1 //===--- BlockGenerators.cpp - Generate code for statements -----*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the BlockGenerator and VectorBlockGenerator classes, 11 // which generate sequential code and vectorized code for a polyhedral 12 // statement, respectively. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "polly/ScopInfo.h" 17 #include "polly/CodeGen/BlockGenerators.h" 18 #include "polly/CodeGen/CodeGeneration.h" 19 #include "polly/CodeGen/IslExprBuilder.h" 20 #include "polly/CodeGen/RuntimeDebugBuilder.h" 21 #include "polly/Options.h" 22 #include "polly/Support/GICHelper.h" 23 #include "polly/Support/SCEVValidator.h" 24 #include "polly/Support/ScopHelper.h" 25 #include "llvm/Analysis/LoopInfo.h" 26 #include "llvm/Analysis/RegionInfo.h" 27 #include "llvm/Analysis/ScalarEvolution.h" 28 #include "llvm/IR/IntrinsicInst.h" 29 #include "llvm/IR/Module.h" 30 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 31 #include "isl/aff.h" 32 #include "isl/ast.h" 33 #include "isl/ast_build.h" 34 #include "isl/set.h" 35 #include <deque> 36 37 using namespace llvm; 38 using namespace polly; 39 40 static cl::opt<bool> Aligned("enable-polly-aligned", 41 cl::desc("Assumed aligned memory accesses."), 42 cl::Hidden, cl::init(false), cl::ZeroOrMore, 43 cl::cat(PollyCategory)); 44 45 static cl::opt<bool> DebugPrinting( 46 "polly-codegen-add-debug-printing", 47 cl::desc("Add printf calls that show the values loaded/stored."), 48 cl::Hidden, cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory)); 49 50 bool polly::canSynthesize(const Value *V, const llvm::LoopInfo *LI, 51 ScalarEvolution *SE, const Region *R) { 52 if (!V || !SE->isSCEVable(V->getType())) 53 return false; 54 55 if (const SCEV *Scev = SE->getSCEV(const_cast<Value *>(V))) 56 if (!isa<SCEVCouldNotCompute>(Scev)) 57 if (!hasScalarDepsInsideRegion(Scev, R)) 58 return true; 59 60 return false; 61 } 62 63 bool polly::isIgnoredIntrinsic(const Value *V) { 64 if (auto *IT = dyn_cast<IntrinsicInst>(V)) { 65 switch (IT->getIntrinsicID()) { 66 // Lifetime markers are supported/ignored. 67 case llvm::Intrinsic::lifetime_start: 68 case llvm::Intrinsic::lifetime_end: 69 // Invariant markers are supported/ignored. 70 case llvm::Intrinsic::invariant_start: 71 case llvm::Intrinsic::invariant_end: 72 // Some misc annotations are supported/ignored. 73 case llvm::Intrinsic::var_annotation: 74 case llvm::Intrinsic::ptr_annotation: 75 case llvm::Intrinsic::annotation: 76 case llvm::Intrinsic::donothing: 77 case llvm::Intrinsic::assume: 78 case llvm::Intrinsic::expect: 79 // Some debug info intrisics are supported/ignored. 80 case llvm::Intrinsic::dbg_value: 81 case llvm::Intrinsic::dbg_declare: 82 return true; 83 default: 84 break; 85 } 86 } 87 return false; 88 } 89 90 BlockGenerator::BlockGenerator(PollyIRBuilder &B, LoopInfo &LI, 91 ScalarEvolution &SE, DominatorTree &DT, 92 ScalarAllocaMapTy &ScalarMap, 93 ScalarAllocaMapTy &PHIOpMap, 94 EscapeUsersAllocaMapTy &EscapeMap, 95 ValueToValueMap &GlobalMap, 96 IslExprBuilder *ExprBuilder) 97 : Builder(B), LI(LI), SE(SE), ExprBuilder(ExprBuilder), DT(DT), 98 EntryBB(nullptr), PHIOpMap(PHIOpMap), ScalarMap(ScalarMap), 99 EscapeMap(EscapeMap), GlobalMap(GlobalMap) {} 100 101 Value *BlockGenerator::getNewValue(ScopStmt &Stmt, const Value *Old, 102 ValueMapT &BBMap, LoopToScevMapT <S, 103 Loop *L) const { 104 // We assume constants never change. 105 // This avoids map lookups for many calls to this function. 106 if (isa<Constant>(Old)) 107 return const_cast<Value *>(Old); 108 109 if (Value *New = GlobalMap.lookup(Old)) { 110 if (Old->getType()->getScalarSizeInBits() < 111 New->getType()->getScalarSizeInBits()) 112 New = Builder.CreateTruncOrBitCast(New, Old->getType()); 113 114 return New; 115 } 116 117 if (Value *New = BBMap.lookup(Old)) 118 return New; 119 120 if (SE.isSCEVable(Old->getType())) 121 if (const SCEV *Scev = SE.getSCEVAtScope(const_cast<Value *>(Old), L)) { 122 if (!isa<SCEVCouldNotCompute>(Scev)) { 123 const SCEV *NewScev = apply(Scev, LTS, SE); 124 ValueToValueMap VTV; 125 VTV.insert(BBMap.begin(), BBMap.end()); 126 VTV.insert(GlobalMap.begin(), GlobalMap.end()); 127 NewScev = SCEVParameterRewriter::rewrite(NewScev, SE, VTV); 128 129 Scop &S = *Stmt.getParent(); 130 const DataLayout &DL = 131 S.getRegion().getEntry()->getParent()->getParent()->getDataLayout(); 132 auto IP = Builder.GetInsertPoint(); 133 134 assert(IP != Builder.GetInsertBlock()->end() && 135 "Only instructions can be insert points for SCEVExpander"); 136 Value *Expanded = 137 expandCodeFor(S, SE, DL, "polly", NewScev, Old->getType(), IP); 138 139 BBMap[Old] = Expanded; 140 return Expanded; 141 } 142 } 143 144 // A scop-constant value defined by a global or a function parameter. 145 if (isa<GlobalValue>(Old) || isa<Argument>(Old)) 146 return const_cast<Value *>(Old); 147 148 // A scop-constant value defined by an instruction executed outside the scop. 149 if (const Instruction *Inst = dyn_cast<Instruction>(Old)) 150 if (!Stmt.getParent()->getRegion().contains(Inst->getParent())) 151 return const_cast<Value *>(Old); 152 153 // The scalar dependence is neither available nor SCEVCodegenable. 