1 //===--- BlockGenerators.cpp - Generate code for statements -----*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the BlockGenerator and VectorBlockGenerator classes,
11 // which generate sequential code and vectorized code for a polyhedral
12 // statement, respectively.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "polly/ScopInfo.h"
17 #include "polly/CodeGen/BlockGenerators.h"
18 #include "polly/CodeGen/CodeGeneration.h"
19 #include "polly/CodeGen/IslExprBuilder.h"
20 #include "polly/CodeGen/RuntimeDebugBuilder.h"
21 #include "polly/Options.h"
22 #include "polly/Support/GICHelper.h"
23 #include "polly/Support/SCEVValidator.h"
24 #include "polly/Support/ScopHelper.h"
25 #include "llvm/Analysis/LoopInfo.h"
26 #include "llvm/Analysis/RegionInfo.h"
27 #include "llvm/Analysis/ScalarEvolution.h"
28 #include "llvm/IR/IntrinsicInst.h"
29 #include "llvm/IR/Module.h"
30 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
31 #include "llvm/Transforms/Utils/Local.h"
32 #include "isl/aff.h"
33 #include "isl/ast.h"
34 #include "isl/ast_build.h"
35 #include "isl/set.h"
36 #include <deque>
37 
38 using namespace llvm;
39 using namespace polly;
40 
41 static cl::opt<bool> Aligned("enable-polly-aligned",
42                              cl::desc("Assumed aligned memory accesses."),
43                              cl::Hidden, cl::init(false), cl::ZeroOrMore,
44                              cl::cat(PollyCategory));
45 
46 static cl::opt<bool> DebugPrinting(
47     "polly-codegen-add-debug-printing",
48     cl::desc("Add printf calls that show the values loaded/stored."),
49     cl::Hidden, cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory));
50 
51 BlockGenerator::BlockGenerator(PollyIRBuilder &B, LoopInfo &LI,
52                                ScalarEvolution &SE, DominatorTree &DT,
53                                ScalarAllocaMapTy &ScalarMap,
54                                ScalarAllocaMapTy &PHIOpMap,
55                                EscapeUsersAllocaMapTy &EscapeMap,
56                                ValueMapT &GlobalMap,
57                                IslExprBuilder *ExprBuilder)
58     : Builder(B), LI(LI), SE(SE), ExprBuilder(ExprBuilder), DT(DT),
59       EntryBB(nullptr), PHIOpMap(PHIOpMap), ScalarMap(ScalarMap),
60       EscapeMap(EscapeMap), GlobalMap(GlobalMap) {}
61 
62 Value *BlockGenerator::trySynthesizeNewValue(ScopStmt &Stmt, Value *Old,
63                                              ValueMapT &BBMap,
64                                              LoopToScevMapT &LTS,
65                                              Loop *L) const {
66   if (SE.isSCEVable(Old->getType()))
67     if (const SCEV *Scev = SE.getSCEVAtScope(const_cast<Value *>(Old), L)) {
68       if (!isa<SCEVCouldNotCompute>(Scev)) {
69         const SCEV *NewScev = apply(Scev, LTS, SE);
70         ValueMapT VTV;
71         VTV.insert(BBMap.begin(), BBMap.end());
72         VTV.insert(GlobalMap.begin(), GlobalMap.end());
73 
74         Scop &S = *Stmt.getParent();
75         const DataLayout &DL =
76             S.getRegion().getEntry()->getParent()->getParent()->getDataLayout();
77         auto IP = Builder.GetInsertPoint();
78 
79         assert(IP != Builder.GetInsertBlock()->end() &&
80                "Only instructions can be insert points for SCEVExpander");
81         Value *Expanded = expandCodeFor(S, SE, DL, "polly", NewScev,
82                                         Old->getType(), IP, &VTV);
83 
84         BBMap[Old] = Expanded;
85         return Expanded;
86       }
87     }
88 
89   return nullptr;
90 }
91 
92 Value *BlockGenerator::getNewValue(ScopStmt &Stmt, Value *Old, ValueMapT &BBMap,
93                                    LoopToScevMapT &LTS, Loop *L) const {
94   // We assume constants never change.
95   // This avoids map lookups for many calls to this function.
96   if (isa<Constant>(Old))
97     return const_cast<Value *>(Old);
98 
99   if (Value *New = GlobalMap.lookup(Old)) {
100     if (Value *NewRemapped = GlobalMap.lookup(New))
101       New = NewRemapped;
102     if (Old->getType()->getScalarSizeInBits() <
103         New->getType()->getScalarSizeInBits())
104       New = Builder.CreateTruncOrBitCast(New, Old->getType());
105 
106     return New;
107   }
108 
109   if (Value *New = BBMap.lookup(Old))
110     return New;
111 
112   if (Value *New = trySynthesizeNewValue(Stmt, Old, BBMap, LTS, L))
113     return New;
114 
115   // A scop-constant value defined by a global or a function parameter.
116   if (isa<GlobalValue>(Old) || isa<Argument>(Old))
117     return const_cast<Value *>(Old);
118 
119   // A scop-constant value defined by an instruction executed outside the scop.
120   if (const Instruction *Inst = dyn_cast<Instruction>(Old))
121     if (!Stmt.getParent()->getRegion().contains(Inst->getParent()))
122       return const_cast<Value *>(Old);
123 
124   // The scalar dependence is neither available nor SCEVCodegenable.
125   llvm_unreachable("Unexpected scalar dependence in region!");
126   return nullptr;
127 }
128 
129 void BlockGenerator::copyInstScalar(ScopStmt &Stmt, Instruction *Inst,
130                                     ValueMapT &BBMap, LoopToScevMapT &LTS) {
131   // We do not generate debug intrinsics as we did not investigate how to
132   // copy them correctly. At the current state, they just crash the code
133   // generation as the meta-data operands are not correctly copied.
134   if (isa<DbgInfoIntrinsic>(Inst))
135     return;
136 
137   Instruction *NewInst = Inst->clone();
138 
139   // Replace old operands with the new ones.
140   for (Value *OldOperand : Inst->operands()) {
141     Value *NewOperand =
142         getNewValue(Stmt, OldOperand, BBMap, LTS, getLoopForInst(Inst));
143 
144     if (!NewOperand) {
145       assert(!isa<StoreInst>(NewInst) &&
146              "Store instructions are always needed!");
147       delete NewInst;
148       return;
149     }
150 
151     NewInst->replaceUsesOfWith(OldOperand, NewOperand);
152   }
153 
154   Builder.Insert(NewInst);
155   BBMap[Inst] = NewInst;
156 
157   if (!NewInst->getType()->isVoidTy())
158     NewInst->setName("p_" + Inst->getName());
159 }
160 
161 Value *BlockGenerator::generateLocationAccessed(
162     ScopStmt &Stmt, const Instruction *Inst, Value *Pointer, ValueMapT &BBMap,
163     LoopToScevMapT &LTS, isl_id_to_ast_expr *NewAccesses) {
164   const MemoryAccess &MA = Stmt.getAccessFor(Inst);
165 
166   isl_ast_expr *AccessExpr = isl_id_to_ast_expr_get(NewAccesses, MA.getId());
167 
168   if (AccessExpr) {
169     AccessExpr = isl_ast_expr_address_of(AccessExpr);
170     auto Address = ExprBuilder->create(AccessExpr);
171 
172     // Cast the address of this memory access to a pointer type that has the
173     // same element type as the original access, but uses the address space of
174     // the newly generated pointer.
