1 //===--- BlockGenerators.cpp - Generate code for statements -----*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the BlockGenerator and VectorBlockGenerator classes, 11 // which generate sequential code and vectorized code for a polyhedral 12 // statement, respectively. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "polly/CodeGen/BlockGenerators.h" 17 #include "polly/CodeGen/CodeGeneration.h" 18 #include "polly/CodeGen/IslExprBuilder.h" 19 #include "polly/CodeGen/RuntimeDebugBuilder.h" 20 #include "polly/Options.h" 21 #include "polly/ScopInfo.h" 22 #include "polly/Support/GICHelper.h" 23 #include "polly/Support/SCEVValidator.h" 24 #include "polly/Support/ScopHelper.h" 25 #include "llvm/Analysis/LoopInfo.h" 26 #include "llvm/Analysis/RegionInfo.h" 27 #include "llvm/Analysis/ScalarEvolution.h" 28 #include "llvm/IR/IntrinsicInst.h" 29 #include "llvm/IR/Module.h" 30 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 31 #include "llvm/Transforms/Utils/Local.h" 32 #include "isl/aff.h" 33 #include "isl/ast.h" 34 #include "isl/ast_build.h" 35 #include "isl/set.h" 36 #include <deque> 37 38 using namespace llvm; 39 using namespace polly; 40 41 static cl::opt<bool> Aligned("enable-polly-aligned", 42 cl::desc("Assumed aligned memory accesses."), 43 cl::Hidden, cl::init(false), cl::ZeroOrMore, 44 cl::cat(PollyCategory)); 45 46 bool PollyDebugPrinting; 47 static cl::opt<bool, true> DebugPrintingX( 48 "polly-codegen-add-debug-printing", 49 cl::desc("Add printf calls that show the values loaded/stored."), 50 cl::location(PollyDebugPrinting), cl::Hidden, cl::init(false), 51 cl::ZeroOrMore, cl::cat(PollyCategory)); 52 53 BlockGenerator::BlockGenerator( 54 PollyIRBuilder &B, LoopInfo &LI, ScalarEvolution &SE, DominatorTree &DT, 55 AllocaMapTy &ScalarMap, EscapeUsersAllocaMapTy &EscapeMap, 56 ValueMapT &GlobalMap, IslExprBuilder *ExprBuilder, BasicBlock *StartBlock) 57 : Builder(B), LI(LI), SE(SE), ExprBuilder(ExprBuilder), DT(DT), 58 EntryBB(nullptr), ScalarMap(ScalarMap), EscapeMap(EscapeMap), 59 GlobalMap(GlobalMap), StartBlock(StartBlock) {} 60 61 Value *BlockGenerator::trySynthesizeNewValue(ScopStmt &Stmt, Value *Old, 62 ValueMapT &BBMap, 63 LoopToScevMapT <S, 64 Loop *L) const { 65 if (!SE.isSCEVable(Old->getType())) 66 return nullptr; 67 68 const SCEV *Scev = SE.getSCEVAtScope(Old, L); 69 if (!Scev) 70 return nullptr; 71 72 if (isa<SCEVCouldNotCompute>(Scev)) 73 return nullptr; 74 75 const SCEV *NewScev = SCEVLoopAddRecRewriter::rewrite(Scev, LTS, SE); 76 ValueMapT VTV; 77 VTV.insert(BBMap.begin(), BBMap.end()); 78 VTV.insert(GlobalMap.begin(), GlobalMap.end()); 79 80 Scop &S = *Stmt.getParent(); 81 const DataLayout &DL = S.getFunction().getParent()->getDataLayout(); 82 auto IP = Builder.GetInsertPoint(); 83 84 assert(IP != Builder.GetInsertBlock()->end() && 85 "Only instructions can be insert points for SCEVExpander"); 86 Value *Expanded = 87 expandCodeFor(S, SE, DL, "polly", NewScev, Old->getType(), &*IP, &VTV, 88 StartBlock->getSinglePredecessor()); 89 90 BBMap[Old] = Expanded; 91 return Expanded; 92 } 93 94 Value *BlockGenerator::getNewValue(ScopStmt &Stmt, Value *Old, ValueMapT &BBMap, 95 LoopToScevMapT <S, Loop *L) const { 96 // Constants that do not reference any named value can always remain 97 // unchanged. Handle them early to avoid expensive map lookups. We do not take 98 // the fast-path for external constants which are referenced through globals 99 // as these may need to be rewritten when distributing code accross different 100 // LLVM modules. 101 if (isa<Constant>(Old) && !isa<GlobalValue>(Old)) 102 return Old; 103 104 // Inline asm is like a constant to us. 105 if (isa<InlineAsm>(Old)) 106 return Old; 107 108 if (Value *New = GlobalMap.lookup(Old)) { 109 if (Value *NewRemapped = GlobalMap.lookup(New)) 110 New = NewRemapped; 111 if (Old->getType()->getScalarSizeInBits() < 112 New->getType()->getScalarSizeInBits()) 113 New = Builder.CreateTruncOrBitCast(New, Old->getType()); 114 115 return New; 116 } 117 118 if (Value *New = BBMap.lookup(Old)) 119 return New; 120 121 if (Value *New = trySynthesizeNewValue(Stmt, Old, BBMap, LTS, L)) 122 return New; 123 124 // A scop-constant value defined by a global or a function parameter. 125 if (isa<GlobalValue>(Old) || isa<Argument>(Old)) 126 return Old; 127 128 // A scop-constant value defined by an instruction executed outside the scop. 129 if (const Instruction *Inst = dyn_cast<Instruction>(Old)) 130 if (!Stmt.getParent()->contains(Inst->getParent())) 131 return Old; 132 133 // The scalar dependence is neither available nor SCEVCodegenable. 134 llvm_unreachable("Unexpected scalar dependence in region!"); 135 return nullptr; 136 } 137 138 void BlockGenerator::copyInstScalar(ScopStmt &Stmt, Instruction *Inst, 139 ValueMapT &BBMap, LoopToScevMapT <S) { 140 // We do not generate debug intrinsics as we did not investigate how to 141 // copy them correctly. At the current state, they just crash the code 142 // generation as the meta-data operands are not correctly copied. 143 if (isa<DbgInfoIntrinsic>(Inst)) 144 return; 145 146 Instruction *NewInst = Inst->clone(); 147 148 // Replace old operands with the new ones. 149 for (Value *OldOperand : Inst->operands()) { 150 Value *NewOperand = 151 getNewValue(Stmt, OldOperand, BBMap, LTS, getLoopForStmt(Stmt)); 152 153 if (!NewOperand) { 154 assert(!isa<StoreInst>(NewInst) && 155 "Store instructions are always needed!"); 156 delete NewInst; 157 return; 158 } 159 160 NewInst->replaceUsesOfWith(OldOperand, NewOperand); 161 } 162 163 Builder.Insert(NewInst); 164 BBMap[Inst] = NewInst; 165 166 if (!NewInst->getType()->isVoidTy()) 167 NewInst->setName("p_" + Inst->getName()); 168 } 169 170 Value * 171 BlockGenerator::generateLocationAccessed(ScopStmt &Stmt, MemAccInst Inst, 172 ValueMapT &BBMap, LoopToScevMapT <S, 173 isl_id_to_ast_expr *NewAccesses) { 174 const MemoryAccess &MA = Stmt.getArrayAccessFor(Inst); 175 return generateLocationAccessed( 176 Stmt, getLoopForStmt(Stmt), 177 Inst.isNull() ? nullptr : Inst.getPointerOperand(), BBMap, LTS, 178 NewAccesses, MA.getId(), MA.getAccessValue()->getType()); 179 } 180 181 Value *BlockGenerator::generateLocationAccessed( 182 ScopStmt &Stmt, Loop *L, Value *Pointer, ValueMapT &BBMap, 183 LoopToScevMapT <S, isl_id_to_ast_expr *NewAccesses, __isl_take isl_id *Id, 184 Type *ExpectedType) { 185 isl_ast_expr *AccessExpr = isl_id_to_ast_expr_get(NewAccesses, Id); 186 187 if (AccessExpr) { 188 AccessExpr = isl_ast_expr_address_of(AccessExpr); 189 auto Address = ExprBuilder->create(AccessExpr); 190 191 // Cast the address of this memory access to a pointer type that has the 192 // same element type as the original access, but uses the address space of 193 // the newly generated pointer. 