154 llvm_unreachable("Unexpected scalar dependence in region!"); 155 return nullptr; 156 } 157 158 void BlockGenerator::copyInstScalar(ScopStmt &Stmt, const Instruction *Inst, 159 ValueMapT &BBMap, LoopToScevMapT <S) { 160 // We do not generate debug intrinsics as we did not investigate how to 161 // copy them correctly. At the current state, they just crash the code 162 // generation as the meta-data operands are not correctly copied. 163 if (isa<DbgInfoIntrinsic>(Inst)) 164 return; 165 166 Instruction *NewInst = Inst->clone(); 167 168 // Replace old operands with the new ones. 169 for (Value *OldOperand : Inst->operands()) { 170 Value *NewOperand = 171 getNewValue(Stmt, OldOperand, BBMap, LTS, getLoopForInst(Inst)); 172 173 if (!NewOperand) { 174 assert(!isa<StoreInst>(NewInst) && 175 "Store instructions are always needed!"); 176 delete NewInst; 177 return; 178 } 179 180 NewInst->replaceUsesOfWith(OldOperand, NewOperand); 181 } 182 183 Builder.Insert(NewInst); 184 BBMap[Inst] = NewInst; 185 186 if (!NewInst->getType()->isVoidTy()) 187 NewInst->setName("p_" + Inst->getName()); 188 } 189 190 Value *BlockGenerator::generateLocationAccessed( 191 ScopStmt &Stmt, const Instruction *Inst, const Value *Pointer, 192 ValueMapT &BBMap, LoopToScevMapT <S, isl_id_to_ast_expr *NewAccesses) { 193 const MemoryAccess &MA = Stmt.getAccessFor(Inst); 194 195 isl_ast_expr *AccessExpr = isl_id_to_ast_expr_get(NewAccesses, MA.getId()); 196 197 if (AccessExpr) { 198 AccessExpr = isl_ast_expr_address_of(AccessExpr); 199 return ExprBuilder->create(AccessExpr); 200 } 201 202 return getNewValue(Stmt, Pointer, BBMap, LTS, getLoopForInst(Inst)); 203 } 204 205 Loop *BlockGenerator::getLoopForInst(const llvm::Instruction *Inst) { 206 return LI.getLoopFor(Inst->getParent()); 207 } 208 209 Value *BlockGenerator::generateScalarLoad(ScopStmt &Stmt, const LoadInst *Load, 210 ValueMapT &BBMap, LoopToScevMapT <S, 211 isl_id_to_ast_expr *NewAccesses) { 212 const Value *Pointer = Load->getPointerOperand(); 213 Value *NewPointer = 214 generateLocationAccessed(Stmt, Load, Pointer, BBMap, LTS, NewAccesses); 215 Value *ScalarLoad = Builder.CreateAlignedLoad( 216 NewPointer, Load->getAlignment(), Load->getName() + "_p_scalar_"); 217 218 if (DebugPrinting) 219 RuntimeDebugBuilder::createCPUPrinter(Builder, "Load from ", NewPointer, 220 ": ", ScalarLoad, "\n"); 221 222 return ScalarLoad; 223 } 224 225 void BlockGenerator::generateScalarStore(ScopStmt &Stmt, const StoreInst *Store, 226 ValueMapT &BBMap, LoopToScevMapT <S, 227 isl_id_to_ast_expr *NewAccesses) { 228 const Value *Pointer = Store->getPointerOperand(); 229 Value *NewPointer = 230 generateLocationAccessed(Stmt, Store, Pointer, BBMap, LTS, NewAccesses); 231 Value *ValueOperand = getNewValue(Stmt, Store->getValueOperand(), BBMap, LTS, 232 getLoopForInst(Store)); 233 234 if (DebugPrinting) 235 RuntimeDebugBuilder::createCPUPrinter(Builder, "Store to ", NewPointer, 236 ": ", ValueOperand, "\n"); 237 238 Builder.CreateAlignedStore(ValueOperand, NewPointer, Store->getAlignment()); 239 } 240 241 void BlockGenerator::copyInstruction(ScopStmt &Stmt, const Instruction *Inst, 242 ValueMapT &BBMap, LoopToScevMapT <S, 243 isl_id_to_ast_expr *NewAccesses) { 244 245 // First check for possible scalar dependences for this instruction. 246 generateScalarLoads(Stmt, Inst, BBMap); 247 248 // Terminator instructions control the control flow. They are explicitly 249 // expressed in the clast and do not need to be copied. 250 if (Inst->isTerminator()) 251 return; 252 253 Loop *L = getLoopForInst(Inst); 254 if ((Stmt.isBlockStmt() || !Stmt.getRegion()->contains(L)) && 255 canSynthesize(Inst, &LI, &SE, &Stmt.getParent()->getRegion())) { 256 Value *NewValue = getNewValue(Stmt, Inst, BBMap, LTS, L); 257 BBMap[Inst] = NewValue; 258 return; 259 } 260 261 if (const LoadInst *Load = dyn_cast<LoadInst>(Inst)) { 262 Value *NewLoad = generateScalarLoad(Stmt, Load, BBMap, LTS, NewAccesses); 263 // Compute NewLoad before its insertion in BBMap to make the insertion 264 // deterministic. 265 BBMap[Load] = NewLoad; 266 return; 267 } 268 269 if (const StoreInst *Store = dyn_cast<StoreInst>(Inst)) { 270 generateScalarStore(Stmt, Store, BBMap, LTS, NewAccesses); 271 return; 272 } 273 274 if (const PHINode *PHI = dyn_cast<PHINode>(Inst)) { 275 copyPHIInstruction(Stmt, PHI, BBMap, LTS); 276 return; 277 } 278 279 // Skip some special intrinsics for which we do not adjust the semantics to 280 // the new schedule. All others are handled like every other instruction. 281 if (isIgnoredIntrinsic(Inst)) 282 return; 283 284 copyInstScalar(Stmt, Inst, BBMap, LTS); 285 } 286 287 void BlockGenerator::copyStmt(ScopStmt &Stmt, LoopToScevMapT <S, 288 isl_id_to_ast_expr *NewAccesses) { 289 assert(Stmt.isBlockStmt() && 290 "Only block statements can be copied by the block generator"); 291 292 ValueMapT BBMap; 293 294 BasicBlock *BB = Stmt.getBasicBlock(); 295 copyBB(Stmt, BB, BBMap, LTS, NewAccesses); 296 } 297 298 BasicBlock *BlockGenerator::splitBB(BasicBlock *BB) { 299 BasicBlock *CopyBB = 300 SplitBlock(Builder.GetInsertBlock(), Builder.GetInsertPoint(), &DT, &LI); 301 CopyBB->setName("polly.stmt." + BB->getName()); 302 return CopyBB; 303 } 304 305 BasicBlock *BlockGenerator::copyBB(ScopStmt &Stmt, BasicBlock *BB, 306 ValueMapT &BBMap, LoopToScevMapT <S, 307 isl_id_to_ast_expr *NewAccesses) { 308 BasicBlock *CopyBB = splitBB(BB); 309 copyBB(Stmt, BB, CopyBB, BBMap, LTS, NewAccesses); 