1 //===--- BlockGenerators.cpp - Generate code for statements -----*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the BlockGenerator and VectorBlockGenerator classes,
11 // which generate sequential code and vectorized code for a polyhedral
12 // statement, respectively.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "polly/ScopInfo.h"
17 #include "polly/CodeGen/BlockGenerators.h"
18 #include "polly/CodeGen/CodeGeneration.h"
19 #include "polly/CodeGen/IslExprBuilder.h"
20 #include "polly/CodeGen/RuntimeDebugBuilder.h"
21 #include "polly/Options.h"
22 #include "polly/Support/GICHelper.h"
23 #include "polly/Support/SCEVValidator.h"
24 #include "polly/Support/ScopHelper.h"
25 #include "llvm/Analysis/LoopInfo.h"
26 #include "llvm/Analysis/RegionInfo.h"
27 #include "llvm/Analysis/ScalarEvolution.h"
28 #include "llvm/IR/IntrinsicInst.h"
29 #include "llvm/IR/Module.h"
30 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
31 #include "isl/aff.h"
32 #include "isl/ast.h"
33 #include "isl/ast_build.h"
34 #include "isl/set.h"
35 #include <deque>
36 
37 using namespace llvm;
38 using namespace polly;
39 
40 static cl::opt<bool> Aligned("enable-polly-aligned",
41                              cl::desc("Assumed aligned memory accesses."),
42                              cl::Hidden, cl::init(false), cl::ZeroOrMore,
43                              cl::cat(PollyCategory));
44 
45 static cl::opt<bool> DebugPrinting(
46     "polly-codegen-add-debug-printing",
47     cl::desc("Add printf calls that show the values loaded/stored."),
48     cl::Hidden, cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory));
49 
50 bool polly::canSynthesize(const Value *V, const llvm::LoopInfo *LI,
51                           ScalarEvolution *SE, const Region *R) {
52   if (!V || !SE->isSCEVable(V->getType()))
53     return false;
54 
55   if (const SCEV *Scev = SE->getSCEV(const_cast<Value *>(V)))
56     if (!isa<SCEVCouldNotCompute>(Scev))
57       if (!hasScalarDepsInsideRegion(Scev, R))
58         return true;
59 
60   return false;
61 }
62 
63 bool polly::isIgnoredIntrinsic(const Value *V) {
64   if (auto *IT = dyn_cast<IntrinsicInst>(V)) {
65     switch (IT->getIntrinsicID()) {
66     // Lifetime markers are supported/ignored.
67     case llvm::Intrinsic::lifetime_start:
68     case llvm::Intrinsic::lifetime_end:
69     // Invariant markers are supported/ignored.
70     case llvm::Intrinsic::invariant_start:
71     case llvm::Intrinsic::invariant_end:
72     // Some misc annotations are supported/ignored.
73     case llvm::Intrinsic::var_annotation:
74     case llvm::Intrinsic::ptr_annotation:
75     case llvm::Intrinsic::annotation:
76     case llvm::Intrinsic::donothing:
77     case llvm::Intrinsic::assume:
78     case llvm::Intrinsic::expect:
79     // Some debug info intrisics are supported/ignored.
80     case llvm::Intrinsic::dbg_value:
81     case llvm::Intrinsic::dbg_declare:
82       return true;
83     default:
84       break;
85     }
86   }
87   return false;
88 }
89 
90 BlockGenerator::BlockGenerator(PollyIRBuilder &B, LoopInfo &LI,
91                                ScalarEvolution &SE, DominatorTree &DT,
92                                ScalarAllocaMapTy &ScalarMap,
93                                ScalarAllocaMapTy &PHIOpMap,
94                                EscapeUsersAllocaMapTy &EscapeMap,
95                                ValueToValueMap &GlobalMap,
96                                IslExprBuilder *ExprBuilder)
97     : Builder(B), LI(LI), SE(SE), ExprBuilder(ExprBuilder), DT(DT),
98       EntryBB(nullptr), PHIOpMap(PHIOpMap), ScalarMap(ScalarMap),
99       EscapeMap(EscapeMap), GlobalMap(GlobalMap) {}
100 
101 Value *BlockGenerator::getNewValue(ScopStmt &Stmt, const Value *Old,
102                                    ValueMapT &BBMap, LoopToScevMapT &LTS,
103                                    Loop *L) const {
104   // We assume constants never change.
105   // This avoids map lookups for many calls to this function.
106   if (isa<Constant>(Old))
107     return const_cast<Value *>(Old);
108 
109   if (Value *New = GlobalMap.lookup(Old)) {
110     if (Old->getType()->getScalarSizeInBits() <
111         New->getType()->getScalarSizeInBits())
112       New = Builder.CreateTruncOrBitCast(New, Old->getType());
113 
114     return New;
115   }
116 
117   if (Value *New = BBMap.lookup(Old))
118     return New;
119 
120   if (SE.isSCEVable(Old->getType()))
121     if (const SCEV *Scev = SE.getSCEVAtScope(const_cast<Value *>(Old), L)) {
122       if (!isa<SCEVCouldNotCompute>(Scev)) {
123         const SCEV *NewScev = apply(Scev, LTS, SE);
124         ValueToValueMap VTV;
125         VTV.insert(BBMap.begin(), BBMap.end());
126         VTV.insert(GlobalMap.begin(), GlobalMap.end());
127         NewScev = SCEVParameterRewriter::rewrite(NewScev, SE, VTV);
128 
129         Scop &S = *Stmt.getParent();
130         const DataLayout &DL =
131             S.getRegion().getEntry()->getParent()->getParent()->getDataLayout();
132         auto IP = Builder.GetInsertPoint();
133 
134         assert(IP != Builder.GetInsertBlock()->end() &&
135                "Only instructions can be insert points for SCEVExpander");
136         Value *Expanded =
137             expandCodeFor(S, SE, DL, "polly", NewScev, Old->getType(), IP);
138 
139         BBMap[Old] = Expanded;
140         return Expanded;
141       }
142     }
143 
144   // A scop-constant value defined by a global or a function parameter.
145   if (isa<GlobalValue>(Old) || isa<Argument>(Old))
146     return const_cast<Value *>(Old);
147 
148   // A scop-constant value defined by an instruction executed outside the scop.
149   if (const Instruction *Inst = dyn_cast<Instruction>(Old))
150     if (!Stmt.getParent()->getRegion().contains(Inst->getParent()))
151       return const_cast<Value *>(Old);
152 
153   // The scalar dependence is neither available nor SCEVCodegenable.
154   llvm_unreachable("Unexpected scalar dependence in region!");
155   return nullptr;
156 }
157 
158 void BlockGenerator::copyInstScalar(ScopStmt &Stmt, const Instruction *Inst,
159                                     ValueMapT &BBMap, LoopToScevMapT &LTS) {
160   // We do not generate debug intrinsics as we did not investigate how to
161   // copy them correctly. At the current state, they just crash the code
162   // generation as the meta-data operands are not correctly copied.
