1 //===--- BlockGenerators.cpp - Generate code for statements -----*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the BlockGenerator and VectorBlockGenerator classes,
11 // which generate sequential code and vectorized code for a polyhedral
12 // statement, respectively.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "polly/ScopInfo.h"
17 #include "polly/CodeGen/BlockGenerators.h"
18 #include "polly/CodeGen/CodeGeneration.h"
19 #include "polly/CodeGen/IslExprBuilder.h"
20 #include "polly/CodeGen/RuntimeDebugBuilder.h"
21 #include "polly/Options.h"
22 #include "polly/Support/GICHelper.h"
23 #include "polly/Support/SCEVValidator.h"
24 #include "polly/Support/ScopHelper.h"
25 #include "llvm/Analysis/LoopInfo.h"
26 #include "llvm/Analysis/RegionInfo.h"
27 #include "llvm/Analysis/ScalarEvolution.h"
28 #include "llvm/IR/IntrinsicInst.h"
29 #include "llvm/IR/Module.h"
30 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
31 #include "llvm/Transforms/Utils/Local.h"
32 #include "isl/aff.h"
33 #include "isl/ast.h"
34 #include "isl/ast_build.h"
35 #include "isl/set.h"
36 #include <deque>
37 
38 using namespace llvm;
39 using namespace polly;
40 
41 static cl::opt<bool> Aligned("enable-polly-aligned",
42                              cl::desc("Assumed aligned memory accesses."),
43                              cl::Hidden, cl::init(false), cl::ZeroOrMore,
44                              cl::cat(PollyCategory));
45 
46 static cl::opt<bool> DebugPrinting(
47     "polly-codegen-add-debug-printing",
48     cl::desc("Add printf calls that show the values loaded/stored."),
49     cl::Hidden, cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory));
50 
51 BlockGenerator::BlockGenerator(PollyIRBuilder &B, LoopInfo &LI,
52                                ScalarEvolution &SE, DominatorTree &DT,
53                                ScalarAllocaMapTy &ScalarMap,
54                                ScalarAllocaMapTy &PHIOpMap,
55                                EscapeUsersAllocaMapTy &EscapeMap,
56                                ValueMapT &GlobalMap,
57                                IslExprBuilder *ExprBuilder)
58     : Builder(B), LI(LI), SE(SE), ExprBuilder(ExprBuilder), DT(DT),
59       EntryBB(nullptr), PHIOpMap(PHIOpMap), ScalarMap(ScalarMap),
60       EscapeMap(EscapeMap), GlobalMap(GlobalMap) {}
61 
62 Value *BlockGenerator::trySynthesizeNewValue(ScopStmt &Stmt, Value *Old,
63                                              ValueMapT &BBMap,
64                                              LoopToScevMapT &LTS,
65                                              Loop *L) const {
66   if (SE.isSCEVable(Old->getType()))
67     if (const SCEV *Scev = SE.getSCEVAtScope(const_cast<Value *>(Old), L)) {
68       if (!isa<SCEVCouldNotCompute>(Scev)) {
69         const SCEV *NewScev = apply(Scev, LTS, SE);
70         ValueMapT VTV;
71         VTV.insert(BBMap.begin(), BBMap.end());
72         VTV.insert(GlobalMap.begin(), GlobalMap.end());
73 
74         Scop &S = *Stmt.getParent();
75         const DataLayout &DL =
76             S.getRegion().getEntry()->getParent()->getParent()->getDataLayout();
77         auto IP = Builder.GetInsertPoint();
78 
79         assert(IP != Builder.GetInsertBlock()->end() &&
80                "Only instructions can be insert points for SCEVExpander");
81         Value *Expanded = expandCodeFor(S, SE, DL, "polly", NewScev,
82                                         Old->getType(), &*IP, &VTV);
83 
84         BBMap[Old] = Expanded;
85         return Expanded;
86       }
87     }
88 
89   return nullptr;
90 }
91 
92 Value *BlockGenerator::getNewValue(ScopStmt &Stmt, Value *Old, ValueMapT &BBMap,
93                                    LoopToScevMapT &LTS, Loop *L) const {
94   // We assume constants never change.
95   // This avoids map lookups for many calls to this function.
96   if (isa<Constant>(Old))
97     return const_cast<Value *>(Old);
98 
99   if (Value *New = GlobalMap.lookup(Old)) {
100     if (Value *NewRemapped = GlobalMap.lookup(New))
101       New = NewRemapped;
102     if (Old->getType()->getScalarSizeInBits() <
103         New->getType()->getScalarSizeInBits())
104       New = Builder.CreateTruncOrBitCast(New, Old->getType());
105 
106     return New;
107   }
108 
109   if (Value *New = BBMap.lookup(Old))
110     return New;
111 
112   if (Value *New = trySynthesizeNewValue(Stmt, Old, BBMap, LTS, L))
113     return New;
114 
115   // A scop-constant value defined by a global or a function parameter.
116   if (isa<GlobalValue>(Old) || isa<Argument>(Old))
117     return const_cast<Value *>(Old);
118 
119   // A scop-constant value defined by an instruction executed outside the scop.
120   if (const Instruction *Inst = dyn_cast<Instruction>(Old))
121     if (!Stmt.getParent()->getRegion().contains(Inst->getParent()))
122       return const_cast<Value *>(Old);
123 
124   // The scalar dependence is neither available nor SCEVCodegenable.
125   llvm_unreachable("Unexpected scalar dependence in region!");
126   return nullptr;
127 }
128 
129 void BlockGenerator::copyInstScalar(ScopStmt &Stmt, Instruction *Inst,
130                                     ValueMapT &BBMap, LoopToScevMapT &LTS) {
131   // We do not generate debug intrinsics as we did not investigate how to
132   // copy them correctly. At the current state, they just crash the code
133   // generation as the meta-data operands are not correctly copied.
134   if (isa<DbgInfoIntrinsic>(Inst))
135     return;
136 
137   Instruction *NewInst = Inst->clone();
138 
139   // Replace old operands with the new ones.
140   for (Value *OldOperand : Inst->operands()) {
141     Value *NewOperand =
142         getNewValue(Stmt, OldOperand, BBMap, LTS, getLoopForInst(Inst));
143 
144     if (!NewOperand) {
145       assert(!isa<StoreInst>(NewInst) &&
146              "Store instructions are always needed!");
147       delete NewInst;
148       return;
149     }
150 
151     NewInst->replaceUsesOfWith(OldOperand, NewOperand);
152   }
153 
154   Builder.Insert(NewInst);
155   BBMap[Inst] = NewInst;
156 
157   if (!NewInst->getType()->isVoidTy())
158     NewInst->setName("p_" + Inst->getName());
159 }
160 
161 Value *BlockGenerator::generateLocationAccessed(
162     ScopStmt &Stmt, const Instruction *Inst, Value *Pointer, ValueMapT &BBMap,
163     LoopToScevMapT &LTS, isl_id_to_ast_expr *NewAccesses) {
164   const MemoryAccess &MA = Stmt.getAccessFor(Inst);
165 
166   isl_ast_expr *AccessExpr = isl_id_to_ast_expr_get(NewAccesses, MA.getId());
167 
168   if (AccessExpr) {
169     AccessExpr = isl_ast_expr_address_of(AccessExpr);
170     auto Address = ExprBuilder->create(AccessExpr);
171 
172     // Cast the address of this memory access to a pointer type that has the
173     // same element type as the original access, but uses the address space of
174     // the newly generated pointer.
