1 //===--- BlockGenerators.cpp - Generate code for statements -----*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the BlockGenerator and VectorBlockGenerator classes, 11 // which generate sequential code and vectorized code for a polyhedral 12 // statement, respectively. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "polly/CodeGen/BlockGenerators.h" 17 #include "polly/CodeGen/CodeGeneration.h" 18 #include "polly/CodeGen/IslExprBuilder.h" 19 #include "polly/CodeGen/RuntimeDebugBuilder.h" 20 #include "polly/Options.h" 21 #include "polly/ScopInfo.h" 22 #include "polly/Support/GICHelper.h" 23 #include "polly/Support/SCEVValidator.h" 24 #include "polly/Support/ScopHelper.h" 25 #include "llvm/Analysis/LoopInfo.h" 26 #include "llvm/Analysis/RegionInfo.h" 27 #include "llvm/Analysis/ScalarEvolution.h" 28 #include "llvm/IR/IntrinsicInst.h" 29 #include "llvm/IR/Module.h" 30 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 31 #include "llvm/Transforms/Utils/Local.h" 32 #include "isl/aff.h" 33 #include "isl/ast.h" 34 #include "isl/ast_build.h" 35 #include "isl/set.h" 36 #include <deque> 37 38 using namespace llvm; 39 using namespace polly; 40 41 static cl::opt<bool> Aligned("enable-polly-aligned", 42 cl::desc("Assumed aligned memory accesses."), 43 cl::Hidden, cl::init(false), cl::ZeroOrMore, 44 cl::cat(PollyCategory)); 45 46 static cl::opt<bool> DebugPrinting( 47 "polly-codegen-add-debug-printing", 48 cl::desc("Add printf calls that show the values loaded/stored."), 49 cl::Hidden, cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory)); 50 51 BlockGenerator::BlockGenerator(PollyIRBuilder &B, LoopInfo &LI, 52 ScalarEvolution &SE, DominatorTree &DT, 53 ScalarAllocaMapTy &ScalarMap, 54 ScalarAllocaMapTy &PHIOpMap, 55 EscapeUsersAllocaMapTy &EscapeMap, 56 ValueMapT &GlobalMap, 57 IslExprBuilder *ExprBuilder) 58 : Builder(B), LI(LI), SE(SE), ExprBuilder(ExprBuilder), DT(DT), 59 EntryBB(nullptr), PHIOpMap(PHIOpMap), ScalarMap(ScalarMap), 60 EscapeMap(EscapeMap), GlobalMap(GlobalMap) {} 61 62 Value *BlockGenerator::trySynthesizeNewValue(ScopStmt &Stmt, Value *Old, 63 ValueMapT &BBMap, 64 LoopToScevMapT <S, 65 Loop *L) const { 66 if (!SE.isSCEVable(Old->getType())) 67 return nullptr; 68 69 const SCEV *Scev = SE.getSCEVAtScope(Old, L); 70 if (!Scev) 71 return nullptr; 72 73 if (isa<SCEVCouldNotCompute>(Scev)) 74 return nullptr; 75 76 const SCEV *NewScev = apply(Scev, LTS, SE); 77 ValueMapT VTV; 78 VTV.insert(BBMap.begin(), BBMap.end()); 79 VTV.insert(GlobalMap.begin(), GlobalMap.end()); 80 81 Scop &S = *Stmt.getParent(); 82 const DataLayout &DL = 83 S.getRegion().getEntry()->getParent()->getParent()->getDataLayout(); 84 auto IP = Builder.GetInsertPoint(); 85 86 assert(IP != Builder.GetInsertBlock()->end() && 87 "Only instructions can be insert points for SCEVExpander"); 88 Value *Expanded = 89 expandCodeFor(S, SE, DL, "polly", NewScev, Old->getType(), &*IP, &VTV); 90 91 BBMap[Old] = Expanded; 92 return Expanded; 93 } 94 95 Value *BlockGenerator::getNewValue(ScopStmt &Stmt, Value *Old, ValueMapT &BBMap, 96 LoopToScevMapT <S, Loop *L) const { 97 // Constants that do not reference any named value can always remain 98 // unchanged. Handle them early to avoid expensive map lookups. We do not take 99 // the fast-path for external constants which are referenced through globals 100 // as these may need to be rewritten when distributing code accross different 101 // LLVM modules. 102 if (isa<Constant>(Old) && !isa<GlobalValue>(Old)) 103 return Old; 104 105 // Inline asm is like a constant to us. 106 if (isa<InlineAsm>(Old)) 107 return Old; 108 109 if (Value *New = GlobalMap.lookup(Old)) { 110 if (Value *NewRemapped = GlobalMap.lookup(New)) 111 New = NewRemapped; 112 if (Old->getType()->getScalarSizeInBits() < 113 New->getType()->getScalarSizeInBits()) 114 New = Builder.CreateTruncOrBitCast(New, Old->getType()); 115 116 return New; 117 } 118 119 if (Value *New = BBMap.lookup(Old)) 120 return New; 121 122 if (Value *New = trySynthesizeNewValue(Stmt, Old, BBMap, LTS, L)) 123 return New; 124 125 // A scop-constant value defined by a global or a function parameter. 126 if (isa<GlobalValue>(Old) || isa<Argument>(Old)) 127 return Old; 128 129 // A scop-constant value defined by an instruction executed outside the scop. 130 if (const Instruction *Inst = dyn_cast<Instruction>(Old)) 131 if (!Stmt.getParent()->getRegion().contains(Inst->getParent())) 132 return Old; 133 134 // The scalar dependence is neither available nor SCEVCodegenable. 135 llvm_unreachable("Unexpected scalar dependence in region!"); 136 return nullptr; 137 } 138 139 void BlockGenerator::copyInstScalar(ScopStmt &Stmt, Instruction *Inst, 140 ValueMapT &BBMap, LoopToScevMapT <S) { 141 // We do not generate debug intrinsics as we did not investigate how to 142 // copy them correctly. At the current state, they just crash the code 143 // generation as the meta-data operands are not correctly copied. 144 if (isa<DbgInfoIntrinsic>(Inst)) 145 return; 146 147 Instruction *NewInst = Inst->clone(); 148 149 // Replace old operands with the new ones. 150 for (Value *OldOperand : Inst->operands()) { 151 Value *NewOperand = 152 getNewValue(Stmt, OldOperand, BBMap, LTS, getLoopForInst(Inst)); 153 154 if (!NewOperand) { 155 assert(!isa<StoreInst>(NewInst) && 156 "Store instructions are always needed!"); 157 delete NewInst; 158 return; 159 } 160 161 NewInst->replaceUsesOfWith(OldOperand, NewOperand); 162 } 163 164 Builder.Insert(NewInst); 165 BBMap[Inst] = NewInst; 166 167 if (!NewInst->getType()->isVoidTy()) 168 NewInst->setName("p_" + Inst->getName()); 169 } 170 171 Value * 172 BlockGenerator::generateLocationAccessed(ScopStmt &Stmt, MemAccInst Inst, 173 ValueMapT &BBMap, LoopToScevMapT <S, 174 isl_id_to_ast_expr *NewAccesses) { 175 const MemoryAccess &MA = Stmt.getArrayAccessFor(Inst); 176 177 isl_ast_expr *AccessExpr = isl_id_to_ast_expr_get(NewAccesses, MA.getId()); 178 179 if (AccessExpr) { 180 AccessExpr = isl_ast_expr_address_of(AccessExpr); 181 auto Address = ExprBuilder->create(AccessExpr); 182 183 // Cast the address of this memory access to a pointer type that has the 184 // same element type as the original access, but uses the address space of 185 // the newly generated pointer. 