1 //===--- BlockGenerators.cpp - Generate code for statements -----*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the BlockGenerator and VectorBlockGenerator classes,
11 // which generate sequential code and vectorized code for a polyhedral
12 // statement, respectively.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "polly/ScopInfo.h"
17 #include "isl/aff.h"
18 #include "isl/set.h"
19 #include "polly/CodeGen/BlockGenerators.h"
20 #include "polly/CodeGen/CodeGeneration.h"
21 #include "polly/Options.h"
22 #include "polly/Support/GICHelper.h"
23 #include "polly/Support/SCEVValidator.h"
24 #include "polly/Support/ScopHelper.h"
25 #include "llvm/Analysis/LoopInfo.h"
26 #include "llvm/Analysis/ScalarEvolution.h"
27 #include "llvm/Analysis/ScalarEvolutionExpander.h"
28 #include "llvm/IR/IntrinsicInst.h"
29 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
30 
31 using namespace llvm;
32 using namespace polly;
33 
34 static cl::opt<bool>
35 Aligned("enable-polly-aligned", cl::desc("Assumed aligned memory accesses."),
36         cl::Hidden, cl::value_desc("OpenMP code generation enabled if true"),
37         cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory));
38 
39 static cl::opt<bool, true>
40 SCEVCodegenF("polly-codegen-scev", cl::desc("Use SCEV based code generation."),
41              cl::Hidden, cl::location(SCEVCodegen), cl::init(false),
42              cl::ZeroOrMore, cl::cat(PollyCategory));
43 
44 bool polly::SCEVCodegen;
45 
46 bool polly::canSynthesize(const Instruction *I, const llvm::LoopInfo *LI,
47                           ScalarEvolution *SE, const Region *R) {
48   if (SCEVCodegen) {
49     if (!I || !SE->isSCEVable(I->getType()))
50       return false;
51 
52     if (const SCEV *Scev = SE->getSCEV(const_cast<Instruction *>(I)))
53       if (!isa<SCEVCouldNotCompute>(Scev))
54         if (!hasScalarDepsInsideRegion(Scev, R))
55           return true;
56 
57     return false;
58   }
59 
60   Loop *L = LI->getLoopFor(I->getParent());
61   return L && I == L->getCanonicalInductionVariable() && R->contains(L);
62 }
63 
64 // Helper class to generate memory location.
65 namespace {
66 class IslGenerator {
67 public:
68   IslGenerator(PollyIRBuilder &Builder, std::vector<Value *> &IVS)
69       : Builder(Builder), IVS(IVS) {}
70   Value *generateIslVal(__isl_take isl_val *Val);
71   Value *generateIslAff(__isl_take isl_aff *Aff);
72   Value *generateIslPwAff(__isl_take isl_pw_aff *PwAff);
73 
74 private:
75   typedef struct {
76     Value *Result;
77     class IslGenerator *Generator;
78   } IslGenInfo;
79 
80   PollyIRBuilder &Builder;
81   std::vector<Value *> &IVS;
82   static int mergeIslAffValues(__isl_take isl_set *Set, __isl_take isl_aff *Aff,
83                                void *User);
84 };
85 }
86 
87 Value *IslGenerator::generateIslVal(__isl_take isl_val *Val) {
88   Value *IntValue = Builder.getInt(APIntFromVal(Val));
89   return IntValue;
90 }
91 
92 Value *IslGenerator::generateIslAff(__isl_take isl_aff *Aff) {
93   Value *Result;
94   Value *ConstValue;
95   isl_val *Val;
96 
97   Val = isl_aff_get_constant_val(Aff);
98   ConstValue = generateIslVal(Val);
99   Type *Ty = Builder.getInt64Ty();
100 
101   // FIXME: We should give the constant and coefficients the right type. Here
102   // we force it into i64.
