1 //===--- BlockGenerators.cpp - Generate code for statements -----*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the BlockGenerator and VectorBlockGenerator classes, 11 // which generate sequential code and vectorized code for a polyhedral 12 // statement, respectively. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "polly/CodeGen/BlockGenerators.h" 17 #include "polly/CodeGen/CodeGeneration.h" 18 #include "polly/CodeGen/IslExprBuilder.h" 19 #include "polly/CodeGen/RuntimeDebugBuilder.h" 20 #include "polly/Options.h" 21 #include "polly/ScopInfo.h" 22 #include "polly/Support/GICHelper.h" 23 #include "polly/Support/SCEVValidator.h" 24 #include "polly/Support/ScopHelper.h" 25 #include "polly/Support/VirtualInstruction.h" 26 #include "llvm/Analysis/LoopInfo.h" 27 #include "llvm/Analysis/RegionInfo.h" 28 #include "llvm/Analysis/ScalarEvolution.h" 29 #include "llvm/IR/IntrinsicInst.h" 30 #include "llvm/IR/Module.h" 31 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 32 #include "llvm/Transforms/Utils/Local.h" 33 #include "isl/aff.h" 34 #include "isl/ast.h" 35 #include "isl/ast_build.h" 36 #include "isl/set.h" 37 #include <deque> 38 39 using namespace llvm; 40 using namespace polly; 41 42 static cl::opt<bool> Aligned("enable-polly-aligned", 43 cl::desc("Assumed aligned memory accesses."), 44 cl::Hidden, cl::init(false), cl::ZeroOrMore, 45 cl::cat(PollyCategory)); 46 47 bool PollyDebugPrinting; 48 static cl::opt<bool, true> DebugPrintingX( 49 "polly-codegen-add-debug-printing", 50 cl::desc("Add printf calls that show the values loaded/stored."), 51 cl::location(PollyDebugPrinting), cl::Hidden, cl::init(false), 52 cl::ZeroOrMore, cl::cat(PollyCategory)); 53 54 BlockGenerator::BlockGenerator( 55 PollyIRBuilder &B, LoopInfo &LI, ScalarEvolution &SE, DominatorTree &DT, 56 AllocaMapTy &ScalarMap, EscapeUsersAllocaMapTy &EscapeMap, 57 ValueMapT &GlobalMap, IslExprBuilder *ExprBuilder, BasicBlock *StartBlock) 58 : Builder(B), LI(LI), SE(SE), ExprBuilder(ExprBuilder), DT(DT), 59 EntryBB(nullptr), ScalarMap(ScalarMap), EscapeMap(EscapeMap), 60 GlobalMap(GlobalMap), StartBlock(StartBlock) {} 61 62 Value *BlockGenerator::trySynthesizeNewValue(ScopStmt &Stmt, Value *Old, 63 ValueMapT &BBMap, 64 LoopToScevMapT <S, 65 Loop *L) const { 66 if (!SE.isSCEVable(Old->getType())) 67 return nullptr; 68 69 const SCEV *Scev = SE.getSCEVAtScope(Old, L); 70 if (!Scev) 71 return nullptr; 72 73 if (isa<SCEVCouldNotCompute>(Scev)) 74 return nullptr; 75 76 const SCEV *NewScev = SCEVLoopAddRecRewriter::rewrite(Scev, LTS, SE); 77 ValueMapT VTV; 78 VTV.insert(BBMap.begin(), BBMap.end()); 79 VTV.insert(GlobalMap.begin(), GlobalMap.end()); 80 81 Scop &S = *Stmt.getParent(); 82 const DataLayout &DL = S.getFunction().getParent()->getDataLayout(); 83 auto IP = Builder.GetInsertPoint(); 84 85 assert(IP != Builder.GetInsertBlock()->end() && 86 "Only instructions can be insert points for SCEVExpander"); 87 Value *Expanded = 88 expandCodeFor(S, SE, DL, "polly", NewScev, Old->getType(), &*IP, &VTV, 89 StartBlock->getSinglePredecessor()); 90 91 BBMap[Old] = Expanded; 92 return Expanded; 93 } 94 95 Value *BlockGenerator::getNewValue(ScopStmt &Stmt, Value *Old, ValueMapT &BBMap, 96 LoopToScevMapT <S, Loop *L) const { 97 98 auto lookupGlobally = [this](Value *Old) -> Value * { 99 Value *New = GlobalMap.lookup(Old); 100 if (!New) 101 return nullptr; 102 103 // Required by: 104 // * Isl/CodeGen/OpenMP/invariant_base_pointer_preloaded.ll 105 // * Isl/CodeGen/OpenMP/invariant_base_pointer_preloaded_different_bb.ll 106 // * Isl/CodeGen/OpenMP/invariant_base_pointer_preloaded_pass_only_needed.ll 107 // * Isl/CodeGen/OpenMP/invariant_base_pointers_preloaded.ll 108 // * Isl/CodeGen/OpenMP/loop-body-references-outer-values-3.ll 109 // * Isl/CodeGen/OpenMP/single_loop_with_loop_invariant_baseptr.ll 110 // GlobalMap should be a mapping from (value in original SCoP) to (copied 111 // value in generated SCoP), without intermediate mappings, which might 112 // easily require transitiveness as well. 113 if (Value *NewRemapped = GlobalMap.lookup(New)) 114 New = NewRemapped; 115 116 // No test case for this code. 117 if (Old->getType()->getScalarSizeInBits() < 118 New->getType()->getScalarSizeInBits()) 119 New = Builder.CreateTruncOrBitCast(New, Old->getType()); 120 121 return New; 122 }; 123 124 Value *New = nullptr; 125 auto VUse = VirtualUse::create(&Stmt, L, Old, true); 126 switch (VUse.getKind()) { 127 case VirtualUse::Block: 128 // BasicBlock are constants, but the BlockGenerator copies them. 129 New = BBMap.lookup(Old); 130 break; 131 132 case VirtualUse::Constant: 133 // Used by: 134 // * Isl/CodeGen/OpenMP/reference-argument-from-non-affine-region.ll 135 // Constants should not be redefined. In this case, the GlobalMap just 136 // contains a mapping to the same constant, which is unnecessary, but 137 // harmless. 138 if ((New = lookupGlobally(Old))) 139 break; 140 141 assert(!BBMap.count(Old)); 142 New = Old; 143 break; 144 145 case VirtualUse::ReadOnly: 146 assert(!GlobalMap.count(Old)); 147 148 // Required for: 149 // * Isl/CodeGen/MemAccess/create_arrays.ll 150 // * Isl/CodeGen/read-only-scalars.ll 151 // * ScheduleOptimizer/pattern-matching-based-opts_10.ll 152 // For some reason these reload a read-only value. The reloaded value ends 153 // up in BBMap, buts its value should be identical. 154 // 155 // Required for: 156 // * Isl/CodeGen/OpenMP/single_loop_with_param.ll 157 // The parallel subfunctions need to reference the read-only value from the 158 // parent function, this is done by reloading them locally. 159 if ((New = BBMap.lookup(Old))) 160 break; 161 162 New = Old; 163 break; 164 165 case VirtualUse::Synthesizable: 166 // Used by: 167 // * Isl/CodeGen/OpenMP/loop-body-references-outer-values-3.ll 168 // * Isl/CodeGen/OpenMP/recomputed-srem.ll 169 // * Isl/CodeGen/OpenMP/reference-other-bb.ll 170 // * Isl/CodeGen/OpenMP/two-parallel-loops-reference-outer-indvar.ll 171 // For some reason synthesizable values end up in GlobalMap. Their values 172 // are the same as trySynthesizeNewValue would return. The legacy 173 // implementation prioritized GlobalMap, so this is what we do here as well. 174 // Ideally, synthesizable values should not end up in GlobalMap. 175 if ((New = lookupGlobally(Old))) 176 break; 177 178 // Required for: 179 // * Isl/CodeGen/RuntimeDebugBuilder/combine_different_values.ll 180 // * Isl/CodeGen/getNumberOfIterations.ll 181 // * Isl/CodeGen/non_affine_float_compare.ll 182 // * ScheduleOptimizer/pattern-matching-based-opts_10.ll 183 // Ideally, synthesizable values are synthesized by trySynthesizeNewValue, 184 // not precomputed (SCEVExpander has its own caching mechanism). 185 // These tests fail without this, but I think trySynthesizeNewValue would 186 // just re-synthesize the same instructions. 