1 //===--- BlockGenerators.cpp - Generate code for statements -----*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the BlockGenerator and VectorBlockGenerator classes, 11 // which generate sequential code and vectorized code for a polyhedral 12 // statement, respectively. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "polly/CodeGen/BlockGenerators.h" 17 #include "polly/CodeGen/CodeGeneration.h" 18 #include "polly/CodeGen/IslExprBuilder.h" 19 #include "polly/CodeGen/RuntimeDebugBuilder.h" 20 #include "polly/Options.h" 21 #include "polly/ScopInfo.h" 22 #include "polly/Support/GICHelper.h" 23 #include "polly/Support/SCEVValidator.h" 24 #include "polly/Support/ScopHelper.h" 25 #include "llvm/Analysis/LoopInfo.h" 26 #include "llvm/Analysis/RegionInfo.h" 27 #include "llvm/Analysis/ScalarEvolution.h" 28 #include "llvm/IR/IntrinsicInst.h" 29 #include "llvm/IR/Module.h" 30 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 31 #include "llvm/Transforms/Utils/Local.h" 32 #include "isl/aff.h" 33 #include "isl/ast.h" 34 #include "isl/ast_build.h" 35 #include "isl/set.h" 36 #include <deque> 37 38 using namespace llvm; 39 using namespace polly; 40 41 static cl::opt<bool> Aligned("enable-polly-aligned", 42 cl::desc("Assumed aligned memory accesses."), 43 cl::Hidden, cl::init(false), cl::ZeroOrMore, 44 cl::cat(PollyCategory)); 45 46 static cl::opt<bool> DebugPrinting( 47 "polly-codegen-add-debug-printing", 48 cl::desc("Add printf calls that show the values loaded/stored."), 49 cl::Hidden, cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory)); 50 51 BlockGenerator::BlockGenerator(PollyIRBuilder &B, LoopInfo &LI, 52 ScalarEvolution &SE, DominatorTree &DT, 53 ScalarAllocaMapTy &ScalarMap, 54 ScalarAllocaMapTy &PHIOpMap, 55 EscapeUsersAllocaMapTy &EscapeMap, 56 ValueMapT &GlobalMap, 57 IslExprBuilder *ExprBuilder) 58 : Builder(B), LI(LI), SE(SE), ExprBuilder(ExprBuilder), DT(DT), 59 EntryBB(nullptr), PHIOpMap(PHIOpMap), ScalarMap(ScalarMap), 60 EscapeMap(EscapeMap), GlobalMap(GlobalMap) {} 61 62 Value *BlockGenerator::trySynthesizeNewValue(ScopStmt &Stmt, Value *Old, 63 ValueMapT &BBMap, 64 LoopToScevMapT <S, 65 Loop *L) const { 66 if (!SE.isSCEVable(Old->getType())) 67 return nullptr; 68 69 const SCEV *Scev = SE.getSCEVAtScope(Old, L); 70 if (!Scev) 71 return nullptr; 72 73 if (isa<SCEVCouldNotCompute>(Scev)) 74 return nullptr; 75 76 const SCEV *NewScev = SCEVLoopAddRecRewriter::rewrite(Scev, LTS, SE); 77 ValueMapT VTV; 78 VTV.insert(BBMap.begin(), BBMap.end()); 79 VTV.insert(GlobalMap.begin(), GlobalMap.end()); 80 81 Scop &S = *Stmt.getParent(); 82 const DataLayout &DL = S.getFunction().getParent()->getDataLayout(); 83 auto IP = Builder.GetInsertPoint(); 84 85 assert(IP != Builder.GetInsertBlock()->end() && 86 "Only instructions can be insert points for SCEVExpander"); 87 Value *Expanded = 88 expandCodeFor(S, SE, DL, "polly", NewScev, Old->getType(), &*IP, &VTV); 89 90 BBMap[Old] = Expanded; 91 return Expanded; 92 } 93 94 Value *BlockGenerator::getNewValue(ScopStmt &Stmt, Value *Old, ValueMapT &BBMap, 95 LoopToScevMapT <S, Loop *L) const { 96 // Constants that do not reference any named value can always remain 97 // unchanged. Handle them early to avoid expensive map lookups. We do not take 98 // the fast-path for external constants which are referenced through globals 99 // as these may need to be rewritten when distributing code accross different 100 // LLVM modules. 101 if (isa<Constant>(Old) && !isa<GlobalValue>(Old)) 102 return Old; 103 104 // Inline asm is like a constant to us. 105 if (isa<InlineAsm>(Old)) 106 return Old; 107 108 if (Value *New = GlobalMap.lookup(Old)) { 109 if (Value *NewRemapped = GlobalMap.lookup(New)) 110 New = NewRemapped; 111 if (Old->getType()->getScalarSizeInBits() < 112 New->getType()->getScalarSizeInBits()) 113 New = Builder.CreateTruncOrBitCast(New, Old->getType()); 114 115 return New; 116 } 117 118 if (Value *New = BBMap.lookup(Old)) 119 return New; 120 121 if (Value *New = trySynthesizeNewValue(Stmt, Old, BBMap, LTS, L)) 122 return New; 123 124 // A scop-constant value defined by a global or a function parameter. 125 if (isa<GlobalValue>(Old) || isa<Argument>(Old)) 126 return Old; 127 128 // A scop-constant value defined by an instruction executed outside the scop. 129 if (const Instruction *Inst = dyn_cast<Instruction>(Old)) 130 if (!Stmt.getParent()->contains(Inst->getParent())) 131 return Old; 132 133 // The scalar dependence is neither available nor SCEVCodegenable. 134 llvm_unreachable("Unexpected scalar dependence in region!"); 135 return nullptr; 136 } 137 138 void BlockGenerator::copyInstScalar(ScopStmt &Stmt, Instruction *Inst, 139 ValueMapT &BBMap, LoopToScevMapT <S) { 140 // We do not generate debug intrinsics as we did not investigate how to 141 // copy them correctly. At the current state, they just crash the code 142 // generation as the meta-data operands are not correctly copied. 143 if (isa<DbgInfoIntrinsic>(Inst)) 144 return; 145 146 Instruction *NewInst = Inst->clone(); 147 148 // Replace old operands with the new ones. 149 for (Value *OldOperand : Inst->operands()) { 150 Value *NewOperand = 151 getNewValue(Stmt, OldOperand, BBMap, LTS, getLoopForStmt(Stmt)); 152 153 if (!NewOperand) { 154 assert(!isa<StoreInst>(NewInst) && 155 "Store instructions are always needed!"); 156 delete NewInst; 157 return; 158 } 159 160 NewInst->replaceUsesOfWith(OldOperand, NewOperand); 161 } 162 163 Builder.Insert(NewInst); 164 BBMap[Inst] = NewInst; 165 166 if (!NewInst->getType()->isVoidTy()) 167 NewInst->setName("p_" + Inst->getName()); 168 } 169 170 Value * 171 BlockGenerator::generateLocationAccessed(ScopStmt &Stmt, MemAccInst Inst, 172 ValueMapT &BBMap, LoopToScevMapT <S, 173 isl_id_to_ast_expr *NewAccesses) { 174 const MemoryAccess &MA = Stmt.getArrayAccessFor(Inst); 175 return generateLocationAccessed( 176 Stmt, getLoopForStmt(Stmt), 177 Inst.isNull() ? nullptr : Inst.getPointerOperand(), BBMap, LTS, 178 NewAccesses, MA.getId(), MA.getAccessValue()->getType()); 179 } 180 181 Value *BlockGenerator::generateLocationAccessed( 182 ScopStmt &Stmt, Loop *L, Value *Pointer, ValueMapT &BBMap, 183 LoopToScevMapT <S, isl_id_to_ast_expr *NewAccesses, __isl_take isl_id *Id, 184 Type *ExpectedType) { 185 isl_ast_expr *AccessExpr = isl_id_to_ast_expr_get(NewAccesses, Id); 186 187 if (AccessExpr) { 188 AccessExpr = isl_ast_expr_address_of(AccessExpr); 189 auto Address = ExprBuilder->create(AccessExpr); 190 191 // Cast the address of this memory access to a pointer type that has the 192 // same element type as the original access, but uses the address space of 193 // the newly generated pointer. 