194 auto OldPtrTy = ExpectedType->getPointerTo(); 195 auto NewPtrTy = Address->getType(); 196 OldPtrTy = PointerType::get(OldPtrTy->getElementType(), 197 NewPtrTy->getPointerAddressSpace()); 198 199 if (OldPtrTy != NewPtrTy) 200 Address = Builder.CreateBitOrPointerCast(Address, OldPtrTy); 201 return Address; 202 } 203 assert( 204 Pointer && 205 "If expression was not generated, must use the original pointer value"); 206 return getNewValue(Stmt, Pointer, BBMap, LTS, L); 207 } 208 209 Value * 210 BlockGenerator::getImplicitAddress(MemoryAccess &Access, Loop *L, 211 LoopToScevMapT <S, ValueMapT &BBMap, 212 __isl_keep isl_id_to_ast_expr *NewAccesses) { 213 if (Access.isLatestArrayKind()) 214 return generateLocationAccessed(*Access.getStatement(), L, nullptr, BBMap, 215 LTS, NewAccesses, Access.getId(), 216 Access.getAccessValue()->getType()); 217 218 return getOrCreateAlloca(Access); 219 } 220 221 Loop *BlockGenerator::getLoopForStmt(const ScopStmt &Stmt) const { 222 auto *StmtBB = Stmt.getEntryBlock(); 223 return LI.getLoopFor(StmtBB); 224 } 225 226 Value *BlockGenerator::generateArrayLoad(ScopStmt &Stmt, LoadInst *Load, 227 ValueMapT &BBMap, LoopToScevMapT <S, 228 isl_id_to_ast_expr *NewAccesses) { 229 if (Value *PreloadLoad = GlobalMap.lookup(Load)) 230 return PreloadLoad; 231 232 Value *NewPointer = 233 generateLocationAccessed(Stmt, Load, BBMap, LTS, NewAccesses); 234 Value *ScalarLoad = Builder.CreateAlignedLoad( 235 NewPointer, Load->getAlignment(), Load->getName() + "_p_scalar_"); 236 237 if (PollyDebugPrinting) 238 RuntimeDebugBuilder::createCPUPrinter(Builder, "Load from ", NewPointer, 239 ": ", ScalarLoad, "\n"); 240 241 return ScalarLoad; 242 } 243 244 void BlockGenerator::generateArrayStore(ScopStmt &Stmt, StoreInst *Store, 245 ValueMapT &BBMap, LoopToScevMapT <S, 246 isl_id_to_ast_expr *NewAccesses) { 247 Value *NewPointer = 248 generateLocationAccessed(Stmt, Store, BBMap, LTS, NewAccesses); 249 Value *ValueOperand = getNewValue(Stmt, Store->getValueOperand(), BBMap, LTS, 250 getLoopForStmt(Stmt)); 251 252 if (PollyDebugPrinting) 253 RuntimeDebugBuilder::createCPUPrinter(Builder, "Store to ", NewPointer, 254 ": ", ValueOperand, "\n"); 255 256 Builder.CreateAlignedStore(ValueOperand, NewPointer, Store->getAlignment()); 257 } 258 259 bool BlockGenerator::canSyntheziseInStmt(ScopStmt &Stmt, Instruction *Inst) { 260 Loop *L = getLoopForStmt(Stmt); 261 return (Stmt.isBlockStmt() || !Stmt.getRegion()->contains(L)) && 262 canSynthesize(Inst, *Stmt.getParent(), &SE, L); 263 } 264 265 void BlockGenerator::copyInstruction(ScopStmt &Stmt, Instruction *Inst, 266 ValueMapT &BBMap, LoopToScevMapT <S, 267 isl_id_to_ast_expr *NewAccesses) { 268 // Terminator instructions control the control flow. They are explicitly 269 // expressed in the clast and do not need to be copied. 270 if (Inst->isTerminator()) 271 return; 272 273 // Synthesizable statements will be generated on-demand. 274 if (canSyntheziseInStmt(Stmt, Inst)) 275 return; 276 277 if (auto *Load = dyn_cast<LoadInst>(Inst)) { 278 Value *NewLoad = generateArrayLoad(Stmt, Load, BBMap, LTS, NewAccesses); 279 // Compute NewLoad before its insertion in BBMap to make the insertion 280 // deterministic. 281 BBMap[Load] = NewLoad; 282 return; 283 } 284 285 if (auto *Store = dyn_cast<StoreInst>(Inst)) { 286 // Identified as redundant by -polly-simplify. 287 if (!Stmt.getArrayAccessOrNULLFor(Store)) 288 return; 289 290 generateArrayStore(Stmt, Store, BBMap, LTS, NewAccesses); 291 return; 292 } 293 294 if (auto *PHI = dyn_cast<PHINode>(Inst)) { 295 copyPHIInstruction(Stmt, PHI, BBMap, LTS); 296 return; 297 } 298 299 // Skip some special intrinsics for which we do not adjust the semantics to 300 // the new schedule. All others are handled like every other instruction. 301 if (isIgnoredIntrinsic(Inst)) 302 return; 303 304 copyInstScalar(Stmt, Inst, BBMap, LTS); 305 } 306 307 void BlockGenerator::removeDeadInstructions(BasicBlock *BB, ValueMapT &BBMap) { 308 auto NewBB = Builder.GetInsertBlock(); 309 for (auto I = NewBB->rbegin(); I != NewBB->rend(); I++) { 310 Instruction *NewInst = &*I; 311 312 if (!isInstructionTriviallyDead(NewInst)) 313 continue; 314 315 for (auto Pair : BBMap) 316 if (Pair.second == NewInst) { 317 BBMap.erase(Pair.first); 318 } 319 320 NewInst->eraseFromParent(); 321 I = NewBB->rbegin(); 322 } 323 } 324 325 void BlockGenerator::copyStmt(ScopStmt &Stmt, LoopToScevMapT <S, 326 isl_id_to_ast_expr *NewAccesses) { 327 assert(Stmt.isBlockStmt() && 328 "Only block statements can be copied by the block generator"); 329 330 ValueMapT BBMap; 331 332 BasicBlock *BB = Stmt.getBasicBlock(); 333 copyBB(Stmt, BB, BBMap, LTS, NewAccesses); 334 removeDeadInstructions(BB, BBMap); 335 } 336 337 BasicBlock *BlockGenerator::splitBB(BasicBlock *BB) { 338 BasicBlock *CopyBB = SplitBlock(Builder.GetInsertBlock(), 339 &*Builder.GetInsertPoint(), &DT, &LI); 340 CopyBB->setName("polly.stmt." + BB->getName()); 341 return CopyBB; 342 } 343 344 BasicBlock *BlockGenerator::copyBB(ScopStmt &Stmt, BasicBlock *BB, 345 ValueMapT &BBMap, LoopToScevMapT <S, 346 isl_id_to_ast_expr *NewAccesses) { 347 BasicBlock *CopyBB = splitBB(BB); 348 Builder.SetInsertPoint(&CopyBB->front()); 349 generateScalarLoads(Stmt, LTS, BBMap, NewAccesses); 350 351 copyBB(Stmt, BB, CopyBB, BBMap, LTS, NewAccesses); 352 353 // After a basic block was copied store all scalars that escape this block in 354 // their alloca. 355 generateScalarStores(Stmt, LTS, BBMap, NewAccesses); 356 return CopyBB; 357 } 358 359 void BlockGenerator::copyBB(ScopStmt &Stmt, BasicBlock *BB, BasicBlock *CopyBB, 360 ValueMapT &BBMap, LoopToScevMapT <S, 361 isl_id_to_ast_expr *NewAccesses) { 362 EntryBB = &CopyBB->getParent()->getEntryBlock(); 363 364 for (Instruction &Inst : *BB) 365 copyInstruction(Stmt, &Inst, BBMap, LTS, NewAccesses); 366 } 367 368 Value *BlockGenerator::getOrCreateAlloca(const MemoryAccess &Access) { 369 assert(!Access.isLatestArrayKind() && "Trying to get alloca for array kind"); 370 371 return getOrCreateAlloca(Access.getLatestScopArrayInfo()); 372 } 373 374 Value *BlockGenerator::getOrCreateAlloca(const ScopArrayInfo *Array) { 375 assert(!Array->isArrayKind() && "Trying to get alloca for array kind"); 376 377 auto &Addr = ScalarMap[Array]; 378 379 if (Addr) { 380 // Allow allocas to be (temporarily) redirected once by adding a new 381 // old-alloca-addr to new-addr mapping to GlobalMap. This funcitionality 382 // is used for example by the OpenMP code generation where a first use 383 // of a scalar while still in the host code allocates a normal alloca with 384 // getOrCreateAlloca. When the values of this scalar are accessed during 385 // the generation of the parallel subfunction, these values are copied over 386 // to the parallel subfunction and each request for a scalar alloca slot 387 // must be forwared to the temporary in-subfunction slot. This mapping is 388 // removed when the subfunction has been generated and again normal host 389 // code is generated. Due to the following reasons it is not possible to 390 // perform the GlobalMap lookup right after creating the alloca below, but 391 // instead we need to check GlobalMap at each call to getOrCreateAlloca: 392 // 393 // 1) GlobalMap may be changed multiple times (for each parallel loop), 394 // 2) The temporary mapping is commonly only known after the initial 395 // alloca has already been generated, and 396 // 3) The original alloca value must be restored after leaving the 397 // sub-function. 