187 if ((New = BBMap.lookup(Old))) 188 break; 189 190 New = trySynthesizeNewValue(Stmt, Old, BBMap, LTS, L); 191 break; 192 193 case VirtualUse::Hoisted: 194 // TODO: Hoisted invariant loads should be found in GlobalMap only, but not 195 // redefined locally (which will be ignored anyway). That is, the following 196 // assertion should apply: assert(!BBMap.count(Old)) 197 198 New = lookupGlobally(Old); 199 break; 200 201 case VirtualUse::Intra: 202 case VirtualUse::Inter: 203 assert(!GlobalMap.count(Old) && 204 "Intra and inter-stmt values are never global"); 205 New = BBMap.lookup(Old); 206 break; 207 } 208 assert(New && "Unexpected scalar dependence in region!"); 209 return New; 210 } 211 212 void BlockGenerator::copyInstScalar(ScopStmt &Stmt, Instruction *Inst, 213 ValueMapT &BBMap, LoopToScevMapT <S) { 214 // We do not generate debug intrinsics as we did not investigate how to 215 // copy them correctly. At the current state, they just crash the code 216 // generation as the meta-data operands are not correctly copied. 217 if (isa<DbgInfoIntrinsic>(Inst)) 218 return; 219 220 Instruction *NewInst = Inst->clone(); 221 222 // Replace old operands with the new ones. 223 for (Value *OldOperand : Inst->operands()) { 224 Value *NewOperand = 225 getNewValue(Stmt, OldOperand, BBMap, LTS, getLoopForStmt(Stmt)); 226 227 if (!NewOperand) { 228 assert(!isa<StoreInst>(NewInst) && 229 "Store instructions are always needed!"); 230 delete NewInst; 231 return; 232 } 233 234 NewInst->replaceUsesOfWith(OldOperand, NewOperand); 235 } 236 237 Builder.Insert(NewInst); 238 BBMap[Inst] = NewInst; 239 240 if (!NewInst->getType()->isVoidTy()) 241 NewInst->setName("p_" + Inst->getName()); 242 } 243 244 Value * 245 BlockGenerator::generateLocationAccessed(ScopStmt &Stmt, MemAccInst Inst, 246 ValueMapT &BBMap, LoopToScevMapT <S, 247 isl_id_to_ast_expr *NewAccesses) { 248 const MemoryAccess &MA = Stmt.getArrayAccessFor(Inst); 249 return generateLocationAccessed( 250 Stmt, getLoopForStmt(Stmt), 251 Inst.isNull() ? nullptr : Inst.getPointerOperand(), BBMap, LTS, 252 NewAccesses, MA.getId(), MA.getAccessValue()->getType()); 253 } 254 255 Value *BlockGenerator::generateLocationAccessed( 256 ScopStmt &Stmt, Loop *L, Value *Pointer, ValueMapT &BBMap, 257 LoopToScevMapT <S, isl_id_to_ast_expr *NewAccesses, __isl_take isl_id *Id, 258 Type *ExpectedType) { 259 isl_ast_expr *AccessExpr = isl_id_to_ast_expr_get(NewAccesses, Id); 260 261 if (AccessExpr) { 262 AccessExpr = isl_ast_expr_address_of(AccessExpr); 263 auto Address = ExprBuilder->create(AccessExpr); 264 265 // Cast the address of this memory access to a pointer type that has the 266 // same element type as the original access, but uses the address space of 267 // the newly generated pointer. 268 auto OldPtrTy = ExpectedType->getPointerTo(); 269 auto NewPtrTy = Address->getType(); 270 OldPtrTy = PointerType::get(OldPtrTy->getElementType(), 271 NewPtrTy->getPointerAddressSpace()); 272 273 if (OldPtrTy != NewPtrTy) 274 Address = Builder.CreateBitOrPointerCast(Address, OldPtrTy); 275 return Address; 276 } 277 assert( 278 Pointer && 279 "If expression was not generated, must use the original pointer value"); 280 return getNewValue(Stmt, Pointer, BBMap, LTS, L); 281 } 282 283 Value * 284 BlockGenerator::getImplicitAddress(MemoryAccess &Access, Loop *L, 285 LoopToScevMapT <S, ValueMapT &BBMap, 286 __isl_keep isl_id_to_ast_expr *NewAccesses) { 287 if (Access.isLatestArrayKind()) 288 return generateLocationAccessed(*Access.getStatement(), L, nullptr, BBMap, 289 LTS, NewAccesses, Access.getId(), 290 Access.getAccessValue()->getType()); 291 292 return getOrCreateAlloca(Access); 293 } 294 295 Loop *BlockGenerator::getLoopForStmt(const ScopStmt &Stmt) const { 296 auto *StmtBB = Stmt.getEntryBlock(); 297 return LI.getLoopFor(StmtBB); 298 } 299 300 Value *BlockGenerator::generateArrayLoad(ScopStmt &Stmt, LoadInst *Load, 301 ValueMapT &BBMap, LoopToScevMapT <S, 302 isl_id_to_ast_expr *NewAccesses) { 303 if (Value *PreloadLoad = GlobalMap.lookup(Load)) 304 return PreloadLoad; 305 306 Value *NewPointer = 307 generateLocationAccessed(Stmt, Load, BBMap, LTS, NewAccesses); 308 Value *ScalarLoad = Builder.CreateAlignedLoad( 309 NewPointer, Load->getAlignment(), Load->getName() + "_p_scalar_"); 310 311 if (PollyDebugPrinting) 312 RuntimeDebugBuilder::createCPUPrinter(Builder, "Load from ", NewPointer, 313 ": ", ScalarLoad, "\n"); 314 315 return ScalarLoad; 316 } 317 318 void BlockGenerator::generateArrayStore(ScopStmt &Stmt, StoreInst *Store, 319 ValueMapT &BBMap, LoopToScevMapT <S, 320 isl_id_to_ast_expr *NewAccesses) { 321 Value *NewPointer = 322 generateLocationAccessed(Stmt, Store, BBMap, LTS, NewAccesses); 323 Value *ValueOperand = getNewValue(Stmt, Store->getValueOperand(), BBMap, LTS, 324 getLoopForStmt(Stmt)); 325 326 if (PollyDebugPrinting) 327 RuntimeDebugBuilder::createCPUPrinter(Builder, "Store to ", NewPointer, 328 ": ", ValueOperand, "\n"); 329 330 Builder.CreateAlignedStore(ValueOperand, NewPointer, Store->getAlignment()); 331 } 332 333 bool BlockGenerator::canSyntheziseInStmt(ScopStmt &Stmt, Instruction *Inst) { 334 Loop *L = getLoopForStmt(Stmt); 335 return (Stmt.isBlockStmt() || !Stmt.getRegion()->contains(L)) && 336 canSynthesize(Inst, *Stmt.getParent(), &SE, L); 337 } 338 339 void BlockGenerator::copyInstruction(ScopStmt &Stmt, Instruction *Inst, 340 ValueMapT &BBMap, LoopToScevMapT <S, 341 isl_id_to_ast_expr *NewAccesses) { 342 // Terminator instructions control the control flow. They are explicitly 343 // expressed in the clast and do not need to be copied. 344 if (Inst->isTerminator()) 345 return; 346 347 // Synthesizable statements will be generated on-demand. 348 if (canSyntheziseInStmt(Stmt, Inst)) 349 return; 350 351 if (auto *Load = dyn_cast<LoadInst>(Inst)) { 352 Value *NewLoad = generateArrayLoad(Stmt, Load, BBMap, LTS, NewAccesses); 353 // Compute NewLoad before its insertion in BBMap to make the insertion 354 // deterministic. 355 BBMap[Load] = NewLoad; 356 return; 357 } 358 359 if (auto *Store = dyn_cast<StoreInst>(Inst)) { 360 // Identified as redundant by -polly-simplify. 361 if (!Stmt.getArrayAccessOrNULLFor(Store)) 362 return; 363 364 generateArrayStore(Stmt, Store, BBMap, LTS, NewAccesses); 365 return; 366 } 367 368 if (auto *PHI = dyn_cast<PHINode>(Inst)) { 369 copyPHIInstruction(Stmt, PHI, BBMap, LTS); 370 return; 371 } 372 373 // Skip some special intrinsics for which we do not adjust the semantics to 374 // the new schedule. All others are handled like every other instruction. 