310 return CopyBB; 311 } 312 313 void BlockGenerator::copyBB(ScopStmt &Stmt, BasicBlock *BB, BasicBlock *CopyBB, 314 ValueMapT &BBMap, LoopToScevMapT <S, 315 isl_id_to_ast_expr *NewAccesses) { 316 Builder.SetInsertPoint(CopyBB->begin()); 317 EntryBB = &CopyBB->getParent()->getEntryBlock(); 318 319 for (Instruction &Inst : *BB) 320 copyInstruction(Stmt, &Inst, BBMap, LTS, NewAccesses); 321 322 // After a basic block was copied store all scalars that escape this block 323 // in their alloca. First the scalars that have dependences inside the SCoP, 324 // then the ones that might escape the SCoP. 325 generateScalarStores(Stmt, BB, BBMap); 326 327 const Region &R = Stmt.getParent()->getRegion(); 328 for (Instruction &Inst : *BB) 329 handleOutsideUsers(R, &Inst, BBMap[&Inst]); 330 } 331 332 Value *BlockGenerator::getOrCreateAlloca(Value *ScalarBase, 333 ScalarAllocaMapTy &Map, 334 const char *NameExt) { 335 // Check if an alloca was cached for the base instruction. 336 AllocaInst *&Addr = Map[ScalarBase]; 337 338 // If no alloca was found create one and insert it in the entry block. 339 if (!Addr) { 340 auto *Ty = ScalarBase->getType(); 341 Addr = new AllocaInst(Ty, ScalarBase->getName() + NameExt); 342 EntryBB = &Builder.GetInsertBlock()->getParent()->getEntryBlock(); 343 Addr->insertBefore(EntryBB->getFirstInsertionPt()); 344 } 345 346 if (GlobalMap.count(Addr)) 347 return GlobalMap[Addr]; 348 349 return Addr; 350 } 351 352 Value *BlockGenerator::getOrCreateAlloca(MemoryAccess &Access) { 353 if (Access.getScopArrayInfo()->isPHI()) 354 return getOrCreatePHIAlloca(Access.getBaseAddr()); 355 else 356 return getOrCreateScalarAlloca(Access.getBaseAddr()); 357 } 358 359 Value *BlockGenerator::getOrCreateScalarAlloca(Value *ScalarBase) { 360 return getOrCreateAlloca(ScalarBase, ScalarMap, ".s2a"); 361 } 362 363 Value *BlockGenerator::getOrCreatePHIAlloca(Value *ScalarBase) { 364 return getOrCreateAlloca(ScalarBase, PHIOpMap, ".phiops"); 365 } 366 367 void BlockGenerator::handleOutsideUsers(const Region &R, Instruction *Inst, 368 Value *InstCopy, AllocaInst *Address) { 369 // If there are escape users we get the alloca for this instruction and put it 370 // in the EscapeMap for later finalization. Lastly, if the instruction was 371 // copied multiple times we already did this and can exit. 372 if (EscapeMap.count(Inst)) 373 return; 374 375 EscapeUserVectorTy EscapeUsers; 376 for (User *U : Inst->users()) { 377 378 // Non-instruction user will never escape. 379 Instruction *UI = dyn_cast<Instruction>(U); 380 if (!UI) 381 continue; 382 383 if (R.contains(UI)) 384 continue; 385 386 EscapeUsers.push_back(UI); 387 } 388 389 // Exit if no escape uses were found. 390 if (EscapeUsers.empty()) 391 return; 392 393 // Get or create an escape alloca for this instruction. 394 auto *ScalarAddr = 395 Address ? Address : cast<AllocaInst>(getOrCreateScalarAlloca(Inst)); 396 397 // Remember that this instruction has escape uses and the escape alloca. 398 EscapeMap[Inst] = std::make_pair(ScalarAddr, std::move(EscapeUsers)); 399 } 400 401 void BlockGenerator::generateScalarLoads(ScopStmt &Stmt, 402 const Instruction *Inst, 403 ValueMapT &BBMap) { 404 auto *MAL = Stmt.lookupAccessesFor(Inst); 405 406 if (!MAL) 407 return; 408 409 for (MemoryAccess &MA : *MAL) { 410 if (!MA.isScalar() || !MA.isRead()) 411 continue; 412 413 auto *Address = getOrCreateAlloca(MA); 414 BBMap[MA.getBaseAddr()] = 415 Builder.CreateLoad(Address, Address->getName() + ".reload"); 416 } 417 } 418 419 Value *BlockGenerator::getNewScalarValue(Value *ScalarValue, const Region &R, 420 ValueMapT &BBMap) { 421 // If the value we want to store is an instruction we might have demoted it 422 // in order to make it accessible here. In such a case a reload is 423 // necessary. If it is no instruction it will always be a value that 424 // dominates the current point and we can just use it. In total there are 4 425 // options: 426 // (1) The value is no instruction ==> use the value. 427 // (2) The value is an instruction that was split out of the region prior to 428 // code generation ==> use the instruction as it dominates the region. 429 // (3) The value is an instruction: 430 // (a) The value was defined in the current block, thus a copy is in 431 // the BBMap ==> use the mapped value. 432 // (b) The value was defined in a previous block, thus we demoted it 433 // earlier ==> use the reloaded value. 434 Instruction *ScalarValueInst = dyn_cast<Instruction>(ScalarValue); 435 if (!ScalarValueInst) 436 return ScalarValue; 437 438 if (!R.contains(ScalarValueInst)) { 439 if (Value *ScalarValueCopy = GlobalMap.lookup(ScalarValueInst)) 440 return /* Case (3a) */ ScalarValueCopy; 441 else 442 return /* Case 2 */ ScalarValue; 443 } 444 445 if (Value *ScalarValueCopy = BBMap.lookup(ScalarValueInst)) 446 return /* Case (3a) */ ScalarValueCopy; 447 448 // Case (3b) 449 Value *Address = getOrCreateScalarAlloca(ScalarValueInst); 450 ScalarValue = Builder.CreateLoad(Address, Address->getName() + ".reload"); 451 452 return ScalarValue; 453 } 454 455 void BlockGenerator::generateScalarStores(ScopStmt &Stmt, BasicBlock *BB, 456 ValueMapT &BBMap) { 457 const Region &R = Stmt.getParent()->getRegion(); 458 459 assert(Stmt.isBlockStmt() && BB == Stmt.getBasicBlock() && 460 "Region statements need to use the generateScalarStores() " 461 "function in the RegionGenerator"); 462 463 for (MemoryAccess *MA : Stmt) { 464 if (!MA->isScalar() || MA->isRead()) 465 continue; 466 467 Value *Val = MA->getAccessValue(); 468 auto *Address = getOrCreateAlloca(*MA); 469 470 Val = getNewScalarValue(Val, R, BBMap); 471 Builder.CreateStore(Val, Address); 472 } 473 } 474 475 void BlockGenerator::createScalarInitialization(Scop &S) { 476 Region &R = S.getRegion(); 477 // The split block __just before__ the region and optimized region. 