBB->getTerminator()); 880 for (const auto &EscapeMapping : EscapeMap) { 881 // Extract the escaping instruction and the escaping users as well as the 882 // alloca the instruction was demoted to. 883 Instruction *EscapeInst = EscapeMapping.first; 884 const auto &EscapeMappingValue = EscapeMapping.second; 885 const EscapeUserVectorTy &EscapeUsers = EscapeMappingValue.second; 886 Value *ScalarAddr = EscapeMappingValue.first; 887 888 // Reload the demoted instruction in the optimized version of the SCoP. 889 Value *EscapeInstReload = 890 Builder.CreateLoad(ScalarAddr, EscapeInst->getName() + ".final_reload"); 891 EscapeInstReload = 892 Builder.CreateBitOrPointerCast(EscapeInstReload, EscapeInst->getType()); 893 894 // Create the merge PHI that merges the optimized and unoptimized version. 895 PHINode *MergePHI = PHINode::Create(EscapeInst->getType(), 2, 896 EscapeInst->getName() + ".merge"); 897 MergePHI->insertBefore(&*MergeBB->getFirstInsertionPt()); 898 899 // Add the respective values to the merge PHI. 900 MergePHI->addIncoming(EscapeInstReload, OptExitBB); 901 MergePHI->addIncoming(EscapeInst, ExitBB); 902 903 // The information of scalar evolution about the escaping instruction needs 904 // to be revoked so the new merged instruction will be used. 905 if (SE.isSCEVable(EscapeInst->getType())) 906 SE.forgetValue(EscapeInst); 907 908 // Replace all uses of the demoted instruction with the merge PHI. 909 for (Instruction *EUser : EscapeUsers) 910 EUser->replaceUsesOfWith(EscapeInst, MergePHI); 911 } 912 } 913 914 void BlockGenerator::findOutsideUsers(Scop &S) { 915 for (auto &Array : S.arrays()) { 916 917 if (Array->getNumberOfDimensions() != 0) 918 continue; 919 920 if (Array->isPHIKind()) 921 continue; 922 923 auto *Inst = dyn_cast<Instruction>(Array->getBasePtr()); 924 925 if (!Inst) 926 continue; 927 928 // Scop invariant hoisting moves some of the base pointers out of the scop. 929 // We can ignore these, as the invariant load hoisting already registers the 930 // relevant outside users. 931 if (!S.contains(Inst)) 932 continue; 933 934 handleOutsideUsers(S, Array); 935 } 936 } 937 938 void BlockGenerator::createExitPHINodeMerges(Scop &S) { 939 if (S.hasSingleExitEdge()) 940 return; 941 942 auto *ExitBB = S.getExitingBlock(); 943 auto *MergeBB = S.getExit(); 944 auto *AfterMergeBB = MergeBB->getSingleSuccessor(); 945 BasicBlock *OptExitBB = *(pred_begin(MergeBB)); 946 if (OptExitBB == ExitBB) 947 OptExitBB = *(++pred_begin(MergeBB)); 948 949 Builder.SetInsertPoint(OptExitBB->getTerminator()); 950 951 for (auto &SAI : S.arrays()) { 952 auto *Val = SAI->getBasePtr(); 953 954 // Only Value-like scalars need a merge PHI. Exit block PHIs receive either 955 // the original PHI's value or the reloaded incoming values from the 956 // generated code. An llvm::Value is merged between the original code's 957 // value or the generated one. 958 if (!SAI->isExitPHIKind()) 959 continue; 960 961 PHINode *PHI = dyn_cast<PHINode>(Val); 962 if (!PHI) 963 continue; 964 965 if (PHI->getParent() != AfterMergeBB) 966 continue; 967 968 std::string Name = PHI->getName(); 969 Value *ScalarAddr = getOrCreateAlloca(SAI); 970 Value *Reload = Builder.CreateLoad(ScalarAddr, Name + ".ph.final_reload"); 971 Reload = Builder.CreateBitOrPointerCast(Reload, PHI->getType()); 972 Value *OriginalValue = PHI->getIncomingValueForBlock(MergeBB); 973 assert((!isa<Instruction>(OriginalValue) || 974 cast<Instruction>(OriginalValue)->getParent() != MergeBB) && 975 "Original value must no be one we just generated."); 976 auto *MergePHI = PHINode::Create(PHI->getType(), 2, Name + ".ph.merge"); 977 MergePHI->insertBefore(&*MergeBB->getFirstInsertionPt()); 978 MergePHI->addIncoming(Reload, OptExitBB); 979 MergePHI->addIncoming(OriginalValue, ExitBB); 980 int Idx = PHI->getBasicBlockIndex(MergeBB); 981 PHI->setIncomingValue(Idx, MergePHI); 982 } 983 } 984 985 void BlockGenerator::invalidateScalarEvolution(Scop &S) { 986 for (auto &Stmt : S) 987 if (Stmt.isCopyStmt()) 988 continue; 989 else if (Stmt.isBlockStmt()) 990 for (auto &Inst : *Stmt.getBasicBlock()) 991 SE.forgetValue(&Inst); 992 else if (Stmt.isRegionStmt()) 993 for (auto *BB : Stmt.getRegion()->blocks()) 994 for (auto &Inst : *BB) 995 SE.forgetValue(&Inst); 996 else 997 llvm_unreachable("Unexpected statement type found"); 998 999 // Invalidate SCEV of loops surrounding the EscapeUsers. 