103   Result = Builder.CreateSExtOrBitCast(ConstValue, Ty);
104 
105   unsigned int NbInputDims = isl_aff_dim(Aff, isl_dim_in);
106 
107   assert((IVS.size() == NbInputDims) &&
108          "The Dimension of Induction Variables must match the dimension of the "
109          "affine space.");
110 
111   for (unsigned int i = 0; i < NbInputDims; ++i) {
112     Value *CoefficientValue;
113     Val = isl_aff_get_coefficient_val(Aff, isl_dim_in, i);
114 
115     if (isl_val_is_zero(Val)) {
116       isl_val_free(Val);
117       continue;
118     }
119 
120     CoefficientValue = generateIslVal(Val);
121     CoefficientValue = Builder.CreateIntCast(CoefficientValue, Ty, true);
122     Value *IV = Builder.CreateIntCast(IVS[i], Ty, true);
123     Value *PAdd = Builder.CreateMul(CoefficientValue, IV, "p_mul_coeff");
124     Result = Builder.CreateAdd(Result, PAdd, "p_sum_coeff");
125   }
126 
127   isl_aff_free(Aff);
128 
129   return Result;
130 }
131 
132 int IslGenerator::mergeIslAffValues(__isl_take isl_set *Set,
133                                     __isl_take isl_aff *Aff, void *User) {
134   IslGenInfo *GenInfo = (IslGenInfo *)User;
135 
136   assert((GenInfo->Result == nullptr) &&
137          "Result is already set. Currently only single isl_aff is supported");
138   assert(isl_set_plain_is_universe(Set) &&
139          "Code generation failed because the set is not universe");
140 
141   GenInfo->Result = GenInfo->Generator->generateIslAff(Aff);
142 
143   isl_set_free(Set);
144   return 0;
145 }
146 
147 Value *IslGenerator::generateIslPwAff(__isl_take isl_pw_aff *PwAff) {
148   IslGenInfo User;
149   User.Result = nullptr;
150   User.Generator = this;
151   isl_pw_aff_foreach_piece(PwAff, mergeIslAffValues, &User);
152   assert(User.Result && "Code generation for isl_pw_aff failed");
153 
154   isl_pw_aff_free(PwAff);
155   return User.Result;
156 }
157 
158 BlockGenerator::BlockGenerator(PollyIRBuilder &B, ScopStmt &Stmt, Pass *P)
159     : Builder(B), Statement(Stmt), P(P), SE(P->getAnalysis<ScalarEvolution>()) {
160 }
161 
162 Value *BlockGenerator::lookupAvailableValue(const Value *Old, ValueMapT &BBMap,
163                                             ValueMapT &GlobalMap) const {
164   // We assume constants never change.
165   // This avoids map lookups for many calls to this function.
166   if (isa<Constant>(Old))
167     return const_cast<Value *>(Old);
168 
169   if (Value *New = GlobalMap.lookup(Old)) {
170     if (Old->getType()->getScalarSizeInBits() <
171         New->getType()->getScalarSizeInBits())
172       New = Builder.CreateTruncOrBitCast(New, Old->getType());
173 
174     return New;
175   }
176 
177   // Or it is probably a scop-constant value defined as global, function
178   // parameter or an instruction not within the scop.
179   if (isa<GlobalValue>(Old) || isa<Argument>(Old))
180     return const_cast<Value *>(Old);
181 
182   if (const Instruction *Inst = dyn_cast<Instruction>(Old))
183     if (!Statement.getParent()->getRegion().contains(Inst->getParent()))
184       return const_cast<Value *>(Old);
185 
186   if (Value *New = BBMap.lookup(Old))
187     return New;
188 
189   return nullptr;
190 }
191 
192 Value *BlockGenerator::getNewValue(const Value *Old, ValueMapT &BBMap,
193                                    ValueMapT &GlobalMap, LoopToScevMapT &LTS,
194                                    Loop *L) {
195   if (Value *New = lookupAvailableValue(Old, BBMap, GlobalMap))
196     return New;
197 
198   if (SCEVCodegen && SE.isSCEVable(Old->getType()))
199     if (const SCEV *Scev = SE.getSCEVAtScope(const_cast<Value *>(Old), L)) {
200       if (!isa<SCEVCouldNotCompute>(Scev)) {
201         const SCEV *NewScev = apply(Scev, LTS, SE);
202         ValueToValueMap VTV;
203         VTV.insert(BBMap.begin(), BBMap.end());
204         VTV.insert(GlobalMap.begin(), GlobalMap.end());
205         NewScev = SCEVParameterRewriter::rewrite(NewScev, SE, VTV);
206         SCEVExpander Expander(SE, "polly");
207         Value *Expanded = Expander.expandCodeFor(NewScev, Old->getType(),
208                                                  Builder.GetInsertPoint());
209 
210         BBMap[Old] = Expanded;
211         return Expanded;
212       }
213     }
214 
215   // Now the scalar dependence is neither available nor SCEVCodegenable, this
216   // should never happen in the current code generator.