478 BasicBlock *SplitBB = R.getEnteringBlock(); 479 BranchInst *SplitBBTerm = cast<BranchInst>(SplitBB->getTerminator()); 480 assert(SplitBBTerm->getNumSuccessors() == 2 && "Bad region entering block!"); 481 482 // Get the start block of the __optimized__ region. 483 BasicBlock *StartBB = SplitBBTerm->getSuccessor(0); 484 if (StartBB == R.getEntry()) 485 StartBB = SplitBBTerm->getSuccessor(1); 486 487 Builder.SetInsertPoint(StartBB->begin()); 488 489 for (auto &Pair : S.arrays()) { 490 auto &Array = Pair.second; 491 if (Array->getNumberOfDimensions() != 0) 492 continue; 493 if (Array->isPHI()) { 494 // For PHI nodes, the only values we need to store are the ones that 495 // reach the PHI node from outside the region. In general there should 496 // only be one such incoming edge and this edge should enter through 497 // 'SplitBB'. 498 auto PHI = cast<PHINode>(Array->getBasePtr()); 499 500 for (auto BI = PHI->block_begin(), BE = PHI->block_end(); BI != BE; BI++) 501 if (!R.contains(*BI) && *BI != SplitBB) 502 llvm_unreachable("Incoming edges from outside the scop should always " 503 "come from SplitBB"); 504 505 int Idx = PHI->getBasicBlockIndex(SplitBB); 506 if (Idx < 0) 507 continue; 508 509 Value *ScalarValue = PHI->getIncomingValue(Idx); 510 511 Builder.CreateStore(ScalarValue, getOrCreatePHIAlloca(PHI)); 512 continue; 513 } 514 515 auto *Inst = dyn_cast<Instruction>(Array->getBasePtr()); 516 517 if (Inst && R.contains(Inst)) 518 continue; 519 520 // PHI nodes that are not marked as such in their SAI object are exit PHI 521 // nodes we model as common scalars but do not need to initialize. 522 if (Inst && isa<PHINode>(Inst)) 523 continue; 524 525 ValueMapT EmptyMap; 526 Builder.CreateStore(Array->getBasePtr(), 527 getOrCreateScalarAlloca(Array->getBasePtr())); 528 } 529 } 530 531 void BlockGenerator::createScalarFinalization(Region &R) { 532 // The exit block of the __unoptimized__ region. 533 BasicBlock *ExitBB = R.getExitingBlock(); 534 // The merge block __just after__ the region and the optimized region. 535 BasicBlock *MergeBB = R.getExit(); 536 537 // The exit block of the __optimized__ region. 538 BasicBlock *OptExitBB = *(pred_begin(MergeBB)); 539 if (OptExitBB == ExitBB) 540 OptExitBB = *(++pred_begin(MergeBB)); 541 542 Builder.SetInsertPoint(OptExitBB->getTerminator()); 543 for (const auto &EscapeMapping : EscapeMap) { 544 // Extract the escaping instruction and the escaping users as well as the 545 // alloca the instruction was demoted to. 546 Instruction *EscapeInst = EscapeMapping.getFirst(); 547 const auto &EscapeMappingValue = EscapeMapping.getSecond(); 548 const EscapeUserVectorTy &EscapeUsers = EscapeMappingValue.second; 549 Value *ScalarAddr = EscapeMappingValue.first; 550 551 // Reload the demoted instruction in the optimized version of the SCoP. 552 Instruction *EscapeInstReload = 553 Builder.CreateLoad(ScalarAddr, EscapeInst->getName() + ".final_reload"); 554 555 // Create the merge PHI that merges the optimized and unoptimized version. 556 PHINode *MergePHI = PHINode::Create(EscapeInst->getType(), 2, 557 EscapeInst->getName() + ".merge"); 558 MergePHI->insertBefore(MergeBB->getFirstInsertionPt()); 559 560 // Add the respective values to the merge PHI. 561 MergePHI->addIncoming(EscapeInstReload, OptExitBB); 562 MergePHI->addIncoming(EscapeInst, ExitBB); 563 564 // The information of scalar evolution about the escaping instruction needs 565 // to be revoked so the new merged instruction will be used. 566 if (SE.isSCEVable(EscapeInst->getType())) 567 SE.forgetValue(EscapeInst); 568 569 // Replace all uses of the demoted instruction with the merge PHI. 570 for (Instruction *EUser : EscapeUsers) 571 EUser->replaceUsesOfWith(EscapeInst, MergePHI); 572 } 573 } 574 575 void BlockGenerator::finalizeSCoP(Scop &S) { 576 577 // Handle PHI nodes that were in the original exit and are now 578 // moved into the region exiting block. 579 if (!S.hasSingleExitEdge()) { 580 for (Instruction &I : *S.getRegion().getExitingBlock()) { 581 PHINode *PHI = dyn_cast<PHINode>(&I); 582 if (!PHI) 583 break; 584 585 assert(PHI->getNumUses() == 1); 586 assert(ScalarMap.count(PHI->user_back())); 587 588 handleOutsideUsers(S.getRegion(), PHI, nullptr, 589 ScalarMap[PHI->user_back()]); 590 } 591 } 592 593 createScalarInitialization(S); 594 createScalarFinalization(S.getRegion()); 595 } 596 597 VectorBlockGenerator::VectorBlockGenerator(BlockGenerator &BlockGen, 598 std::vector<LoopToScevMapT> &VLTS, 599 isl_map *Schedule) 600 : BlockGenerator(BlockGen), VLTS(VLTS), Schedule(Schedule) { 601 assert(Schedule && "No statement domain provided"); 602 } 603 604 Value *VectorBlockGenerator::getVectorValue(ScopStmt &Stmt, const Value *Old, 605 ValueMapT &VectorMap, 