163   if (isa<DbgInfoIntrinsic>(Inst))
164     return;
165 
166   Instruction *NewInst = Inst->clone();
167 
168   // Replace old operands with the new ones.
169   for (Value *OldOperand : Inst->operands()) {
170     Value *NewOperand =
171         getNewValue(Stmt, OldOperand, BBMap, LTS, getLoopForInst(Inst));
172 
173     if (!NewOperand) {
174       assert(!isa<StoreInst>(NewInst) &&
175              "Store instructions are always needed!");
176       delete NewInst;
177       return;
178     }
179 
180     NewInst->replaceUsesOfWith(OldOperand, NewOperand);
181   }
182 
183   Builder.Insert(NewInst);
184   BBMap[Inst] = NewInst;
185 
186   if (!NewInst->getType()->isVoidTy())
187     NewInst->setName("p_" + Inst->getName());
188 }
189 
190 Value *BlockGenerator::generateLocationAccessed(
191     ScopStmt &Stmt, const Instruction *Inst, const Value *Pointer,
192     ValueMapT &BBMap, LoopToScevMapT &LTS, isl_id_to_ast_expr *NewAccesses) {
193   const MemoryAccess &MA = Stmt.getAccessFor(Inst);
194 
195   isl_ast_expr *AccessExpr = isl_id_to_ast_expr_get(NewAccesses, MA.getId());
196 
197   if (AccessExpr) {
198     AccessExpr = isl_ast_expr_address_of(AccessExpr);
199     return ExprBuilder->create(AccessExpr);
200   }
201 
202   return getNewValue(Stmt, Pointer, BBMap, LTS, getLoopForInst(Inst));
203 }
204 
205 Loop *BlockGenerator::getLoopForInst(const llvm::Instruction *Inst) {
206   return LI.getLoopFor(Inst->getParent());
207 }
208 
209 Value *BlockGenerator::generateScalarLoad(ScopStmt &Stmt, const LoadInst *Load,
210                                           ValueMapT &BBMap, LoopToScevMapT &LTS,
211                                           isl_id_to_ast_expr *NewAccesses) {
212   const Value *Pointer = Load->getPointerOperand();
213   Value *NewPointer =
214       generateLocationAccessed(Stmt, Load, Pointer, BBMap, LTS, NewAccesses);
215   Value *ScalarLoad = Builder.CreateAlignedLoad(
216       NewPointer, Load->getAlignment(), Load->getName() + "_p_scalar_");
217 
218   if (DebugPrinting)
219     RuntimeDebugBuilder::createCPUPrinter(Builder, "Load from ", NewPointer,
220                                           ": ", ScalarLoad, "\n");
221 
222   return ScalarLoad;
223 }
224 
225 void BlockGenerator::generateScalarStore(ScopStmt &Stmt, const StoreInst *Store,
226                                          ValueMapT &BBMap, LoopToScevMapT &LTS,
227                                          isl_id_to_ast_expr *NewAccesses) {
228   const Value *Pointer = Store->getPointerOperand();
229   Value *NewPointer =
230       generateLocationAccessed(Stmt, Store, Pointer, BBMap, LTS, NewAccesses);
231   Value *ValueOperand = getNewValue(Stmt, Store->getValueOperand(), BBMap, LTS,
232                                     getLoopForInst(Store));
233 
234   if (DebugPrinting)
235     RuntimeDebugBuilder::createCPUPrinter(Builder, "Store to  ", NewPointer,
236                                           ": ", ValueOperand, "\n");
237 
238   Builder.CreateAlignedStore(ValueOperand, NewPointer, Store->getAlignment());
239 }
240 
241 void BlockGenerator::copyInstruction(ScopStmt &Stmt, const Instruction *Inst,
242                                      ValueMapT &BBMap, LoopToScevMapT &LTS,
243                                      isl_id_to_ast_expr *NewAccesses) {
244 
245   // First check for possible scalar dependences for this instruction.
246   generateScalarLoads(Stmt, Inst, BBMap);
247 
248   // Terminator instructions control the control flow. They are explicitly
249   // expressed in the clast and do not need to be copied.
250   if (Inst->isTerminator())
251     return;
252 
253   Loop *L = getLoopForInst(Inst);
254   if ((Stmt.isBlockStmt() || !Stmt.getRegion()->contains(L)) &&
255       canSynthesize(Inst, &LI, &SE, &Stmt.getParent()->getRegion())) {
256     Value *NewValue = getNewValue(Stmt, Inst, BBMap, LTS, L);
257     BBMap[Inst] = NewValue;
258     return;
259   }
260 
261   if (const LoadInst *Load = dyn_cast<LoadInst>(Inst)) {
262     Value *NewLoad = generateScalarLoad(Stmt, Load, BBMap, LTS, NewAccesses);
263     // Compute NewLoad before its insertion in BBMap to make the insertion
264     // deterministic.
265     BBMap[Load] = NewLoad;
266     return;
267   }
268 
269   if (const StoreInst *Store = dyn_cast<StoreInst>(Inst)) {
270     generateScalarStore(Stmt, Store, BBMap, LTS, NewAccesses);
271     return;
272   }
273 
274   if (const PHINode *PHI = dyn_cast<PHINode>(Inst)) {
275     copyPHIInstruction(Stmt, PHI, BBMap, LTS);
276     return;
277   }
278 
279   // Skip some special intrinsics for which we do not adjust the semantics to
280   // the new schedule. All others are handled like every other instruction.
281   if (isIgnoredIntrinsic(Inst))
282     return;
283 
284   copyInstScalar(Stmt, Inst, BBMap, LTS);
285 }
286 
287 void BlockGenerator::copyStmt(ScopStmt &Stmt, LoopToScevMapT &LTS,
288                               isl_id_to_ast_expr *NewAccesses) {
289   assert(Stmt.isBlockStmt() &&
290          "Only block statements can be copied by the block generator");
291 
292   ValueMapT BBMap;
293 
294   BasicBlock *BB = Stmt.getBasicBlock();
295   copyBB(Stmt, BB, BBMap, LTS, NewAccesses);
296 }
297 
298 BasicBlock *BlockGenerator::splitBB(BasicBlock *BB) {
299   BasicBlock *CopyBB =
300       SplitBlock(Builder.GetInsertBlock(), Builder.GetInsertPoint(), &DT, &LI);
301   CopyBB->setName("polly.stmt." + BB->getName());
302   return CopyBB;
303 }
304 
305 BasicBlock *BlockGenerator::copyBB(ScopStmt &Stmt, BasicBlock *BB,
306                                    ValueMapT &BBMap, LoopToScevMapT &LTS,
307                                    isl_id_to_ast_expr *NewAccesses) {
308   BasicBlock *CopyBB = splitBB(BB);
309   copyBB(Stmt, BB, CopyBB, BBMap, LTS, NewAccesses);
310   return CopyBB;
311 }
312 
313 void BlockGenerator::copyBB(ScopStmt &Stmt, BasicBlock *BB, BasicBlock *CopyBB,
314                             ValueMapT &BBMap, LoopToScevMapT &LTS,
315                             isl_id_to_ast_expr *NewAccesses) {
316   Builder.SetInsertPoint(CopyBB->begin());
317   EntryBB = &CopyBB->getParent()->getEntryBlock();
318 
319   for (Instruction &Inst : *BB)
320     copyInstruction(Stmt, &Inst, BBMap, LTS, NewAccesses);
321 
322   // After a basic block was copied store all scalars that escape this block
323   // in their alloca. First the scalars that have dependences inside the SCoP,
324   // then the ones that might escape the SCoP.
