1 //===--- BlockGenerators.cpp - Generate code for statements -----*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the BlockGenerator and VectorBlockGenerator classes, 11 // which generate sequential code and vectorized code for a polyhedral 12 // statement, respectively. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "polly/ScopInfo.h" 17 #include "polly/CodeGen/BlockGenerators.h" 18 #include "polly/CodeGen/CodeGeneration.h" 19 #include "polly/CodeGen/IslExprBuilder.h" 20 #include "polly/CodeGen/RuntimeDebugBuilder.h" 21 #include "polly/Options.h" 22 #include "polly/Support/GICHelper.h" 23 #include "polly/Support/SCEVValidator.h" 24 #include "polly/Support/ScopHelper.h" 25 #include "llvm/Analysis/LoopInfo.h" 26 #include "llvm/Analysis/RegionInfo.h" 27 #include "llvm/Analysis/ScalarEvolution.h" 28 #include "llvm/IR/IntrinsicInst.h" 29 #include "llvm/IR/Module.h" 30 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 31 #include "llvm/Transforms/Utils/Local.h" 32 #include "isl/aff.h" 33 #include "isl/ast.h" 34 #include "isl/ast_build.h" 35 #include "isl/set.h" 36 #include <deque> 37 38 using namespace llvm; 39 using namespace polly; 40 41 static cl::opt<bool> Aligned("enable-polly-aligned", 42 cl::desc("Assumed aligned memory accesses."), 43 cl::Hidden, cl::init(false), cl::ZeroOrMore, 44 cl::cat(PollyCategory)); 45 46 static cl::opt<bool> DebugPrinting( 47 "polly-codegen-add-debug-printing", 48 cl::desc("Add printf calls that show the values loaded/stored."), 49 cl::Hidden, cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory)); 50 51 BlockGenerator::BlockGenerator(PollyIRBuilder &B, LoopInfo &LI, 52 ScalarEvolution &SE, DominatorTree &DT, 53 ScalarAllocaMapTy &ScalarMap, 54 ScalarAllocaMapTy &PHIOpMap, 55 EscapeUsersAllocaMapTy &EscapeMap, 56 ValueMapT &GlobalMap, 57 IslExprBuilder *ExprBuilder) 58 : Builder(B), LI(LI), SE(SE), ExprBuilder(ExprBuilder), DT(DT), 59 EntryBB(nullptr), PHIOpMap(PHIOpMap), ScalarMap(ScalarMap), 60 EscapeMap(EscapeMap), GlobalMap(GlobalMap) {} 61 62 Value *BlockGenerator::trySynthesizeNewValue(ScopStmt &Stmt, Value *Old, 63 ValueMapT &BBMap, 64 LoopToScevMapT <S, 65 Loop *L) const { 66 if (SE.isSCEVable(Old->getType())) 67 if (const SCEV *Scev = SE.getSCEVAtScope(const_cast<Value *>(Old), L)) { 68 if (!isa<SCEVCouldNotCompute>(Scev)) { 69 const SCEV *NewScev = apply(Scev, LTS, SE); 70 ValueMapT VTV; 71 VTV.insert(BBMap.begin(), BBMap.end()); 72 VTV.insert(GlobalMap.begin(), GlobalMap.end()); 73 74 Scop &S = *Stmt.getParent(); 75 const DataLayout &DL = 76 S.getRegion().getEntry()->getParent()->getParent()->getDataLayout(); 77 auto IP = Builder.GetInsertPoint(); 78 79 assert(IP != Builder.GetInsertBlock()->end() && 80 "Only instructions can be insert points for SCEVExpander"); 81 Value *Expanded = expandCodeFor(S, SE, DL, "polly", NewScev, 82 Old->getType(), &*IP, &VTV); 83 84 BBMap[Old] = Expanded; 85 return Expanded; 86 } 87 } 88 89 return nullptr; 90 } 91 92 Value *BlockGenerator::getNewValue(ScopStmt &Stmt, Value *Old, ValueMapT &BBMap, 93 LoopToScevMapT <S, Loop *L) const { 94 // We assume constants never change. 95 // This avoids map lookups for many calls to this function. 96 if (isa<Constant>(Old)) 97 return const_cast<Value *>(Old); 98 99 if (Value *New = GlobalMap.lookup(Old)) { 100 if (Value *NewRemapped = GlobalMap.lookup(New)) 101 New = NewRemapped; 102 if (Old->getType()->getScalarSizeInBits() < 103 New->getType()->getScalarSizeInBits()) 104 New = Builder.CreateTruncOrBitCast(New, Old->getType()); 105 106 return New; 107 } 108 109 if (Value *New = BBMap.lookup(Old)) 110 return New; 111 112 if (Value *New = trySynthesizeNewValue(Stmt, Old, BBMap, LTS, L)) 113 return New; 114 115 // A scop-constant value defined by a global or a function parameter. 116 if (isa<GlobalValue>(Old) || isa<Argument>(Old)) 117 return const_cast<Value *>(Old); 118 119 // A scop-constant value defined by an instruction executed outside the scop. 120 if (const Instruction *Inst = dyn_cast<Instruction>(Old)) 121 if (!Stmt.getParent()->getRegion().contains(Inst->getParent())) 122 return const_cast<Value *>(Old); 123 124 // The scalar dependence is neither available nor SCEVCodegenable. 125 llvm_unreachable("Unexpected scalar dependence in region!"); 126 return nullptr; 127 } 128 129 void BlockGenerator::copyInstScalar(ScopStmt &Stmt, Instruction *Inst, 130 ValueMapT &BBMap, LoopToScevMapT <S) { 131 // We do not generate debug intrinsics as we did not investigate how to 132 // copy them correctly. At the current state, they just crash the code 133 // generation as the meta-data operands are not correctly copied. 134 if (isa<DbgInfoIntrinsic>(Inst)) 135 return; 136 137 Instruction *NewInst = Inst->clone(); 138 139 // Replace old operands with the new ones. 140 for (Value *OldOperand : Inst->operands()) { 141 Value *NewOperand = 142 getNewValue(Stmt, OldOperand, BBMap, LTS, getLoopForInst(Inst)); 143 144 if (!NewOperand) { 145 assert(!isa<StoreInst>(NewInst) && 146 "Store instructions are always needed!"); 147 delete NewInst; 148 return; 149 } 150 151 NewInst->replaceUsesOfWith(OldOperand, NewOperand); 152 } 153 154 Builder.Insert(NewInst); 155 BBMap[Inst] = NewInst; 156 157 if (!NewInst->getType()->isVoidTy()) 158 NewInst->setName("p_" + Inst->getName()); 159 } 160 161 Value *BlockGenerator::generateLocationAccessed( 162 ScopStmt &Stmt, const Instruction *Inst, Value *Pointer, ValueMapT &BBMap, 163 LoopToScevMapT <S, isl_id_to_ast_expr *NewAccesses) { 164 const MemoryAccess &MA = Stmt.getAccessFor(Inst); 165 166 isl_ast_expr *AccessExpr = isl_id_to_ast_expr_get(NewAccesses, MA.getId()); 167 168 if (AccessExpr) { 169 AccessExpr = isl_ast_expr_address_of(AccessExpr); 170 auto Address = ExprBuilder->create(AccessExpr); 171 172 // Cast the address of this memory access to a pointer type that has the 173 // same element type as the original access, but uses the address space of 174 // the newly generated pointer. 