186 auto OldPtrTy = MA.getAccessValue()->getType()->getPointerTo(); 187 auto NewPtrTy = Address->getType(); 188 OldPtrTy = PointerType::get(OldPtrTy->getElementType(), 189 NewPtrTy->getPointerAddressSpace()); 190 191 if (OldPtrTy != NewPtrTy) 192 Address = Builder.CreateBitOrPointerCast(Address, OldPtrTy); 193 return Address; 194 } 195 196 return getNewValue(Stmt, Inst.getPointerOperand(), BBMap, LTS, 197 getLoopForInst(Inst)); 198 } 199 200 Loop *BlockGenerator::getLoopForInst(const llvm::Instruction *Inst) { 201 return LI.getLoopFor(Inst->getParent()); 202 } 203 204 Value *BlockGenerator::generateScalarLoad(ScopStmt &Stmt, LoadInst *Load, 205 ValueMapT &BBMap, LoopToScevMapT <S, 206 isl_id_to_ast_expr *NewAccesses) { 207 if (Value *PreloadLoad = GlobalMap.lookup(Load)) 208 return PreloadLoad; 209 210 Value *NewPointer = 211 generateLocationAccessed(Stmt, Load, BBMap, LTS, NewAccesses); 212 Value *ScalarLoad = Builder.CreateAlignedLoad( 213 NewPointer, Load->getAlignment(), Load->getName() + "_p_scalar_"); 214 215 if (DebugPrinting) 216 RuntimeDebugBuilder::createCPUPrinter(Builder, "Load from ", NewPointer, 217 ": ", ScalarLoad, "\n"); 218 219 return ScalarLoad; 220 } 221 222 void BlockGenerator::generateScalarStore(ScopStmt &Stmt, StoreInst *Store, 223 ValueMapT &BBMap, LoopToScevMapT <S, 224 isl_id_to_ast_expr *NewAccesses) { 225 Value *NewPointer = 226 generateLocationAccessed(Stmt, Store, BBMap, LTS, NewAccesses); 227 Value *ValueOperand = getNewValue(Stmt, Store->getValueOperand(), BBMap, LTS, 228 getLoopForInst(Store)); 229 230 if (DebugPrinting) 231 RuntimeDebugBuilder::createCPUPrinter(Builder, "Store to ", NewPointer, 232 ": ", ValueOperand, "\n"); 233 234 Builder.CreateAlignedStore(ValueOperand, NewPointer, Store->getAlignment()); 235 } 236 237 bool BlockGenerator::canSyntheziseInStmt(ScopStmt &Stmt, Instruction *Inst) { 238 Loop *L = getLoopForInst(Inst); 239 return (Stmt.isBlockStmt() || !Stmt.getRegion()->contains(L)) && 240 canSynthesize(Inst, &LI, &SE, &Stmt.getParent()->getRegion()); 241 } 242 243 void BlockGenerator::copyInstruction(ScopStmt &Stmt, Instruction *Inst, 244 ValueMapT &BBMap, LoopToScevMapT <S, 245 isl_id_to_ast_expr *NewAccesses) { 246 // Terminator instructions control the control flow. They are explicitly 247 // expressed in the clast and do not need to be copied. 248 if (Inst->isTerminator()) 249 return; 250 251 // Synthesizable statements will be generated on-demand. 252 if (canSyntheziseInStmt(Stmt, Inst)) 253 return; 254 255 if (auto *Load = dyn_cast<LoadInst>(Inst)) { 256 Value *NewLoad = generateScalarLoad(Stmt, Load, BBMap, LTS, NewAccesses); 257 // Compute NewLoad before its insertion in BBMap to make the insertion 258 // deterministic. 259 BBMap[Load] = NewLoad; 260 return; 261 } 262 263 if (auto *Store = dyn_cast<StoreInst>(Inst)) { 264 generateScalarStore(Stmt, Store, BBMap, LTS, NewAccesses); 265 return; 266 } 267 268 if (auto *PHI = dyn_cast<PHINode>(Inst)) { 269 copyPHIInstruction(Stmt, PHI, BBMap, LTS); 270 return; 271 } 272 273 // Skip some special intrinsics for which we do not adjust the semantics to 274 // the new schedule. All others are handled like every other instruction. 275 if (isIgnoredIntrinsic(Inst)) 276 return; 277 278 copyInstScalar(Stmt, Inst, BBMap, LTS); 279 } 280 281 void BlockGenerator::copyStmt(ScopStmt &Stmt, LoopToScevMapT <S, 282 isl_id_to_ast_expr *NewAccesses) { 283 assert(Stmt.isBlockStmt() && 284 "Only block statements can be copied by the block generator"); 285 286 ValueMapT BBMap; 287 288 BasicBlock *BB = Stmt.getBasicBlock(); 289 copyBB(Stmt, BB, BBMap, LTS, NewAccesses); 290 } 291 292 BasicBlock *BlockGenerator::splitBB(BasicBlock *BB) { 293 BasicBlock *CopyBB = SplitBlock(Builder.GetInsertBlock(), 294 &*Builder.GetInsertPoint(), &DT, &LI); 295 CopyBB->setName("polly.stmt." + BB->getName()); 296 return CopyBB; 297 } 298 299 BasicBlock *BlockGenerator::copyBB(ScopStmt &Stmt, BasicBlock *BB, 300 ValueMapT &BBMap, LoopToScevMapT <S, 301 isl_id_to_ast_expr *NewAccesses) { 302 BasicBlock *CopyBB = splitBB(BB); 303 Builder.SetInsertPoint(&CopyBB->front()); 304 generateScalarLoads(Stmt, BBMap); 305 306 copyBB(Stmt, BB, CopyBB, BBMap, LTS, NewAccesses); 307 308 // After a basic block was copied store all scalars that escape this block in 309 // their alloca. 310 generateScalarStores(Stmt, LTS, BBMap); 311 return CopyBB; 312 } 313 314 void BlockGenerator::copyBB(ScopStmt &Stmt, BasicBlock *BB, BasicBlock *CopyBB, 315 ValueMapT &BBMap, LoopToScevMapT <S, 316 isl_id_to_ast_expr *NewAccesses) { 317 EntryBB = &CopyBB->getParent()->getEntryBlock(); 318 319 for (Instruction &Inst : *BB) 320 copyInstruction(Stmt, &Inst, BBMap, LTS, NewAccesses); 321 } 322 323 Value *BlockGenerator::getOrCreateAlloca(Value *ScalarBase, 324 ScalarAllocaMapTy &Map, 325 const char *NameExt) { 326 // If no alloca was found create one and insert it in the entry block. 