175     auto OldPtrTy = MA.getAccessValue()->getType()->getPointerTo();
176     auto NewPtrTy = Address->getType();
177     OldPtrTy = PointerType::get(OldPtrTy->getElementType(),
178                                 NewPtrTy->getPointerAddressSpace());
179 
180     if (OldPtrTy != NewPtrTy) {
181       assert(OldPtrTy->getPointerElementType()->getPrimitiveSizeInBits() ==
182                  NewPtrTy->getPointerElementType()->getPrimitiveSizeInBits() &&
183              "Pointer types to elements with different size found");
184       Address = Builder.CreateBitOrPointerCast(Address, OldPtrTy);
185     }
186     return Address;
187   }
188 
189   return getNewValue(Stmt, Pointer, BBMap, LTS, getLoopForInst(Inst));
190 }
191 
192 Loop *BlockGenerator::getLoopForInst(const llvm::Instruction *Inst) {
193   return LI.getLoopFor(Inst->getParent());
194 }
195 
196 Value *BlockGenerator::generateScalarLoad(ScopStmt &Stmt, LoadInst *Load,
197                                           ValueMapT &BBMap, LoopToScevMapT &LTS,
198                                           isl_id_to_ast_expr *NewAccesses) {
199   if (Value *PreloadLoad = GlobalMap.lookup(Load))
200     return PreloadLoad;
201 
202   auto *Pointer = Load->getPointerOperand();
203   Value *NewPointer =
204       generateLocationAccessed(Stmt, Load, Pointer, BBMap, LTS, NewAccesses);
205   Value *ScalarLoad = Builder.CreateAlignedLoad(
206       NewPointer, Load->getAlignment(), Load->getName() + "_p_scalar_");
207 
208   if (DebugPrinting)
209     RuntimeDebugBuilder::createCPUPrinter(Builder, "Load from ", NewPointer,
210                                           ": ", ScalarLoad, "\n");
211 
212   return ScalarLoad;
213 }
214 
215 void BlockGenerator::generateScalarStore(ScopStmt &Stmt, StoreInst *Store,
216                                          ValueMapT &BBMap, LoopToScevMapT &LTS,
217                                          isl_id_to_ast_expr *NewAccesses) {
218   auto *Pointer = Store->getPointerOperand();
219   Value *NewPointer =
220       generateLocationAccessed(Stmt, Store, Pointer, BBMap, LTS, NewAccesses);
221   Value *ValueOperand = getNewValue(Stmt, Store->getValueOperand(), BBMap, LTS,
222                                     getLoopForInst(Store));
223 
224   if (DebugPrinting)
225     RuntimeDebugBuilder::createCPUPrinter(Builder, "Store to  ", NewPointer,
226                                           ": ", ValueOperand, "\n");
227 
228   Builder.CreateAlignedStore(ValueOperand, NewPointer, Store->getAlignment());
229 }
230 
231 void BlockGenerator::copyInstruction(ScopStmt &Stmt, Instruction *Inst,
232                                      ValueMapT &BBMap, LoopToScevMapT &LTS,
233                                      isl_id_to_ast_expr *NewAccesses) {
234   // Terminator instructions control the control flow. They are explicitly
235   // expressed in the clast and do not need to be copied.
236   if (Inst->isTerminator())
237     return;
238 
239   Loop *L = getLoopForInst(Inst);
240   if ((Stmt.isBlockStmt() || !Stmt.getRegion()->contains(L)) &&
241       canSynthesize(Inst, &LI, &SE, &Stmt.getParent()->getRegion())) {
242     // Synthesizable statements will be generated on-demand.
243     return;
244   }
245 
246   if (auto *Load = dyn_cast<LoadInst>(Inst)) {
247     Value *NewLoad = generateScalarLoad(Stmt, Load, BBMap, LTS, NewAccesses);
248     // Compute NewLoad before its insertion in BBMap to make the insertion
249     // deterministic.
250     BBMap[Load] = NewLoad;
251     return;
252   }
253 
254   if (auto *Store = dyn_cast<StoreInst>(Inst)) {
255     generateScalarStore(Stmt, Store, BBMap, LTS, NewAccesses);
256     return;
257   }
258 
259   if (auto *PHI = dyn_cast<PHINode>(Inst)) {
260     copyPHIInstruction(Stmt, PHI, BBMap, LTS);
261     return;
262   }
263 
264   // Skip some special intrinsics for which we do not adjust the semantics to
265   // the new schedule. All others are handled like every other instruction.
266   if (isIgnoredIntrinsic(Inst))
267     return;
268 
269   copyInstScalar(Stmt, Inst, BBMap, LTS);
270 }
271 
272 void BlockGenerator::copyStmt(ScopStmt &Stmt, LoopToScevMapT &LTS,
273                               isl_id_to_ast_expr *NewAccesses) {
274   assert(Stmt.isBlockStmt() &&
275          "Only block statements can be copied by the block generator");
276 
277   ValueMapT BBMap;
278 
279   BasicBlock *BB = Stmt.getBasicBlock();
280   copyBB(Stmt, BB, BBMap, LTS, NewAccesses);
281 }
282 
283 BasicBlock *BlockGenerator::splitBB(BasicBlock *BB) {
284   BasicBlock *CopyBB = SplitBlock(Builder.GetInsertBlock(),
285                                   &*Builder.GetInsertPoint(), &DT, &LI);
286   CopyBB->setName("polly.stmt." + BB->getName());
287   return CopyBB;
288 }
289 
290 BasicBlock *BlockGenerator::copyBB(ScopStmt &Stmt, BasicBlock *BB,
291                                    ValueMapT &BBMap, LoopToScevMapT &LTS,
292                                    isl_id_to_ast_expr *NewAccesses) {
293   BasicBlock *CopyBB = splitBB(BB);
294   Builder.SetInsertPoint(&CopyBB->front());
295   generateScalarLoads(Stmt, BBMap);
296 
297   copyBB(Stmt, BB, CopyBB, BBMap, LTS, NewAccesses);
298 
299   // After a basic block was copied store all scalars that escape this block in
300   // their alloca.
301   generateScalarStores(Stmt, LTS, BBMap);
302   return CopyBB;
303 }
304 
305 void BlockGenerator::copyBB(ScopStmt &Stmt, BasicBlock *BB, BasicBlock *CopyBB,
306                             ValueMapT &BBMap, LoopToScevMapT &LTS,
307                             isl_id_to_ast_expr *NewAccesses) {
308   EntryBB = &CopyBB->getParent()->getEntryBlock();
309 
310   for (Instruction &Inst : *BB)
311     copyInstruction(Stmt, &Inst, BBMap, LTS, NewAccesses);
312 }
313 
314 Value *BlockGenerator::getOrCreateAlloca(Value *ScalarBase,
315                                          ScalarAllocaMapTy &Map,
316                                          const char *NameExt) {
317   // If no alloca was found create one and insert it in the entry block.
