1 //===--- BlockGenerators.cpp - Generate code for statements -----*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the BlockGenerator and VectorBlockGenerator classes,
11 // which generate sequential code and vectorized code for a polyhedral
12 // statement, respectively.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "polly/CodeGen/BlockGenerators.h"
17 #include "polly/CodeGen/CodeGeneration.h"
18 #include "polly/CodeGen/IslExprBuilder.h"
19 #include "polly/CodeGen/RuntimeDebugBuilder.h"
20 #include "polly/Options.h"
21 #include "polly/ScopInfo.h"
22 #include "polly/Support/GICHelper.h"
23 #include "polly/Support/SCEVValidator.h"
24 #include "polly/Support/ScopHelper.h"
25 #include "llvm/Analysis/LoopInfo.h"
26 #include "llvm/Analysis/RegionInfo.h"
27 #include "llvm/Analysis/ScalarEvolution.h"
28 #include "llvm/IR/IntrinsicInst.h"
29 #include "llvm/IR/Module.h"
30 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
31 #include "llvm/Transforms/Utils/Local.h"
32 #include "isl/aff.h"
33 #include "isl/ast.h"
34 #include "isl/ast_build.h"
35 #include "isl/set.h"
36 #include <deque>
37 
38 using namespace llvm;
39 using namespace polly;
40 
41 static cl::opt<bool> Aligned("enable-polly-aligned",
42                              cl::desc("Assumed aligned memory accesses."),
43                              cl::Hidden, cl::init(false), cl::ZeroOrMore,
44                              cl::cat(PollyCategory));
45 
46 static cl::opt<bool> DebugPrinting(
47     "polly-codegen-add-debug-printing",
48     cl::desc("Add printf calls that show the values loaded/stored."),
49     cl::Hidden, cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory));
50 
51 BlockGenerator::BlockGenerator(PollyIRBuilder &B, LoopInfo &LI,
52                                ScalarEvolution &SE, DominatorTree &DT,
53                                ScalarAllocaMapTy &ScalarMap,
54                                ScalarAllocaMapTy &PHIOpMap,
55                                EscapeUsersAllocaMapTy &EscapeMap,
56                                ValueMapT &GlobalMap,
57                                IslExprBuilder *ExprBuilder)
58     : Builder(B), LI(LI), SE(SE), ExprBuilder(ExprBuilder), DT(DT),
59       EntryBB(nullptr), PHIOpMap(PHIOpMap), ScalarMap(ScalarMap),
60       EscapeMap(EscapeMap), GlobalMap(GlobalMap) {}
61 
62 Value *BlockGenerator::trySynthesizeNewValue(ScopStmt &Stmt, Value *Old,
63                                              ValueMapT &BBMap,
64                                              LoopToScevMapT &LTS,
65                                              Loop *L) const {
66   if (!SE.isSCEVable(Old->getType()))
67     return nullptr;
68 
69   const SCEV *Scev = SE.getSCEVAtScope(Old, L);
70   if (!Scev)
71     return nullptr;
72 
73   if (isa<SCEVCouldNotCompute>(Scev))
74     return nullptr;
75 
76   const SCEV *NewScev = apply(Scev, LTS, SE);
77   ValueMapT VTV;
78   VTV.insert(BBMap.begin(), BBMap.end());
79   VTV.insert(GlobalMap.begin(), GlobalMap.end());
80 
81   Scop &S = *Stmt.getParent();
82   const DataLayout &DL =
83       S.getRegion().getEntry()->getParent()->getParent()->getDataLayout();
84   auto IP = Builder.GetInsertPoint();
85 
86   assert(IP != Builder.GetInsertBlock()->end() &&
87          "Only instructions can be insert points for SCEVExpander");
88   Value *Expanded =
89       expandCodeFor(S, SE, DL, "polly", NewScev, Old->getType(), &*IP, &VTV);
90 
91   BBMap[Old] = Expanded;
92   return Expanded;
93 }
94 
95 Value *BlockGenerator::getNewValue(ScopStmt &Stmt, Value *Old, ValueMapT &BBMap,
96                                    LoopToScevMapT &LTS, Loop *L) const {
97   // Constants that do not reference any named value can always remain
98   // unchanged. Handle them early to avoid expensive map lookups. We do not take
99   // the fast-path for external constants which are referenced through globals
100   // as these may need to be rewritten when distributing code accross different
101   // LLVM modules.
102   if (isa<Constant>(Old) && !isa<GlobalValue>(Old))
103     return Old;
104 
105   // Inline asm is like a constant to us.
106   if (isa<InlineAsm>(Old))
107     return Old;
108 
109   if (Value *New = GlobalMap.lookup(Old)) {
110     if (Value *NewRemapped = GlobalMap.lookup(New))
111       New = NewRemapped;
112     if (Old->getType()->getScalarSizeInBits() <
113         New->getType()->getScalarSizeInBits())
114       New = Builder.CreateTruncOrBitCast(New, Old->getType());
115 
116     return New;
117   }
118 
119   if (Value *New = BBMap.lookup(Old))
120     return New;
121 
122   if (Value *New = trySynthesizeNewValue(Stmt, Old, BBMap, LTS, L))
123     return New;
124 
125   // A scop-constant value defined by a global or a function parameter.
126   if (isa<GlobalValue>(Old) || isa<Argument>(Old))
127     return Old;
128 
129   // A scop-constant value defined by an instruction executed outside the scop.
130   if (const Instruction *Inst = dyn_cast<Instruction>(Old))
131     if (!Stmt.getParent()->getRegion().contains(Inst->getParent()))
132       return Old;
133 
134   // The scalar dependence is neither available nor SCEVCodegenable.
135   llvm_unreachable("Unexpected scalar dependence in region!");
136   return nullptr;
137 }
138 
139 void BlockGenerator::copyInstScalar(ScopStmt &Stmt, Instruction *Inst,
140                                     ValueMapT &BBMap, LoopToScevMapT &LTS) {
141   // We do not generate debug intrinsics as we did not investigate how to
142   // copy them correctly. At the current state, they just crash the code
143   // generation as the meta-data operands are not correctly copied.
144   if (isa<DbgInfoIntrinsic>(Inst))
145     return;
146 
147   Instruction *NewInst = Inst->clone();
148 
149   // Replace old operands with the new ones.
150   for (Value *OldOperand : Inst->operands()) {
151     Value *NewOperand =
152         getNewValue(Stmt, OldOperand, BBMap, LTS, getLoopForInst(Inst));
153 
154     if (!NewOperand) {
155       assert(!isa<StoreInst>(NewInst) &&
156              "Store instructions are always needed!");
157       delete NewInst;
158       return;
159     }
160 
161     NewInst->replaceUsesOfWith(OldOperand, NewOperand);
162   }
163 
164   Builder.Insert(NewInst);
165   BBMap[Inst] = NewInst;
166 
167   if (!NewInst->getType()->isVoidTy())
168     NewInst->setName("p_" + Inst->getName());
169 }
170 
171 Value *
172 BlockGenerator::generateLocationAccessed(ScopStmt &Stmt, MemAccInst Inst,
173                                          ValueMapT &BBMap, LoopToScevMapT &LTS,
174                                          isl_id_to_ast_expr *NewAccesses) {
175   const MemoryAccess &MA = Stmt.getArrayAccessFor(Inst);
176 
177   isl_ast_expr *AccessExpr = isl_id_to_ast_expr_get(NewAccesses, MA.getId());
178 
179   if (AccessExpr) {
180     AccessExpr = isl_ast_expr_address_of(AccessExpr);
181     auto Address = ExprBuilder->create(AccessExpr);
182 
183     // Cast the address of this memory access to a pointer type that has the
184     // same element type as the original access, but uses the address space of
185     // the newly generated pointer.