325   generateScalarStores(Stmt, BB, BBMap);
326 
327   const Region &R = Stmt.getParent()->getRegion();
328   for (Instruction &Inst : *BB)
329     handleOutsideUsers(R, &Inst, BBMap[&Inst]);
330 }
331 
332 Value *BlockGenerator::getOrCreateAlloca(Value *ScalarBase,
333                                          ScalarAllocaMapTy &Map,
334                                          const char *NameExt) {
335   // Check if an alloca was cached for the base instruction.
336   AllocaInst *&Addr = Map[ScalarBase];
337 
338   // If no alloca was found create one and insert it in the entry block.
339   if (!Addr) {
340     auto *Ty = ScalarBase->getType();
341     Addr = new AllocaInst(Ty, ScalarBase->getName() + NameExt);
342     EntryBB = &Builder.GetInsertBlock()->getParent()->getEntryBlock();
343     Addr->insertBefore(EntryBB->getFirstInsertionPt());
344   }
345 
346   if (GlobalMap.count(Addr))
347     return GlobalMap[Addr];
348 
349   return Addr;
350 }
351 
352 Value *BlockGenerator::getOrCreateAlloca(MemoryAccess &Access) {
353   if (Access.getScopArrayInfo()->isPHI())
354     return getOrCreatePHIAlloca(Access.getBaseAddr());
355   else
356     return getOrCreateScalarAlloca(Access.getBaseAddr());
357 }
358 
359 Value *BlockGenerator::getOrCreateScalarAlloca(Value *ScalarBase) {
360   return getOrCreateAlloca(ScalarBase, ScalarMap, ".s2a");
361 }
362 
363 Value *BlockGenerator::getOrCreatePHIAlloca(Value *ScalarBase) {
364   return getOrCreateAlloca(ScalarBase, PHIOpMap, ".phiops");
365 }
366 
367 void BlockGenerator::handleOutsideUsers(const Region &R, Instruction *Inst,
368                                         Value *InstCopy, AllocaInst *Address) {
369   // If there are escape users we get the alloca for this instruction and put it
370   // in the EscapeMap for later finalization. Lastly, if the instruction was
371   // copied multiple times we already did this and can exit.
372   if (EscapeMap.count(Inst))
373     return;
374 
375   EscapeUserVectorTy EscapeUsers;
376   for (User *U : Inst->users()) {
377 
378     // Non-instruction user will never escape.
379     Instruction *UI = dyn_cast<Instruction>(U);
380     if (!UI)
381       continue;
382 
383     if (R.contains(UI))
384       continue;
385 
386     EscapeUsers.push_back(UI);
387   }
388 
389   // Exit if no escape uses were found.
390   if (EscapeUsers.empty())
391     return;
392 
393   // Get or create an escape alloca for this instruction.
394   auto *ScalarAddr =
395       Address ? Address : cast<AllocaInst>(getOrCreateScalarAlloca(Inst));
396 
397   // Remember that this instruction has escape uses and the escape alloca.
398   EscapeMap[Inst] = std::make_pair(ScalarAddr, std::move(EscapeUsers));
399 }
400 
401 void BlockGenerator::generateScalarLoads(ScopStmt &Stmt,
402                                          const Instruction *Inst,
403                                          ValueMapT &BBMap) {
404   auto *MAL = Stmt.lookupAccessesFor(Inst);
405 
406   if (!MAL)
407     return;
408 
409   for (MemoryAccess &MA : *MAL) {
410     if (!MA.isScalar() || !MA.isRead())
411       continue;
412 
413     auto *Address = getOrCreateAlloca(MA);
414     BBMap[MA.getBaseAddr()] =
415         Builder.CreateLoad(Address, Address->getName() + ".reload");
416   }
417 }
418 
419 Value *BlockGenerator::getNewScalarValue(Value *ScalarValue, const Region &R,
420                                          ValueMapT &BBMap) {
421   // If the value we want to store is an instruction we might have demoted it
422   // in order to make it accessible here. In such a case a reload is
423   // necessary. If it is no instruction it will always be a value that
424   // dominates the current point and we can just use it. In total there are 4
425   // options:
426   //  (1) The value is no instruction ==> use the value.
427   //  (2) The value is an instruction that was split out of the region prior to
428   //      code generation  ==> use the instruction as it dominates the region.
429   //  (3) The value is an instruction:
430   //      (a) The value was defined in the current block, thus a copy is in
431   //          the BBMap ==> use the mapped value.
432   //      (b) The value was defined in a previous block, thus we demoted it
433   //          earlier ==> use the reloaded value.
434   Instruction *ScalarValueInst = dyn_cast<Instruction>(ScalarValue);
435   if (!ScalarValueInst)
436     return ScalarValue;
437 
438   if (!R.contains(ScalarValueInst)) {
439     if (Value *ScalarValueCopy = GlobalMap.lookup(ScalarValueInst))
440       return /* Case (3a) */ ScalarValueCopy;
441     else
442       return /* Case 2 */ ScalarValue;
443   }
444 
445   if (Value *ScalarValueCopy = BBMap.lookup(ScalarValueInst))
446     return /* Case (3a) */ ScalarValueCopy;
447 
448   // Case (3b)
449   Value *Address = getOrCreateScalarAlloca(ScalarValueInst);
450   ScalarValue = Builder.CreateLoad(Address, Address->getName() + ".reload");
451 
452   return ScalarValue;
453 }
454 
455 void BlockGenerator::generateScalarStores(ScopStmt &Stmt, BasicBlock *BB,
456                                           ValueMapT &BBMap) {
457   const Region &R = Stmt.getParent()->getRegion();
458 
459   assert(Stmt.isBlockStmt() && BB == Stmt.getBasicBlock() &&
460          "Region statements need to use the generateScalarStores() "
461          "function in the RegionGenerator");
462 
463   for (MemoryAccess *MA : Stmt) {
464     if (!MA->isScalar() || MA->isRead())
465       continue;
466 
467     Value *Val = MA->getAccessValue();
468     auto *Address = getOrCreateAlloca(*MA);
469 
470     Val = getNewScalarValue(Val, R, BBMap);
471     Builder.CreateStore(Val, Address);
472   }
473 }
474 
475 void BlockGenerator::createScalarInitialization(Scop &S) {
476   Region &R = S.getRegion();
477   // The split block __just before__ the region and optimized region.