217   llvm_unreachable("Unexpected scalar dependence in region!");
218   return nullptr;
219 }
220 
221 void BlockGenerator::copyInstScalar(const Instruction *Inst, ValueMapT &BBMap,
222                                     ValueMapT &GlobalMap, LoopToScevMapT &LTS) {
223   // We do not generate debug intrinsics as we did not investigate how to
224   // copy them correctly. At the current state, they just crash the code
225   // generation as the meta-data operands are not correctly copied.
226   if (isa<DbgInfoIntrinsic>(Inst))
227     return;
228 
229   Instruction *NewInst = Inst->clone();
230 
231   // Replace old operands with the new ones.
232   for (Instruction::const_op_iterator OI = Inst->op_begin(),
233                                       OE = Inst->op_end();
234        OI != OE; ++OI) {
235     Value *OldOperand = *OI;
236     Value *NewOperand =
237         getNewValue(OldOperand, BBMap, GlobalMap, LTS, getLoopForInst(Inst));
238 
239     if (!NewOperand) {
240       assert(!isa<StoreInst>(NewInst) &&
241              "Store instructions are always needed!");
242       delete NewInst;
243       return;
244     }
245 
246     NewInst->replaceUsesOfWith(OldOperand, NewOperand);
247   }
248 
249   Builder.Insert(NewInst);
250   BBMap[Inst] = NewInst;
251 
252   if (!NewInst->getType()->isVoidTy())
253     NewInst->setName("p_" + Inst->getName());
254 }
255 
256 std::vector<Value *> BlockGenerator::getMemoryAccessIndex(
257     __isl_keep isl_map *AccessRelation, Value *BaseAddress, ValueMapT &BBMap,
258     ValueMapT &GlobalMap, LoopToScevMapT &LTS, Loop *L) {
259   assert((isl_map_dim(AccessRelation, isl_dim_out) == 1) &&
260          "Only single dimensional access functions supported");
261 
262   std::vector<Value *> IVS;
263   for (unsigned i = 0; i < Statement.getNumIterators(); ++i) {
264     const Value *OriginalIV = Statement.getInductionVariableForDimension(i);
265     Value *NewIV = getNewValue(OriginalIV, BBMap, GlobalMap, LTS, L);
266     IVS.push_back(NewIV);
267   }
268 
269   isl_pw_aff *PwAff = isl_map_dim_max(isl_map_copy(AccessRelation), 0);
270   IslGenerator IslGen(Builder, IVS);
271   Value *OffsetValue = IslGen.generateIslPwAff(PwAff);
272 
273   Type *Ty = Builder.getInt64Ty();
274   OffsetValue = Builder.CreateIntCast(OffsetValue, Ty, true);
275 
276   std::vector<Value *> IndexArray;
277   Value *NullValue = Constant::getNullValue(Ty);
278   IndexArray.push_back(NullValue);
279   IndexArray.push_back(OffsetValue);
280   return IndexArray;
281 }
282 
283 Value *BlockGenerator::getNewAccessOperand(
284     __isl_keep isl_map *NewAccessRelation, Value *BaseAddress, ValueMapT &BBMap,
285     ValueMapT &GlobalMap, LoopToScevMapT &LTS, Loop *L) {
286   std::vector<Value *> IndexArray = getMemoryAccessIndex(
287       NewAccessRelation, BaseAddress, BBMap, GlobalMap, LTS, L);
288   Value *NewOperand =
289       Builder.CreateGEP(BaseAddress, IndexArray, "p_newarrayidx_");
290   return NewOperand;
291 }
292 
293 Value *BlockGenerator::generateLocationAccessed(const Instruction *Inst,
294                                                 const Value *Pointer,
295                                                 ValueMapT &BBMap,
296                                                 ValueMapT &GlobalMap,
297                                                 LoopToScevMapT &LTS) {
298   const MemoryAccess &Access = Statement.getAccessFor(Inst);