186     auto OldPtrTy = MA.getAccessValue()->getType()->getPointerTo();
187     auto NewPtrTy = Address->getType();
188     OldPtrTy = PointerType::get(OldPtrTy->getElementType(),
189                                 NewPtrTy->getPointerAddressSpace());
190 
191     if (OldPtrTy != NewPtrTy)
192       Address = Builder.CreateBitOrPointerCast(Address, OldPtrTy);
193     return Address;
194   }
195 
196   return getNewValue(Stmt, Inst.getPointerOperand(), BBMap, LTS,
197                      getLoopForInst(Inst));
198 }
199 
200 Loop *BlockGenerator::getLoopForInst(const llvm::Instruction *Inst) {
201   return LI.getLoopFor(Inst->getParent());
202 }
203 
204 Value *BlockGenerator::generateScalarLoad(ScopStmt &Stmt, LoadInst *Load,
205                                           ValueMapT &BBMap, LoopToScevMapT &LTS,
206                                           isl_id_to_ast_expr *NewAccesses) {
207   if (Value *PreloadLoad = GlobalMap.lookup(Load))
208     return PreloadLoad;
209 
210   Value *NewPointer =
211       generateLocationAccessed(Stmt, Load, BBMap, LTS, NewAccesses);
212   Value *ScalarLoad = Builder.CreateAlignedLoad(
213       NewPointer, Load->getAlignment(), Load->getName() + "_p_scalar_");
214 
215   if (DebugPrinting)
216     RuntimeDebugBuilder::createCPUPrinter(Builder, "Load from ", NewPointer,
217                                           ": ", ScalarLoad, "\n");
218 
219   return ScalarLoad;
220 }
221 
222 void BlockGenerator::generateScalarStore(ScopStmt &Stmt, StoreInst *Store,
223                                          ValueMapT &BBMap, LoopToScevMapT &LTS,
224                                          isl_id_to_ast_expr *NewAccesses) {
225   Value *NewPointer =
226       generateLocationAccessed(Stmt, Store, BBMap, LTS, NewAccesses);
227   Value *ValueOperand = getNewValue(Stmt, Store->getValueOperand(), BBMap, LTS,
228                                     getLoopForInst(Store));
229 
230   if (DebugPrinting)
231     RuntimeDebugBuilder::createCPUPrinter(Builder, "Store to  ", NewPointer,
232                                           ": ", ValueOperand, "\n");
233 
234   Builder.CreateAlignedStore(ValueOperand, NewPointer, Store->getAlignment());
235 }
236 
237 bool BlockGenerator::canSyntheziseInStmt(ScopStmt &Stmt, Instruction *Inst) {
238   Loop *L = getLoopForInst(Inst);
239   return (Stmt.isBlockStmt() || !Stmt.getRegion()->contains(L)) &&
240          canSynthesize(Inst, &LI, &SE, &Stmt.getParent()->getRegion());
241 }
242 
243 void BlockGenerator::copyInstruction(ScopStmt &Stmt, Instruction *Inst,
244                                      ValueMapT &BBMap, LoopToScevMapT &LTS,
245                                      isl_id_to_ast_expr *NewAccesses) {
246   // Terminator instructions control the control flow. They are explicitly
247   // expressed in the clast and do not need to be copied.
248   if (Inst->isTerminator())
249     return;
250 
251   // Synthesizable statements will be generated on-demand.
252   if (canSyntheziseInStmt(Stmt, Inst))
253     return;
254 
255   if (auto *Load = dyn_cast<LoadInst>(Inst)) {
256     Value *NewLoad = generateScalarLoad(Stmt, Load, BBMap, LTS, NewAccesses);
257     // Compute NewLoad before its insertion in BBMap to make the insertion
258     // deterministic.
259     BBMap[Load] = NewLoad;
260     return;
261   }
262 
263   if (auto *Store = dyn_cast<StoreInst>(Inst)) {
264     generateScalarStore(Stmt, Store, BBMap, LTS, NewAccesses);
265     return;
266   }
267 
268   if (auto *PHI = dyn_cast<PHINode>(Inst)) {
269     copyPHIInstruction(Stmt, PHI, BBMap, LTS);
270     return;
271   }
272 
273   // Skip some special intrinsics for which we do not adjust the semantics to
274   // the new schedule. All others are handled like every other instruction.
275   if (isIgnoredIntrinsic(Inst))
276     return;
277 
278   copyInstScalar(Stmt, Inst, BBMap, LTS);
279 }
280 
281 void BlockGenerator::copyStmt(ScopStmt &Stmt, LoopToScevMapT &LTS,
282                               isl_id_to_ast_expr *NewAccesses) {
283   assert(Stmt.isBlockStmt() &&
284          "Only block statements can be copied by the block generator");
285 
286   ValueMapT BBMap;
287 
288   BasicBlock *BB = Stmt.getBasicBlock();
289   copyBB(Stmt, BB, BBMap, LTS, NewAccesses);
290 }
291 
292 BasicBlock *BlockGenerator::splitBB(BasicBlock *BB) {
293   BasicBlock *CopyBB = SplitBlock(Builder.GetInsertBlock(),
294                                   &*Builder.GetInsertPoint(), &DT, &LI);
295   CopyBB->setName("polly.stmt." + BB->getName());
296   return CopyBB;
297 }
298 
299 BasicBlock *BlockGenerator::copyBB(ScopStmt &Stmt, BasicBlock *BB,
300                                    ValueMapT &BBMap, LoopToScevMapT &LTS,
301                                    isl_id_to_ast_expr *NewAccesses) {
302   BasicBlock *CopyBB = splitBB(BB);
303   Builder.SetInsertPoint(&CopyBB->front());
304   generateScalarLoads(Stmt, BBMap);
305 
306   copyBB(Stmt, BB, CopyBB, BBMap, LTS, NewAccesses);
307 
308   // After a basic block was copied store all scalars that escape this block in
309   // their alloca.
310   generateScalarStores(Stmt, LTS, BBMap);
311   return CopyBB;
312 }
313 
314 void BlockGenerator::copyBB(ScopStmt &Stmt, BasicBlock *BB, BasicBlock *CopyBB,
315                             ValueMapT &BBMap, LoopToScevMapT &LTS,
316                             isl_id_to_ast_expr *NewAccesses) {
317   EntryBB = &CopyBB->getParent()->getEntryBlock();
318 
319   for (Instruction &Inst : *BB)
320     copyInstruction(Stmt, &Inst, BBMap, LTS, NewAccesses);
321 }
322 
323 Value *BlockGenerator::getOrCreateAlloca(Value *ScalarBase,
324                                          ScalarAllocaMapTy &Map,
325                                          const char *NameExt) {
326   // If no alloca was found create one and insert it in the entry block.