375 if (isIgnoredIntrinsic(Inst)) 376 return; 377 378 copyInstScalar(Stmt, Inst, BBMap, LTS); 379 } 380 381 void BlockGenerator::removeDeadInstructions(BasicBlock *BB, ValueMapT &BBMap) { 382 auto NewBB = Builder.GetInsertBlock(); 383 for (auto I = NewBB->rbegin(); I != NewBB->rend(); I++) { 384 Instruction *NewInst = &*I; 385 386 if (!isInstructionTriviallyDead(NewInst)) 387 continue; 388 389 for (auto Pair : BBMap) 390 if (Pair.second == NewInst) { 391 BBMap.erase(Pair.first); 392 } 393 394 NewInst->eraseFromParent(); 395 I = NewBB->rbegin(); 396 } 397 } 398 399 void BlockGenerator::copyStmt(ScopStmt &Stmt, LoopToScevMapT <S, 400 isl_id_to_ast_expr *NewAccesses) { 401 assert(Stmt.isBlockStmt() && 402 "Only block statements can be copied by the block generator"); 403 404 ValueMapT BBMap; 405 406 BasicBlock *BB = Stmt.getBasicBlock(); 407 copyBB(Stmt, BB, BBMap, LTS, NewAccesses); 408 removeDeadInstructions(BB, BBMap); 409 } 410 411 BasicBlock *BlockGenerator::splitBB(BasicBlock *BB) { 412 BasicBlock *CopyBB = SplitBlock(Builder.GetInsertBlock(), 413 &*Builder.GetInsertPoint(), &DT, &LI); 414 CopyBB->setName("polly.stmt." + BB->getName()); 415 return CopyBB; 416 } 417 418 BasicBlock *BlockGenerator::copyBB(ScopStmt &Stmt, BasicBlock *BB, 419 ValueMapT &BBMap, LoopToScevMapT <S, 420 isl_id_to_ast_expr *NewAccesses) { 421 BasicBlock *CopyBB = splitBB(BB); 422 Builder.SetInsertPoint(&CopyBB->front()); 423 generateScalarLoads(Stmt, LTS, BBMap, NewAccesses); 424 425 copyBB(Stmt, BB, CopyBB, BBMap, LTS, NewAccesses); 426 427 // After a basic block was copied store all scalars that escape this block in 428 // their alloca. 429 generateScalarStores(Stmt, LTS, BBMap, NewAccesses); 430 return CopyBB; 431 } 432 433 void BlockGenerator::copyBB(ScopStmt &Stmt, BasicBlock *BB, BasicBlock *CopyBB, 434 ValueMapT &BBMap, LoopToScevMapT <S, 435 isl_id_to_ast_expr *NewAccesses) { 436 EntryBB = &CopyBB->getParent()->getEntryBlock(); 437 438 for (Instruction &Inst : *BB) 439 copyInstruction(Stmt, &Inst, BBMap, LTS, NewAccesses); 440 } 441 442 Value *BlockGenerator::getOrCreateAlloca(const MemoryAccess &Access) { 443 assert(!Access.isLatestArrayKind() && "Trying to get alloca for array kind"); 444 445 return getOrCreateAlloca(Access.getLatestScopArrayInfo()); 446 } 447 448 Value *BlockGenerator::getOrCreateAlloca(const ScopArrayInfo *Array) { 449 assert(!Array->isArrayKind() && "Trying to get alloca for array kind"); 450 451 auto &Addr = ScalarMap[Array]; 452 453 if (Addr) { 454 // Allow allocas to be (temporarily) redirected once by adding a new 455 // old-alloca-addr to new-addr mapping to GlobalMap. This funcitionality 456 // is used for example by the OpenMP code generation where a first use 457 // of a scalar while still in the host code allocates a normal alloca with 458 // getOrCreateAlloca. When the values of this scalar are accessed during 459 // the generation of the parallel subfunction, these values are copied over 460 // to the parallel subfunction and each request for a scalar alloca slot 461 // must be forwared to the temporary in-subfunction slot. This mapping is 462 // removed when the subfunction has been generated and again normal host 463 // code is generated. Due to the following reasons it is not possible to 464 // perform the GlobalMap lookup right after creating the alloca below, but 465 // instead we need to check GlobalMap at each call to getOrCreateAlloca: 466 // 467 // 1) GlobalMap may be changed multiple times (for each parallel loop), 468 // 2) The temporary mapping is commonly only known after the initial 469 // alloca has already been generated, and 470 // 3) The original alloca value must be restored after leaving the 471 // sub-function. 472 if (Value *NewAddr = GlobalMap.lookup(&*Addr)) 473 return NewAddr; 474 return Addr; 475 } 476 477 Type *Ty = Array->getElementType(); 478 Value *ScalarBase = Array->getBasePtr(); 479 std::string NameExt; 480 if (Array->isPHIKind()) 481 NameExt = ".phiops"; 482 else 483 NameExt = ".s2a"; 484 485 const DataLayout &DL = Builder.GetInsertBlock()->getModule()->getDataLayout(); 486 487 Addr = new AllocaInst(Ty, DL.getAllocaAddrSpace(), 488 ScalarBase->getName() + NameExt); 489 EntryBB = &Builder.GetInsertBlock()->getParent()->getEntryBlock(); 490 Addr->insertBefore(&*EntryBB->getFirstInsertionPt()); 491 492 return Addr; 493 } 494 495 void BlockGenerator::handleOutsideUsers(const Scop &S, ScopArrayInfo *Array) { 496 Instruction *Inst = cast<Instruction>(Array->getBasePtr()); 497 498 // If there are escape users we get the alloca for this instruction and put it 499 // in the EscapeMap for later finalization. Lastly, if the instruction was 500 // copied multiple times we already did this and can exit. 501 if (EscapeMap.count(Inst)) 502 return; 503 504 EscapeUserVectorTy EscapeUsers; 505 for (User *U : Inst->users()) { 506 507 // Non-instruction user will never escape. 508 Instruction *UI = dyn_cast<Instruction>(U); 509 if (!UI) 510 continue; 511 512 if (S.contains(UI)) 513 continue; 514 515 EscapeUsers.push_back(UI); 516 } 517 518 // Exit if no escape uses were found. 519 if (EscapeUsers.empty()) 520 return; 521 522 // Get or create an escape alloca for this instruction. 523 auto *ScalarAddr = getOrCreateAlloca(Array); 524 525 // Remember that this instruction has escape uses and the escape alloca. 526 EscapeMap[Inst] = std::make_pair(ScalarAddr, std::move(EscapeUsers)); 527 } 528 529 void BlockGenerator::generateScalarLoads( 530 ScopStmt &Stmt, LoopToScevMapT <S, ValueMapT &BBMap, 531 __isl_keep isl_id_to_ast_expr *NewAccesses) { 532 for (MemoryAccess *MA : Stmt) { 533 if (MA->isOriginalArrayKind() || MA->isWrite()) 534 continue; 535 536 #ifndef NDEBUG 537 auto *StmtDom = Stmt.getDomain(); 538 auto *AccDom = isl_map_domain(MA->getAccessRelation()); 539 assert(isl_set_is_subset(StmtDom, AccDom) && 540 "Scalar must be loaded in all statement instances"); 541 isl_set_free(StmtDom); 542 isl_set_free(AccDom); 543 #endif 544 545 auto *Address = 546 getImplicitAddress(*MA, getLoopForStmt(Stmt), LTS, BBMap, NewAccesses); 547 assert((!isa<Instruction>(Address) || 548 DT.dominates(cast<Instruction>(Address)->getParent(), 549 Builder.GetInsertBlock())) && 550 "Domination violation"); 551 BBMap[MA->getAccessValue()] = 552 Builder.CreateLoad(Address, Address->getName() + ".reload"); 553 } 554 } 555 556 void BlockGenerator::generateScalarStores( 557 ScopStmt &Stmt, LoopToScevMapT <S, ValueMapT &BBMap, 558 __isl_keep isl_id_to_ast_expr *NewAccesses) { 559 Loop *L = LI.getLoopFor(Stmt.getBasicBlock()); 560 561 assert(Stmt.isBlockStmt() && 562 "Region statements need to use the generateScalarStores() function in " 563 "the RegionGenerator"); 564 565 for (MemoryAccess *MA : Stmt) { 566 if (MA->isOriginalArrayKind() || MA->isRead()) 567 continue; 568 569 #ifndef NDEBUG 570 auto *StmtDom = Stmt.getDomain(); 571 auto *AccDom = isl_map_domain(MA->getAccessRelation()); 572 assert(isl_set_is_subset(StmtDom, AccDom) && 573 "Scalar must be stored in all statement instances"); 574 isl_set_free(StmtDom); 575 isl_set_free(AccDom); 576 #endif 577 578 Value *Val = MA->getAccessValue(); 579 if (MA->isAnyPHIKind()) { 580 assert(MA->getIncoming().size() >= 1 && 581 "Block statements have exactly one exiting block, or multiple but " 582 "with same incoming block and value"); 583 assert(std::all_of(MA->getIncoming().begin(), MA->getIncoming().end(), 584 [&](std::pair<BasicBlock *, Value *> p) -> bool { 585 return p.first == Stmt.getBasicBlock(); 586 }) && 587 "Incoming block must be statement's block"); 588 Val = MA->getIncoming()[0].second; 589 } 590 auto Address = 591 getImplicitAddress(*MA, getLoopForStmt(Stmt), LTS, BBMap, NewAccesses); 592 593 Val = getNewValue(Stmt, Val, BBMap, LTS, L); 594 assert((!isa<Instruction>(Val) || 595 DT.dominates(cast<Instruction>(Val)->getParent(), 596 Builder.GetInsertBlock())) && 597 "Domination violation"); 598 assert((!isa<Instruction>(Address) || 599 DT.dominates(cast<Instruction>(Address)->getParent(), 600 Builder.GetInsertBlock())) && 601 "Domination violation"); 602 Builder.CreateStore(Val, Address); 603 } 604 } 605 606 void BlockGenerator::createScalarInitialization(Scop &S) { 607 BasicBlock *ExitBB = S.getExit(); 608 BasicBlock *PreEntryBB = S.getEnteringBlock(); 609 610 Builder.SetInsertPoint(&*StartBlock->begin()); 611 612 for (auto &Array : S.arrays()) { 613 if (Array->getNumberOfDimensions() != 0) 614 continue; 615 if (Array->isPHIKind()) { 616 // For PHI nodes, the only values we need to store are the ones that 617 // reach the PHI node from outside the region. In general there should 618 // only be one such incoming edge and this edge should enter through 619 // 'PreEntryBB'. 