175     auto OldPtrTy = MA.getAccessValue()->getType()->getPointerTo();
176     auto NewPtrTy = Address->getType();
177     OldPtrTy = PointerType::get(OldPtrTy->getElementType(),
178                                 NewPtrTy->getPointerAddressSpace());
179 
180     if (OldPtrTy != NewPtrTy) {
181       assert(OldPtrTy->getPointerElementType()->getPrimitiveSizeInBits() ==
182                  NewPtrTy->getPointerElementType()->getPrimitiveSizeInBits() &&
183              "Pointer types to elements with different size found");
184       Address = Builder.CreateBitOrPointerCast(Address, OldPtrTy);
185     }
186     return Address;
187   }
188 
189   return getNewValue(Stmt, Pointer, BBMap, LTS, getLoopForInst(Inst));
190 }
191 
192 Loop *BlockGenerator::getLoopForInst(const llvm::Instruction *Inst) {
193   return LI.getLoopFor(Inst->getParent());
194 }
195 
196 Value *BlockGenerator::generateScalarLoad(ScopStmt &Stmt, LoadInst *Load,
197                                           ValueMapT &BBMap, LoopToScevMapT &LTS,
198                                           isl_id_to_ast_expr *NewAccesses) {
199   if (Value *PreloadLoad = GlobalMap.lookup(Load))
200     return PreloadLoad;
201 
202   auto *Pointer = Load->getPointerOperand();
203   Value *NewPointer =
204       generateLocationAccessed(Stmt, Load, Pointer, BBMap, LTS, NewAccesses);
205   Value *ScalarLoad = Builder.CreateAlignedLoad(
206       NewPointer, Load->getAlignment(), Load->getName() + "_p_scalar_");
207 
208   if (DebugPrinting)
209     RuntimeDebugBuilder::createCPUPrinter(Builder, "Load from ", NewPointer,
210                                           ": ", ScalarLoad, "\n");
211 
212   return ScalarLoad;
213 }
214 
215 void BlockGenerator::generateScalarStore(ScopStmt &Stmt, StoreInst *Store,
216                                          ValueMapT &BBMap, LoopToScevMapT &LTS,
217                                          isl_id_to_ast_expr *NewAccesses) {
218   auto *Pointer = Store->getPointerOperand();
219   Value *NewPointer =
220       generateLocationAccessed(Stmt, Store, Pointer, BBMap, LTS, NewAccesses);
221   Value *ValueOperand = getNewValue(Stmt, Store->getValueOperand(), BBMap, LTS,
222                                     getLoopForInst(Store));
223 
224   if (DebugPrinting)
225     RuntimeDebugBuilder::createCPUPrinter(Builder, "Store to  ", NewPointer,
226                                           ": ", ValueOperand, "\n");
227 
228   Builder.CreateAlignedStore(ValueOperand, NewPointer, Store->getAlignment());
229 }
230 
231 void BlockGenerator::copyInstruction(ScopStmt &Stmt, Instruction *Inst,
232                                      ValueMapT &BBMap, LoopToScevMapT &LTS,
233                                      isl_id_to_ast_expr *NewAccesses) {
234   // Terminator instructions control the control flow. They are explicitly
235   // expressed in the clast and do not need to be copied.
236   if (Inst->isTerminator())
237     return;
238 
239   Loop *L = getLoopForInst(Inst);
240   if ((Stmt.isBlockStmt() || !Stmt.getRegion()->contains(L)) &&
241       canSynthesize(Inst, &LI, &SE, &Stmt.getParent()->getRegion())) {
242     // Synthesizable statements will be generated on-demand.
243     return;
244   }
245 
246   if (auto *Load = dyn_cast<LoadInst>(Inst)) {
247     Value *NewLoad = generateScalarLoad(Stmt, Load, BBMap, LTS, NewAccesses);
248     // Compute NewLoad before its insertion in BBMap to make the insertion
249     // deterministic.
250     BBMap[Load] = NewLoad;
251     return;
252   }
253 
254   if (auto *Store = dyn_cast<StoreInst>(Inst)) {
255     generateScalarStore(Stmt, Store, BBMap, LTS, NewAccesses);
256     return;
257   }
258 
259   if (auto *PHI = dyn_cast<PHINode>(Inst)) {
260     copyPHIInstruction(Stmt, PHI, BBMap, LTS);
261     return;
262   }
263 
264   // Skip some special intrinsics for which we do not adjust the semantics to
265   // the new schedule. All others are handled like every other instruction.
266   if (isIgnoredIntrinsic(Inst))
267     return;
268 
269   copyInstScalar(Stmt, Inst, BBMap, LTS);
270 }
271 
272 void BlockGenerator::copyStmt(ScopStmt &Stmt, LoopToScevMapT &LTS,
273                               isl_id_to_ast_expr *NewAccesses) {
274   assert(Stmt.isBlockStmt() &&
275          "Only block statements can be copied by the block generator");
276 
277   ValueMapT BBMap;
278 
279   BasicBlock *BB = Stmt.getBasicBlock();
280   copyBB(Stmt, BB, BBMap, LTS, NewAccesses);
281 }
282 
283 BasicBlock *BlockGenerator::splitBB(BasicBlock *BB) {
284   BasicBlock *CopyBB =
285       SplitBlock(Builder.GetInsertBlock(), Builder.GetInsertPoint(), &DT, &LI);
286   CopyBB->setName("polly.stmt." + BB->getName());
287   return CopyBB;
288 }
289 
290 BasicBlock *BlockGenerator::copyBB(ScopStmt &Stmt, BasicBlock *BB,
291                                    ValueMapT &BBMap, LoopToScevMapT &LTS,
292                                    isl_id_to_ast_expr *NewAccesses) {
293   BasicBlock *CopyBB = splitBB(BB);
294   Builder.SetInsertPoint(CopyBB->begin());
295   generateScalarLoads(Stmt, BBMap);
296 
297   copyBB(Stmt, BB, CopyBB, BBMap, LTS, NewAccesses);
298 
299   // After a basic block was copied store all scalars that escape this block in
300   // their alloca.
301   generateScalarStores(Stmt, LTS, BBMap);
302   return CopyBB;
303 }
304 
305 void BlockGenerator::copyBB(ScopStmt &Stmt, BasicBlock *BB, BasicBlock *CopyBB,
306                             ValueMapT &BBMap, LoopToScevMapT &LTS,
307                             isl_id_to_ast_expr *NewAccesses) {
308   EntryBB = &CopyBB->getParent()->getEntryBlock();
309 
310   for (Instruction &Inst : *BB)
311     copyInstruction(Stmt, &Inst, BBMap, LTS, NewAccesses);
312 }
313 
314 Value *BlockGenerator::getOrCreateAlloca(Value *ScalarBase,
315                                          ScalarAllocaMapTy &Map,
316                                          const char *NameExt) {
317   // If no alloca was found create one and insert it in the entry block.
