1 //===--- BlockGenerators.cpp - Generate code for statements -----*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the BlockGenerator and VectorBlockGenerator classes, 11 // which generate sequential code and vectorized code for a polyhedral 12 // statement, respectively. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "polly/ScopInfo.h" 17 #include "polly/CodeGen/BlockGenerators.h" 18 #include "polly/CodeGen/CodeGeneration.h" 19 #include "polly/CodeGen/IslExprBuilder.h" 20 #include "polly/CodeGen/RuntimeDebugBuilder.h" 21 #include "polly/Options.h" 22 #include "polly/Support/GICHelper.h" 23 #include "polly/Support/SCEVValidator.h" 24 #include "polly/Support/ScopHelper.h" 25 #include "llvm/Analysis/LoopInfo.h" 26 #include "llvm/Analysis/RegionInfo.h" 27 #include "llvm/Analysis/ScalarEvolution.h" 28 #include "llvm/IR/IntrinsicInst.h" 29 #include "llvm/IR/Module.h" 30 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 31 #include "llvm/Transforms/Utils/Local.h" 32 #include "isl/aff.h" 33 #include "isl/ast.h" 34 #include "isl/ast_build.h" 35 #include "isl/set.h" 36 #include <deque> 37 38 using namespace llvm; 39 using namespace polly; 40 41 static cl::opt<bool> Aligned("enable-polly-aligned", 42 cl::desc("Assumed aligned memory accesses."), 43 cl::Hidden, cl::init(false), cl::ZeroOrMore, 44 cl::cat(PollyCategory)); 45 46 static cl::opt<bool> DebugPrinting( 47 "polly-codegen-add-debug-printing", 48 cl::desc("Add printf calls that show the values loaded/stored."), 49 cl::Hidden, cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory)); 50 51 BlockGenerator::BlockGenerator(PollyIRBuilder &B, LoopInfo &LI, 52 ScalarEvolution &SE, DominatorTree &DT, 53 ScalarAllocaMapTy &ScalarMap, 54 ScalarAllocaMapTy &PHIOpMap, 55 EscapeUsersAllocaMapTy &EscapeMap, 56 ValueMapT &GlobalMap, 57 IslExprBuilder *ExprBuilder) 58 : Builder(B), LI(LI), SE(SE), ExprBuilder(ExprBuilder), DT(DT), 59 EntryBB(nullptr), PHIOpMap(PHIOpMap), ScalarMap(ScalarMap), 60 EscapeMap(EscapeMap), GlobalMap(GlobalMap) {} 61 62 Value *BlockGenerator::trySynthesizeNewValue(ScopStmt &Stmt, Value *Old, 63 ValueMapT &BBMap, 64 LoopToScevMapT <S, 65 Loop *L) const { 66 if (SE.isSCEVable(Old->getType())) 67 if (const SCEV *Scev = SE.getSCEVAtScope(const_cast<Value *>(Old), L)) { 68 if (!isa<SCEVCouldNotCompute>(Scev)) { 69 const SCEV *NewScev = apply(Scev, LTS, SE); 70 ValueMapT VTV; 71 VTV.insert(BBMap.begin(), BBMap.end()); 72 VTV.insert(GlobalMap.begin(), GlobalMap.end()); 73 74 Scop &S = *Stmt.getParent(); 75 const DataLayout &DL = 76 S.getRegion().getEntry()->getParent()->getParent()->getDataLayout(); 77 auto IP = Builder.GetInsertPoint(); 78 79 assert(IP != Builder.GetInsertBlock()->end() && 80 "Only instructions can be insert points for SCEVExpander"); 81 Value *Expanded = expandCodeFor(S, SE, DL, "polly", NewScev, 82 Old->getType(), IP, &VTV); 83 84 BBMap[Old] = Expanded; 85 return Expanded; 86 } 87 } 88 89 return nullptr; 90 } 91 92 Value *BlockGenerator::getNewValue(ScopStmt &Stmt, Value *Old, ValueMapT &BBMap, 93 LoopToScevMapT <S, Loop *L) const { 94 // We assume constants never change. 95 // This avoids map lookups for many calls to this function. 96 if (isa<Constant>(Old)) 97 return const_cast<Value *>(Old); 98 99 if (Value *New = GlobalMap.lookup(Old)) { 100 if (Value *NewRemapped = GlobalMap.lookup(New)) 101 New = NewRemapped; 102 if (Old->getType()->getScalarSizeInBits() < 103 New->getType()->getScalarSizeInBits()) 104 New = Builder.CreateTruncOrBitCast(New, Old->getType()); 105 106 return New; 107 } 108 109 if (Value *New = BBMap.lookup(Old)) 110 return New; 111 112 if (Value *New = trySynthesizeNewValue(Stmt, Old, BBMap, LTS, L)) 113 return New; 114 115 // A scop-constant value defined by a global or a function parameter. 116 if (isa<GlobalValue>(Old) || isa<Argument>(Old)) 117 return const_cast<Value *>(Old); 118 119 // A scop-constant value defined by an instruction executed outside the scop. 120 if (const Instruction *Inst = dyn_cast<Instruction>(Old)) 121 if (!Stmt.getParent()->getRegion().contains(Inst->getParent())) 122 return const_cast<Value *>(Old); 123 124 // The scalar dependence is neither available nor SCEVCodegenable. 125 llvm_unreachable("Unexpected scalar dependence in region!"); 126 return nullptr; 127 } 128 129 void BlockGenerator::copyInstScalar(ScopStmt &Stmt, Instruction *Inst, 130 ValueMapT &BBMap, LoopToScevMapT <S) { 131 // We do not generate debug intrinsics as we did not investigate how to 132 // copy them correctly. At the current state, they just crash the code 133 // generation as the meta-data operands are not correctly copied. 134 if (isa<DbgInfoIntrinsic>(Inst)) 135 return; 136 137 Instruction *NewInst = Inst->clone(); 138 139 // Replace old operands with the new ones. 140 for (Value *OldOperand : Inst->operands()) { 141 Value *NewOperand = 142 getNewValue(Stmt, OldOperand, BBMap, LTS, getLoopForInst(Inst)); 143 144 if (!NewOperand) { 145 assert(!isa<StoreInst>(NewInst) && 146 "Store instructions are always needed!"); 147 delete NewInst; 148 return; 149 } 150 151 NewInst->replaceUsesOfWith(OldOperand, NewOperand); 152 } 153 154 Builder.Insert(NewInst); 155 BBMap[Inst] = NewInst; 156 157 if (!NewInst->getType()->isVoidTy()) 158 NewInst->setName("p_" + Inst->getName()); 159 } 160 161 Value *BlockGenerator::generateLocationAccessed( 162 ScopStmt &Stmt, const Instruction *Inst, Value *Pointer, ValueMapT &BBMap, 163 LoopToScevMapT <S, isl_id_to_ast_expr *NewAccesses) { 164 const MemoryAccess &MA = Stmt.getAccessFor(Inst); 165 166 isl_ast_expr *AccessExpr = isl_id_to_ast_expr_get(NewAccesses, MA.getId()); 167 168 if (AccessExpr) { 169 AccessExpr = isl_ast_expr_address_of(AccessExpr); 170 auto Address = ExprBuilder->create(AccessExpr); 171 172 // Cast the address of this memory access to a pointer type that has the 173 // same element type as the original access, but uses the address space of 174 // the newly generated pointer. 