398 if (Value *NewAddr = GlobalMap.lookup(&*Addr)) 399 return NewAddr; 400 return Addr; 401 } 402 403 Type *Ty = Array->getElementType(); 404 Value *ScalarBase = Array->getBasePtr(); 405 std::string NameExt; 406 if (Array->isPHIKind()) 407 NameExt = ".phiops"; 408 else 409 NameExt = ".s2a"; 410 411 Addr = new AllocaInst(Ty, ScalarBase->getName() + NameExt); 412 EntryBB = &Builder.GetInsertBlock()->getParent()->getEntryBlock(); 413 Addr->insertBefore(&*EntryBB->getFirstInsertionPt()); 414 415 return Addr; 416 } 417 418 void BlockGenerator::handleOutsideUsers(const Scop &S, ScopArrayInfo *Array) { 419 Instruction *Inst = cast<Instruction>(Array->getBasePtr()); 420 421 // If there are escape users we get the alloca for this instruction and put it 422 // in the EscapeMap for later finalization. Lastly, if the instruction was 423 // copied multiple times we already did this and can exit. 424 if (EscapeMap.count(Inst)) 425 return; 426 427 EscapeUserVectorTy EscapeUsers; 428 for (User *U : Inst->users()) { 429 430 // Non-instruction user will never escape. 431 Instruction *UI = dyn_cast<Instruction>(U); 432 if (!UI) 433 continue; 434 435 if (S.contains(UI)) 436 continue; 437 438 EscapeUsers.push_back(UI); 439 } 440 441 // Exit if no escape uses were found. 442 if (EscapeUsers.empty()) 443 return; 444 445 // Get or create an escape alloca for this instruction. 446 auto *ScalarAddr = getOrCreateAlloca(Array); 447 448 // Remember that this instruction has escape uses and the escape alloca. 449 EscapeMap[Inst] = std::make_pair(ScalarAddr, std::move(EscapeUsers)); 450 } 451 452 void BlockGenerator::generateScalarLoads( 453 ScopStmt &Stmt, LoopToScevMapT <S, ValueMapT &BBMap, 454 __isl_keep isl_id_to_ast_expr *NewAccesses) { 455 for (MemoryAccess *MA : Stmt) { 456 if (MA->isOriginalArrayKind() || MA->isWrite()) 457 continue; 458 459 #ifndef NDEBUG 460 auto *StmtDom = Stmt.getDomain(); 461 auto *AccDom = isl_map_domain(MA->getAccessRelation()); 462 assert(isl_set_is_subset(StmtDom, AccDom) && 463 "Scalar must be loaded in all statement instances"); 464 isl_set_free(StmtDom); 465 isl_set_free(AccDom); 466 #endif 467 468 auto *Address = 469 getImplicitAddress(*MA, getLoopForStmt(Stmt), LTS, BBMap, NewAccesses); 470 assert((!isa<Instruction>(Address) || 471 DT.dominates(cast<Instruction>(Address)->getParent(), 472 Builder.GetInsertBlock())) && 473 "Domination violation"); 474 BBMap[MA->getAccessValue()] = 475 Builder.CreateLoad(Address, Address->getName() + ".reload"); 476 } 477 } 478 479 void BlockGenerator::generateScalarStores( 480 ScopStmt &Stmt, LoopToScevMapT <S, ValueMapT &BBMap, 481 __isl_keep isl_id_to_ast_expr *NewAccesses) { 482 Loop *L = LI.getLoopFor(Stmt.getBasicBlock()); 483 484 assert(Stmt.isBlockStmt() && 485 "Region statements need to use the generateScalarStores() function in " 486 "the RegionGenerator"); 487 488 for (MemoryAccess *MA : Stmt) { 489 if (MA->isOriginalArrayKind() || MA->isRead()) 490 continue; 491 492 #ifndef NDEBUG 493 auto *StmtDom = Stmt.getDomain(); 494 auto *AccDom = isl_map_domain(MA->getAccessRelation()); 495 assert(isl_set_is_subset(StmtDom, AccDom) && 496 "Scalar must be stored in all statement instances"); 497 isl_set_free(StmtDom); 498 isl_set_free(AccDom); 499 #endif 500 501 Value *Val = MA->getAccessValue(); 502 if (MA->isAnyPHIKind()) { 503 assert(MA->getIncoming().size() >= 1 && 504 "Block statements have exactly one exiting block, or multiple but " 505 "with same incoming block and value"); 506 assert(std::all_of(MA->getIncoming().begin(), MA->getIncoming().end(), 507 [&](std::pair<BasicBlock *, Value *> p) -> bool { 508 return p.first == Stmt.getBasicBlock(); 509 }) && 510 "Incoming block must be statement's block"); 511 Val = MA->getIncoming()[0].second; 512 } 513 auto Address = 514 getImplicitAddress(*MA, getLoopForStmt(Stmt), LTS, BBMap, NewAccesses); 515 516 Val = getNewValue(Stmt, Val, BBMap, LTS, L); 517 assert((!isa<Instruction>(Val) || 518 DT.dominates(cast<Instruction>(Val)->getParent(), 519 Builder.GetInsertBlock())) && 520 "Domination violation"); 521 assert((!isa<Instruction>(Address) || 522 DT.dominates(cast<Instruction>(Address)->getParent(), 523 Builder.GetInsertBlock())) && 524 "Domination violation"); 525 Builder.CreateStore(Val, Address); 526 } 527 } 528 529 void BlockGenerator::createScalarInitialization(Scop &S) { 530 BasicBlock *ExitBB = S.getExit(); 531 BasicBlock *PreEntryBB = S.getEnteringBlock(); 532 533 Builder.SetInsertPoint(&*StartBlock->begin()); 534 535 for (auto &Array : S.arrays()) { 536 if (Array->getNumberOfDimensions() != 0) 537 continue; 538 if (Array->isPHIKind()) { 539 // For PHI nodes, the only values we need to store are the ones that 540 // reach the PHI node from outside the region. In general there should 541 // only be one such incoming edge and this edge should enter through 542 // 'PreEntryBB'. 543 auto PHI = cast<PHINode>(Array->getBasePtr()); 544 545 for (auto BI = PHI->block_begin(), BE = PHI->block_end(); BI != BE; BI++) 546 if (!S.contains(*BI) && *BI != PreEntryBB) 547 llvm_unreachable("Incoming edges from outside the scop should always " 548 "come from PreEntryBB"); 549 550 int Idx = PHI->getBasicBlockIndex(PreEntryBB); 551 if (Idx < 0) 552 continue; 553 554 Value *ScalarValue = PHI->getIncomingValue(Idx); 555 556 Builder.CreateStore(ScalarValue, getOrCreateAlloca(Array)); 557 continue; 558 } 559 560 auto *Inst = dyn_cast<Instruction>(Array->getBasePtr()); 561 562 if (Inst && S.contains(Inst)) 563 continue; 564 565 // PHI nodes that are not marked as such in their SAI object are either exit 566 // PHI nodes we model as common scalars but without initialization, or 567 // incoming phi nodes that need to be initialized. Check if the first is the 568 // case for Inst and do not create and initialize memory if so. 569 if (auto *PHI = dyn_cast_or_null<PHINode>(Inst)) 570 if (!S.hasSingleExitEdge() && PHI->getBasicBlockIndex(ExitBB) >= 0) 571 continue; 572 573 Builder.CreateStore(Array->getBasePtr(), getOrCreateAlloca(Array)); 574 } 575 } 576 577 void BlockGenerator::createScalarFinalization(Scop &S) { 578 // The exit block of the __unoptimized__ region. 