478   BasicBlock *SplitBB = R.getEnteringBlock();
479   BranchInst *SplitBBTerm = cast<BranchInst>(SplitBB->getTerminator());
480   assert(SplitBBTerm->getNumSuccessors() == 2 && "Bad region entering block!");
481 
482   // Get the start block of the __optimized__ region.
483   BasicBlock *StartBB = SplitBBTerm->getSuccessor(0);
484   if (StartBB == R.getEntry())
485     StartBB = SplitBBTerm->getSuccessor(1);
486 
487   Builder.SetInsertPoint(StartBB->begin());
488 
489   for (auto &Pair : S.arrays()) {
490     auto &Array = Pair.second;
491     if (Array->getNumberOfDimensions() != 0)
492       continue;
493     if (Array->isPHI()) {
494       // For PHI nodes, the only values we need to store are the ones that
495       // reach the PHI node from outside the region. In general there should
496       // only be one such incoming edge and this edge should enter through
497       // 'SplitBB'.
498       auto PHI = cast<PHINode>(Array->getBasePtr());
499 
500       for (auto BI = PHI->block_begin(), BE = PHI->block_end(); BI != BE; BI++)
501         if (!R.contains(*BI) && *BI != SplitBB)
502           llvm_unreachable("Incoming edges from outside the scop should always "
503                            "come from SplitBB");
504 
505       int Idx = PHI->getBasicBlockIndex(SplitBB);
506       if (Idx < 0)
507         continue;
508 
509       Value *ScalarValue = PHI->getIncomingValue(Idx);
510 
511       Builder.CreateStore(ScalarValue, getOrCreatePHIAlloca(PHI));
512       continue;
513     }
514 
515     auto *Inst = dyn_cast<Instruction>(Array->getBasePtr());
516 
517     if (Inst && R.contains(Inst))
518       continue;
519 
520     // PHI nodes that are not marked as such in their SAI object are exit PHI
521     // nodes we model as common scalars but do not need to initialize.
522     if (Inst && isa<PHINode>(Inst))
523       continue;
524 
525     ValueMapT EmptyMap;
526     Builder.CreateStore(Array->getBasePtr(),
527                         getOrCreateScalarAlloca(Array->getBasePtr()));
528   }
529 }
530 
531 void BlockGenerator::createScalarFinalization(Region &R) {
532   // The exit block of the __unoptimized__ region.
533   BasicBlock *ExitBB = R.getExitingBlock();
534   // The merge block __just after__ the region and the optimized region.
535   BasicBlock *MergeBB = R.getExit();
536 
537   // The exit block of the __optimized__ region.
538   BasicBlock *OptExitBB = *(pred_begin(MergeBB));
539   if (OptExitBB == ExitBB)
540     OptExitBB = *(++pred_begin(MergeBB));
541 
542   Builder.SetInsertPoint(OptExitBB->getTerminator());
543   for (const auto &EscapeMapping : EscapeMap) {
544     // Extract the escaping instruction and the escaping users as well as the
545     // alloca the instruction was demoted to.
546     Instruction *EscapeInst = EscapeMapping.getFirst();
547     const auto &EscapeMappingValue = EscapeMapping.getSecond();
548     const EscapeUserVectorTy &EscapeUsers = EscapeMappingValue.second;
549     Value *ScalarAddr = EscapeMappingValue.first;
550 
551     // Reload the demoted instruction in the optimized version of the SCoP.
552     Instruction *EscapeInstReload =
553         Builder.CreateLoad(ScalarAddr, EscapeInst->getName() + ".final_reload");
554 
555     // Create the merge PHI that merges the optimized and unoptimized version.
556     PHINode *MergePHI = PHINode::Create(EscapeInst->getType(), 2,
557                                         EscapeInst->getName() + ".merge");
558     MergePHI->insertBefore(MergeBB->getFirstInsertionPt());
559 
560     // Add the respective values to the merge PHI.
561     MergePHI->addIncoming(EscapeInstReload, OptExitBB);
562     MergePHI->addIncoming(EscapeInst, ExitBB);
563 
564     // The information of scalar evolution about the escaping instruction needs
565     // to be revoked so the new merged instruction will be used.
566     if (SE.isSCEVable(EscapeInst->getType()))
567       SE.forgetValue(EscapeInst);
568 
569     // Replace all uses of the demoted instruction with the merge PHI.
570     for (Instruction *EUser : EscapeUsers)
571       EUser->replaceUsesOfWith(EscapeInst, MergePHI);
572   }
573 }
574 
575 void BlockGenerator::finalizeSCoP(Scop &S) {
576 
577   // Handle PHI nodes that were in the original exit and are now
578   // moved into the region exiting block.