318   if (!Map.count(ScalarBase)) {
319     auto *Ty = ScalarBase->getType();
320     auto NewAddr = new AllocaInst(Ty, ScalarBase->getName() + NameExt);
321     EntryBB = &Builder.GetInsertBlock()->getParent()->getEntryBlock();
322     NewAddr->insertBefore(&*EntryBB->getFirstInsertionPt());
323     Map[ScalarBase] = NewAddr;
324   }
325 
326   auto Addr = Map[ScalarBase];
327 
328   if (GlobalMap.count(Addr))
329     return GlobalMap[Addr];
330 
331   return Addr;
332 }
333 
334 Value *BlockGenerator::getOrCreateAlloca(MemoryAccess &Access) {
335   if (Access.isPHI())
336     return getOrCreatePHIAlloca(Access.getBaseAddr());
337   else
338     return getOrCreateScalarAlloca(Access.getBaseAddr());
339 }
340 
341 Value *BlockGenerator::getOrCreateAlloca(const ScopArrayInfo *Array) {
342   if (Array->isPHI())
343     return getOrCreatePHIAlloca(Array->getBasePtr());
344   else
345     return getOrCreateScalarAlloca(Array->getBasePtr());
346 }
347 
348 Value *BlockGenerator::getOrCreateScalarAlloca(Value *ScalarBase) {
349   return getOrCreateAlloca(ScalarBase, ScalarMap, ".s2a");
350 }
351 
352 Value *BlockGenerator::getOrCreatePHIAlloca(Value *ScalarBase) {
353   return getOrCreateAlloca(ScalarBase, PHIOpMap, ".phiops");
354 }
355 
356 void BlockGenerator::handleOutsideUsers(const Region &R, Instruction *Inst,
357                                         Value *Address) {
358   // If there are escape users we get the alloca for this instruction and put it
359   // in the EscapeMap for later finalization. Lastly, if the instruction was
360   // copied multiple times we already did this and can exit.
361   if (EscapeMap.count(Inst))
362     return;
363 
364   EscapeUserVectorTy EscapeUsers;
365   for (User *U : Inst->users()) {
366 
367     // Non-instruction user will never escape.
368     Instruction *UI = dyn_cast<Instruction>(U);
369     if (!UI)
370       continue;
371 
372     if (R.contains(UI))
373       continue;
374 
375     EscapeUsers.push_back(UI);
376   }
377 
378   // Exit if no escape uses were found.
379   if (EscapeUsers.empty())
380     return;
381 
382   // Get or create an escape alloca for this instruction.
383   auto *ScalarAddr = Address ? Address : getOrCreateScalarAlloca(Inst);
384 
385   // Remember that this instruction has escape uses and the escape alloca.
386   EscapeMap[Inst] = std::make_pair(ScalarAddr, std::move(EscapeUsers));
387 }
388 
389 void BlockGenerator::generateScalarLoads(ScopStmt &Stmt, ValueMapT &BBMap) {
390   for (MemoryAccess *MA : Stmt) {
391     if (MA->isExplicit() || MA->isWrite())
392       continue;
393 
394     auto *Address = getOrCreateAlloca(*MA);
395     BBMap[MA->getBaseAddr()] =
396         Builder.CreateLoad(Address, Address->getName() + ".reload");
397   }
398 }
399 
400 Value *BlockGenerator::getNewScalarValue(Value *ScalarValue, const Region &R,
401                                          ScopStmt &Stmt, LoopToScevMapT &LTS,
402                                          ValueMapT &BBMap) {
403   // If the value we want to store is an instruction we might have demoted it
404   // in order to make it accessible here. In such a case a reload is
405   // necessary. If it is no instruction it will always be a value that
406   // dominates the current point and we can just use it. In total there are 4
407   // options:
408   //  (1) The value is no instruction ==> use the value.
409   //  (2) The value is an instruction that was split out of the region prior to
410   //      code generation  ==> use the instruction as it dominates the region.
411   //  (3) The value is an instruction:
412   //      (a) The value was defined in the current block, thus a copy is in
413   //          the BBMap ==> use the mapped value.
414   //      (b) The value was defined in a previous block, thus we demoted it
415   //          earlier ==> use the reloaded value.
416   Instruction *ScalarValueInst = dyn_cast<Instruction>(ScalarValue);
417   if (!ScalarValueInst)
418     return ScalarValue;
419 
420   if (!R.contains(ScalarValueInst)) {
421     if (Value *ScalarValueCopy = GlobalMap.lookup(ScalarValueInst))
422       return /* Case (3a) */ ScalarValueCopy;
423     else
424       return /* Case 2 */ ScalarValue;
425   }
426 
427   if (Value *ScalarValueCopy = BBMap.lookup(ScalarValueInst))
428     return /* Case (3a) */ ScalarValueCopy;
429 
430   if ((Stmt.isBlockStmt() &&
431        Stmt.getBasicBlock() == ScalarValueInst->getParent()) ||
432       (Stmt.isRegionStmt() && Stmt.getRegion()->contains(ScalarValueInst))) {
433     auto SynthesizedValue = trySynthesizeNewValue(
434         Stmt, ScalarValueInst, BBMap, LTS, getLoopForInst(ScalarValueInst));
435 
436     if (SynthesizedValue)
437       return SynthesizedValue;
438   }
439 
440   // Case (3b)
441   Value *Address = getOrCreateScalarAlloca(ScalarValueInst);
442   ScalarValue = Builder.CreateLoad(Address, Address->getName() + ".reload");
443 
444   return ScalarValue;
445 }
446 
447 void BlockGenerator::generateScalarStores(ScopStmt &Stmt, LoopToScevMapT &LTS,
448                                           ValueMapT &BBMap) {
449   const Region &R = Stmt.getParent()->getRegion();
450 
451   assert(Stmt.isBlockStmt() && "Region statements need to use the "
452                                "generateScalarStores() function in the "
453                                "RegionGenerator");
454 
455   for (MemoryAccess *MA : Stmt) {
456     if (MA->isExplicit() || MA->isRead())
457       continue;
458 
459     Value *Val = MA->getAccessValue();
460     auto *Address = getOrCreateAlloca(*MA);
461 
462     Val = getNewScalarValue(Val, R, Stmt, LTS, BBMap);
463     Builder.CreateStore(Val, Address);
464   }
465 }
466 
467 void BlockGenerator::createScalarInitialization(Scop &S) {
468   Region &R = S.getRegion();
469   BasicBlock *ExitBB = R.getExit();
470 
471   // The split block __just before__ the region and optimized region.
472   BasicBlock *SplitBB = R.getEnteringBlock();
473   BranchInst *SplitBBTerm = cast<BranchInst>(SplitBB->getTerminator());
474   assert(SplitBBTerm->getNumSuccessors() == 2 && "Bad region entering block!");
475 
476   // Get the start block of the __optimized__ region.
477   BasicBlock *StartBB = SplitBBTerm->getSuccessor(0);
478   if (StartBB == R.getEntry())
479     StartBB = SplitBBTerm->getSuccessor(1);
480 
481   Builder.SetInsertPoint(StartBB->getTerminator());
482 
483   for (auto &Pair : S.arrays()) {
484     auto &Array = Pair.second;
485     if (Array->getNumberOfDimensions() != 0)
486       continue;
487     if (Array->isPHI()) {
488       // For PHI nodes, the only values we need to store are the ones that
489       // reach the PHI node from outside the region. In general there should
490       // only be one such incoming edge and this edge should enter through
491       // 'SplitBB'.