620 auto PHI = cast<PHINode>(Array->getBasePtr()); 621 622 for (auto BI = PHI->block_begin(), BE = PHI->block_end(); BI != BE; BI++) 623 if (!S.contains(*BI) && *BI != PreEntryBB) 624 llvm_unreachable("Incoming edges from outside the scop should always " 625 "come from PreEntryBB"); 626 627 int Idx = PHI->getBasicBlockIndex(PreEntryBB); 628 if (Idx < 0) 629 continue; 630 631 Value *ScalarValue = PHI->getIncomingValue(Idx); 632 633 Builder.CreateStore(ScalarValue, getOrCreateAlloca(Array)); 634 continue; 635 } 636 637 auto *Inst = dyn_cast<Instruction>(Array->getBasePtr()); 638 639 if (Inst && S.contains(Inst)) 640 continue; 641 642 // PHI nodes that are not marked as such in their SAI object are either exit 643 // PHI nodes we model as common scalars but without initialization, or 644 // incoming phi nodes that need to be initialized. Check if the first is the 645 // case for Inst and do not create and initialize memory if so. 646 if (auto *PHI = dyn_cast_or_null<PHINode>(Inst)) 647 if (!S.hasSingleExitEdge() && PHI->getBasicBlockIndex(ExitBB) >= 0) 648 continue; 649 650 Builder.CreateStore(Array->getBasePtr(), getOrCreateAlloca(Array)); 651 } 652 } 653 654 void BlockGenerator::createScalarFinalization(Scop &S) { 655 // The exit block of the __unoptimized__ region. 656 BasicBlock *ExitBB = S.getExitingBlock(); 657 // The merge block __just after__ the region and the optimized region. 658 BasicBlock *MergeBB = S.getExit(); 659 660 // The exit block of the __optimized__ region. 661 BasicBlock *OptExitBB = *(pred_begin(MergeBB)); 662 if (OptExitBB == ExitBB) 663 OptExitBB = *(++pred_begin(MergeBB)); 664 665 Builder.SetInsertPoint(OptExitBB->getTerminator()); 666 for (const auto &EscapeMapping : EscapeMap) { 667 // Extract the escaping instruction and the escaping users as well as the 668 // alloca the instruction was demoted to. 669 Instruction *EscapeInst = EscapeMapping.first; 670 const auto &EscapeMappingValue = EscapeMapping.second; 671 const EscapeUserVectorTy &EscapeUsers = EscapeMappingValue.second; 672 Value *ScalarAddr = EscapeMappingValue.first; 673 674 // Reload the demoted instruction in the optimized version of the SCoP. 675 Value *EscapeInstReload = 676 Builder.CreateLoad(ScalarAddr, EscapeInst->getName() + ".final_reload"); 677 EscapeInstReload = 678 Builder.CreateBitOrPointerCast(EscapeInstReload, EscapeInst->getType()); 679 680 // Create the merge PHI that merges the optimized and unoptimized version. 681 PHINode *MergePHI = PHINode::Create(EscapeInst->getType(), 2, 682 EscapeInst->getName() + ".merge"); 683 MergePHI->insertBefore(&*MergeBB->getFirstInsertionPt()); 684 685 // Add the respective values to the merge PHI. 686 MergePHI->addIncoming(EscapeInstReload, OptExitBB); 687 MergePHI->addIncoming(EscapeInst, ExitBB); 688 689 // The information of scalar evolution about the escaping instruction needs 690 // to be revoked so the new merged instruction will be used. 691 if (SE.isSCEVable(EscapeInst->getType())) 692 SE.forgetValue(EscapeInst); 693 694 // Replace all uses of the demoted instruction with the merge PHI. 695 for (Instruction *EUser : EscapeUsers) 696 EUser->replaceUsesOfWith(EscapeInst, MergePHI); 697 } 698 } 699 700 void BlockGenerator::findOutsideUsers(Scop &S) { 701 for (auto &Array : S.arrays()) { 702 703 if (Array->getNumberOfDimensions() != 0) 704 continue; 705 706 if (Array->isPHIKind()) 707 continue; 708 709 auto *Inst = dyn_cast<Instruction>(Array->getBasePtr()); 710 711 if (!Inst) 712 continue; 713 714 // Scop invariant hoisting moves some of the base pointers out of the scop. 715 // We can ignore these, as the invariant load hoisting already registers the 716 // relevant outside users. 717 if (!S.contains(Inst)) 718 continue; 719 720 handleOutsideUsers(S, Array); 721 } 722 } 723 724 void BlockGenerator::createExitPHINodeMerges(Scop &S) { 725 if (S.hasSingleExitEdge()) 726 return; 727 728 auto *ExitBB = S.getExitingBlock(); 729 auto *MergeBB = S.getExit(); 730 auto *AfterMergeBB = MergeBB->getSingleSuccessor(); 731 BasicBlock *OptExitBB = *(pred_begin(MergeBB)); 732 if (OptExitBB == ExitBB) 733 OptExitBB = *(++pred_begin(MergeBB)); 734 735 Builder.SetInsertPoint(OptExitBB->getTerminator()); 736 737 for (auto &SAI : S.arrays()) { 738 auto *Val = SAI->getBasePtr(); 739 740 // Only Value-like scalars need a merge PHI. Exit block PHIs receive either 741 // the original PHI's value or the reloaded incoming values from the 742 // generated code. An llvm::Value is merged between the original code's 743 // value or the generated one. 744 if (!SAI->isExitPHIKind()) 745 continue; 746 747 PHINode *PHI = dyn_cast<PHINode>(Val); 748 if (!PHI) 749 continue; 750 751 if (PHI->getParent() != AfterMergeBB) 752 continue; 753 754 std::string Name = PHI->getName(); 755 Value *ScalarAddr = getOrCreateAlloca(SAI); 756 Value *Reload = Builder.CreateLoad(ScalarAddr, Name + ".ph.final_reload"); 757 Reload = Builder.CreateBitOrPointerCast(Reload, PHI->getType()); 758 Value *OriginalValue = PHI->getIncomingValueForBlock(MergeBB); 759 assert((!isa<Instruction>(OriginalValue) || 760 cast<Instruction>(OriginalValue)->getParent() != MergeBB) && 761 "Original value must no be one we just generated."); 762 auto *MergePHI = PHINode::Create(PHI->getType(), 2, Name + ".ph.merge"); 763 MergePHI->insertBefore(&*MergeBB->getFirstInsertionPt()); 764 MergePHI->addIncoming(Reload, OptExitBB); 765 MergePHI->addIncoming(OriginalValue, ExitBB); 766 int Idx = PHI->getBasicBlockIndex(MergeBB); 767 PHI->setIncomingValue(Idx, MergePHI); 768 } 769 } 770 771 void BlockGenerator::invalidateScalarEvolution(Scop &S) { 772 for (auto &Stmt : S) 773 if (Stmt.isCopyStmt()) 774 continue; 775 else if (Stmt.isBlockStmt()) 776 for (auto &Inst : *Stmt.getBasicBlock()) 777 SE.forgetValue(&Inst); 778 else if (Stmt.isRegionStmt()) 779 for (auto *BB : Stmt.getRegion()->blocks()) 780 for (auto &Inst : *BB) 781 SE.forgetValue(&Inst); 782 else 783 llvm_unreachable("Unexpected statement type found"); 784 } 785 786 void BlockGenerator::finalizeSCoP(Scop &S) { 787 findOutsideUsers(S); 788 createScalarInitialization(S); 789 createExitPHINodeMerges(S); 790 createScalarFinalization(S); 791 invalidateScalarEvolution(S); 792 } 793 794 