318   if (!Map.count(ScalarBase)) {
319     auto *Ty = ScalarBase->getType();
320     auto NewAddr = new AllocaInst(Ty, ScalarBase->getName() + NameExt);
321     EntryBB = &Builder.GetInsertBlock()->getParent()->getEntryBlock();
322     NewAddr->insertBefore(EntryBB->getFirstInsertionPt());
323     Map[ScalarBase] = NewAddr;
324   }
325 
326   auto Addr = Map[ScalarBase];
327 
328   if (GlobalMap.count(Addr))
329     return GlobalMap[Addr];
330 
331   return Addr;
332 }
333 
334 Value *BlockGenerator::getOrCreateAlloca(MemoryAccess &Access) {
335   if (Access.isPHI())
336     return getOrCreatePHIAlloca(Access.getBaseAddr());
337   else
338     return getOrCreateScalarAlloca(Access.getBaseAddr());
339 }
340 
341 Value *BlockGenerator::getOrCreateAlloca(const ScopArrayInfo *Array) {
342   if (Array->isPHI())
343     return getOrCreatePHIAlloca(Array->getBasePtr());
344   else
345     return getOrCreateScalarAlloca(Array->getBasePtr());
346 }
347 
348 Value *BlockGenerator::getOrCreateScalarAlloca(Value *ScalarBase) {
349   return getOrCreateAlloca(ScalarBase, ScalarMap, ".s2a");
350 }
351 
352 Value *BlockGenerator::getOrCreatePHIAlloca(Value *ScalarBase) {
353   return getOrCreateAlloca(ScalarBase, PHIOpMap, ".phiops");
354 }
355 
356 void BlockGenerator::handleOutsideUsers(const Region &R, Instruction *Inst,
357                                         Value *Address) {
358   // If there are escape users we get the alloca for this instruction and put it
359   // in the EscapeMap for later finalization. Lastly, if the instruction was
360   // copied multiple times we already did this and can exit.
361   if (EscapeMap.count(Inst))
362     return;
363 
364   EscapeUserVectorTy EscapeUsers;
365   for (User *U : Inst->users()) {
366 
367     // Non-instruction user will never escape.
368     Instruction *UI = dyn_cast<Instruction>(U);
369     if (!UI)
370       continue;
371 
372     if (R.contains(UI))
373       continue;
374 
375     EscapeUsers.push_back(UI);
376   }
377 
378   // Exit if no escape uses were found.
379   if (EscapeUsers.empty())
380     return;
381 
382   // Get or create an escape alloca for this instruction.
383   auto *ScalarAddr = Address ? Address : getOrCreateScalarAlloca(Inst);
384 
385   // Remember that this instruction has escape uses and the escape alloca.
386   EscapeMap[Inst] = std::make_pair(ScalarAddr, std::move(EscapeUsers));
387 }
388 
389 void BlockGenerator::generateScalarLoads(ScopStmt &Stmt, ValueMapT &BBMap) {
390   for (MemoryAccess *MA : Stmt) {
391     if (MA->isExplicit() || MA->isWrite())
392       continue;
393 
394     auto *Address = getOrCreateAlloca(*MA);
395     BBMap[MA->getBaseAddr()] =
396         Builder.CreateLoad(Address, Address->getName() + ".reload");
397   }
398 }
399 
400 Value *BlockGenerator::getNewScalarValue(Value *ScalarValue, const Region &R,
401                                          ScopStmt &Stmt, LoopToScevMapT &LTS,
402                                          ValueMapT &BBMap) {
403   // If the value we want to store is an instruction we might have demoted it
404   // in order to make it accessible here. In such a case a reload is
405   // necessary. If it is no instruction it will always be a value that
406   // dominates the current point and we can just use it. In total there are 4
407   // options:
408   //  (1) The value is no instruction ==> use the value.
409   //  (2) The value is an instruction that was split out of the region prior to
410   //      code generation  ==> use the instruction as it dominates the region.
411   //  (3) The value is an instruction:
412   //      (a) The value was defined in the current block, thus a copy is in
413   //          the BBMap ==> use the mapped value.
414   //      (b) The value was defined in a previous block, thus we demoted it
415   //          earlier ==> use the reloaded value.
416   Instruction *ScalarValueInst = dyn_cast<Instruction>(ScalarValue);
417   if (!ScalarValueInst)
418     return ScalarValue;
419 
420   if (!R.contains(ScalarValueInst)) {
421     if (Value *ScalarValueCopy = GlobalMap.lookup(ScalarValueInst))
422       return /* Case (3a) */ ScalarValueCopy;
423     else
424       return /* Case 2 */ ScalarValue;
425   }
426 
427   if (Value *ScalarValueCopy = BBMap.lookup(ScalarValueInst))
428     return /* Case (3a) */ ScalarValueCopy;
429 
430   if ((Stmt.isBlockStmt() &&
431        Stmt.getBasicBlock() == ScalarValueInst->getParent()) ||
432       (Stmt.isRegionStmt() && Stmt.getRegion()->contains(ScalarValueInst))) {
433     auto SynthesizedValue = trySynthesizeNewValue(
434         Stmt, ScalarValueInst, BBMap, LTS, getLoopForInst(ScalarValueInst));
435 
436     if (SynthesizedValue)
437       return SynthesizedValue;
438   }
439 
440   // Case (3b)
441   Value *Address = getOrCreateScalarAlloca(ScalarValueInst);
442   ScalarValue = Builder.CreateLoad(Address, Address->getName() + ".reload");
443 
444   return ScalarValue;
445 }
446 
447 void BlockGenerator::generateScalarStores(ScopStmt &Stmt, LoopToScevMapT &LTS,
448                                           ValueMapT &BBMap) {
449   const Region &R = Stmt.getParent()->getRegion();
450 
451   assert(Stmt.isBlockStmt() && "Region statements need to use the "
452                                "generateScalarStores() function in the "
453                                "RegionGenerator");
454 
455   for (MemoryAccess *MA : Stmt) {
456     if (MA->isExplicit() || MA->isRead())
457       continue;
458 
459     Value *Val = MA->getAccessValue();
460     auto *Address = getOrCreateAlloca(*MA);
461 
462     Val = getNewScalarValue(Val, R, Stmt, LTS, BBMap);
463     Builder.CreateStore(Val, Address);
464   }
465 }
466 
467 void BlockGenerator::createScalarInitialization(Scop &S) {
468   Region &R = S.getRegion();
469   // The split block __just before__ the region and optimized region.
470   BasicBlock *SplitBB = R.getEnteringBlock();
471   BranchInst *SplitBBTerm = cast<BranchInst>(SplitBB->getTerminator());
472   assert(SplitBBTerm->getNumSuccessors() == 2 && "Bad region entering block!");
473 
474   // Get the start block of the __optimized__ region.