175 auto OldPtrTy = MA.getAccessValue()->getType()->getPointerTo(); 176 auto NewPtrTy = Address->getType(); 177 OldPtrTy = PointerType::get(OldPtrTy->getElementType(), 178 NewPtrTy->getPointerAddressSpace()); 179 180 if (OldPtrTy != NewPtrTy) { 181 assert(OldPtrTy->getPointerElementType()->getPrimitiveSizeInBits() == 182 NewPtrTy->getPointerElementType()->getPrimitiveSizeInBits() && 183 "Pointer types to elements with different size found"); 184 Address = Builder.CreateBitOrPointerCast(Address, OldPtrTy); 185 } 186 return Address; 187 } 188 189 return getNewValue(Stmt, Pointer, BBMap, LTS, getLoopForInst(Inst)); 190 } 191 192 Loop *BlockGenerator::getLoopForInst(const llvm::Instruction *Inst) { 193 return LI.getLoopFor(Inst->getParent()); 194 } 195 196 Value *BlockGenerator::generateScalarLoad(ScopStmt &Stmt, LoadInst *Load, 197 ValueMapT &BBMap, LoopToScevMapT <S, 198 isl_id_to_ast_expr *NewAccesses) { 199 if (Value *PreloadLoad = GlobalMap.lookup(Load)) 200 return PreloadLoad; 201 202 auto *Pointer = Load->getPointerOperand(); 203 Value *NewPointer = 204 generateLocationAccessed(Stmt, Load, Pointer, BBMap, LTS, NewAccesses); 205 Value *ScalarLoad = Builder.CreateAlignedLoad( 206 NewPointer, Load->getAlignment(), Load->getName() + "_p_scalar_"); 207 208 if (DebugPrinting) 209 RuntimeDebugBuilder::createCPUPrinter(Builder, "Load from ", NewPointer, 210 ": ", ScalarLoad, "\n"); 211 212 return ScalarLoad; 213 } 214 215 void BlockGenerator::generateScalarStore(ScopStmt &Stmt, StoreInst *Store, 216 ValueMapT &BBMap, LoopToScevMapT <S, 217 isl_id_to_ast_expr *NewAccesses) { 218 auto *Pointer = Store->getPointerOperand(); 219 Value *NewPointer = 220 generateLocationAccessed(Stmt, Store, Pointer, BBMap, LTS, NewAccesses); 221 Value *ValueOperand = getNewValue(Stmt, Store->getValueOperand(), BBMap, LTS, 222 getLoopForInst(Store)); 223 224 if (DebugPrinting) 225 RuntimeDebugBuilder::createCPUPrinter(Builder, "Store to ", NewPointer, 226 ": ", ValueOperand, "\n"); 227 228 Builder.CreateAlignedStore(ValueOperand, NewPointer, Store->getAlignment()); 229 } 230 231 void BlockGenerator::copyInstruction(ScopStmt &Stmt, Instruction *Inst, 232 ValueMapT &BBMap, LoopToScevMapT <S, 233 isl_id_to_ast_expr *NewAccesses) { 234 // Terminator instructions control the control flow. They are explicitly 235 // expressed in the clast and do not need to be copied. 236 if (Inst->isTerminator()) 237 return; 238 239 Loop *L = getLoopForInst(Inst); 240 if ((Stmt.isBlockStmt() || !Stmt.getRegion()->contains(L)) && 241 canSynthesize(Inst, &LI, &SE, &Stmt.getParent()->getRegion())) { 242 // Synthesizable statements will be generated on-demand. 243 return; 244 } 245 246 if (auto *Load = dyn_cast<LoadInst>(Inst)) { 247 Value *NewLoad = generateScalarLoad(Stmt, Load, BBMap, LTS, NewAccesses); 248 // Compute NewLoad before its insertion in BBMap to make the insertion 249 // deterministic. 250 BBMap[Load] = NewLoad; 251 return; 252 } 253 254 if (auto *Store = dyn_cast<StoreInst>(Inst)) { 255 generateScalarStore(Stmt, Store, BBMap, LTS, NewAccesses); 256 return; 257 } 258 259 if (auto *PHI = dyn_cast<PHINode>(Inst)) { 260 copyPHIInstruction(Stmt, PHI, BBMap, LTS); 261 return; 262 } 263 264 // Skip some special intrinsics for which we do not adjust the semantics to 265 // the new schedule. All others are handled like every other instruction. 266 if (isIgnoredIntrinsic(Inst)) 267 return; 268 269 copyInstScalar(Stmt, Inst, BBMap, LTS); 270 } 271 272 void BlockGenerator::copyStmt(ScopStmt &Stmt, LoopToScevMapT <S, 273 isl_id_to_ast_expr *NewAccesses) { 274 assert(Stmt.isBlockStmt() && 275 "Only block statements can be copied by the block generator"); 276 277 ValueMapT BBMap; 278 279 BasicBlock *BB = Stmt.getBasicBlock(); 280 copyBB(Stmt, BB, BBMap, LTS, NewAccesses); 281 } 282 283 BasicBlock *BlockGenerator::splitBB(BasicBlock *BB) { 284 BasicBlock *CopyBB = SplitBlock(Builder.GetInsertBlock(), 285 &*Builder.GetInsertPoint(), &DT, &LI); 286 CopyBB->setName("polly.stmt." + BB->getName()); 287 return CopyBB; 288 } 289 290 BasicBlock *BlockGenerator::copyBB(ScopStmt &Stmt, BasicBlock *BB, 291 ValueMapT &BBMap, LoopToScevMapT <S, 292 isl_id_to_ast_expr *NewAccesses) { 293 BasicBlock *CopyBB = splitBB(BB); 294 Builder.SetInsertPoint(&CopyBB->front()); 295 generateScalarLoads(Stmt, BBMap); 296 297 copyBB(Stmt, BB, CopyBB, BBMap, LTS, NewAccesses); 298 299 // After a basic block was copied store all scalars that escape this block in 300 // their alloca. 301 generateScalarStores(Stmt, LTS, BBMap); 302 return CopyBB; 303 } 304 305 void BlockGenerator::copyBB(ScopStmt &Stmt, BasicBlock *BB, BasicBlock *CopyBB, 306 ValueMapT &BBMap, LoopToScevMapT <S, 307 isl_id_to_ast_expr *NewAccesses) { 308 EntryBB = &CopyBB->getParent()->getEntryBlock(); 309 310 for (Instruction &Inst : *BB) 311 copyInstruction(Stmt, &Inst, BBMap, LTS, NewAccesses); 312 } 313 314 Value *BlockGenerator::getOrCreateAlloca(Value *ScalarBase, 315 ScalarAllocaMapTy &Map, 316 const char *NameExt) { 317 // If no alloca was found create one and insert it in the entry block. 