299   isl_map *CurrentAccessRelation = Access.getAccessRelation();
300   isl_map *NewAccessRelation = Access.getNewAccessRelation();
301 
302   assert(isl_map_has_equal_space(CurrentAccessRelation, NewAccessRelation) &&
303          "Current and new access function use different spaces");
304 
305   Value *NewPointer;
306 
307   if (!NewAccessRelation) {
308     NewPointer =
309         getNewValue(Pointer, BBMap, GlobalMap, LTS, getLoopForInst(Inst));
310   } else {
311     Value *BaseAddress = const_cast<Value *>(Access.getBaseAddr());
312     NewPointer = getNewAccessOperand(NewAccessRelation, BaseAddress, BBMap,
313                                      GlobalMap, LTS, getLoopForInst(Inst));
314   }
315 
316   isl_map_free(CurrentAccessRelation);
317   isl_map_free(NewAccessRelation);
318   return NewPointer;
319 }
320 
321 Loop *BlockGenerator::getLoopForInst(const llvm::Instruction *Inst) {
322   return P->getAnalysis<LoopInfo>().getLoopFor(Inst->getParent());
323 }
324 
325 Value *BlockGenerator::generateScalarLoad(const LoadInst *Load,
326                                           ValueMapT &BBMap,
327                                           ValueMapT &GlobalMap,
328                                           LoopToScevMapT &LTS) {
329   const Value *Pointer = Load->getPointerOperand();
330   const Instruction *Inst = dyn_cast<Instruction>(Load);
331   Value *NewPointer =
332       generateLocationAccessed(Inst, Pointer, BBMap, GlobalMap, LTS);
333   Value *ScalarLoad =
334       Builder.CreateLoad(NewPointer, Load->getName() + "_p_scalar_");
335   return ScalarLoad;
336 }
337 
338 Value *BlockGenerator::generateScalarStore(const StoreInst *Store,
339                                            ValueMapT &BBMap,
340                                            ValueMapT &GlobalMap,
341                                            LoopToScevMapT &LTS) {
342   const Value *Pointer = Store->getPointerOperand();
343   Value *NewPointer =
344       generateLocationAccessed(Store, Pointer, BBMap, GlobalMap, LTS);
345   Value *ValueOperand = getNewValue(Store->getValueOperand(), BBMap, GlobalMap,
346                                     LTS, getLoopForInst(Store));
347 
348   return Builder.CreateStore(ValueOperand, NewPointer);
349 }
350 
351 void BlockGenerator::copyInstruction(const Instruction *Inst, ValueMapT &BBMap,
352                                      ValueMapT &GlobalMap,
353                                      LoopToScevMapT &LTS) {
354   // Terminator instructions control the control flow. They are explicitly
355   // expressed in the clast and do not need to be copied.
356   if (Inst->isTerminator())
357     return;
358 
359   if (canSynthesize(Inst, &P->getAnalysis<LoopInfo>(), &SE,
360                     &Statement.getParent()->getRegion()))
361     return;
362 
363   if (const LoadInst *Load = dyn_cast<LoadInst>(Inst)) {
364     Value *NewLoad = generateScalarLoad(Load, BBMap, GlobalMap, LTS);
365     // Compute NewLoad before its insertion in BBMap to make the insertion
366     // deterministic.
367     BBMap[Load] = NewLoad;
368     return;
369   }
370 
371   if (const StoreInst *Store = dyn_cast<StoreInst>(Inst)) {
372     Value *NewStore = generateScalarStore(Store, BBMap, GlobalMap, LTS);
373     // Compute NewStore before its insertion in BBMap to make the insertion
374     // deterministic.