475   BasicBlock *StartBB = SplitBBTerm->getSuccessor(0);
476   if (StartBB == R.getEntry())
477     StartBB = SplitBBTerm->getSuccessor(1);
478 
479   Builder.SetInsertPoint(StartBB->getTerminator());
480 
481   for (auto &Pair : S.arrays()) {
482     auto &Array = Pair.second;
483     if (Array->getNumberOfDimensions() != 0)
484       continue;
485     if (Array->isPHI()) {
486       // For PHI nodes, the only values we need to store are the ones that
487       // reach the PHI node from outside the region. In general there should
488       // only be one such incoming edge and this edge should enter through
489       // 'SplitBB'.
490       auto PHI = cast<PHINode>(Array->getBasePtr());
491 
492       for (auto BI = PHI->block_begin(), BE = PHI->block_end(); BI != BE; BI++)
493         if (!R.contains(*BI) && *BI != SplitBB)
494           llvm_unreachable("Incoming edges from outside the scop should always "
495                            "come from SplitBB");
496 
497       int Idx = PHI->getBasicBlockIndex(SplitBB);
498       if (Idx < 0)
499         continue;
500 
501       Value *ScalarValue = PHI->getIncomingValue(Idx);
502 
503       Builder.CreateStore(ScalarValue, getOrCreatePHIAlloca(PHI));
504       continue;
505     }
506 
507     auto *Inst = dyn_cast<Instruction>(Array->getBasePtr());
508 
509     if (Inst && R.contains(Inst))
510       continue;
511 
512     // PHI nodes that are not marked as such in their SAI object are exit PHI
513     // nodes we model as common scalars but do not need to initialize.
514     if (Inst && isa<PHINode>(Inst))
515       continue;
516 
517     ValueMapT EmptyMap;
518     Builder.CreateStore(Array->getBasePtr(),
519                         getOrCreateScalarAlloca(Array->getBasePtr()));
520   }
521 }
522 
523 void BlockGenerator::createScalarFinalization(Region &R) {
524   // The exit block of the __unoptimized__ region.
525   BasicBlock *ExitBB = R.getExitingBlock();
526   // The merge block __just after__ the region and the optimized region.
527   BasicBlock *MergeBB = R.getExit();
528 
529   // The exit block of the __optimized__ region.
530   BasicBlock *OptExitBB = *(pred_begin(MergeBB));
531   if (OptExitBB == ExitBB)
532     OptExitBB = *(++pred_begin(MergeBB));
533 
534   Builder.SetInsertPoint(OptExitBB->getTerminator());
535   for (const auto &EscapeMapping : EscapeMap) {
536     // Extract the escaping instruction and the escaping users as well as the
537     // alloca the instruction was demoted to.
538     Instruction *EscapeInst = EscapeMapping.getFirst();
539     const auto &EscapeMappingValue = EscapeMapping.getSecond();
540     const EscapeUserVectorTy &EscapeUsers = EscapeMappingValue.second;
541     Value *ScalarAddr = EscapeMappingValue.first;
542 
543     // Reload the demoted instruction in the optimized version of the SCoP.
544     Value *EscapeInstReload =
545         Builder.CreateLoad(ScalarAddr, EscapeInst->getName() + ".final_reload");
546     EscapeInstReload =
547         Builder.CreateBitOrPointerCast(EscapeInstReload, EscapeInst->getType());
548 
549     // Create the merge PHI that merges the optimized and unoptimized version.
550     PHINode *MergePHI = PHINode::Create(EscapeInst->getType(), 2,
551                                         EscapeInst->getName() + ".merge");
552     MergePHI->insertBefore(MergeBB->getFirstInsertionPt());
553 
554     // Add the respective values to the merge PHI.
555     MergePHI->addIncoming(EscapeInstReload, OptExitBB);
556     MergePHI->addIncoming(EscapeInst, ExitBB);
557 
558     // The information of scalar evolution about the escaping instruction needs
559     // to be revoked so the new merged instruction will be used.
560     if (SE.isSCEVable(EscapeInst->getType()))
561       SE.forgetValue(EscapeInst);
562 
563     // Replace all uses of the demoted instruction with the merge PHI.
564     for (Instruction *EUser : EscapeUsers)
565       EUser->replaceUsesOfWith(EscapeInst, MergePHI);
566   }
567 }
568 
569 void BlockGenerator::findOutsideUsers(Scop &S) {
570   auto &R = S.getRegion();
571 
572   // Handle PHI nodes that were in the original exit and are now
573   // moved into the region exiting block.
574   if (!S.hasSingleExitEdge()) {
575     for (Instruction &I : *S.getRegion().getExitingBlock()) {
576       PHINode *PHI = dyn_cast<PHINode>(&I);
577       if (!PHI)
578         break;
579 
580       assert(PHI->getNumUses() == 1);
581       assert(ScalarMap.count(PHI->user_back()));
582 
583       handleOutsideUsers(S.getRegion(), PHI, ScalarMap[PHI->user_back()]);
584     }
585   }
586 
587   for (auto &Pair : S.arrays()) {
588     auto &Array = Pair.second;
589 
590     if (Array->getNumberOfDimensions() != 0)
591       continue;
592 
593     if (Array->isPHI())
594       continue;
595 
596     auto *Inst = dyn_cast<Instruction>(Array->getBasePtr());
597 
598     if (!Inst)
599       continue;
600 
601     // Scop invariant hoisting moves some of the base pointers out of the scop.
602     // We can ignore these, as the invariant load hoisting already registers the
603     // relevant outside users.