327   if (!Map.count(ScalarBase)) {
328     auto *Ty = ScalarBase->getType();
329     auto NewAddr = new AllocaInst(Ty, ScalarBase->getName() + NameExt);
330     EntryBB = &Builder.GetInsertBlock()->getParent()->getEntryBlock();
331     NewAddr->insertBefore(&*EntryBB->getFirstInsertionPt());
332     Map[ScalarBase] = NewAddr;
333   }
334 
335   auto Addr = Map[ScalarBase];
336 
337   if (auto NewAddr = GlobalMap.lookup(Addr))
338     return NewAddr;
339 
340   return Addr;
341 }
342 
343 Value *BlockGenerator::getOrCreateAlloca(const MemoryAccess &Access) {
344   if (Access.isPHIKind())
345     return getOrCreatePHIAlloca(Access.getBaseAddr());
346   else
347     return getOrCreateScalarAlloca(Access.getBaseAddr());
348 }
349 
350 Value *BlockGenerator::getOrCreateAlloca(const ScopArrayInfo *Array) {
351   if (Array->isPHIKind())
352     return getOrCreatePHIAlloca(Array->getBasePtr());
353   else
354     return getOrCreateScalarAlloca(Array->getBasePtr());
355 }
356 
357 Value *BlockGenerator::getOrCreateScalarAlloca(Value *ScalarBase) {
358   return getOrCreateAlloca(ScalarBase, ScalarMap, ".s2a");
359 }
360 
361 Value *BlockGenerator::getOrCreatePHIAlloca(Value *ScalarBase) {
362   return getOrCreateAlloca(ScalarBase, PHIOpMap, ".phiops");
363 }
364 
365 void BlockGenerator::handleOutsideUsers(const Region &R, Instruction *Inst,
366                                         Value *Address) {
367   // If there are escape users we get the alloca for this instruction and put it
368   // in the EscapeMap for later finalization. Lastly, if the instruction was
369   // copied multiple times we already did this and can exit.
370   if (EscapeMap.count(Inst))
371     return;
372 
373   EscapeUserVectorTy EscapeUsers;
374   for (User *U : Inst->users()) {
375 
376     // Non-instruction user will never escape.
377     Instruction *UI = dyn_cast<Instruction>(U);
378     if (!UI)
379       continue;
380 
381     if (R.contains(UI))
382       continue;
383 
384     EscapeUsers.push_back(UI);
385   }
386 
387   // Exit if no escape uses were found.
388   if (EscapeUsers.empty())
389     return;
390 
391   // Get or create an escape alloca for this instruction.
392   auto *ScalarAddr = Address ? Address : getOrCreateScalarAlloca(Inst);
393 
394   // Remember that this instruction has escape uses and the escape alloca.
395   EscapeMap[Inst] = std::make_pair(ScalarAddr, std::move(EscapeUsers));
396 }
397 
398 void BlockGenerator::generateScalarLoads(ScopStmt &Stmt, ValueMapT &BBMap) {
399   for (MemoryAccess *MA : Stmt) {
400     if (MA->isArrayKind() || MA->isWrite())
401       continue;
402 
403     auto *Address = getOrCreateAlloca(*MA);
404     BBMap[MA->getBaseAddr()] =
405         Builder.CreateLoad(Address, Address->getName() + ".reload");
406   }
407 }
408 
409 void BlockGenerator::generateScalarStores(ScopStmt &Stmt, LoopToScevMapT &LTS,
410                                           ValueMapT &BBMap) {
411   Loop *L = LI.getLoopFor(Stmt.getBasicBlock());
412 
413   assert(Stmt.isBlockStmt() && "Region statements need to use the "
414                                "generateScalarStores() function in the "
415                                "RegionGenerator");
416 
417   for (MemoryAccess *MA : Stmt) {
418     if (MA->isArrayKind() || MA->isRead())
419       continue;
420 
421     Value *Val = MA->getAccessValue();
422     if (MA->isAnyPHIKind()) {
423       assert(MA->getIncoming().size() >= 1 &&
424              "Block statements have exactly one exiting block, or multiple but "
425              "with same incoming block and value");
426       assert(std::all_of(MA->getIncoming().begin(), MA->getIncoming().end(),
427                          [&](std::pair<BasicBlock *, Value *> p) -> bool {
428                            return p.first == Stmt.getBasicBlock();
429                          }) &&
430              "Incoming block must be statement's block");
431       Val = MA->getIncoming()[0].second;
432     }
433     auto *Address = getOrCreateAlloca(*MA);
434 
435     Val = getNewValue(Stmt, Val, BBMap, LTS, L);
436     Builder.CreateStore(Val, Address);
437   }
438 }
439 
440 void BlockGenerator::createScalarInitialization(Scop &S) {
441   Region &R = S.getRegion();
442   BasicBlock *ExitBB = R.getExit();
443 
444   // The split block __just before__ the region and optimized region.
445   BasicBlock *SplitBB = R.getEnteringBlock();
446   BranchInst *SplitBBTerm = cast<BranchInst>(SplitBB->getTerminator());
447   assert(SplitBBTerm->getNumSuccessors() == 2 && "Bad region entering block!");
448 
449   // Get the start block of the __optimized__ region.
450   BasicBlock *StartBB = SplitBBTerm->getSuccessor(0);
451   if (StartBB == R.getEntry())
452     StartBB = SplitBBTerm->getSuccessor(1);
453 
454   Builder.SetInsertPoint(StartBB->getTerminator());
455 
456   for (auto &Pair : S.arrays()) {
457     auto &Array = Pair.second;
458     if (Array->getNumberOfDimensions() != 0)
459       continue;
460     if (Array->isPHIKind()) {
461       // For PHI nodes, the only values we need to store are the ones that
462       // reach the PHI node from outside the region. In general there should
463       // only be one such incoming edge and this edge should enter through
464       // 'SplitBB'.
465       auto PHI = cast<PHINode>(Array->getBasePtr());
466 
467       for (auto BI = PHI->block_begin(), BE = PHI->block_end(); BI != BE; BI++)
468         if (!R.contains(*BI) && *BI != SplitBB)
469           llvm_unreachable("Incoming edges from outside the scop should always "
470                            "come from SplitBB");
471 
472       int Idx = PHI->getBasicBlockIndex(SplitBB);
473       if (Idx < 0)
474         continue;
475 
476       Value *ScalarValue = PHI->getIncomingValue(Idx);
477 
478       Builder.CreateStore(ScalarValue, getOrCreatePHIAlloca(PHI));
479       continue;
480     }
481 
482     auto *Inst = dyn_cast<Instruction>(Array->getBasePtr());
483 
484     if (Inst && R.contains(Inst))
485       continue;
486 
487     // PHI nodes that are not marked as such in their SAI object are either exit
488     // PHI nodes we model as common scalars but without initialization, or
489     // incoming phi nodes that need to be initialized. Check if the first is the
490     // case for Inst and do not create and initialize memory if so.
491     if (auto *PHI = dyn_cast_or_null<PHINode>(Inst))
492       if (!S.hasSingleExitEdge() && PHI->getBasicBlockIndex(ExitBB) >= 0)
493         continue;
494 
495     Builder.CreateStore(Array->getBasePtr(),
496                         getOrCreateScalarAlloca(Array->getBasePtr()));
497   }
498 }
499 
500 void BlockGenerator::createScalarFinalization(Region &R) {
501   // The exit block of the __unoptimized__ region.
502   BasicBlock *ExitBB = R.getExitingBlock();
503   // The merge block __just after__ the region and the optimized region.
504   BasicBlock *MergeBB = R.getExit();
505 
506   // The exit block of the __optimized__ region.
507   BasicBlock *OptExitBB = *(pred_begin(MergeBB));
508   if (OptExitBB == ExitBB)
509     OptExitBB = *(++pred_begin(MergeBB));
510 
511   Builder.SetInsertPoint(OptExitBB->getTerminator());
512   for (const auto &EscapeMapping : EscapeMap) {
513     // Extract the escaping instruction and the escaping users as well as the
514     // alloca the instruction was demoted to.
515     Instruction *EscapeInst = EscapeMapping.getFirst();
516     const auto &EscapeMappingValue = EscapeMapping.getSecond();
517     const EscapeUserVectorTy &EscapeUsers = EscapeMappingValue.second;
518     Value *ScalarAddr = EscapeMappingValue.first;
519 
520     // Reload the demoted instruction in the optimized version of the SCoP.
521     Value *EscapeInstReload =
522         Builder.CreateLoad(ScalarAddr, EscapeInst->getName() + ".final_reload");
523     EscapeInstReload =
524         Builder.CreateBitOrPointerCast(EscapeInstReload, EscapeInst->getType());
525 
526     // Create the merge PHI that merges the optimized and unoptimized version.