606 VectorValueMapT &ScalarMaps, 607 Loop *L) { 608 if (Value *NewValue = VectorMap.lookup(Old)) 609 return NewValue; 610 611 int Width = getVectorWidth(); 612 613 Value *Vector = UndefValue::get(VectorType::get(Old->getType(), Width)); 614 615 for (int Lane = 0; Lane < Width; Lane++) 616 Vector = Builder.CreateInsertElement( 617 Vector, getNewValue(Stmt, Old, ScalarMaps[Lane], VLTS[Lane], L), 618 Builder.getInt32(Lane)); 619 620 VectorMap[Old] = Vector; 621 622 return Vector; 623 } 624 625 Type *VectorBlockGenerator::getVectorPtrTy(const Value *Val, int Width) { 626 PointerType *PointerTy = dyn_cast<PointerType>(Val->getType()); 627 assert(PointerTy && "PointerType expected"); 628 629 Type *ScalarType = PointerTy->getElementType(); 630 VectorType *VectorType = VectorType::get(ScalarType, Width); 631 632 return PointerType::getUnqual(VectorType); 633 } 634 635 Value *VectorBlockGenerator::generateStrideOneLoad( 636 ScopStmt &Stmt, const LoadInst *Load, VectorValueMapT &ScalarMaps, 637 __isl_keep isl_id_to_ast_expr *NewAccesses, bool NegativeStride = false) { 638 unsigned VectorWidth = getVectorWidth(); 639 const Value *Pointer = Load->getPointerOperand(); 640 Type *VectorPtrType = getVectorPtrTy(Pointer, VectorWidth); 641 unsigned Offset = NegativeStride ? VectorWidth - 1 : 0; 642 643 Value *NewPointer = nullptr; 644 NewPointer = generateLocationAccessed(Stmt, Load, Pointer, ScalarMaps[Offset], 645 VLTS[Offset], NewAccesses); 646 Value *VectorPtr = 647 Builder.CreateBitCast(NewPointer, VectorPtrType, "vector_ptr"); 648 LoadInst *VecLoad = 649 Builder.CreateLoad(VectorPtr, Load->getName() + "_p_vec_full"); 650 if (!Aligned) 651 VecLoad->setAlignment(8); 652 653 if (NegativeStride) { 654 SmallVector<Constant *, 16> Indices; 655 for (int i = VectorWidth - 1; i >= 0; i--) 656 Indices.push_back(ConstantInt::get(Builder.getInt32Ty(), i)); 657 Constant *SV = llvm::ConstantVector::get(Indices); 658 Value *RevVecLoad = Builder.CreateShuffleVector( 659 VecLoad, VecLoad, SV, Load->getName() + "_reverse"); 660 return RevVecLoad; 661 } 662 663 return VecLoad; 664 } 665 666 Value *VectorBlockGenerator::generateStrideZeroLoad( 667 ScopStmt &Stmt, const LoadInst *Load, ValueMapT &BBMap, 668 __isl_keep isl_id_to_ast_expr *NewAccesses) { 669 const Value *Pointer = Load->getPointerOperand(); 670 Type *VectorPtrType = getVectorPtrTy(Pointer, 1); 671 Value *NewPointer = generateLocationAccessed(Stmt, Load, Pointer, BBMap, 672 VLTS[0], NewAccesses); 673 Value *VectorPtr = Builder.CreateBitCast(NewPointer, VectorPtrType, 674 Load->getName() + "_p_vec_p"); 675 LoadInst *ScalarLoad = 676 Builder.CreateLoad(VectorPtr, Load->getName() + "_p_splat_one"); 677 678 if (!Aligned) 679 ScalarLoad->setAlignment(8); 680 681 Constant *SplatVector = Constant::getNullValue( 682 VectorType::get(Builder.getInt32Ty(), getVectorWidth())); 683 684 Value *VectorLoad = Builder.CreateShuffleVector( 685 ScalarLoad, ScalarLoad, SplatVector, Load->getName() + "_p_splat"); 686 return VectorLoad; 687 } 688 689 Value *VectorBlockGenerator::generateUnknownStrideLoad( 690 ScopStmt &Stmt, const LoadInst *Load, VectorValueMapT &ScalarMaps, 691 __isl_keep isl_id_to_ast_expr *NewAccesses 692 693 ) { 694 int VectorWidth = getVectorWidth(); 695 const Value *Pointer = Load->getPointerOperand(); 696 VectorType *VectorType = VectorType::get( 697 dyn_cast<PointerType>(Pointer->getType())->getElementType(), VectorWidth); 698 699 Value *Vector = UndefValue::get(VectorType); 700 701 for (int i = 0; i < VectorWidth; i++) { 702 Value *NewPointer = generateLocationAccessed( 703 Stmt, Load, Pointer, ScalarMaps[i], VLTS[i], NewAccesses); 704 Value *ScalarLoad = 705 Builder.CreateLoad(NewPointer, Load->getName() + "_p_scalar_"); 706 Vector = Builder.CreateInsertElement( 707 Vector, ScalarLoad, Builder.getInt32(i), Load->getName() + "_p_vec_"); 708 } 709 710 return Vector; 711 } 712 713 void VectorBlockGenerator::generateLoad( 714 ScopStmt &Stmt, const LoadInst *Load, ValueMapT &VectorMap, 715 VectorValueMapT &ScalarMaps, __isl_keep isl_id_to_ast_expr *NewAccesses) { 716 if (!VectorType::isValidElementType(Load->getType())) { 717 for (int i = 0; i < getVectorWidth(); i++) 718 ScalarMaps[i][Load] = 719 generateScalarLoad(Stmt, Load, ScalarMaps[i], VLTS[i], NewAccesses); 720 return; 721 } 722 723 const MemoryAccess &Access = Stmt.getAccessFor(Load); 724 725 // Make sure we have scalar values available to access the pointer to 726 // the data location. 727 extractScalarValues(Load, VectorMap, ScalarMaps); 728 729 Value *NewLoad; 730 if (Access.isStrideZero(isl_map_copy(Schedule))) 731 NewLoad = generateStrideZeroLoad(Stmt, Load, ScalarMaps[0], NewAccesses); 732 else if (Access.isStrideOne(isl_map_copy(Schedule))) 733 NewLoad = generateStrideOneLoad(Stmt, Load, ScalarMaps, NewAccesses); 734 else if (Access.isStrideX(isl_map_copy(Schedule), -1)) 735 NewLoad = generateStrideOneLoad(Stmt, Load, ScalarMaps, NewAccesses, true); 736 else 737 NewLoad = generateUnknownStrideLoad(Stmt, Load, ScalarMaps, NewAccesses); 738 739 VectorMap[Load] = NewLoad; 740 } 741 742 void VectorBlockGenerator::copyUnaryInst(ScopStmt &Stmt, 743 const UnaryInstruction *Inst, 744 ValueMapT &VectorMap, 745 VectorValueMapT &ScalarMaps) { 746 int VectorWidth = getVectorWidth(); 747 Value *NewOperand = getVectorValue(Stmt, Inst->getOperand(0), VectorMap, 748 ScalarMaps, getLoopForInst(Inst)); 749 750 assert(isa<CastInst>(Inst) && "Can not generate vector code for instruction"); 751 752 const CastInst *Cast = dyn_cast<CastInst>(Inst); 753 VectorType *DestType = VectorType::get(Inst->getType(), VectorWidth); 754 VectorMap[Inst] = Builder.CreateCast(Cast->getOpcode(), NewOperand, DestType); 755 } 756 757 void VectorBlockGenerator::copyBinaryInst(ScopStmt &Stmt, 758 const BinaryOperator *Inst, 759 ValueMapT &VectorMap, 760 VectorValueMapT &ScalarMaps) { 761 Loop *L = getLoopForInst(Inst); 762 Value *OpZero = Inst->getOperand(0); 763 Value *OpOne = Inst->getOperand(1); 764 765 Value *NewOpZero, *NewOpOne; 766 NewOpZero = getVectorValue(Stmt, OpZero, VectorMap, ScalarMaps, L); 767 NewOpOne = getVectorValue(Stmt, OpOne, VectorMap, ScalarMaps, L); 768 769 Value *NewInst = Builder.CreateBinOp(Inst->getOpcode(), NewOpZero, NewOpOne, 770 Inst->getName() + "p_vec"); 771 VectorMap[Inst] = NewInst; 772 } 773 774 void VectorBlockGenerator::copyStore( 775 ScopStmt &Stmt, const StoreInst *Store, ValueMapT &VectorMap, 776 VectorValueMapT &ScalarMaps, __isl_keep isl_id_to_ast_expr *NewAccesses) { 777 const MemoryAccess &Access = Stmt.getAccessFor(Store); 778 779 const Value *Pointer = Store->getPointerOperand(); 780 Value *Vector = getVectorValue(Stmt, Store->getValueOperand(), VectorMap, 781 ScalarMaps, getLoopForInst(Store)); 782 783 // Make sure we have scalar values available to access the pointer to 784 // the data location. 785 extractScalarValues(Store, VectorMap, ScalarMaps); 786 787 if (Access.isStrideOne(isl_map_copy(Schedule))) { 788 Type *VectorPtrType = getVectorPtrTy(Pointer, getVectorWidth()); 789 Value *NewPointer = generateLocationAccessed( 790 Stmt, Store, Pointer, ScalarMaps[0], VLTS[0], NewAccesses); 791 792 Value *VectorPtr = 793 Builder.CreateBitCast(NewPointer, VectorPtrType, "vector_ptr"); 794 StoreInst *Store = Builder.CreateStore(Vector, VectorPtr); 795 796 if (!Aligned) 797 Store->setAlignment(8); 798 } else { 799 for (unsigned i = 0; i < ScalarMaps.size(); i++) { 800 Value *Scalar = Builder.CreateExtractElement(Vector, Builder.getInt32(i)); 801 Value *NewPointer = generateLocationAccessed( 802 Stmt, Store, Pointer, ScalarMaps[i], VLTS[i], NewAccesses); 803 Builder.CreateStore(Scalar, NewPointer); 804 } 805 } 806 } 807 808 bool VectorBlockGenerator::hasVectorOperands(const Instruction *Inst, 809 ValueMapT &VectorMap) { 810 for (Value *Operand : Inst->operands()) 811 if (VectorMap.count(Operand)) 812 return true; 813 return false; 814 } 815 816 bool VectorBlockGenerator::extractScalarValues(const Instruction *Inst, 817 ValueMapT &VectorMap, 818 VectorValueMapT &ScalarMaps) { 819 bool HasVectorOperand = false; 820 int VectorWidth = getVectorWidth(); 821 822 for (Value *Operand : Inst->operands()) { 823 ValueMapT::iterator VecOp = VectorMap.find(Operand); 824 825 if (VecOp == VectorMap.end()) 826 continue; 827 828 HasVectorOperand = true; 829 Value *NewVector = VecOp->second; 830 831 for (int i = 0; i < VectorWidth; ++i) { 832 ValueMapT &SM = ScalarMaps[i]; 833 834 // If there is one scalar extracted, all scalar elements should have 835 // already been extracted by the code here. So no need to check for the 836 // existance of all of them. 837 if (SM.count(Operand)) 838 break; 839 840 SM[Operand] = 841 Builder.CreateExtractElement(NewVector, Builder.getInt32(i)); 842 } 843 } 844 845 return HasVectorOperand; 846 } 847 848 void VectorBlockGenerator::copyInstScalarized( 849 ScopStmt &Stmt, const Instruction *Inst, ValueMapT &VectorMap, 850 VectorValueMapT &ScalarMaps, __isl_keep isl_id_to_ast_expr *NewAccesses) { 851 bool HasVectorOperand; 852 int VectorWidth = getVectorWidth(); 853 854 HasVectorOperand = extractScalarValues(Inst, VectorMap, ScalarMaps); 855 856 for (int VectorLane = 0; VectorLane < getVectorWidth(); VectorLane++) 857 BlockGenerator::copyInstruction(Stmt, Inst, ScalarMaps[VectorLane], 858 VLTS[VectorLane], NewAccesses); 859 860 if (!VectorType::isValidElementType(Inst->getType()) || !HasVectorOperand) 861 return; 862 863 // Make the result available as vector value. 864 VectorType *VectorType = VectorType::get(Inst->getType(), VectorWidth); 865 Value *Vector = UndefValue::get(VectorType); 866 867 for (int i = 0; i < VectorWidth; i++) 868 Vector = Builder.CreateInsertElement(Vector, ScalarMaps[i][Inst], 869 Builder.getInt32(i)); 870 871 VectorMap[Inst] = Vector; 872 } 873 874 int VectorBlockGenerator::getVectorWidth() { return VLTS.size(); } 875 876 void VectorBlockGenerator::copyInstruction( 877 ScopStmt &Stmt, const Instruction *Inst, ValueMapT &VectorMap, 878 VectorValueMapT &ScalarMaps, __isl_keep isl_id_to_ast_expr *NewAccesses) { 879 // Terminator instructions control the control flow. They are explicitly 880 // expressed in the clast and do not need to be copied. 