1000 for (const auto &EscapeMapping : EscapeMap) { 1001 const EscapeUserVectorTy &EscapeUsers = EscapeMapping.second.second; 1002 for (Instruction *EUser : EscapeUsers) { 1003 if (Loop *L = LI.getLoopFor(EUser->getParent())) 1004 while (L) { 1005 SE.forgetLoop(L); 1006 L = L->getParentLoop(); 1007 } 1008 } 1009 } 1010 } 1011 1012 void BlockGenerator::finalizeSCoP(Scop &S) { 1013 findOutsideUsers(S); 1014 createScalarInitialization(S); 1015 createExitPHINodeMerges(S); 1016 createScalarFinalization(S); 1017 invalidateScalarEvolution(S); 1018 } 1019 1020 VectorBlockGenerator::VectorBlockGenerator(BlockGenerator &BlockGen, 1021 std::vector<LoopToScevMapT> &VLTS, 1022 isl_map *Schedule) 1023 : BlockGenerator(BlockGen), VLTS(VLTS), Schedule(Schedule) { 1024 assert(Schedule && "No statement domain provided"); 1025 } 1026 1027 Value *VectorBlockGenerator::getVectorValue(ScopStmt &Stmt, Value *Old, 1028 ValueMapT &VectorMap, 1029 VectorValueMapT &ScalarMaps, 1030 Loop *L) { 1031 if (Value *NewValue = VectorMap.lookup(Old)) 1032 return NewValue; 1033 1034 int Width = getVectorWidth(); 1035 1036 Value *Vector = UndefValue::get(VectorType::get(Old->getType(), Width)); 1037 1038 for (int Lane = 0; Lane < Width; Lane++) 1039 Vector = Builder.CreateInsertElement( 1040 Vector, getNewValue(Stmt, Old, ScalarMaps[Lane], VLTS[Lane], L), 1041 Builder.getInt32(Lane)); 1042 1043 VectorMap[Old] = Vector; 1044 1045 return Vector; 1046 } 1047 1048 Type *VectorBlockGenerator::getVectorPtrTy(const Value *Val, int Width) { 1049 PointerType *PointerTy = dyn_cast<PointerType>(Val->getType()); 1050 assert(PointerTy && "PointerType expected"); 1051 1052 Type *ScalarType = PointerTy->getElementType(); 1053 VectorType *VectorType = VectorType::get(ScalarType, Width); 1054 1055 return PointerType::getUnqual(VectorType); 1056 } 1057 1058 Value *VectorBlockGenerator::generateStrideOneLoad( 1059 ScopStmt &Stmt, LoadInst *Load, VectorValueMapT &ScalarMaps, 1060 __isl_keep isl_id_to_ast_expr *NewAccesses, bool NegativeStride = false) { 1061 unsigned VectorWidth = getVectorWidth(); 1062 auto *Pointer = Load->getPointerOperand(); 1063 Type *VectorPtrType = getVectorPtrTy(Pointer, VectorWidth); 1064 unsigned Offset = NegativeStride ? VectorWidth - 1 : 0; 1065 1066 Value *NewPointer = generateLocationAccessed(Stmt, Load, ScalarMaps[Offset], 1067 VLTS[Offset], NewAccesses); 1068 Value *VectorPtr = 1069 Builder.CreateBitCast(NewPointer, VectorPtrType, "vector_ptr"); 1070 LoadInst *VecLoad = 1071 Builder.CreateLoad(VectorPtr, Load->getName() + "_p_vec_full"); 1072 if (!Aligned) 1073 VecLoad->setAlignment(8); 1074 1075 if (NegativeStride) { 1076 SmallVector<Constant *, 16> Indices; 1077 for (int i = VectorWidth - 1; i >= 0; i--) 1078 Indices.push_back(ConstantInt::get(Builder.getInt32Ty(), i)); 1079 Constant *SV = llvm::ConstantVector::get(Indices); 1080 Value *RevVecLoad = Builder.CreateShuffleVector( 1081 VecLoad, VecLoad, SV, Load->getName() + "_reverse"); 1082 return RevVecLoad; 1083 } 1084 1085 return VecLoad; 1086 } 1087 1088 Value *VectorBlockGenerator::generateStrideZeroLoad( 1089 ScopStmt &Stmt, LoadInst *Load, ValueMapT &BBMap, 1090 __isl_keep isl_id_to_ast_expr *NewAccesses) { 1091 auto *Pointer = Load->getPointerOperand(); 1092 Type *VectorPtrType = getVectorPtrTy(Pointer, 1); 1093 Value *NewPointer = 1094 generateLocationAccessed(Stmt, Load, BBMap, VLTS[0], NewAccesses); 1095 Value *VectorPtr = Builder.CreateBitCast(NewPointer, VectorPtrType, 1096 Load->getName() + "_p_vec_p"); 1097 LoadInst *ScalarLoad = 1098 Builder.CreateLoad(VectorPtr, Load->getName() + "_p_splat_one"); 1099 1100 if (!Aligned) 1101 ScalarLoad->setAlignment(8); 1102 1103 Constant *SplatVector = Constant::getNullValue( 1104 VectorType::get(Builder.getInt32Ty(), getVectorWidth())); 1105 1106 Value *VectorLoad = Builder.CreateShuffleVector( 1107 ScalarLoad, ScalarLoad, SplatVector, Load->getName() + "_p_splat"); 1108 return VectorLoad; 1109 } 1110 1111 Value *VectorBlockGenerator::generateUnknownStrideLoad( 1112 ScopStmt &Stmt, LoadInst *Load, VectorValueMapT &ScalarMaps, 1113 __isl_keep isl_id_to_ast_expr *NewAccesses) { 1114 int VectorWidth = getVectorWidth(); 1115 auto *Pointer = Load->getPointerOperand(); 1116 VectorType *VectorType = VectorType::get( 1117 dyn_cast<PointerType>(Pointer->getType())->getElementType(), VectorWidth); 1118 1119 Value *Vector = UndefValue::get(VectorType); 1120 1121 for (int i = 0; i < VectorWidth; i++) { 1122 Value *NewPointer = generateLocationAccessed(Stmt, Load, ScalarMaps[i], 1123 VLTS[i], NewAccesses); 1124 Value *ScalarLoad = 1125 Builder.CreateLoad(NewPointer, Load->getName() + "_p_scalar_"); 1126 Vector = Builder.CreateInsertElement( 1127 Vector, ScalarLoad, Builder.getInt32(i), Load->getName() + "_p_vec_"); 1128 } 1129 1130 return Vector; 1131 } 1132 1133 void VectorBlockGenerator::generateLoad( 1134 ScopStmt &Stmt, LoadInst *Load, ValueMapT &VectorMap, 1135 VectorValueMapT &ScalarMaps, __isl_keep isl_id_to_ast_expr *NewAccesses) { 1136 if (Value *PreloadLoad = GlobalMap.lookup(Load)) { 1137 VectorMap[Load] = Builder.CreateVectorSplat(getVectorWidth(), PreloadLoad, 1138 Load->getName() + "_p"); 1139 return; 1140 } 1141 1142 if (!VectorType::isValidElementType(Load->getType())) { 1143 for (int i = 0; i < getVectorWidth(); i++) 1144 ScalarMaps[i][Load] = 1145 generateArrayLoad(Stmt, Load, ScalarMaps[i], VLTS[i], NewAccesses); 1146 return; 1147 } 1148 1149 const MemoryAccess &Access = Stmt.getArrayAccessFor(Load); 1150 1151 // Make sure we have scalar values available to access the pointer to 1152 // the data location. 1153 extractScalarValues(Load, VectorMap, ScalarMaps); 1154 1155 Value *NewLoad; 1156 if (Access.isStrideZero(isl::manage_copy(Schedule))) 1157 NewLoad = generateStrideZeroLoad(Stmt, Load, ScalarMaps[0], NewAccesses); 1158 else if (Access.isStrideOne(isl::manage_copy(Schedule))) 1159 NewLoad = generateStrideOneLoad(Stmt, Load, ScalarMaps, NewAccesses); 1160 else if (Access.isStrideX(isl::manage_copy(Schedule), -1)) 1161 NewLoad = generateStrideOneLoad(Stmt, Load, ScalarMaps, NewAccesses, true); 1162 else 1163 NewLoad = generateUnknownStrideLoad(Stmt, Load, ScalarMaps, NewAccesses); 1164 1165 VectorMap[Load] = NewLoad; 1166 } 1167 1168 void VectorBlockGenerator::copyUnaryInst(ScopStmt &Stmt, UnaryInstruction *Inst, 1169 ValueMapT &VectorMap, 1170 VectorValueMapT &ScalarMaps) { 1171 int VectorWidth = getVectorWidth(); 1172 Value *NewOperand = getVectorValue(Stmt, Inst->getOperand(0), VectorMap, 1173 ScalarMaps, getLoopForStmt(Stmt)); 1174 1175 assert(isa<CastInst>(Inst) && "Can not generate vector code for instruction"); 1176 1177 const CastInst *Cast = dyn_cast<CastInst>(Inst); 1178 VectorType *DestType = VectorType::get(Inst->getType(), VectorWidth); 1179 VectorMap[Inst] = Builder.CreateCast(Cast->getOpcode(), NewOperand, DestType); 1180 } 1181 1182 void VectorBlockGenerator::copyBinaryInst(ScopStmt &Stmt, BinaryOperator *Inst, 1183 ValueMapT &VectorMap, 1184 VectorValueMapT &ScalarMaps) { 1185 Loop *L = getLoopForStmt(Stmt); 1186 Value *OpZero = Inst->getOperand(0); 1187 Value *OpOne = Inst->getOperand(1); 1188 1189 Value *NewOpZero, *NewOpOne; 1190 NewOpZero = getVectorValue(Stmt, OpZero, VectorMap, ScalarMaps, L); 1191 NewOpOne = getVectorValue(Stmt, OpOne, VectorMap, ScalarMaps, L); 1192 1193 Value *NewInst = Builder.CreateBinOp(Inst->getOpcode(), NewOpZero, NewOpOne, 1194 Inst->getName() + "p_vec"); 1195 VectorMap[Inst] = NewInst; 1196 } 1197 1198 void VectorBlockGenerator::copyStore( 1199 ScopStmt &Stmt, StoreInst *Store, ValueMapT &VectorMap, 1200 VectorValueMapT &ScalarMaps, __isl_keep isl_id_to_ast_expr *NewAccesses) { 1201 const MemoryAccess &Access = Stmt.getArrayAccessFor(Store); 1202 1203 auto *Pointer = Store->getPointerOperand(); 1204 Value *Vector = getVectorValue(Stmt, Store->getValueOperand(), VectorMap, 1205 ScalarMaps, getLoopForStmt(Stmt)); 1206 1207 // Make sure we have scalar values available to access the pointer to 1208 // the data location. 