527     PHINode *MergePHI = PHINode::Create(EscapeInst->getType(), 2,
528                                         EscapeInst->getName() + ".merge");
529     MergePHI->insertBefore(&*MergeBB->getFirstInsertionPt());
530 
531     // Add the respective values to the merge PHI.
532     MergePHI->addIncoming(EscapeInstReload, OptExitBB);
533     MergePHI->addIncoming(EscapeInst, ExitBB);
534 
535     // The information of scalar evolution about the escaping instruction needs
536     // to be revoked so the new merged instruction will be used.
537     if (SE.isSCEVable(EscapeInst->getType()))
538       SE.forgetValue(EscapeInst);
539 
540     // Replace all uses of the demoted instruction with the merge PHI.
541     for (Instruction *EUser : EscapeUsers)
542       EUser->replaceUsesOfWith(EscapeInst, MergePHI);
543   }
544 }
545 
546 void BlockGenerator::findOutsideUsers(Scop &S) {
547   auto &R = S.getRegion();
548   for (auto &Pair : S.arrays()) {
549     auto &Array = Pair.second;
550 
551     if (Array->getNumberOfDimensions() != 0)
552       continue;
553 
554     if (Array->isPHIKind())
555       continue;
556 
557     auto *Inst = dyn_cast<Instruction>(Array->getBasePtr());
558 
559     if (!Inst)
560       continue;
561 
562     // Scop invariant hoisting moves some of the base pointers out of the scop.
563     // We can ignore these, as the invariant load hoisting already registers the
564     // relevant outside users.
565     if (!R.contains(Inst))
566       continue;
567 
568     handleOutsideUsers(R, Inst, nullptr);
569   }
570 }
571 
572 void BlockGenerator::createExitPHINodeMerges(Scop &S) {
573   if (S.hasSingleExitEdge())
574     return;
575 
576   Region &R = S.getRegion();
577 
578   auto *ExitBB = R.getExitingBlock();
579   auto *MergeBB = R.getExit();
580   auto *AfterMergeBB = MergeBB->getSingleSuccessor();
581   BasicBlock *OptExitBB = *(pred_begin(MergeBB));
582   if (OptExitBB == ExitBB)
583     OptExitBB = *(++pred_begin(MergeBB));
584 
585   Builder.SetInsertPoint(OptExitBB->getTerminator());
586 
587   for (auto &Pair : S.arrays()) {
588     auto &SAI = Pair.second;
589     auto *Val = SAI->getBasePtr();
590 
591     PHINode *PHI = dyn_cast<PHINode>(Val);
592     if (!PHI)
593       continue;
594 
595     if (PHI->getParent() != AfterMergeBB)
596       continue;
597 
598     std::string Name = PHI->getName();
599     Value *ScalarAddr = getOrCreateScalarAlloca(PHI);
600     Value *Reload = Builder.CreateLoad(ScalarAddr, Name + ".ph.final_reload");
601     Reload = Builder.CreateBitOrPointerCast(Reload, PHI->getType());
602     Value *OriginalValue = PHI->getIncomingValueForBlock(MergeBB);
603     auto *MergePHI = PHINode::Create(PHI->getType(), 2, Name + ".ph.merge");
604     MergePHI->insertBefore(&*MergeBB->getFirstInsertionPt());
605     MergePHI->addIncoming(Reload, OptExitBB);
606     MergePHI->addIncoming(OriginalValue, ExitBB);
607     int Idx = PHI->getBasicBlockIndex(MergeBB);
608     PHI->setIncomingValue(Idx, MergePHI);
609   }
610 }
611 
612 void BlockGenerator::finalizeSCoP(Scop &S) {
613   findOutsideUsers(S);
614   createScalarInitialization(S);
615   createExitPHINodeMerges(S);
616   createScalarFinalization(S.getRegion());
617 }
618 
619 VectorBlockGenerator::VectorBlockGenerator(BlockGenerator &BlockGen,
620                                            std::vector<LoopToScevMapT> &VLTS,
621                                            isl_map *Schedule)
622     : BlockGenerator(BlockGen), VLTS(VLTS), Schedule(Schedule) {
623   assert(Schedule && "No statement domain provided");
624 }
625 
626 Value *VectorBlockGenerator::getVectorValue(ScopStmt &Stmt, Value *Old,
627                                             ValueMapT &VectorMap,
628                                             VectorValueMapT &ScalarMaps,
629                                             Loop *L) {
630   if (Value *NewValue = VectorMap.lookup(Old))
631     return NewValue;
632 
633   int Width = getVectorWidth();
634 
635   Value *Vector = UndefValue::get(VectorType::get(Old->getType(), Width));
636 
637   for (int Lane = 0; Lane < Width; Lane++)
638     Vector = Builder.CreateInsertElement(
639         Vector, getNewValue(Stmt, Old, ScalarMaps[Lane], VLTS[Lane], L),
640         Builder.getInt32(Lane));
641 
642   VectorMap[Old] = Vector;
643 
644   return Vector;
645 }
646 
647 Type *VectorBlockGenerator::getVectorPtrTy(const Value *Val, int Width) {
648   PointerType *PointerTy = dyn_cast<PointerType>(Val->getType());
649   assert(PointerTy && "PointerType expected");
650 
651   Type *ScalarType = PointerTy->getElementType();
652   VectorType *VectorType = VectorType::get(ScalarType, Width);
653 
654   return PointerType::getUnqual(VectorType);
655 }
656 
657 Value *VectorBlockGenerator::generateStrideOneLoad(
658     ScopStmt &Stmt, LoadInst *Load, VectorValueMapT &ScalarMaps,
659     __isl_keep isl_id_to_ast_expr *NewAccesses, bool NegativeStride = false) {
660   unsigned VectorWidth = getVectorWidth();
661   auto *Pointer = Load->getPointerOperand();
662   Type *VectorPtrType = getVectorPtrTy(Pointer, VectorWidth);
663   unsigned Offset = NegativeStride ? VectorWidth - 1 : 0;
664 
665   Value *NewPointer = nullptr;
666   NewPointer = generateLocationAccessed(Stmt, Load, ScalarMaps[Offset],
667                                         VLTS[Offset], NewAccesses);
668   Value *VectorPtr =
669       Builder.CreateBitCast(NewPointer, VectorPtrType, "vector_ptr");
670   LoadInst *VecLoad =
671       Builder.CreateLoad(VectorPtr, Load->getName() + "_p_vec_full");
672   if (!Aligned)
673     VecLoad->setAlignment(8);
674 
675   if (NegativeStride) {
676     SmallVector<Constant *, 16> Indices;
677     for (int i = VectorWidth - 1; i >= 0; i--)
678       Indices.push_back(ConstantInt::get(Builder.getInt32Ty(), i));
679     Constant *SV = llvm::ConstantVector::get(Indices);
680     Value *RevVecLoad = Builder.CreateShuffleVector(
681         VecLoad, VecLoad, SV, Load->getName() + "_reverse");
682     return RevVecLoad;
683   }
684 
685   return VecLoad;
686 }
687 
688 Value *VectorBlockGenerator::generateStrideZeroLoad(
689     ScopStmt &Stmt, LoadInst *Load, ValueMapT &BBMap,
690     __isl_keep isl_id_to_ast_expr *NewAccesses) {
691   auto *Pointer = Load->getPointerOperand();
692   Type *VectorPtrType = getVectorPtrTy(Pointer, 1);
693   Value *NewPointer =
694       generateLocationAccessed(Stmt, Load, BBMap, VLTS[0], NewAccesses);
695   Value *VectorPtr = Builder.CreateBitCast(NewPointer, VectorPtrType,
696                                            Load->getName() + "_p_vec_p");
697   LoadInst *ScalarLoad =
698       Builder.CreateLoad(VectorPtr, Load->getName() + "_p_splat_one");
699 
700   if (!Aligned)
701     ScalarLoad->setAlignment(8);
702 
703   Constant *SplatVector = Constant::getNullValue(