579 BasicBlock *ExitBB = S.getExitingBlock(); 580 // The merge block __just after__ the region and the optimized region. 581 BasicBlock *MergeBB = S.getExit(); 582 583 // The exit block of the __optimized__ region. 584 BasicBlock *OptExitBB = *(pred_begin(MergeBB)); 585 if (OptExitBB == ExitBB) 586 OptExitBB = *(++pred_begin(MergeBB)); 587 588 Builder.SetInsertPoint(OptExitBB->getTerminator()); 589 for (const auto &EscapeMapping : EscapeMap) { 590 // Extract the escaping instruction and the escaping users as well as the 591 // alloca the instruction was demoted to. 592 Instruction *EscapeInst = EscapeMapping.first; 593 const auto &EscapeMappingValue = EscapeMapping.second; 594 const EscapeUserVectorTy &EscapeUsers = EscapeMappingValue.second; 595 Value *ScalarAddr = EscapeMappingValue.first; 596 597 // Reload the demoted instruction in the optimized version of the SCoP. 598 Value *EscapeInstReload = 599 Builder.CreateLoad(ScalarAddr, EscapeInst->getName() + ".final_reload"); 600 EscapeInstReload = 601 Builder.CreateBitOrPointerCast(EscapeInstReload, EscapeInst->getType()); 602 603 // Create the merge PHI that merges the optimized and unoptimized version. 604 PHINode *MergePHI = PHINode::Create(EscapeInst->getType(), 2, 605 EscapeInst->getName() + ".merge"); 606 MergePHI->insertBefore(&*MergeBB->getFirstInsertionPt()); 607 608 // Add the respective values to the merge PHI. 609 MergePHI->addIncoming(EscapeInstReload, OptExitBB); 610 MergePHI->addIncoming(EscapeInst, ExitBB); 611 612 // The information of scalar evolution about the escaping instruction needs 613 // to be revoked so the new merged instruction will be used. 614 if (SE.isSCEVable(EscapeInst->getType())) 615 SE.forgetValue(EscapeInst); 616 617 // Replace all uses of the demoted instruction with the merge PHI. 618 for (Instruction *EUser : EscapeUsers) 619 EUser->replaceUsesOfWith(EscapeInst, MergePHI); 620 } 621 } 622 623 void BlockGenerator::findOutsideUsers(Scop &S) { 624 for (auto &Array : S.arrays()) { 625 626 if (Array->getNumberOfDimensions() != 0) 627 continue; 628 629 if (Array->isPHIKind()) 630 continue; 631 632 auto *Inst = dyn_cast<Instruction>(Array->getBasePtr()); 633 634 if (!Inst) 635 continue; 636 637 // Scop invariant hoisting moves some of the base pointers out of the scop. 638 // We can ignore these, as the invariant load hoisting already registers the 639 // relevant outside users. 640 if (!S.contains(Inst)) 641 continue; 642 643 handleOutsideUsers(S, Array); 644 } 645 } 646 647 void BlockGenerator::createExitPHINodeMerges(Scop &S) { 648 if (S.hasSingleExitEdge()) 649 return; 650 651 auto *ExitBB = S.getExitingBlock(); 652 auto *MergeBB = S.getExit(); 653 auto *AfterMergeBB = MergeBB->getSingleSuccessor(); 654 BasicBlock *OptExitBB = *(pred_begin(MergeBB)); 655 if (OptExitBB == ExitBB) 656 OptExitBB = *(++pred_begin(MergeBB)); 657 658 Builder.SetInsertPoint(OptExitBB->getTerminator()); 659 660 for (auto &SAI : S.arrays()) { 661 auto *Val = SAI->getBasePtr(); 662 663 // Only Value-like scalars need a merge PHI. Exit block PHIs receive either 664 // the original PHI's value or the reloaded incoming values from the 665 // generated code. An llvm::Value is merged between the original code's 666 // value or the generated one. 667 if (!SAI->isExitPHIKind()) 668 continue; 669 670 PHINode *PHI = dyn_cast<PHINode>(Val); 671 if (!PHI) 672 continue; 673 674 if (PHI->getParent() != AfterMergeBB) 675 continue; 676 677 std::string Name = PHI->getName(); 678 Value *ScalarAddr = getOrCreateAlloca(SAI); 679 Value *Reload = Builder.CreateLoad(ScalarAddr, Name + ".ph.final_reload"); 680 Reload = Builder.CreateBitOrPointerCast(Reload, PHI->getType()); 681 Value *OriginalValue = PHI->getIncomingValueForBlock(MergeBB); 682 assert((!isa<Instruction>(OriginalValue) || 683 cast<Instruction>(OriginalValue)->getParent() != MergeBB) && 684 "Original value must no be one we just generated."); 685 auto *MergePHI = PHINode::Create(PHI->getType(), 2, Name + ".ph.merge"); 686 MergePHI->insertBefore(&*MergeBB->getFirstInsertionPt()); 687 MergePHI->addIncoming(Reload, OptExitBB); 688 MergePHI->addIncoming(OriginalValue, ExitBB); 689 int Idx = PHI->getBasicBlockIndex(MergeBB); 690 PHI->setIncomingValue(Idx, MergePHI); 691 } 692 } 693 694 void BlockGenerator::invalidateScalarEvolution(Scop &S) { 695 for (auto &Stmt : S) 696 if (Stmt.isCopyStmt()) 697 continue; 698 else if (Stmt.isBlockStmt()) 699 for (auto &Inst : *Stmt.getBasicBlock()) 700 SE.forgetValue(&Inst); 701 else if (Stmt.isRegionStmt()) 702 for (auto *BB : Stmt.getRegion()->blocks()) 703 for (auto &Inst : *BB) 704 SE.forgetValue(&Inst); 705 else 706 llvm_unreachable("Unexpected statement type found"); 707 } 708 709 void BlockGenerator::finalizeSCoP(Scop &S) { 710 findOutsideUsers(S); 711 createScalarInitialization(S); 712 createExitPHINodeMerges(S); 713 createScalarFinalization(S); 714 invalidateScalarEvolution(S); 715 } 716 717 VectorBlockGenerator::VectorBlockGenerator(BlockGenerator &BlockGen, 718 std::vector<LoopToScevMapT> &VLTS, 719 isl_map *Schedule) 720 : BlockGenerator(BlockGen), VLTS(VLTS), Schedule(Schedule) { 721 assert(Schedule && "No statement domain provided"); 722 } 723 724 Value *VectorBlockGenerator::getVectorValue(ScopStmt &Stmt, Value *Old, 725 ValueMapT &VectorMap, 726 VectorValueMapT &ScalarMaps, 727 Loop *L) { 728 if (Value *NewValue = VectorMap.lookup(Old)) 729 return NewValue; 730 731 int Width = getVectorWidth(); 732 733 Value *Vector = UndefValue::get(VectorType::get(Old->getType(), Width)); 734 735 for (int Lane = 0; Lane < Width; Lane++) 736 Vector = Builder.CreateInsertElement( 737 Vector, getNewValue(Stmt, Old, ScalarMaps[Lane], VLTS[Lane], L), 738 Builder.getInt32(Lane)); 739 740 VectorMap[Old] = Vector; 741 742 return Vector; 743 } 744 745 Type *VectorBlockGenerator::getVectorPtrTy(const Value *Val, int Width) { 746 PointerType *PointerTy = dyn_cast<PointerType>(Val->getType()); 747 assert(PointerTy && "PointerType expected"); 748 749 Type *ScalarType = PointerTy->getElementType(); 750 VectorType *VectorType = VectorType::get(ScalarType, Width); 751 752 return PointerType::getUnqual(VectorType); 753 } 754 755 Value *VectorBlockGenerator::generateStrideOneLoad( 756 ScopStmt &Stmt, LoadInst *Load, VectorValueMapT &ScalarMaps, 757 __isl_keep isl_id_to_ast_expr *NewAccesses, bool NegativeStride = false) { 758 unsigned