VectorBlockGenerator::VectorBlockGenerator(BlockGenerator &BlockGen, 795 std::vector<LoopToScevMapT> &VLTS, 796 isl_map *Schedule) 797 : BlockGenerator(BlockGen), VLTS(VLTS), Schedule(Schedule) { 798 assert(Schedule && "No statement domain provided"); 799 } 800 801 Value *VectorBlockGenerator::getVectorValue(ScopStmt &Stmt, Value *Old, 802 ValueMapT &VectorMap, 803 VectorValueMapT &ScalarMaps, 804 Loop *L) { 805 if (Value *NewValue = VectorMap.lookup(Old)) 806 return NewValue; 807 808 int Width = getVectorWidth(); 809 810 Value *Vector = UndefValue::get(VectorType::get(Old->getType(), Width)); 811 812 for (int Lane = 0; Lane < Width; Lane++) 813 Vector = Builder.CreateInsertElement( 814 Vector, getNewValue(Stmt, Old, ScalarMaps[Lane], VLTS[Lane], L), 815 Builder.getInt32(Lane)); 816 817 VectorMap[Old] = Vector; 818 819 return Vector; 820 } 821 822 Type *VectorBlockGenerator::getVectorPtrTy(const Value *Val, int Width) { 823 PointerType *PointerTy = dyn_cast<PointerType>(Val->getType()); 824 assert(PointerTy && "PointerType expected"); 825 826 Type *ScalarType = PointerTy->getElementType(); 827 VectorType *VectorType = VectorType::get(ScalarType, Width); 828 829 return PointerType::getUnqual(VectorType); 830 } 831 832 Value *VectorBlockGenerator::generateStrideOneLoad( 833 ScopStmt &Stmt, LoadInst *Load, VectorValueMapT &ScalarMaps, 834 __isl_keep isl_id_to_ast_expr *NewAccesses, bool NegativeStride = false) { 835 unsigned VectorWidth = getVectorWidth(); 836 auto *Pointer = Load->getPointerOperand(); 837 Type *VectorPtrType = getVectorPtrTy(Pointer, VectorWidth); 838 unsigned Offset = NegativeStride ? VectorWidth - 1 : 0; 839 840 Value *NewPointer = generateLocationAccessed(Stmt, Load, ScalarMaps[Offset], 841 VLTS[Offset], NewAccesses); 842 Value *VectorPtr = 843 Builder.CreateBitCast(NewPointer, VectorPtrType, "vector_ptr"); 844 LoadInst *VecLoad = 845 Builder.CreateLoad(VectorPtr, Load->getName() + "_p_vec_full"); 846 if (!Aligned) 847 VecLoad->setAlignment(8); 848 849 if (NegativeStride) { 850 SmallVector<Constant *, 16> Indices; 851 for (int i = VectorWidth - 1; i >= 0; i--) 852 Indices.push_back(ConstantInt::get(Builder.getInt32Ty(), i)); 853 Constant *SV = llvm::ConstantVector::get(Indices); 854 Value *RevVecLoad = Builder.CreateShuffleVector( 855 VecLoad, VecLoad, SV, Load->getName() + "_reverse"); 856 return RevVecLoad; 857 } 858 859 return VecLoad; 860 } 861 862 Value *VectorBlockGenerator::generateStrideZeroLoad( 863 ScopStmt &Stmt, LoadInst *Load, ValueMapT &BBMap, 864 __isl_keep isl_id_to_ast_expr *NewAccesses) { 865 auto *Pointer = Load->getPointerOperand(); 866 Type *VectorPtrType = getVectorPtrTy(Pointer, 1); 867 Value *NewPointer = 868 generateLocationAccessed(Stmt, Load, BBMap, VLTS[0], NewAccesses); 869 Value *VectorPtr = Builder.CreateBitCast(NewPointer, VectorPtrType, 870 Load->getName() + "_p_vec_p"); 871 LoadInst *ScalarLoad = 872 Builder.CreateLoad(VectorPtr, Load->getName() + "_p_splat_one"); 873 874 if (!Aligned) 875 ScalarLoad->setAlignment(8); 876 877 Constant *SplatVector = Constant::getNullValue( 878 VectorType::get(Builder.getInt32Ty(), getVectorWidth())); 879 880 Value *VectorLoad = Builder.CreateShuffleVector( 881 ScalarLoad, ScalarLoad, SplatVector, Load->getName() + "_p_splat"); 882 return VectorLoad; 883 } 884 885 Value *VectorBlockGenerator::generateUnknownStrideLoad( 886 ScopStmt &Stmt, LoadInst *Load, VectorValueMapT &ScalarMaps, 887 __isl_keep isl_id_to_ast_expr *NewAccesses) { 888 int VectorWidth = getVectorWidth(); 889 auto *Pointer = Load->getPointerOperand(); 890 VectorType *VectorType = VectorType::get( 891 dyn_cast<PointerType>(Pointer->getType())->getElementType(), VectorWidth); 892 893 Value *Vector = UndefValue::get(VectorType); 894 895 for (int i = 0; i < VectorWidth; i++) { 896 Value *NewPointer = generateLocationAccessed(Stmt, Load, ScalarMaps[i], 897 VLTS[i], NewAccesses); 898 Value *ScalarLoad = 899 Builder.CreateLoad(NewPointer, Load->getName() + "_p_scalar_"); 900 Vector = Builder.CreateInsertElement( 901 Vector, ScalarLoad, Builder.getInt32(i), Load->getName() + "_p_vec_"); 902 } 903 904 return Vector; 905 } 906 907 void VectorBlockGenerator::generateLoad( 908 ScopStmt &Stmt, LoadInst *Load, ValueMapT &VectorMap, 909 VectorValueMapT &ScalarMaps, __isl_keep isl_id_to_ast_expr *NewAccesses) { 910 if (Value *PreloadLoad = GlobalMap.lookup(Load)) { 911 VectorMap[Load] = Builder.CreateVectorSplat(getVectorWidth(), PreloadLoad, 912 Load->getName() + "_p"); 913 return; 914 } 915 916 if (!VectorType::isValidElementType(Load->getType())) { 917 for (int i = 0; i < getVectorWidth(); i++) 918 ScalarMaps[i][Load] = 919 generateArrayLoad(Stmt, Load, ScalarMaps[i], VLTS[i], NewAccesses); 920 return; 921 } 922 923 const MemoryAccess &Access = Stmt.getArrayAccessFor(Load); 924 925 // Make sure we have scalar values available to access the pointer to 926 // the data location. 927 extractScalarValues(Load, VectorMap, ScalarMaps); 928 929 Value *NewLoad; 930 if (Access.isStrideZero(isl_map_copy(Schedule))) 931 NewLoad = generateStrideZeroLoad(Stmt, Load, ScalarMaps[0], NewAccesses); 932 else if (Access.isStrideOne(isl_map_copy(Schedule))) 933 NewLoad = generateStrideOneLoad(Stmt, Load, ScalarMaps, NewAccesses); 934 else if (Access.isStrideX(isl_map_copy(Schedule), -1)) 935 NewLoad = generateStrideOneLoad(Stmt, Load, ScalarMaps, NewAccesses, true); 936 else 937 NewLoad = generateUnknownStrideLoad(Stmt, Load, ScalarMaps, NewAccesses); 938 939 VectorMap[Load] = NewLoad; 940 } 941 942 void VectorBlockGenerator::copyUnaryInst(ScopStmt &Stmt, UnaryInstruction *Inst, 943 ValueMapT &VectorMap, 944 VectorValueMapT &ScalarMaps) { 945 int VectorWidth = getVectorWidth(); 946 Value *NewOperand = getVectorValue(Stmt, Inst->getOperand(0), VectorMap, 947 ScalarMaps, getLoopForStmt(Stmt)); 948 949 assert(isa<CastInst>(Inst) && "Can not generate vector code for instruction"); 950 951 const CastInst *Cast = dyn_cast<CastInst>(Inst); 952 VectorType *DestType = VectorType::get(Inst->getType(), VectorWidth); 953 VectorMap[Inst] = Builder.CreateCast(Cast->getOpcode(), NewOperand, DestType); 954 } 955 956 void VectorBlockGenerator::copyBinaryInst(ScopStmt &Stmt, BinaryOperator *Inst, 957 ValueMapT &VectorMap, 958 VectorValueMapT &ScalarMaps) { 959 Loop *L = getLoopForStmt(Stmt); 960 Value *OpZero = Inst->getOperand(0); 961 Value *OpOne = Inst->getOperand(1); 962 963 Value *NewOpZero, *NewOpOne; 964 NewOpZero = getVectorValue(Stmt, OpZero, VectorMap, ScalarMaps, L); 965 NewOpOne = getVectorValue(Stmt, OpOne, VectorMap, ScalarMaps, L); 966 967 Value *NewInst = Builder.CreateBinOp(Inst->getOpcode(), NewOpZero, NewOpOne, 968 Inst->getName() + "p_vec"); 969 VectorMap[Inst] = NewInst; 970 } 971 972 void VectorBlockGenerator::copyStore( 973 ScopStmt &Stmt, StoreInst *Store, ValueMapT &VectorMap, 974 VectorValueMapT &ScalarMaps, __isl_keep isl_id_to_ast_expr *NewAccesses) { 975 const MemoryAccess &Access = Stmt.getArrayAccessFor(Store); 976 977 auto *Pointer = Store->getPointerOperand(); 978 Value *Vector = getVectorValue(Stmt, Store->getValueOperand(), VectorMap, 979 ScalarMaps, getLoopForStmt(Stmt)); 980 981 // Make sure we have scalar values available to access the pointer to 982 // the data location. 