704       VectorType::get(Builder.getInt32Ty(), getVectorWidth()));
705 
706   Value *VectorLoad = Builder.CreateShuffleVector(
707       ScalarLoad, ScalarLoad, SplatVector, Load->getName() + "_p_splat");
708   return VectorLoad;
709 }
710 
711 Value *VectorBlockGenerator::generateUnknownStrideLoad(
712     ScopStmt &Stmt, LoadInst *Load, VectorValueMapT &ScalarMaps,
713     __isl_keep isl_id_to_ast_expr *NewAccesses) {
714   int VectorWidth = getVectorWidth();
715   auto *Pointer = Load->getPointerOperand();
716   VectorType *VectorType = VectorType::get(
717       dyn_cast<PointerType>(Pointer->getType())->getElementType(), VectorWidth);
718 
719   Value *Vector = UndefValue::get(VectorType);
720 
721   for (int i = 0; i < VectorWidth; i++) {
722     Value *NewPointer = generateLocationAccessed(Stmt, Load, ScalarMaps[i],
723                                                  VLTS[i], NewAccesses);
724     Value *ScalarLoad =
725         Builder.CreateLoad(NewPointer, Load->getName() + "_p_scalar_");
726     Vector = Builder.CreateInsertElement(
727         Vector, ScalarLoad, Builder.getInt32(i), Load->getName() + "_p_vec_");
728   }
729 
730   return Vector;
731 }
732 
733 void VectorBlockGenerator::generateLoad(
734     ScopStmt &Stmt, LoadInst *Load, ValueMapT &VectorMap,
735     VectorValueMapT &ScalarMaps, __isl_keep isl_id_to_ast_expr *NewAccesses) {
736   if (Value *PreloadLoad = GlobalMap.lookup(Load)) {
737     VectorMap[Load] = Builder.CreateVectorSplat(getVectorWidth(), PreloadLoad,
738                                                 Load->getName() + "_p");
739     return;
740   }
741 
742   if (!VectorType::isValidElementType(Load->getType())) {
743     for (int i = 0; i < getVectorWidth(); i++)
744       ScalarMaps[i][Load] =
745           generateScalarLoad(Stmt, Load, ScalarMaps[i], VLTS[i], NewAccesses);
746     return;
747   }
748 
749   const MemoryAccess &Access = Stmt.getArrayAccessFor(Load);
750 
751   // Make sure we have scalar values available to access the pointer to
752   // the data location.
753   extractScalarValues(Load, VectorMap, ScalarMaps);
754 
755   Value *NewLoad;
756   if (Access.isStrideZero(isl_map_copy(Schedule)))
757     NewLoad = generateStrideZeroLoad(Stmt, Load, ScalarMaps[0], NewAccesses);
758   else if (Access.isStrideOne(isl_map_copy(Schedule)))
759     NewLoad = generateStrideOneLoad(Stmt, Load, ScalarMaps, NewAccesses);
760   else if (Access.isStrideX(isl_map_copy(Schedule), -1))
761     NewLoad = generateStrideOneLoad(Stmt, Load, ScalarMaps, NewAccesses, true);
762   else
763     NewLoad = generateUnknownStrideLoad(Stmt, Load, ScalarMaps, NewAccesses);
764 
765   VectorMap[Load] = NewLoad;
766 }
767 
768 void VectorBlockGenerator::copyUnaryInst(ScopStmt &Stmt, UnaryInstruction *Inst,
769                                          ValueMapT &VectorMap,
770                                          VectorValueMapT &ScalarMaps) {
771   int VectorWidth = getVectorWidth();
772   Value *NewOperand = getVectorValue(Stmt, Inst->getOperand(0), VectorMap,
773                                      ScalarMaps, getLoopForInst(Inst));
774 
775   assert(isa<CastInst>(Inst) && "Can not generate vector code for instruction");
776 
777   const CastInst *Cast = dyn_cast<CastInst>(Inst);
778   VectorType *DestType = VectorType::get(Inst->getType(), VectorWidth);
779   VectorMap[Inst] = Builder.CreateCast(Cast->getOpcode(), NewOperand, DestType);
780 }
781 
782 void VectorBlockGenerator::copyBinaryInst(ScopStmt &Stmt, BinaryOperator *Inst,
783                                           ValueMapT &VectorMap,
784                                           VectorValueMapT &ScalarMaps) {
785   Loop *L = getLoopForInst(Inst);
786   Value *OpZero = Inst->getOperand(0);
787   Value *OpOne = Inst->getOperand(1);
788 
789   Value *NewOpZero, *NewOpOne;
790   NewOpZero = getVectorValue(Stmt, OpZero, VectorMap, ScalarMaps, L);
791   NewOpOne = getVectorValue(Stmt, OpOne, VectorMap, ScalarMaps, L);
792 
793   Value *NewInst = Builder.CreateBinOp(Inst->getOpcode(), NewOpZero, NewOpOne,
794                                        Inst->getName() + "p_vec");
795   VectorMap[Inst] = NewInst;
796 }
797 
798 void VectorBlockGenerator::copyStore(
799     ScopStmt &Stmt, StoreInst *Store, ValueMapT &VectorMap,
800     VectorValueMapT &ScalarMaps, __isl_keep isl_id_to_ast_expr *NewAccesses) {
801   const MemoryAccess &Access = Stmt.getArrayAccessFor(Store);
802 
803   auto *Pointer = Store->getPointerOperand();
804   Value *Vector = getVectorValue(Stmt, Store->getValueOperand(), VectorMap,
805                                  ScalarMaps, getLoopForInst(Store));
806 
807   // Make sure we have scalar values available to access the pointer to
808   // the data location.
809   extractScalarValues(Store, VectorMap, ScalarMaps);
810 
811   if (Access.isStrideOne(isl_map_copy(Schedule))) {
812     Type *VectorPtrType = getVectorPtrTy(Pointer, getVectorWidth());
813     Value *NewPointer = generateLocationAccessed(Stmt, Store, ScalarMaps[0],
814                                                  VLTS[0], NewAccesses);
815 
816     Value *VectorPtr =
817         Builder.CreateBitCast(NewPointer, VectorPtrType, "vector_ptr");
818     StoreInst *Store = Builder.CreateStore(Vector, VectorPtr);
819 
820     if (!Aligned)
821       Store->setAlignment(8);
822   } else {
823     for (unsigned i = 0; i < ScalarMaps.size(); i++) {
824       Value *Scalar = Builder.CreateExtractElement(Vector, Builder.getInt32(i));
825       Value *NewPointer = generateLocationAccessed(Stmt, Store, ScalarMaps[i],
826                                                    VLTS[i], NewAccesses);
827       Builder.CreateStore(Scalar, NewPointer);
828     }
829   }
830 }
831 
832 bool VectorBlockGenerator::hasVectorOperands(const Instruction *Inst,
833                                              ValueMapT &VectorMap) {
834   for (Value *Operand : Inst->operands())
835     if (VectorMap.count(Operand))
836       return true;
837   return false;
838 }
839 
840 bool VectorBlockGenerator::extractScalarValues(const Instruction *Inst,
841                                                ValueMapT &VectorMap,
842                                                VectorValueMapT &ScalarMaps) {
843   bool HasVectorOperand = false;
844   int VectorWidth = getVectorWidth();
845 
846   for (Value *Operand : Inst->operands()) {
847     ValueMapT::iterator VecOp = VectorMap.find(Operand);
848 
849     if (VecOp == VectorMap.end())
850       continue;
851 
852     HasVectorOperand = true;
853     Value *NewVector = VecOp->second;
854 
855     for (int i = 0; i < VectorWidth; ++i) {
856       ValueMapT &SM = ScalarMaps[i];
857 
858       // If there is one scalar extracted, all scalar elements should have
859       // already been extracted by the code here. So no need to check for the
860       // existance of all of them.