881 if (Inst->isTerminator()) 882 return; 883 884 if (canSynthesize(Inst, &LI, &SE, &Stmt.getParent()->getRegion())) 885 return; 886 887 if (const LoadInst *Load = dyn_cast<LoadInst>(Inst)) { 888 generateLoad(Stmt, Load, VectorMap, ScalarMaps, NewAccesses); 889 return; 890 } 891 892 if (hasVectorOperands(Inst, VectorMap)) { 893 if (const StoreInst *Store = dyn_cast<StoreInst>(Inst)) { 894 copyStore(Stmt, Store, VectorMap, ScalarMaps, NewAccesses); 895 return; 896 } 897 898 if (const UnaryInstruction *Unary = dyn_cast<UnaryInstruction>(Inst)) { 899 copyUnaryInst(Stmt, Unary, VectorMap, ScalarMaps); 900 return; 901 } 902 903 if (const BinaryOperator *Binary = dyn_cast<BinaryOperator>(Inst)) { 904 copyBinaryInst(Stmt, Binary, VectorMap, ScalarMaps); 905 return; 906 } 907 908 // Falltrough: We generate scalar instructions, if we don't know how to 909 // generate vector code. 910 } 911 912 copyInstScalarized(Stmt, Inst, VectorMap, ScalarMaps, NewAccesses); 913 } 914 915 void VectorBlockGenerator::copyStmt( 916 ScopStmt &Stmt, __isl_keep isl_id_to_ast_expr *NewAccesses) { 917 assert(Stmt.isBlockStmt() && "TODO: Only block statements can be copied by " 918 "the vector block generator"); 919 920 BasicBlock *BB = Stmt.getBasicBlock(); 921 BasicBlock *CopyBB = 922 SplitBlock(Builder.GetInsertBlock(), Builder.GetInsertPoint(), &DT, &LI); 923 CopyBB->setName("polly.stmt." + BB->getName()); 924 Builder.SetInsertPoint(CopyBB->begin()); 925 926 // Create two maps that store the mapping from the original instructions of 927 // the old basic block to their copies in the new basic block. Those maps 928 // are basic block local. 929 // 930 // As vector code generation is supported there is one map for scalar values 931 // and one for vector values. 932 // 933 // In case we just do scalar code generation, the vectorMap is not used and 934 // the scalarMap has just one dimension, which contains the mapping. 935 // 936 // In case vector code generation is done, an instruction may either appear 937 // in the vector map once (as it is calculating >vectorwidth< values at a 938 // time. Or (if the values are calculated using scalar operations), it 939 // appears once in every dimension of the scalarMap. 940 VectorValueMapT ScalarBlockMap(getVectorWidth()); 941 ValueMapT VectorBlockMap; 942 943 for (Instruction &Inst : *BB) 944 copyInstruction(Stmt, &Inst, VectorBlockMap, ScalarBlockMap, NewAccesses); 945 } 946 947 BasicBlock *RegionGenerator::repairDominance(BasicBlock *BB, 948 BasicBlock *BBCopy) { 949 950 BasicBlock *BBIDom = DT.getNode(BB)->getIDom()->getBlock(); 951 BasicBlock *BBCopyIDom = BlockMap.lookup(BBIDom); 952 953 if (BBCopyIDom) 954 DT.changeImmediateDominator(BBCopy, BBCopyIDom); 955 956 return BBCopyIDom; 957 } 958 959 void RegionGenerator::copyStmt(ScopStmt &Stmt, LoopToScevMapT <S, 960 isl_id_to_ast_expr *IdToAstExp) { 961 assert(Stmt.isRegionStmt() && 962 "Only region statements can be copied by the region generator"); 963 964 // Forget all old mappings. 965 BlockMap.clear(); 966 RegionMaps.clear(); 967 IncompletePHINodeMap.clear(); 968 969 // The region represented by the statement. 970 Region *R = Stmt.getRegion(); 971 972 // Create a dedicated entry for the region where we can reload all demoted 973 // inputs. 974 BasicBlock *EntryBB = R->getEntry(); 975 BasicBlock *EntryBBCopy = 976 SplitBlock(Builder.GetInsertBlock(), Builder.GetInsertPoint(), &DT, &LI); 977 EntryBBCopy->setName("polly.stmt." + EntryBB->getName() + ".entry"); 978 Builder.SetInsertPoint(EntryBBCopy->begin()); 979 980 for (auto PI = pred_begin(EntryBB), PE = pred_end(EntryBB); PI != PE; ++PI) 981 if (!R->contains(*PI)) 982 BlockMap[*PI] = EntryBBCopy; 983 984 // Iterate over all blocks in the region in a breadth-first search. 985 std::deque<BasicBlock *> Blocks; 986 SmallPtrSet<BasicBlock *, 8> SeenBlocks; 987 Blocks.push_back(EntryBB); 988 SeenBlocks.insert(EntryBB); 989 990 while (!Blocks.empty()) { 991 BasicBlock *BB = Blocks.front(); 992 Blocks.pop_front(); 993 994 // First split the block and update dominance information. 995 BasicBlock *BBCopy = splitBB(BB); 996 BasicBlock *BBCopyIDom = repairDominance(BB, BBCopy); 997 998 // In order to remap PHI nodes we store also basic block mappings. 999 BlockMap[BB] = BBCopy; 1000 1001 // Get the mapping for this block and initialize it with the mapping 1002 // available at its immediate dominator (in the new region). 1003 ValueMapT &RegionMap = RegionMaps[BBCopy]; 1004 RegionMap = RegionMaps[BBCopyIDom]; 1005 1006 // Copy the block with the BlockGenerator. 1007 copyBB(Stmt, BB, BBCopy, RegionMap, LTS, IdToAstExp); 1008 1009 // In order to remap PHI nodes we store also basic block mappings. 1010 BlockMap[BB] = BBCopy; 1011 1012 // Add values to incomplete PHI nodes waiting for this block to be copied. 1013 for (const PHINodePairTy &PHINodePair : IncompletePHINodeMap[BB]) 1014 addOperandToPHI(Stmt, PHINodePair.first, PHINodePair.second, BB, LTS); 1015 IncompletePHINodeMap[BB].clear(); 1016 1017 // And continue with new successors inside the region. 1018 for (auto SI = succ_begin(BB), SE = succ_end(BB); SI != SE; SI++) 1019 if (R->contains(*SI) && SeenBlocks.insert(*SI).second) 1020 Blocks.push_back(*SI); 1021 } 1022 1023 // Now create a new dedicated region exit block and add it to the region map. 1024 BasicBlock *ExitBBCopy = 1025 SplitBlock(Builder.GetInsertBlock(), Builder.GetInsertPoint(), &DT, &LI); 1026 ExitBBCopy->setName("polly.stmt." + R->getExit()->getName() + ".exit"); 1027 BlockMap[R->getExit()] = ExitBBCopy; 1028 1029 repairDominance(R->getExit(), ExitBBCopy); 1030 1031 // As the block generator doesn't handle control flow we need to add the 1032 // region control flow by hand after all blocks have been copied. 