175 auto OldPtrTy = MA.getAccessValue()->getType()->getPointerTo(); 176 auto NewPtrTy = Address->getType(); 177 OldPtrTy = PointerType::get(OldPtrTy->getElementType(), 178 NewPtrTy->getPointerAddressSpace()); 179 180 if (OldPtrTy != NewPtrTy) { 181 assert(OldPtrTy->getPointerElementType()->getPrimitiveSizeInBits() == 182 NewPtrTy->getPointerElementType()->getPrimitiveSizeInBits() && 183 "Pointer types to elements with different size found"); 184 Address = Builder.CreateBitOrPointerCast(Address, OldPtrTy); 185 } 186 return Address; 187 } 188 189 return getNewValue(Stmt, Pointer, BBMap, LTS, getLoopForInst(Inst)); 190 } 191 192 Loop *BlockGenerator::getLoopForInst(const llvm::Instruction *Inst) { 193 return LI.getLoopFor(Inst->getParent()); 194 } 195 196 Value *BlockGenerator::generateScalarLoad(ScopStmt &Stmt, LoadInst *Load, 197 ValueMapT &BBMap, LoopToScevMapT <S, 198 isl_id_to_ast_expr *NewAccesses) { 199 if (Value *PreloadLoad = GlobalMap.lookup(Load)) 200 return PreloadLoad; 201 202 auto *Pointer = Load->getPointerOperand(); 203 Value *NewPointer = 204 generateLocationAccessed(Stmt, Load, Pointer, BBMap, LTS, NewAccesses); 205 Value *ScalarLoad = Builder.CreateAlignedLoad( 206 NewPointer, Load->getAlignment(), Load->getName() + "_p_scalar_"); 207 208 if (DebugPrinting) 209 RuntimeDebugBuilder::createCPUPrinter(Builder, "Load from ", NewPointer, 210 ": ", ScalarLoad, "\n"); 211 212 return ScalarLoad; 213 } 214 215 void BlockGenerator::generateScalarStore(ScopStmt &Stmt, StoreInst *Store, 216 ValueMapT &BBMap, LoopToScevMapT <S, 217 isl_id_to_ast_expr *NewAccesses) { 218 auto *Pointer = Store->getPointerOperand(); 219 Value *NewPointer = 220 generateLocationAccessed(Stmt, Store, Pointer, BBMap, LTS, NewAccesses); 221 Value *ValueOperand = getNewValue(Stmt, Store->getValueOperand(), BBMap, LTS, 222 getLoopForInst(Store)); 223 224 if (DebugPrinting) 225 RuntimeDebugBuilder::createCPUPrinter(Builder, "Store to ", NewPointer, 226 ": ", ValueOperand, "\n"); 227 228 Builder.CreateAlignedStore(ValueOperand, NewPointer, Store->getAlignment()); 229 } 230 231 void BlockGenerator::copyInstruction(ScopStmt &Stmt, Instruction *Inst, 232 ValueMapT &BBMap, LoopToScevMapT <S, 233 isl_id_to_ast_expr *NewAccesses) { 234 // Terminator instructions control the control flow. They are explicitly 235 // expressed in the clast and do not need to be copied. 236 if (Inst->isTerminator()) 237 return; 238 239 Loop *L = getLoopForInst(Inst); 240 if ((Stmt.isBlockStmt() || !Stmt.getRegion()->contains(L)) && 241 canSynthesize(Inst, &LI, &SE, &Stmt.getParent()->getRegion())) { 242 // Synthesizable statements will be generated on-demand. 243 return; 244 } 245 246 if (auto *Load = dyn_cast<LoadInst>(Inst)) { 247 Value *NewLoad = generateScalarLoad(Stmt, Load, BBMap, LTS, NewAccesses); 248 // Compute NewLoad before its insertion in BBMap to make the insertion 249 // deterministic. 250 BBMap[Load] = NewLoad; 251 return; 252 } 253 254 if (auto *Store = dyn_cast<StoreInst>(Inst)) { 255 generateScalarStore(Stmt, Store, BBMap, LTS, NewAccesses); 256 return; 257 } 258 259 if (auto *PHI = dyn_cast<PHINode>(Inst)) { 260 copyPHIInstruction(Stmt, PHI, BBMap, LTS); 261 return; 262 } 263 264 // Skip some special intrinsics for which we do not adjust the semantics to 265 // the new schedule. All others are handled like every other instruction. 266 if (isIgnoredIntrinsic(Inst)) 267 return; 268 269 copyInstScalar(Stmt, Inst, BBMap, LTS); 270 } 271 272 void BlockGenerator::copyStmt(ScopStmt &Stmt, LoopToScevMapT <S, 273 isl_id_to_ast_expr *NewAccesses) { 274 assert(Stmt.isBlockStmt() && 275 "Only block statements can be copied by the block generator"); 276 277 ValueMapT BBMap; 278 279 BasicBlock *BB = Stmt.getBasicBlock(); 280 copyBB(Stmt, BB, BBMap, LTS, NewAccesses); 281 } 282 283 BasicBlock *BlockGenerator::splitBB(BasicBlock *BB) { 284 BasicBlock *CopyBB = 285 SplitBlock(Builder.GetInsertBlock(), Builder.GetInsertPoint(), &DT, &LI); 286 CopyBB->setName("polly.stmt." + BB->getName()); 287 return CopyBB; 288 } 289 290 BasicBlock *BlockGenerator::copyBB(ScopStmt &Stmt, BasicBlock *BB, 291 ValueMapT &BBMap, LoopToScevMapT <S, 292 isl_id_to_ast_expr *NewAccesses) { 293 BasicBlock *CopyBB = splitBB(BB); 294 Builder.SetInsertPoint(CopyBB->begin()); 295 generateScalarLoads(Stmt, BBMap); 296 297 copyBB(Stmt, BB, CopyBB, BBMap, LTS, NewAccesses); 298 299 // After a basic block was copied store all scalars that escape this block in 300 // their alloca. 301 generateScalarStores(Stmt, LTS, BBMap); 302 return CopyBB; 303 } 304 305 void BlockGenerator::copyBB(ScopStmt &Stmt, BasicBlock *BB, BasicBlock *CopyBB, 306 ValueMapT &BBMap, LoopToScevMapT <S, 307 isl_id_to_ast_expr *NewAccesses) { 308 EntryBB = &CopyBB->getParent()->getEntryBlock(); 309 310 for (Instruction &Inst : *BB) 311 copyInstruction(Stmt, &Inst, BBMap, LTS, NewAccesses); 312 } 313 314 Value *BlockGenerator::getOrCreateAlloca(Value *ScalarBase, 315 ScalarAllocaMapTy &Map, 316 const char *NameExt) { 317 // If no alloca was found create one and insert it in the entry block. 