1209 extractScalarValues(Store, VectorMap, ScalarMaps); 1210 1211 if (Access.isStrideOne(isl::manage_copy(Schedule))) { 1212 Type *VectorPtrType = getVectorPtrTy(Pointer, getVectorWidth()); 1213 Value *NewPointer = generateLocationAccessed(Stmt, Store, ScalarMaps[0], 1214 VLTS[0], NewAccesses); 1215 1216 Value *VectorPtr = 1217 Builder.CreateBitCast(NewPointer, VectorPtrType, "vector_ptr"); 1218 StoreInst *Store = Builder.CreateStore(Vector, VectorPtr); 1219 1220 if (!Aligned) 1221 Store->setAlignment(8); 1222 } else { 1223 for (unsigned i = 0; i < ScalarMaps.size(); i++) { 1224 Value *Scalar = Builder.CreateExtractElement(Vector, Builder.getInt32(i)); 1225 Value *NewPointer = generateLocationAccessed(Stmt, Store, ScalarMaps[i], 1226 VLTS[i], NewAccesses); 1227 Builder.CreateStore(Scalar, NewPointer); 1228 } 1229 } 1230 } 1231 1232 bool VectorBlockGenerator::hasVectorOperands(const Instruction *Inst, 1233 ValueMapT &VectorMap) { 1234 for (Value *Operand : Inst->operands()) 1235 if (VectorMap.count(Operand)) 1236 return true; 1237 return false; 1238 } 1239 1240 bool VectorBlockGenerator::extractScalarValues(const Instruction *Inst, 1241 ValueMapT &VectorMap, 1242 VectorValueMapT &ScalarMaps) { 1243 bool HasVectorOperand = false; 1244 int VectorWidth = getVectorWidth(); 1245 1246 for (Value *Operand : Inst->operands()) { 1247 ValueMapT::iterator VecOp = VectorMap.find(Operand); 1248 1249 if (VecOp == VectorMap.end()) 1250 continue; 1251 1252 HasVectorOperand = true; 1253 Value *NewVector = VecOp->second; 1254 1255 for (int i = 0; i < VectorWidth; ++i) { 1256 ValueMapT &SM = ScalarMaps[i]; 1257 1258 // If there is one scalar extracted, all scalar elements should have 1259 // already been extracted by the code here. So no need to check for the 1260 // existence of all of them. 1261 if (SM.count(Operand)) 1262 break; 1263 1264 SM[Operand] = 1265 Builder.CreateExtractElement(NewVector, Builder.getInt32(i)); 1266 } 1267 } 1268 1269 return HasVectorOperand; 1270 } 1271 1272 void VectorBlockGenerator::copyInstScalarized( 1273 ScopStmt &Stmt, Instruction *Inst, ValueMapT &VectorMap, 1274 VectorValueMapT &ScalarMaps, __isl_keep isl_id_to_ast_expr *NewAccesses) { 1275 bool HasVectorOperand; 1276 int VectorWidth = getVectorWidth(); 1277 1278 HasVectorOperand = extractScalarValues(Inst, VectorMap, ScalarMaps); 1279 1280 for (int VectorLane = 0; VectorLane < getVectorWidth(); VectorLane++) 1281 BlockGenerator::copyInstruction(Stmt, Inst, ScalarMaps[VectorLane], 1282 VLTS[VectorLane], NewAccesses); 1283 1284 if (!VectorType::isValidElementType(Inst->getType()) || !HasVectorOperand) 1285 return; 1286 1287 // Make the result available as vector value. 1288 VectorType *VectorType = VectorType::get(Inst->getType(), VectorWidth); 1289 Value *Vector = UndefValue::get(VectorType); 1290 1291 for (int i = 0; i < VectorWidth; i++) 1292 Vector = Builder.CreateInsertElement(Vector, ScalarMaps[i][Inst], 1293 Builder.getInt32(i)); 1294 1295 VectorMap[Inst] = Vector; 1296 } 1297 1298 int VectorBlockGenerator::getVectorWidth() { return VLTS.size(); } 1299 1300 void VectorBlockGenerator::copyInstruction( 1301 ScopStmt &Stmt, Instruction *Inst, ValueMapT &VectorMap, 1302 VectorValueMapT &ScalarMaps, __isl_keep isl_id_to_ast_expr *NewAccesses) { 1303 // Terminator instructions control the control flow. They are explicitly 1304 // expressed in the clast and do not need to be copied. 1305 if (Inst->isTerminator()) 1306 return; 1307 1308 if (canSyntheziseInStmt(Stmt, Inst)) 1309 return; 1310 1311 if (auto *Load = dyn_cast<LoadInst>(Inst)) { 1312 generateLoad(Stmt, Load, VectorMap, ScalarMaps, NewAccesses); 1313 return; 1314 } 1315 1316 if (hasVectorOperands(Inst, VectorMap)) { 1317 if (auto *Store = dyn_cast<StoreInst>(Inst)) { 1318 // Identified as redundant by -polly-simplify. 1319 if (!Stmt.getArrayAccessOrNULLFor(Store)) 1320 return; 1321 1322 copyStore(Stmt, Store, VectorMap, ScalarMaps, NewAccesses); 1323 return; 1324 } 1325 1326 if (auto *Unary = dyn_cast<UnaryInstruction>(Inst)) { 1327 copyUnaryInst(Stmt, Unary, VectorMap, ScalarMaps); 1328 return; 1329 } 1330 1331 if (auto *Binary = dyn_cast<BinaryOperator>(Inst)) { 1332 copyBinaryInst(Stmt, Binary, VectorMap, ScalarMaps); 1333 return; 1334 } 1335 1336 // Fallthrough: We generate scalar instructions, if we don't know how to 1337 // generate vector code. 1338 } 1339 1340 copyInstScalarized(Stmt, Inst, VectorMap, ScalarMaps, NewAccesses); 1341 } 1342 1343 void VectorBlockGenerator::generateScalarVectorLoads( 1344 ScopStmt &Stmt, ValueMapT &VectorBlockMap) { 1345 for (MemoryAccess *MA : Stmt) { 1346 if (MA->isArrayKind() || MA->isWrite()) 1347 continue; 1348 1349 auto *Address = getOrCreateAlloca(*MA); 1350 Type *VectorPtrType = getVectorPtrTy(Address, 1); 1351 Value *VectorPtr = Builder.CreateBitCast(Address, VectorPtrType, 1352 Address->getName() + "_p_vec_p"); 1353 auto *Val = Builder.CreateLoad(VectorPtr, Address->getName() + ".reload"); 1354 Constant *SplatVector = Constant::getNullValue( 1355 VectorType::get(Builder.getInt32Ty(), getVectorWidth())); 1356 1357 Value *VectorVal = Builder.CreateShuffleVector( 1358 Val, Val, SplatVector, Address->getName() + "_p_splat"); 1359 VectorBlockMap[MA->getAccessValue()] = VectorVal; 1360 } 1361 } 1362 1363 void VectorBlockGenerator::verifyNoScalarStores(ScopStmt &Stmt) { 1364 for (MemoryAccess *MA : Stmt) { 1365 if (MA->isArrayKind() || MA->isRead()) 1366 continue; 1367 1368 llvm_unreachable("Scalar stores not expected in vector loop"); 1369 } 1370 } 1371 1372 void VectorBlockGenerator::copyStmt( 1373 ScopStmt &Stmt, __isl_keep isl_id_to_ast_expr *NewAccesses) { 1374 assert(Stmt.isBlockStmt() && 1375 "TODO: Only block statements can be copied by the vector block " 1376 "generator"); 1377 1378 BasicBlock *BB = Stmt.getBasicBlock(); 1379 BasicBlock *CopyBB = SplitBlock(Builder.GetInsertBlock(), 1380 &*Builder.GetInsertPoint(), &DT, &LI); 1381 CopyBB->setName("polly.stmt." + BB->getName()); 1382 Builder.SetInsertPoint(&CopyBB->front()); 1383 1384 // Create two maps that store the mapping from the original instructions of 1385 // the old basic block to their copies in the new basic block. Those maps 1386 // are basic block local. 1387 // 1388 // As vector code generation is supported there is one map for scalar values 1389 // and one for vector values. 1390 // 1391 // In case we just do scalar code generation, the vectorMap is not used and 1392 // the scalarMap has just one dimension, which contains the mapping. 1393 // 1394 // In case vector code generation is done, an instruction may either appear 1395 // in the vector map once (as it is calculating >vectorwidth< values at a 1396 // time. Or (if the values are calculated using scalar operations), it 1397 // appears once in every dimension of the scalarMap. 1398 VectorValueMapT ScalarBlockMap(getVectorWidth()); 1399 ValueMapT VectorBlockMap; 1400 1401 generateScalarVectorLoads(Stmt, VectorBlockMap); 1402 1403 for (Instruction &Inst : *BB) 1404 copyInstruction(Stmt, &Inst, VectorBlockMap, ScalarBlockMap, NewAccesses); 1405 1406 verifyNoScalarStores(Stmt); 1407 } 1408 1409 BasicBlock *RegionGenerator::repairDominance(BasicBlock *BB, 1410 BasicBlock *BBCopy) { 1411 1412 BasicBlock *BBIDom = DT.getNode(BB)->getIDom()->getBlock(); 1413 BasicBlock *BBCopyIDom = EndBlockMap.lookup(BBIDom); 1414 1415 if (BBCopyIDom) 1416 DT.changeImmediateDominator(BBCopy, BBCopyIDom); 1417 1418 return StartBlockMap.lookup(BBIDom); 1419 } 1420 1421 // This is to determine whether an llvm::Value (defined in @p BB) is usable when 1422 // leaving a subregion. The straight-forward DT.dominates(BB, R->getExitBlock()) 1423 // does not work in cases where the exit block has edges from outside the 1424 // region. In that case the llvm::Value would never be usable in in the exit 1425 // block. The RegionGenerator however creates an new exit block ('ExitBBCopy') 1426 // for the subregion's exiting edges only. We need to determine whether an 1427 // llvm::Value is usable in there. We do this by checking whether it dominates 1428 // all exiting blocks individually. 1429 static bool isDominatingSubregionExit(const DominatorTree &DT, Region *R, 1430 BasicBlock *BB) { 1431 for (auto ExitingBB : predecessors(R->getExit())) { 1432 // Check for non-subregion incoming edges. 1433 if (!R->contains(ExitingBB)) 1434 continue; 1435 1436 if (!DT.dominates(BB, ExitingBB)) 1437 return false; 1438 } 1439 1440 return true; 1441 } 1442 1443 // Find the direct dominator of the subregion's exit block if the subregion was 1444 // simplified. 1445 static BasicBlock *findExitDominator(DominatorTree &DT, Region *R) { 1446 BasicBlock *Common = nullptr; 1447 for (auto ExitingBB : predecessors(R->getExit())) { 1448 // Check for non-subregion incoming edges. 