194 auto OldPtrTy = ExpectedType->getPointerTo(); 195 auto NewPtrTy = Address->getType(); 196 OldPtrTy = PointerType::get(OldPtrTy->getElementType(), 197 NewPtrTy->getPointerAddressSpace()); 198 199 if (OldPtrTy != NewPtrTy) 200 Address = Builder.CreateBitOrPointerCast(Address, OldPtrTy); 201 return Address; 202 } 203 assert( 204 Pointer && 205 "If expression was not generated, must use the original pointer value"); 206 return getNewValue(Stmt, Pointer, BBMap, LTS, L); 207 } 208 209 Value * 210 BlockGenerator::getImplicitAddress(MemoryAccess &Access, Loop *L, 211 LoopToScevMapT <S, ValueMapT &BBMap, 212 __isl_keep isl_id_to_ast_expr *NewAccesses) { 213 if (Access.isLatestArrayKind()) 214 return generateLocationAccessed(*Access.getStatement(), L, nullptr, BBMap, 215 LTS, NewAccesses, Access.getId(), 216 Access.getAccessValue()->getType()); 217 218 if (Access.isLatestValueKind() || Access.isLatestExitPHIKind()) 219 return getOrCreateScalarAlloca(Access.getBaseAddr()); 220 221 if (Access.isLatestPHIKind()) 222 return getOrCreatePHIAlloca(Access.getBaseAddr()); 223 224 llvm_unreachable("Unknown access type"); 225 } 226 227 Loop *BlockGenerator::getLoopForStmt(const ScopStmt &Stmt) const { 228 auto *StmtBB = Stmt.getEntryBlock(); 229 return LI.getLoopFor(StmtBB); 230 } 231 232 Value *BlockGenerator::generateArrayLoad(ScopStmt &Stmt, LoadInst *Load, 233 ValueMapT &BBMap, LoopToScevMapT <S, 234 isl_id_to_ast_expr *NewAccesses) { 235 if (Value *PreloadLoad = GlobalMap.lookup(Load)) 236 return PreloadLoad; 237 238 Value *NewPointer = 239 generateLocationAccessed(Stmt, Load, BBMap, LTS, NewAccesses); 240 Value *ScalarLoad = Builder.CreateAlignedLoad( 241 NewPointer, Load->getAlignment(), Load->getName() + "_p_scalar_"); 242 243 if (DebugPrinting) 244 RuntimeDebugBuilder::createCPUPrinter(Builder, "Load from ", NewPointer, 245 ": ", ScalarLoad, "\n"); 246 247 return ScalarLoad; 248 } 249 250 void BlockGenerator::generateArrayStore(ScopStmt &Stmt, StoreInst *Store, 251 ValueMapT &BBMap, LoopToScevMapT <S, 252 isl_id_to_ast_expr *NewAccesses) { 253 Value *NewPointer = 254 generateLocationAccessed(Stmt, Store, BBMap, LTS, NewAccesses); 255 Value *ValueOperand = getNewValue(Stmt, Store->getValueOperand(), BBMap, LTS, 256 getLoopForStmt(Stmt)); 257 258 if (DebugPrinting) 259 RuntimeDebugBuilder::createCPUPrinter(Builder, "Store to ", NewPointer, 260 ": ", ValueOperand, "\n"); 261 262 Builder.CreateAlignedStore(ValueOperand, NewPointer, Store->getAlignment()); 263 } 264 265 bool BlockGenerator::canSyntheziseInStmt(ScopStmt &Stmt, Instruction *Inst) { 266 Loop *L = getLoopForStmt(Stmt); 267 return (Stmt.isBlockStmt() || !Stmt.getRegion()->contains(L)) && 268 canSynthesize(Inst, *Stmt.getParent(), &LI, &SE, L); 269 } 270 271 void BlockGenerator::copyInstruction(ScopStmt &Stmt, Instruction *Inst, 272 ValueMapT &BBMap, LoopToScevMapT <S, 273 isl_id_to_ast_expr *NewAccesses) { 274 // Terminator instructions control the control flow. They are explicitly 275 // expressed in the clast and do not need to be copied. 276 if (Inst->isTerminator()) 277 return; 278 279 // Synthesizable statements will be generated on-demand. 280 if (canSyntheziseInStmt(Stmt, Inst)) 281 return; 282 283 if (auto *Load = dyn_cast<LoadInst>(Inst)) { 284 Value *NewLoad = generateArrayLoad(Stmt, Load, BBMap, LTS, NewAccesses); 285 // Compute NewLoad before its insertion in BBMap to make the insertion 286 // deterministic. 287 BBMap[Load] = NewLoad; 288 return; 289 } 290 291 if (auto *Store = dyn_cast<StoreInst>(Inst)) { 292 generateArrayStore(Stmt, Store, BBMap, LTS, NewAccesses); 293 return; 294 } 295 296 if (auto *PHI = dyn_cast<PHINode>(Inst)) { 297 copyPHIInstruction(Stmt, PHI, BBMap, LTS); 298 return; 299 } 300 301 // Skip some special intrinsics for which we do not adjust the semantics to 302 // the new schedule. All others are handled like every other instruction. 303 if (isIgnoredIntrinsic(Inst)) 304 return; 305 306 copyInstScalar(Stmt, Inst, BBMap, LTS); 307 } 308 309 void BlockGenerator::removeDeadInstructions(BasicBlock *BB, ValueMapT &BBMap) { 310 auto NewBB = Builder.GetInsertBlock(); 311 for (auto I = NewBB->rbegin(); I != NewBB->rend(); I++) { 312 Instruction *NewInst = &*I; 313 314 if (!isInstructionTriviallyDead(NewInst)) 315 continue; 316 317 for (auto Pair : BBMap) 318 if (Pair.second == NewInst) { 319 BBMap.erase(Pair.first); 320 } 321 322 NewInst->eraseFromParent(); 323 I = NewBB->rbegin(); 324 } 325 } 326 327 void BlockGenerator::copyStmt(ScopStmt &Stmt, LoopToScevMapT <S, 328 isl_id_to_ast_expr *NewAccesses) { 329 assert(Stmt.isBlockStmt() && 330 "Only block statements can be copied by the block generator"); 331 332 ValueMapT BBMap; 333 334 BasicBlock *BB = Stmt.getBasicBlock(); 335 copyBB(Stmt, BB, BBMap, LTS, NewAccesses); 336 removeDeadInstructions(BB, BBMap); 337 } 338 339 BasicBlock *BlockGenerator::splitBB(BasicBlock *BB) { 340 BasicBlock *CopyBB = SplitBlock(Builder.GetInsertBlock(), 341 &*Builder.GetInsertPoint(), &DT, &LI); 342 CopyBB->setName("polly.stmt." + BB->getName()); 343 return CopyBB; 344 } 345 346 BasicBlock *BlockGenerator::copyBB(ScopStmt &Stmt, BasicBlock *BB, 347 ValueMapT &BBMap, LoopToScevMapT <S, 348 isl_id_to_ast_expr *NewAccesses) { 349 BasicBlock *CopyBB = splitBB(BB); 350 Builder.SetInsertPoint(&CopyBB->front()); 351 generateScalarLoads(Stmt, LTS, BBMap, NewAccesses); 352 353 copyBB(Stmt, BB, CopyBB, BBMap, LTS, NewAccesses); 354 355 // After a basic block was copied store all scalars that escape this block in 356 // their alloca. 357 generateScalarStores(Stmt, LTS, BBMap, NewAccesses); 358 return CopyBB; 359 } 360 361 void BlockGenerator::copyBB(ScopStmt &Stmt, BasicBlock *BB, BasicBlock *CopyBB, 362 ValueMapT &BBMap, LoopToScevMapT <S, 363 isl_id_to_ast_expr *NewAccesses) { 364 EntryBB = &CopyBB->getParent()->getEntryBlock(); 365 366 for (Instruction &Inst : *BB) 367 copyInstruction(Stmt, &Inst, BBMap, LTS, NewAccesses); 368 } 369 370 Value *BlockGenerator::getOrCreateAlloca(Value *ScalarBase, 371 ScalarAllocaMapTy &Map, 372 const char *NameExt) { 373 // If no alloca was found create one and insert it in the entry block. 