318 if (!Map.count(ScalarBase)) { 319 auto *Ty = ScalarBase->getType(); 320 auto NewAddr = new AllocaInst(Ty, ScalarBase->getName() + NameExt); 321 EntryBB = &Builder.GetInsertBlock()->getParent()->getEntryBlock(); 322 NewAddr->insertBefore(EntryBB->getFirstInsertionPt()); 323 Map[ScalarBase] = NewAddr; 324 } 325 326 auto Addr = Map[ScalarBase]; 327 328 if (GlobalMap.count(Addr)) 329 return GlobalMap[Addr]; 330 331 return Addr; 332 } 333 334 Value *BlockGenerator::getOrCreateAlloca(MemoryAccess &Access) { 335 if (Access.isPHI()) 336 return getOrCreatePHIAlloca(Access.getBaseAddr()); 337 else 338 return getOrCreateScalarAlloca(Access.getBaseAddr()); 339 } 340 341 Value *BlockGenerator::getOrCreateAlloca(const ScopArrayInfo *Array) { 342 if (Array->isPHI()) 343 return getOrCreatePHIAlloca(Array->getBasePtr()); 344 else 345 return getOrCreateScalarAlloca(Array->getBasePtr()); 346 } 347 348 Value *BlockGenerator::getOrCreateScalarAlloca(Value *ScalarBase) { 349 return getOrCreateAlloca(ScalarBase, ScalarMap, ".s2a"); 350 } 351 352 Value *BlockGenerator::getOrCreatePHIAlloca(Value *ScalarBase) { 353 return getOrCreateAlloca(ScalarBase, PHIOpMap, ".phiops"); 354 } 355 356 void BlockGenerator::handleOutsideUsers(const Region &R, Instruction *Inst, 357 Value *Address) { 358 // If there are escape users we get the alloca for this instruction and put it 359 // in the EscapeMap for later finalization. Lastly, if the instruction was 360 // copied multiple times we already did this and can exit. 361 if (EscapeMap.count(Inst)) 362 return; 363 364 EscapeUserVectorTy EscapeUsers; 365 for (User *U : Inst->users()) { 366 367 // Non-instruction user will never escape. 368 Instruction *UI = dyn_cast<Instruction>(U); 369 if (!UI) 370 continue; 371 372 if (R.contains(UI)) 373 continue; 374 375 EscapeUsers.push_back(UI); 376 } 377 378 // Exit if no escape uses were found. 379 if (EscapeUsers.empty()) 380 return; 381 382 // Get or create an escape alloca for this instruction. 383 auto *ScalarAddr = Address ? Address : getOrCreateScalarAlloca(Inst); 384 385 // Remember that this instruction has escape uses and the escape alloca. 386 EscapeMap[Inst] = std::make_pair(ScalarAddr, std::move(EscapeUsers)); 387 } 388 389 void BlockGenerator::generateScalarLoads(ScopStmt &Stmt, ValueMapT &BBMap) { 390 for (MemoryAccess *MA : Stmt) { 391 if (MA->isExplicit() || MA->isWrite()) 392 continue; 393 394 auto *Address = getOrCreateAlloca(*MA); 395 BBMap[MA->getBaseAddr()] = 396 Builder.CreateLoad(Address, Address->getName() + ".reload"); 397 } 398 } 399 400 Value *BlockGenerator::getNewScalarValue(Value *ScalarValue, const Region &R, 401 ScopStmt &Stmt, LoopToScevMapT <S, 402 ValueMapT &BBMap) { 403 // If the value we want to store is an instruction we might have demoted it 404 // in order to make it accessible here. In such a case a reload is 405 // necessary. If it is no instruction it will always be a value that 406 // dominates the current point and we can just use it. In total there are 4 407 // options: 408 // (1) The value is no instruction ==> use the value. 409 // (2) The value is an instruction that was split out of the region prior to 410 // code generation ==> use the instruction as it dominates the region. 411 // (3) The value is an instruction: 412 // (a) The value was defined in the current block, thus a copy is in 413 // the BBMap ==> use the mapped value. 414 // (b) The value was defined in a previous block, thus we demoted it 415 // earlier ==> use the reloaded value. 416 Instruction *ScalarValueInst = dyn_cast<Instruction>(ScalarValue); 417 if (!ScalarValueInst) 418 return ScalarValue; 419 420 if (!R.contains(ScalarValueInst)) { 421 if (Value *ScalarValueCopy = GlobalMap.lookup(ScalarValueInst)) 422 return /* Case (3a) */ ScalarValueCopy; 423 else 424 return /* Case 2 */ ScalarValue; 425 } 426 427 if (Value *ScalarValueCopy = BBMap.lookup(ScalarValueInst)) 428 return /* Case (3a) */ ScalarValueCopy; 429 430 if ((Stmt.isBlockStmt() && 431 Stmt.getBasicBlock() == ScalarValueInst->getParent()) || 432 (Stmt.isRegionStmt() && Stmt.getRegion()->contains(ScalarValueInst))) { 433 auto SynthesizedValue = trySynthesizeNewValue( 434 Stmt, ScalarValueInst, BBMap, LTS, getLoopForInst(ScalarValueInst)); 435 436 if (SynthesizedValue) 437 return SynthesizedValue; 438 } 439 440 // Case (3b) 441 Value *Address = getOrCreateScalarAlloca(ScalarValueInst); 442 ScalarValue = Builder.CreateLoad(Address, Address->getName() + ".reload"); 443 444 return ScalarValue; 445 } 446 447 void BlockGenerator::generateScalarStores(ScopStmt &Stmt, LoopToScevMapT <S, 448 ValueMapT &BBMap) { 449 const Region &R = Stmt.getParent()->getRegion(); 450 451 assert(Stmt.isBlockStmt() && "Region statements need to use the " 452 "generateScalarStores() function in the " 453 "RegionGenerator"); 454 455 for (MemoryAccess *MA : Stmt) { 456 if (MA->isExplicit() || MA->isRead()) 457 continue; 458 459 Value *Val = MA->getAccessValue(); 460 auto *Address = getOrCreateAlloca(*MA); 461 462 Val = getNewScalarValue(Val, R, Stmt, LTS, BBMap); 463 Builder.CreateStore(Val, Address); 464 } 465 } 466 467 void BlockGenerator::createScalarInitialization(Scop &S) { 468 Region &R = S.getRegion(); 469 // The split block __just before__ the region and optimized region. 