492       auto PHI = cast<PHINode>(Array->getBasePtr());
493 
494       for (auto BI = PHI->block_begin(), BE = PHI->block_end(); BI != BE; BI++)
495         if (!R.contains(*BI) && *BI != SplitBB)
496           llvm_unreachable("Incoming edges from outside the scop should always "
497                            "come from SplitBB");
498 
499       int Idx = PHI->getBasicBlockIndex(SplitBB);
500       if (Idx < 0)
501         continue;
502 
503       Value *ScalarValue = PHI->getIncomingValue(Idx);
504 
505       Builder.CreateStore(ScalarValue, getOrCreatePHIAlloca(PHI));
506       continue;
507     }
508 
509     auto *Inst = dyn_cast<Instruction>(Array->getBasePtr());
510 
511     if (Inst && R.contains(Inst))
512       continue;
513 
514     // PHI nodes that are not marked as such in their SAI object are either exit
515     // PHI nodes we model as common scalars but without initialization, or
516     // incoming phi nodes that need to be initialized. Check if the first is the
517     // case for Inst and do not create and initialize memory if so.
518     if (auto *PHI = dyn_cast_or_null<PHINode>(Inst))
519       if (!S.hasSingleExitEdge() && PHI->getBasicBlockIndex(ExitBB) >= 0)
520         continue;
521 
522     Builder.CreateStore(Array->getBasePtr(),
523                         getOrCreateScalarAlloca(Array->getBasePtr()));
524   }
525 }
526 
527 void BlockGenerator::createScalarFinalization(Region &R) {
528   // The exit block of the __unoptimized__ region.
529   BasicBlock *ExitBB = R.getExitingBlock();
530   // The merge block __just after__ the region and the optimized region.
531   BasicBlock *MergeBB = R.getExit();
532 
533   // The exit block of the __optimized__ region.
534   BasicBlock *OptExitBB = *(pred_begin(MergeBB));
535   if (OptExitBB == ExitBB)
536     OptExitBB = *(++pred_begin(MergeBB));
537 
538   Builder.SetInsertPoint(OptExitBB->getTerminator());
539   for (const auto &EscapeMapping : EscapeMap) {
540     // Extract the escaping instruction and the escaping users as well as the
541     // alloca the instruction was demoted to.
542     Instruction *EscapeInst = EscapeMapping.getFirst();
543     const auto &EscapeMappingValue = EscapeMapping.getSecond();
544     const EscapeUserVectorTy &EscapeUsers = EscapeMappingValue.second;
545     Value *ScalarAddr = EscapeMappingValue.first;
546 
547     // Reload the demoted instruction in the optimized version of the SCoP.
548     Value *EscapeInstReload =
549         Builder.CreateLoad(ScalarAddr, EscapeInst->getName() + ".final_reload");
550     EscapeInstReload =
551         Builder.CreateBitOrPointerCast(EscapeInstReload, EscapeInst->getType());
552 
553     // Create the merge PHI that merges the optimized and unoptimized version.
554     PHINode *MergePHI = PHINode::Create(EscapeInst->getType(), 2,
555                                         EscapeInst->getName() + ".merge");
556     MergePHI->insertBefore(&*MergeBB->getFirstInsertionPt());
557 
558     // Add the respective values to the merge PHI.
559     MergePHI->addIncoming(EscapeInstReload, OptExitBB);
560     MergePHI->addIncoming(EscapeInst, ExitBB);
561 
562     // The information of scalar evolution about the escaping instruction needs
563     // to be revoked so the new merged instruction will be used.
564     if (SE.isSCEVable(EscapeInst->getType()))
565       SE.forgetValue(EscapeInst);
566 
567     // Replace all uses of the demoted instruction with the merge PHI.
568     for (Instruction *EUser : EscapeUsers)
569       EUser->replaceUsesOfWith(EscapeInst, MergePHI);
570   }
571 }
572 
573 void BlockGenerator::findOutsideUsers(Scop &S) {
574   auto &R = S.getRegion();
575   for (auto &Pair : S.arrays()) {
576     auto &Array = Pair.second;
577 
578     if (Array->getNumberOfDimensions() != 0)
579       continue;
580 
581     if (Array->isPHI())
582       continue;
583 
584     auto *Inst = dyn_cast<Instruction>(Array->getBasePtr());
585 
586     if (!Inst)
587       continue;
588 
589     // Scop invariant hoisting moves some of the base pointers out of the scop.
590     // We can ignore these, as the invariant load hoisting already registers the
591     // relevant outside users.
592     if (!R.contains(Inst))
593       continue;
594 
595     handleOutsideUsers(R, Inst, nullptr);
596   }
597 }
598 
599 void BlockGenerator::createExitPHINodeMerges(Scop &S) {
600   if (S.hasSingleExitEdge())
601     return;
602 
603   Region &R = S.getRegion();
604 
605   auto *ExitBB = R.getExitingBlock();
606   auto *MergeBB = R.getExit();
607   auto *AfterMergeBB = MergeBB->getSingleSuccessor();
608   BasicBlock *OptExitBB = *(pred_begin(MergeBB));
609   if (OptExitBB == ExitBB)
610     OptExitBB = *(++pred_begin(MergeBB));
611 
612   Builder.SetInsertPoint(OptExitBB->getTerminator());
613 
614   for (auto &Pair : S.arrays()) {
615     auto &SAI = Pair.second;
616     auto *Val = SAI->getBasePtr();
617 
618     PHINode *PHI = dyn_cast<PHINode>(Val);
619     if (!PHI)
620       continue;
621 
622     if (PHI->getParent() != AfterMergeBB)
623       continue;
624 
625     std::string Name = PHI->getName();
626     Value *ScalarAddr = getOrCreateScalarAlloca(PHI);
627     Value *Reload = Builder.CreateLoad(ScalarAddr, Name + ".ph.final_reload");
628     Reload = Builder.CreateBitOrPointerCast(Reload, PHI->getType());
629     Value *OriginalValue = PHI->getIncomingValueForBlock(MergeBB);
630     auto *MergePHI = PHINode::Create(PHI->getType(), 2, Name + ".ph.merge");
631     MergePHI->insertBefore(&*MergeBB->getFirstInsertionPt());
632     MergePHI->addIncoming(Reload, OptExitBB);
633     MergePHI->addIncoming(OriginalValue, ExitBB);
634     int Idx = PHI->getBasicBlockIndex(MergeBB);
635     PHI->setIncomingValue(Idx, MergePHI);
636   }
637 }
638 
639 void BlockGenerator::finalizeSCoP(Scop &S) {
640   findOutsideUsers(S);
641   createScalarInitialization(S);
642   createExitPHINodeMerges(S);
643   createScalarFinalization(S.getRegion());
644 }
645 
646 VectorBlockGenerator::VectorBlockGenerator(BlockGenerator &BlockGen,
647                                            std::vector<LoopToScevMapT> &VLTS,
648                                            isl_map *Schedule)
649     : BlockGenerator(BlockGen), VLTS(VLTS), Schedule(Schedule) {
650   assert(Schedule && "No statement domain provided");
651 }
652 
653 Value *VectorBlockGenerator::getVectorValue(ScopStmt &Stmt, Value *Old,
654                                             ValueMapT &VectorMap,
655                                             VectorValueMapT &ScalarMaps,
656                                             Loop *L) {
657   if (Value *NewValue = VectorMap.lookup(Old))
658     return NewValue;
659 
660   int Width = getVectorWidth();
661 
662   Value *Vector = UndefValue::get(VectorType::get(Old->getType(), Width));
663 
664   for (int Lane = 0; Lane < Width; Lane++)
665     Vector = Builder.CreateInsertElement(
666         Vector, getNewValue(Stmt, Old, ScalarMaps[Lane], VLTS[Lane], L),
667         Builder.getInt32(Lane));
668 
669   VectorMap[Old] = Vector;
670 
671   return Vector;
672 }
673 
674 Type *VectorBlockGenerator::getVectorPtrTy(const Value *Val, int Width) {