983 extractScalarValues(Store, VectorMap, ScalarMaps); 984 985 if (Access.isStrideOne(isl_map_copy(Schedule))) { 986 Type *VectorPtrType = getVectorPtrTy(Pointer, getVectorWidth()); 987 Value *NewPointer = generateLocationAccessed(Stmt, Store, ScalarMaps[0], 988 VLTS[0], NewAccesses); 989 990 Value *VectorPtr = 991 Builder.CreateBitCast(NewPointer, VectorPtrType, "vector_ptr"); 992 StoreInst *Store = Builder.CreateStore(Vector, VectorPtr); 993 994 if (!Aligned) 995 Store->setAlignment(8); 996 } else { 997 for (unsigned i = 0; i < ScalarMaps.size(); i++) { 998 Value *Scalar = Builder.CreateExtractElement(Vector, Builder.getInt32(i)); 999 Value *NewPointer = generateLocationAccessed(Stmt, Store, ScalarMaps[i], 1000 VLTS[i], NewAccesses); 1001 Builder.CreateStore(Scalar, NewPointer); 1002 } 1003 } 1004 } 1005 1006 bool VectorBlockGenerator::hasVectorOperands(const Instruction *Inst, 1007 ValueMapT &VectorMap) { 1008 for (Value *Operand : Inst->operands()) 1009 if (VectorMap.count(Operand)) 1010 return true; 1011 return false; 1012 } 1013 1014 bool VectorBlockGenerator::extractScalarValues(const Instruction *Inst, 1015 ValueMapT &VectorMap, 1016 VectorValueMapT &ScalarMaps) { 1017 bool HasVectorOperand = false; 1018 int VectorWidth = getVectorWidth(); 1019 1020 for (Value *Operand : Inst->operands()) { 1021 ValueMapT::iterator VecOp = VectorMap.find(Operand); 1022 1023 if (VecOp == VectorMap.end()) 1024 continue; 1025 1026 HasVectorOperand = true; 1027 Value *NewVector = VecOp->second; 1028 1029 for (int i = 0; i < VectorWidth; ++i) { 1030 ValueMapT &SM = ScalarMaps[i]; 1031 1032 // If there is one scalar extracted, all scalar elements should have 1033 // already been extracted by the code here. So no need to check for the 1034 // existence of all of them. 1035 if (SM.count(Operand)) 1036 break; 1037 1038 SM[Operand] = 1039 Builder.CreateExtractElement(NewVector, Builder.getInt32(i)); 1040 } 1041 } 1042 1043 return HasVectorOperand; 1044 } 1045 1046 void VectorBlockGenerator::copyInstScalarized( 1047 ScopStmt &Stmt, Instruction *Inst, ValueMapT &VectorMap, 1048 VectorValueMapT &ScalarMaps, __isl_keep isl_id_to_ast_expr *NewAccesses) { 1049 bool HasVectorOperand; 1050 int VectorWidth = getVectorWidth(); 1051 1052 HasVectorOperand = extractScalarValues(Inst, VectorMap, ScalarMaps); 1053 1054 for (int VectorLane = 0; VectorLane < getVectorWidth(); VectorLane++) 1055 BlockGenerator::copyInstruction(Stmt, Inst, ScalarMaps[VectorLane], 1056 VLTS[VectorLane], NewAccesses); 1057 1058 if (!VectorType::isValidElementType(Inst->getType()) || !HasVectorOperand) 1059 return; 1060 1061 // Make the result available as vector value. 1062 VectorType *VectorType = VectorType::get(Inst->getType(), VectorWidth); 1063 Value *Vector = UndefValue::get(VectorType); 1064 1065 for (int i = 0; i < VectorWidth; i++) 1066 Vector = Builder.CreateInsertElement(Vector, ScalarMaps[i][Inst], 1067 Builder.getInt32(i)); 1068 1069 VectorMap[Inst] = Vector; 1070 } 1071 1072 int VectorBlockGenerator::getVectorWidth() { return VLTS.size(); } 1073 1074 void VectorBlockGenerator::copyInstruction( 1075 ScopStmt &Stmt, Instruction *Inst, ValueMapT &VectorMap, 1076 VectorValueMapT &ScalarMaps, __isl_keep isl_id_to_ast_expr *NewAccesses) { 1077 // Terminator instructions control the control flow. They are explicitly 1078 // expressed in the clast and do not need to be copied. 1079 if (Inst->isTerminator()) 1080 return; 1081 1082 if (canSyntheziseInStmt(Stmt, Inst)) 1083 return; 1084 1085 if (auto *Load = dyn_cast<LoadInst>(Inst)) { 1086 generateLoad(Stmt, Load, VectorMap, ScalarMaps, NewAccesses); 1087 return; 1088 } 1089 1090 if (hasVectorOperands(Inst, VectorMap)) { 1091 if (auto *Store = dyn_cast<StoreInst>(Inst)) { 1092 // Identified as redundant by -polly-simplify. 1093 if (!Stmt.getArrayAccessOrNULLFor(Store)) 1094 return; 1095 1096 copyStore(Stmt, Store, VectorMap, ScalarMaps, NewAccesses); 1097 return; 1098 } 1099 1100 if (auto *Unary = dyn_cast<UnaryInstruction>(Inst)) { 1101 copyUnaryInst(Stmt, Unary, VectorMap, ScalarMaps); 1102 return; 1103 } 1104 1105 if (auto *Binary = dyn_cast<BinaryOperator>(Inst)) { 1106 copyBinaryInst(Stmt, Binary, VectorMap, ScalarMaps); 1107 return; 1108 } 1109 1110 // Falltrough: We generate scalar instructions, if we don't know how to 1111 // generate vector code. 1112 } 1113 1114 copyInstScalarized(Stmt, Inst, VectorMap, ScalarMaps, NewAccesses); 1115 } 1116 1117 void VectorBlockGenerator::generateScalarVectorLoads( 1118 ScopStmt &Stmt, ValueMapT &VectorBlockMap) { 1119 for (MemoryAccess *MA : Stmt) { 1120 if (MA->isArrayKind() || MA->isWrite()) 1121 continue; 1122 1123 auto *Address = getOrCreateAlloca(*MA); 1124 Type *VectorPtrType = getVectorPtrTy(Address, 1); 1125 Value *VectorPtr = Builder.CreateBitCast(Address, VectorPtrType, 1126 Address->getName() + "_p_vec_p"); 1127 auto *Val = Builder.CreateLoad(VectorPtr, Address->getName() + ".reload"); 1128 Constant *SplatVector = Constant::getNullValue( 1129 VectorType::get(Builder.getInt32Ty(), getVectorWidth())); 1130 1131 Value *VectorVal = Builder.CreateShuffleVector( 1132 Val, Val, SplatVector, Address->getName() + "_p_splat"); 1133 VectorBlockMap[MA->getAccessValue()] = VectorVal; 1134 } 1135 } 1136 1137 void VectorBlockGenerator::verifyNoScalarStores(ScopStmt &Stmt) { 1138 for (MemoryAccess *MA : Stmt) { 1139 if (MA->isArrayKind() || MA->isRead()) 1140 continue; 1141 1142 llvm_unreachable("Scalar stores not expected in vector loop"); 1143 } 1144 } 1145 1146 void VectorBlockGenerator::copyStmt( 1147 ScopStmt &Stmt, __isl_keep isl_id_to_ast_expr *NewAccesses) { 1148 assert(Stmt.isBlockStmt() && 1149 "TODO: Only block statements can be copied by the vector block " 1150 "generator"); 1151 1152 BasicBlock *BB = Stmt.getBasicBlock(); 1153 BasicBlock *CopyBB = SplitBlock(Builder.GetInsertBlock(), 1154 &*Builder.GetInsertPoint(), &DT, &LI); 1155 CopyBB->setName("polly.stmt." + BB->getName()); 1156 Builder.SetInsertPoint(&CopyBB->front()); 1157 1158 // Create two maps that store the mapping from the original instructions of 1159 // the old basic block to their copies in the new basic block. Those maps 1160 // are basic block local. 1161 // 1162 // As vector code generation is supported there is one map for scalar values 1163 // and one for vector values. 1164 // 1165 // In case we just do scalar code generation, the vectorMap is not used and 1166 // the scalarMap has just one dimension, which contains the mapping. 1167 // 1168 // In case vector code generation is done, an instruction may either appear 1169 // in the vector map once (as it is calculating >vectorwidth< values at a 1170 // time. Or (if the values are calculated using scalar operations), it 1171 // appears once in every dimension of the scalarMap. 