470 BasicBlock *SplitBB = R.getEnteringBlock(); 471 BranchInst *SplitBBTerm = cast<BranchInst>(SplitBB->getTerminator()); 472 assert(SplitBBTerm->getNumSuccessors() == 2 && "Bad region entering block!"); 473 474 // Get the start block of the __optimized__ region. 475 BasicBlock *StartBB = SplitBBTerm->getSuccessor(0); 476 if (StartBB == R.getEntry()) 477 StartBB = SplitBBTerm->getSuccessor(1); 478 479 Builder.SetInsertPoint(StartBB->getTerminator()); 480 481 for (auto &Pair : S.arrays()) { 482 auto &Array = Pair.second; 483 if (Array->getNumberOfDimensions() != 0) 484 continue; 485 if (Array->isPHI()) { 486 // For PHI nodes, the only values we need to store are the ones that 487 // reach the PHI node from outside the region. In general there should 488 // only be one such incoming edge and this edge should enter through 489 // 'SplitBB'. 490 auto PHI = cast<PHINode>(Array->getBasePtr()); 491 492 for (auto BI = PHI->block_begin(), BE = PHI->block_end(); BI != BE; BI++) 493 if (!R.contains(*BI) && *BI != SplitBB) 494 llvm_unreachable("Incoming edges from outside the scop should always " 495 "come from SplitBB"); 496 497 int Idx = PHI->getBasicBlockIndex(SplitBB); 498 if (Idx < 0) 499 continue; 500 501 Value *ScalarValue = PHI->getIncomingValue(Idx); 502 503 Builder.CreateStore(ScalarValue, getOrCreatePHIAlloca(PHI)); 504 continue; 505 } 506 507 auto *Inst = dyn_cast<Instruction>(Array->getBasePtr()); 508 509 if (Inst && R.contains(Inst)) 510 continue; 511 512 // PHI nodes that are not marked as such in their SAI object are exit PHI 513 // nodes we model as common scalars but do not need to initialize. 514 if (Inst && isa<PHINode>(Inst)) 515 continue; 516 517 ValueMapT EmptyMap; 518 Builder.CreateStore(Array->getBasePtr(), 519 getOrCreateScalarAlloca(Array->getBasePtr())); 520 } 521 } 522 523 void BlockGenerator::createScalarFinalization(Region &R) { 524 // The exit block of the __unoptimized__ region. 525 BasicBlock *ExitBB = R.getExitingBlock(); 526 // The merge block __just after__ the region and the optimized region. 527 BasicBlock *MergeBB = R.getExit(); 528 529 // The exit block of the __optimized__ region. 530 BasicBlock *OptExitBB = *(pred_begin(MergeBB)); 531 if (OptExitBB == ExitBB) 532 OptExitBB = *(++pred_begin(MergeBB)); 533 534 Builder.SetInsertPoint(OptExitBB->getTerminator()); 535 for (const auto &EscapeMapping : EscapeMap) { 536 // Extract the escaping instruction and the escaping users as well as the 537 // alloca the instruction was demoted to. 538 Instruction *EscapeInst = EscapeMapping.getFirst(); 539 const auto &EscapeMappingValue = EscapeMapping.getSecond(); 540 const EscapeUserVectorTy &EscapeUsers = EscapeMappingValue.second; 541 Value *ScalarAddr = EscapeMappingValue.first; 542 543 // Reload the demoted instruction in the optimized version of the SCoP. 544 Value *EscapeInstReload = 545 Builder.CreateLoad(ScalarAddr, EscapeInst->getName() + ".final_reload"); 546 EscapeInstReload = 547 Builder.CreateBitOrPointerCast(EscapeInstReload, EscapeInst->getType()); 548 549 // Create the merge PHI that merges the optimized and unoptimized version. 550 PHINode *MergePHI = PHINode::Create(EscapeInst->getType(), 2, 551 EscapeInst->getName() + ".merge"); 552 MergePHI->insertBefore(MergeBB->getFirstInsertionPt()); 553 554 // Add the respective values to the merge PHI. 555 MergePHI->addIncoming(EscapeInstReload, OptExitBB); 556 MergePHI->addIncoming(EscapeInst, ExitBB); 557 558 // The information of scalar evolution about the escaping instruction needs 559 // to be revoked so the new merged instruction will be used. 560 if (SE.isSCEVable(EscapeInst->getType())) 561 SE.forgetValue(EscapeInst); 562 563 // Replace all uses of the demoted instruction with the merge PHI. 564 for (Instruction *EUser : EscapeUsers) 565 EUser->replaceUsesOfWith(EscapeInst, MergePHI); 566 } 567 } 568 569 void BlockGenerator::findOutsideUsers(Scop &S) { 570 auto &R = S.getRegion(); 571 572 // Handle PHI nodes that were in the original exit and are now 573 // moved into the region exiting block. 574 if (!S.hasSingleExitEdge()) { 575 for (Instruction &I : *S.getRegion().getExitingBlock()) { 576 PHINode *PHI = dyn_cast<PHINode>(&I); 577 if (!PHI) 578 break; 579 580 assert(PHI->getNumUses() == 1); 581 assert(ScalarMap.count(PHI->user_back())); 582 583 handleOutsideUsers(S.getRegion(), PHI, ScalarMap[PHI->user_back()]); 584 } 585 } 586 587 for (auto &Pair : S.arrays()) { 588 auto &Array = Pair.second; 589 590 if (Array->getNumberOfDimensions() != 0) 591 continue; 592 593 if (Array->isPHI()) 594 continue; 595 596 auto *Inst = dyn_cast<Instruction>(Array->getBasePtr()); 597 598 if (!Inst) 599 continue; 600 601 // Scop invariant hoisting moves some of the base pointers out of the scop. 602 // We can ignore these, as the invariant load hoisting already registers the 603 // relevant outside users. 