VectorWidth = getVectorWidth(); 759 auto *Pointer = Load->getPointerOperand(); 760 Type *VectorPtrType = getVectorPtrTy(Pointer, VectorWidth); 761 unsigned Offset = NegativeStride ? VectorWidth - 1 : 0; 762 763 Value *NewPointer = generateLocationAccessed(Stmt, Load, ScalarMaps[Offset], 764 VLTS[Offset], NewAccesses); 765 Value *VectorPtr = 766 Builder.CreateBitCast(NewPointer, VectorPtrType, "vector_ptr"); 767 LoadInst *VecLoad = 768 Builder.CreateLoad(VectorPtr, Load->getName() + "_p_vec_full"); 769 if (!Aligned) 770 VecLoad->setAlignment(8); 771 772 if (NegativeStride) { 773 SmallVector<Constant *, 16> Indices; 774 for (int i = VectorWidth - 1; i >= 0; i--) 775 Indices.push_back(ConstantInt::get(Builder.getInt32Ty(), i)); 776 Constant *SV = llvm::ConstantVector::get(Indices); 777 Value *RevVecLoad = Builder.CreateShuffleVector( 778 VecLoad, VecLoad, SV, Load->getName() + "_reverse"); 779 return RevVecLoad; 780 } 781 782 return VecLoad; 783 } 784 785 Value *VectorBlockGenerator::generateStrideZeroLoad( 786 ScopStmt &Stmt, LoadInst *Load, ValueMapT &BBMap, 787 __isl_keep isl_id_to_ast_expr *NewAccesses) { 788 auto *Pointer = Load->getPointerOperand(); 789 Type *VectorPtrType = getVectorPtrTy(Pointer, 1); 790 Value *NewPointer = 791 generateLocationAccessed(Stmt, Load, BBMap, VLTS[0], NewAccesses); 792 Value *VectorPtr = Builder.CreateBitCast(NewPointer, VectorPtrType, 793 Load->getName() + "_p_vec_p"); 794 LoadInst *ScalarLoad = 795 Builder.CreateLoad(VectorPtr, Load->getName() + "_p_splat_one"); 796 797 if (!Aligned) 798 ScalarLoad->setAlignment(8); 799 800 Constant *SplatVector = Constant::getNullValue( 801 VectorType::get(Builder.getInt32Ty(), getVectorWidth())); 802 803 Value *VectorLoad = Builder.CreateShuffleVector( 804 ScalarLoad, ScalarLoad, SplatVector, Load->getName() + "_p_splat"); 805 return VectorLoad; 806 } 807 808 Value *VectorBlockGenerator::generateUnknownStrideLoad( 809 ScopStmt &Stmt, LoadInst *Load, VectorValueMapT &ScalarMaps, 810 __isl_keep isl_id_to_ast_expr *NewAccesses) { 811 int VectorWidth = getVectorWidth(); 812 auto *Pointer = Load->getPointerOperand(); 813 VectorType *VectorType = VectorType::get( 814 dyn_cast<PointerType>(Pointer->getType())->getElementType(), VectorWidth); 815 816 Value *Vector = UndefValue::get(VectorType); 817 818 for (int i = 0; i < VectorWidth; i++) { 819 Value *NewPointer = generateLocationAccessed(Stmt, Load, ScalarMaps[i], 820 VLTS[i], NewAccesses); 821 Value *ScalarLoad = 822 Builder.CreateLoad(NewPointer, Load->getName() + "_p_scalar_"); 823 Vector = Builder.CreateInsertElement( 824 Vector, ScalarLoad, Builder.getInt32(i), Load->getName() + "_p_vec_"); 825 } 826 827 return Vector; 828 } 829 830 void VectorBlockGenerator::generateLoad( 831 ScopStmt &Stmt, LoadInst *Load, ValueMapT &VectorMap, 832 VectorValueMapT &ScalarMaps, __isl_keep isl_id_to_ast_expr *NewAccesses) { 833 if (Value *PreloadLoad = GlobalMap.lookup(Load)) { 834 VectorMap[Load] = Builder.CreateVectorSplat(getVectorWidth(), PreloadLoad, 835 Load->getName() + "_p"); 836 return; 837 } 838 839 if (!VectorType::isValidElementType(Load->getType())) { 840 for (int i = 0; i < getVectorWidth(); i++) 841 ScalarMaps[i][Load] = 842 generateArrayLoad(Stmt, Load, ScalarMaps[i], VLTS[i], NewAccesses); 843 return; 844 } 845 846 const MemoryAccess &Access = Stmt.getArrayAccessFor(Load); 847 848 // Make sure we have scalar values available to access the pointer to 849 // the data location. 850 extractScalarValues(Load, VectorMap, ScalarMaps); 851 852 Value *NewLoad; 853 if (Access.isStrideZero(isl_map_copy(Schedule))) 854 NewLoad = generateStrideZeroLoad(Stmt, Load, ScalarMaps[0], NewAccesses); 855 else if (Access.isStrideOne(isl_map_copy(Schedule))) 856 NewLoad = generateStrideOneLoad(Stmt, Load, ScalarMaps, NewAccesses); 857 else if (Access.isStrideX(isl_map_copy(Schedule), -1)) 858 NewLoad = generateStrideOneLoad(Stmt, Load, ScalarMaps, NewAccesses, true); 859 else 860 NewLoad = generateUnknownStrideLoad(Stmt, Load, ScalarMaps, NewAccesses); 861 862 VectorMap[Load] = NewLoad; 863 } 864 865 void VectorBlockGenerator::copyUnaryInst(ScopStmt &Stmt, UnaryInstruction *Inst, 866 ValueMapT &VectorMap, 867 VectorValueMapT &ScalarMaps) { 868 int VectorWidth = getVectorWidth(); 869 Value *NewOperand = getVectorValue(Stmt, Inst->getOperand(0), VectorMap, 870 ScalarMaps, getLoopForStmt(Stmt)); 871 872 assert(isa<CastInst>(Inst) && "Can not generate vector code for instruction"); 873 874 const CastInst *Cast = dyn_cast<CastInst>(Inst); 875 VectorType *DestType = VectorType::get(Inst->getType(), VectorWidth); 876 VectorMap[Inst] = Builder.CreateCast(Cast->getOpcode(), NewOperand, DestType); 877 } 878 879 void VectorBlockGenerator::copyBinaryInst(ScopStmt &Stmt, BinaryOperator *Inst, 880 ValueMapT &VectorMap, 881 VectorValueMapT &ScalarMaps) { 882 Loop *L = getLoopForStmt(Stmt); 883 Value *OpZero = Inst->getOperand(0); 884 Value *OpOne = Inst->getOperand(1); 885 886 Value *NewOpZero, *NewOpOne; 887 NewOpZero = getVectorValue(Stmt, OpZero, VectorMap, ScalarMaps, L); 888 NewOpOne = getVectorValue(Stmt, OpOne, VectorMap, ScalarMaps, L); 889 890 Value *NewInst = Builder.CreateBinOp(Inst->getOpcode(), NewOpZero, NewOpOne, 891 Inst->getName() + "p_vec"); 892 VectorMap[Inst] = NewInst; 893 } 894 895 void VectorBlockGenerator::copyStore( 896 ScopStmt &Stmt, StoreInst *Store, ValueMapT &VectorMap, 897 VectorValueMapT &ScalarMaps, __isl_keep isl_id_to_ast_expr *NewAccesses) { 898 const MemoryAccess &Access = Stmt.getArrayAccessFor(Store); 899 900 auto *Pointer = Store->getPointerOperand(); 901 Value *Vector = getVectorValue(Stmt, Store->getValueOperand(), VectorMap, 902 ScalarMaps, getLoopForStmt(Stmt)); 903 904 // Make sure we have scalar values available to access the pointer to 905 // the data location. 