1449 if (!R->contains(ExitingBB)) 1450 continue; 1451 1452 // First exiting edge. 1453 if (!Common) { 1454 Common = ExitingBB; 1455 continue; 1456 } 1457 1458 Common = DT.findNearestCommonDominator(Common, ExitingBB); 1459 } 1460 1461 assert(Common && R->contains(Common)); 1462 return Common; 1463 } 1464 1465 void RegionGenerator::copyStmt(ScopStmt &Stmt, LoopToScevMapT <S, 1466 isl_id_to_ast_expr *IdToAstExp) { 1467 assert(Stmt.isRegionStmt() && 1468 "Only region statements can be copied by the region generator"); 1469 1470 // Forget all old mappings. 1471 StartBlockMap.clear(); 1472 EndBlockMap.clear(); 1473 RegionMaps.clear(); 1474 IncompletePHINodeMap.clear(); 1475 1476 // Collection of all values related to this subregion. 1477 ValueMapT ValueMap; 1478 1479 // The region represented by the statement. 1480 Region *R = Stmt.getRegion(); 1481 1482 // Create a dedicated entry for the region where we can reload all demoted 1483 // inputs. 1484 BasicBlock *EntryBB = R->getEntry(); 1485 BasicBlock *EntryBBCopy = SplitBlock(Builder.GetInsertBlock(), 1486 &*Builder.GetInsertPoint(), &DT, &LI); 1487 EntryBBCopy->setName("polly.stmt." + EntryBB->getName() + ".entry"); 1488 Builder.SetInsertPoint(&EntryBBCopy->front()); 1489 1490 ValueMapT &EntryBBMap = RegionMaps[EntryBBCopy]; 1491 generateScalarLoads(Stmt, LTS, EntryBBMap, IdToAstExp); 1492 generateBeginStmtTrace(Stmt, LTS, EntryBBMap); 1493 1494 for (auto PI = pred_begin(EntryBB), PE = pred_end(EntryBB); PI != PE; ++PI) 1495 if (!R->contains(*PI)) { 1496 StartBlockMap[*PI] = EntryBBCopy; 1497 EndBlockMap[*PI] = EntryBBCopy; 1498 } 1499 1500 // Iterate over all blocks in the region in a breadth-first search. 1501 std::deque<BasicBlock *> Blocks; 1502 SmallSetVector<BasicBlock *, 8> SeenBlocks; 1503 Blocks.push_back(EntryBB); 1504 SeenBlocks.insert(EntryBB); 1505 1506 while (!Blocks.empty()) { 1507 BasicBlock *BB = Blocks.front(); 1508 Blocks.pop_front(); 1509 1510 // First split the block and update dominance information. 1511 BasicBlock *BBCopy = splitBB(BB); 1512 BasicBlock *BBCopyIDom = repairDominance(BB, BBCopy); 1513 1514 // Get the mapping for this block and initialize it with either the scalar 1515 // loads from the generated entering block (which dominates all blocks of 1516 // this subregion) or the maps of the immediate dominator, if part of the 1517 // subregion. The latter necessarily includes the former. 1518 ValueMapT *InitBBMap; 1519 if (BBCopyIDom) { 1520 assert(RegionMaps.count(BBCopyIDom)); 1521 InitBBMap = &RegionMaps[BBCopyIDom]; 1522 } else 1523 InitBBMap = &EntryBBMap; 1524 auto Inserted = RegionMaps.insert(std::make_pair(BBCopy, *InitBBMap)); 1525 ValueMapT &RegionMap = Inserted.first->second; 1526 1527 // Copy the block with the BlockGenerator. 1528 Builder.SetInsertPoint(&BBCopy->front()); 1529 copyBB(Stmt, BB, BBCopy, RegionMap, LTS, IdToAstExp); 1530 1531 // In order to remap PHI nodes we store also basic block mappings. 1532 StartBlockMap[BB] = BBCopy; 1533 EndBlockMap[BB] = Builder.GetInsertBlock(); 1534 1535 // Add values to incomplete PHI nodes waiting for this block to be copied. 1536 for (const PHINodePairTy &PHINodePair : IncompletePHINodeMap[BB]) 1537 addOperandToPHI(Stmt, PHINodePair.first, PHINodePair.second, BB, LTS); 1538 IncompletePHINodeMap[BB].clear(); 1539 1540 // And continue with new successors inside the region. 1541 for (auto SI = succ_begin(BB), SE = succ_end(BB); SI != SE; SI++) 1542 if (R->contains(*SI) && SeenBlocks.insert(*SI)) 1543 Blocks.push_back(*SI); 1544 1545 // Remember value in case it is visible after this subregion. 1546 if (isDominatingSubregionExit(DT, R, BB)) 1547 ValueMap.insert(RegionMap.begin(), RegionMap.end()); 1548 } 1549 1550 // Now create a new dedicated region exit block and add it to the region map. 1551 BasicBlock *ExitBBCopy = SplitBlock(Builder.GetInsertBlock(), 1552 &*Builder.GetInsertPoint(), &DT, &LI); 1553 ExitBBCopy->setName("polly.stmt." + R->getExit()->getName() + ".exit"); 1554 StartBlockMap[R->getExit()] = ExitBBCopy; 1555 EndBlockMap[R->getExit()] = ExitBBCopy; 1556 1557 BasicBlock *ExitDomBBCopy = EndBlockMap.lookup(findExitDominator(DT, R)); 1558 assert(ExitDomBBCopy && 1559 "Common exit dominator must be within region; at least the entry node " 1560 "must match"); 1561 DT.changeImmediateDominator(ExitBBCopy, ExitDomBBCopy); 1562 1563 // As the block generator doesn't handle control flow we need to add the 1564 // region control flow by hand after all blocks have been copied. 