861       if (SM.count(Operand))
862         break;
863 
864       SM[Operand] =
865           Builder.CreateExtractElement(NewVector, Builder.getInt32(i));
866     }
867   }
868 
869   return HasVectorOperand;
870 }
871 
872 void VectorBlockGenerator::copyInstScalarized(
873     ScopStmt &Stmt, Instruction *Inst, ValueMapT &VectorMap,
874     VectorValueMapT &ScalarMaps, __isl_keep isl_id_to_ast_expr *NewAccesses) {
875   bool HasVectorOperand;
876   int VectorWidth = getVectorWidth();
877 
878   HasVectorOperand = extractScalarValues(Inst, VectorMap, ScalarMaps);
879 
880   for (int VectorLane = 0; VectorLane < getVectorWidth(); VectorLane++)
881     BlockGenerator::copyInstruction(Stmt, Inst, ScalarMaps[VectorLane],
882                                     VLTS[VectorLane], NewAccesses);
883 
884   if (!VectorType::isValidElementType(Inst->getType()) || !HasVectorOperand)
885     return;
886 
887   // Make the result available as vector value.
888   VectorType *VectorType = VectorType::get(Inst->getType(), VectorWidth);
889   Value *Vector = UndefValue::get(VectorType);
890 
891   for (int i = 0; i < VectorWidth; i++)
892     Vector = Builder.CreateInsertElement(Vector, ScalarMaps[i][Inst],
893                                          Builder.getInt32(i));
894 
895   VectorMap[Inst] = Vector;
896 }
897 
898 int VectorBlockGenerator::getVectorWidth() { return VLTS.size(); }
899 
900 void VectorBlockGenerator::copyInstruction(
901     ScopStmt &Stmt, Instruction *Inst, ValueMapT &VectorMap,
902     VectorValueMapT &ScalarMaps, __isl_keep isl_id_to_ast_expr *NewAccesses) {
903   // Terminator instructions control the control flow. They are explicitly
904   // expressed in the clast and do not need to be copied.
905   if (Inst->isTerminator())
906     return;
907 
908   if (canSyntheziseInStmt(Stmt, Inst))
909     return;
910 
911   if (auto *Load = dyn_cast<LoadInst>(Inst)) {
912     generateLoad(Stmt, Load, VectorMap, ScalarMaps, NewAccesses);
913     return;
914   }
915 
916   if (hasVectorOperands(Inst, VectorMap)) {
917     if (auto *Store = dyn_cast<StoreInst>(Inst)) {
918       copyStore(Stmt, Store, VectorMap, ScalarMaps, NewAccesses);
919       return;
920     }
921 
922     if (auto *Unary = dyn_cast<UnaryInstruction>(Inst)) {
923       copyUnaryInst(Stmt, Unary, VectorMap, ScalarMaps);
924       return;
925     }
926 
927     if (auto *Binary = dyn_cast<BinaryOperator>(Inst)) {
928       copyBinaryInst(Stmt, Binary, VectorMap, ScalarMaps);
929       return;
930     }
931 
932     // Falltrough: We generate scalar instructions, if we don't know how to
933     // generate vector code.
934   }
935 
936   copyInstScalarized(Stmt, Inst, VectorMap, ScalarMaps, NewAccesses);
937 }
938 
939 void VectorBlockGenerator::generateScalarVectorLoads(
940     ScopStmt &Stmt, ValueMapT &VectorBlockMap) {
941   for (MemoryAccess *MA : Stmt) {
942     if (MA->isArrayKind() || MA->isWrite())
943       continue;
944 
945     auto *Address = getOrCreateAlloca(*MA);
946     Type *VectorPtrType = getVectorPtrTy(Address, 1);
947     Value *VectorPtr = Builder.CreateBitCast(Address, VectorPtrType,
948                                              Address->getName() + "_p_vec_p");
949     auto *Val = Builder.CreateLoad(VectorPtr, Address->getName() + ".reload");
950     Constant *SplatVector = Constant::getNullValue(
951         VectorType::get(Builder.getInt32Ty(), getVectorWidth()));
952 
953     Value *VectorVal = Builder.CreateShuffleVector(
954         Val, Val, SplatVector, Address->getName() + "_p_splat");
955     VectorBlockMap[MA->getBaseAddr()] = VectorVal;
956     VectorVal->dump();
957   }
958 }
959 
960 void VectorBlockGenerator::verifyNoScalarStores(ScopStmt &Stmt) {
961   for (MemoryAccess *MA : Stmt) {
962     if (MA->isArrayKind() || MA->isRead())
963       continue;
964 
965     llvm_unreachable("Scalar stores not expected in vector loop");
966   }
967 }
968 
969 void VectorBlockGenerator::copyStmt(
970     ScopStmt &Stmt, __isl_keep isl_id_to_ast_expr *NewAccesses) {
971   assert(Stmt.isBlockStmt() && "TODO: Only block statements can be copied by "
972                                "the vector block generator");
973 
974   BasicBlock *BB = Stmt.getBasicBlock();
975   BasicBlock *CopyBB = SplitBlock(Builder.GetInsertBlock(),
976                                   &*Builder.GetInsertPoint(), &DT, &LI);
977   CopyBB->setName("polly.stmt." + BB->getName());
978   Builder.SetInsertPoint(&CopyBB->front());
979 
980   // Create two maps that store the mapping from the original instructions of
981   // the old basic block to their copies in the new basic block. Those maps
982   // are basic block local.
983   //
984   // As vector code generation is supported there is one map for scalar values
985   // and one for vector values.
986   //
987   // In case we just do scalar code generation, the vectorMap is not used and
988   // the scalarMap has just one dimension, which contains the mapping.
989   //
990   // In case vector code generation is done, an instruction may either appear
991   // in the vector map once (as it is calculating >vectorwidth< values at a
992   // time. Or (if the values are calculated using scalar operations), it
993   // appears once in every dimension of the scalarMap.
994   VectorValueMapT ScalarBlockMap(getVectorWidth());
995   ValueMapT VectorBlockMap;
996 
997   generateScalarVectorLoads(Stmt, VectorBlockMap);
998 
999   for (Instruction &Inst : *BB)
1000     copyInstruction(Stmt, &Inst, VectorBlockMap, ScalarBlockMap, NewAccesses);
1001 
1002   verifyNoScalarStores(Stmt);
1003 }
1004 
1005 BasicBlock *RegionGenerator::repairDominance(BasicBlock *BB,
1006                                              BasicBlock *BBCopy) {
1007 
1008   BasicBlock *BBIDom = DT.getNode(BB)->getIDom()->getBlock();
1009   BasicBlock *BBCopyIDom = BlockMap.lookup(BBIDom);
1010 
1011   if (BBCopyIDom)
1012     DT.changeImmediateDominator(BBCopy, BBCopyIDom);
1013 
1014   return BBCopyIDom;
1015 }
1016 
1017 void RegionGenerator::copyStmt(ScopStmt &Stmt, LoopToScevMapT &LTS,
1018                                isl_id_to_ast_expr *IdToAstExp) {
1019   assert(Stmt.isRegionStmt() &&
1020          "Only region statements can be copied by the region generator");
1021 
1022   Scop *S = Stmt.getParent();
1023 
1024   // Forget all old mappings.