604     if (!R.contains(Inst))
605       continue;
606 
607     handleOutsideUsers(R, Inst, nullptr);
608   }
609 }
610 
611 void BlockGenerator::finalizeSCoP(Scop &S) {
612   findOutsideUsers(S);
613   createScalarInitialization(S);
614   createScalarFinalization(S.getRegion());
615 }
616 
617 VectorBlockGenerator::VectorBlockGenerator(BlockGenerator &BlockGen,
618                                            std::vector<LoopToScevMapT> &VLTS,
619                                            isl_map *Schedule)
620     : BlockGenerator(BlockGen), VLTS(VLTS), Schedule(Schedule) {
621   assert(Schedule && "No statement domain provided");
622 }
623 
624 Value *VectorBlockGenerator::getVectorValue(ScopStmt &Stmt, Value *Old,
625                                             ValueMapT &VectorMap,
626                                             VectorValueMapT &ScalarMaps,
627                                             Loop *L) {
628   if (Value *NewValue = VectorMap.lookup(Old))
629     return NewValue;
630 
631   int Width = getVectorWidth();
632 
633   Value *Vector = UndefValue::get(VectorType::get(Old->getType(), Width));
634 
635   for (int Lane = 0; Lane < Width; Lane++)
636     Vector = Builder.CreateInsertElement(
637         Vector, getNewValue(Stmt, Old, ScalarMaps[Lane], VLTS[Lane], L),
638         Builder.getInt32(Lane));
639 
640   VectorMap[Old] = Vector;
641 
642   return Vector;
643 }
644 
645 Type *VectorBlockGenerator::getVectorPtrTy(const Value *Val, int Width) {
646   PointerType *PointerTy = dyn_cast<PointerType>(Val->getType());
647   assert(PointerTy && "PointerType expected");
648 
649   Type *ScalarType = PointerTy->getElementType();
650   VectorType *VectorType = VectorType::get(ScalarType, Width);
651 
652   return PointerType::getUnqual(VectorType);
653 }
654 
655 Value *VectorBlockGenerator::generateStrideOneLoad(
656     ScopStmt &Stmt, LoadInst *Load, VectorValueMapT &ScalarMaps,
657     __isl_keep isl_id_to_ast_expr *NewAccesses, bool NegativeStride = false) {
658   unsigned VectorWidth = getVectorWidth();
659   auto *Pointer = Load->getPointerOperand();
660   Type *VectorPtrType = getVectorPtrTy(Pointer, VectorWidth);
661   unsigned Offset = NegativeStride ? VectorWidth - 1 : 0;
662 
663   Value *NewPointer = nullptr;
664   NewPointer = generateLocationAccessed(Stmt, Load, Pointer, ScalarMaps[Offset],
665                                         VLTS[Offset], NewAccesses);
666   Value *VectorPtr =
667       Builder.CreateBitCast(NewPointer, VectorPtrType, "vector_ptr");
668   LoadInst *VecLoad =
669       Builder.CreateLoad(VectorPtr, Load->getName() + "_p_vec_full");
670   if (!Aligned)
671     VecLoad->setAlignment(8);
672 
673   if (NegativeStride) {
674     SmallVector<Constant *, 16> Indices;
675     for (int i = VectorWidth - 1; i >= 0; i--)
676       Indices.push_back(ConstantInt::get(Builder.getInt32Ty(), i));
677     Constant *SV = llvm::ConstantVector::get(Indices);
678     Value *RevVecLoad = Builder.CreateShuffleVector(
679         VecLoad, VecLoad, SV, Load->getName() + "_reverse");
680     return RevVecLoad;
681   }
682 
683   return VecLoad;
684 }
685 
686 Value *VectorBlockGenerator::generateStrideZeroLoad(
687     ScopStmt &Stmt, LoadInst *Load, ValueMapT &BBMap,
688     __isl_keep isl_id_to_ast_expr *NewAccesses) {
689   auto *Pointer = Load->getPointerOperand();
690   Type *VectorPtrType = getVectorPtrTy(Pointer, 1);
691   Value *NewPointer = generateLocationAccessed(Stmt, Load, Pointer, BBMap,
692                                                VLTS[0], NewAccesses);
693   Value *VectorPtr = Builder.CreateBitCast(NewPointer, VectorPtrType,
694                                            Load->getName() + "_p_vec_p");
695   LoadInst *ScalarLoad =
696       Builder.CreateLoad(VectorPtr, Load->getName() + "_p_splat_one");
697 
698   if (!Aligned)
699     ScalarLoad->setAlignment(8);
700 
701   Constant *SplatVector = Constant::getNullValue(
702       VectorType::get(Builder.getInt32Ty(), getVectorWidth()));
703 
704   Value *VectorLoad = Builder.CreateShuffleVector(
705       ScalarLoad, ScalarLoad, SplatVector, Load->getName() + "_p_splat");
706   return VectorLoad;
707 }
708 
709 Value *VectorBlockGenerator::generateUnknownStrideLoad(
710     ScopStmt &Stmt, LoadInst *Load, VectorValueMapT &ScalarMaps,
711     __isl_keep isl_id_to_ast_expr *NewAccesses) {
712   int VectorWidth = getVectorWidth();
713   auto *Pointer = Load->getPointerOperand();
714   VectorType *VectorType = VectorType::get(
715       dyn_cast<PointerType>(Pointer->getType())->getElementType(), VectorWidth);
716 
717   Value *Vector = UndefValue::get(VectorType);
718 
719   for (int i = 0; i < VectorWidth; i++) {
720     Value *NewPointer = generateLocationAccessed(
721         Stmt, Load, Pointer, ScalarMaps[i], VLTS[i], NewAccesses);
722     Value *ScalarLoad =
723         Builder.CreateLoad(NewPointer, Load->getName() + "_p_scalar_");
724     Vector = Builder.CreateInsertElement(
725         Vector, ScalarLoad, Builder.getInt32(i), Load->getName() + "_p_vec_");
726   }
727 
728   return Vector;
729 }
730 
731 void VectorBlockGenerator::generateLoad(
732     ScopStmt &Stmt, LoadInst *Load, ValueMapT &VectorMap,
733     VectorValueMapT &ScalarMaps, __isl_keep isl_id_to_ast_expr *NewAccesses) {
734   if (Value *PreloadLoad = GlobalMap.lookup(Load)) {
735     VectorMap[Load] = Builder.CreateVectorSplat(getVectorWidth(), PreloadLoad,
736                                                 Load->getName() + "_p");
737     return;
738   }
739 
740   if (!VectorType::isValidElementType(Load->getType())) {
741     for (int i = 0; i < getVectorWidth(); i++)
742       ScalarMaps[i][Load] =
743           generateScalarLoad(Stmt, Load, ScalarMaps[i], VLTS[i], NewAccesses);
744     return;
745   }
746 
747   const MemoryAccess &Access = Stmt.getAccessFor(Load);
748 
749   // Make sure we have scalar values available to access the pointer to
750   // the data location.