1565 for (BasicBlock *BB : SeenBlocks) { 1566 1567 BasicBlock *BBCopyStart = StartBlockMap[BB]; 1568 BasicBlock *BBCopyEnd = EndBlockMap[BB]; 1569 TerminatorInst *TI = BB->getTerminator(); 1570 if (isa<UnreachableInst>(TI)) { 1571 while (!BBCopyEnd->empty()) 1572 BBCopyEnd->begin()->eraseFromParent(); 1573 new UnreachableInst(BBCopyEnd->getContext(), BBCopyEnd); 1574 continue; 1575 } 1576 1577 Instruction *BICopy = BBCopyEnd->getTerminator(); 1578 1579 ValueMapT &RegionMap = RegionMaps[BBCopyStart]; 1580 RegionMap.insert(StartBlockMap.begin(), StartBlockMap.end()); 1581 1582 Builder.SetInsertPoint(BICopy); 1583 copyInstScalar(Stmt, TI, RegionMap, LTS); 1584 BICopy->eraseFromParent(); 1585 } 1586 1587 // Add counting PHI nodes to all loops in the region that can be used as 1588 // replacement for SCEVs referring to the old loop. 1589 for (BasicBlock *BB : SeenBlocks) { 1590 Loop *L = LI.getLoopFor(BB); 1591 if (L == nullptr || L->getHeader() != BB || !R->contains(L)) 1592 continue; 1593 1594 BasicBlock *BBCopy = StartBlockMap[BB]; 1595 Value *NullVal = Builder.getInt32(0); 1596 PHINode *LoopPHI = 1597 PHINode::Create(Builder.getInt32Ty(), 2, "polly.subregion.iv"); 1598 Instruction *LoopPHIInc = BinaryOperator::CreateAdd( 1599 LoopPHI, Builder.getInt32(1), "polly.subregion.iv.inc"); 1600 LoopPHI->insertBefore(&BBCopy->front()); 1601 LoopPHIInc->insertBefore(BBCopy->getTerminator()); 1602 1603 for (auto *PredBB : make_range(pred_begin(BB), pred_end(BB))) { 1604 if (!R->contains(PredBB)) 1605 continue; 1606 if (L->contains(PredBB)) 1607 LoopPHI->addIncoming(LoopPHIInc, EndBlockMap[PredBB]); 1608 else 1609 LoopPHI->addIncoming(NullVal, EndBlockMap[PredBB]); 1610 } 1611 1612 for (auto *PredBBCopy : make_range(pred_begin(BBCopy), pred_end(BBCopy))) 1613 if (LoopPHI->getBasicBlockIndex(PredBBCopy) < 0) 1614 LoopPHI->addIncoming(NullVal, PredBBCopy); 1615 1616 LTS[L] = SE.getUnknown(LoopPHI); 1617 } 1618 1619 // Continue generating code in the exit block. 1620 Builder.SetInsertPoint(&*ExitBBCopy->getFirstInsertionPt()); 1621 1622 // Write values visible to other statements. 1623 generateScalarStores(Stmt, LTS, ValueMap, IdToAstExp); 1624 StartBlockMap.clear(); 1625 EndBlockMap.clear(); 1626 RegionMaps.clear(); 1627 IncompletePHINodeMap.clear(); 1628 } 1629 1630 PHINode *RegionGenerator::buildExitPHI(MemoryAccess *MA, LoopToScevMapT <S, 1631 ValueMapT &BBMap, Loop *L) { 1632 ScopStmt *Stmt = MA->getStatement(); 1633 Region *SubR = Stmt->getRegion(); 1634 auto Incoming = MA->getIncoming(); 1635 1636 PollyIRBuilder::InsertPointGuard IPGuard(Builder); 1637 PHINode *OrigPHI = cast<PHINode>(MA->getAccessInstruction()); 1638 BasicBlock *NewSubregionExit = Builder.GetInsertBlock(); 1639 1640 // This can happen if the subregion is simplified after the ScopStmts 1641 // have been created; simplification happens as part of CodeGeneration. 1642 if (OrigPHI->getParent() != SubR->getExit()) { 1643 BasicBlock *FormerExit = SubR->getExitingBlock(); 1644 if (FormerExit) 1645 NewSubregionExit = StartBlockMap.lookup(FormerExit); 1646 } 1647 1648 PHINode *NewPHI = PHINode::Create(OrigPHI->getType(), Incoming.size(), 1649 "polly." + OrigPHI->getName(), 1650 NewSubregionExit->getFirstNonPHI()); 1651 1652 // Add the incoming values to the PHI. 1653 for (auto &Pair : Incoming) { 1654 BasicBlock *OrigIncomingBlock = Pair.first; 1655 BasicBlock *NewIncomingBlockStart = StartBlockMap.lookup(OrigIncomingBlock); 1656 BasicBlock *NewIncomingBlockEnd = EndBlockMap.lookup(OrigIncomingBlock); 1657 Builder.SetInsertPoint(NewIncomingBlockEnd->getTerminator()); 1658 assert(RegionMaps.count(NewIncomingBlockStart)); 1659 assert(RegionMaps.count(NewIncomingBlockEnd)); 1660 ValueMapT *LocalBBMap = &RegionMaps[NewIncomingBlockStart]; 1661 1662 Value *OrigIncomingValue = Pair.second; 1663 Value *NewIncomingValue = 1664 getNewValue(*Stmt, OrigIncomingValue, *LocalBBMap, LTS, L); 1665 NewPHI->addIncoming(NewIncomingValue, NewIncomingBlockEnd); 1666 } 1667 1668 return NewPHI; 1669 } 1670 1671 Value *RegionGenerator::getExitScalar(MemoryAccess *MA, LoopToScevMapT <S, 1672 ValueMapT &BBMap) { 1673 ScopStmt *Stmt = MA->getStatement(); 1674 1675 // TODO: Add some test cases that ensure this is really the right choice. 