604 if (!R.contains(Inst)) 605 continue; 606 607 handleOutsideUsers(R, Inst, nullptr); 608 } 609 } 610 611 void BlockGenerator::finalizeSCoP(Scop &S) { 612 findOutsideUsers(S); 613 createScalarInitialization(S); 614 createScalarFinalization(S.getRegion()); 615 } 616 617 VectorBlockGenerator::VectorBlockGenerator(BlockGenerator &BlockGen, 618 std::vector<LoopToScevMapT> &VLTS, 619 isl_map *Schedule) 620 : BlockGenerator(BlockGen), VLTS(VLTS), Schedule(Schedule) { 621 assert(Schedule && "No statement domain provided"); 622 } 623 624 Value *VectorBlockGenerator::getVectorValue(ScopStmt &Stmt, Value *Old, 625 ValueMapT &VectorMap, 626 VectorValueMapT &ScalarMaps, 627 Loop *L) { 628 if (Value *NewValue = VectorMap.lookup(Old)) 629 return NewValue; 630 631 int Width = getVectorWidth(); 632 633 Value *Vector = UndefValue::get(VectorType::get(Old->getType(), Width)); 634 635 for (int Lane = 0; Lane < Width; Lane++) 636 Vector = Builder.CreateInsertElement( 637 Vector, getNewValue(Stmt, Old, ScalarMaps[Lane], VLTS[Lane], L), 638 Builder.getInt32(Lane)); 639 640 VectorMap[Old] = Vector; 641 642 return Vector; 643 } 644 645 Type *VectorBlockGenerator::getVectorPtrTy(const Value *Val, int Width) { 646 PointerType *PointerTy = dyn_cast<PointerType>(Val->getType()); 647 assert(PointerTy && "PointerType expected"); 648 649 Type *ScalarType = PointerTy->getElementType(); 650 VectorType *VectorType = VectorType::get(ScalarType, Width); 651 652 return PointerType::getUnqual(VectorType); 653 } 654 655 Value *VectorBlockGenerator::generateStrideOneLoad( 656 ScopStmt &Stmt, LoadInst *Load, VectorValueMapT &ScalarMaps, 657 __isl_keep isl_id_to_ast_expr *NewAccesses, bool NegativeStride = false) { 658 unsigned VectorWidth = getVectorWidth(); 659 auto *Pointer = Load->getPointerOperand(); 660 Type *VectorPtrType = getVectorPtrTy(Pointer, VectorWidth); 661 unsigned Offset = NegativeStride ? VectorWidth - 1 : 0; 662 663 Value *NewPointer = nullptr; 664 NewPointer = generateLocationAccessed(Stmt, Load, Pointer, ScalarMaps[Offset], 665 VLTS[Offset], NewAccesses); 666 Value *VectorPtr = 667 Builder.CreateBitCast(NewPointer, VectorPtrType, "vector_ptr"); 668 LoadInst *VecLoad = 669 Builder.CreateLoad(VectorPtr, Load->getName() + "_p_vec_full"); 670 if (!Aligned) 671 VecLoad->setAlignment(8); 672 673 if (NegativeStride) { 674 SmallVector<Constant *, 16> Indices; 675 for (int i = VectorWidth - 1; i >= 0; i--) 676 Indices.push_back(ConstantInt::get(Builder.getInt32Ty(), i)); 677 Constant *SV = llvm::ConstantVector::get(Indices); 678 Value *RevVecLoad = Builder.CreateShuffleVector( 679 VecLoad, VecLoad, SV, Load->getName() + "_reverse"); 680 return RevVecLoad; 681 } 682 683 return VecLoad; 684 } 685 686 Value *VectorBlockGenerator::generateStrideZeroLoad( 687 ScopStmt &Stmt, LoadInst *Load, ValueMapT &BBMap, 688 __isl_keep isl_id_to_ast_expr *NewAccesses) { 689 auto *Pointer = Load->getPointerOperand(); 690 Type *VectorPtrType = getVectorPtrTy(Pointer, 1); 691 Value *NewPointer = generateLocationAccessed(Stmt, Load, Pointer, BBMap, 692 VLTS[0], NewAccesses); 693 Value *VectorPtr = Builder.CreateBitCast(NewPointer, VectorPtrType, 694 Load->getName() + "_p_vec_p"); 695 LoadInst *ScalarLoad = 696 Builder.CreateLoad(VectorPtr, Load->getName() + "_p_splat_one"); 697 698 if (!Aligned) 699 ScalarLoad->setAlignment(8); 700 701 Constant *SplatVector = Constant::getNullValue( 702 VectorType::get(Builder.getInt32Ty(), getVectorWidth())); 703 704 Value *VectorLoad = Builder.CreateShuffleVector( 705 ScalarLoad, ScalarLoad, SplatVector, Load->getName() + "_p_splat"); 706 return VectorLoad; 707 } 708 709 Value *VectorBlockGenerator::generateUnknownStrideLoad( 710 ScopStmt &Stmt, LoadInst *Load, VectorValueMapT &ScalarMaps, 711 __isl_keep isl_id_to_ast_expr *NewAccesses) { 712 int VectorWidth = getVectorWidth(); 713 auto *Pointer = Load->getPointerOperand(); 714 VectorType *VectorType = VectorType::get( 715 dyn_cast<PointerType>(Pointer->getType())->getElementType(), VectorWidth); 716 717 Value *Vector = UndefValue::get(VectorType); 718 719 for (int i = 0; i < VectorWidth; i++) { 720 Value *NewPointer = generateLocationAccessed( 721 Stmt, Load, Pointer, ScalarMaps[i], VLTS[i], NewAccesses); 722 Value *ScalarLoad = 723 Builder.CreateLoad(NewPointer, Load->getName() + "_p_scalar_"); 724 Vector = Builder.CreateInsertElement( 725 Vector, ScalarLoad, Builder.getInt32(i), Load->getName() + "_p_vec_"); 726 } 727 728 return Vector; 729 } 730 731 void VectorBlockGenerator::generateLoad( 732 ScopStmt &Stmt, LoadInst *Load, ValueMapT &VectorMap, 733 VectorValueMapT &ScalarMaps, __isl_keep isl_id_to_ast_expr *NewAccesses) { 734 if (Value *PreloadLoad = GlobalMap.lookup(Load)) { 735 VectorMap[Load] = Builder.CreateVectorSplat(getVectorWidth(), PreloadLoad, 736 Load->getName() + "_p"); 737 return; 738 } 739 740 if (!VectorType::isValidElementType(Load->getType())) { 741 for (int i = 0; i < getVectorWidth(); i++) 742 ScalarMaps[i][Load] = 743 generateScalarLoad(Stmt, Load, ScalarMaps[i], VLTS[i], NewAccesses); 744 return; 745 } 746 747 const MemoryAccess &Access = Stmt.getAccessFor(Load); 748 749 // Make sure we have scalar values available to access the pointer to 750 // the data location. 751 extractScalarValues(Load, VectorMap, ScalarMaps); 752 753 Value *NewLoad; 754 if (Access.isStrideZero(isl_map_copy(Schedule))) 755 NewLoad = generateStrideZeroLoad(Stmt, Load, ScalarMaps[0], NewAccesses); 756 else if (Access.isStrideOne(isl_map_copy(Schedule))) 757 NewLoad = generateStrideOneLoad(Stmt, Load, ScalarMaps, NewAccesses); 758 else if (Access.isStrideX(isl_map_copy(Schedule), -1)) 759 NewLoad = generateStrideOneLoad(Stmt, Load, ScalarMaps, NewAccesses, true); 760 else 761 NewLoad = generateUnknownStrideLoad(Stmt, Load, ScalarMaps, NewAccesses); 762 763 VectorMap[Load] = NewLoad; 764 } 765 766 void VectorBlockGenerator::copyUnaryInst(ScopStmt &Stmt, UnaryInstruction *Inst, 767 ValueMapT &VectorMap, 768 VectorValueMapT &ScalarMaps) { 769 int VectorWidth = getVectorWidth(); 770 Value *NewOperand = getVectorValue(Stmt, Inst->getOperand(0), VectorMap, 