906 extractScalarValues(Store, VectorMap, ScalarMaps); 907 908 if (Access.isStrideOne(isl_map_copy(Schedule))) { 909 Type *VectorPtrType = getVectorPtrTy(Pointer, getVectorWidth()); 910 Value *NewPointer = generateLocationAccessed(Stmt, Store, ScalarMaps[0], 911 VLTS[0], NewAccesses); 912 913 Value *VectorPtr = 914 Builder.CreateBitCast(NewPointer, VectorPtrType, "vector_ptr"); 915 StoreInst *Store = Builder.CreateStore(Vector, VectorPtr); 916 917 if (!Aligned) 918 Store->setAlignment(8); 919 } else { 920 for (unsigned i = 0; i < ScalarMaps.size(); i++) { 921 Value *Scalar = Builder.CreateExtractElement(Vector, Builder.getInt32(i)); 922 Value *NewPointer = generateLocationAccessed(Stmt, Store, ScalarMaps[i], 923 VLTS[i], NewAccesses); 924 Builder.CreateStore(Scalar, NewPointer); 925 } 926 } 927 } 928 929 bool VectorBlockGenerator::hasVectorOperands(const Instruction *Inst, 930 ValueMapT &VectorMap) { 931 for (Value *Operand : Inst->operands()) 932 if (VectorMap.count(Operand)) 933 return true; 934 return false; 935 } 936 937 bool VectorBlockGenerator::extractScalarValues(const Instruction *Inst, 938 ValueMapT &VectorMap, 939 VectorValueMapT &ScalarMaps) { 940 bool HasVectorOperand = false; 941 int VectorWidth = getVectorWidth(); 942 943 for (Value *Operand : Inst->operands()) { 944 ValueMapT::iterator VecOp = VectorMap.find(Operand); 945 946 if (VecOp == VectorMap.end()) 947 continue; 948 949 HasVectorOperand = true; 950 Value *NewVector = VecOp->second; 951 952 for (int i = 0; i < VectorWidth; ++i) { 953 ValueMapT &SM = ScalarMaps[i]; 954 955 // If there is one scalar extracted, all scalar elements should have 956 // already been extracted by the code here. So no need to check for the 957 // existence of all of them. 958 if (SM.count(Operand)) 959 break; 960 961 SM[Operand] = 962 Builder.CreateExtractElement(NewVector, Builder.getInt32(i)); 963 } 964 } 965 966 return HasVectorOperand; 967 } 968 969 void VectorBlockGenerator::copyInstScalarized( 970 ScopStmt &Stmt, Instruction *Inst, ValueMapT &VectorMap, 971 VectorValueMapT &ScalarMaps, __isl_keep isl_id_to_ast_expr *NewAccesses) { 972 bool HasVectorOperand; 973 int VectorWidth = getVectorWidth(); 974 975 HasVectorOperand = extractScalarValues(Inst, VectorMap, ScalarMaps); 976 977 for (int VectorLane = 0; VectorLane < getVectorWidth(); VectorLane++) 978 BlockGenerator::copyInstruction(Stmt, Inst, ScalarMaps[VectorLane], 979 VLTS[VectorLane], NewAccesses); 980 981 if (!VectorType::isValidElementType(Inst->getType()) || !HasVectorOperand) 982 return; 983 984 // Make the result available as vector value. 985 VectorType *VectorType = VectorType::get(Inst->getType(), VectorWidth); 986 Value *Vector = UndefValue::get(VectorType); 987 988 for (int i = 0; i < VectorWidth; i++) 989 Vector = Builder.CreateInsertElement(Vector, ScalarMaps[i][Inst], 990 Builder.getInt32(i)); 991 992 VectorMap[Inst] = Vector; 993 } 994 995 int VectorBlockGenerator::getVectorWidth() { return VLTS.size(); } 996 997 void VectorBlockGenerator::copyInstruction( 998 ScopStmt &Stmt, Instruction *Inst, ValueMapT &VectorMap, 999 VectorValueMapT &ScalarMaps, __isl_keep isl_id_to_ast_expr *NewAccesses) { 1000 // Terminator instructions control the control flow. They are explicitly 1001 // expressed in the clast and do not need to be copied. 1002 if (Inst->isTerminator()) 1003 return; 1004 1005 if (canSyntheziseInStmt(Stmt, Inst)) 1006 return; 1007 1008 if (auto *Load = dyn_cast<LoadInst>(Inst)) { 1009 generateLoad(Stmt, Load, VectorMap, ScalarMaps, NewAccesses); 1010 return; 1011 } 1012 1013 if (hasVectorOperands(Inst, VectorMap)) { 1014 if (auto *Store = dyn_cast<StoreInst>(Inst)) { 1015 // Identified as redundant by -polly-simplify. 1016 if (!Stmt.getArrayAccessOrNULLFor(Store)) 1017 return; 1018 1019 copyStore(Stmt, Store, VectorMap, ScalarMaps, NewAccesses); 1020 return; 1021 } 1022 1023 if (auto *Unary = dyn_cast<UnaryInstruction>(Inst)) { 1024 copyUnaryInst(Stmt, Unary, VectorMap, ScalarMaps); 1025 return; 1026 } 1027 1028 if (auto *Binary = dyn_cast<BinaryOperator>(Inst)) { 1029 copyBinaryInst(Stmt, Binary, VectorMap, ScalarMaps); 1030 return; 1031 } 1032 1033 // Falltrough: We generate scalar instructions, if we don't know how to 1034 // generate vector code. 1035 } 1036 1037 copyInstScalarized(Stmt, Inst, VectorMap, ScalarMaps, NewAccesses); 1038 } 1039 1040 void VectorBlockGenerator::generateScalarVectorLoads( 1041 ScopStmt &Stmt, ValueMapT &VectorBlockMap) { 1042 for (MemoryAccess *MA : Stmt) { 1043 if (MA->isArrayKind() || MA->isWrite()) 1044 continue; 1045 1046 auto *Address = getOrCreateAlloca(*MA); 1047 Type *VectorPtrType = getVectorPtrTy(Address, 1); 1048 Value *VectorPtr = Builder.CreateBitCast(Address, VectorPtrType, 1049 Address->getName() + "_p_vec_p"); 1050 auto *Val = Builder.CreateLoad(VectorPtr, Address->getName() + ".reload"); 1051 Constant *SplatVector = Constant::getNullValue( 1052 VectorType::get(Builder.getInt32Ty(), getVectorWidth())); 1053 1054 Value *VectorVal = Builder.CreateShuffleVector( 1055 Val, Val, SplatVector, Address->getName() + "_p_splat"); 1056 VectorBlockMap[MA->getAccessValue()] = VectorVal; 1057 } 1058 } 1059 1060 void VectorBlockGenerator::verifyNoScalarStores(ScopStmt &Stmt) { 1061 for (MemoryAccess *MA : Stmt) { 1062 if (MA->isArrayKind() || MA->isRead()) 1063 continue; 1064 1065 llvm_unreachable("Scalar stores not expected in vector loop"); 1066 } 1067 } 1068 1069 void VectorBlockGenerator::copyStmt( 1070 ScopStmt &Stmt, __isl_keep isl_id_to_ast_expr *NewAccesses) { 1071 assert(Stmt.isBlockStmt() && 1072 "TODO: Only block statements can be copied by the vector block " 1073 "generator"); 1074 1075 BasicBlock *BB = Stmt.getBasicBlock(); 1076 BasicBlock *CopyBB = SplitBlock(Builder.GetInsertBlock(), 1077 &*Builder.GetInsertPoint(), &DT, &LI); 1078 CopyBB->setName("polly.stmt." + BB->getName()); 1079 Builder.SetInsertPoint(&CopyBB->front()); 1080 1081 // Create two maps that store the mapping from the original instructions of 1082 // the old basic block to their copies in the new basic block. Those maps 1083 // are basic block local. 1084 // 1085 // As vector code generation is supported there is one map for scalar values 1086 // and one for vector values. 1087 // 1088 // In case we just do scalar code generation, the vectorMap is not used and 1089 // the scalarMap has just one dimension, which contains the mapping. 1090 // 1091 // In case vector code generation is done, an instruction may either appear 1092 // in the vector map once (as it is calculating >vectorwidth< values at a 1093 // time. Or (if the values are calculated using scalar operations), it 1094 // appears once in every dimension of the scalarMap. 1095 VectorValueMapT ScalarBlockMap(getVectorWidth()); 1096 ValueMapT VectorBlockMap; 1097 1098 generateScalarVectorLoads(Stmt, VectorBlockMap); 1099 1100 for (Instruction &Inst : *BB) 1101 copyInstruction(Stmt, &Inst, VectorBlockMap, ScalarBlockMap, NewAccesses); 1102 1103 verifyNoScalarStores(Stmt); 1104 } 1105 1106 BasicBlock *RegionGenerator::repairDominance(BasicBlock *BB, 1107 BasicBlock *BBCopy) { 1108 1109 BasicBlock *BBIDom = DT.getNode(BB)->getIDom()->getBlock(); 1110 BasicBlock *BBCopyIDom = BlockMap.lookup(BBIDom); 1111 1112 if (BBCopyIDom) 1113 DT.changeImmediateDominator(BBCopy, BBCopyIDom); 1114 1115 return BBCopyIDom; 1116 } 1117 1118 // This is to determine whether an llvm::Value (defined in @p BB) is usable when 1119 // leaving a subregion. The straight-forward DT.dominates(BB, R->getExitBlock()) 1120 // does not work in cases where the exit block has edges from outside the 1121 // region. In that case the llvm::Value would never be usable in in the exit 1122 // block. The RegionGenerator however creates an new exit block ('ExitBBCopy') 1123 // for the subregion's exiting edges only. We need to determine whether an 1124 // llvm::Value is usable in there. We do this by checking whether it dominates 1125 // all exiting blocks individually. 