1676 Loop *L = LI.getLoopFor(Stmt->getRegion()->getExit()); 1677 1678 if (MA->isAnyPHIKind()) { 1679 auto Incoming = MA->getIncoming(); 1680 assert(!Incoming.empty() && 1681 "PHI WRITEs must have originate from at least one incoming block"); 1682 1683 // If there is only one incoming value, we do not need to create a PHI. 1684 if (Incoming.size() == 1) { 1685 Value *OldVal = Incoming[0].second; 1686 return getNewValue(*Stmt, OldVal, BBMap, LTS, L); 1687 } 1688 1689 return buildExitPHI(MA, LTS, BBMap, L); 1690 } 1691 1692 // MemoryKind::Value accesses leaving the subregion must dominate the exit 1693 // block; just pass the copied value. 1694 Value *OldVal = MA->getAccessValue(); 1695 return getNewValue(*Stmt, OldVal, BBMap, LTS, L); 1696 } 1697 1698 void RegionGenerator::generateScalarStores( 1699 ScopStmt &Stmt, LoopToScevMapT <S, ValueMapT &BBMap, 1700 __isl_keep isl_id_to_ast_expr *NewAccesses) { 1701 assert(Stmt.getRegion() && 1702 "Block statements need to use the generateScalarStores() " 1703 "function in the BlockGenerator"); 1704 1705 for (MemoryAccess *MA : Stmt) { 1706 if (MA->isOriginalArrayKind() || MA->isRead()) 1707 continue; 1708 1709 isl::set AccDom = MA->getAccessRelation().domain(); 1710 std::string Subject = MA->getId().get_name(); 1711 generateConditionalExecution( 1712 Stmt, AccDom, Subject.c_str(), [&, this, MA]() { 1713 Value *NewVal = getExitScalar(MA, LTS, BBMap); 1714 Value *Address = getImplicitAddress(*MA, getLoopForStmt(Stmt), LTS, 1715 BBMap, NewAccesses); 1716 assert((!isa<Instruction>(NewVal) || 1717 DT.dominates(cast<Instruction>(NewVal)->getParent(), 1718 Builder.GetInsertBlock())) && 1719 "Domination violation"); 1720 assert((!isa<Instruction>(Address) || 1721 DT.dominates(cast<Instruction>(Address)->getParent(), 1722 Builder.GetInsertBlock())) && 1723 "Domination violation"); 1724 Builder.CreateStore(NewVal, Address); 1725 }); 1726 } 1727 } 1728 1729 void RegionGenerator::addOperandToPHI(ScopStmt &Stmt, PHINode *PHI, 1730 PHINode *PHICopy, BasicBlock *IncomingBB, 1731 LoopToScevMapT <S) { 1732 // If the incoming block was not yet copied mark this PHI as incomplete. 1733 // Once the block will be copied the incoming value will be added. 1734 BasicBlock *BBCopyStart = StartBlockMap[IncomingBB]; 1735 BasicBlock *BBCopyEnd = EndBlockMap[IncomingBB]; 1736 if (!BBCopyStart) { 1737 assert(!BBCopyEnd); 1738 assert(Stmt.represents(IncomingBB) && 1739 "Bad incoming block for PHI in non-affine region"); 1740 IncompletePHINodeMap[IncomingBB].push_back(std::make_pair(PHI, PHICopy)); 1741 return; 1742 } 1743 1744 assert(RegionMaps.count(BBCopyStart) && 1745 "Incoming PHI block did not have a BBMap"); 1746 ValueMapT &BBCopyMap = RegionMaps[BBCopyStart]; 1747 1748 Value *OpCopy = nullptr; 1749 1750 if (Stmt.represents(IncomingBB)) { 1751 Value *Op = PHI->getIncomingValueForBlock(IncomingBB); 1752 1753 // If the current insert block is different from the PHIs incoming block 1754 // change it, otherwise do not. 1755 auto IP = Builder.GetInsertPoint(); 1756 if (IP->getParent() != BBCopyEnd) 1757 Builder.SetInsertPoint(BBCopyEnd->getTerminator()); 1758 OpCopy = getNewValue(Stmt, Op, BBCopyMap, LTS, getLoopForStmt(Stmt)); 1759 if (IP->getParent() != BBCopyEnd) 1760 Builder.SetInsertPoint(&*IP); 1761 } else { 1762 // All edges from outside the non-affine region become a single edge 1763 // in the new copy of the non-affine region. Make sure to only add the 1764 // corresponding edge the first time we encounter a basic block from 1765 // outside the non-affine region. 1766 if (PHICopy->getBasicBlockIndex(BBCopyEnd) >= 0) 1767 return; 1768 1769 // Get the reloaded value. 1770 OpCopy = getNewValue(Stmt, PHI, BBCopyMap, LTS, getLoopForStmt(Stmt)); 1771 } 1772 1773 assert(OpCopy && "Incoming PHI value was not copied properly"); 1774 PHICopy->addIncoming(OpCopy, BBCopyEnd); 1775 } 1776 1777 void RegionGenerator::copyPHIInstruction(ScopStmt &Stmt, PHINode *PHI, 1778 ValueMapT &BBMap, 1779 LoopToScevMapT <S) { 1780 unsigned NumIncoming = PHI->getNumIncomingValues(); 1781 PHINode *PHICopy = 1782 Builder.CreatePHI(PHI->getType(), NumIncoming, "polly." + PHI->getName()); 1783 PHICopy->moveBefore(PHICopy->getParent()->getFirstNonPHI()); 1784 BBMap[PHI] = PHICopy; 1785 1786 for (BasicBlock *IncomingBB : PHI->blocks()) 1787 addOperandToPHI(Stmt, PHI, PHICopy, IncomingBB, LTS); 1788 } 1789