374 if (!Map.count(ScalarBase)) { 375 auto *Ty = ScalarBase->getType(); 376 auto NewAddr = new AllocaInst(Ty, ScalarBase->getName() + NameExt); 377 EntryBB = &Builder.GetInsertBlock()->getParent()->getEntryBlock(); 378 NewAddr->insertBefore(&*EntryBB->getFirstInsertionPt()); 379 Map[ScalarBase] = NewAddr; 380 } 381 382 auto Addr = Map[ScalarBase]; 383 384 if (auto NewAddr = GlobalMap.lookup(Addr)) 385 return NewAddr; 386 387 return Addr; 388 } 389 390 Value *BlockGenerator::getOrCreateAlloca(const MemoryAccess &Access) { 391 assert(!Access.isArrayKind() && "Trying to get alloca for array kind"); 392 393 if (Access.isPHIKind()) 394 return getOrCreatePHIAlloca(Access.getBaseAddr()); 395 else 396 return getOrCreateScalarAlloca(Access.getBaseAddr()); 397 } 398 399 Value *BlockGenerator::getOrCreateAlloca(const ScopArrayInfo *Array) { 400 assert(!Array->isArrayKind() && "Trying to get alloca for array kind"); 401 402 if (Array->isPHIKind()) 403 return getOrCreatePHIAlloca(Array->getBasePtr()); 404 else 405 return getOrCreateScalarAlloca(Array->getBasePtr()); 406 } 407 408 Value *BlockGenerator::getOrCreateScalarAlloca(Value *ScalarBase) { 409 return getOrCreateAlloca(ScalarBase, ScalarMap, ".s2a"); 410 } 411 412 Value *BlockGenerator::getOrCreatePHIAlloca(Value *ScalarBase) { 413 return getOrCreateAlloca(ScalarBase, PHIOpMap, ".phiops"); 414 } 415 416 void BlockGenerator::handleOutsideUsers(const Scop &S, Instruction *Inst) { 417 // If there are escape users we get the alloca for this instruction and put it 418 // in the EscapeMap for later finalization. Lastly, if the instruction was 419 // copied multiple times we already did this and can exit. 420 if (EscapeMap.count(Inst)) 421 return; 422 423 EscapeUserVectorTy EscapeUsers; 424 for (User *U : Inst->users()) { 425 426 // Non-instruction user will never escape. 427 Instruction *UI = dyn_cast<Instruction>(U); 428 if (!UI) 429 continue; 430 431 if (S.contains(UI)) 432 continue; 433 434 EscapeUsers.push_back(UI); 435 } 436 437 // Exit if no escape uses were found. 438 if (EscapeUsers.empty()) 439 return; 440 441 // Get or create an escape alloca for this instruction. 442 auto *ScalarAddr = getOrCreateScalarAlloca(Inst); 443 444 // Remember that this instruction has escape uses and the escape alloca. 445 EscapeMap[Inst] = std::make_pair(ScalarAddr, std::move(EscapeUsers)); 446 } 447 448 void BlockGenerator::generateScalarLoads( 449 ScopStmt &Stmt, LoopToScevMapT <S, ValueMapT &BBMap, 450 __isl_keep isl_id_to_ast_expr *NewAccesses) { 451 for (MemoryAccess *MA : Stmt) { 452 if (MA->isOriginalArrayKind() || MA->isWrite()) 453 continue; 454 455 #ifndef NDEBUG 456 auto *StmtDom = Stmt.getDomain(); 457 auto *AccDom = isl_map_domain(MA->getAccessRelation()); 458 assert(isl_set_is_subset(StmtDom, AccDom) && 459 "Scalar must be loaded in all statement instances"); 460 isl_set_free(StmtDom); 461 isl_set_free(AccDom); 462 #endif 463 464 auto *Address = 465 getImplicitAddress(*MA, getLoopForStmt(Stmt), LTS, BBMap, NewAccesses); 466 assert((!isa<Instruction>(Address) || 467 DT.dominates(cast<Instruction>(Address)->getParent(), 468 Builder.GetInsertBlock())) && 469 "Domination violation"); 470 BBMap[MA->getBaseAddr()] = 471 Builder.CreateLoad(Address, Address->getName() + ".reload"); 472 } 473 } 474 475 void BlockGenerator::generateScalarStores( 476 ScopStmt &Stmt, LoopToScevMapT <S, ValueMapT &BBMap, 477 __isl_keep isl_id_to_ast_expr *NewAccesses) { 478 Loop *L = LI.getLoopFor(Stmt.getBasicBlock()); 479 480 assert(Stmt.isBlockStmt() && "Region statements need to use the " 481 "generateScalarStores() function in the " 482 "RegionGenerator"); 483 484 for (MemoryAccess *MA : Stmt) { 485 if (MA->isOriginalArrayKind() || MA->isRead()) 486 continue; 487 488 #ifndef NDEBUG 489 auto *StmtDom = Stmt.getDomain(); 490 auto *AccDom = isl_map_domain(MA->getAccessRelation()); 491 assert(isl_set_is_subset(StmtDom, AccDom) && 492 "Scalar must be stored in all statement instances"); 493 isl_set_free(StmtDom); 494 isl_set_free(AccDom); 495 #endif 496 497 Value *Val = MA->getAccessValue(); 498 if (MA->isAnyPHIKind()) { 499 assert(MA->getIncoming().size() >= 1 && 500 "Block statements have exactly one exiting block, or multiple but " 501 "with same incoming block and value"); 502 assert(std::all_of(MA->getIncoming().begin(), MA->getIncoming().end(), 503 [&](std::pair<BasicBlock *, Value *> p) -> bool { 504 return p.first == Stmt.getBasicBlock(); 505 }) && 506 "Incoming block must be statement's block"); 507 Val = MA->getIncoming()[0].second; 508 } 509 auto Address = 510 getImplicitAddress(*MA, getLoopForStmt(Stmt), LTS, BBMap, NewAccesses); 511 512 Val = getNewValue(Stmt, Val, BBMap, LTS, L); 513 assert((!isa<Instruction>(Val) || 514 DT.dominates(cast<Instruction>(Val)->getParent(), 515 Builder.GetInsertBlock())) && 516 "Domination violation"); 517 assert((!isa<Instruction>(Address) || 518 DT.dominates(cast<Instruction>(Address)->getParent(), 519 Builder.GetInsertBlock())) && 520 "Domination violation"); 521 Builder.CreateStore(Val, Address); 522 } 523 } 524 525 void BlockGenerator::createScalarInitialization(Scop &S) { 526 BasicBlock *ExitBB = S.getExit(); 527 528 // The split block __just before__ the region and optimized region. 529 BasicBlock *SplitBB = S.getEnteringBlock(); 530 BranchInst *SplitBBTerm = cast<BranchInst>(SplitBB->getTerminator()); 531 assert(SplitBBTerm->getNumSuccessors() == 2 && "Bad region entering block!"); 532 533 // Get the start block of the __optimized__ region. 534 BasicBlock *StartBB = SplitBBTerm->getSuccessor(0); 535 if (StartBB == S.getEntry()) 536 StartBB = SplitBBTerm->getSuccessor(1); 537 538 Builder.SetInsertPoint(&*StartBB->begin()); 539 540 for (auto &Array : S.arrays()) { 541 if (Array->getNumberOfDimensions() != 0) 542 continue; 543 if (Array->isPHIKind()) { 544 // For PHI nodes, the only values we need to store are the ones that 545 // reach the PHI node from outside the region. In general there should 546 // only be one such incoming edge and this edge should enter through 547 // 'SplitBB'. 548 auto PHI = cast<PHINode>(Array->getBasePtr()); 549 550 for (auto BI = PHI->block_begin(), BE = PHI->block_end(); BI != BE; BI++) 551 if (!S.contains(*BI) && *BI != SplitBB) 552 llvm_unreachable("Incoming edges from outside the scop should always " 553 "come from SplitBB"); 554 555 int Idx = PHI->getBasicBlockIndex(SplitBB); 556 if (Idx < 0) 557 continue; 558 559 Value *ScalarValue = PHI->getIncomingValue(Idx); 560 561 Builder.CreateStore(ScalarValue, getOrCreatePHIAlloca(PHI)); 562 continue; 563 } 564 565 auto *Inst = dyn_cast<Instruction>(Array->getBasePtr()); 566 567 if (Inst && S.contains(Inst)) 568 continue; 569 570 // PHI nodes that are not marked as such in their SAI object are either exit 571 // PHI nodes we model as common scalars but without initialization, or 572 // incoming phi nodes that need to be initialized. Check if the first is the 573 // case for Inst and do not create and initialize memory if so. 574 if (auto *PHI = dyn_cast_or_null<PHINode>(Inst)) 575 if (!S.hasSingleExitEdge() && PHI->getBasicBlockIndex(ExitBB) >= 0) 576 continue; 577 578 Builder.CreateStore(Array->getBasePtr(), 579 getOrCreateScalarAlloca(Array->getBasePtr())); 580 } 581 } 582 583 void BlockGenerator::createScalarFinalization(Scop &S) { 584 // The exit block of the __unoptimized__ region. 