1172 VectorValueMapT ScalarBlockMap(getVectorWidth()); 1173 ValueMapT VectorBlockMap; 1174 1175 generateScalarVectorLoads(Stmt, VectorBlockMap); 1176 1177 for (Instruction &Inst : *BB) 1178 copyInstruction(Stmt, &Inst, VectorBlockMap, ScalarBlockMap, NewAccesses); 1179 1180 verifyNoScalarStores(Stmt); 1181 } 1182 1183 BasicBlock *RegionGenerator::repairDominance(BasicBlock *BB, 1184 BasicBlock *BBCopy) { 1185 1186 BasicBlock *BBIDom = DT.getNode(BB)->getIDom()->getBlock(); 1187 BasicBlock *BBCopyIDom = BlockMap.lookup(BBIDom); 1188 1189 if (BBCopyIDom) 1190 DT.changeImmediateDominator(BBCopy, BBCopyIDom); 1191 1192 return BBCopyIDom; 1193 } 1194 1195 // This is to determine whether an llvm::Value (defined in @p BB) is usable when 1196 // leaving a subregion. The straight-forward DT.dominates(BB, R->getExitBlock()) 1197 // does not work in cases where the exit block has edges from outside the 1198 // region. In that case the llvm::Value would never be usable in in the exit 1199 // block. The RegionGenerator however creates an new exit block ('ExitBBCopy') 1200 // for the subregion's exiting edges only. We need to determine whether an 1201 // llvm::Value is usable in there. We do this by checking whether it dominates 1202 // all exiting blocks individually. 1203 static bool isDominatingSubregionExit(const DominatorTree &DT, Region *R, 1204 BasicBlock *BB) { 1205 for (auto ExitingBB : predecessors(R->getExit())) { 1206 // Check for non-subregion incoming edges. 1207 if (!R->contains(ExitingBB)) 1208 continue; 1209 1210 if (!DT.dominates(BB, ExitingBB)) 1211 return false; 1212 } 1213 1214 return true; 1215 } 1216 1217 // Find the direct dominator of the subregion's exit block if the subregion was 1218 // simplified. 1219 static BasicBlock *findExitDominator(DominatorTree &DT, Region *R) { 1220 BasicBlock *Common = nullptr; 1221 for (auto ExitingBB : predecessors(R->getExit())) { 1222 // Check for non-subregion incoming edges. 1223 if (!R->contains(ExitingBB)) 1224 continue; 1225 1226 // First exiting edge. 1227 if (!Common) { 1228 Common = ExitingBB; 1229 continue; 1230 } 1231 1232 Common = DT.findNearestCommonDominator(Common, ExitingBB); 1233 } 1234 1235 assert(Common && R->contains(Common)); 1236 return Common; 1237 } 1238 1239 void RegionGenerator::copyStmt(ScopStmt &Stmt, LoopToScevMapT <S, 1240 isl_id_to_ast_expr *IdToAstExp) { 1241 assert(Stmt.isRegionStmt() && 1242 "Only region statements can be copied by the region generator"); 1243 1244 // Forget all old mappings. 1245 BlockMap.clear(); 1246 RegionMaps.clear(); 1247 IncompletePHINodeMap.clear(); 1248 1249 // Collection of all values related to this subregion. 1250 ValueMapT ValueMap; 1251 1252 // The region represented by the statement. 1253 Region *R = Stmt.getRegion(); 1254 1255 // Create a dedicated entry for the region where we can reload all demoted 1256 // inputs. 1257 BasicBlock *EntryBB = R->getEntry(); 1258 BasicBlock *EntryBBCopy = SplitBlock(Builder.GetInsertBlock(), 1259 &*Builder.GetInsertPoint(), &DT, &LI); 1260 EntryBBCopy->setName("polly.stmt." + EntryBB->getName() + ".entry"); 1261 Builder.SetInsertPoint(&EntryBBCopy->front()); 1262 1263 ValueMapT &EntryBBMap = RegionMaps[EntryBBCopy]; 1264 generateScalarLoads(Stmt, LTS, EntryBBMap, IdToAstExp); 1265 1266 for (auto PI = pred_begin(EntryBB), PE = pred_end(EntryBB); PI != PE; ++PI) 1267 if (!R->contains(*PI)) 1268 BlockMap[*PI] = EntryBBCopy; 1269 1270 // Iterate over all blocks in the region in a breadth-first search. 1271 std::deque<BasicBlock *> Blocks; 1272 SmallSetVector<BasicBlock *, 8> SeenBlocks; 1273 Blocks.push_back(EntryBB); 1274 SeenBlocks.insert(EntryBB); 1275 1276 while (!Blocks.empty()) { 1277 BasicBlock *BB = Blocks.front(); 1278 Blocks.pop_front(); 1279 1280 // First split the block and update dominance information. 1281 BasicBlock *BBCopy = splitBB(BB); 1282 BasicBlock *BBCopyIDom = repairDominance(BB, BBCopy); 1283 1284 // Get the mapping for this block and initialize it with either the scalar 1285 // loads from the generated entering block (which dominates all blocks of 1286 // this subregion) or the maps of the immediate dominator, if part of the 1287 // subregion. The latter necessarily includes the former. 1288 ValueMapT *InitBBMap; 1289 if (BBCopyIDom) { 1290 assert(RegionMaps.count(BBCopyIDom)); 1291 InitBBMap = &RegionMaps[BBCopyIDom]; 1292 } else 1293 InitBBMap = &EntryBBMap; 1294 auto Inserted = RegionMaps.insert(std::make_pair(BBCopy, *InitBBMap)); 1295 ValueMapT &RegionMap = Inserted.first->second; 1296 1297 // Copy the block with the BlockGenerator. 1298 Builder.SetInsertPoint(&BBCopy->front()); 1299 copyBB(Stmt, BB, BBCopy, RegionMap, LTS, IdToAstExp); 1300 1301 // In order to remap PHI nodes we store also basic block mappings. 1302 BlockMap[BB] = BBCopy; 1303 1304 // Add values to incomplete PHI nodes waiting for this block to be copied. 1305 for (const PHINodePairTy &PHINodePair : IncompletePHINodeMap[BB]) 1306 addOperandToPHI(Stmt, PHINodePair.first, PHINodePair.second, BB, LTS); 1307 IncompletePHINodeMap[BB].clear(); 1308 1309 // And continue with new successors inside the region. 1310 for (auto SI = succ_begin(BB), SE = succ_end(BB); SI != SE; SI++) 1311 if (R->contains(*SI) && SeenBlocks.insert(*SI)) 1312 Blocks.push_back(*SI); 1313 1314 // Remember value in case it is visible after this subregion. 1315 if (isDominatingSubregionExit(DT, R, BB)) 1316 ValueMap.insert(RegionMap.begin(), RegionMap.end()); 1317 } 1318 1319 // Now create a new dedicated region exit block and add it to the region map. 1320 BasicBlock *ExitBBCopy = SplitBlock(Builder.GetInsertBlock(), 1321 &*Builder.GetInsertPoint(), &DT, &LI); 1322 ExitBBCopy->setName("polly.stmt." + R->getExit()->getName() + ".exit"); 1323 BlockMap[R->getExit()] = ExitBBCopy; 1324 1325 BasicBlock *ExitDomBBCopy = BlockMap.lookup(findExitDominator(DT, R)); 1326 assert(ExitDomBBCopy && 1327 "Common exit dominator must be within region; at least the entry node " 1328 "must match"); 1329 DT.changeImmediateDominator(ExitBBCopy, ExitDomBBCopy); 1330 1331 // As the block generator doesn't handle control flow we need to add the 1332 // region control flow by hand after all blocks have been copied. 1333 for (BasicBlock *BB : SeenBlocks) { 1334 1335 BasicBlock *BBCopy = BlockMap[BB]; 1336 TerminatorInst *TI = BB->getTerminator(); 1337 if (isa<UnreachableInst>(TI)) { 1338 while (!BBCopy->empty()) 1339 BBCopy->begin()->eraseFromParent(); 1340 new UnreachableInst(BBCopy->getContext(), BBCopy); 1341 continue; 1342 } 1343 1344 Instruction *BICopy = BBCopy->getTerminator(); 1345 1346 ValueMapT &RegionMap = RegionMaps[BBCopy]; 1347 RegionMap.insert(BlockMap.begin(), BlockMap.end()); 1348 1349 Builder.SetInsertPoint(BICopy); 1350 copyInstScalar(Stmt, TI, RegionMap, LTS); 1351 BICopy->eraseFromParent(); 1352 } 1353 1354 // Add counting PHI nodes to all loops in the region that can be used as 1355 // replacement for SCEVs refering to the old loop. 1356 for (BasicBlock *BB : SeenBlocks) { 1357 Loop *L = LI.getLoopFor(BB); 1358 if (L == nullptr || L->getHeader() != BB || !R->contains(L)) 1359 continue; 1360 1361 BasicBlock *BBCopy = BlockMap[BB]; 1362 Value *NullVal = Builder.getInt32(0); 1363 PHINode *LoopPHI = 1364 PHINode::Create(Builder.getInt32Ty(), 2, "polly.subregion.iv"); 1365 Instruction *LoopPHIInc = BinaryOperator::CreateAdd( 1366 LoopPHI, Builder.getInt32(1), "polly.subregion.iv.inc"); 1367 LoopPHI->insertBefore(&BBCopy->front()); 1368 LoopPHIInc->insertBefore(BBCopy->getTerminator()); 1369 1370 for (auto *PredBB : make_range(pred_begin(BB), pred_end(BB))) { 1371 if (!R->contains(PredBB)) 1372 continue; 1373 if (L->contains(PredBB)) 1374 LoopPHI->addIncoming(LoopPHIInc, BlockMap[PredBB]); 1375 else 1376 LoopPHI->addIncoming(NullVal, BlockMap[PredBB]); 1377 } 1378 1379 for (auto *PredBBCopy : make_range(pred_begin(BBCopy), pred_end(BBCopy))) 1380 if (LoopPHI->getBasicBlockIndex(PredBBCopy) < 0) 1381 LoopPHI->addIncoming(NullVal, PredBBCopy); 1382 1383 LTS[L] = SE.getUnknown(LoopPHI); 1384 } 1385 1386 // Continue generating code in the exit block. 