327 if (!Map.count(ScalarBase)) { 328 auto *Ty = ScalarBase->getType(); 329 auto NewAddr = new AllocaInst(Ty, ScalarBase->getName() + NameExt); 330 EntryBB = &Builder.GetInsertBlock()->getParent()->getEntryBlock(); 331 NewAddr->insertBefore(&*EntryBB->getFirstInsertionPt()); 332 Map[ScalarBase] = NewAddr; 333 } 334 335 auto Addr = Map[ScalarBase]; 336 337 if (auto NewAddr = GlobalMap.lookup(Addr)) 338 return NewAddr; 339 340 return Addr; 341 } 342 343 Value *BlockGenerator::getOrCreateAlloca(const MemoryAccess &Access) { 344 if (Access.isPHIKind()) 345 return getOrCreatePHIAlloca(Access.getBaseAddr()); 346 else 347 return getOrCreateScalarAlloca(Access.getBaseAddr()); 348 } 349 350 Value *BlockGenerator::getOrCreateAlloca(const ScopArrayInfo *Array) { 351 if (Array->isPHIKind()) 352 return getOrCreatePHIAlloca(Array->getBasePtr()); 353 else 354 return getOrCreateScalarAlloca(Array->getBasePtr()); 355 } 356 357 Value *BlockGenerator::getOrCreateScalarAlloca(Value *ScalarBase) { 358 return getOrCreateAlloca(ScalarBase, ScalarMap, ".s2a"); 359 } 360 361 Value *BlockGenerator::getOrCreatePHIAlloca(Value *ScalarBase) { 362 return getOrCreateAlloca(ScalarBase, PHIOpMap, ".phiops"); 363 } 364 365 void BlockGenerator::handleOutsideUsers(const Region &R, Instruction *Inst, 366 Value *Address) { 367 // If there are escape users we get the alloca for this instruction and put it 368 // in the EscapeMap for later finalization. Lastly, if the instruction was 369 // copied multiple times we already did this and can exit. 370 if (EscapeMap.count(Inst)) 371 return; 372 373 EscapeUserVectorTy EscapeUsers; 374 for (User *U : Inst->users()) { 375 376 // Non-instruction user will never escape. 377 Instruction *UI = dyn_cast<Instruction>(U); 378 if (!UI) 379 continue; 380 381 if (R.contains(UI)) 382 continue; 383 384 EscapeUsers.push_back(UI); 385 } 386 387 // Exit if no escape uses were found. 388 if (EscapeUsers.empty()) 389 return; 390 391 // Get or create an escape alloca for this instruction. 392 auto *ScalarAddr = Address ? Address : getOrCreateScalarAlloca(Inst); 393 394 // Remember that this instruction has escape uses and the escape alloca. 395 EscapeMap[Inst] = std::make_pair(ScalarAddr, std::move(EscapeUsers)); 396 } 397 398 void BlockGenerator::generateScalarLoads(ScopStmt &Stmt, ValueMapT &BBMap) { 399 for (MemoryAccess *MA : Stmt) { 400 if (MA->isArrayKind() || MA->isWrite()) 401 continue; 402 403 auto *Address = getOrCreateAlloca(*MA); 404 BBMap[MA->getBaseAddr()] = 405 Builder.CreateLoad(Address, Address->getName() + ".reload"); 406 } 407 } 408 409 void BlockGenerator::generateScalarStores(ScopStmt &Stmt, LoopToScevMapT <S, 410 ValueMapT &BBMap) { 411 Loop *L = LI.getLoopFor(Stmt.getBasicBlock()); 412 413 assert(Stmt.isBlockStmt() && "Region statements need to use the " 414 "generateScalarStores() function in the " 415 "RegionGenerator"); 416 417 for (MemoryAccess *MA : Stmt) { 418 if (MA->isArrayKind() || MA->isRead()) 419 continue; 420 421 Value *Val = MA->getAccessValue(); 422 if (MA->isAnyPHIKind()) { 423 assert(MA->getIncoming().size() >= 1 && 424 "Block statements have exactly one exiting block, or multiple but " 425 "with same incoming block and value"); 426 assert(std::all_of(MA->getIncoming().begin(), MA->getIncoming().end(), 427 [&](std::pair<BasicBlock *, Value *> p) -> bool { 428 return p.first == Stmt.getBasicBlock(); 429 }) && 430 "Incoming block must be statement's block"); 431 Val = MA->getIncoming()[0].second; 432 } 433 auto *Address = getOrCreateAlloca(*MA); 434 435 Val = getNewValue(Stmt, Val, BBMap, LTS, L); 436 Builder.CreateStore(Val, Address); 437 } 438 } 439 440 void BlockGenerator::createScalarInitialization(Scop &S) { 441 Region &R = S.getRegion(); 442 BasicBlock *ExitBB = R.getExit(); 443 444 // The split block __just before__ the region and optimized region. 445 BasicBlock *SplitBB = R.getEnteringBlock(); 446 BranchInst *SplitBBTerm = cast<BranchInst>(SplitBB->getTerminator()); 447 assert(SplitBBTerm->getNumSuccessors() == 2 && "Bad region entering block!"); 448 449 // Get the start block of the __optimized__ region. 450 BasicBlock *StartBB = SplitBBTerm->getSuccessor(0); 451 if (StartBB == R.getEntry()) 452 StartBB = SplitBBTerm->getSuccessor(1); 453 454 Builder.SetInsertPoint(StartBB->getTerminator()); 455 456 for (auto &Pair : S.arrays()) { 457 auto &Array = Pair.second; 458 if (Array->getNumberOfDimensions() != 0) 459 continue; 460 if (Array->isPHIKind()) { 461 // For PHI nodes, the only values we need to store are the ones that 462 // reach the PHI node from outside the region. In general there should 463 // only be one such incoming edge and this edge should enter through 464 // 'SplitBB'. 465 auto PHI = cast<PHINode>(Array->getBasePtr()); 466 467 for (auto BI = PHI->block_begin(), BE = PHI->block_end(); BI != BE; BI++) 468 if (!R.contains(*BI) && *BI != SplitBB) 469 llvm_unreachable("Incoming edges from outside the scop should always " 470 "come from SplitBB"); 471 472 int Idx = PHI->getBasicBlockIndex(SplitBB); 473 if (Idx < 0) 474 continue; 475 476 Value *ScalarValue = PHI->getIncomingValue(Idx); 477 478 Builder.CreateStore(ScalarValue, getOrCreatePHIAlloca(PHI)); 479 continue; 480 } 481 482 auto *Inst = dyn_cast<Instruction>(Array->getBasePtr()); 483 484 if (Inst && R.contains(Inst)) 485 continue; 486 487 // PHI nodes that are not marked as such in their SAI object are either exit 488 // PHI nodes we model as common scalars but without initialization, or 489 // incoming phi nodes that need to be initialized. Check if the first is the 490 // case for Inst and do not create and initialize memory if so. 491 if (auto *PHI = dyn_cast_or_null<PHINode>(Inst)) 492 if (!S.hasSingleExitEdge() && PHI->getBasicBlockIndex(ExitBB) >= 0) 493 continue; 494 495 Builder.CreateStore(Array->getBasePtr(), 496 getOrCreateScalarAlloca(Array->getBasePtr())); 497 } 498 } 499 500 void BlockGenerator::createScalarFinalization(Region &R) { 501 // The exit block of the __unoptimized__ region. 502 BasicBlock *ExitBB = R.getExitingBlock(); 503 // The merge block __just after__ the region and the optimized region. 504 BasicBlock *MergeBB = R.getExit(); 505 506 // The exit block of the __optimized__ region. 507 BasicBlock *OptExitBB = *(pred_begin(MergeBB)); 508 if (OptExitBB == ExitBB) 509 OptExitBB = *(++pred_begin(MergeBB)); 510 511 Builder.SetInsertPoint(OptExitBB->getTerminator()); 512 for (const auto &EscapeMapping : EscapeMap) { 513 // Extract the escaping instruction and the escaping users as well as the 514 // alloca the instruction was demoted to. 515 Instruction *EscapeInst = EscapeMapping.getFirst(); 516 const auto &EscapeMappingValue = EscapeMapping.getSecond(); 517 const EscapeUserVectorTy &EscapeUsers = EscapeMappingValue.second; 518 Value *ScalarAddr = EscapeMappingValue.first; 519 520 // Reload the demoted instruction in the optimized version of the SCoP. 521 Value *EscapeInstReload = 522 Builder.CreateLoad(ScalarAddr, EscapeInst->getName() + ".final_reload"); 523 EscapeInstReload = 524 Builder.CreateBitOrPointerCast(EscapeInstReload, EscapeInst->getType()); 525 526 // Create the merge PHI that merges the optimized and unoptimized version. 