675   PointerType *PointerTy = dyn_cast<PointerType>(Val->getType());
676   assert(PointerTy && "PointerType expected");
677 
678   Type *ScalarType = PointerTy->getElementType();
679   VectorType *VectorType = VectorType::get(ScalarType, Width);
680 
681   return PointerType::getUnqual(VectorType);
682 }
683 
684 Value *VectorBlockGenerator::generateStrideOneLoad(
685     ScopStmt &Stmt, LoadInst *Load, VectorValueMapT &ScalarMaps,
686     __isl_keep isl_id_to_ast_expr *NewAccesses, bool NegativeStride = false) {
687   unsigned VectorWidth = getVectorWidth();
688   auto *Pointer = Load->getPointerOperand();
689   Type *VectorPtrType = getVectorPtrTy(Pointer, VectorWidth);
690   unsigned Offset = NegativeStride ? VectorWidth - 1 : 0;
691 
692   Value *NewPointer = nullptr;
693   NewPointer = generateLocationAccessed(Stmt, Load, Pointer, ScalarMaps[Offset],
694                                         VLTS[Offset], NewAccesses);
695   Value *VectorPtr =
696       Builder.CreateBitCast(NewPointer, VectorPtrType, "vector_ptr");
697   LoadInst *VecLoad =
698       Builder.CreateLoad(VectorPtr, Load->getName() + "_p_vec_full");
699   if (!Aligned)
700     VecLoad->setAlignment(8);
701 
702   if (NegativeStride) {
703     SmallVector<Constant *, 16> Indices;
704     for (int i = VectorWidth - 1; i >= 0; i--)
705       Indices.push_back(ConstantInt::get(Builder.getInt32Ty(), i));
706     Constant *SV = llvm::ConstantVector::get(Indices);
707     Value *RevVecLoad = Builder.CreateShuffleVector(
708         VecLoad, VecLoad, SV, Load->getName() + "_reverse");
709     return RevVecLoad;
710   }
711 
712   return VecLoad;
713 }
714 
715 Value *VectorBlockGenerator::generateStrideZeroLoad(
716     ScopStmt &Stmt, LoadInst *Load, ValueMapT &BBMap,
717     __isl_keep isl_id_to_ast_expr *NewAccesses) {
718   auto *Pointer = Load->getPointerOperand();
719   Type *VectorPtrType = getVectorPtrTy(Pointer, 1);
720   Value *NewPointer = generateLocationAccessed(Stmt, Load, Pointer, BBMap,
721                                                VLTS[0], NewAccesses);
722   Value *VectorPtr = Builder.CreateBitCast(NewPointer, VectorPtrType,
723                                            Load->getName() + "_p_vec_p");
724   LoadInst *ScalarLoad =
725       Builder.CreateLoad(VectorPtr, Load->getName() + "_p_splat_one");
726 
727   if (!Aligned)
728     ScalarLoad->setAlignment(8);
729 
730   Constant *SplatVector = Constant::getNullValue(
731       VectorType::get(Builder.getInt32Ty(), getVectorWidth()));
732 
733   Value *VectorLoad = Builder.CreateShuffleVector(
734       ScalarLoad, ScalarLoad, SplatVector, Load->getName() + "_p_splat");
735   return VectorLoad;
736 }
737 
738 Value *VectorBlockGenerator::generateUnknownStrideLoad(
739     ScopStmt &Stmt, LoadInst *Load, VectorValueMapT &ScalarMaps,
740     __isl_keep isl_id_to_ast_expr *NewAccesses) {
741   int VectorWidth = getVectorWidth();
742   auto *Pointer = Load->getPointerOperand();
743   VectorType *VectorType = VectorType::get(
744       dyn_cast<PointerType>(Pointer->getType())->getElementType(), VectorWidth);
745 
746   Value *Vector = UndefValue::get(VectorType);
747 
748   for (int i = 0; i < VectorWidth; i++) {
749     Value *NewPointer = generateLocationAccessed(
750         Stmt, Load, Pointer, ScalarMaps[i], VLTS[i], NewAccesses);
751     Value *ScalarLoad =
752         Builder.CreateLoad(NewPointer, Load->getName() + "_p_scalar_");
753     Vector = Builder.CreateInsertElement(
754         Vector, ScalarLoad, Builder.getInt32(i), Load->getName() + "_p_vec_");
755   }
756 
757   return Vector;
758 }
759 
760 void VectorBlockGenerator::generateLoad(
761     ScopStmt &Stmt, LoadInst *Load, ValueMapT &VectorMap,
762     VectorValueMapT &ScalarMaps, __isl_keep isl_id_to_ast_expr *NewAccesses) {
763   if (Value *PreloadLoad = GlobalMap.lookup(Load)) {
764     VectorMap[Load] = Builder.CreateVectorSplat(getVectorWidth(), PreloadLoad,
765                                                 Load->getName() + "_p");
766     return;
767   }
768 
769   if (!VectorType::isValidElementType(Load->getType())) {
770     for (int i = 0; i < getVectorWidth(); i++)
771       ScalarMaps[i][Load] =
772           generateScalarLoad(Stmt, Load, ScalarMaps[i], VLTS[i], NewAccesses);
773     return;
774   }
775 
776   const MemoryAccess &Access = Stmt.getAccessFor(Load);
777 
778   // Make sure we have scalar values available to access the pointer to
779   // the data location.
780   extractScalarValues(Load, VectorMap, ScalarMaps);
781 
782   Value *NewLoad;
783   if (Access.isStrideZero(isl_map_copy(Schedule)))
784     NewLoad = generateStrideZeroLoad(Stmt, Load, ScalarMaps[0], NewAccesses);
785   else if (Access.isStrideOne(isl_map_copy(Schedule)))
786     NewLoad = generateStrideOneLoad(Stmt, Load, ScalarMaps, NewAccesses);
787   else if (Access.isStrideX(isl_map_copy(Schedule), -1))
788     NewLoad = generateStrideOneLoad(Stmt, Load, ScalarMaps, NewAccesses, true);
789   else
790     NewLoad = generateUnknownStrideLoad(Stmt, Load, ScalarMaps, NewAccesses);
791 
792   VectorMap[Load] = NewLoad;
793 }
794 
795 void VectorBlockGenerator::copyUnaryInst(ScopStmt &Stmt, UnaryInstruction *Inst,
796                                          ValueMapT &VectorMap,
797                                          VectorValueMapT &ScalarMaps) {
798   int VectorWidth = getVectorWidth();
799   Value *NewOperand = getVectorValue(Stmt, Inst->getOperand(0), VectorMap,
800                                      ScalarMaps, getLoopForInst(Inst));
801 
802   assert(isa<CastInst>(Inst) && "Can not generate vector code for instruction");
803 
804   const CastInst *Cast = dyn_cast<CastInst>(Inst);
805   VectorType *DestType = VectorType::get(Inst->getType(), VectorWidth);
806   VectorMap[Inst] = Builder.CreateCast(Cast->getOpcode(), NewOperand, DestType);
807 }
808 
809 void VectorBlockGenerator::copyBinaryInst(ScopStmt &Stmt, BinaryOperator *Inst,
810                                           ValueMapT &VectorMap,
811                                           VectorValueMapT &ScalarMaps) {
812   Loop *L = getLoopForInst(Inst);
813   Value *OpZero = Inst->getOperand(0);
814   Value *OpOne = Inst->getOperand(1);
815 
816   Value *NewOpZero, *NewOpOne;
817   NewOpZero = getVectorValue(Stmt, OpZero, VectorMap, ScalarMaps, L);
818   NewOpOne = getVectorValue(Stmt, OpOne, VectorMap, ScalarMaps, L);
819 
820   Value *NewInst = Builder.CreateBinOp(Inst->getOpcode(), NewOpZero, NewOpOne,
821                                        Inst->getName() + "p_vec");
822   VectorMap[Inst] = NewInst;
823 }
824 
825 void VectorBlockGenerator::copyStore(
826     ScopStmt &Stmt, StoreInst *Store, ValueMapT &VectorMap,
827     VectorValueMapT &ScalarMaps, __isl_keep isl_id_to_ast_expr *NewAccesses) {
828   const MemoryAccess &Access = Stmt.getAccessFor(Store);
829 
830   auto *Pointer = Store->getPointerOperand();
831   Value *Vector = getVectorValue(Stmt, Store->getValueOperand(), VectorMap,
832                                  ScalarMaps, getLoopForInst(Store));
833 
834   // Make sure we have scalar values available to access the pointer to
835   // the data location.