585 BasicBlock *ExitBB = S.getExitingBlock(); 586 // The merge block __just after__ the region and the optimized region. 587 BasicBlock *MergeBB = S.getExit(); 588 589 // The exit block of the __optimized__ region. 590 BasicBlock *OptExitBB = *(pred_begin(MergeBB)); 591 if (OptExitBB == ExitBB) 592 OptExitBB = *(++pred_begin(MergeBB)); 593 594 Builder.SetInsertPoint(OptExitBB->getTerminator()); 595 for (const auto &EscapeMapping : EscapeMap) { 596 // Extract the escaping instruction and the escaping users as well as the 597 // alloca the instruction was demoted to. 598 Instruction *EscapeInst = EscapeMapping.first; 599 const auto &EscapeMappingValue = EscapeMapping.second; 600 const EscapeUserVectorTy &EscapeUsers = EscapeMappingValue.second; 601 Value *ScalarAddr = EscapeMappingValue.first; 602 603 // Reload the demoted instruction in the optimized version of the SCoP. 604 Value *EscapeInstReload = 605 Builder.CreateLoad(ScalarAddr, EscapeInst->getName() + ".final_reload"); 606 EscapeInstReload = 607 Builder.CreateBitOrPointerCast(EscapeInstReload, EscapeInst->getType()); 608 609 // Create the merge PHI that merges the optimized and unoptimized version. 610 PHINode *MergePHI = PHINode::Create(EscapeInst->getType(), 2, 611 EscapeInst->getName() + ".merge"); 612 MergePHI->insertBefore(&*MergeBB->getFirstInsertionPt()); 613 614 // Add the respective values to the merge PHI. 615 MergePHI->addIncoming(EscapeInstReload, OptExitBB); 616 MergePHI->addIncoming(EscapeInst, ExitBB); 617 618 // The information of scalar evolution about the escaping instruction needs 619 // to be revoked so the new merged instruction will be used. 620 if (SE.isSCEVable(EscapeInst->getType())) 621 SE.forgetValue(EscapeInst); 622 623 // Replace all uses of the demoted instruction with the merge PHI. 624 for (Instruction *EUser : EscapeUsers) 625 EUser->replaceUsesOfWith(EscapeInst, MergePHI); 626 } 627 } 628 629 void BlockGenerator::findOutsideUsers(Scop &S) { 630 for (auto &Array : S.arrays()) { 631 632 if (Array->getNumberOfDimensions() != 0) 633 continue; 634 635 if (Array->isPHIKind()) 636 continue; 637 638 auto *Inst = dyn_cast<Instruction>(Array->getBasePtr()); 639 640 if (!Inst) 641 continue; 642 643 // Scop invariant hoisting moves some of the base pointers out of the scop. 644 // We can ignore these, as the invariant load hoisting already registers the 645 // relevant outside users. 646 if (!S.contains(Inst)) 647 continue; 648 649 handleOutsideUsers(S, Inst); 650 } 651 } 652 653 void BlockGenerator::createExitPHINodeMerges(Scop &S) { 654 if (S.hasSingleExitEdge()) 655 return; 656 657 auto *ExitBB = S.getExitingBlock(); 658 auto *MergeBB = S.getExit(); 659 auto *AfterMergeBB = MergeBB->getSingleSuccessor(); 660 BasicBlock *OptExitBB = *(pred_begin(MergeBB)); 661 if (OptExitBB == ExitBB) 662 OptExitBB = *(++pred_begin(MergeBB)); 663 664 Builder.SetInsertPoint(OptExitBB->getTerminator()); 665 666 for (auto &SAI : S.arrays()) { 667 auto *Val = SAI->getBasePtr(); 668 669 // Only Value-like scalars need a merge PHI. Exit block PHIs receive either 670 // the original PHI's value or the reloaded incoming values from the 671 // generated code. An llvm::Value is merged between the original code's 672 // value or the generated one. 673 if (!SAI->isExitPHIKind()) 674 continue; 675 676 PHINode *PHI = dyn_cast<PHINode>(Val); 677 if (!PHI) 678 continue; 679 680 if (PHI->getParent() != AfterMergeBB) 681 continue; 682 683 std::string Name = PHI->getName(); 684 Value *ScalarAddr = getOrCreateScalarAlloca(PHI); 685 Value *Reload = Builder.CreateLoad(ScalarAddr, Name + ".ph.final_reload"); 686 Reload = Builder.CreateBitOrPointerCast(Reload, PHI->getType()); 687 Value *OriginalValue = PHI->getIncomingValueForBlock(MergeBB); 688 assert((!isa<Instruction>(OriginalValue) || 689 cast<Instruction>(OriginalValue)->getParent() != MergeBB) && 690 "Original value must no be one we just generated."); 691 auto *MergePHI = PHINode::Create(PHI->getType(), 2, Name + ".ph.merge"); 692 MergePHI->insertBefore(&*MergeBB->getFirstInsertionPt()); 693 MergePHI->addIncoming(Reload, OptExitBB); 694 MergePHI->addIncoming(OriginalValue, ExitBB); 695 int Idx = PHI->getBasicBlockIndex(MergeBB); 696 PHI->setIncomingValue(Idx, MergePHI); 697 } 698 } 699 700 void BlockGenerator::invalidateScalarEvolution(Scop &S) { 701 for (auto &Stmt : S) 702 if (Stmt.isCopyStmt()) 703 continue; 704 else if (Stmt.isBlockStmt()) 705 for (auto &Inst : *Stmt.getBasicBlock()) 706 SE.forgetValue(&Inst); 707 else if (Stmt.isRegionStmt()) 708 for (auto *BB : Stmt.getRegion()->blocks()) 709 for (auto &Inst : *BB) 710 SE.forgetValue(&Inst); 711 else 712 llvm_unreachable("Unexpected statement type found"); 713 } 714 715 void BlockGenerator::finalizeSCoP(Scop &S) { 716 findOutsideUsers(S); 717 createScalarInitialization(S); 718 createExitPHINodeMerges(S); 719 createScalarFinalization(S); 720 invalidateScalarEvolution(S); 721 } 722 723 VectorBlockGenerator::VectorBlockGenerator(BlockGenerator &BlockGen, 724 std::vector<LoopToScevMapT> &VLTS, 725 isl_map *Schedule) 726 : BlockGenerator(BlockGen), VLTS(VLTS), Schedule(Schedule) { 727 assert(Schedule && "No statement domain provided"); 728 } 729 730 Value *VectorBlockGenerator::getVectorValue(ScopStmt &Stmt, Value *Old, 731 ValueMapT &VectorMap, 732 VectorValueMapT &ScalarMaps, 733 Loop *L) { 734 if (Value *NewValue = VectorMap.lookup(Old)) 735 return NewValue; 736 737 int Width = getVectorWidth(); 738 739 Value *Vector = UndefValue::get(VectorType::get(Old->getType(), Width)); 740 741 for (int Lane = 0; Lane < Width; Lane++) 742 Vector = Builder.CreateInsertElement( 743 Vector, getNewValue(Stmt, Old, ScalarMaps[Lane], VLTS[Lane], L), 744 Builder.getInt32(Lane)); 745 746 VectorMap[Old] = Vector; 747 748 return Vector; 749 } 750 751 Type *VectorBlockGenerator::getVectorPtrTy(const Value *Val, int Width) { 752 PointerType *PointerTy = dyn_cast<PointerType>(Val->getType()); 753 assert(PointerTy && "PointerType expected"); 754 755 Type *ScalarType = PointerTy->getElementType(); 756 VectorType *VectorType = VectorType::get(ScalarType, Width); 757 758 return PointerType::getUnqual(VectorType); 759 } 760 761 Value *VectorBlockGenerator::generateStrideOneLoad( 762 ScopStmt &Stmt, LoadInst *Load, VectorValueMapT &ScalarMaps, 763 __isl_keep isl_id_to_ast_expr *NewAccesses, bool NegativeStride = false) { 764 unsigned