771 ScalarMaps, getLoopForInst(Inst)); 772 773 assert(isa<CastInst>(Inst) && "Can not generate vector code for instruction"); 774 775 const CastInst *Cast = dyn_cast<CastInst>(Inst); 776 VectorType *DestType = VectorType::get(Inst->getType(), VectorWidth); 777 VectorMap[Inst] = Builder.CreateCast(Cast->getOpcode(), NewOperand, DestType); 778 } 779 780 void VectorBlockGenerator::copyBinaryInst(ScopStmt &Stmt, BinaryOperator *Inst, 781 ValueMapT &VectorMap, 782 VectorValueMapT &ScalarMaps) { 783 Loop *L = getLoopForInst(Inst); 784 Value *OpZero = Inst->getOperand(0); 785 Value *OpOne = Inst->getOperand(1); 786 787 Value *NewOpZero, *NewOpOne; 788 NewOpZero = getVectorValue(Stmt, OpZero, VectorMap, ScalarMaps, L); 789 NewOpOne = getVectorValue(Stmt, OpOne, VectorMap, ScalarMaps, L); 790 791 Value *NewInst = Builder.CreateBinOp(Inst->getOpcode(), NewOpZero, NewOpOne, 792 Inst->getName() + "p_vec"); 793 VectorMap[Inst] = NewInst; 794 } 795 796 void VectorBlockGenerator::copyStore( 797 ScopStmt &Stmt, StoreInst *Store, ValueMapT &VectorMap, 798 VectorValueMapT &ScalarMaps, __isl_keep isl_id_to_ast_expr *NewAccesses) { 799 const MemoryAccess &Access = Stmt.getAccessFor(Store); 800 801 auto *Pointer = Store->getPointerOperand(); 802 Value *Vector = getVectorValue(Stmt, Store->getValueOperand(), VectorMap, 803 ScalarMaps, getLoopForInst(Store)); 804 805 // Make sure we have scalar values available to access the pointer to 806 // the data location. 807 extractScalarValues(Store, VectorMap, ScalarMaps); 808 809 if (Access.isStrideOne(isl_map_copy(Schedule))) { 810 Type *VectorPtrType = getVectorPtrTy(Pointer, getVectorWidth()); 811 Value *NewPointer = generateLocationAccessed( 812 Stmt, Store, Pointer, ScalarMaps[0], VLTS[0], NewAccesses); 813 814 Value *VectorPtr = 815 Builder.CreateBitCast(NewPointer, VectorPtrType, "vector_ptr"); 816 StoreInst *Store = Builder.CreateStore(Vector, VectorPtr); 817 818 if (!Aligned) 819 Store->setAlignment(8); 820 } else { 821 for (unsigned i = 0; i < ScalarMaps.size(); i++) { 822 Value *Scalar = Builder.CreateExtractElement(Vector, Builder.getInt32(i)); 823 Value *NewPointer = generateLocationAccessed( 824 Stmt, Store, Pointer, ScalarMaps[i], VLTS[i], NewAccesses); 825 Builder.CreateStore(Scalar, NewPointer); 826 } 827 } 828 } 829 830 bool VectorBlockGenerator::hasVectorOperands(const Instruction *Inst, 831 ValueMapT &VectorMap) { 832 for (Value *Operand : Inst->operands()) 833 if (VectorMap.count(Operand)) 834 return true; 835 return false; 836 } 837 838 bool VectorBlockGenerator::extractScalarValues(const Instruction *Inst, 839 ValueMapT &VectorMap, 840 VectorValueMapT &ScalarMaps) { 841 bool HasVectorOperand = false; 842 int VectorWidth = getVectorWidth(); 843 844 for (Value *Operand : Inst->operands()) { 845 ValueMapT::iterator VecOp = VectorMap.find(Operand); 846 847 if (VecOp == VectorMap.end()) 848 continue; 849 850 HasVectorOperand = true; 851 Value *NewVector = VecOp->second; 852 853 for (int i = 0; i < VectorWidth; ++i) { 854 ValueMapT &SM = ScalarMaps[i]; 855 856 // If there is one scalar extracted, all scalar elements should have 857 // already been extracted by the code here. So no need to check for the 858 // existance of all of them. 859 if (SM.count(Operand)) 860 break; 861 862 SM[Operand] = 863 Builder.CreateExtractElement(NewVector, Builder.getInt32(i)); 864 } 865 } 866 867 return HasVectorOperand; 868 } 869 870 void VectorBlockGenerator::copyInstScalarized( 871 ScopStmt &Stmt, Instruction *Inst, ValueMapT &VectorMap, 872 VectorValueMapT &ScalarMaps, __isl_keep isl_id_to_ast_expr *NewAccesses) { 873 bool HasVectorOperand; 874 int VectorWidth = getVectorWidth(); 875 876 HasVectorOperand = extractScalarValues(Inst, VectorMap, ScalarMaps); 877 878 for (int VectorLane = 0; VectorLane < getVectorWidth(); VectorLane++) 879 BlockGenerator::copyInstruction(Stmt, Inst, ScalarMaps[VectorLane], 880 VLTS[VectorLane], NewAccesses); 881 882 if (!VectorType::isValidElementType(Inst->getType()) || !HasVectorOperand) 883 return; 884 885 // Make the result available as vector value. 886 VectorType *VectorType = VectorType::get(Inst->getType(), VectorWidth); 887 Value *Vector = UndefValue::get(VectorType); 888 889 for (int i = 0; i < VectorWidth; i++) 890 Vector = Builder.CreateInsertElement(Vector, ScalarMaps[i][Inst], 891 Builder.getInt32(i)); 892 893 VectorMap[Inst] = Vector; 894 } 895 896 int VectorBlockGenerator::getVectorWidth() { return VLTS.size(); } 897 898 void VectorBlockGenerator::copyInstruction( 899 ScopStmt &Stmt, Instruction *Inst, ValueMapT &VectorMap, 900 VectorValueMapT &ScalarMaps, __isl_keep isl_id_to_ast_expr *NewAccesses) { 901 // Terminator instructions control the control flow. They are explicitly 902 // expressed in the clast and do not need to be copied. 