751   extractScalarValues(Load, VectorMap, ScalarMaps);
752 
753   Value *NewLoad;
754   if (Access.isStrideZero(isl_map_copy(Schedule)))
755     NewLoad = generateStrideZeroLoad(Stmt, Load, ScalarMaps[0], NewAccesses);
756   else if (Access.isStrideOne(isl_map_copy(Schedule)))
757     NewLoad = generateStrideOneLoad(Stmt, Load, ScalarMaps, NewAccesses);
758   else if (Access.isStrideX(isl_map_copy(Schedule), -1))
759     NewLoad = generateStrideOneLoad(Stmt, Load, ScalarMaps, NewAccesses, true);
760   else
761     NewLoad = generateUnknownStrideLoad(Stmt, Load, ScalarMaps, NewAccesses);
762 
763   VectorMap[Load] = NewLoad;
764 }
765 
766 void VectorBlockGenerator::copyUnaryInst(ScopStmt &Stmt, UnaryInstruction *Inst,
767                                          ValueMapT &VectorMap,
768                                          VectorValueMapT &ScalarMaps) {
769   int VectorWidth = getVectorWidth();
770   Value *NewOperand = getVectorValue(Stmt, Inst->getOperand(0), VectorMap,
771                                      ScalarMaps, getLoopForInst(Inst));
772 
773   assert(isa<CastInst>(Inst) && "Can not generate vector code for instruction");
774 
775   const CastInst *Cast = dyn_cast<CastInst>(Inst);
776   VectorType *DestType = VectorType::get(Inst->getType(), VectorWidth);
777   VectorMap[Inst] = Builder.CreateCast(Cast->getOpcode(), NewOperand, DestType);
778 }
779 
780 void VectorBlockGenerator::copyBinaryInst(ScopStmt &Stmt, BinaryOperator *Inst,
781                                           ValueMapT &VectorMap,
782                                           VectorValueMapT &ScalarMaps) {
783   Loop *L = getLoopForInst(Inst);
784   Value *OpZero = Inst->getOperand(0);
785   Value *OpOne = Inst->getOperand(1);
786 
787   Value *NewOpZero, *NewOpOne;
788   NewOpZero = getVectorValue(Stmt, OpZero, VectorMap, ScalarMaps, L);
789   NewOpOne = getVectorValue(Stmt, OpOne, VectorMap, ScalarMaps, L);
790 
791   Value *NewInst = Builder.CreateBinOp(Inst->getOpcode(), NewOpZero, NewOpOne,
792                                        Inst->getName() + "p_vec");
793   VectorMap[Inst] = NewInst;
794 }
795 
796 void VectorBlockGenerator::copyStore(
797     ScopStmt &Stmt, StoreInst *Store, ValueMapT &VectorMap,
798     VectorValueMapT &ScalarMaps, __isl_keep isl_id_to_ast_expr *NewAccesses) {
799   const MemoryAccess &Access = Stmt.getAccessFor(Store);
800 
801   auto *Pointer = Store->getPointerOperand();
802   Value *Vector = getVectorValue(Stmt, Store->getValueOperand(), VectorMap,
803                                  ScalarMaps, getLoopForInst(Store));
804 
805   // Make sure we have scalar values available to access the pointer to
806   // the data location.
807   extractScalarValues(Store, VectorMap, ScalarMaps);
808 
809   if (Access.isStrideOne(isl_map_copy(Schedule))) {
810     Type *VectorPtrType = getVectorPtrTy(Pointer, getVectorWidth());
811     Value *NewPointer = generateLocationAccessed(
812         Stmt, Store, Pointer, ScalarMaps[0], VLTS[0], NewAccesses);
813 
814     Value *VectorPtr =
815         Builder.CreateBitCast(NewPointer, VectorPtrType, "vector_ptr");
816     StoreInst *Store = Builder.CreateStore(Vector, VectorPtr);
817 
818     if (!Aligned)
819       Store->setAlignment(8);
820   } else {
821     for (unsigned i = 0; i < ScalarMaps.size(); i++) {
822       Value *Scalar = Builder.CreateExtractElement(Vector, Builder.getInt32(i));
823       Value *NewPointer = generateLocationAccessed(
824           Stmt, Store, Pointer, ScalarMaps[i], VLTS[i], NewAccesses);
825       Builder.CreateStore(Scalar, NewPointer);
826     }
827   }
828 }
829 
830 bool VectorBlockGenerator::hasVectorOperands(const Instruction *Inst,
831                                              ValueMapT &VectorMap) {
832   for (Value *Operand : Inst->operands())
833     if (VectorMap.count(Operand))
834       return true;
835   return false;
836 }
837 
838 bool VectorBlockGenerator::extractScalarValues(const Instruction *Inst,
839                                                ValueMapT &VectorMap,
840                                                VectorValueMapT &ScalarMaps) {
841   bool HasVectorOperand = false;
842   int VectorWidth = getVectorWidth();
843 
844   for (Value *Operand : Inst->operands()) {
845     ValueMapT::iterator VecOp = VectorMap.find(Operand);
846 
847     if (VecOp == VectorMap.end())
848       continue;
849 
850     HasVectorOperand = true;
851     Value *NewVector = VecOp->second;
852 
853     for (int i = 0; i < VectorWidth; ++i) {
854       ValueMapT &SM = ScalarMaps[i];
855 
856       // If there is one scalar extracted, all scalar elements should have
857       // already been extracted by the code here. So no need to check for the
858       // existance of all of them.
859       if (SM.count(Operand))
860         break;
861 
862       SM[Operand] =
863           Builder.CreateExtractElement(NewVector, Builder.getInt32(i));
864     }
865   }
866 
867   return HasVectorOperand;
868 }
869 
870 void VectorBlockGenerator::copyInstScalarized(
871     ScopStmt &Stmt, Instruction *Inst, ValueMapT &VectorMap,
872     VectorValueMapT &ScalarMaps, __isl_keep isl_id_to_ast_expr *NewAccesses) {
873   bool HasVectorOperand;
874   int VectorWidth = getVectorWidth();
875 
876   HasVectorOperand = extractScalarValues(Inst, VectorMap, ScalarMaps);
877 
878   for (int VectorLane = 0; VectorLane < getVectorWidth(); VectorLane++)
879     BlockGenerator::copyInstruction(Stmt, Inst, ScalarMaps[VectorLane],
880                                     VLTS[VectorLane], NewAccesses);
881 
882   if (!VectorType::isValidElementType(Inst->getType()) || !HasVectorOperand)
883     return;
884 
885   // Make the result available as vector value.
886   VectorType *VectorType = VectorType::get(Inst->getType(), VectorWidth);
887   Value *Vector = UndefValue::get(VectorType);
888 
889   for (int i = 0; i < VectorWidth; i++)
890     Vector = Builder.CreateInsertElement(Vector, ScalarMaps[i][Inst],
891                                          Builder.getInt32(i));
892 
893   VectorMap[Inst] = Vector;
894 }
895 
896 int VectorBlockGenerator::getVectorWidth() { return VLTS.size(); }
897 
898 void VectorBlockGenerator::copyInstruction(
899     ScopStmt &Stmt, Instruction *Inst, ValueMapT &VectorMap,
900     VectorValueMapT &ScalarMaps, __isl_keep isl_id_to_ast_expr *NewAccesses) {
901   // Terminator instructions control the control flow. They are explicitly
902   // expressed in the clast and do not need to be copied.
903   if (Inst->isTerminator())
904     return;
905 
906   if (canSynthesize(Inst, &LI, &SE, &Stmt.getParent()->getRegion()))
907     return;
908 
909   if (auto *Load = dyn_cast<LoadInst>(Inst)) {
910     generateLoad(Stmt, Load, VectorMap, ScalarMaps, NewAccesses);
911     return;
912   }
913 
914   if (hasVectorOperands(Inst, VectorMap)) {
915     if (auto *Store = dyn_cast<StoreInst>(Inst)) {
916       copyStore(Stmt, Store, VectorMap, ScalarMaps, NewAccesses);
917       return;
918     }
919 
920     if (auto *Unary = dyn_cast<UnaryInstruction>(Inst)) {
921       copyUnaryInst(Stmt, Unary, VectorMap, ScalarMaps);
922       return;
923     }
924 
925     if (auto *Binary = dyn_cast<BinaryOperator>(Inst)) {
926       copyBinaryInst(Stmt, Binary, VectorMap, ScalarMaps);
927       return;
928     }
929 
930     // Falltrough: We generate scalar instructions, if we don't know how to
931     // generate vector code.