VectorWidth = getVectorWidth(); 765 auto *Pointer = Load->getPointerOperand(); 766 Type *VectorPtrType = getVectorPtrTy(Pointer, VectorWidth); 767 unsigned Offset = NegativeStride ? VectorWidth - 1 : 0; 768 769 Value *NewPointer = generateLocationAccessed(Stmt, Load, ScalarMaps[Offset], 770 VLTS[Offset], NewAccesses); 771 Value *VectorPtr = 772 Builder.CreateBitCast(NewPointer, VectorPtrType, "vector_ptr"); 773 LoadInst *VecLoad = 774 Builder.CreateLoad(VectorPtr, Load->getName() + "_p_vec_full"); 775 if (!Aligned) 776 VecLoad->setAlignment(8); 777 778 if (NegativeStride) { 779 SmallVector<Constant *, 16> Indices; 780 for (int i = VectorWidth - 1; i >= 0; i--) 781 Indices.push_back(ConstantInt::get(Builder.getInt32Ty(), i)); 782 Constant *SV = llvm::ConstantVector::get(Indices); 783 Value *RevVecLoad = Builder.CreateShuffleVector( 784 VecLoad, VecLoad, SV, Load->getName() + "_reverse"); 785 return RevVecLoad; 786 } 787 788 return VecLoad; 789 } 790 791 Value *VectorBlockGenerator::generateStrideZeroLoad( 792 ScopStmt &Stmt, LoadInst *Load, ValueMapT &BBMap, 793 __isl_keep isl_id_to_ast_expr *NewAccesses) { 794 auto *Pointer = Load->getPointerOperand(); 795 Type *VectorPtrType = getVectorPtrTy(Pointer, 1); 796 Value *NewPointer = 797 generateLocationAccessed(Stmt, Load, BBMap, VLTS[0], NewAccesses); 798 Value *VectorPtr = Builder.CreateBitCast(NewPointer, VectorPtrType, 799 Load->getName() + "_p_vec_p"); 800 LoadInst *ScalarLoad = 801 Builder.CreateLoad(VectorPtr, Load->getName() + "_p_splat_one"); 802 803 if (!Aligned) 804 ScalarLoad->setAlignment(8); 805 806 Constant *SplatVector = Constant::getNullValue( 807 VectorType::get(Builder.getInt32Ty(), getVectorWidth())); 808 809 Value *VectorLoad = Builder.CreateShuffleVector( 810 ScalarLoad, ScalarLoad, SplatVector, Load->getName() + "_p_splat"); 811 return VectorLoad; 812 } 813 814 Value *VectorBlockGenerator::generateUnknownStrideLoad( 815 ScopStmt &Stmt, LoadInst *Load, VectorValueMapT &ScalarMaps, 816 __isl_keep isl_id_to_ast_expr *NewAccesses) { 817 int VectorWidth = getVectorWidth(); 818 auto *Pointer = Load->getPointerOperand(); 819 VectorType *VectorType = VectorType::get( 820 dyn_cast<PointerType>(Pointer->getType())->getElementType(), VectorWidth); 821 822 Value *Vector = UndefValue::get(VectorType); 823 824 for (int i = 0; i < VectorWidth; i++) { 825 Value *NewPointer = generateLocationAccessed(Stmt, Load, ScalarMaps[i], 826 VLTS[i], NewAccesses); 827 Value *ScalarLoad = 828 Builder.CreateLoad(NewPointer, Load->getName() + "_p_scalar_"); 829 Vector = Builder.CreateInsertElement( 830 Vector, ScalarLoad, Builder.getInt32(i), Load->getName() + "_p_vec_"); 831 } 832 833 return Vector; 834 } 835 836 void VectorBlockGenerator::generateLoad( 837 ScopStmt &Stmt, LoadInst *Load, ValueMapT &VectorMap, 838 VectorValueMapT &ScalarMaps, __isl_keep isl_id_to_ast_expr *NewAccesses) { 839 if (Value *PreloadLoad = GlobalMap.lookup(Load)) { 840 VectorMap[Load] = Builder.CreateVectorSplat(getVectorWidth(), PreloadLoad, 841 Load->getName() + "_p"); 842 return; 843 } 844 845 if (!VectorType::isValidElementType(Load->getType())) { 846 for (int i = 0; i < getVectorWidth(); i++) 847 ScalarMaps[i][Load] = 848 generateArrayLoad(Stmt, Load, ScalarMaps[i], VLTS[i], NewAccesses); 849 return; 850 } 851 852 const MemoryAccess &Access = Stmt.getArrayAccessFor(Load); 853 854 // Make sure we have scalar values available to access the pointer to 855 // the data location. 856 extractScalarValues(Load, VectorMap, ScalarMaps); 857 858 Value *NewLoad; 859 if (Access.isStrideZero(isl_map_copy(Schedule))) 860 NewLoad = generateStrideZeroLoad(Stmt, Load, ScalarMaps[0], NewAccesses); 861 else if (Access.isStrideOne(isl_map_copy(Schedule))) 862 NewLoad = generateStrideOneLoad(Stmt, Load, ScalarMaps, NewAccesses); 863 else if (Access.isStrideX(isl_map_copy(Schedule), -1)) 864 NewLoad = generateStrideOneLoad(Stmt, Load, ScalarMaps, NewAccesses, true); 865 else 866 NewLoad = generateUnknownStrideLoad(Stmt, Load, ScalarMaps, NewAccesses); 867 868 VectorMap[Load] = NewLoad; 869 } 870 871 void VectorBlockGenerator::copyUnaryInst(ScopStmt &Stmt, UnaryInstruction *Inst, 872 ValueMapT &VectorMap, 873 VectorValueMapT &ScalarMaps) { 874 int VectorWidth = getVectorWidth(); 875 Value *NewOperand = getVectorValue(Stmt, Inst->getOperand(0), VectorMap, 876 ScalarMaps, getLoopForStmt(Stmt)); 877 878 assert(isa<CastInst>(Inst) && "Can not generate vector code for instruction"); 879 880 const CastInst *Cast = dyn_cast<CastInst>(Inst); 881 VectorType *DestType = VectorType::get(Inst->getType(), VectorWidth); 882 VectorMap[Inst] = Builder.CreateCast(Cast->getOpcode(), NewOperand, DestType); 883 } 884 885 void VectorBlockGenerator::copyBinaryInst(ScopStmt &Stmt, BinaryOperator *Inst, 886 ValueMapT &VectorMap, 887 VectorValueMapT &ScalarMaps) { 888 Loop *L = getLoopForStmt(Stmt); 889 Value *OpZero = Inst->getOperand(0); 890 Value *OpOne = Inst->getOperand(1); 891 892 Value *NewOpZero, *NewOpOne; 893 NewOpZero = getVectorValue(Stmt, OpZero, VectorMap, ScalarMaps, L); 894 NewOpOne = getVectorValue(Stmt, OpOne, VectorMap, ScalarMaps, L); 895 896 Value *NewInst = Builder.CreateBinOp(Inst->getOpcode(), NewOpZero, NewOpOne, 897 Inst->getName() + "p_vec"); 898 VectorMap[Inst] = NewInst; 899 } 900 901 void VectorBlockGenerator::copyStore( 902 ScopStmt &Stmt, StoreInst *Store, ValueMapT &VectorMap, 903 VectorValueMapT &ScalarMaps, __isl_keep isl_id_to_ast_expr *NewAccesses) { 904 const MemoryAccess &Access = Stmt.getArrayAccessFor(Store); 905 906 auto *Pointer = Store->getPointerOperand(); 907 Value *Vector = getVectorValue(Stmt, Store->getValueOperand(), VectorMap, 908 ScalarMaps, getLoopForStmt(Stmt)); 909 910 // Make sure we have scalar values available to access the pointer to 911 // the data location. 