903 if (Inst->isTerminator()) 904 return; 905 906 if (canSynthesize(Inst, &LI, &SE, &Stmt.getParent()->getRegion())) 907 return; 908 909 if (auto *Load = dyn_cast<LoadInst>(Inst)) { 910 generateLoad(Stmt, Load, VectorMap, ScalarMaps, NewAccesses); 911 return; 912 } 913 914 if (hasVectorOperands(Inst, VectorMap)) { 915 if (auto *Store = dyn_cast<StoreInst>(Inst)) { 916 copyStore(Stmt, Store, VectorMap, ScalarMaps, NewAccesses); 917 return; 918 } 919 920 if (auto *Unary = dyn_cast<UnaryInstruction>(Inst)) { 921 copyUnaryInst(Stmt, Unary, VectorMap, ScalarMaps); 922 return; 923 } 924 925 if (auto *Binary = dyn_cast<BinaryOperator>(Inst)) { 926 copyBinaryInst(Stmt, Binary, VectorMap, ScalarMaps); 927 return; 928 } 929 930 // Falltrough: We generate scalar instructions, if we don't know how to 931 // generate vector code. 932 } 933 934 copyInstScalarized(Stmt, Inst, VectorMap, ScalarMaps, NewAccesses); 935 } 936 937 void VectorBlockGenerator::copyStmt( 938 ScopStmt &Stmt, __isl_keep isl_id_to_ast_expr *NewAccesses) { 939 assert(Stmt.isBlockStmt() && "TODO: Only block statements can be copied by " 940 "the vector block generator"); 941 942 BasicBlock *BB = Stmt.getBasicBlock(); 943 BasicBlock *CopyBB = 944 SplitBlock(Builder.GetInsertBlock(), Builder.GetInsertPoint(), &DT, &LI); 945 CopyBB->setName("polly.stmt." + BB->getName()); 946 Builder.SetInsertPoint(CopyBB->begin()); 947 948 // Create two maps that store the mapping from the original instructions of 949 // the old basic block to their copies in the new basic block. Those maps 950 // are basic block local. 951 // 952 // As vector code generation is supported there is one map for scalar values 953 // and one for vector values. 954 // 955 // In case we just do scalar code generation, the vectorMap is not used and 956 // the scalarMap has just one dimension, which contains the mapping. 957 // 958 // In case vector code generation is done, an instruction may either appear 959 // in the vector map once (as it is calculating >vectorwidth< values at a 960 // time. Or (if the values are calculated using scalar operations), it 961 // appears once in every dimension of the scalarMap. 962 VectorValueMapT ScalarBlockMap(getVectorWidth()); 963 ValueMapT VectorBlockMap; 964 965 for (Instruction &Inst : *BB) 966 copyInstruction(Stmt, &Inst, VectorBlockMap, ScalarBlockMap, NewAccesses); 967 } 968 969 BasicBlock *RegionGenerator::repairDominance(BasicBlock *BB, 970 BasicBlock *BBCopy) { 971 972 BasicBlock *BBIDom = DT.getNode(BB)->getIDom()->getBlock(); 973 BasicBlock *BBCopyIDom = BlockMap.lookup(BBIDom); 974 975 if (BBCopyIDom) 976 DT.changeImmediateDominator(BBCopy, BBCopyIDom); 977 978 return BBCopyIDom; 979 } 980 981 void RegionGenerator::copyStmt(ScopStmt &Stmt, LoopToScevMapT <S, 982 isl_id_to_ast_expr *IdToAstExp) { 983 assert(Stmt.isRegionStmt() && 984 "Only region statements can be copied by the region generator"); 985 986 // Forget all old mappings. 987 BlockMap.clear(); 988 RegionMaps.clear(); 989 IncompletePHINodeMap.clear(); 990 991 // Collection of all values related to this subregion. 992 ValueMapT ValueMap; 993 994 // The region represented by the statement. 995 Region *R = Stmt.getRegion(); 996 997 // Create a dedicated entry for the region where we can reload all demoted 998 // inputs. 999 BasicBlock *EntryBB = R->getEntry(); 1000 BasicBlock *EntryBBCopy = 1001 SplitBlock(Builder.GetInsertBlock(), Builder.GetInsertPoint(), &DT, &LI); 1002 EntryBBCopy->setName("polly.stmt." + EntryBB->getName() + ".entry"); 1003 Builder.SetInsertPoint(EntryBBCopy->begin()); 1004 1005 generateScalarLoads(Stmt, RegionMaps[EntryBBCopy]); 1006 1007 for (auto PI = pred_begin(EntryBB), PE = pred_end(EntryBB); PI != PE; ++PI) 1008 if (!R->contains(*PI)) 1009 BlockMap[*PI] = EntryBBCopy; 1010 1011 // Iterate over all blocks in the region in a breadth-first search. 1012 std::deque<BasicBlock *> Blocks; 1013 SmallPtrSet<BasicBlock *, 8> SeenBlocks; 1014 Blocks.push_back(EntryBB); 1015 SeenBlocks.insert(EntryBB); 1016 1017 while (!Blocks.empty()) { 1018 BasicBlock *BB = Blocks.front(); 1019 Blocks.pop_front(); 1020 1021 // First split the block and update dominance information. 1022 BasicBlock *BBCopy = splitBB(BB); 1023 BasicBlock *BBCopyIDom = repairDominance(BB, BBCopy); 1024 1025 // In order to remap PHI nodes we store also basic block mappings. 1026 BlockMap[BB] = BBCopy; 1027 1028 // Get the mapping for this block and initialize it with the mapping 1029 // available at its immediate dominator (in the new region). 1030 ValueMapT &RegionMap = RegionMaps[BBCopy]; 1031 if (BBCopy != EntryBBCopy) 1032 RegionMap = RegionMaps[BBCopyIDom]; 1033 1034 // Copy the block with the BlockGenerator. 1035 Builder.SetInsertPoint(BBCopy->begin()); 1036 copyBB(Stmt, BB, BBCopy, RegionMap, LTS, IdToAstExp); 1037 1038 // In order to remap PHI nodes we store also basic block mappings. 1039 BlockMap[BB] = BBCopy; 1040 1041 // Add values to incomplete PHI nodes waiting for this block to be copied. 1042 for (const PHINodePairTy &PHINodePair : IncompletePHINodeMap[BB]) 1043 addOperandToPHI(Stmt, PHINodePair.first, PHINodePair.second, BB, LTS); 1044 IncompletePHINodeMap[BB].clear(); 1045 1046 // And continue with new successors inside the region. 1047 for (auto SI = succ_begin(BB), SE = succ_end(BB); SI != SE; SI++) 1048 if (R->contains(*SI) && SeenBlocks.insert(*SI).second) 1049 Blocks.push_back(*SI); 1050 1051 // Remember value in case it is visible after this subregion. 1052 ValueMap.insert(RegionMap.begin(), RegionMap.end()); 1053 } 1054 1055 // Now create a new dedicated region exit block and add it to the region map. 1056 BasicBlock *ExitBBCopy = 1057 SplitBlock(Builder.GetInsertBlock(), Builder.GetInsertPoint(), &DT, &LI); 1058 ExitBBCopy->setName("polly.stmt." + R->getExit()->getName() + ".exit"); 1059 BlockMap[R->getExit()] = ExitBBCopy; 1060 1061 repairDominance(R->getExit(), ExitBBCopy); 1062 1063 // As the block generator doesn't handle control flow we need to add the 1064 // region control flow by hand after all blocks have been copied. 