375     BBMap[Store] = NewStore;
376     return;
377   }
378 
379   copyInstScalar(Inst, BBMap, GlobalMap, LTS);
380 }
381 
382 void BlockGenerator::copyBB(ValueMapT &GlobalMap, LoopToScevMapT &LTS) {
383   BasicBlock *BB = Statement.getBasicBlock();
384   BasicBlock *CopyBB =
385       SplitBlock(Builder.GetInsertBlock(), Builder.GetInsertPoint(), P);
386   CopyBB->setName("polly.stmt." + BB->getName());
387   Builder.SetInsertPoint(CopyBB->begin());
388 
389   ValueMapT BBMap;
390 
391   for (BasicBlock::const_iterator II = BB->begin(), IE = BB->end(); II != IE;
392        ++II)
393     copyInstruction(II, BBMap, GlobalMap, LTS);
394 }
395 
396 VectorBlockGenerator::VectorBlockGenerator(PollyIRBuilder &B,
397                                            VectorValueMapT &GlobalMaps,
398                                            std::vector<LoopToScevMapT> &VLTS,
399                                            ScopStmt &Stmt,
400                                            __isl_keep isl_map *Schedule,
401                                            Pass *P)
402     : BlockGenerator(B, Stmt, P), GlobalMaps(GlobalMaps), VLTS(VLTS),
403       Schedule(Schedule) {
404   assert(GlobalMaps.size() > 1 && "Only one vector lane found");
405   assert(Schedule && "No statement domain provided");
406 }
407 
408 Value *VectorBlockGenerator::getVectorValue(const Value *Old,
409                                             ValueMapT &VectorMap,
410                                             VectorValueMapT &ScalarMaps,
411                                             Loop *L) {
412   if (Value *NewValue = VectorMap.lookup(Old))
413     return NewValue;
414 
415   int Width = getVectorWidth();
416 
417   Value *Vector = UndefValue::get(VectorType::get(Old->getType(), Width));
418 
419   for (int Lane = 0; Lane < Width; Lane++)
420     Vector = Builder.CreateInsertElement(
421         Vector,
422         getNewValue(Old, ScalarMaps[Lane], GlobalMaps[Lane], VLTS[Lane], L),
423         Builder.getInt32(Lane));
424 
425   VectorMap[Old] = Vector;
426 
427   return Vector;
428 }
429 
430 Type *VectorBlockGenerator::getVectorPtrTy(const Value *Val, int Width) {
431   PointerType *PointerTy = dyn_cast<PointerType>(Val->getType());
432   assert(PointerTy && "PointerType expected");
433 
434   Type *ScalarType = PointerTy->getElementType();
435   VectorType *VectorType = VectorType::get(ScalarType, Width);
436 
437   return PointerType::getUnqual(VectorType);
438 }
439 
440 Value *
441 VectorBlockGenerator::generateStrideOneLoad(const LoadInst *Load,
442                                             VectorValueMapT &ScalarMaps,
443                                             bool NegativeStride = false) {
444   unsigned VectorWidth = getVectorWidth();
445   const Value *Pointer = Load->getPointerOperand();
446   Type *VectorPtrType = getVectorPtrTy(Pointer, VectorWidth);
447   unsigned Offset = NegativeStride ? VectorWidth - 1 : 0;
448 
449   Value *NewPointer = nullptr;
450   NewPointer = getNewValue(Pointer, ScalarMaps[Offset], GlobalMaps[Offset],
451                            VLTS[Offset], getLoopForInst(Load));
452   Value *VectorPtr =
453       Builder.CreateBitCast(NewPointer, VectorPtrType, "vector_ptr");
454   LoadInst *VecLoad =
455       Builder.CreateLoad(VectorPtr, Load->getName() + "_p_vec_full");
456   if (!Aligned)
457     VecLoad->setAlignment(8);
458 
459   if (NegativeStride) {
460     SmallVector<Constant *, 16> Indices;
461     for (int i = VectorWidth - 1; i >= 0; i--)
462       Indices.push_back(ConstantInt::get(Builder.getInt32Ty(), i));
463     Constant *SV = llvm::ConstantVector::get(Indices);
464     Value *RevVecLoad = Builder.CreateShuffleVector(
465         VecLoad, VecLoad, SV, Load->getName() + "_reverse");
466     return RevVecLoad;
467   }
468 