527 PHINode *MergePHI = PHINode::Create(EscapeInst->getType(), 2, 528 EscapeInst->getName() + ".merge"); 529 MergePHI->insertBefore(&*MergeBB->getFirstInsertionPt()); 530 531 // Add the respective values to the merge PHI. 532 MergePHI->addIncoming(EscapeInstReload, OptExitBB); 533 MergePHI->addIncoming(EscapeInst, ExitBB); 534 535 // The information of scalar evolution about the escaping instruction needs 536 // to be revoked so the new merged instruction will be used. 537 if (SE.isSCEVable(EscapeInst->getType())) 538 SE.forgetValue(EscapeInst); 539 540 // Replace all uses of the demoted instruction with the merge PHI. 541 for (Instruction *EUser : EscapeUsers) 542 EUser->replaceUsesOfWith(EscapeInst, MergePHI); 543 } 544 } 545 546 void BlockGenerator::findOutsideUsers(Scop &S) { 547 auto &R = S.getRegion(); 548 for (auto &Pair : S.arrays()) { 549 auto &Array = Pair.second; 550 551 if (Array->getNumberOfDimensions() != 0) 552 continue; 553 554 if (Array->isPHIKind()) 555 continue; 556 557 auto *Inst = dyn_cast<Instruction>(Array->getBasePtr()); 558 559 if (!Inst) 560 continue; 561 562 // Scop invariant hoisting moves some of the base pointers out of the scop. 563 // We can ignore these, as the invariant load hoisting already registers the 564 // relevant outside users. 565 if (!R.contains(Inst)) 566 continue; 567 568 handleOutsideUsers(R, Inst, nullptr); 569 } 570 } 571 572 void BlockGenerator::createExitPHINodeMerges(Scop &S) { 573 if (S.hasSingleExitEdge()) 574 return; 575 576 Region &R = S.getRegion(); 577 578 auto *ExitBB = R.getExitingBlock(); 579 auto *MergeBB = R.getExit(); 580 auto *AfterMergeBB = MergeBB->getSingleSuccessor(); 581 BasicBlock *OptExitBB = *(pred_begin(MergeBB)); 582 if (OptExitBB == ExitBB) 583 OptExitBB = *(++pred_begin(MergeBB)); 584 585 Builder.SetInsertPoint(OptExitBB->getTerminator()); 586 587 for (auto &Pair : S.arrays()) { 588 auto &SAI = Pair.second; 589 auto *Val = SAI->getBasePtr(); 590 591 PHINode *PHI = dyn_cast<PHINode>(Val); 592 if (!PHI) 593 continue; 594 595 if (PHI->getParent() != AfterMergeBB) 596 continue; 597 598 std::string Name = PHI->getName(); 599 Value *ScalarAddr = getOrCreateScalarAlloca(PHI); 600 Value *Reload = Builder.CreateLoad(ScalarAddr, Name + ".ph.final_reload"); 601 Reload = Builder.CreateBitOrPointerCast(Reload, PHI->getType()); 602 Value *OriginalValue = PHI->getIncomingValueForBlock(MergeBB); 603 auto *MergePHI = PHINode::Create(PHI->getType(), 2, Name + ".ph.merge"); 604 MergePHI->insertBefore(&*MergeBB->getFirstInsertionPt()); 605 MergePHI->addIncoming(Reload, OptExitBB); 606 MergePHI->addIncoming(OriginalValue, ExitBB); 607 int Idx = PHI->getBasicBlockIndex(MergeBB); 608 PHI->setIncomingValue(Idx, MergePHI); 609 } 610 } 611 612 void BlockGenerator::finalizeSCoP(Scop &S) { 613 findOutsideUsers(S); 614 createScalarInitialization(S); 615 createExitPHINodeMerges(S); 616 createScalarFinalization(S.getRegion()); 617 } 618 619 VectorBlockGenerator::VectorBlockGenerator(BlockGenerator &BlockGen, 620 std::vector<LoopToScevMapT> &VLTS, 621 isl_map *Schedule) 622 : BlockGenerator(BlockGen), VLTS(VLTS), Schedule(Schedule) { 623 assert(Schedule && "No statement domain provided"); 624 } 625 626 Value *VectorBlockGenerator::getVectorValue(ScopStmt &Stmt, Value *Old, 627 ValueMapT &VectorMap, 628 VectorValueMapT &ScalarMaps, 629 Loop *L) { 630 if (Value *NewValue = VectorMap.lookup(Old)) 631 return NewValue; 632 633 int Width = getVectorWidth(); 634 635 Value *Vector = UndefValue::get(VectorType::get(Old->getType(), Width)); 636 637 for (int Lane = 0; Lane < Width; Lane++) 638 Vector = Builder.CreateInsertElement( 639 Vector, getNewValue(Stmt, Old, ScalarMaps[Lane], VLTS[Lane], L), 640 Builder.getInt32(Lane)); 641 642 VectorMap[Old] = Vector; 643 644 return Vector; 645 } 646 647 Type *VectorBlockGenerator::getVectorPtrTy(const Value *Val, int Width) { 648 PointerType *PointerTy = dyn_cast<PointerType>(Val->getType()); 649 assert(PointerTy && "PointerType expected"); 650 651 Type *ScalarType = PointerTy->getElementType(); 652 VectorType *VectorType = VectorType::get(ScalarType, Width); 653 654 return PointerType::getUnqual(VectorType); 655 } 656 657 Value *VectorBlockGenerator::generateStrideOneLoad( 658 ScopStmt &Stmt, LoadInst *Load, VectorValueMapT &ScalarMaps, 659 __isl_keep isl_id_to_ast_expr *NewAccesses, bool NegativeStride = false) { 660 unsigned VectorWidth = getVectorWidth(); 661 auto *Pointer = Load->getPointerOperand(); 662 Type *VectorPtrType = getVectorPtrTy(Pointer, VectorWidth); 663 unsigned Offset = NegativeStride ? VectorWidth - 1 : 0; 664 665 Value *NewPointer = nullptr; 666 NewPointer = generateLocationAccessed(Stmt, Load, ScalarMaps[Offset], 667 VLTS[Offset], NewAccesses); 668 Value *VectorPtr = 669 Builder.CreateBitCast(NewPointer, VectorPtrType, "vector_ptr"); 670 LoadInst *VecLoad = 671 Builder.CreateLoad(VectorPtr, Load->getName() + "_p_vec_full"); 672 if (!Aligned) 673 VecLoad->setAlignment(8); 674 675 if (NegativeStride) { 676 SmallVector<Constant *, 16> Indices; 677 for (int i = VectorWidth - 1; i >= 0; i--) 678 Indices.push_back(ConstantInt::get(Builder.getInt32Ty(), i)); 679 Constant *SV = llvm::ConstantVector::get(Indices); 680 Value *RevVecLoad = Builder.CreateShuffleVector( 681 VecLoad, VecLoad, SV, Load->getName() + "_reverse"); 682 return RevVecLoad; 683 } 684 685 return VecLoad; 686 } 687 688 Value *VectorBlockGenerator::generateStrideZeroLoad( 689 ScopStmt &Stmt, LoadInst *Load, ValueMapT &BBMap, 690 __isl_keep