1126 static bool isDominatingSubregionExit(const DominatorTree &DT, Region *R, 1127 BasicBlock *BB) { 1128 for (auto ExitingBB : predecessors(R->getExit())) { 1129 // Check for non-subregion incoming edges. 1130 if (!R->contains(ExitingBB)) 1131 continue; 1132 1133 if (!DT.dominates(BB, ExitingBB)) 1134 return false; 1135 } 1136 1137 return true; 1138 } 1139 1140 // Find the direct dominator of the subregion's exit block if the subregion was 1141 // simplified. 1142 static BasicBlock *findExitDominator(DominatorTree &DT, Region *R) { 1143 BasicBlock *Common = nullptr; 1144 for (auto ExitingBB : predecessors(R->getExit())) { 1145 // Check for non-subregion incoming edges. 1146 if (!R->contains(ExitingBB)) 1147 continue; 1148 1149 // First exiting edge. 1150 if (!Common) { 1151 Common = ExitingBB; 1152 continue; 1153 } 1154 1155 Common = DT.findNearestCommonDominator(Common, ExitingBB); 1156 } 1157 1158 assert(Common && R->contains(Common)); 1159 return Common; 1160 } 1161 1162 void RegionGenerator::copyStmt(ScopStmt &Stmt, LoopToScevMapT <S, 1163 isl_id_to_ast_expr *IdToAstExp) { 1164 assert(Stmt.isRegionStmt() && 1165 "Only region statements can be copied by the region generator"); 1166 1167 // Forget all old mappings. 1168 BlockMap.clear(); 1169 RegionMaps.clear(); 1170 IncompletePHINodeMap.clear(); 1171 1172 // Collection of all values related to this subregion. 1173 ValueMapT ValueMap; 1174 1175 // The region represented by the statement. 1176 Region *R = Stmt.getRegion(); 1177 1178 // Create a dedicated entry for the region where we can reload all demoted 1179 // inputs. 1180 BasicBlock *EntryBB = R->getEntry(); 1181 BasicBlock *EntryBBCopy = SplitBlock(Builder.GetInsertBlock(), 1182 &*Builder.GetInsertPoint(), &DT, &LI); 1183 EntryBBCopy->setName("polly.stmt." + EntryBB->getName() + ".entry"); 1184 Builder.SetInsertPoint(&EntryBBCopy->front()); 1185 1186 ValueMapT &EntryBBMap = RegionMaps[EntryBBCopy]; 1187 generateScalarLoads(Stmt, LTS, EntryBBMap, IdToAstExp); 1188 1189 for (auto PI = pred_begin(EntryBB), PE = pred_end(EntryBB); PI != PE; ++PI) 1190 if (!R->contains(*PI)) 1191 BlockMap[*PI] = EntryBBCopy; 1192 1193 // Iterate over all blocks in the region in a breadth-first search. 1194 std::deque<BasicBlock *> Blocks; 1195 SmallSetVector<BasicBlock *, 8> SeenBlocks; 1196 Blocks.push_back(EntryBB); 1197 SeenBlocks.insert(EntryBB); 1198 1199 while (!Blocks.empty()) { 1200 BasicBlock *BB = Blocks.front(); 1201 Blocks.pop_front(); 1202 1203 // First split the block and update dominance information. 1204 BasicBlock *BBCopy = splitBB(BB); 1205 BasicBlock *BBCopyIDom = repairDominance(BB, BBCopy); 1206 1207 // Get the mapping for this block and initialize it with either the scalar 1208 // loads from the generated entering block (which dominates all blocks of 1209 // this subregion) or the maps of the immediate dominator, if part of the 1210 // subregion. The latter necessarily includes the former. 1211 ValueMapT *InitBBMap; 1212 if (BBCopyIDom) { 1213 assert(RegionMaps.count(BBCopyIDom)); 1214 InitBBMap = &RegionMaps[BBCopyIDom]; 1215 } else 1216 InitBBMap = &EntryBBMap; 1217 auto Inserted = RegionMaps.insert(std::make_pair(BBCopy, *InitBBMap)); 1218 ValueMapT &RegionMap = Inserted.first->second; 1219 1220 // Copy the block with the BlockGenerator. 1221 Builder.SetInsertPoint(&BBCopy->front()); 1222 copyBB(Stmt, BB, BBCopy, RegionMap, LTS, IdToAstExp); 1223 1224 // In order to remap PHI nodes we store also basic block mappings. 1225 BlockMap[BB] = BBCopy; 1226 1227 // Add values to incomplete PHI nodes waiting for this block to be copied. 1228 for (const PHINodePairTy &PHINodePair : IncompletePHINodeMap[BB]) 1229 addOperandToPHI(Stmt, PHINodePair.first, PHINodePair.second, BB, LTS); 1230 IncompletePHINodeMap[BB].clear(); 1231 1232 // And continue with new successors inside the region. 1233 for (auto SI = succ_begin(BB), SE = succ_end(BB); SI != SE; SI++) 1234 if (R->contains(*SI) && SeenBlocks.insert(*SI)) 1235 Blocks.push_back(*SI); 1236 1237 // Remember value in case it is visible after this subregion. 1238 if (isDominatingSubregionExit(DT, R, BB)) 1239 ValueMap.insert(RegionMap.begin(), RegionMap.end()); 1240 } 1241 1242 // Now create a new dedicated region exit block and add it to the region map. 1243 BasicBlock *ExitBBCopy = SplitBlock(Builder.GetInsertBlock(), 1244 &*Builder.GetInsertPoint(), &DT, &LI); 1245 ExitBBCopy->setName("polly.stmt." + R->getExit()->getName() + ".exit"); 1246 BlockMap[R->getExit()] = ExitBBCopy; 1247 1248 BasicBlock *ExitDomBBCopy = BlockMap.lookup(findExitDominator(DT, R)); 1249 assert(ExitDomBBCopy && 1250 "Common exit dominator must be within region; at least the entry node " 1251 "must match"); 1252 DT.changeImmediateDominator(ExitBBCopy, ExitDomBBCopy); 1253 1254 // As the block generator doesn't handle control flow we need to add the 1255 // region control flow by hand after all blocks have been copied. 1256 for (BasicBlock *BB : SeenBlocks) { 1257 1258 BasicBlock *BBCopy = BlockMap[BB]; 1259 TerminatorInst *TI = BB->getTerminator(); 1260 if (isa<UnreachableInst>(TI)) { 1261 while (!BBCopy->empty()) 1262 BBCopy->begin()->eraseFromParent(); 1263 new UnreachableInst(BBCopy->getContext(), BBCopy); 1264 continue; 1265 } 1266 1267 Instruction *BICopy = BBCopy->getTerminator(); 1268 1269 ValueMapT &RegionMap = RegionMaps[BBCopy]; 1270 RegionMap.insert(BlockMap.begin(), BlockMap.end()); 1271 1272 Builder.SetInsertPoint(BICopy); 1273 copyInstScalar(Stmt, TI, RegionMap, LTS); 1274 BICopy->eraseFromParent(); 1275 } 1276 1277 // Add counting PHI nodes to all loops in the region that can be used as 1278 // replacement for SCEVs refering to the old loop. 1279 for (BasicBlock *BB : SeenBlocks) { 1280 Loop *L = LI.getLoopFor(BB); 1281 if (L == nullptr || L->getHeader() != BB || !R->contains(L)) 1282 continue; 1283 1284 BasicBlock *BBCopy = BlockMap[BB]; 1285 Value *NullVal = Builder.getInt32(0); 1286 PHINode *LoopPHI = 1287 PHINode::Create(Builder.getInt32Ty(), 2, "polly.subregion.iv"); 1288 Instruction *LoopPHIInc = BinaryOperator::CreateAdd( 1289 LoopPHI, Builder.getInt32(1), "polly.subregion.iv.inc"); 1290 LoopPHI->insertBefore(&BBCopy->front()); 1291 LoopPHIInc->insertBefore(BBCopy->getTerminator()); 1292 1293 for (auto *PredBB : make_range(pred_begin(BB), pred_end(BB))) { 1294 if (!R->contains(PredBB)) 1295 continue; 1296 if (L->contains(PredBB)) 1297 LoopPHI->addIncoming(LoopPHIInc, BlockMap[PredBB]); 1298 else 1299 LoopPHI->addIncoming(NullVal, BlockMap[PredBB]); 1300 } 1301 1302 for (auto *PredBBCopy : make_range(pred_begin(BBCopy), pred_end(BBCopy))) 1303 if (LoopPHI->getBasicBlockIndex(PredBBCopy) < 0) 1304 LoopPHI->addIncoming(NullVal, PredBBCopy); 1305 1306 LTS[L] = SE.getUnknown(LoopPHI); 1307 } 1308 1309 // Continue generating code in the exit block. 