469   return VecLoad;
470 }
471 
472 Value *VectorBlockGenerator::generateStrideZeroLoad(const LoadInst *Load,
473                                                     ValueMapT &BBMap) {
474   const Value *Pointer = Load->getPointerOperand();
475   Type *VectorPtrType = getVectorPtrTy(Pointer, 1);
476   Value *NewPointer =
477       getNewValue(Pointer, BBMap, GlobalMaps[0], VLTS[0], getLoopForInst(Load));
478   Value *VectorPtr = Builder.CreateBitCast(NewPointer, VectorPtrType,
479                                            Load->getName() + "_p_vec_p");
480   LoadInst *ScalarLoad =
481       Builder.CreateLoad(VectorPtr, Load->getName() + "_p_splat_one");
482 
483   if (!Aligned)
484     ScalarLoad->setAlignment(8);
485 
486   Constant *SplatVector = Constant::getNullValue(
487       VectorType::get(Builder.getInt32Ty(), getVectorWidth()));
488 
489   Value *VectorLoad = Builder.CreateShuffleVector(
490       ScalarLoad, ScalarLoad, SplatVector, Load->getName() + "_p_splat");
491   return VectorLoad;
492 }
493 
494 Value *
495 VectorBlockGenerator::generateUnknownStrideLoad(const LoadInst *Load,
496                                                 VectorValueMapT &ScalarMaps) {
497   int VectorWidth = getVectorWidth();
498   const Value *Pointer = Load->getPointerOperand();
499   VectorType *VectorType = VectorType::get(
500       dyn_cast<PointerType>(Pointer->getType())->getElementType(), VectorWidth);
501 
502   Value *Vector = UndefValue::get(VectorType);
503 
504   for (int i = 0; i < VectorWidth; i++) {
505     Value *NewPointer = getNewValue(Pointer, ScalarMaps[i], GlobalMaps[i],
506                                     VLTS[i], getLoopForInst(Load));
507     Value *ScalarLoad =
508         Builder.CreateLoad(NewPointer, Load->getName() + "_p_scalar_");
509     Vector = Builder.CreateInsertElement(
510         Vector, ScalarLoad, Builder.getInt32(i), Load->getName() + "_p_vec_");
511   }
512 
513   return Vector;
514 }
515 
516 void VectorBlockGenerator::generateLoad(const LoadInst *Load,
517                                         ValueMapT &VectorMap,
518                                         VectorValueMapT &ScalarMaps) {
519   if (PollyVectorizerChoice >= VECTORIZER_FIRST_NEED_GROUPED_UNROLL ||
520       !VectorType::isValidElementType(Load->getType())) {
521     for (int i = 0; i < getVectorWidth(); i++)
522       ScalarMaps[i][Load] =
523           generateScalarLoad(Load, ScalarMaps[i], GlobalMaps[i], VLTS[i]);
524     return;
525   }
526 
527   const MemoryAccess &Access = Statement.getAccessFor(Load);
528 
529   // Make sure we have scalar values available to access the pointer to
530   // the data location.
531   extractScalarValues(Load, VectorMap, ScalarMaps);
532 
533   Value *NewLoad;
534   if (Access.isStrideZero(isl_map_copy(Schedule)))
535     NewLoad = generateStrideZeroLoad(Load, ScalarMaps[0]);
536   else if (Access.isStrideOne(isl_map_copy(Schedule)))
537     NewLoad = generateStrideOneLoad(Load, ScalarMaps);
538   else if (Access.isStrideX(isl_map_copy(Schedule), -1))
539     NewLoad = generateStrideOneLoad(Load, ScalarMaps, true);
540   else
541     NewLoad = generateUnknownStrideLoad(Load, ScalarMaps);
542 
543   VectorMap[Load] = NewLoad;
544 }
545 
546 void VectorBlockGenerator::copyUnaryInst(const UnaryInstruction *Inst,
547                                          ValueMapT &VectorMap,
548                                          VectorValueMapT &ScalarMaps) {
549   int VectorWidth = getVectorWidth();
550   Value *NewOperand = getVectorValue(Inst->getOperand(0), VectorMap, ScalarMaps,
551                                      getLoopForInst(Inst));
552 
553   assert(isa<CastInst>(Inst) && "Can not generate vector code for instruction");
554 
555   const CastInst *Cast = dyn_cast<CastInst>(Inst);