1065 for (BasicBlock *BB : SeenBlocks) { 1066 1067 BasicBlock *BBCopy = BlockMap[BB]; 1068 TerminatorInst *TI = BB->getTerminator(); 1069 if (isa<UnreachableInst>(TI)) { 1070 while (!BBCopy->empty()) 1071 BBCopy->begin()->eraseFromParent(); 1072 new UnreachableInst(BBCopy->getContext(), BBCopy); 1073 continue; 1074 } 1075 1076 Instruction *BICopy = BBCopy->getTerminator(); 1077 1078 ValueMapT &RegionMap = RegionMaps[BBCopy]; 1079 RegionMap.insert(BlockMap.begin(), BlockMap.end()); 1080 1081 Builder.SetInsertPoint(BICopy); 1082 copyInstScalar(Stmt, TI, RegionMap, LTS); 1083 BICopy->eraseFromParent(); 1084 } 1085 1086 // Add counting PHI nodes to all loops in the region that can be used as 1087 // replacement for SCEVs refering to the old loop. 1088 for (BasicBlock *BB : SeenBlocks) { 1089 Loop *L = LI.getLoopFor(BB); 1090 if (L == nullptr || L->getHeader() != BB) 1091 continue; 1092 1093 BasicBlock *BBCopy = BlockMap[BB]; 1094 Value *NullVal = Builder.getInt32(0); 1095 PHINode *LoopPHI = 1096 PHINode::Create(Builder.getInt32Ty(), 2, "polly.subregion.iv"); 1097 Instruction *LoopPHIInc = BinaryOperator::CreateAdd( 1098 LoopPHI, Builder.getInt32(1), "polly.subregion.iv.inc"); 1099 LoopPHI->insertBefore(BBCopy->begin()); 1100 LoopPHIInc->insertBefore(BBCopy->getTerminator()); 1101 1102 for (auto *PredBB : make_range(pred_begin(BB), pred_end(BB))) { 1103 if (!R->contains(PredBB)) 1104 continue; 1105 if (L->contains(PredBB)) 1106 LoopPHI->addIncoming(LoopPHIInc, BlockMap[PredBB]); 1107 else 1108 LoopPHI->addIncoming(NullVal, BlockMap[PredBB]); 1109 } 1110 1111 for (auto *PredBBCopy : make_range(pred_begin(BBCopy), pred_end(BBCopy))) 1112 if (LoopPHI->getBasicBlockIndex(PredBBCopy) < 0) 1113 LoopPHI->addIncoming(NullVal, PredBBCopy); 1114 1115 LTS[L] = SE.getUnknown(LoopPHI); 1116 } 1117 1118 // Continue generating code in the exit block. 1119 Builder.SetInsertPoint(ExitBBCopy->getFirstInsertionPt()); 1120 1121 // Write values visible to other statements. 1122 generateScalarStores(Stmt, LTS, ValueMap); 1123 } 1124 1125 void RegionGenerator::generateScalarStores(ScopStmt &Stmt, LoopToScevMapT <S, 1126 ValueMapT &BBMap) { 1127 const Region &R = Stmt.getParent()->getRegion(); 1128 1129 assert(Stmt.getRegion() && 1130 "Block statements need to use the generateScalarStores() " 1131 "function in the BlockGenerator"); 1132 1133 for (MemoryAccess *MA : Stmt) { 1134 if (MA->isExplicit() || MA->isRead()) 1135 continue; 1136 1137 Instruction *ScalarInst = MA->getAccessInstruction(); 1138 Value *Val = MA->getAccessValue(); 1139 1140 // In case we add the store into an exiting block, we need to restore the 1141 // position for stores in the exit node. 1142 auto SavedInsertionPoint = Builder.GetInsertPoint(); 1143 1144 // Implicit writes induced by PHIs must be written in the incoming blocks. 1145 if (isa<TerminatorInst>(ScalarInst)) { 1146 BasicBlock *ExitingBB = ScalarInst->getParent(); 1147 BasicBlock *ExitingBBCopy = BlockMap[ExitingBB]; 1148 Builder.SetInsertPoint(ExitingBBCopy->getTerminator()); 1149 } 1150 1151 auto Address = getOrCreateAlloca(*MA); 1152 1153 Val = getNewScalarValue(Val, R, Stmt, LTS, BBMap); 1154 Builder.CreateStore(Val, Address); 1155 1156 // Restore the insertion point if necessary. 1157 if (isa<TerminatorInst>(ScalarInst)) 1158 Builder.SetInsertPoint(SavedInsertionPoint); 1159 } 1160 } 1161 1162 void RegionGenerator::addOperandToPHI(ScopStmt &Stmt, const PHINode *PHI, 1163 PHINode *PHICopy, BasicBlock *IncomingBB, 1164 LoopToScevMapT <S) { 1165 Region *StmtR = Stmt.getRegion(); 1166 1167 // If the incoming block was not yet copied mark this PHI as incomplete. 1168 // Once the block will be copied the incoming value will be added. 1169 BasicBlock *BBCopy = BlockMap[IncomingBB]; 1170 if (!BBCopy) { 1171 assert(StmtR->contains(IncomingBB) && 1172 "Bad incoming block for PHI in non-affine region"); 1173 IncompletePHINodeMap[IncomingBB].push_back(std::make_pair(PHI, PHICopy)); 1174 return; 1175 } 1176 1177 Value *OpCopy = nullptr; 1178 if (StmtR->contains(IncomingBB)) { 1179 assert(RegionMaps.count(BBCopy) && 1180 "Incoming PHI block did not have a BBMap"); 1181 ValueMapT &BBCopyMap = RegionMaps[BBCopy]; 1182 1183 Value *Op = PHI->getIncomingValueForBlock(IncomingBB); 1184 1185 auto OldIP = Builder.GetInsertPoint(); 1186 Builder.SetInsertPoint(BBCopy->getTerminator()); 1187 OpCopy = getNewValue(Stmt, Op, BBCopyMap, LTS, getLoopForInst(PHI)); 1188 Builder.SetInsertPoint(OldIP); 1189 } else { 1190 1191 if (PHICopy->getBasicBlockIndex(BBCopy) >= 0) 1192 return; 1193 1194 Value *PHIOpAddr = getOrCreatePHIAlloca(const_cast<PHINode *>(PHI)); 1195 OpCopy = new LoadInst(PHIOpAddr, PHIOpAddr->getName() + ".reload", 1196 BlockMap[IncomingBB]->getTerminator()); 1197 } 1198 1199 assert(OpCopy && "Incoming PHI value was not copied properly"); 1200 assert(BBCopy && "Incoming PHI block was not copied properly"); 1201 PHICopy->addIncoming(OpCopy, BBCopy); 1202 } 1203 1204 Value *RegionGenerator::copyPHIInstruction(ScopStmt &Stmt, PHINode *PHI, 1205 ValueMapT &BBMap, 1206 LoopToScevMapT <S) { 1207 unsigned NumIncoming = PHI->getNumIncomingValues(); 1208 PHINode *PHICopy = 1209 Builder.CreatePHI(PHI->getType(), NumIncoming, "polly." + PHI->getName()); 1210 PHICopy->moveBefore(PHICopy->getParent()->getFirstNonPHI()); 1211 BBMap[PHI] = PHICopy; 1212 1213 for (unsigned u = 0; u < NumIncoming; u++) 1214 addOperandToPHI(Stmt, PHI, PHICopy, PHI->getIncomingBlock(u), LTS); 1215 return PHICopy; 1216 } 1217