isl_id_to_ast_expr *NewAccesses) { 691 auto *Pointer = Load->getPointerOperand(); 692 Type *VectorPtrType = getVectorPtrTy(Pointer, 1); 693 Value *NewPointer = 694 generateLocationAccessed(Stmt, Load, BBMap, VLTS[0], NewAccesses); 695 Value *VectorPtr = Builder.CreateBitCast(NewPointer, VectorPtrType, 696 Load->getName() + "_p_vec_p"); 697 LoadInst *ScalarLoad = 698 Builder.CreateLoad(VectorPtr, Load->getName() + "_p_splat_one"); 699 700 if (!Aligned) 701 ScalarLoad->setAlignment(8); 702 703 Constant *SplatVector = Constant::getNullValue( 704 VectorType::get(Builder.getInt32Ty(), getVectorWidth())); 705 706 Value *VectorLoad = Builder.CreateShuffleVector( 707 ScalarLoad, ScalarLoad, SplatVector, Load->getName() + "_p_splat"); 708 return VectorLoad; 709 } 710 711 Value *VectorBlockGenerator::generateUnknownStrideLoad( 712 ScopStmt &Stmt, LoadInst *Load, VectorValueMapT &ScalarMaps, 713 __isl_keep isl_id_to_ast_expr *NewAccesses) { 714 int VectorWidth = getVectorWidth(); 715 auto *Pointer = Load->getPointerOperand(); 716 VectorType *VectorType = VectorType::get( 717 dyn_cast<PointerType>(Pointer->getType())->getElementType(), VectorWidth); 718 719 Value *Vector = UndefValue::get(VectorType); 720 721 for (int i = 0; i < VectorWidth; i++) { 722 Value *NewPointer = generateLocationAccessed(Stmt, Load, ScalarMaps[i], 723 VLTS[i], NewAccesses); 724 Value *ScalarLoad = 725 Builder.CreateLoad(NewPointer, Load->getName() + "_p_scalar_"); 726 Vector = Builder.CreateInsertElement( 727 Vector, ScalarLoad, Builder.getInt32(i), Load->getName() + "_p_vec_"); 728 } 729 730 return Vector; 731 } 732 733 void VectorBlockGenerator::generateLoad( 734 ScopStmt &Stmt, LoadInst *Load, ValueMapT &VectorMap, 735 VectorValueMapT &ScalarMaps, __isl_keep isl_id_to_ast_expr *NewAccesses) { 736 if (Value *PreloadLoad = GlobalMap.lookup(Load)) { 737 VectorMap[Load] = Builder.CreateVectorSplat(getVectorWidth(), PreloadLoad, 738 Load->getName() + "_p"); 739 return; 740 } 741 742 if (!VectorType::isValidElementType(Load->getType())) { 743 for (int i = 0; i < getVectorWidth(); i++) 744 ScalarMaps[i][Load] = 745 generateScalarLoad(Stmt, Load, ScalarMaps[i], VLTS[i], NewAccesses); 746 return; 747 } 748 749 const MemoryAccess &Access = Stmt.getArrayAccessFor(Load); 750 751 // Make sure we have scalar values available to access the pointer to 752 // the data location. 753 extractScalarValues(Load, VectorMap, ScalarMaps); 754 755 Value *NewLoad; 756 if (Access.isStrideZero(isl_map_copy(Schedule))) 757 NewLoad = generateStrideZeroLoad(Stmt, Load, ScalarMaps[0], NewAccesses); 758 else if (Access.isStrideOne(isl_map_copy(Schedule))) 759 NewLoad = generateStrideOneLoad(Stmt, Load, ScalarMaps, NewAccesses); 760 else if (Access.isStrideX(isl_map_copy(Schedule), -1)) 761 NewLoad = generateStrideOneLoad(Stmt, Load, ScalarMaps, NewAccesses, true); 762 else 763 NewLoad = generateUnknownStrideLoad(Stmt, Load, ScalarMaps, NewAccesses); 764 765 VectorMap[Load] = NewLoad; 766 } 767 768 void VectorBlockGenerator::copyUnaryInst(ScopStmt &Stmt, UnaryInstruction *Inst, 769 ValueMapT &VectorMap, 770 VectorValueMapT &ScalarMaps) { 771 int VectorWidth = getVectorWidth(); 772 Value *NewOperand = getVectorValue(Stmt, Inst->getOperand(0), VectorMap, 773 ScalarMaps, getLoopForInst(Inst)); 774 775 assert(isa<CastInst>(Inst) && "Can not generate vector code for instruction"); 776 777 const CastInst *Cast = dyn_cast<CastInst>(Inst); 778 VectorType *DestType = VectorType::get(Inst->getType(), VectorWidth); 779 VectorMap[Inst] = Builder.CreateCast(Cast->getOpcode(), NewOperand, DestType); 780 } 781 782 void VectorBlockGenerator::copyBinaryInst(ScopStmt &Stmt, BinaryOperator *Inst, 783 ValueMapT &VectorMap, 784 VectorValueMapT &ScalarMaps) { 785 Loop *L = getLoopForInst(Inst); 786 Value *OpZero = Inst->getOperand(0); 787 Value *OpOne = Inst->getOperand(1); 788 789 Value *NewOpZero, *NewOpOne; 790 NewOpZero = getVectorValue(Stmt, OpZero, VectorMap, ScalarMaps, L); 791 NewOpOne = getVectorValue(Stmt, OpOne, VectorMap, ScalarMaps, L); 792 793 Value *NewInst = Builder.CreateBinOp(Inst->getOpcode(), NewOpZero, NewOpOne, 794 Inst->getName() + "p_vec"); 795 VectorMap[Inst] = NewInst; 796 } 797 798 void VectorBlockGenerator::copyStore( 799 ScopStmt &Stmt, StoreInst *Store, ValueMapT &VectorMap, 800 VectorValueMapT &ScalarMaps, __isl_keep isl_id_to_ast_expr *NewAccesses) { 801 const MemoryAccess &Access = Stmt.getArrayAccessFor(Store); 802 803 auto *Pointer = Store->getPointerOperand(); 804 Value *Vector = getVectorValue(Stmt, Store->getValueOperand(), VectorMap, 805 ScalarMaps, getLoopForInst(Store)); 806 807 // Make sure we have scalar values available to access the pointer to 808 // the data location. 809 extractScalarValues(Store, VectorMap, ScalarMaps); 810 811 if (Access.isStrideOne(isl_map_copy(Schedule))) { 812 Type *VectorPtrType = getVectorPtrTy(Pointer, getVectorWidth()); 813 Value *NewPointer = generateLocationAccessed(Stmt, Store, ScalarMaps[0], 814 VLTS[0], NewAccesses); 815 816 Value *VectorPtr = 817 Builder.CreateBitCast(NewPointer, VectorPtrType, "vector_ptr"); 818 StoreInst *Store = Builder.CreateStore(Vector, VectorPtr); 819 820 if (!Aligned) 821 Store->setAlignment(8); 822 } else { 823 for (unsigned i = 0; i < ScalarMaps.size(); i++) { 824 Value *Scalar = Builder.CreateExtractElement(Vector, Builder.getInt32(i)); 825 Value *NewPointer = generateLocationAccessed(Stmt, Store, ScalarMaps[i], 826 VLTS[i], NewAccesses); 827 Builder.CreateStore(Scalar, NewPointer); 828 } 829 } 830 } 831 832 bool VectorBlockGenerator::hasVectorOperands(const Instruction *Inst, 833 ValueMapT &VectorMap) { 834 for (Value *Operand : Inst->operands()) 835 if (VectorMap.count(Operand)) 836 return true; 837 return false; 838 } 839 840 bool VectorBlockGenerator::extractScalarValues(const Instruction *Inst, 841 ValueMapT &VectorMap, 842 VectorValueMapT &ScalarMaps) { 843 bool HasVectorOperand = false; 844 int VectorWidth = getVectorWidth(); 