556   VectorType *DestType = VectorType::get(Inst->getType(), VectorWidth);
557   VectorMap[Inst] = Builder.CreateCast(Cast->getOpcode(), NewOperand, DestType);
558 }
559 
560 void VectorBlockGenerator::copyBinaryInst(const BinaryOperator *Inst,
561                                           ValueMapT &VectorMap,
562                                           VectorValueMapT &ScalarMaps) {
563   Loop *L = getLoopForInst(Inst);
564   Value *OpZero = Inst->getOperand(0);
565   Value *OpOne = Inst->getOperand(1);
566 
567   Value *NewOpZero, *NewOpOne;
568   NewOpZero = getVectorValue(OpZero, VectorMap, ScalarMaps, L);
569   NewOpOne = getVectorValue(OpOne, VectorMap, ScalarMaps, L);
570 
571   Value *NewInst = Builder.CreateBinOp(Inst->getOpcode(), NewOpZero, NewOpOne,
572                                        Inst->getName() + "p_vec");
573   VectorMap[Inst] = NewInst;
574 }
575 
576 void VectorBlockGenerator::copyStore(const StoreInst *Store,
577                                      ValueMapT &VectorMap,
578                                      VectorValueMapT &ScalarMaps) {
579   int VectorWidth = getVectorWidth();
580 
581   const MemoryAccess &Access = Statement.getAccessFor(Store);
582 
583   const Value *Pointer = Store->getPointerOperand();
584   Value *Vector = getVectorValue(Store->getValueOperand(), VectorMap,
585                                  ScalarMaps, getLoopForInst(Store));
586 
587   // Make sure we have scalar values available to access the pointer to
588   // the data location.
589   extractScalarValues(Store, VectorMap, ScalarMaps);
590 
591   if (Access.isStrideOne(isl_map_copy(Schedule))) {
592     Type *VectorPtrType = getVectorPtrTy(Pointer, VectorWidth);
593     Value *NewPointer = getNewValue(Pointer, ScalarMaps[0], GlobalMaps[0],
594                                     VLTS[0], getLoopForInst(Store));
595 
596     Value *VectorPtr =
597         Builder.CreateBitCast(NewPointer, VectorPtrType, "vector_ptr");
598     StoreInst *Store = Builder.CreateStore(Vector, VectorPtr);
599 
600     if (!Aligned)
601       Store->setAlignment(8);
602   } else {
603     for (unsigned i = 0; i < ScalarMaps.size(); i++) {
604       Value *Scalar = Builder.CreateExtractElement(Vector, Builder.getInt32(i));
605       Value *NewPointer = getNewValue(Pointer, ScalarMaps[i], GlobalMaps[i],
606                                       VLTS[i], getLoopForInst(Store));
607       Builder.CreateStore(Scalar, NewPointer);
608     }
609   }
610 }
611 
612 bool VectorBlockGenerator::hasVectorOperands(const Instruction *Inst,
613                                              ValueMapT &VectorMap) {
614   for (Instruction::const_op_iterator OI = Inst->op_begin(),
615                                       OE = Inst->op_end();
616        OI != OE; ++OI)
617     if (VectorMap.count(*OI))
618       return true;
619   return false;
620 }
621 
622 bool VectorBlockGenerator::extractScalarValues(const Instruction *Inst,
623                                                ValueMapT &VectorMap,
624                                                VectorValueMapT &ScalarMaps) {
625   bool HasVectorOperand = false;
626   int VectorWidth = getVectorWidth();
627 
628   for (Instruction::const_op_iterator OI = Inst->op_begin(),
629                                       OE = Inst->op_end();
630        OI != OE; ++OI) {
631     ValueMapT::iterator VecOp = VectorMap.find(*OI);
632 
633     if (VecOp == VectorMap.end())
634       continue;
635 
636     HasVectorOperand = true;
637     Value *NewVector = VecOp->second;
638 
639     for (int i = 0; i < VectorWidth; ++i) {
640       ValueMapT &SM = ScalarMaps[i];
641 
642       // If there is one scalar extracted, all scalar elements should have
643       // already been extracted by the code here. So no need to check for the
644       // existance of all of them.