836   extractScalarValues(Store, VectorMap, ScalarMaps);
837 
838   if (Access.isStrideOne(isl_map_copy(Schedule))) {
839     Type *VectorPtrType = getVectorPtrTy(Pointer, getVectorWidth());
840     Value *NewPointer = generateLocationAccessed(
841         Stmt, Store, Pointer, ScalarMaps[0], VLTS[0], NewAccesses);
842 
843     Value *VectorPtr =
844         Builder.CreateBitCast(NewPointer, VectorPtrType, "vector_ptr");
845     StoreInst *Store = Builder.CreateStore(Vector, VectorPtr);
846 
847     if (!Aligned)
848       Store->setAlignment(8);
849   } else {
850     for (unsigned i = 0; i < ScalarMaps.size(); i++) {
851       Value *Scalar = Builder.CreateExtractElement(Vector, Builder.getInt32(i));
852       Value *NewPointer = generateLocationAccessed(
853           Stmt, Store, Pointer, ScalarMaps[i], VLTS[i], NewAccesses);
854       Builder.CreateStore(Scalar, NewPointer);
855     }
856   }
857 }
858 
859 bool VectorBlockGenerator::hasVectorOperands(const Instruction *Inst,
860                                              ValueMapT &VectorMap) {
861   for (Value *Operand : Inst->operands())
862     if (VectorMap.count(Operand))
863       return true;
864   return false;
865 }
866 
867 bool VectorBlockGenerator::extractScalarValues(const Instruction *Inst,
868                                                ValueMapT &VectorMap,
869                                                VectorValueMapT &ScalarMaps) {
870   bool HasVectorOperand = false;
871   int VectorWidth = getVectorWidth();
872 
873   for (Value *Operand : Inst->operands()) {
874     ValueMapT::iterator VecOp = VectorMap.find(Operand);
875 
876     if (VecOp == VectorMap.end())
877       continue;
878 
879     HasVectorOperand = true;
880     Value *NewVector = VecOp->second;
881 
882     for (int i = 0; i < VectorWidth; ++i) {
883       ValueMapT &SM = ScalarMaps[i];
884 
885       // If there is one scalar extracted, all scalar elements should have
886       // already been extracted by the code here. So no need to check for the
887       // existance of all of them.
888       if (SM.count(Operand))
889         break;
890 
891       SM[Operand] =
892           Builder.CreateExtractElement(NewVector, Builder.getInt32(i));
893     }
894   }
895 
896   return HasVectorOperand;
897 }
898 
899 void VectorBlockGenerator::copyInstScalarized(
900     ScopStmt &Stmt, Instruction *Inst, ValueMapT &VectorMap,
901     VectorValueMapT &ScalarMaps, __isl_keep isl_id_to_ast_expr *NewAccesses) {
902   bool HasVectorOperand;
903   int VectorWidth = getVectorWidth();
904 
905   HasVectorOperand = extractScalarValues(Inst, VectorMap, ScalarMaps);
906 
907   for (int VectorLane = 0; VectorLane < getVectorWidth(); VectorLane++)
908     BlockGenerator::copyInstruction(Stmt, Inst, ScalarMaps[VectorLane],
909                                     VLTS[VectorLane], NewAccesses);
910 
911   if (!VectorType::isValidElementType(Inst->getType()) || !HasVectorOperand)
912     return;
913 
914   // Make the result available as vector value.
915   VectorType *VectorType = VectorType::get(Inst->getType(), VectorWidth);
916   Value *Vector = UndefValue::get(VectorType);
917 
918   for (int i = 0; i < VectorWidth; i++)
919     Vector = Builder.CreateInsertElement(Vector, ScalarMaps[i][Inst],
920                                          Builder.getInt32(i));
921 
922   VectorMap[Inst] = Vector;
923 }
924 
925 int VectorBlockGenerator::getVectorWidth() { return VLTS.size(); }
926 
927 void VectorBlockGenerator::copyInstruction(
928     ScopStmt &Stmt, Instruction *Inst, ValueMapT &VectorMap,
929     VectorValueMapT &ScalarMaps, __isl_keep isl_id_to_ast_expr *NewAccesses) {
930   // Terminator instructions control the control flow. They are explicitly
931   // expressed in the clast and do not need to be copied.
932   if (Inst->isTerminator())
933     return;
934 
935   if (canSynthesize(Inst, &LI, &SE, &Stmt.getParent()->getRegion()))
936     return;
937 
938   if (auto *Load = dyn_cast<LoadInst>(Inst)) {
939     generateLoad(Stmt, Load, VectorMap, ScalarMaps, NewAccesses);
940     return;
941   }
942 
943   if (hasVectorOperands(Inst, VectorMap)) {
944     if (auto *Store = dyn_cast<StoreInst>(Inst)) {
945       copyStore(Stmt, Store, VectorMap, ScalarMaps, NewAccesses);
946       return;
947     }
948 
949     if (auto *Unary = dyn_cast<UnaryInstruction>(Inst)) {
950       copyUnaryInst(Stmt, Unary, VectorMap, ScalarMaps);
951       return;
952     }
953 
954     if (auto *Binary = dyn_cast<BinaryOperator>(Inst)) {
955       copyBinaryInst(Stmt, Binary, VectorMap, ScalarMaps);
956       return;
957     }
958 
959     // Falltrough: We generate scalar instructions, if we don't know how to
960     // generate vector code.
961   }
962 
963   copyInstScalarized(Stmt, Inst, VectorMap, ScalarMaps, NewAccesses);
964 }
965 
966 void VectorBlockGenerator::copyStmt(
967     ScopStmt &Stmt, __isl_keep isl_id_to_ast_expr *NewAccesses) {
968   assert(Stmt.isBlockStmt() && "TODO: Only block statements can be copied by "
969                                "the vector block generator");
970 
971   BasicBlock *BB = Stmt.getBasicBlock();
972   BasicBlock *CopyBB = SplitBlock(Builder.GetInsertBlock(),
973                                   &*Builder.GetInsertPoint(), &DT, &LI);
974   CopyBB->setName("polly.stmt." + BB->getName());
975   Builder.SetInsertPoint(&CopyBB->front());
976 
977   // Create two maps that store the mapping from the original instructions of
978   // the old basic block to their copies in the new basic block. Those maps
979   // are basic block local.
980   //
981   // As vector code generation is supported there is one map for scalar values
982   // and one for vector values.