845 846 for (Value *Operand : Inst->operands()) { 847 ValueMapT::iterator VecOp = VectorMap.find(Operand); 848 849 if (VecOp == VectorMap.end()) 850 continue; 851 852 HasVectorOperand = true; 853 Value *NewVector = VecOp->second; 854 855 for (int i = 0; i < VectorWidth; ++i) { 856 ValueMapT &SM = ScalarMaps[i]; 857 858 // If there is one scalar extracted, all scalar elements should have 859 // already been extracted by the code here. So no need to check for the 860 // existance of all of them. 861 if (SM.count(Operand)) 862 break; 863 864 SM[Operand] = 865 Builder.CreateExtractElement(NewVector, Builder.getInt32(i)); 866 } 867 } 868 869 return HasVectorOperand; 870 } 871 872 void VectorBlockGenerator::copyInstScalarized( 873 ScopStmt &Stmt, Instruction *Inst, ValueMapT &VectorMap, 874 VectorValueMapT &ScalarMaps, __isl_keep isl_id_to_ast_expr *NewAccesses) { 875 bool HasVectorOperand; 876 int VectorWidth = getVectorWidth(); 877 878 HasVectorOperand = extractScalarValues(Inst, VectorMap, ScalarMaps); 879 880 for (int VectorLane = 0; VectorLane < getVectorWidth(); VectorLane++) 881 BlockGenerator::copyInstruction(Stmt, Inst, ScalarMaps[VectorLane], 882 VLTS[VectorLane], NewAccesses); 883 884 if (!VectorType::isValidElementType(Inst->getType()) || !HasVectorOperand) 885 return; 886 887 // Make the result available as vector value. 888 VectorType *VectorType = VectorType::get(Inst->getType(), VectorWidth); 889 Value *Vector = UndefValue::get(VectorType); 890 891 for (int i = 0; i < VectorWidth; i++) 892 Vector = Builder.CreateInsertElement(Vector, ScalarMaps[i][Inst], 893 Builder.getInt32(i)); 894 895 VectorMap[Inst] = Vector; 896 } 897 898 int VectorBlockGenerator::getVectorWidth() { return VLTS.size(); } 899 900 void VectorBlockGenerator::copyInstruction( 901 ScopStmt &Stmt, Instruction *Inst, ValueMapT &VectorMap, 902 VectorValueMapT &ScalarMaps, __isl_keep isl_id_to_ast_expr *NewAccesses) { 903 // Terminator instructions control the control flow. They are explicitly 904 // expressed in the clast and do not need to be copied. 905 if (Inst->isTerminator()) 906 return; 907 908 if (canSyntheziseInStmt(Stmt, Inst)) 909 return; 910 911 if (auto *Load = dyn_cast<LoadInst>(Inst)) { 912 generateLoad(Stmt, Load, VectorMap, ScalarMaps, NewAccesses); 913 return; 914 } 915 916 if (hasVectorOperands(Inst, VectorMap)) { 917 if (auto *Store = dyn_cast<StoreInst>(Inst)) { 918 copyStore(Stmt, Store, VectorMap, ScalarMaps, NewAccesses); 919 return; 920 } 921 922 if (auto *Unary = dyn_cast<UnaryInstruction>(Inst)) { 923 copyUnaryInst(Stmt, Unary, VectorMap, ScalarMaps); 924 return; 925 } 926 927 if (auto *Binary = dyn_cast<BinaryOperator>(Inst)) { 928 copyBinaryInst(Stmt, Binary, VectorMap, ScalarMaps); 929 return; 930 } 931 932 // Falltrough: We generate scalar instructions, if we don't know how to 933 // generate vector code. 934 } 935 936 copyInstScalarized(Stmt, Inst, VectorMap, ScalarMaps, NewAccesses); 937 } 938 939 void VectorBlockGenerator::generateScalarVectorLoads( 940 ScopStmt &Stmt, ValueMapT &VectorBlockMap) { 941 for (MemoryAccess *MA : Stmt) { 942 if (MA->isArrayKind() || MA->isWrite()) 943 continue; 944 945 auto *Address = getOrCreateAlloca(*MA); 946 Type *VectorPtrType = getVectorPtrTy(Address, 1); 947 Value *VectorPtr = Builder.CreateBitCast(Address, VectorPtrType, 948 Address->getName() + "_p_vec_p"); 949 auto *Val = Builder.CreateLoad(VectorPtr, Address->getName() + ".reload"); 950 Constant *SplatVector = Constant::getNullValue( 951 VectorType::get(Builder.getInt32Ty(), getVectorWidth())); 952 953 Value *VectorVal = Builder.CreateShuffleVector( 954 Val, Val, SplatVector, Address->getName() + "_p_splat"); 955 VectorBlockMap[MA->getBaseAddr()] = VectorVal; 956 VectorVal->dump(); 957 } 958 } 959 960 void VectorBlockGenerator::verifyNoScalarStores(ScopStmt &Stmt) { 961 for (MemoryAccess *MA : Stmt) { 962 if (MA->isArrayKind() || MA->isRead()) 963 continue; 964 965 llvm_unreachable("Scalar stores not expected in vector loop"); 966 } 967 } 968 969 void VectorBlockGenerator::copyStmt( 970 ScopStmt &Stmt, __isl_keep isl_id_to_ast_expr *NewAccesses) { 971 assert(Stmt.isBlockStmt() && "TODO: Only block statements can be copied by " 972 "the vector block generator"); 973 974 BasicBlock *BB = Stmt.getBasicBlock(); 975 BasicBlock *CopyBB = SplitBlock(Builder.GetInsertBlock(), 976 &*Builder.GetInsertPoint(), &DT, &LI); 977 CopyBB->setName("polly.stmt." + BB->getName()); 978 Builder.SetInsertPoint(&CopyBB->front()); 979 980 // Create two maps that store the mapping from the original instructions of 981 // the old basic block to their copies in the new basic block. Those maps 982 // are basic block local. 983 // 984 // As vector code generation is supported there is one map for scalar values 985 // and one for vector values. 986 // 987 // In case we just do scalar code generation, the vectorMap is not used and 988 // the scalarMap has just one dimension, which contains the mapping. 989 // 990 // In case vector code generation is done, an instruction may either appear 991 // in the vector map once (as it is calculating >vectorwidth< values at a 992 // time. Or (if the values are calculated using scalar operations), it 993 // appears once in every dimension of the scalarMap. 994 VectorValueMapT ScalarBlockMap(getVectorWidth()); 995 ValueMapT VectorBlockMap; 996 997 generateScalarVectorLoads(Stmt, VectorBlockMap); 998 999 for (Instruction &Inst : *BB) 1000 copyInstruction(Stmt, &Inst, VectorBlockMap, ScalarBlockMap, NewAccesses); 1001 1002 verifyNoScalarStores(Stmt); 1003 } 1004 1005 BasicBlock *RegionGenerator::repairDominance(BasicBlock *BB, 1006 BasicBlock *BBCopy) { 1007 1008 BasicBlock *BBIDom = DT.getNode(BB)->getIDom()->getBlock(); 1009 BasicBlock *BBCopyIDom = BlockMap.lookup(BBIDom); 1010 1011 if (BBCopyIDom) 1012 DT.changeImmediateDominator(BBCopy, BBCopyIDom); 1013 1014 return BBCopyIDom; 1015 } 1016 1017 void RegionGenerator::copyStmt(ScopStmt &Stmt, LoopToScevMapT <S, 1018 isl_id_to_ast_expr *IdToAstExp) { 1019 assert(Stmt.isRegionStmt() && 1020 "Only region statements can be copied by the region generator"); 1021 1022 Scop *S = Stmt.getParent(); 1023 1024 // Forget all old mappings. 