932   }
933 
934   copyInstScalarized(Stmt, Inst, VectorMap, ScalarMaps, NewAccesses);
935 }
936 
937 void VectorBlockGenerator::copyStmt(
938     ScopStmt &Stmt, __isl_keep isl_id_to_ast_expr *NewAccesses) {
939   assert(Stmt.isBlockStmt() && "TODO: Only block statements can be copied by "
940                                "the vector block generator");
941 
942   BasicBlock *BB = Stmt.getBasicBlock();
943   BasicBlock *CopyBB =
944       SplitBlock(Builder.GetInsertBlock(), Builder.GetInsertPoint(), &DT, &LI);
945   CopyBB->setName("polly.stmt." + BB->getName());
946   Builder.SetInsertPoint(CopyBB->begin());
947 
948   // Create two maps that store the mapping from the original instructions of
949   // the old basic block to their copies in the new basic block. Those maps
950   // are basic block local.
951   //
952   // As vector code generation is supported there is one map for scalar values
953   // and one for vector values.
954   //
955   // In case we just do scalar code generation, the vectorMap is not used and
956   // the scalarMap has just one dimension, which contains the mapping.
957   //
958   // In case vector code generation is done, an instruction may either appear
959   // in the vector map once (as it is calculating >vectorwidth< values at a
960   // time. Or (if the values are calculated using scalar operations), it
961   // appears once in every dimension of the scalarMap.
962   VectorValueMapT ScalarBlockMap(getVectorWidth());
963   ValueMapT VectorBlockMap;
964 
965   for (Instruction &Inst : *BB)
966     copyInstruction(Stmt, &Inst, VectorBlockMap, ScalarBlockMap, NewAccesses);
967 }
968 
969 BasicBlock *RegionGenerator::repairDominance(BasicBlock *BB,
970                                              BasicBlock *BBCopy) {
971 
972   BasicBlock *BBIDom = DT.getNode(BB)->getIDom()->getBlock();
973   BasicBlock *BBCopyIDom = BlockMap.lookup(BBIDom);
974 
975   if (BBCopyIDom)
976     DT.changeImmediateDominator(BBCopy, BBCopyIDom);
977 
978   return BBCopyIDom;
979 }
980 
981 void RegionGenerator::copyStmt(ScopStmt &Stmt, LoopToScevMapT &LTS,
982                                isl_id_to_ast_expr *IdToAstExp) {
983   assert(Stmt.isRegionStmt() &&
984          "Only region statements can be copied by the region generator");
985 
986   // Forget all old mappings.
987   BlockMap.clear();
988   RegionMaps.clear();
989   IncompletePHINodeMap.clear();
990 
991   // Collection of all values related to this subregion.
992   ValueMapT ValueMap;
993 
994   // The region represented by the statement.
995   Region *R = Stmt.getRegion();
996 
997   // Create a dedicated entry for the region where we can reload all demoted
998   // inputs.
999   BasicBlock *EntryBB = R->getEntry();
1000   BasicBlock *EntryBBCopy =
1001       SplitBlock(Builder.GetInsertBlock(), Builder.GetInsertPoint(), &DT, &LI);
1002   EntryBBCopy->setName("polly.stmt." + EntryBB->getName() + ".entry");
1003   Builder.SetInsertPoint(EntryBBCopy->begin());
1004 
1005   generateScalarLoads(Stmt, RegionMaps[EntryBBCopy]);
1006 
1007   for (auto PI = pred_begin(EntryBB), PE = pred_end(EntryBB); PI != PE; ++PI)
1008     if (!R->contains(*PI))
1009       BlockMap[*PI] = EntryBBCopy;
1010 
1011   // Iterate over all blocks in the region in a breadth-first search.
1012   std::deque<BasicBlock *> Blocks;
1013   SmallPtrSet<BasicBlock *, 8> SeenBlocks;
1014   Blocks.push_back(EntryBB);
1015   SeenBlocks.insert(EntryBB);
1016 
1017   while (!Blocks.empty()) {
1018     BasicBlock *BB = Blocks.front();
1019     Blocks.pop_front();
1020 
1021     // First split the block and update dominance information.
1022     BasicBlock *BBCopy = splitBB(BB);
1023     BasicBlock *BBCopyIDom = repairDominance(BB, BBCopy);
1024 
1025     // In order to remap PHI nodes we store also basic block mappings.
1026     BlockMap[BB] = BBCopy;
1027 
1028     // Get the mapping for this block and initialize it with the mapping
1029     // available at its immediate dominator (in the new region).
1030     ValueMapT &RegionMap = RegionMaps[BBCopy];
1031     if (BBCopy != EntryBBCopy)
1032       RegionMap = RegionMaps[BBCopyIDom];
1033 
1034     // Copy the block with the BlockGenerator.
1035     Builder.SetInsertPoint(BBCopy->begin());
1036     copyBB(Stmt, BB, BBCopy, RegionMap, LTS, IdToAstExp);
1037 
1038     // In order to remap PHI nodes we store also basic block mappings.
1039     BlockMap[BB] = BBCopy;
1040 
1041     // Add values to incomplete PHI nodes waiting for this block to be copied.
1042     for (const PHINodePairTy &PHINodePair : IncompletePHINodeMap[BB])
1043       addOperandToPHI(Stmt, PHINodePair.first, PHINodePair.second, BB, LTS);
1044     IncompletePHINodeMap[BB].clear();
1045 
1046     // And continue with new successors inside the region.
1047     for (auto SI = succ_begin(BB), SE = succ_end(BB); SI != SE; SI++)
1048       if (R->contains(*SI) && SeenBlocks.insert(*SI).second)
1049         Blocks.push_back(*SI);
1050 
1051     // Remember value in case it is visible after this subregion.
1052     ValueMap.insert(RegionMap.begin(), RegionMap.end());
1053   }
1054 
1055   // Now create a new dedicated region exit block and add it to the region map.
1056   BasicBlock *ExitBBCopy =
1057       SplitBlock(Builder.GetInsertBlock(), Builder.GetInsertPoint(), &DT, &LI);
1058   ExitBBCopy->setName("polly.stmt." + R->getExit()->getName() + ".exit");
1059   BlockMap[R->getExit()] = ExitBBCopy;
1060 
1061   repairDominance(R->getExit(), ExitBBCopy);
1062 
1063   // As the block generator doesn't handle control flow we need to add the
1064   // region control flow by hand after all blocks have been copied.
1065   for (BasicBlock *BB : SeenBlocks) {
1066 
1067     BasicBlock *BBCopy = BlockMap[BB];
1068     TerminatorInst *TI = BB->getTerminator();
1069     if (isa<UnreachableInst>(TI)) {
1070       while (!BBCopy->empty())
1071         BBCopy->begin()->eraseFromParent();
1072       new UnreachableInst(BBCopy->getContext(), BBCopy);
1073       continue;
1074     }
1075 
1076     Instruction *BICopy = BBCopy->getTerminator();
1077 
1078     ValueMapT &RegionMap = RegionMaps[BBCopy];
1079     RegionMap.insert(BlockMap.begin(), BlockMap.end());
1080 
1081     Builder.SetInsertPoint(BICopy);
1082     copyInstScalar(Stmt, TI, RegionMap, LTS);
1083     BICopy->eraseFromParent();
1084   }
1085 
1086   // Add counting PHI nodes to all loops in the region that can be used as
1087   // replacement for SCEVs refering to the old loop.