1033 for (BasicBlock *BB : SeenBlocks) { 1034 1035 BasicBlock *BBCopy = BlockMap[BB]; 1036 TerminatorInst *TI = BB->getTerminator(); 1037 if (isa<UnreachableInst>(TI)) { 1038 while (!BBCopy->empty()) 1039 BBCopy->begin()->eraseFromParent(); 1040 new UnreachableInst(BBCopy->getContext(), BBCopy); 1041 continue; 1042 } 1043 1044 BranchInst *BI = cast<BranchInst>(TI); 1045 1046 Instruction *BICopy = BBCopy->getTerminator(); 1047 1048 ValueMapT &RegionMap = RegionMaps[BBCopy]; 1049 RegionMap.insert(BlockMap.begin(), BlockMap.end()); 1050 1051 Builder.SetInsertPoint(BICopy); 1052 copyInstScalar(Stmt, BI, RegionMap, LTS); 1053 BICopy->eraseFromParent(); 1054 } 1055 1056 // Add counting PHI nodes to all loops in the region that can be used as 1057 // replacement for SCEVs refering to the old loop. 1058 for (BasicBlock *BB : SeenBlocks) { 1059 Loop *L = LI.getLoopFor(BB); 1060 if (L == nullptr || L->getHeader() != BB) 1061 continue; 1062 1063 BasicBlock *BBCopy = BlockMap[BB]; 1064 Value *NullVal = Builder.getInt32(0); 1065 PHINode *LoopPHI = 1066 PHINode::Create(Builder.getInt32Ty(), 2, "polly.subregion.iv"); 1067 Instruction *LoopPHIInc = BinaryOperator::CreateAdd( 1068 LoopPHI, Builder.getInt32(1), "polly.subregion.iv.inc"); 1069 LoopPHI->insertBefore(BBCopy->begin()); 1070 LoopPHIInc->insertBefore(BBCopy->getTerminator()); 1071 1072 for (auto *PredBB : make_range(pred_begin(BB), pred_end(BB))) { 1073 if (!R->contains(PredBB)) 1074 continue; 1075 if (L->contains(PredBB)) 1076 LoopPHI->addIncoming(LoopPHIInc, BlockMap[PredBB]); 1077 else 1078 LoopPHI->addIncoming(NullVal, BlockMap[PredBB]); 1079 } 1080 1081 for (auto *PredBBCopy : make_range(pred_begin(BBCopy), pred_end(BBCopy))) 1082 if (LoopPHI->getBasicBlockIndex(PredBBCopy) < 0) 1083 LoopPHI->addIncoming(NullVal, PredBBCopy); 1084 1085 LTS[L] = SE.getUnknown(LoopPHI); 1086 } 1087 1088 // Reset the old insert point for the build. 1089 Builder.SetInsertPoint(ExitBBCopy->begin()); 1090 } 1091 1092 void RegionGenerator::generateScalarLoads(ScopStmt &Stmt, 1093 const Instruction *Inst, 1094 ValueMapT &BBMap) { 1095 1096 // Inside a non-affine region PHI nodes are copied not demoted. Once the 1097 // phi is copied it will reload all inputs from outside the region, hence 1098 // we do not need to generate code for the read access of the operands of a 1099 // PHI. 1100 if (isa<PHINode>(Inst)) 1101 return; 1102 1103 return BlockGenerator::generateScalarLoads(Stmt, Inst, BBMap); 1104 } 1105 1106 void RegionGenerator::generateScalarStores(ScopStmt &Stmt, BasicBlock *BB, 1107 ValueMapT &BBMap) { 1108 const Region &R = Stmt.getParent()->getRegion(); 1109 1110 assert(Stmt.getRegion() && 1111 "Block statements need to use the generateScalarStores() " 1112 "function in the BlockGenerator"); 1113 1114 for (MemoryAccess *MA : Stmt) { 1115 1116 if (!MA->isScalar() || MA->isRead()) 1117 continue; 1118 1119 Instruction *ScalarInst = MA->getAccessInstruction(); 1120 1121 // Only generate accesses that belong to this basic block. 1122 if (ScalarInst->getParent() != BB) 1123 continue; 1124 1125 Value *Val = MA->getAccessValue(); 1126 1127 auto Address = getOrCreateAlloca(*MA); 1128 1129 Val = getNewScalarValue(Val, R, BBMap); 1130 Builder.CreateStore(Val, Address); 1131 } 1132 } 1133 1134 void RegionGenerator::addOperandToPHI(ScopStmt &Stmt, const PHINode *PHI, 1135 PHINode *PHICopy, BasicBlock *IncomingBB, 1136 LoopToScevMapT <S) { 1137 Region *StmtR = Stmt.getRegion(); 1138 1139 // If the incoming block was not yet copied mark this PHI as incomplete. 1140 // Once the block will be copied the incoming value will be added. 1141 BasicBlock *BBCopy = BlockMap[IncomingBB]; 1142 if (!BBCopy) { 1143 assert(StmtR->contains(IncomingBB) && 1144 "Bad incoming block for PHI in non-affine region"); 1145 IncompletePHINodeMap[IncomingBB].push_back(std::make_pair(PHI, PHICopy)); 1146 return; 1147 } 1148 1149 Value *OpCopy = nullptr; 1150 if (StmtR->contains(IncomingBB)) { 1151 assert(RegionMaps.count(BBCopy) && 1152 "Incoming PHI block did not have a BBMap"); 1153 ValueMapT &BBCopyMap = RegionMaps[BBCopy]; 1154 1155 Value *Op = PHI->getIncomingValueForBlock(IncomingBB); 1156 OpCopy = getNewValue(Stmt, Op, BBCopyMap, LTS, getLoopForInst(PHI)); 1157 } else { 1158 1159 if (PHICopy->getBasicBlockIndex(BBCopy) >= 0) 1160 return; 1161 1162 Value *PHIOpAddr = getOrCreatePHIAlloca(const_cast<PHINode *>(PHI)); 1163 OpCopy = new LoadInst(PHIOpAddr, PHIOpAddr->getName() + ".reload", 1164 BlockMap[IncomingBB]->getTerminator()); 1165 } 1166 1167 assert(OpCopy && "Incoming PHI value was not copied properly"); 1168 assert(BBCopy && "Incoming PHI block was not copied properly"); 1169 PHICopy->addIncoming(OpCopy, BBCopy); 1170 } 1171 1172 Value *RegionGenerator::copyPHIInstruction(ScopStmt &Stmt, const PHINode *PHI, 1173 ValueMapT &BBMap, 1174 LoopToScevMapT <S) { 1175 unsigned NumIncoming = PHI->getNumIncomingValues(); 1176 PHINode *PHICopy = 1177 Builder.CreatePHI(PHI->getType(), NumIncoming, "polly." + PHI->getName()); 1178 PHICopy->moveBefore(PHICopy->getParent()->getFirstNonPHI()); 1179 BBMap[PHI] = PHICopy; 1180 1181 for (unsigned u = 0; u < NumIncoming; u++) 1182 addOperandToPHI(Stmt, PHI, PHICopy, PHI->getIncomingBlock(u), LTS); 1183 return PHICopy; 1184 } 1185