912 extractScalarValues(Store, VectorMap, ScalarMaps); 913 914 if (Access.isStrideOne(isl_map_copy(Schedule))) { 915 Type *VectorPtrType = getVectorPtrTy(Pointer, getVectorWidth()); 916 Value *NewPointer = generateLocationAccessed(Stmt, Store, ScalarMaps[0], 917 VLTS[0], NewAccesses); 918 919 Value *VectorPtr = 920 Builder.CreateBitCast(NewPointer, VectorPtrType, "vector_ptr"); 921 StoreInst *Store = Builder.CreateStore(Vector, VectorPtr); 922 923 if (!Aligned) 924 Store->setAlignment(8); 925 } else { 926 for (unsigned i = 0; i < ScalarMaps.size(); i++) { 927 Value *Scalar = Builder.CreateExtractElement(Vector, Builder.getInt32(i)); 928 Value *NewPointer = generateLocationAccessed(Stmt, Store, ScalarMaps[i], 929 VLTS[i], NewAccesses); 930 Builder.CreateStore(Scalar, NewPointer); 931 } 932 } 933 } 934 935 bool VectorBlockGenerator::hasVectorOperands(const Instruction *Inst, 936 ValueMapT &VectorMap) { 937 for (Value *Operand : Inst->operands()) 938 if (VectorMap.count(Operand)) 939 return true; 940 return false; 941 } 942 943 bool VectorBlockGenerator::extractScalarValues(const Instruction *Inst, 944 ValueMapT &VectorMap, 945 VectorValueMapT &ScalarMaps) { 946 bool HasVectorOperand = false; 947 int VectorWidth = getVectorWidth(); 948 949 for (Value *Operand : Inst->operands()) { 950 ValueMapT::iterator VecOp = VectorMap.find(Operand); 951 952 if (VecOp == VectorMap.end()) 953 continue; 954 955 HasVectorOperand = true; 956 Value *NewVector = VecOp->second; 957 958 for (int i = 0; i < VectorWidth; ++i) { 959 ValueMapT &SM = ScalarMaps[i]; 960 961 // If there is one scalar extracted, all scalar elements should have 962 // already been extracted by the code here. So no need to check for the 963 // existence of all of them. 964 if (SM.count(Operand)) 965 break; 966 967 SM[Operand] = 968 Builder.CreateExtractElement(NewVector, Builder.getInt32(i)); 969 } 970 } 971 972 return HasVectorOperand; 973 } 974 975 void VectorBlockGenerator::copyInstScalarized( 976 ScopStmt &Stmt, Instruction *Inst, ValueMapT &VectorMap, 977 VectorValueMapT &ScalarMaps, __isl_keep isl_id_to_ast_expr *NewAccesses) { 978 bool HasVectorOperand; 979 int VectorWidth = getVectorWidth(); 980 981 HasVectorOperand = extractScalarValues(Inst, VectorMap, ScalarMaps); 982 983 for (int VectorLane = 0; VectorLane < getVectorWidth(); VectorLane++) 984 BlockGenerator::copyInstruction(Stmt, Inst, ScalarMaps[VectorLane], 985 VLTS[VectorLane], NewAccesses); 986 987 if (!VectorType::isValidElementType(Inst->getType()) || !HasVectorOperand) 988 return; 989 990 // Make the result available as vector value. 991 VectorType *VectorType = VectorType::get(Inst->getType(), VectorWidth); 992 Value *Vector = UndefValue::get(VectorType); 993 994 for (int i = 0; i < VectorWidth; i++) 995 Vector = Builder.CreateInsertElement(Vector, ScalarMaps[i][Inst], 996 Builder.getInt32(i)); 997 998 VectorMap[Inst] = Vector; 999 } 1000 1001 int VectorBlockGenerator::getVectorWidth() { return VLTS.size(); } 1002 1003 void VectorBlockGenerator::copyInstruction( 1004 ScopStmt &Stmt, Instruction *Inst, ValueMapT &VectorMap, 1005 VectorValueMapT &ScalarMaps, __isl_keep isl_id_to_ast_expr *NewAccesses) { 1006 // Terminator instructions control the control flow. They are explicitly 1007 // expressed in the clast and do not need to be copied. 1008 if (Inst->isTerminator()) 1009 return; 1010 1011 if (canSyntheziseInStmt(Stmt, Inst)) 1012 return; 1013 1014 if (auto *Load = dyn_cast<LoadInst>(Inst)) { 1015 generateLoad(Stmt, Load, VectorMap, ScalarMaps, NewAccesses); 1016 return; 1017 } 1018 1019 if (hasVectorOperands(Inst, VectorMap)) { 1020 if (auto *Store = dyn_cast<StoreInst>(Inst)) { 1021 copyStore(Stmt, Store, VectorMap, ScalarMaps, NewAccesses); 1022 return; 1023 } 1024 1025 if (auto *Unary = dyn_cast<UnaryInstruction>(Inst)) { 1026 copyUnaryInst(Stmt, Unary, VectorMap, ScalarMaps); 1027 return; 1028 } 1029 1030 if (auto *Binary = dyn_cast<BinaryOperator>(Inst)) { 1031 copyBinaryInst(Stmt, Binary, VectorMap, ScalarMaps); 1032 return; 1033 } 1034 1035 // Falltrough: We generate scalar instructions, if we don't know how to 1036 // generate vector code. 1037 } 1038 1039 copyInstScalarized(Stmt, Inst, VectorMap, ScalarMaps, NewAccesses); 1040 } 1041 1042 void VectorBlockGenerator::generateScalarVectorLoads( 1043 ScopStmt &Stmt, ValueMapT &VectorBlockMap) { 1044 for (MemoryAccess *MA : Stmt) { 1045 if (MA->isArrayKind() || MA->isWrite()) 1046 continue; 1047 1048 auto *Address = getOrCreateAlloca(*MA); 1049 Type *VectorPtrType = getVectorPtrTy(Address, 1); 1050 Value *VectorPtr = Builder.CreateBitCast(Address, VectorPtrType, 1051 Address->getName() + "_p_vec_p"); 1052 auto *Val = Builder.CreateLoad(VectorPtr, Address->getName() + ".reload"); 1053 Constant *SplatVector = Constant::getNullValue( 1054 VectorType::get(Builder.getInt32Ty(), getVectorWidth())); 1055 1056 Value *VectorVal = Builder.CreateShuffleVector( 1057 Val, Val, SplatVector, Address->getName() + "_p_splat"); 1058 VectorBlockMap[MA->getBaseAddr()] = VectorVal; 1059 } 1060 } 1061 1062 void VectorBlockGenerator::verifyNoScalarStores(ScopStmt &Stmt) { 1063 for (MemoryAccess *MA : Stmt) { 1064 if (MA->isArrayKind() || MA->isRead()) 1065 continue; 1066 1067 llvm_unreachable("Scalar stores not expected in vector loop"); 1068 } 1069 } 1070 1071 void VectorBlockGenerator::copyStmt( 1072 ScopStmt &Stmt, __isl_keep isl_id_to_ast_expr *NewAccesses) { 1073 assert(Stmt.isBlockStmt() && "TODO: Only block statements can be copied by " 1074 "the vector block generator"); 1075 1076 BasicBlock *BB = Stmt.getBasicBlock(); 1077 BasicBlock *CopyBB = SplitBlock(Builder.GetInsertBlock(), 1078 &*Builder.GetInsertPoint(), &DT, &LI); 1079 CopyBB->setName("polly.stmt." + BB->getName()); 1080 Builder.SetInsertPoint(&CopyBB->front()); 1081 1082 // Create two maps that store the mapping from the original instructions of 1083 // the old basic block to their copies in the new basic block. Those maps 1084 // are basic block local. 1085 // 1086 // As vector code generation is supported there is one map for scalar values 1087 // and one for vector values. 1088 // 1089 // In case we just do scalar code generation, the vectorMap is not used and 1090 // the scalarMap has just one dimension, which contains the mapping. 1091 // 1092 // In case vector code generation is done, an instruction may either appear 1093 // in the vector map once (as it is calculating >vectorwidth< values at a 1094 // time. Or (if the values are calculated using scalar operations), it 1095 // appears once in every dimension of the scalarMap. 1096 VectorValueMapT ScalarBlockMap(getVectorWidth()); 1097 ValueMapT VectorBlockMap; 1098 1099 generateScalarVectorLoads(Stmt, VectorBlockMap); 1100 1101 for (Instruction &Inst : *BB) 1102 copyInstruction(Stmt, &Inst, VectorBlockMap, ScalarBlockMap, NewAccesses); 1103 1104 verifyNoScalarStores(Stmt); 1105 } 1106 1107 BasicBlock *RegionGenerator::repairDominance(BasicBlock *BB, 1108 BasicBlock *BBCopy) { 1109 1110 BasicBlock *BBIDom = DT.getNode(BB)->getIDom()->getBlock(); 1111 BasicBlock *BBCopyIDom = BlockMap.lookup(BBIDom); 1112 1113 if (BBCopyIDom) 1114 DT.changeImmediateDominator(BBCopy, BBCopyIDom); 1115 1116 return BBCopyIDom; 1117 } 1118 1119 // This is to determine whether an llvm::Value (defined in @p BB) is usable when 1120 // leaving a subregion. The straight-forward DT.dominates(BB, R->getExitBlock()) 1121 // does not work in cases where the exit block has edges from outside the 1122 // region. In that case the llvm::Value would never be usable in in the exit 1123 // block. The RegionGenerator however creates an new exit block ('ExitBBCopy') 1124 // for the subregion's exiting edges only. We need to determine whether an 1125 // llvm::Value is usable in there. We do this by checking whether it dominates 1126 // all exiting blocks individually. 