1088   for (BasicBlock *BB : SeenBlocks) {
1089     Loop *L = LI.getLoopFor(BB);
1090     if (L == nullptr || L->getHeader() != BB)
1091       continue;
1092 
1093     BasicBlock *BBCopy = BlockMap[BB];
1094     Value *NullVal = Builder.getInt32(0);
1095     PHINode *LoopPHI =
1096         PHINode::Create(Builder.getInt32Ty(), 2, "polly.subregion.iv");
1097     Instruction *LoopPHIInc = BinaryOperator::CreateAdd(
1098         LoopPHI, Builder.getInt32(1), "polly.subregion.iv.inc");
1099     LoopPHI->insertBefore(BBCopy->begin());
1100     LoopPHIInc->insertBefore(BBCopy->getTerminator());
1101 
1102     for (auto *PredBB : make_range(pred_begin(BB), pred_end(BB))) {
1103       if (!R->contains(PredBB))
1104         continue;
1105       if (L->contains(PredBB))
1106         LoopPHI->addIncoming(LoopPHIInc, BlockMap[PredBB]);
1107       else
1108         LoopPHI->addIncoming(NullVal, BlockMap[PredBB]);
1109     }
1110 
1111     for (auto *PredBBCopy : make_range(pred_begin(BBCopy), pred_end(BBCopy)))
1112       if (LoopPHI->getBasicBlockIndex(PredBBCopy) < 0)
1113         LoopPHI->addIncoming(NullVal, PredBBCopy);
1114 
1115     LTS[L] = SE.getUnknown(LoopPHI);
1116   }
1117 
1118   // Continue generating code in the exit block.
1119   Builder.SetInsertPoint(ExitBBCopy->getFirstInsertionPt());
1120 
1121   // Write values visible to other statements.
1122   generateScalarStores(Stmt, LTS, ValueMap);
1123 }
1124 
1125 void RegionGenerator::generateScalarStores(ScopStmt &Stmt, LoopToScevMapT &LTS,
1126                                            ValueMapT &BBMap) {
1127   const Region &R = Stmt.getParent()->getRegion();
1128 
1129   assert(Stmt.getRegion() &&
1130          "Block statements need to use the generateScalarStores() "
1131          "function in the BlockGenerator");
1132 
1133   for (MemoryAccess *MA : Stmt) {
1134     if (MA->isExplicit() || MA->isRead())
1135       continue;
1136 
1137     Instruction *ScalarInst = MA->getAccessInstruction();
1138     Value *Val = MA->getAccessValue();
1139 
1140     // In case we add the store into an exiting block, we need to restore the
1141     // position for stores in the exit node.
1142     auto SavedInsertionPoint = Builder.GetInsertPoint();
1143 
1144     // Implicit writes induced by PHIs must be written in the incoming blocks.
1145     if (isa<TerminatorInst>(ScalarInst)) {
1146       BasicBlock *ExitingBB = ScalarInst->getParent();
1147       BasicBlock *ExitingBBCopy = BlockMap[ExitingBB];
1148       Builder.SetInsertPoint(ExitingBBCopy->getTerminator());
1149     }
1150 
1151     auto Address = getOrCreateAlloca(*MA);
1152 
1153     Val = getNewScalarValue(Val, R, Stmt, LTS, BBMap);
1154     Builder.CreateStore(Val, Address);
1155 
1156     // Restore the insertion point if necessary.
1157     if (isa<TerminatorInst>(ScalarInst))
1158       Builder.SetInsertPoint(SavedInsertionPoint);
1159   }
1160 }
1161 
1162 void RegionGenerator::addOperandToPHI(ScopStmt &Stmt, const PHINode *PHI,
1163                                       PHINode *PHICopy, BasicBlock *IncomingBB,
1164                                       LoopToScevMapT &LTS) {
1165   Region *StmtR = Stmt.getRegion();
1166 
1167   // If the incoming block was not yet copied mark this PHI as incomplete.
1168   // Once the block will be copied the incoming value will be added.
1169   BasicBlock *BBCopy = BlockMap[IncomingBB];
1170   if (!BBCopy) {
1171     assert(StmtR->contains(IncomingBB) &&
1172            "Bad incoming block for PHI in non-affine region");
1173     IncompletePHINodeMap[IncomingBB].push_back(std::make_pair(PHI, PHICopy));
1174     return;
1175   }
1176 
1177   Value *OpCopy = nullptr;
1178   if (StmtR->contains(IncomingBB)) {
1179     assert(RegionMaps.count(BBCopy) &&
1180            "Incoming PHI block did not have a BBMap");
1181     ValueMapT &BBCopyMap = RegionMaps[BBCopy];
1182 
1183     Value *Op = PHI->getIncomingValueForBlock(IncomingBB);
1184 
1185     auto OldIP = Builder.GetInsertPoint();
1186     Builder.SetInsertPoint(BBCopy->getTerminator());
1187     OpCopy = getNewValue(Stmt, Op, BBCopyMap, LTS, getLoopForInst(PHI));
1188     Builder.SetInsertPoint(OldIP);
1189   } else {
1190 
1191     if (PHICopy->getBasicBlockIndex(BBCopy) >= 0)
1192       return;
1193 
1194     Value *PHIOpAddr = getOrCreatePHIAlloca(const_cast<PHINode *>(PHI));
1195     OpCopy = new LoadInst(PHIOpAddr, PHIOpAddr->getName() + ".reload",
1196                           BlockMap[IncomingBB]->getTerminator());
1197   }
1198 
1199   assert(OpCopy && "Incoming PHI value was not copied properly");
1200   assert(BBCopy && "Incoming PHI block was not copied properly");
1201   PHICopy->addIncoming(OpCopy, BBCopy);
1202 }
1203 
1204 Value *RegionGenerator::copyPHIInstruction(ScopStmt &Stmt, PHINode *PHI,
1205                                            ValueMapT &BBMap,
1206                                            LoopToScevMapT &LTS) {
1207   unsigned NumIncoming = PHI->getNumIncomingValues();
1208   PHINode *PHICopy =
1209       Builder.CreatePHI(PHI->getType(), NumIncoming, "polly." + PHI->getName());
1210   PHICopy->moveBefore(PHICopy->getParent()->getFirstNonPHI());
1211   BBMap[PHI] = PHICopy;
1212 
1213   for (unsigned u = 0; u < NumIncoming; u++)
1214     addOperandToPHI(Stmt, PHI, PHICopy, PHI->getIncomingBlock(u), LTS);
1215   return PHICopy;
1216 }
1217