1025   BlockMap.clear();
1026   RegionMaps.clear();
1027   IncompletePHINodeMap.clear();
1028 
1029   // Collection of all values related to this subregion.
1030   ValueMapT ValueMap;
1031 
1032   // The region represented by the statement.
1033   Region *R = Stmt.getRegion();
1034 
1035   // Create a dedicated entry for the region where we can reload all demoted
1036   // inputs.
1037   BasicBlock *EntryBB = R->getEntry();
1038   BasicBlock *EntryBBCopy = SplitBlock(Builder.GetInsertBlock(),
1039                                        &*Builder.GetInsertPoint(), &DT, &LI);
1040   EntryBBCopy->setName("polly.stmt." + EntryBB->getName() + ".entry");
1041   Builder.SetInsertPoint(&EntryBBCopy->front());
1042 
1043   ValueMapT &EntryBBMap = RegionMaps[EntryBBCopy];
1044   generateScalarLoads(Stmt, EntryBBMap);
1045 
1046   for (auto PI = pred_begin(EntryBB), PE = pred_end(EntryBB); PI != PE; ++PI)
1047     if (!R->contains(*PI))
1048       BlockMap[*PI] = EntryBBCopy;
1049 
1050   // Determine the original exit block of this subregion. If it the exit block
1051   // is also the scop's exit, it it has been changed to polly.merge_new_and_old.
1052   // We move one block back to find the original block. This only happens if the
1053   // scop required simplification.
1054   // If the whole scop consists of only this non-affine region, then they share
1055   // the same Region object, such that we cannot change the exit of one and not
1056   // the other.
1057   BasicBlock *ExitBB = R->getExit();
1058   if (!S->hasSingleExitEdge() && ExitBB == S->getRegion().getExit())
1059     ExitBB = *(++pred_begin(ExitBB));
1060 
1061   // Iterate over all blocks in the region in a breadth-first search.
1062   std::deque<BasicBlock *> Blocks;
1063   SmallPtrSet<BasicBlock *, 8> SeenBlocks;
1064   Blocks.push_back(EntryBB);
1065   SeenBlocks.insert(EntryBB);
1066 
1067   while (!Blocks.empty()) {
1068     BasicBlock *BB = Blocks.front();
1069     Blocks.pop_front();
1070 
1071     // First split the block and update dominance information.
1072     BasicBlock *BBCopy = splitBB(BB);
1073     BasicBlock *BBCopyIDom = repairDominance(BB, BBCopy);
1074 
1075     // In order to remap PHI nodes we store also basic block mappings.
1076     BlockMap[BB] = BBCopy;
1077 
1078     // Get the mapping for this block and initialize it with either the scalar
1079     // loads from the generated entering block (which dominates all blocks of
1080     // this subregion) or the maps of the immediate dominator, if part of the
1081     // subregion. The latter necessarily includes the former.
1082     ValueMapT *InitBBMap;
1083     if (BBCopyIDom) {
1084       assert(RegionMaps.count(BBCopyIDom));
1085       InitBBMap = &RegionMaps[BBCopyIDom];
1086     } else
1087       InitBBMap = &EntryBBMap;
1088     auto Inserted = RegionMaps.insert(std::make_pair(BBCopy, *InitBBMap));
1089     ValueMapT &RegionMap = Inserted.first->second;
1090 
1091     // Copy the block with the BlockGenerator.
1092     Builder.SetInsertPoint(&BBCopy->front());
1093     copyBB(Stmt, BB, BBCopy, RegionMap, LTS, IdToAstExp);
1094 
1095     // In order to remap PHI nodes we store also basic block mappings.
1096     BlockMap[BB] = BBCopy;
1097 
1098     // Add values to incomplete PHI nodes waiting for this block to be copied.
1099     for (const PHINodePairTy &PHINodePair : IncompletePHINodeMap[BB])
1100       addOperandToPHI(Stmt, PHINodePair.first, PHINodePair.second, BB, LTS);
1101     IncompletePHINodeMap[BB].clear();
1102 
1103     // And continue with new successors inside the region.
1104     for (auto SI = succ_begin(BB), SE = succ_end(BB); SI != SE; SI++)
1105       if (R->contains(*SI) && SeenBlocks.insert(*SI).second)
1106         Blocks.push_back(*SI);
1107 
1108     // Remember value in case it is visible after this subregion.
1109     if (DT.dominates(BB, ExitBB))
1110       ValueMap.insert(RegionMap.begin(), RegionMap.end());
1111   }
1112 
1113   // Now create a new dedicated region exit block and add it to the region map.
1114   BasicBlock *ExitBBCopy = SplitBlock(Builder.GetInsertBlock(),
1115                                       &*Builder.GetInsertPoint(), &DT, &LI);
1116   ExitBBCopy->setName("polly.stmt." + R->getExit()->getName() + ".exit");
1117   BlockMap[R->getExit()] = ExitBBCopy;
1118 
1119   if (ExitBB == R->getExit())
1120     repairDominance(ExitBB, ExitBBCopy);
1121   else
1122     DT.changeImmediateDominator(ExitBBCopy, BlockMap.lookup(ExitBB));
1123 
1124   // As the block generator doesn't handle control flow we need to add the
1125   // region control flow by hand after all blocks have been copied.
1126   for (BasicBlock *BB : SeenBlocks) {
1127 
1128     BasicBlock *BBCopy = BlockMap[BB];
1129     TerminatorInst *TI = BB->getTerminator();
1130     if (isa<UnreachableInst>(TI)) {
1131       while (!BBCopy->empty())
1132         BBCopy->begin()->eraseFromParent();
1133       new UnreachableInst(BBCopy->getContext(), BBCopy);
1134       continue;
1135     }
1136 
1137     Instruction *BICopy = BBCopy->getTerminator();
1138 
1139     ValueMapT &RegionMap = RegionMaps[BBCopy];
1140     RegionMap.insert(BlockMap.begin(), BlockMap.end());
1141 
1142     Builder.SetInsertPoint(BICopy);
1143     copyInstScalar(Stmt, TI, RegionMap, LTS);
1144     BICopy->eraseFromParent();
1145   }
1146 
1147   // Add counting PHI nodes to all loops in the region that can be used as
1148   // replacement for SCEVs refering to the old loop.
1149   for (BasicBlock *BB : SeenBlocks) {
1150     Loop *L = LI.getLoopFor(BB);
1151     if (L == nullptr || L->getHeader() != BB || !R->contains(L))
1152       continue;
1153 
1154     BasicBlock *BBCopy = BlockMap[BB];
1155     Value *NullVal = Builder.getInt32(0);
1156     PHINode *LoopPHI =
1157         PHINode::Create(Builder.getInt32Ty(), 2, "polly.subregion.iv");
1158     Instruction *LoopPHIInc = BinaryOperator::CreateAdd(
1159         LoopPHI, Builder.getInt32(1), "polly.subregion.iv.inc");
1160     LoopPHI->insertBefore(&BBCopy->front());
1161     LoopPHIInc->insertBefore(BBCopy->getTerminator());
1162 
1163     for (auto *PredBB : make_range(pred_begin(BB), pred_end(BB))) {
1164       if (!R->contains(PredBB))
1165         continue;
1166       if (L->contains(PredBB))
1167         LoopPHI->addIncoming(LoopPHIInc, BlockMap[PredBB]);
1168       else
1169         LoopPHI->addIncoming(NullVal, BlockMap[PredBB]);
1170     }
1171 
1172     for (auto *PredBBCopy : make_range(pred_begin(BBCopy), pred_end(BBCopy)))
1173       if (LoopPHI->getBasicBlockIndex(PredBBCopy) < 0)
1174         LoopPHI->addIncoming(NullVal, PredBBCopy);
1175 
1176     LTS[L] = SE.getUnknown(LoopPHI);
1177   }
1178 
1179   // Continue generating code in the exit block.