1025 BlockMap.clear(); 1026 RegionMaps.clear(); 1027 IncompletePHINodeMap.clear(); 1028 1029 // Collection of all values related to this subregion. 1030 ValueMapT ValueMap; 1031 1032 // The region represented by the statement. 1033 Region *R = Stmt.getRegion(); 1034 1035 // Create a dedicated entry for the region where we can reload all demoted 1036 // inputs. 1037 BasicBlock *EntryBB = R->getEntry(); 1038 BasicBlock *EntryBBCopy = SplitBlock(Builder.GetInsertBlock(), 1039 &*Builder.GetInsertPoint(), &DT, &LI); 1040 EntryBBCopy->setName("polly.stmt." + EntryBB->getName() + ".entry"); 1041 Builder.SetInsertPoint(&EntryBBCopy->front()); 1042 1043 ValueMapT &EntryBBMap = RegionMaps[EntryBBCopy]; 1044 generateScalarLoads(Stmt, EntryBBMap); 1045 1046 for (auto PI = pred_begin(EntryBB), PE = pred_end(EntryBB); PI != PE; ++PI) 1047 if (!R->contains(*PI)) 1048 BlockMap[*PI] = EntryBBCopy; 1049 1050 // Determine the original exit block of this subregion. If it the exit block 1051 // is also the scop's exit, it it has been changed to polly.merge_new_and_old. 1052 // We move one block back to find the original block. This only happens if the 1053 // scop required simplification. 1054 // If the whole scop consists of only this non-affine region, then they share 1055 // the same Region object, such that we cannot change the exit of one and not 1056 // the other. 1057 BasicBlock *ExitBB = R->getExit(); 1058 if (!S->hasSingleExitEdge() && ExitBB == S->getRegion().getExit()) 1059 ExitBB = *(++pred_begin(ExitBB)); 1060 1061 // Iterate over all blocks in the region in a breadth-first search. 1062 std::deque<BasicBlock *> Blocks; 1063 SmallPtrSet<BasicBlock *, 8> SeenBlocks; 1064 Blocks.push_back(EntryBB); 1065 SeenBlocks.insert(EntryBB); 1066 1067 while (!Blocks.empty()) { 1068 BasicBlock *BB = Blocks.front(); 1069 Blocks.pop_front(); 1070 1071 // First split the block and update dominance information. 1072 BasicBlock *BBCopy = splitBB(BB); 1073 BasicBlock *BBCopyIDom = repairDominance(BB, BBCopy); 1074 1075 // In order to remap PHI nodes we store also basic block mappings. 1076 BlockMap[BB] = BBCopy; 1077 1078 // Get the mapping for this block and initialize it with either the scalar 1079 // loads from the generated entering block (which dominates all blocks of 1080 // this subregion) or the maps of the immediate dominator, if part of the 1081 // subregion. The latter necessarily includes the former. 1082 ValueMapT *InitBBMap; 1083 if (BBCopyIDom) { 1084 assert(RegionMaps.count(BBCopyIDom)); 1085 InitBBMap = &RegionMaps[BBCopyIDom]; 1086 } else 1087 InitBBMap = &EntryBBMap; 1088 auto Inserted = RegionMaps.insert(std::make_pair(BBCopy, *InitBBMap)); 1089 ValueMapT &RegionMap = Inserted.first->second; 1090 1091 // Copy the block with the BlockGenerator. 1092 Builder.SetInsertPoint(&BBCopy->front()); 1093 copyBB(Stmt, BB, BBCopy, RegionMap, LTS, IdToAstExp); 1094 1095 // In order to remap PHI nodes we store also basic block mappings. 1096 BlockMap[BB] = BBCopy; 1097 1098 // Add values to incomplete PHI nodes waiting for this block to be copied. 1099 for (const PHINodePairTy &PHINodePair : IncompletePHINodeMap[BB]) 1100 addOperandToPHI(Stmt, PHINodePair.first, PHINodePair.second, BB, LTS); 1101 IncompletePHINodeMap[BB].clear(); 1102 1103 // And continue with new successors inside the region. 1104 for (auto SI = succ_begin(BB), SE = succ_end(BB); SI != SE; SI++) 1105 if (R->contains(*SI) && SeenBlocks.insert(*SI).second) 1106 Blocks.push_back(*SI); 1107 1108 // Remember value in case it is visible after this subregion. 1109 if (DT.dominates(BB, ExitBB)) 1110 ValueMap.insert(RegionMap.begin(), RegionMap.end()); 1111 } 1112 1113 // Now create a new dedicated region exit block and add it to the region map. 1114 BasicBlock *ExitBBCopy = SplitBlock(Builder.GetInsertBlock(), 1115 &*Builder.GetInsertPoint(), &DT, &LI); 1116 ExitBBCopy->setName("polly.stmt." + R->getExit()->getName() + ".exit"); 1117 BlockMap[R->getExit()] = ExitBBCopy; 1118 1119 if (ExitBB == R->getExit()) 1120 repairDominance(ExitBB, ExitBBCopy); 1121 else 1122 DT.changeImmediateDominator(ExitBBCopy, BlockMap.lookup(ExitBB)); 1123 1124 // As the block generator doesn't handle control flow we need to add the 1125 // region control flow by hand after all blocks have been copied. 1126 for (BasicBlock *BB : SeenBlocks) { 1127 1128 BasicBlock *BBCopy = BlockMap[BB]; 1129 TerminatorInst *TI = BB->getTerminator(); 1130 if (isa<UnreachableInst>(TI)) { 1131 while (!BBCopy->empty()) 1132 BBCopy->begin()->eraseFromParent(); 1133 new UnreachableInst(BBCopy->getContext(), BBCopy); 1134 continue; 1135 } 1136 1137 Instruction *BICopy = BBCopy->getTerminator(); 1138 1139 ValueMapT &RegionMap = RegionMaps[BBCopy]; 1140 RegionMap.insert(BlockMap.begin(), BlockMap.end()); 1141 1142 Builder.SetInsertPoint(BICopy); 1143 copyInstScalar(Stmt, TI, RegionMap, LTS); 1144 BICopy->eraseFromParent(); 1145 } 1146 1147 // Add counting PHI nodes to all loops in the region that can be used as 1148 // replacement for SCEVs refering to the old loop. 1149 for (BasicBlock *BB : SeenBlocks) { 1150 Loop *L = LI.getLoopFor(BB); 1151 if (L == nullptr || L->getHeader() != BB || !R->contains(L)) 1152 continue; 1153 1154 BasicBlock *BBCopy = BlockMap[BB]; 1155 Value *NullVal = Builder.getInt32(0); 1156 PHINode *LoopPHI = 1157 PHINode::Create(Builder.getInt32Ty(), 2, "polly.subregion.iv"); 1158 Instruction *LoopPHIInc = BinaryOperator::CreateAdd( 1159 LoopPHI, Builder.getInt32(1), "polly.subregion.iv.inc"); 1160 LoopPHI->insertBefore(&BBCopy->front()); 1161 LoopPHIInc->insertBefore(BBCopy->getTerminator()); 1162 1163 for (auto *PredBB : make_range(pred_begin(BB), pred_end(BB))) { 1164 if (!R->contains(PredBB)) 1165 continue; 1166 if (L->contains(PredBB)) 1167 LoopPHI->addIncoming(LoopPHIInc, BlockMap[PredBB]); 1168 else 1169 LoopPHI->addIncoming(NullVal, BlockMap[PredBB]); 1170 } 1171 1172 for (auto *PredBBCopy : make_range(pred_begin(BBCopy), pred_end(BBCopy))) 1173 if (LoopPHI->getBasicBlockIndex(PredBBCopy) < 0) 1174 LoopPHI->addIncoming(NullVal, PredBBCopy); 1175 1176 LTS[L] = SE.getUnknown(LoopPHI); 1177 } 1178 1179 // Continue generating code in the exit block. 