318 if (!Map.count(ScalarBase)) { 319 auto *Ty = ScalarBase->getType(); 320 auto NewAddr = new AllocaInst(Ty, ScalarBase->getName() + NameExt); 321 EntryBB = &Builder.GetInsertBlock()->getParent()->getEntryBlock(); 322 NewAddr->insertBefore(&*EntryBB->getFirstInsertionPt()); 323 Map[ScalarBase] = NewAddr; 324 } 325 326 auto Addr = Map[ScalarBase]; 327 328 if (GlobalMap.count(Addr)) 329 return GlobalMap[Addr]; 330 331 return Addr; 332 } 333 334 Value *BlockGenerator::getOrCreateAlloca(MemoryAccess &Access) { 335 if (Access.isPHI()) 336 return getOrCreatePHIAlloca(Access.getBaseAddr()); 337 else 338 return getOrCreateScalarAlloca(Access.getBaseAddr()); 339 } 340 341 Value *BlockGenerator::getOrCreateAlloca(const ScopArrayInfo *Array) { 342 if (Array->isPHI()) 343 return getOrCreatePHIAlloca(Array->getBasePtr()); 344 else 345 return getOrCreateScalarAlloca(Array->getBasePtr()); 346 } 347 348 Value *BlockGenerator::getOrCreateScalarAlloca(Value *ScalarBase) { 349 return getOrCreateAlloca(ScalarBase, ScalarMap, ".s2a"); 350 } 351 352 Value *BlockGenerator::getOrCreatePHIAlloca(Value *ScalarBase) { 353 return getOrCreateAlloca(ScalarBase, PHIOpMap, ".phiops"); 354 } 355 356 void BlockGenerator::handleOutsideUsers(const Region &R, Instruction *Inst, 357 Value *Address) { 358 // If there are escape users we get the alloca for this instruction and put it 359 // in the EscapeMap for later finalization. Lastly, if the instruction was 360 // copied multiple times we already did this and can exit. 361 if (EscapeMap.count(Inst)) 362 return; 363 364 EscapeUserVectorTy EscapeUsers; 365 for (User *U : Inst->users()) { 366 367 // Non-instruction user will never escape. 368 Instruction *UI = dyn_cast<Instruction>(U); 369 if (!UI) 370 continue; 371 372 if (R.contains(UI)) 373 continue; 374 375 EscapeUsers.push_back(UI); 376 } 377 378 // Exit if no escape uses were found. 379 if (EscapeUsers.empty()) 380 return; 381 382 // Get or create an escape alloca for this instruction. 383 auto *ScalarAddr = Address ? Address : getOrCreateScalarAlloca(Inst); 384 385 // Remember that this instruction has escape uses and the escape alloca. 386 EscapeMap[Inst] = std::make_pair(ScalarAddr, std::move(EscapeUsers)); 387 } 388 389 void BlockGenerator::generateScalarLoads(ScopStmt &Stmt, ValueMapT &BBMap) { 390 for (MemoryAccess *MA : Stmt) { 391 if (MA->isExplicit() || MA->isWrite()) 392 continue; 393 394 auto *Address = getOrCreateAlloca(*MA); 395 BBMap[MA->getBaseAddr()] = 396 Builder.CreateLoad(Address, Address->getName() + ".reload"); 397 } 398 } 399 400 Value *BlockGenerator::getNewScalarValue(Value *ScalarValue, const Region &R, 401 ScopStmt &Stmt, LoopToScevMapT <S, 402 ValueMapT &BBMap) { 403 // If the value we want to store is an instruction we might have demoted it 404 // in order to make it accessible here. In such a case a reload is 405 // necessary. If it is no instruction it will always be a value that 406 // dominates the current point and we can just use it. In total there are 4 407 // options: 408 // (1) The value is no instruction ==> use the value. 409 // (2) The value is an instruction that was split out of the region prior to 410 // code generation ==> use the instruction as it dominates the region. 411 // (3) The value is an instruction: 412 // (a) The value was defined in the current block, thus a copy is in 413 // the BBMap ==> use the mapped value. 414 // (b) The value was defined in a previous block, thus we demoted it 415 // earlier ==> use the reloaded value. 416 Instruction *ScalarValueInst = dyn_cast<Instruction>(ScalarValue); 417 if (!ScalarValueInst) 418 return ScalarValue; 419 420 if (!R.contains(ScalarValueInst)) { 421 if (Value *ScalarValueCopy = GlobalMap.lookup(ScalarValueInst)) 422 return /* Case (3a) */ ScalarValueCopy; 423 else 424 return /* Case 2 */ ScalarValue; 425 } 426 427 if (Value *ScalarValueCopy = BBMap.lookup(ScalarValueInst)) 428 return /* Case (3a) */ ScalarValueCopy; 429 430 if ((Stmt.isBlockStmt() && 431 Stmt.getBasicBlock() == ScalarValueInst->getParent()) || 432 (Stmt.isRegionStmt() && Stmt.getRegion()->contains(ScalarValueInst))) { 433 auto SynthesizedValue = trySynthesizeNewValue( 434 Stmt, ScalarValueInst, BBMap, LTS, getLoopForInst(ScalarValueInst)); 435 436 if (SynthesizedValue) 437 return SynthesizedValue; 438 } 439 440 // Case (3b) 441 Value *Address = getOrCreateScalarAlloca(ScalarValueInst); 442 ScalarValue = Builder.CreateLoad(Address, Address->getName() + ".reload"); 443 444 return ScalarValue; 445 } 446 447 void BlockGenerator::generateScalarStores(ScopStmt &Stmt, LoopToScevMapT <S, 448 ValueMapT &BBMap) { 449 const Region &R = Stmt.getParent()->getRegion(); 450 451 assert(Stmt.isBlockStmt() && "Region statements need to use the " 452 "generateScalarStores() function in the " 453 "RegionGenerator"); 454 455 for (MemoryAccess *MA : Stmt) { 456 if (MA->isExplicit() || MA->isRead()) 457 continue; 458 459 Value *Val = MA->getAccessValue(); 460 auto *Address = getOrCreateAlloca(*MA); 461 462 Val = getNewScalarValue(Val, R, Stmt, LTS, BBMap); 463 Builder.CreateStore(Val, Address); 464 } 465 } 466 467 void BlockGenerator::createScalarInitialization(Scop &S) { 468 Region &R = S.getRegion(); 469 BasicBlock *ExitBB = R.getExit(); 470 471 // The split block __just before__ the region and optimized region. 472 BasicBlock *SplitBB = R.getEnteringBlock(); 473 BranchInst *SplitBBTerm = cast<BranchInst>(SplitBB->getTerminator()); 474 assert(SplitBBTerm->getNumSuccessors() == 2 && "Bad region entering block!"); 475 476 // Get the start block of the __optimized__ region. 477 BasicBlock *StartBB = SplitBBTerm->getSuccessor(0); 478 if (StartBB == R.getEntry()) 479 StartBB = SplitBBTerm->getSuccessor(1); 480 481 Builder.SetInsertPoint(StartBB->getTerminator()); 482 483 for (auto &Pair : S.arrays()) { 484 auto &Array = Pair.second; 485 if (Array->getNumberOfDimensions() != 0) 486 continue; 487 if (Array->isPHI()) { 488 // For PHI nodes, the only values we need to store are the ones that 489 // reach the PHI node from outside the region. In general there should 490 // only be one such incoming edge and this edge should enter through 491 // 'SplitBB'. 