645       if (SM.count(*OI))
646         break;
647 
648       SM[*OI] = Builder.CreateExtractElement(NewVector, Builder.getInt32(i));
649     }
650   }
651 
652   return HasVectorOperand;
653 }
654 
655 void VectorBlockGenerator::copyInstScalarized(const Instruction *Inst,
656                                               ValueMapT &VectorMap,
657                                               VectorValueMapT &ScalarMaps) {
658   bool HasVectorOperand;
659   int VectorWidth = getVectorWidth();
660 
661   HasVectorOperand = extractScalarValues(Inst, VectorMap, ScalarMaps);
662 
663   for (int VectorLane = 0; VectorLane < getVectorWidth(); VectorLane++)
664     copyInstScalar(Inst, ScalarMaps[VectorLane], GlobalMaps[VectorLane],
665                    VLTS[VectorLane]);
666 
667   if (!VectorType::isValidElementType(Inst->getType()) || !HasVectorOperand)
668     return;
669 
670   // Make the result available as vector value.
671   VectorType *VectorType = VectorType::get(Inst->getType(), VectorWidth);
672   Value *Vector = UndefValue::get(VectorType);
673 
674   for (int i = 0; i < VectorWidth; i++)
675     Vector = Builder.CreateInsertElement(Vector, ScalarMaps[i][Inst],
676                                          Builder.getInt32(i));
677 
678   VectorMap[Inst] = Vector;
679 }
680 
681 int VectorBlockGenerator::getVectorWidth() { return GlobalMaps.size(); }
682 
683 void VectorBlockGenerator::copyInstruction(const Instruction *Inst,
684                                            ValueMapT &VectorMap,
685                                            VectorValueMapT &ScalarMaps) {
686   // Terminator instructions control the control flow. They are explicitly
687   // expressed in the clast and do not need to be copied.
688   if (Inst->isTerminator())
689     return;
690 
691   if (canSynthesize(Inst, &P->getAnalysis<LoopInfo>(), &SE,
692                     &Statement.getParent()->getRegion()))
693     return;
694 
695   if (const LoadInst *Load = dyn_cast<LoadInst>(Inst)) {
696     generateLoad(Load, VectorMap, ScalarMaps);
697     return;
698   }
699 
700   if (hasVectorOperands(Inst, VectorMap)) {
701     if (const StoreInst *Store = dyn_cast<StoreInst>(Inst)) {
702       copyStore(Store, VectorMap, ScalarMaps);
703       return;
704     }
705 
706     if (const UnaryInstruction *Unary = dyn_cast<UnaryInstruction>(Inst)) {
707       copyUnaryInst(Unary, VectorMap, ScalarMaps);
708       return;
709     }
710 
711     if (const BinaryOperator *Binary = dyn_cast<BinaryOperator>(Inst)) {
712       copyBinaryInst(Binary, VectorMap, ScalarMaps);
713       return;
714     }
715 
716     // Falltrough: We generate scalar instructions, if we don't know how to
717     // generate vector code.
718   }
719 
720   copyInstScalarized(Inst, VectorMap, ScalarMaps);
721 }
722 
723 void VectorBlockGenerator::copyBB() {
724   BasicBlock *BB = Statement.getBasicBlock();
725   BasicBlock *CopyBB =
726       SplitBlock(Builder.GetInsertBlock(), Builder.GetInsertPoint(), P);
727   CopyBB->setName("polly.stmt." + BB->getName());
728   Builder.SetInsertPoint(CopyBB->begin());
729 
730   // Create two maps that store the mapping from the original instructions of
731   // the old basic block to their copies in the new basic block. Those maps
732   // are basic block local.
733   //
734   // As vector code generation is supported there is one map for scalar values
735   // and one for vector values.
736   //
737   // In case we just do scalar code generation, the vectorMap is not used and
738   // the scalarMap has just one dimension, which contains the mapping.
739   //
740   // In case vector code generation is done, an instruction may either appear
741   // in the vector map once (as it is calculating >vectorwidth< values at a
742   // time. Or (if the values are calculated using scalar operations), it
743   // appears once in every dimension of the scalarMap.
744   VectorValueMapT ScalarBlockMap(getVectorWidth());
745   ValueMapT VectorBlockMap;
746 
747   for (BasicBlock::const_iterator II = BB->begin(), IE = BB->end(); II != IE;
748        ++II)
749     copyInstruction(II, VectorBlockMap, ScalarBlockMap);
750 }
751