1127 static bool isDominatingSubregionExit(const DominatorTree &DT, Region *R, 1128 BasicBlock *BB) { 1129 for (auto ExitingBB : predecessors(R->getExit())) { 1130 // Check for non-subregion incoming edges. 1131 if (!R->contains(ExitingBB)) 1132 continue; 1133 1134 if (!DT.dominates(BB, ExitingBB)) 1135 return false; 1136 } 1137 1138 return true; 1139 } 1140 1141 // Find the direct dominator of the subregion's exit block if the subregion was 1142 // simplified. 1143 static BasicBlock *findExitDominator(DominatorTree &DT, Region *R) { 1144 BasicBlock *Common = nullptr; 1145 for (auto ExitingBB : predecessors(R->getExit())) { 1146 // Check for non-subregion incoming edges. 1147 if (!R->contains(ExitingBB)) 1148 continue; 1149 1150 // First exiting edge. 1151 if (!Common) { 1152 Common = ExitingBB; 1153 continue; 1154 } 1155 1156 Common = DT.findNearestCommonDominator(Common, ExitingBB); 1157 } 1158 1159 assert(Common && R->contains(Common)); 1160 return Common; 1161 } 1162 1163 void RegionGenerator::copyStmt(ScopStmt &Stmt, LoopToScevMapT <S, 1164 isl_id_to_ast_expr *IdToAstExp) { 1165 assert(Stmt.isRegionStmt() && 1166 "Only region statements can be copied by the region generator"); 1167 1168 // Forget all old mappings. 1169 BlockMap.clear(); 1170 RegionMaps.clear(); 1171 IncompletePHINodeMap.clear(); 1172 1173 // Collection of all values related to this subregion. 1174 ValueMapT ValueMap; 1175 1176 // The region represented by the statement. 1177 Region *R = Stmt.getRegion(); 1178 1179 // Create a dedicated entry for the region where we can reload all demoted 1180 // inputs. 1181 BasicBlock *EntryBB = R->getEntry(); 1182 BasicBlock *EntryBBCopy = SplitBlock(Builder.GetInsertBlock(), 1183 &*Builder.GetInsertPoint(), &DT, &LI); 1184 EntryBBCopy->setName("polly.stmt." + EntryBB->getName() + ".entry"); 1185 Builder.SetInsertPoint(&EntryBBCopy->front()); 1186 1187 ValueMapT &EntryBBMap = RegionMaps[EntryBBCopy]; 1188 generateScalarLoads(Stmt, LTS, EntryBBMap, IdToAstExp); 1189 1190 for (auto PI = pred_begin(EntryBB), PE = pred_end(EntryBB); PI != PE; ++PI) 1191 if (!R->contains(*PI)) 1192 BlockMap[*PI] = EntryBBCopy; 1193 1194 // Iterate over all blocks in the region in a breadth-first search. 1195 std::deque<BasicBlock *> Blocks; 1196 SmallPtrSet<BasicBlock *, 8> SeenBlocks; 1197 Blocks.push_back(EntryBB); 1198 SeenBlocks.insert(EntryBB); 1199 1200 while (!Blocks.empty()) { 1201 BasicBlock *BB = Blocks.front(); 1202 Blocks.pop_front(); 1203 1204 // First split the block and update dominance information. 1205 BasicBlock *BBCopy = splitBB(BB); 1206 BasicBlock *BBCopyIDom = repairDominance(BB, BBCopy); 1207 1208 // Get the mapping for this block and initialize it with either the scalar 1209 // loads from the generated entering block (which dominates all blocks of 1210 // this subregion) or the maps of the immediate dominator, if part of the 1211 // subregion. The latter necessarily includes the former. 1212 ValueMapT *InitBBMap; 1213 if (BBCopyIDom) { 1214 assert(RegionMaps.count(BBCopyIDom)); 1215 InitBBMap = &RegionMaps[BBCopyIDom]; 1216 } else 1217 InitBBMap = &EntryBBMap; 1218 auto Inserted = RegionMaps.insert(std::make_pair(BBCopy, *InitBBMap)); 1219 ValueMapT &RegionMap = Inserted.first->second; 1220 1221 // Copy the block with the BlockGenerator. 1222 Builder.SetInsertPoint(&BBCopy->front()); 1223 copyBB(Stmt, BB, BBCopy, RegionMap, LTS, IdToAstExp); 1224 1225 // In order to remap PHI nodes we store also basic block mappings. 1226 BlockMap[BB] = BBCopy; 1227 1228 // Add values to incomplete PHI nodes waiting for this block to be copied. 1229 for (const PHINodePairTy &PHINodePair : IncompletePHINodeMap[BB]) 1230 addOperandToPHI(Stmt, PHINodePair.first, PHINodePair.second, BB, LTS); 1231 IncompletePHINodeMap[BB].clear(); 1232 1233 // And continue with new successors inside the region. 1234 for (auto SI = succ_begin(BB), SE = succ_end(BB); SI != SE; SI++) 1235 if (R->contains(*SI) && SeenBlocks.insert(*SI).second) 1236 Blocks.push_back(*SI); 1237 1238 // Remember value in case it is visible after this subregion. 1239 if (isDominatingSubregionExit(DT, R, BB)) 1240 ValueMap.insert(RegionMap.begin(), RegionMap.end()); 1241 } 1242 1243 // Now create a new dedicated region exit block and add it to the region map. 1244 BasicBlock *ExitBBCopy = SplitBlock(Builder.GetInsertBlock(), 1245 &*Builder.GetInsertPoint(), &DT, &LI); 1246 ExitBBCopy->setName("polly.stmt." + R->getExit()->getName() + ".exit"); 1247 BlockMap[R->getExit()] = ExitBBCopy; 1248 1249 BasicBlock *ExitDomBBCopy = BlockMap.lookup(findExitDominator(DT, R)); 1250 assert(ExitDomBBCopy && "Common exit dominator must be within region; at " 1251 "least the entry node must match"); 1252 DT.changeImmediateDominator(ExitBBCopy, ExitDomBBCopy); 1253 1254 // As the block generator doesn't handle control flow we need to add the 1255 // region control flow by hand after all blocks have been copied. 1256 for (BasicBlock *BB : SeenBlocks) { 1257 1258 BasicBlock *BBCopy = BlockMap[BB]; 1259 TerminatorInst *TI = BB->getTerminator(); 1260 if (isa<UnreachableInst>(TI)) { 1261 while (!BBCopy->empty()) 1262 BBCopy->begin()->eraseFromParent(); 1263 new UnreachableInst(BBCopy->getContext(), BBCopy); 1264 continue; 1265 } 1266 1267 Instruction *BICopy = BBCopy->getTerminator(); 1268 1269 ValueMapT &RegionMap = RegionMaps[BBCopy]; 1270 RegionMap.insert(BlockMap.begin(), BlockMap.end()); 1271 1272 Builder.SetInsertPoint(BICopy); 1273 copyInstScalar(Stmt, TI, RegionMap, LTS); 1274 BICopy->eraseFromParent(); 1275 } 1276 1277 // Add counting PHI nodes to all loops in the region that can be used as 1278 // replacement for SCEVs refering to the old loop. 1279 for (BasicBlock *BB : SeenBlocks) { 1280 Loop *L = LI.getLoopFor(BB); 1281 if (L == nullptr || L->getHeader() != BB || !R->contains(L)) 1282 continue; 1283 1284 BasicBlock *BBCopy = BlockMap[BB]; 1285 Value *NullVal = Builder.getInt32(0); 1286 PHINode *LoopPHI = 1287 PHINode::Create(Builder.getInt32Ty(), 2, "polly.subregion.iv"); 1288 Instruction *LoopPHIInc = BinaryOperator::CreateAdd( 1289 LoopPHI, Builder.getInt32(1), "polly.subregion.iv.inc"); 1290 LoopPHI->insertBefore(&BBCopy->front()); 1291 LoopPHIInc->insertBefore(BBCopy->getTerminator()); 1292 1293 for (auto *PredBB : make_range(pred_begin(BB), pred_end(BB))) { 1294 if (!R->contains(PredBB)) 1295 continue; 1296 if (L->contains(PredBB)) 1297 LoopPHI->addIncoming(LoopPHIInc, BlockMap[PredBB]); 1298 else 1299 LoopPHI->addIncoming(NullVal, BlockMap[PredBB]); 1300 } 1301 1302 for (auto *PredBBCopy : make_range(pred_begin(BBCopy), pred_end(BBCopy))) 1303 if (LoopPHI->getBasicBlockIndex(PredBBCopy) < 0) 1304 LoopPHI->addIncoming(NullVal, PredBBCopy); 1305 1306 LTS[L] = SE.getUnknown(LoopPHI); 1307 } 1308 1309 // Continue generating code in the exit block. 