579   if (!S.hasSingleExitEdge()) {
580     for (Instruction &I : *S.getRegion().getExitingBlock()) {
581       PHINode *PHI = dyn_cast<PHINode>(&I);
582       if (!PHI)
583         break;
584 
585       assert(PHI->getNumUses() == 1);
586       assert(ScalarMap.count(PHI->user_back()));
587 
588       handleOutsideUsers(S.getRegion(), PHI, nullptr,
589                          ScalarMap[PHI->user_back()]);
590     }
591   }
592 
593   createScalarInitialization(S);
594   createScalarFinalization(S.getRegion());
595 }
596 
597 VectorBlockGenerator::VectorBlockGenerator(BlockGenerator &BlockGen,
598                                            std::vector<LoopToScevMapT> &VLTS,
599                                            isl_map *Schedule)
600     : BlockGenerator(BlockGen), VLTS(VLTS), Schedule(Schedule) {
601   assert(Schedule && "No statement domain provided");
602 }
603 
604 Value *VectorBlockGenerator::getVectorValue(ScopStmt &Stmt, const Value *Old,
605                                             ValueMapT &VectorMap,
606                                             VectorValueMapT &ScalarMaps,
607                                             Loop *L) {
608   if (Value *NewValue = VectorMap.lookup(Old))
609     return NewValue;
610 
611   int Width = getVectorWidth();
612 
613   Value *Vector = UndefValue::get(VectorType::get(Old->getType(), Width));
614 
615   for (int Lane = 0; Lane < Width; Lane++)
616     Vector = Builder.CreateInsertElement(
617         Vector, getNewValue(Stmt, Old, ScalarMaps[Lane], VLTS[Lane], L),
618         Builder.getInt32(Lane));
619 
620   VectorMap[Old] = Vector;
621 
622   return Vector;
623 }
624 
625 Type *VectorBlockGenerator::getVectorPtrTy(const Value *Val, int Width) {
626   PointerType *PointerTy = dyn_cast<PointerType>(Val->getType());
627   assert(PointerTy && "PointerType expected");
628 
629   Type *ScalarType = PointerTy->getElementType();
630   VectorType *VectorType = VectorType::get(ScalarType, Width);
631 
632   return PointerType::getUnqual(VectorType);
633 }
634 
635 Value *VectorBlockGenerator::generateStrideOneLoad(
636     ScopStmt &Stmt, const LoadInst *Load, VectorValueMapT &ScalarMaps,
637     __isl_keep isl_id_to_ast_expr *NewAccesses, bool NegativeStride = false) {
638   unsigned VectorWidth = getVectorWidth();
639   const Value *Pointer = Load->getPointerOperand();
640   Type *VectorPtrType = getVectorPtrTy(Pointer, VectorWidth);
641   unsigned Offset = NegativeStride ? VectorWidth - 1 : 0;
642 
643   Value *NewPointer = nullptr;
644   NewPointer = generateLocationAccessed(Stmt, Load, Pointer, ScalarMaps[Offset],
645                                         VLTS[Offset], NewAccesses);
646   Value *VectorPtr =
647       Builder.CreateBitCast(NewPointer, VectorPtrType, "vector_ptr");
648   LoadInst *VecLoad =
649       Builder.CreateLoad(VectorPtr, Load->getName() + "_p_vec_full");
650   if (!Aligned)
651     VecLoad->setAlignment(8);
652 
653   if (NegativeStride) {
654     SmallVector<Constant *, 16> Indices;
655     for (int i = VectorWidth - 1; i >= 0; i--)
656       Indices.push_back(ConstantInt::get(Builder.getInt32Ty(), i));
657     Constant *SV = llvm::ConstantVector::get(Indices);
658     Value *RevVecLoad = Builder.CreateShuffleVector(
659         VecLoad, VecLoad, SV, Load->getName() + "_reverse");
660     return RevVecLoad;
661   }
662 
663   return VecLoad;
664 }
665 
666 Value *VectorBlockGenerator::generateStrideZeroLoad(
667     ScopStmt &Stmt, const LoadInst *Load, ValueMapT &BBMap,
668     __isl_keep isl_id_to_ast_expr *NewAccesses) {
669   const Value *Pointer = Load->getPointerOperand();
670   Type *VectorPtrType = getVectorPtrTy(Pointer, 1);
671   Value *NewPointer = generateLocationAccessed(Stmt, Load, Pointer, BBMap,
672                                                VLTS[0], NewAccesses);
673   Value *VectorPtr = Builder.CreateBitCast(NewPointer, VectorPtrType,
674                                            Load->getName() + "_p_vec_p");
675   LoadInst *ScalarLoad =
676       Builder.CreateLoad(VectorPtr, Load->getName() + "_p_splat_one");
677 
678   if (!Aligned)
679     ScalarLoad->setAlignment(8);
680 
681   Constant *SplatVector = Constant::getNullValue(
682       VectorType::get(Builder.getInt32Ty(), getVectorWidth()));
683 
684   Value *VectorLoad = Builder.CreateShuffleVector(
685       ScalarLoad, ScalarLoad, SplatVector, Load->getName() + "_p_splat");
686   return VectorLoad;
687 }
688 
689 Value *VectorBlockGenerator::generateUnknownStrideLoad(
690     ScopStmt &Stmt, const LoadInst *Load, VectorValueMapT &ScalarMaps,
691     __isl_keep isl_id_to_ast_expr *NewAccesses
692 
693     ) {
694   int VectorWidth = getVectorWidth();
695   const Value *Pointer = Load->getPointerOperand();
696   VectorType *VectorType = VectorType::get(
697       dyn_cast<PointerType>(Pointer->getType())->getElementType(), VectorWidth);
698 
699   Value *Vector = UndefValue::get(VectorType);
700 
701   for (int i = 0; i < VectorWidth; i++) {
702     Value *NewPointer = generateLocationAccessed(
703         Stmt, Load, Pointer, ScalarMaps[i], VLTS[i], NewAccesses);
704     Value *ScalarLoad =
705         Builder.CreateLoad(NewPointer, Load->getName() + "_p_scalar_");
706     Vector = Builder.CreateInsertElement(
707         Vector, ScalarLoad, Builder.getInt32(i), Load->getName() + "_p_vec_");
708   }
709 
710   return Vector;
711 }
712 
713 void VectorBlockGenerator::generateLoad(
714     ScopStmt &Stmt, const LoadInst *Load, ValueMapT &VectorMap,
715     VectorValueMapT &ScalarMaps, __isl_keep isl_id_to_ast_expr *NewAccesses) {
716   if (!VectorType::isValidElementType(Load->getType())) {
717     for (int i = 0; i < getVectorWidth(); i++)
718       ScalarMaps[i][Load] =
719           generateScalarLoad(Stmt, Load, ScalarMaps[i], VLTS[i], NewAccesses);
720     return;
721   }
722 
723   const MemoryAccess &Access = Stmt.getAccessFor(Load);
724 
725   // Make sure we have scalar values available to access the pointer to
726   // the data location.