492 auto PHI = cast<PHINode>(Array->getBasePtr()); 493 494 for (auto BI = PHI->block_begin(), BE = PHI->block_end(); BI != BE; BI++) 495 if (!R.contains(*BI) && *BI != SplitBB) 496 llvm_unreachable("Incoming edges from outside the scop should always " 497 "come from SplitBB"); 498 499 int Idx = PHI->getBasicBlockIndex(SplitBB); 500 if (Idx < 0) 501 continue; 502 503 Value *ScalarValue = PHI->getIncomingValue(Idx); 504 505 Builder.CreateStore(ScalarValue, getOrCreatePHIAlloca(PHI)); 506 continue; 507 } 508 509 auto *Inst = dyn_cast<Instruction>(Array->getBasePtr()); 510 511 if (Inst && R.contains(Inst)) 512 continue; 513 514 // PHI nodes that are not marked as such in their SAI object are either exit 515 // PHI nodes we model as common scalars but without initialization, or 516 // incoming phi nodes that need to be initialized. Check if the first is the 517 // case for Inst and do not create and initialize memory if so. 518 if (auto *PHI = dyn_cast_or_null<PHINode>(Inst)) 519 if (!S.hasSingleExitEdge() && PHI->getBasicBlockIndex(ExitBB) >= 0) 520 continue; 521 522 Builder.CreateStore(Array->getBasePtr(), 523 getOrCreateScalarAlloca(Array->getBasePtr())); 524 } 525 } 526 527 void BlockGenerator::createScalarFinalization(Region &R) { 528 // The exit block of the __unoptimized__ region. 529 BasicBlock *ExitBB = R.getExitingBlock(); 530 // The merge block __just after__ the region and the optimized region. 531 BasicBlock *MergeBB = R.getExit(); 532 533 // The exit block of the __optimized__ region. 534 BasicBlock *OptExitBB = *(pred_begin(MergeBB)); 535 if (OptExitBB == ExitBB) 536 OptExitBB = *(++pred_begin(MergeBB)); 537 538 Builder.SetInsertPoint(OptExitBB->getTerminator()); 539 for (const auto &EscapeMapping : EscapeMap) { 540 // Extract the escaping instruction and the escaping users as well as the 541 // alloca the instruction was demoted to. 542 Instruction *EscapeInst = EscapeMapping.getFirst(); 543 const auto &EscapeMappingValue = EscapeMapping.getSecond(); 544 const EscapeUserVectorTy &EscapeUsers = EscapeMappingValue.second; 545 Value *ScalarAddr = EscapeMappingValue.first; 546 547 // Reload the demoted instruction in the optimized version of the SCoP. 548 Value *EscapeInstReload = 549 Builder.CreateLoad(ScalarAddr, EscapeInst->getName() + ".final_reload"); 550 EscapeInstReload = 551 Builder.CreateBitOrPointerCast(EscapeInstReload, EscapeInst->getType()); 552 553 // Create the merge PHI that merges the optimized and unoptimized version. 554 PHINode *MergePHI = PHINode::Create(EscapeInst->getType(), 2, 555 EscapeInst->getName() + ".merge"); 556 MergePHI->insertBefore(&*MergeBB->getFirstInsertionPt()); 557 558 // Add the respective values to the merge PHI. 559 MergePHI->addIncoming(EscapeInstReload, OptExitBB); 560 MergePHI->addIncoming(EscapeInst, ExitBB); 561 562 // The information of scalar evolution about the escaping instruction needs 563 // to be revoked so the new merged instruction will be used. 564 if (SE.isSCEVable(EscapeInst->getType())) 565 SE.forgetValue(EscapeInst); 566 567 // Replace all uses of the demoted instruction with the merge PHI. 568 for (Instruction *EUser : EscapeUsers) 569 EUser->replaceUsesOfWith(EscapeInst, MergePHI); 570 } 571 } 572 573 void BlockGenerator::findOutsideUsers(Scop &S) { 574 auto &R = S.getRegion(); 575 for (auto &Pair : S.arrays()) { 576 auto &Array = Pair.second; 577 578 if (Array->getNumberOfDimensions() != 0) 579 continue; 580 581 if (Array->isPHI()) 582 continue; 583 584 auto *Inst = dyn_cast<Instruction>(Array->getBasePtr()); 585 586 if (!Inst) 587 continue; 588 589 // Scop invariant hoisting moves some of the base pointers out of the scop. 590 // We can ignore these, as the invariant load hoisting already registers the 591 // relevant outside users. 592 if (!R.contains(Inst)) 593 continue; 594 595 handleOutsideUsers(R, Inst, nullptr); 596 } 597 } 598 599 void BlockGenerator::createExitPHINodeMerges(Scop &S) { 600 if (S.hasSingleExitEdge()) 601 return; 602 603 Region &R = S.getRegion(); 604 605 auto *ExitBB = R.getExitingBlock(); 606 auto *MergeBB = R.getExit(); 607 auto *AfterMergeBB = MergeBB->getSingleSuccessor(); 608 BasicBlock *OptExitBB = *(pred_begin(MergeBB)); 609 if (OptExitBB == ExitBB) 610 OptExitBB = *(++pred_begin(MergeBB)); 611 612 Builder.SetInsertPoint(OptExitBB->getTerminator()); 613 614 for (auto &Pair : S.arrays()) { 615 auto &SAI = Pair.second; 616 auto *Val = SAI->getBasePtr(); 617 618 PHINode *PHI = dyn_cast<PHINode>(Val); 619 if (!PHI) 620 continue; 621 622 if (PHI->getParent() != AfterMergeBB) 623 continue; 624 625 std::string Name = PHI->getName(); 626 Value *ScalarAddr = getOrCreateScalarAlloca(PHI); 627 Value *Reload = Builder.CreateLoad(ScalarAddr, Name + ".ph.final_reload"); 628 Reload = Builder.CreateBitOrPointerCast(Reload, PHI->getType()); 629 Value *OriginalValue = PHI->getIncomingValueForBlock(MergeBB); 630 auto *MergePHI = PHINode::Create(PHI->getType(), 2, Name + ".ph.merge"); 631 MergePHI->insertBefore(&*MergeBB->getFirstInsertionPt()); 632 MergePHI->addIncoming(Reload, OptExitBB); 633 MergePHI->addIncoming(OriginalValue, ExitBB); 634 int Idx = PHI->getBasicBlockIndex(MergeBB); 635 PHI->setIncomingValue(Idx, MergePHI); 636 } 637 } 638 639 void BlockGenerator::finalizeSCoP(Scop &S) { 640 findOutsideUsers(S); 641 createScalarInitialization(S); 642 createExitPHINodeMerges(S); 643 createScalarFinalization(S.getRegion()); 644 } 645 646 VectorBlockGenerator::VectorBlockGenerator(BlockGenerator &BlockGen, 647 std::vector<LoopToScevMapT> &VLTS, 648 isl_map *Schedule) 649 : BlockGenerator(BlockGen), VLTS(VLTS), Schedule(Schedule) { 650 assert(Schedule && "No statement domain provided"); 651 } 652 653 Value *VectorBlockGenerator::getVectorValue(ScopStmt &Stmt, Value *Old, 654 ValueMapT &VectorMap, 655 VectorValueMapT &ScalarMaps, 656 Loop *L) { 657 if (Value *NewValue = VectorMap.lookup(Old)) 658 return NewValue; 659 660 int Width = getVectorWidth(); 661 662 Value *Vector = UndefValue::get(VectorType::get(Old->getType(), Width)); 663 664 for (int Lane = 0; Lane < Width; Lane++) 665 Vector = Builder.CreateInsertElement( 666 Vector, getNewValue(Stmt, Old, ScalarMaps[Lane], VLTS[Lane], L), 667 Builder.getInt32(Lane)); 668 669 VectorMap[Old] = Vector; 670 671 return Vector; 672 } 673 674 Type *VectorBlockGenerator::getVectorPtrTy(const Value *Val, int Width) { 675 PointerType *PointerTy = dyn_cast<PointerType>(Val->getType()); 676 assert(PointerTy && "PointerType expected"); 677 678 Type *ScalarType = PointerTy->getElementType(); 679 VectorType *VectorType = VectorType::get(ScalarType, Width); 680 681 return PointerType::getUnqual(VectorType); 682 } 683 684 Value *VectorBlockGenerator::generateStrideOneLoad( 685 ScopStmt &Stmt, LoadInst *Load, VectorValueMapT &ScalarMaps, 686 __isl_keep isl_id_to_ast_expr *NewAccesses, bool NegativeStride = false) { 687 unsigned VectorWidth = getVectorWidth(); 688 auto *Pointer = Load->getPointerOperand(); 689 Type *VectorPtrType = getVectorPtrTy(Pointer, VectorWidth); 690 unsigned Offset = NegativeStride ? VectorWidth - 1 : 0; 691 692 Value *NewPointer = nullptr; 693 NewPointer = generateLocationAccessed(Stmt, Load, Pointer, ScalarMaps[Offset], 694 VLTS[Offset], NewAccesses); 695 Value *VectorPtr = 696 Builder.CreateBitCast(NewPointer, VectorPtrType, "vector_ptr"); 697 LoadInst *VecLoad = 698 Builder.CreateLoad(VectorPtr, Load->getName() + "_p_vec_full"); 699 if (!Aligned) 700 VecLoad->setAlignment(8); 701 702 if (NegativeStride) { 703 SmallVector<Constant *, 16> Indices; 704 for (int i = VectorWidth - 1; i >= 0; i--) 705 Indices.push_back(ConstantInt::get(Builder.getInt32Ty(), i)); 706 Constant *SV = llvm::ConstantVector::get(Indices); 707 Value *RevVecLoad = Builder.CreateShuffleVector( 708 VecLoad, VecLoad, SV, Load->getName() + "_reverse"); 709 return RevVecLoad; 710 } 711 712 return VecLoad; 713 } 714 715 Value *VectorBlockGenerator::generateStrideZeroLoad( 716 ScopStmt &Stmt, LoadInst *Load, ValueMapT &BBMap, 717 __isl_keep isl_id_to_ast_expr *NewAccesses) { 718 auto *Pointer = Load->getPointerOperand(); 719 Type *VectorPtrType = getVectorPtrTy(Pointer, 1); 720 Value *NewPointer = generateLocationAccessed(Stmt, Load, Pointer, BBMap, 721 VLTS[0], NewAccesses); 722 Value *VectorPtr = Builder.CreateBitCast(NewPointer, VectorPtrType, 723 Load->getName() + "_p_vec_p"); 724 LoadInst *ScalarLoad = 725 Builder.CreateLoad(VectorPtr, Load->getName() + "_p_splat_one"); 726 727 if (!Aligned) 728 ScalarLoad->setAlignment(8); 729 730 Constant *SplatVector = Constant::getNullValue( 731 VectorType::get(Builder.getInt32Ty(), getVectorWidth())); 732 733 Value *VectorLoad = Builder.CreateShuffleVector( 734 ScalarLoad, ScalarLoad, SplatVector, Load->getName() + "_p_splat"); 735 return VectorLoad; 736 } 737 738 Value *VectorBlockGenerator::generateUnknownStrideLoad( 739 ScopStmt &Stmt, LoadInst *Load, VectorValueMapT &ScalarMaps, 740 __isl_keep isl_id_to_ast_expr *NewAccesses) { 741 int VectorWidth = getVectorWidth(); 742 auto *Pointer = Load->getPointerOperand(); 743 VectorType *VectorType = VectorType::get( 744 dyn_cast<PointerType>(Pointer->getType())->getElementType(), VectorWidth); 745 746 Value *Vector = UndefValue::get(VectorType); 747 748 for (int i = 0; i < VectorWidth; i++) { 749 Value *NewPointer = generateLocationAccessed( 750 Stmt, Load, Pointer, ScalarMaps[i], VLTS[i], NewAccesses); 751 Value *ScalarLoad = 752 Builder.CreateLoad(NewPointer, Load->getName() + "_p_scalar_"); 753 Vector = Builder.CreateInsertElement( 754 Vector, ScalarLoad, Builder.getInt32(i), Load->getName() + "_p_vec_"); 755 } 756 757 return Vector; 758 } 759 760 void VectorBlockGenerator::generateLoad( 761 ScopStmt &Stmt, LoadInst *Load, ValueMapT &VectorMap, 762 VectorValueMapT &ScalarMaps, __isl_keep isl_id_to_ast_expr *NewAccesses) { 763 if (Value *PreloadLoad = GlobalMap.lookup(Load)) { 764 VectorMap[Load] = Builder.CreateVectorSplat(getVectorWidth(), PreloadLoad, 765 Load->getName() + "_p"); 766 return; 767 } 768 769 if (!VectorType::isValidElementType(Load->getType())) { 770 for (int i = 0; i < getVectorWidth(); i++) 771 ScalarMaps[i][Load] = 772 generateScalarLoad(Stmt, Load, ScalarMaps[i], VLTS[i], NewAccesses); 773 return; 774 } 775 776 const MemoryAccess &Access = Stmt.getAccessFor(Load); 777 778 // Make sure we have scalar values available to access the pointer to 779 // the data location. 780 extractScalarValues(Load, VectorMap, ScalarMaps); 781 782 Value *NewLoad; 783 if (Access.isStrideZero(isl_map_copy(Schedule))) 784 NewLoad = generateStrideZeroLoad(Stmt, Load, ScalarMaps[0], NewAccesses); 785 else if (Access.isStrideOne(isl_map_copy(Schedule))) 786 NewLoad = generateStrideOneLoad(Stmt, Load, ScalarMaps, NewAccesses); 787 else if (Access.isStrideX(isl_map_copy(Schedule), -1)) 788 NewLoad = generateStrideOneLoad(Stmt, Load, ScalarMaps, NewAccesses, true); 789 else 790 NewLoad = generateUnknownStrideLoad(Stmt, Load, ScalarMaps, NewAccesses); 791 792 VectorMap[Load] = NewLoad; 793 } 794 795 void VectorBlockGenerator::copyUnaryInst(ScopStmt &Stmt, UnaryInstruction *Inst, 796 ValueMapT &VectorMap, 797 VectorValueMapT &ScalarMaps) { 798 int VectorWidth = getVectorWidth(); 799 Value *NewOperand = getVectorValue(Stmt, Inst->getOperand(0), VectorMap, 800 ScalarMaps, getLoopForInst(Inst)); 801 802 assert(isa<CastInst>(Inst) && "Can not generate vector code for instruction"); 803 804 const CastInst *Cast = dyn_cast<CastInst>(Inst); 805 VectorType *DestType = VectorType::get(Inst->getType(), VectorWidth); 806 VectorMap[Inst] = Builder.CreateCast(Cast->getOpcode(), NewOperand, DestType); 807 } 808 809 void VectorBlockGenerator::copyBinaryInst(ScopStmt &Stmt, BinaryOperator *Inst, 810 ValueMapT &VectorMap, 811 VectorValueMapT &ScalarMaps) { 812 Loop *L = getLoopForInst(Inst); 813 Value *OpZero = Inst->getOperand(0); 814 Value *OpOne = Inst->getOperand(1); 815 816 Value *NewOpZero, *NewOpOne; 817 NewOpZero = getVectorValue(Stmt, OpZero, VectorMap, ScalarMaps, L); 818 NewOpOne = getVectorValue(Stmt, OpOne, VectorMap, ScalarMaps, L); 819 820 Value *NewInst = Builder.CreateBinOp(Inst->getOpcode(), NewOpZero, NewOpOne, 821 Inst->getName() + "p_vec"); 822 VectorMap[Inst] = NewInst; 823 } 824 825 void VectorBlockGenerator::copyStore( 826 ScopStmt &Stmt, StoreInst *Store, ValueMapT &VectorMap, 827 VectorValueMapT &ScalarMaps, __isl_keep isl_id_to_ast_expr *NewAccesses) { 828 const MemoryAccess &Access = Stmt.getAccessFor(Store); 829 830 auto *Pointer = Store->getPointerOperand(); 831 Value *Vector = getVectorValue(Stmt, Store->getValueOperand(), VectorMap, 832 ScalarMaps, getLoopForInst(Store)); 833 834 // Make sure we have scalar values available to access the pointer to 835 // the data location. 