983   //
984   // In case we just do scalar code generation, the vectorMap is not used and
985   // the scalarMap has just one dimension, which contains the mapping.
986   //
987   // In case vector code generation is done, an instruction may either appear
988   // in the vector map once (as it is calculating >vectorwidth< values at a
989   // time. Or (if the values are calculated using scalar operations), it
990   // appears once in every dimension of the scalarMap.
991   VectorValueMapT ScalarBlockMap(getVectorWidth());
992   ValueMapT VectorBlockMap;
993 
994   for (Instruction &Inst : *BB)
995     copyInstruction(Stmt, &Inst, VectorBlockMap, ScalarBlockMap, NewAccesses);
996 }
997 
998 BasicBlock *RegionGenerator::repairDominance(BasicBlock *BB,
999                                              BasicBlock *BBCopy) {
1000 
1001   BasicBlock *BBIDom = DT.getNode(BB)->getIDom()->getBlock();
1002   BasicBlock *BBCopyIDom = BlockMap.lookup(BBIDom);
1003 
1004   if (BBCopyIDom)
1005     DT.changeImmediateDominator(BBCopy, BBCopyIDom);
1006 
1007   return BBCopyIDom;
1008 }
1009 
1010 void RegionGenerator::copyStmt(ScopStmt &Stmt, LoopToScevMapT &LTS,
1011                                isl_id_to_ast_expr *IdToAstExp) {
1012   assert(Stmt.isRegionStmt() &&
1013          "Only region statements can be copied by the region generator");
1014 
1015   Scop *S = Stmt.getParent();
1016 
1017   // Forget all old mappings.
1018   BlockMap.clear();
1019   RegionMaps.clear();
1020   IncompletePHINodeMap.clear();
1021 
1022   // Collection of all values related to this subregion.
1023   ValueMapT ValueMap;
1024 
1025   // The region represented by the statement.
1026   Region *R = Stmt.getRegion();
1027 
1028   // Create a dedicated entry for the region where we can reload all demoted
1029   // inputs.
1030   BasicBlock *EntryBB = R->getEntry();
1031   BasicBlock *EntryBBCopy = SplitBlock(Builder.GetInsertBlock(),
1032                                        &*Builder.GetInsertPoint(), &DT, &LI);
1033   EntryBBCopy->setName("polly.stmt." + EntryBB->getName() + ".entry");
1034   Builder.SetInsertPoint(&EntryBBCopy->front());
1035 
1036   ValueMapT &EntryBBMap = RegionMaps[EntryBBCopy];
1037   generateScalarLoads(Stmt, EntryBBMap);
1038 
1039   for (auto PI = pred_begin(EntryBB), PE = pred_end(EntryBB); PI != PE; ++PI)
1040     if (!R->contains(*PI))
1041       BlockMap[*PI] = EntryBBCopy;
1042 
1043   // Determine the original exit block of this subregion. If it the exit block
1044   // is also the scop's exit, it it has been changed to polly.merge_new_and_old.
1045   // We move one block back to find the original block. This only happens if the
1046   // scop required simplification.
1047   // If the whole scop consists of only this non-affine region, then they share
1048   // the same Region object, such that we cannot change the exit of one and not
1049   // the other.
1050   BasicBlock *ExitBB = R->getExit();
1051   if (!S->hasSingleExitEdge() && ExitBB == S->getRegion().getExit())
1052     ExitBB = *(++pred_begin(ExitBB));
1053 
1054   // Iterate over all blocks in the region in a breadth-first search.
1055   std::deque<BasicBlock *> Blocks;
1056   SmallPtrSet<BasicBlock *, 8> SeenBlocks;
1057   Blocks.push_back(EntryBB);
1058   SeenBlocks.insert(EntryBB);
1059 
1060   while (!Blocks.empty()) {
1061     BasicBlock *BB = Blocks.front();
1062     Blocks.pop_front();
1063 
1064     // First split the block and update dominance information.
1065     BasicBlock *BBCopy = splitBB(BB);
1066     BasicBlock *BBCopyIDom = repairDominance(BB, BBCopy);
1067 
1068     // In order to remap PHI nodes we store also basic block mappings.
1069     BlockMap[BB] = BBCopy;
1070 
1071     // Get the mapping for this block and initialize it with either the scalar
1072     // loads from the generated entering block (which dominates all blocks of
1073     // this subregion) or the maps of the immediate dominator, if part of the
1074     // subregion. The latter necessarily includes the former.
1075     ValueMapT *InitBBMap;
1076     if (BBCopyIDom) {
1077       assert(RegionMaps.count(BBCopyIDom));
1078       InitBBMap = &RegionMaps[BBCopyIDom];
1079     } else
1080       InitBBMap = &EntryBBMap;
1081     auto Inserted = RegionMaps.insert(std::make_pair(BBCopy, *InitBBMap));
1082     ValueMapT &RegionMap = Inserted.first->second;
1083 
1084     // Copy the block with the BlockGenerator.
1085     Builder.SetInsertPoint(&BBCopy->front());
1086     copyBB(Stmt, BB, BBCopy, RegionMap, LTS, IdToAstExp);
1087 
1088     // In order to remap PHI nodes we store also basic block mappings.
1089     BlockMap[BB] = BBCopy;
1090 
1091     // Add values to incomplete PHI nodes waiting for this block to be copied.
1092     for (const PHINodePairTy &PHINodePair : IncompletePHINodeMap[BB])
1093       addOperandToPHI(Stmt, PHINodePair.first, PHINodePair.second, BB, LTS);
1094     IncompletePHINodeMap[BB].clear();
1095 
1096     // And continue with new successors inside the region.
1097     for (auto SI = succ_begin(BB), SE = succ_end(BB); SI != SE; SI++)
1098       if (R->contains(*SI) && SeenBlocks.insert(*SI).second)
1099         Blocks.push_back(*SI);
1100 
1101     // Remember value in case it is visible after this subregion.
1102     if (DT.dominates(BB, ExitBB))
1103       ValueMap.insert(RegionMap.begin(), RegionMap.end());
1104   }
1105 
1106   // Now create a new dedicated region exit block and add it to the region map.
1107   BasicBlock *ExitBBCopy = SplitBlock(Builder.GetInsertBlock(),
1108                                       &*Builder.GetInsertPoint(), &DT, &LI);
1109   ExitBBCopy->setName("polly.stmt." + R->getExit()->getName() + ".exit");
1110   BlockMap[R->getExit()] = ExitBBCopy;
1111 
1112   if (ExitBB == R->getExit())
1113     repairDominance(ExitBB, ExitBBCopy);
1114   else
1115     DT.changeImmediateDominator(ExitBBCopy, BlockMap.lookup(ExitBB));
1116 
1117   // As the block generator doesn't handle control flow we need to add the
1118   // region control flow by hand after all blocks have been copied.
1119   for (BasicBlock *BB : SeenBlocks) {
1120 
1121     BasicBlock *BBCopy = BlockMap[BB];
1122     TerminatorInst *TI = BB->getTerminator();
1123     if (isa<UnreachableInst>(TI)) {
1124       while (!BBCopy->empty())
1125         BBCopy->begin()->eraseFromParent();
1126       new UnreachableInst(BBCopy->getContext(), BBCopy);
1127       continue;
1128     }
1129 
1130     Instruction *BICopy = BBCopy->getTerminator();
1131 
1132     ValueMapT &RegionMap = RegionMaps[BBCopy];
1133     RegionMap.insert(BlockMap.begin(), BlockMap.end());
1134 
1135     Builder.SetInsertPoint(BICopy);
1136     copyInstScalar(Stmt, TI, RegionMap, LTS);
1137     BICopy->eraseFromParent();
1138   }
1139 
1140   // Add counting PHI nodes to all loops in the region that can be used as
1141   // replacement for SCEVs refering to the old loop.