727   extractScalarValues(Load, VectorMap, ScalarMaps);
728 
729   Value *NewLoad;
730   if (Access.isStrideZero(isl_map_copy(Schedule)))
731     NewLoad = generateStrideZeroLoad(Stmt, Load, ScalarMaps[0], NewAccesses);
732   else if (Access.isStrideOne(isl_map_copy(Schedule)))
733     NewLoad = generateStrideOneLoad(Stmt, Load, ScalarMaps, NewAccesses);
734   else if (Access.isStrideX(isl_map_copy(Schedule), -1))
735     NewLoad = generateStrideOneLoad(Stmt, Load, ScalarMaps, NewAccesses, true);
736   else
737     NewLoad = generateUnknownStrideLoad(Stmt, Load, ScalarMaps, NewAccesses);
738 
739   VectorMap[Load] = NewLoad;
740 }
741 
742 void VectorBlockGenerator::copyUnaryInst(ScopStmt &Stmt,
743                                          const UnaryInstruction *Inst,
744                                          ValueMapT &VectorMap,
745                                          VectorValueMapT &ScalarMaps) {
746   int VectorWidth = getVectorWidth();
747   Value *NewOperand = getVectorValue(Stmt, Inst->getOperand(0), VectorMap,
748                                      ScalarMaps, getLoopForInst(Inst));
749 
750   assert(isa<CastInst>(Inst) && "Can not generate vector code for instruction");
751 
752   const CastInst *Cast = dyn_cast<CastInst>(Inst);
753   VectorType *DestType = VectorType::get(Inst->getType(), VectorWidth);
754   VectorMap[Inst] = Builder.CreateCast(Cast->getOpcode(), NewOperand, DestType);
755 }
756 
757 void VectorBlockGenerator::copyBinaryInst(ScopStmt &Stmt,
758                                           const BinaryOperator *Inst,
759                                           ValueMapT &VectorMap,
760                                           VectorValueMapT &ScalarMaps) {
761   Loop *L = getLoopForInst(Inst);
762   Value *OpZero = Inst->getOperand(0);
763   Value *OpOne = Inst->getOperand(1);
764 
765   Value *NewOpZero, *NewOpOne;
766   NewOpZero = getVectorValue(Stmt, OpZero, VectorMap, ScalarMaps, L);
767   NewOpOne = getVectorValue(Stmt, OpOne, VectorMap, ScalarMaps, L);
768 
769   Value *NewInst = Builder.CreateBinOp(Inst->getOpcode(), NewOpZero, NewOpOne,
770                                        Inst->getName() + "p_vec");
771   VectorMap[Inst] = NewInst;
772 }
773 
774 void VectorBlockGenerator::copyStore(
775     ScopStmt &Stmt, const StoreInst *Store, ValueMapT &VectorMap,
776     VectorValueMapT &ScalarMaps, __isl_keep isl_id_to_ast_expr *NewAccesses) {
777   const MemoryAccess &Access = Stmt.getAccessFor(Store);
778 
779   const Value *Pointer = Store->getPointerOperand();
780   Value *Vector = getVectorValue(Stmt, Store->getValueOperand(), VectorMap,
781                                  ScalarMaps, getLoopForInst(Store));
782 
783   // Make sure we have scalar values available to access the pointer to
784   // the data location.
785   extractScalarValues(Store, VectorMap, ScalarMaps);
786 
787   if (Access.isStrideOne(isl_map_copy(Schedule))) {
788     Type *VectorPtrType = getVectorPtrTy(Pointer, getVectorWidth());
789     Value *NewPointer = generateLocationAccessed(
790         Stmt, Store, Pointer, ScalarMaps[0], VLTS[0], NewAccesses);
791 
792     Value *VectorPtr =
793         Builder.CreateBitCast(NewPointer, VectorPtrType, "vector_ptr");
794     StoreInst *Store = Builder.CreateStore(Vector, VectorPtr);
795 
796     if (!Aligned)
797       Store->setAlignment(8);
798   } else {
799     for (unsigned i = 0; i < ScalarMaps.size(); i++) {
800       Value *Scalar = Builder.CreateExtractElement(Vector, Builder.getInt32(i));
801       Value *NewPointer = generateLocationAccessed(
802           Stmt, Store, Pointer, ScalarMaps[i], VLTS[i], NewAccesses);
803       Builder.CreateStore(Scalar, NewPointer);
804     }
805   }
806 }
807 
808 bool VectorBlockGenerator::hasVectorOperands(const Instruction *Inst,
809                                              ValueMapT &VectorMap) {
810   for (Value *Operand : Inst->operands())
811     if (VectorMap.count(Operand))
812       return true;
813   return false;
814 }
815 
816 bool VectorBlockGenerator::extractScalarValues(const Instruction *Inst,
817                                                ValueMapT &VectorMap,
818                                                VectorValueMapT &ScalarMaps) {
819   bool HasVectorOperand = false;
820   int VectorWidth = getVectorWidth();
821 
822   for (Value *Operand : Inst->operands()) {
823     ValueMapT::iterator VecOp = VectorMap.find(Operand);
824 
825     if (VecOp == VectorMap.end())
826       continue;
827 
828     HasVectorOperand = true;
829     Value *NewVector = VecOp->second;
830 
831     for (int i = 0; i < VectorWidth; ++i) {
832       ValueMapT &SM = ScalarMaps[i];
833 
834       // If there is one scalar extracted, all scalar elements should have
835       // already been extracted by the code here. So no need to check for the
836       // existance of all of them.
837       if (SM.count(Operand))
838         break;
839 
840       SM[Operand] =
841           Builder.CreateExtractElement(NewVector, Builder.getInt32(i));
842     }
843   }
844 
845   return HasVectorOperand;
846 }
847 
848 void VectorBlockGenerator::copyInstScalarized(
849     ScopStmt &Stmt, const Instruction *Inst, ValueMapT &VectorMap,
850     VectorValueMapT &ScalarMaps, __isl_keep isl_id_to_ast_expr *NewAccesses) {
851   bool HasVectorOperand;
852   int VectorWidth = getVectorWidth();
853 
854   HasVectorOperand = extractScalarValues(Inst, VectorMap, ScalarMaps);
855 
856   for (int VectorLane = 0; VectorLane < getVectorWidth(); VectorLane++)
857     BlockGenerator::copyInstruction(Stmt, Inst, ScalarMaps[VectorLane],
858                                     VLTS[VectorLane], NewAccesses);
859 
860   if (!VectorType::isValidElementType(Inst->getType()) || !HasVectorOperand)
861     return;
862 
863   // Make the result available as vector value.
864   VectorType *VectorType = VectorType::get(Inst->getType(), VectorWidth);
865   Value *Vector = UndefValue::get(VectorType);
866 
867   for (int i = 0; i < VectorWidth; i++)
868     Vector = Builder.CreateInsertElement(Vector, ScalarMaps[i][Inst],
869                                          Builder.getInt32(i));
870 
871   VectorMap[Inst] = Vector;
872 }
873 
874 int VectorBlockGenerator::getVectorWidth() { return VLTS.size(); }
875 
876 void VectorBlockGenerator::copyInstruction(
877     ScopStmt &Stmt, const Instruction *Inst, ValueMapT &VectorMap,
878     VectorValueMapT &ScalarMaps, __isl_keep isl_id_to_ast_expr *NewAccesses) {
879   // Terminator instructions control the control flow. They are explicitly
880   // expressed in the clast and do not need to be copied.
881   if (Inst->isTerminator())
882     return;
883 
884   if (canSynthesize(Inst, &LI, &SE, &Stmt.getParent()->getRegion()))
885     return;
886 
887   if (const LoadInst *Load = dyn_cast<LoadInst>(Inst)) {
888     generateLoad(Stmt, Load, VectorMap, ScalarMaps, NewAccesses);
889     return;
890   }
891 
892   if (hasVectorOperands(Inst, VectorMap)) {
893     if (const StoreInst *Store = dyn_cast<StoreInst>(Inst)) {
894       copyStore(Stmt, Store, VectorMap, ScalarMaps, NewAccesses);
895       return;
896     }
897 
898     if (const UnaryInstruction *Unary = dyn_cast<UnaryInstruction>(Inst)) {
899       copyUnaryInst(Stmt, Unary, VectorMap, ScalarMaps);
900       return;
901     }
902 
903     if (const BinaryOperator *Binary = dyn_cast<BinaryOperator>(Inst)) {
904       copyBinaryInst(Stmt, Binary, VectorMap, ScalarMaps);
905       return;
906     }
907 
908     // Falltrough: We generate scalar instructions, if we don't know how to
909     // generate vector code.