836 extractScalarValues(Store, VectorMap, ScalarMaps); 837 838 if (Access.isStrideOne(isl_map_copy(Schedule))) { 839 Type *VectorPtrType = getVectorPtrTy(Pointer, getVectorWidth()); 840 Value *NewPointer = generateLocationAccessed( 841 Stmt, Store, Pointer, ScalarMaps[0], VLTS[0], NewAccesses); 842 843 Value *VectorPtr = 844 Builder.CreateBitCast(NewPointer, VectorPtrType, "vector_ptr"); 845 StoreInst *Store = Builder.CreateStore(Vector, VectorPtr); 846 847 if (!Aligned) 848 Store->setAlignment(8); 849 } else { 850 for (unsigned i = 0; i < ScalarMaps.size(); i++) { 851 Value *Scalar = Builder.CreateExtractElement(Vector, Builder.getInt32(i)); 852 Value *NewPointer = generateLocationAccessed( 853 Stmt, Store, Pointer, ScalarMaps[i], VLTS[i], NewAccesses); 854 Builder.CreateStore(Scalar, NewPointer); 855 } 856 } 857 } 858 859 bool VectorBlockGenerator::hasVectorOperands(const Instruction *Inst, 860 ValueMapT &VectorMap) { 861 for (Value *Operand : Inst->operands()) 862 if (VectorMap.count(Operand)) 863 return true; 864 return false; 865 } 866 867 bool VectorBlockGenerator::extractScalarValues(const Instruction *Inst, 868 ValueMapT &VectorMap, 869 VectorValueMapT &ScalarMaps) { 870 bool HasVectorOperand = false; 871 int VectorWidth = getVectorWidth(); 872 873 for (Value *Operand : Inst->operands()) { 874 ValueMapT::iterator VecOp = VectorMap.find(Operand); 875 876 if (VecOp == VectorMap.end()) 877 continue; 878 879 HasVectorOperand = true; 880 Value *NewVector = VecOp->second; 881 882 for (int i = 0; i < VectorWidth; ++i) { 883 ValueMapT &SM = ScalarMaps[i]; 884 885 // If there is one scalar extracted, all scalar elements should have 886 // already been extracted by the code here. So no need to check for the 887 // existance of all of them. 888 if (SM.count(Operand)) 889 break; 890 891 SM[Operand] = 892 Builder.CreateExtractElement(NewVector, Builder.getInt32(i)); 893 } 894 } 895 896 return HasVectorOperand; 897 } 898 899 void VectorBlockGenerator::copyInstScalarized( 900 ScopStmt &Stmt, Instruction *Inst, ValueMapT &VectorMap, 901 VectorValueMapT &ScalarMaps, __isl_keep isl_id_to_ast_expr *NewAccesses) { 902 bool HasVectorOperand; 903 int VectorWidth = getVectorWidth(); 904 905 HasVectorOperand = extractScalarValues(Inst, VectorMap, ScalarMaps); 906 907 for (int VectorLane = 0; VectorLane < getVectorWidth(); VectorLane++) 908 BlockGenerator::copyInstruction(Stmt, Inst, ScalarMaps[VectorLane], 909 VLTS[VectorLane], NewAccesses); 910 911 if (!VectorType::isValidElementType(Inst->getType()) || !HasVectorOperand) 912 return; 913 914 // Make the result available as vector value. 915 VectorType *VectorType = VectorType::get(Inst->getType(), VectorWidth); 916 Value *Vector = UndefValue::get(VectorType); 917 918 for (int i = 0; i < VectorWidth; i++) 919 Vector = Builder.CreateInsertElement(Vector, ScalarMaps[i][Inst], 920 Builder.getInt32(i)); 921 922 VectorMap[Inst] = Vector; 923 } 924 925 int VectorBlockGenerator::getVectorWidth() { return VLTS.size(); } 926 927 void VectorBlockGenerator::copyInstruction( 928 ScopStmt &Stmt, Instruction *Inst, ValueMapT &VectorMap, 929 VectorValueMapT &ScalarMaps, __isl_keep isl_id_to_ast_expr *NewAccesses) { 930 // Terminator instructions control the control flow. They are explicitly 931 // expressed in the clast and do not need to be copied. 932 if (Inst->isTerminator()) 933 return; 934 935 if (canSynthesize(Inst, &LI, &SE, &Stmt.getParent()->getRegion())) 936 return; 937 938 if (auto *Load = dyn_cast<LoadInst>(Inst)) { 939 generateLoad(Stmt, Load, VectorMap, ScalarMaps, NewAccesses); 940 return; 941 } 942 943 if (hasVectorOperands(Inst, VectorMap)) { 944 if (auto *Store = dyn_cast<StoreInst>(Inst)) { 945 copyStore(Stmt, Store, VectorMap, ScalarMaps, NewAccesses); 946 return; 947 } 948 949 if (auto *Unary = dyn_cast<UnaryInstruction>(Inst)) { 950 copyUnaryInst(Stmt, Unary, VectorMap, ScalarMaps); 951 return; 952 } 953 954 if (auto *Binary = dyn_cast<BinaryOperator>(Inst)) { 955 copyBinaryInst(Stmt, Binary, VectorMap, ScalarMaps); 956 return; 957 } 958 959 // Falltrough: We generate scalar instructions, if we don't know how to 960 // generate vector code. 961 } 962 963 copyInstScalarized(Stmt, Inst, VectorMap, ScalarMaps, NewAccesses); 964 } 965 966 void VectorBlockGenerator::copyStmt( 967 ScopStmt &Stmt, __isl_keep isl_id_to_ast_expr *NewAccesses) { 968 assert(Stmt.isBlockStmt() && "TODO: Only block statements can be copied by " 969 "the vector block generator"); 970 971 BasicBlock *BB = Stmt.getBasicBlock(); 972 BasicBlock *CopyBB = SplitBlock(Builder.GetInsertBlock(), 973 &*Builder.GetInsertPoint(), &DT, &LI); 974 CopyBB->setName("polly.stmt." + BB->getName()); 975 Builder.SetInsertPoint(&CopyBB->front()); 976 977 // Create two maps that store the mapping from the original instructions of 978 // the old basic block to their copies in the new basic block. Those maps 979 // are basic block local. 