1310 Builder.SetInsertPoint(&*ExitBBCopy->getFirstInsertionPt()); 1311 1312 // Write values visible to other statements. 1313 generateScalarStores(Stmt, LTS, ValueMap, IdToAstExp); 1314 BlockMap.clear(); 1315 RegionMaps.clear(); 1316 IncompletePHINodeMap.clear(); 1317 } 1318 1319 PHINode *RegionGenerator::buildExitPHI(MemoryAccess *MA, LoopToScevMapT <S, 1320 ValueMapT &BBMap, Loop *L) { 1321 ScopStmt *Stmt = MA->getStatement(); 1322 Region *SubR = Stmt->getRegion(); 1323 auto Incoming = MA->getIncoming(); 1324 1325 PollyIRBuilder::InsertPointGuard IPGuard(Builder); 1326 PHINode *OrigPHI = cast<PHINode>(MA->getAccessInstruction()); 1327 BasicBlock *NewSubregionExit = Builder.GetInsertBlock(); 1328 1329 // This can happen if the subregion is simplified after the ScopStmts 1330 // have been created; simplification happens as part of CodeGeneration. 1331 if (OrigPHI->getParent() != SubR->getExit()) { 1332 BasicBlock *FormerExit = SubR->getExitingBlock(); 1333 if (FormerExit) 1334 NewSubregionExit = BlockMap.lookup(FormerExit); 1335 } 1336 1337 PHINode *NewPHI = PHINode::Create(OrigPHI->getType(), Incoming.size(), 1338 "polly." + OrigPHI->getName(), 1339 NewSubregionExit->getFirstNonPHI()); 1340 1341 // Add the incoming values to the PHI. 1342 for (auto &Pair : Incoming) { 1343 BasicBlock *OrigIncomingBlock = Pair.first; 1344 BasicBlock *NewIncomingBlock = BlockMap.lookup(OrigIncomingBlock); 1345 Builder.SetInsertPoint(NewIncomingBlock->getTerminator()); 1346 assert(RegionMaps.count(NewIncomingBlock)); 1347 ValueMapT *LocalBBMap = &RegionMaps[NewIncomingBlock]; 1348 1349 Value *OrigIncomingValue = Pair.second; 1350 Value *NewIncomingValue = 1351 getNewValue(*Stmt, OrigIncomingValue, *LocalBBMap, LTS, L); 1352 NewPHI->addIncoming(NewIncomingValue, NewIncomingBlock); 1353 } 1354 1355 return NewPHI; 1356 } 1357 1358 Value *RegionGenerator::getExitScalar(MemoryAccess *MA, LoopToScevMapT <S, 1359 ValueMapT &BBMap) { 1360 ScopStmt *Stmt = MA->getStatement(); 1361 1362 // TODO: Add some test cases that ensure this is really the right choice. 1363 Loop *L = LI.getLoopFor(Stmt->getRegion()->getExit()); 1364 1365 if (MA->isAnyPHIKind()) { 1366 auto Incoming = MA->getIncoming(); 1367 assert(!Incoming.empty() && 1368 "PHI WRITEs must have originate from at least one incoming block"); 1369 1370 // If there is only one incoming value, we do not need to create a PHI. 1371 if (Incoming.size() == 1) { 1372 Value *OldVal = Incoming[0].second; 1373 return getNewValue(*Stmt, OldVal, BBMap, LTS, L); 1374 } 1375 1376 return buildExitPHI(MA, LTS, BBMap, L); 1377 } 1378 1379 // MemoryKind::Value accesses leaving the subregion must dominate the exit 1380 // block; just pass the copied value. 1381 Value *OldVal = MA->getAccessValue(); 1382 return getNewValue(*Stmt, OldVal, BBMap, LTS, L); 1383 } 1384 1385 void RegionGenerator::generateScalarStores( 1386 ScopStmt &Stmt, LoopToScevMapT <S, ValueMapT &BBMap, 1387 __isl_keep isl_id_to_ast_expr *NewAccesses) { 1388 assert(Stmt.getRegion() && 1389 "Block statements need to use the generateScalarStores() " 1390 "function in the BlockGenerator"); 1391 1392 for (MemoryAccess *MA : Stmt) { 1393 if (MA->isOriginalArrayKind() || MA->isRead()) 1394 continue; 1395 1396 Value *NewVal = getExitScalar(MA, LTS, BBMap); 1397 Value *Address = 1398 getImplicitAddress(*MA, getLoopForStmt(Stmt), LTS, BBMap, NewAccesses); 1399 assert((!isa<Instruction>(NewVal) || 1400 DT.dominates(cast<Instruction>(NewVal)->getParent(), 1401 Builder.GetInsertBlock())) && 1402 "Domination violation"); 1403 assert((!isa<Instruction>(Address) || 1404 DT.dominates(cast<Instruction>(Address)->getParent(), 1405 Builder.GetInsertBlock())) && 1406 "Domination violation"); 1407 Builder.CreateStore(NewVal, Address); 1408 } 1409 } 1410 1411 void RegionGenerator::addOperandToPHI(ScopStmt &Stmt, PHINode *PHI, 1412 PHINode *PHICopy, BasicBlock *IncomingBB, 1413 LoopToScevMapT <S) { 1414 // If the incoming block was not yet copied mark this PHI as incomplete. 1415 // Once the block will be copied the incoming value will be added. 1416 BasicBlock *BBCopy = BlockMap[IncomingBB]; 1417 if (!BBCopy) { 1418 assert(Stmt.contains(IncomingBB) && 1419 "Bad incoming block for PHI in non-affine region"); 1420 IncompletePHINodeMap[IncomingBB].push_back(std::make_pair(PHI, PHICopy)); 1421 return; 1422 } 1423 1424 assert(RegionMaps.count(BBCopy) && "Incoming PHI block did not have a BBMap"); 1425 ValueMapT &BBCopyMap = RegionMaps[BBCopy]; 1426 1427 Value *OpCopy = nullptr; 1428 1429 if (Stmt.contains(IncomingBB)) { 1430 Value *Op = PHI->getIncomingValueForBlock(IncomingBB); 1431 1432 // If the current insert block is different from the PHIs incoming block 1433 // change it, otherwise do not. 1434 auto IP = Builder.GetInsertPoint(); 1435 if (IP->getParent() != BBCopy) 1436 Builder.SetInsertPoint(BBCopy->getTerminator()); 1437 OpCopy = getNewValue(Stmt, Op, BBCopyMap, LTS, getLoopForStmt(Stmt)); 1438 if (IP->getParent() != BBCopy) 1439 Builder.SetInsertPoint(&*IP); 1440 } else { 1441 // All edges from outside the non-affine region become a single edge 1442 // in the new copy of the non-affine region. Make sure to only add the 1443 // corresponding edge the first time we encounter a basic block from 1444 // outside the non-affine region. 1445 if (PHICopy->getBasicBlockIndex(BBCopy) >= 0) 1446 return; 1447 1448 // Get the reloaded value. 1449 OpCopy = getNewValue(Stmt, PHI, BBCopyMap, LTS, getLoopForStmt(Stmt)); 1450 } 1451 1452 assert(OpCopy && "Incoming PHI value was not copied properly"); 1453 assert(BBCopy && "Incoming PHI block was not copied properly"); 1454 PHICopy->addIncoming(OpCopy, BBCopy); 1455 } 1456 1457 void RegionGenerator::copyPHIInstruction(ScopStmt &Stmt, PHINode *PHI, 1458 ValueMapT &BBMap, 1459 LoopToScevMapT <S) { 1460 unsigned NumIncoming = PHI->getNumIncomingValues(); 1461 PHINode *PHICopy = 1462 Builder.CreatePHI(PHI->getType(), NumIncoming, "polly." + PHI->getName()); 1463 PHICopy->moveBefore(PHICopy->getParent()->getFirstNonPHI()); 1464 BBMap[PHI] = PHICopy; 1465 1466 for (BasicBlock *IncomingBB : PHI->blocks()) 1467 addOperandToPHI(Stmt, PHI, PHICopy, IncomingBB, LTS); 1468 } 1469