910   }
911 
912   copyInstScalarized(Stmt, Inst, VectorMap, ScalarMaps, NewAccesses);
913 }
914 
915 void VectorBlockGenerator::copyStmt(
916     ScopStmt &Stmt, __isl_keep isl_id_to_ast_expr *NewAccesses) {
917   assert(Stmt.isBlockStmt() && "TODO: Only block statements can be copied by "
918                                "the vector block generator");
919 
920   BasicBlock *BB = Stmt.getBasicBlock();
921   BasicBlock *CopyBB =
922       SplitBlock(Builder.GetInsertBlock(), Builder.GetInsertPoint(), &DT, &LI);
923   CopyBB->setName("polly.stmt." + BB->getName());
924   Builder.SetInsertPoint(CopyBB->begin());
925 
926   // Create two maps that store the mapping from the original instructions of
927   // the old basic block to their copies in the new basic block. Those maps
928   // are basic block local.
929   //
930   // As vector code generation is supported there is one map for scalar values
931   // and one for vector values.
932   //
933   // In case we just do scalar code generation, the vectorMap is not used and
934   // the scalarMap has just one dimension, which contains the mapping.
935   //
936   // In case vector code generation is done, an instruction may either appear
937   // in the vector map once (as it is calculating >vectorwidth< values at a
938   // time. Or (if the values are calculated using scalar operations), it
939   // appears once in every dimension of the scalarMap.
940   VectorValueMapT ScalarBlockMap(getVectorWidth());
941   ValueMapT VectorBlockMap;
942 
943   for (Instruction &Inst : *BB)
944     copyInstruction(Stmt, &Inst, VectorBlockMap, ScalarBlockMap, NewAccesses);
945 }
946 
947 BasicBlock *RegionGenerator::repairDominance(BasicBlock *BB,
948                                              BasicBlock *BBCopy) {
949 
950   BasicBlock *BBIDom = DT.getNode(BB)->getIDom()->getBlock();
951   BasicBlock *BBCopyIDom = BlockMap.lookup(BBIDom);
952 
953   if (BBCopyIDom)
954     DT.changeImmediateDominator(BBCopy, BBCopyIDom);
955 
956   return BBCopyIDom;
957 }
958 
959 void RegionGenerator::copyStmt(ScopStmt &Stmt, LoopToScevMapT &LTS,
960                                isl_id_to_ast_expr *IdToAstExp) {
961   assert(Stmt.isRegionStmt() &&
962          "Only region statements can be copied by the region generator");
963 
964   // Forget all old mappings.
965   BlockMap.clear();
966   RegionMaps.clear();
967   IncompletePHINodeMap.clear();
968 
969   // The region represented by the statement.
970   Region *R = Stmt.getRegion();
971 
972   // Create a dedicated entry for the region where we can reload all demoted
973   // inputs.
974   BasicBlock *EntryBB = R->getEntry();
975   BasicBlock *EntryBBCopy =
976       SplitBlock(Builder.GetInsertBlock(), Builder.GetInsertPoint(), &DT, &LI);
977   EntryBBCopy->setName("polly.stmt." + EntryBB->getName() + ".entry");
978   Builder.SetInsertPoint(EntryBBCopy->begin());
979 
980   for (auto PI = pred_begin(EntryBB), PE = pred_end(EntryBB); PI != PE; ++PI)
981     if (!R->contains(*PI))
982       BlockMap[*PI] = EntryBBCopy;
983 
984   // Iterate over all blocks in the region in a breadth-first search.
985   std::deque<BasicBlock *> Blocks;
986   SmallPtrSet<BasicBlock *, 8> SeenBlocks;
987   Blocks.push_back(EntryBB);
988   SeenBlocks.insert(EntryBB);
989 
990   while (!Blocks.empty()) {
991     BasicBlock *BB = Blocks.front();
992     Blocks.pop_front();
993 
994     // First split the block and update dominance information.
995     BasicBlock *BBCopy = splitBB(BB);
996     BasicBlock *BBCopyIDom = repairDominance(BB, BBCopy);
997 
998     // In order to remap PHI nodes we store also basic block mappings.
999     BlockMap[BB] = BBCopy;
1000 
1001     // Get the mapping for this block and initialize it with the mapping
1002     // available at its immediate dominator (in the new region).
1003     ValueMapT &RegionMap = RegionMaps[BBCopy];
1004     RegionMap = RegionMaps[BBCopyIDom];
1005 
1006     // Copy the block with the BlockGenerator.
1007     copyBB(Stmt, BB, BBCopy, RegionMap, LTS, IdToAstExp);
1008 
1009     // In order to remap PHI nodes we store also basic block mappings.
1010     BlockMap[BB] = BBCopy;
1011 
1012     // Add values to incomplete PHI nodes waiting for this block to be copied.
1013     for (const PHINodePairTy &PHINodePair : IncompletePHINodeMap[BB])
1014       addOperandToPHI(Stmt, PHINodePair.first, PHINodePair.second, BB, LTS);
1015     IncompletePHINodeMap[BB].clear();
1016 
1017     // And continue with new successors inside the region.
1018     for (auto SI = succ_begin(BB), SE = succ_end(BB); SI != SE; SI++)
1019       if (R->contains(*SI) && SeenBlocks.insert(*SI).second)
1020         Blocks.push_back(*SI);
1021   }
1022 
1023   // Now create a new dedicated region exit block and add it to the region map.
1024   BasicBlock *ExitBBCopy =
1025       SplitBlock(Builder.GetInsertBlock(), Builder.GetInsertPoint(), &DT, &LI);
1026   ExitBBCopy->setName("polly.stmt." + R->getExit()->getName() + ".exit");
1027   BlockMap[R->getExit()] = ExitBBCopy;
1028 
1029   repairDominance(R->getExit(), ExitBBCopy);
1030 
1031   // As the block generator doesn't handle control flow we need to add the
1032   // region control flow by hand after all blocks have been copied.