1180   Builder.SetInsertPoint(&*ExitBBCopy->getFirstInsertionPt());
1181 
1182   // Write values visible to other statements.
1183   generateScalarStores(Stmt, LTS, ValueMap);
1184   BlockMap.clear();
1185   RegionMaps.clear();
1186   IncompletePHINodeMap.clear();
1187 }
1188 
1189 PHINode *RegionGenerator::buildExitPHI(MemoryAccess *MA, LoopToScevMapT &LTS,
1190                                        ValueMapT &BBMap, Loop *L) {
1191   ScopStmt *Stmt = MA->getStatement();
1192   Region *SubR = Stmt->getRegion();
1193   auto Incoming = MA->getIncoming();
1194 
1195   PollyIRBuilder::InsertPointGuard IPGuard(Builder);
1196   PHINode *OrigPHI = cast<PHINode>(MA->getAccessInstruction());
1197   BasicBlock *NewSubregionExit = Builder.GetInsertBlock();
1198 
1199   // This can happen if the subregion is simplified after the ScopStmts
1200   // have been created; simplification happens as part of CodeGeneration.
1201   if (OrigPHI->getParent() != SubR->getExit()) {
1202     BasicBlock *FormerExit = SubR->getExitingBlock();
1203     if (FormerExit)
1204       NewSubregionExit = BlockMap.lookup(FormerExit);
1205   }
1206 
1207   PHINode *NewPHI = PHINode::Create(OrigPHI->getType(), Incoming.size(),
1208                                     "polly." + OrigPHI->getName(),
1209                                     NewSubregionExit->getFirstNonPHI());
1210 
1211   // Add the incoming values to the PHI.
1212   for (auto &Pair : Incoming) {
1213     BasicBlock *OrigIncomingBlock = Pair.first;
1214     BasicBlock *NewIncomingBlock = BlockMap.lookup(OrigIncomingBlock);
1215     Builder.SetInsertPoint(NewIncomingBlock->getTerminator());
1216     assert(RegionMaps.count(NewIncomingBlock));
1217     ValueMapT *LocalBBMap = &RegionMaps[NewIncomingBlock];
1218 
1219     Value *OrigIncomingValue = Pair.second;
1220     Value *NewIncomingValue =
1221         getNewValue(*Stmt, OrigIncomingValue, *LocalBBMap, LTS, L);
1222     NewPHI->addIncoming(NewIncomingValue, NewIncomingBlock);
1223   }
1224 
1225   return NewPHI;
1226 }
1227 
1228 Value *RegionGenerator::getExitScalar(MemoryAccess *MA, LoopToScevMapT &LTS,
1229                                       ValueMapT &BBMap) {
1230   ScopStmt *Stmt = MA->getStatement();
1231 
1232   // TODO: Add some test cases that ensure this is really the right choice.
1233   Loop *L = LI.getLoopFor(Stmt->getRegion()->getExit());
1234 
1235   if (MA->isAnyPHIKind()) {
1236     auto Incoming = MA->getIncoming();
1237     assert(!Incoming.empty() &&
1238            "PHI WRITEs must have originate from at least one incoming block");
1239 
1240     // If there is only one incoming value, we do not need to create a PHI.
1241     if (Incoming.size() == 1) {
1242       Value *OldVal = Incoming[0].second;
1243       return getNewValue(*Stmt, OldVal, BBMap, LTS, L);
1244     }
1245 
1246     return buildExitPHI(MA, LTS, BBMap, L);
1247   }
1248 
1249   // MK_Value accesses leaving the subregion must dominate the exit block; just
1250   // pass the copied value
1251   Value *OldVal = MA->getAccessValue();
1252   return getNewValue(*Stmt, OldVal, BBMap, LTS, L);
1253 }
1254 
1255 void RegionGenerator::generateScalarStores(ScopStmt &Stmt, LoopToScevMapT &LTS,
1256                                            ValueMapT &BBMap) {
1257   assert(Stmt.getRegion() &&
1258          "Block statements need to use the generateScalarStores() "
1259          "function in the BlockGenerator");
1260 
1261   for (MemoryAccess *MA : Stmt) {
1262     if (MA->isArrayKind() || MA->isRead())
1263       continue;
1264 
1265     Value *NewVal = getExitScalar(MA, LTS, BBMap);
1266     Value *Address = getOrCreateAlloca(*MA);
1267     Builder.CreateStore(NewVal, Address);
1268   }
1269 }
1270 
1271 void RegionGenerator::addOperandToPHI(ScopStmt &Stmt, const PHINode *PHI,
1272                                       PHINode *PHICopy, BasicBlock *IncomingBB,
1273                                       LoopToScevMapT &LTS) {
1274   Region *StmtR = Stmt.getRegion();
1275 
1276   // If the incoming block was not yet copied mark this PHI as incomplete.
1277   // Once the block will be copied the incoming value will be added.
1278   BasicBlock *BBCopy = BlockMap[IncomingBB];
1279   if (!BBCopy) {
1280     assert(StmtR->contains(IncomingBB) &&
1281            "Bad incoming block for PHI in non-affine region");
1282     IncompletePHINodeMap[IncomingBB].push_back(std::make_pair(PHI, PHICopy));
1283     return;
1284   }
1285 
1286   Value *OpCopy = nullptr;
1287   if (StmtR->contains(IncomingBB)) {
1288     assert(RegionMaps.count(BBCopy) &&
1289            "Incoming PHI block did not have a BBMap");
1290     ValueMapT &BBCopyMap = RegionMaps[BBCopy];
1291 
1292     Value *Op = PHI->getIncomingValueForBlock(IncomingBB);
1293 
1294     BasicBlock *OldBlock = Builder.GetInsertBlock();
1295     auto OldIP = Builder.GetInsertPoint();
1296     Builder.SetInsertPoint(BBCopy->getTerminator());
1297     OpCopy = getNewValue(Stmt, Op, BBCopyMap, LTS, getLoopForInst(PHI));
1298     Builder.SetInsertPoint(OldBlock, OldIP);
1299   } else {
1300 
1301     if (PHICopy->getBasicBlockIndex(BBCopy) >= 0)
1302       return;
1303 
1304     Value *PHIOpAddr = getOrCreatePHIAlloca(const_cast<PHINode *>(PHI));
1305     OpCopy = new LoadInst(PHIOpAddr, PHIOpAddr->getName() + ".reload",
1306                           BlockMap[IncomingBB]->getTerminator());
1307   }
1308 
1309   assert(OpCopy && "Incoming PHI value was not copied properly");
1310   assert(BBCopy && "Incoming PHI block was not copied properly");
1311   PHICopy->addIncoming(OpCopy, BBCopy);
1312 }
1313 
1314 Value *RegionGenerator::copyPHIInstruction(ScopStmt &Stmt, PHINode *PHI,
1315                                            ValueMapT &BBMap,
1316                                            LoopToScevMapT &LTS) {
1317   unsigned NumIncoming = PHI->getNumIncomingValues();
1318   PHINode *PHICopy =
1319       Builder.CreatePHI(PHI->getType(), NumIncoming, "polly." + PHI->getName());
1320   PHICopy->moveBefore(PHICopy->getParent()->getFirstNonPHI());
1321   BBMap[PHI] = PHICopy;
1322 
1323   for (unsigned u = 0; u < NumIncoming; u++)
1324     addOperandToPHI(Stmt, PHI, PHICopy, PHI->getIncomingBlock(u), LTS);
1325   return PHICopy;
1326 }
1327