980 // 981 // As vector code generation is supported there is one map for scalar values 982 // and one for vector values. 983 // 984 // In case we just do scalar code generation, the vectorMap is not used and 985 // the scalarMap has just one dimension, which contains the mapping. 986 // 987 // In case vector code generation is done, an instruction may either appear 988 // in the vector map once (as it is calculating >vectorwidth< values at a 989 // time. Or (if the values are calculated using scalar operations), it 990 // appears once in every dimension of the scalarMap. 991 VectorValueMapT ScalarBlockMap(getVectorWidth()); 992 ValueMapT VectorBlockMap; 993 994 for (Instruction &Inst : *BB) 995 copyInstruction(Stmt, &Inst, VectorBlockMap, ScalarBlockMap, NewAccesses); 996 } 997 998 BasicBlock *RegionGenerator::repairDominance(BasicBlock *BB, 999 BasicBlock *BBCopy) { 1000 1001 BasicBlock *BBIDom = DT.getNode(BB)->getIDom()->getBlock(); 1002 BasicBlock *BBCopyIDom = BlockMap.lookup(BBIDom); 1003 1004 if (BBCopyIDom) 1005 DT.changeImmediateDominator(BBCopy, BBCopyIDom); 1006 1007 return BBCopyIDom; 1008 } 1009 1010 void RegionGenerator::copyStmt(ScopStmt &Stmt, LoopToScevMapT <S, 1011 isl_id_to_ast_expr *IdToAstExp) { 1012 assert(Stmt.isRegionStmt() && 1013 "Only region statements can be copied by the region generator"); 1014 1015 Scop *S = Stmt.getParent(); 1016 1017 // Forget all old mappings. 1018 BlockMap.clear(); 1019 RegionMaps.clear(); 1020 IncompletePHINodeMap.clear(); 1021 1022 // Collection of all values related to this subregion. 1023 ValueMapT ValueMap; 1024 1025 // The region represented by the statement. 1026 Region *R = Stmt.getRegion(); 1027 1028 // Create a dedicated entry for the region where we can reload all demoted 1029 // inputs. 1030 BasicBlock *EntryBB = R->getEntry(); 1031 BasicBlock *EntryBBCopy = SplitBlock(Builder.GetInsertBlock(), 1032 &*Builder.GetInsertPoint(), &DT, &LI); 1033 EntryBBCopy->setName("polly.stmt." + EntryBB->getName() + ".entry"); 1034 Builder.SetInsertPoint(&EntryBBCopy->front()); 1035 1036 ValueMapT &EntryBBMap = RegionMaps[EntryBBCopy]; 1037 generateScalarLoads(Stmt, EntryBBMap); 1038 1039 for (auto PI = pred_begin(EntryBB), PE = pred_end(EntryBB); PI != PE; ++PI) 1040 if (!R->contains(*PI)) 1041 BlockMap[*PI] = EntryBBCopy; 1042 1043 // Determine the original exit block of this subregion. If it the exit block 1044 // is also the scop's exit, it it has been changed to polly.merge_new_and_old. 1045 // We move one block back to find the original block. This only happens if the 1046 // scop required simplification. 1047 // If the whole scop consists of only this non-affine region, then they share 1048 // the same Region object, such that we cannot change the exit of one and not 1049 // the other. 1050 BasicBlock *ExitBB = R->getExit(); 1051 if (!S->hasSingleExitEdge() && ExitBB == S->getRegion().getExit()) 1052 ExitBB = *(++pred_begin(ExitBB)); 1053 1054 // Iterate over all blocks in the region in a breadth-first search. 1055 std::deque<BasicBlock *> Blocks; 1056 SmallPtrSet<BasicBlock *, 8> SeenBlocks; 1057 Blocks.push_back(EntryBB); 1058 SeenBlocks.insert(EntryBB); 1059 1060 while (!Blocks.empty()) { 1061 BasicBlock *BB = Blocks.front(); 1062 Blocks.pop_front(); 1063 1064 // First split the block and update dominance information. 1065 BasicBlock *BBCopy = splitBB(BB); 1066 BasicBlock *BBCopyIDom = repairDominance(BB, BBCopy); 1067 1068 // In order to remap PHI nodes we store also basic block mappings. 1069 BlockMap[BB] = BBCopy; 1070 1071 // Get the mapping for this block and initialize it with either the scalar 1072 // loads from the generated entering block (which dominates all blocks of 1073 // this subregion) or the maps of the immediate dominator, if part of the 1074 // subregion. The latter necessarily includes the former. 1075 ValueMapT *InitBBMap; 1076 if (BBCopyIDom) { 1077 assert(RegionMaps.count(BBCopyIDom)); 1078 InitBBMap = &RegionMaps[BBCopyIDom]; 1079 } else 1080 InitBBMap = &EntryBBMap; 1081 auto Inserted = RegionMaps.insert(std::make_pair(BBCopy, *InitBBMap)); 1082 ValueMapT &RegionMap = Inserted.first->second; 1083 1084 // Copy the block with the BlockGenerator. 1085 Builder.SetInsertPoint(&BBCopy->front()); 1086 copyBB(Stmt, BB, BBCopy, RegionMap, LTS, IdToAstExp); 1087 1088 // In order to remap PHI nodes we store also basic block mappings. 1089 BlockMap[BB] = BBCopy; 1090 1091 // Add values to incomplete PHI nodes waiting for this block to be copied. 1092 for (const PHINodePairTy &PHINodePair : IncompletePHINodeMap[BB]) 1093 addOperandToPHI(Stmt, PHINodePair.first, PHINodePair.second, BB, LTS); 1094 IncompletePHINodeMap[BB].clear(); 1095 1096 // And continue with new successors inside the region. 1097 for (auto SI = succ_begin(BB), SE = succ_end(BB); SI != SE; SI++) 1098 if (R->contains(*SI) && SeenBlocks.insert(*SI).second) 1099 Blocks.push_back(*SI); 1100 1101 // Remember value in case it is visible after this subregion. 1102 if (DT.dominates(BB, ExitBB)) 1103 ValueMap.insert(RegionMap.begin(), RegionMap.end()); 1104 } 1105 1106 // Now create a new dedicated region exit block and add it to the region map. 1107 BasicBlock *ExitBBCopy = SplitBlock(Builder.GetInsertBlock(), 1108 &*Builder.GetInsertPoint(), &DT, &LI); 1109 ExitBBCopy->setName("polly.stmt." + R->getExit()->getName() + ".exit"); 1110 BlockMap[R->getExit()] = ExitBBCopy; 1111 1112 if (ExitBB == R->getExit()) 1113 repairDominance(ExitBB, ExitBBCopy); 1114 else 1115 DT.changeImmediateDominator(ExitBBCopy, BlockMap.lookup(ExitBB)); 1116 1117 // As the block generator doesn't handle control flow we need to add the 1118 // region control flow by hand after all blocks have been copied. 