1033   for (BasicBlock *BB : SeenBlocks) {
1034 
1035     BasicBlock *BBCopy = BlockMap[BB];
1036     TerminatorInst *TI = BB->getTerminator();
1037     if (isa<UnreachableInst>(TI)) {
1038       while (!BBCopy->empty())
1039         BBCopy->begin()->eraseFromParent();
1040       new UnreachableInst(BBCopy->getContext(), BBCopy);
1041       continue;
1042     }
1043 
1044     BranchInst *BI = cast<BranchInst>(TI);
1045 
1046     Instruction *BICopy = BBCopy->getTerminator();
1047 
1048     ValueMapT &RegionMap = RegionMaps[BBCopy];
1049     RegionMap.insert(BlockMap.begin(), BlockMap.end());
1050 
1051     Builder.SetInsertPoint(BICopy);
1052     copyInstScalar(Stmt, BI, RegionMap, LTS);
1053     BICopy->eraseFromParent();
1054   }
1055 
1056   // Add counting PHI nodes to all loops in the region that can be used as
1057   // replacement for SCEVs refering to the old loop.
1058   for (BasicBlock *BB : SeenBlocks) {
1059     Loop *L = LI.getLoopFor(BB);
1060     if (L == nullptr || L->getHeader() != BB)
1061       continue;
1062 
1063     BasicBlock *BBCopy = BlockMap[BB];
1064     Value *NullVal = Builder.getInt32(0);
1065     PHINode *LoopPHI =
1066         PHINode::Create(Builder.getInt32Ty(), 2, "polly.subregion.iv");
1067     Instruction *LoopPHIInc = BinaryOperator::CreateAdd(
1068         LoopPHI, Builder.getInt32(1), "polly.subregion.iv.inc");
1069     LoopPHI->insertBefore(BBCopy->begin());
1070     LoopPHIInc->insertBefore(BBCopy->getTerminator());
1071 
1072     for (auto *PredBB : make_range(pred_begin(BB), pred_end(BB))) {
1073       if (!R->contains(PredBB))
1074         continue;
1075       if (L->contains(PredBB))
1076         LoopPHI->addIncoming(LoopPHIInc, BlockMap[PredBB]);
1077       else
1078         LoopPHI->addIncoming(NullVal, BlockMap[PredBB]);
1079     }
1080 
1081     for (auto *PredBBCopy : make_range(pred_begin(BBCopy), pred_end(BBCopy)))
1082       if (LoopPHI->getBasicBlockIndex(PredBBCopy) < 0)
1083         LoopPHI->addIncoming(NullVal, PredBBCopy);
1084 
1085     LTS[L] = SE.getUnknown(LoopPHI);
1086   }
1087 
1088   // Reset the old insert point for the build.
1089   Builder.SetInsertPoint(ExitBBCopy->begin());
1090 }
1091 
1092 void RegionGenerator::generateScalarLoads(ScopStmt &Stmt,
1093                                           const Instruction *Inst,
1094                                           ValueMapT &BBMap) {
1095 
1096   // Inside a non-affine region PHI nodes are copied not demoted. Once the
1097   // phi is copied it will reload all inputs from outside the region, hence
1098   // we do not need to generate code for the read access of the operands of a
1099   // PHI.
1100   if (isa<PHINode>(Inst))
1101     return;
1102 
1103   return BlockGenerator::generateScalarLoads(Stmt, Inst, BBMap);
1104 }
1105 
1106 void RegionGenerator::generateScalarStores(ScopStmt &Stmt, BasicBlock *BB,
1107                                            ValueMapT &BBMap) {
1108   const Region &R = Stmt.getParent()->getRegion();
1109 
1110   assert(Stmt.getRegion() &&
1111          "Block statements need to use the generateScalarStores() "
1112          "function in the BlockGenerator");
1113 
1114   for (MemoryAccess *MA : Stmt) {
1115 
1116     if (!MA->isScalar() || MA->isRead())
1117       continue;
1118 
1119     Instruction *ScalarInst = MA->getAccessInstruction();
1120 
1121     // Only generate accesses that belong to this basic block.
1122     if (ScalarInst->getParent() != BB)
1123       continue;
1124 
1125     Value *Val = MA->getAccessValue();
1126 
1127     auto Address = getOrCreateAlloca(*MA);
1128 
1129     Val = getNewScalarValue(Val, R, BBMap);
1130     Builder.CreateStore(Val, Address);
1131   }
1132 }
1133 
1134 void RegionGenerator::addOperandToPHI(ScopStmt &Stmt, const PHINode *PHI,
1135                                       PHINode *PHICopy, BasicBlock *IncomingBB,
1136                                       LoopToScevMapT &LTS) {
1137   Region *StmtR = Stmt.getRegion();
1138 
1139   // If the incoming block was not yet copied mark this PHI as incomplete.
1140   // Once the block will be copied the incoming value will be added.
1141   BasicBlock *BBCopy = BlockMap[IncomingBB];
1142   if (!BBCopy) {
1143     assert(StmtR->contains(IncomingBB) &&
1144            "Bad incoming block for PHI in non-affine region");
1145     IncompletePHINodeMap[IncomingBB].push_back(std::make_pair(PHI, PHICopy));
1146     return;
1147   }
1148 
1149   Value *OpCopy = nullptr;
1150   if (StmtR->contains(IncomingBB)) {
1151     assert(RegionMaps.count(BBCopy) &&
1152            "Incoming PHI block did not have a BBMap");
1153     ValueMapT &BBCopyMap = RegionMaps[BBCopy];
1154 
1155     Value *Op = PHI->getIncomingValueForBlock(IncomingBB);
1156     OpCopy = getNewValue(Stmt, Op, BBCopyMap, LTS, getLoopForInst(PHI));
1157   } else {
1158 
1159     if (PHICopy->getBasicBlockIndex(BBCopy) >= 0)
1160       return;
1161 
1162     Value *PHIOpAddr = getOrCreatePHIAlloca(const_cast<PHINode *>(PHI));
1163     OpCopy = new LoadInst(PHIOpAddr, PHIOpAddr->getName() + ".reload",
1164                           BlockMap[IncomingBB]->getTerminator());
1165   }
1166 
1167   assert(OpCopy && "Incoming PHI value was not copied properly");
1168   assert(BBCopy && "Incoming PHI block was not copied properly");
1169   PHICopy->addIncoming(OpCopy, BBCopy);
1170 }
1171 
1172 Value *RegionGenerator::copyPHIInstruction(ScopStmt &Stmt, const PHINode *PHI,
1173                                            ValueMapT &BBMap,
1174                                            LoopToScevMapT &LTS) {
1175   unsigned NumIncoming = PHI->getNumIncomingValues();
1176   PHINode *PHICopy =
1177       Builder.CreatePHI(PHI->getType(), NumIncoming, "polly." + PHI->getName());
1178   PHICopy->moveBefore(PHICopy->getParent()->getFirstNonPHI());
1179   BBMap[PHI] = PHICopy;
1180 
1181   for (unsigned u = 0; u < NumIncoming; u++)
1182     addOperandToPHI(Stmt, PHI, PHICopy, PHI->getIncomingBlock(u), LTS);
1183   return PHICopy;
1184 }
1185