1310 Builder.SetInsertPoint(&*ExitBBCopy->getFirstInsertionPt()); 1311 1312 // Write values visible to other statements. 1313 generateScalarStores(Stmt, LTS, ValueMap, IdToAstExp); 1314 BlockMap.clear(); 1315 RegionMaps.clear(); 1316 IncompletePHINodeMap.clear(); 1317 } 1318 1319 PHINode *RegionGenerator::buildExitPHI(MemoryAccess *MA, LoopToScevMapT <S, 1320 ValueMapT &BBMap, Loop *L) { 1321 ScopStmt *Stmt = MA->getStatement(); 1322 Region *SubR = Stmt->getRegion(); 1323 auto Incoming = MA->getIncoming(); 1324 1325 PollyIRBuilder::InsertPointGuard IPGuard(Builder); 1326 PHINode *OrigPHI = cast<PHINode>(MA->getAccessInstruction()); 1327 BasicBlock *NewSubregionExit = Builder.GetInsertBlock(); 1328 1329 // This can happen if the subregion is simplified after the ScopStmts 1330 // have been created; simplification happens as part of CodeGeneration. 1331 if (OrigPHI->getParent() != SubR->getExit()) { 1332 BasicBlock *FormerExit = SubR->getExitingBlock(); 1333 if (FormerExit) 1334 NewSubregionExit = BlockMap.lookup(FormerExit); 1335 } 1336 1337 PHINode *NewPHI = PHINode::Create(OrigPHI->getType(), Incoming.size(), 1338 "polly." + OrigPHI->getName(), 1339 NewSubregionExit->getFirstNonPHI()); 1340 1341 // Add the incoming values to the PHI. 1342 for (auto &Pair : Incoming) { 1343 BasicBlock *OrigIncomingBlock = Pair.first; 1344 BasicBlock *NewIncomingBlock = BlockMap.lookup(OrigIncomingBlock); 1345 Builder.SetInsertPoint(NewIncomingBlock->getTerminator()); 1346 assert(RegionMaps.count(NewIncomingBlock)); 1347 ValueMapT *LocalBBMap = &RegionMaps[NewIncomingBlock]; 1348 1349 Value *OrigIncomingValue = Pair.second; 1350 Value *NewIncomingValue = 1351 getNewValue(*Stmt, OrigIncomingValue, *LocalBBMap, LTS, L); 1352 NewPHI->addIncoming(NewIncomingValue, NewIncomingBlock); 1353 } 1354 1355 return NewPHI; 1356 } 1357 1358 Value *RegionGenerator::getExitScalar(MemoryAccess *MA, LoopToScevMapT <S, 1359 ValueMapT &BBMap) { 1360 ScopStmt *Stmt = MA->getStatement(); 1361 1362 // TODO: Add some test cases that ensure this is really the right choice. 1363 Loop *L = LI.getLoopFor(Stmt->getRegion()->getExit()); 1364 1365 if (MA->isAnyPHIKind()) { 1366 auto Incoming = MA->getIncoming(); 1367 assert(!Incoming.empty() && 1368 "PHI WRITEs must have originate from at least one incoming block"); 1369 1370 // If there is only one incoming value, we do not need to create a PHI. 1371 if (Incoming.size() == 1) { 1372 Value *OldVal = Incoming[0].second; 1373 return getNewValue(*Stmt, OldVal, BBMap, LTS, L); 1374 } 1375 1376 return buildExitPHI(MA, LTS, BBMap, L); 1377 } 1378 1379 // MK_Value accesses leaving the subregion must dominate the exit block; just 1380 // pass the copied value 1381 Value *OldVal = MA->getAccessValue(); 1382 return getNewValue(*Stmt, OldVal, BBMap, LTS, L); 1383 } 1384 1385 void RegionGenerator::generateScalarStores( 1386 ScopStmt &Stmt, LoopToScevMapT <S, ValueMapT &BBMap, 1387 __isl_keep isl_id_to_ast_expr *NewAccesses) { 1388 assert(Stmt.getRegion() && 1389 "Block statements need to use the generateScalarStores() " 1390 "function in the BlockGenerator"); 1391 1392 for (MemoryAccess *MA : Stmt) { 1393 if (MA->isOriginalArrayKind() || MA->isRead()) 1394 continue; 1395 1396 Value *NewVal = getExitScalar(MA, LTS, BBMap); 1397 Value *Address = 1398 getImplicitAddress(*MA, getLoopForStmt(Stmt), LTS, BBMap, NewAccesses); 1399 assert((!isa<Instruction>(NewVal) || 1400 DT.dominates(cast<Instruction>(NewVal)->getParent(), 1401 Builder.GetInsertBlock())) && 1402 "Domination violation"); 1403 assert((!isa<Instruction>(Address) || 1404 DT.dominates(cast<Instruction>(Address)->getParent(), 1405 Builder.GetInsertBlock())) && 1406 "Domination violation"); 1407 Builder.CreateStore(NewVal, Address); 1408 } 1409 } 1410 1411 void RegionGenerator::addOperandToPHI(ScopStmt &Stmt, const PHINode *PHI, 1412 PHINode *PHICopy, BasicBlock *IncomingBB, 1413 LoopToScevMapT <S) { 1414 Region *StmtR = Stmt.getRegion(); 1415 1416 // If the incoming block was not yet copied mark this PHI as incomplete. 1417 // Once the block will be copied the incoming value will be added. 1418 BasicBlock *BBCopy = BlockMap[IncomingBB]; 1419 if (!BBCopy) { 1420 assert(StmtR->contains(IncomingBB) && 1421 "Bad incoming block for PHI in non-affine region"); 1422 IncompletePHINodeMap[IncomingBB].push_back(std::make_pair(PHI, PHICopy)); 1423 return; 1424 } 1425 1426 Value *OpCopy = nullptr; 1427 if (StmtR->contains(IncomingBB)) { 1428 assert(RegionMaps.count(BBCopy) && 1429 "Incoming PHI block did not have a BBMap"); 1430 ValueMapT &BBCopyMap = RegionMaps[BBCopy]; 1431 1432 Value *Op = PHI->getIncomingValueForBlock(IncomingBB); 1433 1434 // If the current insert block is different from the PHIs incoming block 1435 // change it, otherwise do not. 1436 auto IP = Builder.GetInsertPoint(); 1437 if (IP->getParent() != BBCopy) 1438 Builder.SetInsertPoint(BBCopy->getTerminator()); 1439 OpCopy = getNewValue(Stmt, Op, BBCopyMap, LTS, getLoopForStmt(Stmt)); 1440 if (IP->getParent() != BBCopy) 1441 Builder.SetInsertPoint(&*IP); 1442 } else { 1443 1444 if (PHICopy->getBasicBlockIndex(BBCopy) >= 0) 1445 return; 1446 1447 Value *PHIOpAddr = getOrCreatePHIAlloca(const_cast<PHINode *>(PHI)); 1448 OpCopy = new LoadInst(PHIOpAddr, PHIOpAddr->getName() + ".reload", 1449 BlockMap[IncomingBB]->getTerminator()); 1450 } 1451 1452 assert(OpCopy && "Incoming PHI value was not copied properly"); 1453 assert(BBCopy && "Incoming PHI block was not copied properly"); 1454 PHICopy->addIncoming(OpCopy, BBCopy); 1455 } 1456 1457 void RegionGenerator::copyPHIInstruction(ScopStmt &Stmt, PHINode *PHI, 1458 ValueMapT &BBMap, 1459 LoopToScevMapT <S) { 1460 unsigned NumIncoming = PHI->getNumIncomingValues(); 1461 PHINode *PHICopy = 1462 Builder.CreatePHI(PHI->getType(), NumIncoming, "polly." + PHI->getName()); 1463 PHICopy->moveBefore(PHICopy->getParent()->getFirstNonPHI()); 1464 BBMap[PHI] = PHICopy; 1465 1466 for (unsigned u = 0; u < NumIncoming; u++) 1467 addOperandToPHI(Stmt, PHI, PHICopy, PHI->getIncomingBlock(u), LTS); 1468 } 1469