1387 Builder.SetInsertPoint(&*ExitBBCopy->getFirstInsertionPt()); 1388 1389 // Write values visible to other statements. 1390 generateScalarStores(Stmt, LTS, ValueMap, IdToAstExp); 1391 BlockMap.clear(); 1392 RegionMaps.clear(); 1393 IncompletePHINodeMap.clear(); 1394 } 1395 1396 PHINode *RegionGenerator::buildExitPHI(MemoryAccess *MA, LoopToScevMapT <S, 1397 ValueMapT &BBMap, Loop *L) { 1398 ScopStmt *Stmt = MA->getStatement(); 1399 Region *SubR = Stmt->getRegion(); 1400 auto Incoming = MA->getIncoming(); 1401 1402 PollyIRBuilder::InsertPointGuard IPGuard(Builder); 1403 PHINode *OrigPHI = cast<PHINode>(MA->getAccessInstruction()); 1404 BasicBlock *NewSubregionExit = Builder.GetInsertBlock(); 1405 1406 // This can happen if the subregion is simplified after the ScopStmts 1407 // have been created; simplification happens as part of CodeGeneration. 1408 if (OrigPHI->getParent() != SubR->getExit()) { 1409 BasicBlock *FormerExit = SubR->getExitingBlock(); 1410 if (FormerExit) 1411 NewSubregionExit = BlockMap.lookup(FormerExit); 1412 } 1413 1414 PHINode *NewPHI = PHINode::Create(OrigPHI->getType(), Incoming.size(), 1415 "polly." + OrigPHI->getName(), 1416 NewSubregionExit->getFirstNonPHI()); 1417 1418 // Add the incoming values to the PHI. 1419 for (auto &Pair : Incoming) { 1420 BasicBlock *OrigIncomingBlock = Pair.first; 1421 BasicBlock *NewIncomingBlock = BlockMap.lookup(OrigIncomingBlock); 1422 Builder.SetInsertPoint(NewIncomingBlock->getTerminator()); 1423 assert(RegionMaps.count(NewIncomingBlock)); 1424 ValueMapT *LocalBBMap = &RegionMaps[NewIncomingBlock]; 1425 1426 Value *OrigIncomingValue = Pair.second; 1427 Value *NewIncomingValue = 1428 getNewValue(*Stmt, OrigIncomingValue, *LocalBBMap, LTS, L); 1429 NewPHI->addIncoming(NewIncomingValue, NewIncomingBlock); 1430 } 1431 1432 return NewPHI; 1433 } 1434 1435 Value *RegionGenerator::getExitScalar(MemoryAccess *MA, LoopToScevMapT <S, 1436 ValueMapT &BBMap) { 1437 ScopStmt *Stmt = MA->getStatement(); 1438 1439 // TODO: Add some test cases that ensure this is really the right choice. 1440 Loop *L = LI.getLoopFor(Stmt->getRegion()->getExit()); 1441 1442 if (MA->isAnyPHIKind()) { 1443 auto Incoming = MA->getIncoming(); 1444 assert(!Incoming.empty() && 1445 "PHI WRITEs must have originate from at least one incoming block"); 1446 1447 // If there is only one incoming value, we do not need to create a PHI. 1448 if (Incoming.size() == 1) { 1449 Value *OldVal = Incoming[0].second; 1450 return getNewValue(*Stmt, OldVal, BBMap, LTS, L); 1451 } 1452 1453 return buildExitPHI(MA, LTS, BBMap, L); 1454 } 1455 1456 // MemoryKind::Value accesses leaving the subregion must dominate the exit 1457 // block; just pass the copied value. 1458 Value *OldVal = MA->getAccessValue(); 1459 return getNewValue(*Stmt, OldVal, BBMap, LTS, L); 1460 } 1461 1462 void RegionGenerator::generateScalarStores( 1463 ScopStmt &Stmt, LoopToScevMapT <S, ValueMapT &BBMap, 1464 __isl_keep isl_id_to_ast_expr *NewAccesses) { 1465 assert(Stmt.getRegion() && 1466 "Block statements need to use the generateScalarStores() " 1467 "function in the BlockGenerator"); 1468 1469 for (MemoryAccess *MA : Stmt) { 1470 if (MA->isOriginalArrayKind() || MA->isRead()) 1471 continue; 1472 1473 Value *NewVal = getExitScalar(MA, LTS, BBMap); 1474 Value *Address = 1475 getImplicitAddress(*MA, getLoopForStmt(Stmt), LTS, BBMap, NewAccesses); 1476 assert((!isa<Instruction>(NewVal) || 1477 DT.dominates(cast<Instruction>(NewVal)->getParent(), 1478 Builder.GetInsertBlock())) && 1479 "Domination violation"); 1480 assert((!isa<Instruction>(Address) || 1481 DT.dominates(cast<Instruction>(Address)->getParent(), 1482 Builder.GetInsertBlock())) && 1483 "Domination violation"); 1484 Builder.CreateStore(NewVal, Address); 1485 } 1486 } 1487 1488 void RegionGenerator::addOperandToPHI(ScopStmt &Stmt, PHINode *PHI, 1489 PHINode *PHICopy, BasicBlock *IncomingBB, 1490 LoopToScevMapT <S) { 1491 // If the incoming block was not yet copied mark this PHI as incomplete. 1492 // Once the block will be copied the incoming value will be added. 1493 BasicBlock *BBCopy = BlockMap[IncomingBB]; 1494 if (!BBCopy) { 1495 assert(Stmt.contains(IncomingBB) && 1496 "Bad incoming block for PHI in non-affine region"); 1497 IncompletePHINodeMap[IncomingBB].push_back(std::make_pair(PHI, PHICopy)); 1498 return; 1499 } 1500 1501 assert(RegionMaps.count(BBCopy) && "Incoming PHI block did not have a BBMap"); 1502 ValueMapT &BBCopyMap = RegionMaps[BBCopy]; 1503 1504 Value *OpCopy = nullptr; 1505 1506 if (Stmt.contains(IncomingBB)) { 1507 Value *Op = PHI->getIncomingValueForBlock(IncomingBB); 1508 1509 // If the current insert block is different from the PHIs incoming block 1510 // change it, otherwise do not. 1511 auto IP = Builder.GetInsertPoint(); 1512 if (IP->getParent() != BBCopy) 1513 Builder.SetInsertPoint(BBCopy->getTerminator()); 1514 OpCopy = getNewValue(Stmt, Op, BBCopyMap, LTS, getLoopForStmt(Stmt)); 1515 if (IP->getParent() != BBCopy) 1516 Builder.SetInsertPoint(&*IP); 1517 } else { 1518 // All edges from outside the non-affine region become a single edge 1519 // in the new copy of the non-affine region. Make sure to only add the 1520 // corresponding edge the first time we encounter a basic block from 1521 // outside the non-affine region. 1522 if (PHICopy->getBasicBlockIndex(BBCopy) >= 0) 1523 return; 1524 1525 // Get the reloaded value. 1526 OpCopy = getNewValue(Stmt, PHI, BBCopyMap, LTS, getLoopForStmt(Stmt)); 1527 } 1528 1529 assert(OpCopy && "Incoming PHI value was not copied properly"); 1530 assert(BBCopy && "Incoming PHI block was not copied properly"); 1531 PHICopy->addIncoming(OpCopy, BBCopy); 1532 } 1533 1534 void RegionGenerator::copyPHIInstruction(ScopStmt &Stmt, PHINode *PHI, 1535 ValueMapT &BBMap, 1536 LoopToScevMapT <S) { 1537 unsigned NumIncoming = PHI->getNumIncomingValues(); 1538 PHINode *PHICopy = 1539 Builder.CreatePHI(PHI->getType(), NumIncoming, "polly." + PHI->getName()); 1540 PHICopy->moveBefore(PHICopy->getParent()->getFirstNonPHI()); 1541 BBMap[PHI] = PHICopy; 1542 1543 for (BasicBlock *IncomingBB : PHI->blocks()) 1544 addOperandToPHI(Stmt, PHI, PHICopy, IncomingBB, LTS); 1545 } 1546