1142   for (BasicBlock *BB : SeenBlocks) {
1143     Loop *L = LI.getLoopFor(BB);
1144     if (L == nullptr || L->getHeader() != BB || !R->contains(L))
1145       continue;
1146 
1147     BasicBlock *BBCopy = BlockMap[BB];
1148     Value *NullVal = Builder.getInt32(0);
1149     PHINode *LoopPHI =
1150         PHINode::Create(Builder.getInt32Ty(), 2, "polly.subregion.iv");
1151     Instruction *LoopPHIInc = BinaryOperator::CreateAdd(
1152         LoopPHI, Builder.getInt32(1), "polly.subregion.iv.inc");
1153     LoopPHI->insertBefore(&BBCopy->front());
1154     LoopPHIInc->insertBefore(BBCopy->getTerminator());
1155 
1156     for (auto *PredBB : make_range(pred_begin(BB), pred_end(BB))) {
1157       if (!R->contains(PredBB))
1158         continue;
1159       if (L->contains(PredBB))
1160         LoopPHI->addIncoming(LoopPHIInc, BlockMap[PredBB]);
1161       else
1162         LoopPHI->addIncoming(NullVal, BlockMap[PredBB]);
1163     }
1164 
1165     for (auto *PredBBCopy : make_range(pred_begin(BBCopy), pred_end(BBCopy)))
1166       if (LoopPHI->getBasicBlockIndex(PredBBCopy) < 0)
1167         LoopPHI->addIncoming(NullVal, PredBBCopy);
1168 
1169     LTS[L] = SE.getUnknown(LoopPHI);
1170   }
1171 
1172   // Continue generating code in the exit block.
1173   Builder.SetInsertPoint(&*ExitBBCopy->getFirstInsertionPt());
1174 
1175   // Write values visible to other statements.
1176   generateScalarStores(Stmt, LTS, ValueMap);
1177   BlockMap.clear();
1178   RegionMaps.clear();
1179   IncompletePHINodeMap.clear();
1180 }
1181 
1182 void RegionGenerator::generateScalarStores(ScopStmt &Stmt, LoopToScevMapT &LTS,
1183                                            ValueMapT &BBMap) {
1184   const Region &R = Stmt.getParent()->getRegion();
1185 
1186   assert(Stmt.getRegion() &&
1187          "Block statements need to use the generateScalarStores() "
1188          "function in the BlockGenerator");
1189 
1190   for (MemoryAccess *MA : Stmt) {
1191     if (MA->isExplicit() || MA->isRead())
1192       continue;
1193 
1194     Instruction *ScalarInst = MA->getAccessInstruction();
1195     Value *Val = MA->getAccessValue();
1196 
1197     // In case we add the store into an exiting block, we need to restore the
1198     // position for stores in the exit node.
1199     BasicBlock *SavedInsertBB = Builder.GetInsertBlock();
1200     auto SavedInsertionPoint = Builder.GetInsertPoint();
1201     ValueMapT *LocalBBMap = &BBMap;
1202 
1203     // Implicit writes induced by PHIs must be written in the incoming blocks.
1204     if (MA->isPHI() || MA->isExitPHI()) {
1205       BasicBlock *ExitingBB = ScalarInst->getParent();
1206       BasicBlock *ExitingBBCopy = BlockMap[ExitingBB];
1207       Builder.SetInsertPoint(ExitingBBCopy->getTerminator());
1208 
1209       // For the incoming blocks, use the block's BBMap instead of the one for
1210       // the entire region.
1211       LocalBBMap = &RegionMaps[ExitingBBCopy];
1212     }
1213 
1214     auto Address = getOrCreateAlloca(*MA);
1215 
1216     Val = getNewScalarValue(Val, R, Stmt, LTS, *LocalBBMap);
1217     Builder.CreateStore(Val, Address);
1218 
1219     // Restore the insertion point if necessary.
1220     if (MA->isPHI() || MA->isExitPHI())
1221       Builder.SetInsertPoint(SavedInsertBB, SavedInsertionPoint);
1222   }
1223 }
1224 
1225 void RegionGenerator::addOperandToPHI(ScopStmt &Stmt, const PHINode *PHI,
1226                                       PHINode *PHICopy, BasicBlock *IncomingBB,
1227                                       LoopToScevMapT &LTS) {
1228   Region *StmtR = Stmt.getRegion();
1229 
1230   // If the incoming block was not yet copied mark this PHI as incomplete.
1231   // Once the block will be copied the incoming value will be added.
1232   BasicBlock *BBCopy = BlockMap[IncomingBB];
1233   if (!BBCopy) {
1234     assert(StmtR->contains(IncomingBB) &&
1235            "Bad incoming block for PHI in non-affine region");
1236     IncompletePHINodeMap[IncomingBB].push_back(std::make_pair(PHI, PHICopy));
1237     return;
1238   }
1239 
1240   Value *OpCopy = nullptr;
1241   if (StmtR->contains(IncomingBB)) {
1242     assert(RegionMaps.count(BBCopy) &&
1243            "Incoming PHI block did not have a BBMap");
1244     ValueMapT &BBCopyMap = RegionMaps[BBCopy];
1245 
1246     Value *Op = PHI->getIncomingValueForBlock(IncomingBB);
1247 
1248     BasicBlock *OldBlock = Builder.GetInsertBlock();
1249     auto OldIP = Builder.GetInsertPoint();
1250     Builder.SetInsertPoint(BBCopy->getTerminator());
1251     OpCopy = getNewValue(Stmt, Op, BBCopyMap, LTS, getLoopForInst(PHI));
1252     Builder.SetInsertPoint(OldBlock, OldIP);
1253   } else {
1254 
1255     if (PHICopy->getBasicBlockIndex(BBCopy) >= 0)
1256       return;
1257 
1258     Value *PHIOpAddr = getOrCreatePHIAlloca(const_cast<PHINode *>(PHI));
1259     OpCopy = new LoadInst(PHIOpAddr, PHIOpAddr->getName() + ".reload",
1260                           BlockMap[IncomingBB]->getTerminator());
1261   }
1262 
1263   assert(OpCopy && "Incoming PHI value was not copied properly");
1264   assert(BBCopy && "Incoming PHI block was not copied properly");
1265   PHICopy->addIncoming(OpCopy, BBCopy);
1266 }
1267 
1268 Value *RegionGenerator::copyPHIInstruction(ScopStmt &Stmt, PHINode *PHI,
1269                                            ValueMapT &BBMap,
1270                                            LoopToScevMapT &LTS) {
1271   unsigned NumIncoming = PHI->getNumIncomingValues();
1272   PHINode *PHICopy =
1273       Builder.CreatePHI(PHI->getType(), NumIncoming, "polly." + PHI->getName());
1274   PHICopy->moveBefore(PHICopy->getParent()->getFirstNonPHI());
1275   BBMap[PHI] = PHICopy;
1276 
1277   for (unsigned u = 0; u < NumIncoming; u++)
1278     addOperandToPHI(Stmt, PHI, PHICopy, PHI->getIncomingBlock(u), LTS);
1279   return PHICopy;
1280 }
1281