1119 for (BasicBlock *BB : SeenBlocks) { 1120 1121 BasicBlock *BBCopy = BlockMap[BB]; 1122 TerminatorInst *TI = BB->getTerminator(); 1123 if (isa<UnreachableInst>(TI)) { 1124 while (!BBCopy->empty()) 1125 BBCopy->begin()->eraseFromParent(); 1126 new UnreachableInst(BBCopy->getContext(), BBCopy); 1127 continue; 1128 } 1129 1130 Instruction *BICopy = BBCopy->getTerminator(); 1131 1132 ValueMapT &RegionMap = RegionMaps[BBCopy]; 1133 RegionMap.insert(BlockMap.begin(), BlockMap.end()); 1134 1135 Builder.SetInsertPoint(BICopy); 1136 copyInstScalar(Stmt, TI, RegionMap, LTS); 1137 BICopy->eraseFromParent(); 1138 } 1139 1140 // Add counting PHI nodes to all loops in the region that can be used as 1141 // replacement for SCEVs refering to the old loop. 1142 for (BasicBlock *BB : SeenBlocks) { 1143 Loop *L = LI.getLoopFor(BB); 1144 if (L == nullptr || L->getHeader() != BB || !R->contains(L)) 1145 continue; 1146 1147 BasicBlock *BBCopy = BlockMap[BB]; 1148 Value *NullVal = Builder.getInt32(0); 1149 PHINode *LoopPHI = 1150 PHINode::Create(Builder.getInt32Ty(), 2, "polly.subregion.iv"); 1151 Instruction *LoopPHIInc = BinaryOperator::CreateAdd( 1152 LoopPHI, Builder.getInt32(1), "polly.subregion.iv.inc"); 1153 LoopPHI->insertBefore(&BBCopy->front()); 1154 LoopPHIInc->insertBefore(BBCopy->getTerminator()); 1155 1156 for (auto *PredBB : make_range(pred_begin(BB), pred_end(BB))) { 1157 if (!R->contains(PredBB)) 1158 continue; 1159 if (L->contains(PredBB)) 1160 LoopPHI->addIncoming(LoopPHIInc, BlockMap[PredBB]); 1161 else 1162 LoopPHI->addIncoming(NullVal, BlockMap[PredBB]); 1163 } 1164 1165 for (auto *PredBBCopy : make_range(pred_begin(BBCopy), pred_end(BBCopy))) 1166 if (LoopPHI->getBasicBlockIndex(PredBBCopy) < 0) 1167 LoopPHI->addIncoming(NullVal, PredBBCopy); 1168 1169 LTS[L] = SE.getUnknown(LoopPHI); 1170 } 1171 1172 // Continue generating code in the exit block. 1173 Builder.SetInsertPoint(&*ExitBBCopy->getFirstInsertionPt()); 1174 1175 // Write values visible to other statements. 1176 generateScalarStores(Stmt, LTS, ValueMap); 1177 BlockMap.clear(); 1178 RegionMaps.clear(); 1179 IncompletePHINodeMap.clear(); 1180 } 1181 1182 void RegionGenerator::generateScalarStores(ScopStmt &Stmt, LoopToScevMapT <S, 1183 ValueMapT &BBMap) { 1184 const Region &R = Stmt.getParent()->getRegion(); 1185 1186 assert(Stmt.getRegion() && 1187 "Block statements need to use the generateScalarStores() " 1188 "function in the BlockGenerator"); 1189 1190 for (MemoryAccess *MA : Stmt) { 1191 if (MA->isExplicit() || MA->isRead()) 1192 continue; 1193 1194 Instruction *ScalarInst = MA->getAccessInstruction(); 1195 Value *Val = MA->getAccessValue(); 1196 1197 // In case we add the store into an exiting block, we need to restore the 1198 // position for stores in the exit node. 1199 BasicBlock *SavedInsertBB = Builder.GetInsertBlock(); 1200 auto SavedInsertionPoint = Builder.GetInsertPoint(); 1201 ValueMapT *LocalBBMap = &BBMap; 1202 1203 // Implicit writes induced by PHIs must be written in the incoming blocks. 1204 if (MA->isPHI() || MA->isExitPHI()) { 1205 BasicBlock *ExitingBB = ScalarInst->getParent(); 1206 BasicBlock *ExitingBBCopy = BlockMap[ExitingBB]; 1207 Builder.SetInsertPoint(ExitingBBCopy->getTerminator()); 1208 1209 // For the incoming blocks, use the block's BBMap instead of the one for 1210 // the entire region. 1211 LocalBBMap = &RegionMaps[ExitingBBCopy]; 1212 } 1213 1214 auto Address = getOrCreateAlloca(*MA); 1215 1216 Val = getNewScalarValue(Val, R, Stmt, LTS, *LocalBBMap); 1217 Builder.CreateStore(Val, Address); 1218 1219 // Restore the insertion point if necessary. 1220 if (MA->isPHI() || MA->isExitPHI()) 1221 Builder.SetInsertPoint(SavedInsertBB, SavedInsertionPoint); 1222 } 1223 } 1224 1225 void RegionGenerator::addOperandToPHI(ScopStmt &Stmt, const PHINode *PHI, 1226 PHINode *PHICopy, BasicBlock *IncomingBB, 1227 LoopToScevMapT <S) { 1228 Region *StmtR = Stmt.getRegion(); 1229 1230 // If the incoming block was not yet copied mark this PHI as incomplete. 1231 // Once the block will be copied the incoming value will be added. 1232 BasicBlock *BBCopy = BlockMap[IncomingBB]; 1233 if (!BBCopy) { 1234 assert(StmtR->contains(IncomingBB) && 1235 "Bad incoming block for PHI in non-affine region"); 1236 IncompletePHINodeMap[IncomingBB].push_back(std::make_pair(PHI, PHICopy)); 1237 return; 1238 } 1239 1240 Value *OpCopy = nullptr; 1241 if (StmtR->contains(IncomingBB)) { 1242 assert(RegionMaps.count(BBCopy) && 1243 "Incoming PHI block did not have a BBMap"); 1244 ValueMapT &BBCopyMap = RegionMaps[BBCopy]; 1245 1246 Value *Op = PHI->getIncomingValueForBlock(IncomingBB); 1247 1248 BasicBlock *OldBlock = Builder.GetInsertBlock(); 1249 auto OldIP = Builder.GetInsertPoint(); 1250 Builder.SetInsertPoint(BBCopy->getTerminator()); 1251 OpCopy = getNewValue(Stmt, Op, BBCopyMap, LTS, getLoopForInst(PHI)); 1252 Builder.SetInsertPoint(OldBlock, OldIP); 1253 } else { 1254 1255 if (PHICopy->getBasicBlockIndex(BBCopy) >= 0) 1256 return; 1257 1258 Value *PHIOpAddr = getOrCreatePHIAlloca(const_cast<PHINode *>(PHI)); 1259 OpCopy = new LoadInst(PHIOpAddr, PHIOpAddr->getName() + ".reload", 1260 BlockMap[IncomingBB]->getTerminator()); 1261 } 1262 1263 assert(OpCopy && "Incoming PHI value was not copied properly"); 1264 assert(BBCopy && "Incoming PHI block was not copied properly"); 1265 PHICopy->addIncoming(OpCopy, BBCopy); 1266 } 1267 1268 Value *RegionGenerator::copyPHIInstruction(ScopStmt &Stmt, PHINode *PHI, 1269 ValueMapT &BBMap, 1270 LoopToScevMapT <S) { 1271 unsigned NumIncoming = PHI->getNumIncomingValues(); 1272 PHINode *PHICopy = 1273 Builder.CreatePHI(PHI->getType(), NumIncoming, "polly." + PHI->getName()); 1274 PHICopy->moveBefore(PHICopy->getParent()->getFirstNonPHI()); 1275 BBMap[PHI] = PHICopy; 1276 1277 for (unsigned u = 0; u < NumIncoming; u++) 1278 addOperandToPHI(Stmt, PHI, PHICopy, PHI->getIncomingBlock(u), LTS); 1279 return PHICopy; 1280 } 1281