1180 Builder.SetInsertPoint(&*ExitBBCopy->getFirstInsertionPt()); 1181 1182 // Write values visible to other statements. 1183 generateScalarStores(Stmt, LTS, ValueMap); 1184 BlockMap.clear(); 1185 RegionMaps.clear(); 1186 IncompletePHINodeMap.clear(); 1187 } 1188 1189 PHINode *RegionGenerator::buildExitPHI(MemoryAccess *MA, LoopToScevMapT <S, 1190 ValueMapT &BBMap, Loop *L) { 1191 ScopStmt *Stmt = MA->getStatement(); 1192 Region *SubR = Stmt->getRegion(); 1193 auto Incoming = MA->getIncoming(); 1194 1195 PollyIRBuilder::InsertPointGuard IPGuard(Builder); 1196 PHINode *OrigPHI = cast<PHINode>(MA->getAccessInstruction()); 1197 BasicBlock *NewSubregionExit = Builder.GetInsertBlock(); 1198 1199 // This can happen if the subregion is simplified after the ScopStmts 1200 // have been created; simplification happens as part of CodeGeneration. 1201 if (OrigPHI->getParent() != SubR->getExit()) { 1202 BasicBlock *FormerExit = SubR->getExitingBlock(); 1203 if (FormerExit) 1204 NewSubregionExit = BlockMap.lookup(FormerExit); 1205 } 1206 1207 PHINode *NewPHI = PHINode::Create(OrigPHI->getType(), Incoming.size(), 1208 "polly." + OrigPHI->getName(), 1209 NewSubregionExit->getFirstNonPHI()); 1210 1211 // Add the incoming values to the PHI. 1212 for (auto &Pair : Incoming) { 1213 BasicBlock *OrigIncomingBlock = Pair.first; 1214 BasicBlock *NewIncomingBlock = BlockMap.lookup(OrigIncomingBlock); 1215 Builder.SetInsertPoint(NewIncomingBlock->getTerminator()); 1216 assert(RegionMaps.count(NewIncomingBlock)); 1217 ValueMapT *LocalBBMap = &RegionMaps[NewIncomingBlock]; 1218 1219 Value *OrigIncomingValue = Pair.second; 1220 Value *NewIncomingValue = 1221 getNewValue(*Stmt, OrigIncomingValue, *LocalBBMap, LTS, L); 1222 NewPHI->addIncoming(NewIncomingValue, NewIncomingBlock); 1223 } 1224 1225 return NewPHI; 1226 } 1227 1228 Value *RegionGenerator::getExitScalar(MemoryAccess *MA, LoopToScevMapT <S, 1229 ValueMapT &BBMap) { 1230 ScopStmt *Stmt = MA->getStatement(); 1231 1232 // TODO: Add some test cases that ensure this is really the right choice. 1233 Loop *L = LI.getLoopFor(Stmt->getRegion()->getExit()); 1234 1235 if (MA->isAnyPHIKind()) { 1236 auto Incoming = MA->getIncoming(); 1237 assert(!Incoming.empty() && 1238 "PHI WRITEs must have originate from at least one incoming block"); 1239 1240 // If there is only one incoming value, we do not need to create a PHI. 1241 if (Incoming.size() == 1) { 1242 Value *OldVal = Incoming[0].second; 1243 return getNewValue(*Stmt, OldVal, BBMap, LTS, L); 1244 } 1245 1246 return buildExitPHI(MA, LTS, BBMap, L); 1247 } 1248 1249 // MK_Value accesses leaving the subregion must dominate the exit block; just 1250 // pass the copied value 1251 Value *OldVal = MA->getAccessValue(); 1252 return getNewValue(*Stmt, OldVal, BBMap, LTS, L); 1253 } 1254 1255 void RegionGenerator::generateScalarStores(ScopStmt &Stmt, LoopToScevMapT <S, 1256 ValueMapT &BBMap) { 1257 assert(Stmt.getRegion() && 1258 "Block statements need to use the generateScalarStores() " 1259 "function in the BlockGenerator"); 1260 1261 for (MemoryAccess *MA : Stmt) { 1262 if (MA->isArrayKind() || MA->isRead()) 1263 continue; 1264 1265 Value *NewVal = getExitScalar(MA, LTS, BBMap); 1266 Value *Address = getOrCreateAlloca(*MA); 1267 Builder.CreateStore(NewVal, Address); 1268 } 1269 } 1270 1271 void RegionGenerator::addOperandToPHI(ScopStmt &Stmt, const PHINode *PHI, 1272 PHINode *PHICopy, BasicBlock *IncomingBB, 1273 LoopToScevMapT <S) { 1274 Region *StmtR = Stmt.getRegion(); 1275 1276 // If the incoming block was not yet copied mark this PHI as incomplete. 1277 // Once the block will be copied the incoming value will be added. 1278 BasicBlock *BBCopy = BlockMap[IncomingBB]; 1279 if (!BBCopy) { 1280 assert(StmtR->contains(IncomingBB) && 1281 "Bad incoming block for PHI in non-affine region"); 1282 IncompletePHINodeMap[IncomingBB].push_back(std::make_pair(PHI, PHICopy)); 1283 return; 1284 } 1285 1286 Value *OpCopy = nullptr; 1287 if (StmtR->contains(IncomingBB)) { 1288 assert(RegionMaps.count(BBCopy) && 1289 "Incoming PHI block did not have a BBMap"); 1290 ValueMapT &BBCopyMap = RegionMaps[BBCopy]; 1291 1292 Value *Op = PHI->getIncomingValueForBlock(IncomingBB); 1293 1294 BasicBlock *OldBlock = Builder.GetInsertBlock(); 1295 auto OldIP = Builder.GetInsertPoint(); 1296 Builder.SetInsertPoint(BBCopy->getTerminator()); 1297 OpCopy = getNewValue(Stmt, Op, BBCopyMap, LTS, getLoopForInst(PHI)); 1298 Builder.SetInsertPoint(OldBlock, OldIP); 1299 } else { 1300 1301 if (PHICopy->getBasicBlockIndex(BBCopy) >= 0) 1302 return; 1303 1304 Value *PHIOpAddr = getOrCreatePHIAlloca(const_cast<PHINode *>(PHI)); 1305 OpCopy = new LoadInst(PHIOpAddr, PHIOpAddr->getName() + ".reload", 1306 BlockMap[IncomingBB]->getTerminator()); 1307 } 1308 1309 assert(OpCopy && "Incoming PHI value was not copied properly"); 1310 assert(BBCopy && "Incoming PHI block was not copied properly"); 1311 PHICopy->addIncoming(OpCopy, BBCopy); 1312 } 1313 1314 Value *RegionGenerator::copyPHIInstruction(ScopStmt &Stmt, PHINode *PHI, 1315 ValueMapT &BBMap, 1316 LoopToScevMapT <S) { 1317 unsigned NumIncoming = PHI->getNumIncomingValues(); 1318 PHINode *PHICopy = 1319 Builder.CreatePHI(PHI->getType(), NumIncoming, "polly." + PHI->getName()); 1320 PHICopy->moveBefore(PHICopy->getParent()->getFirstNonPHI()); 1321 BBMap[PHI] = PHICopy; 1322 1323 for (unsigned u = 0; u < NumIncoming; u++) 1324 addOperandToPHI(Stmt, PHI, PHICopy, PHI->getIncomingBlock(u), LTS); 1325 return PHICopy; 1326 } 1327