1 //===--- BlockGenerators.cpp - Generate code for statements -----*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the BlockGenerator and VectorBlockGenerator classes, 10 // which generate sequential code and vectorized code for a polyhedral 11 // statement, respectively. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "polly/CodeGen/BlockGenerators.h" 16 #include "polly/CodeGen/IslExprBuilder.h" 17 #include "polly/CodeGen/RuntimeDebugBuilder.h" 18 #include "polly/Options.h" 19 #include "polly/ScopInfo.h" 20 #include "polly/Support/ScopHelper.h" 21 #include "polly/Support/VirtualInstruction.h" 22 #include "llvm/Analysis/LoopInfo.h" 23 #include "llvm/Analysis/RegionInfo.h" 24 #include "llvm/Analysis/ScalarEvolution.h" 25 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 26 #include "llvm/Transforms/Utils/Local.h" 27 #include "isl/ast.h" 28 #include <deque> 29 30 using namespace llvm; 31 using namespace polly; 32 33 static cl::opt<bool> Aligned("enable-polly-aligned", 34 cl::desc("Assumed aligned memory accesses."), 35 cl::Hidden, cl::init(false), cl::ZeroOrMore, 36 cl::cat(PollyCategory)); 37 38 bool PollyDebugPrinting; 39 static cl::opt<bool, true> DebugPrintingX( 40 "polly-codegen-add-debug-printing", 41 cl::desc("Add printf calls that show the values loaded/stored."), 42 cl::location(PollyDebugPrinting), cl::Hidden, cl::init(false), 43 cl::ZeroOrMore, cl::cat(PollyCategory)); 44 45 static cl::opt<bool> TraceStmts( 46 "polly-codegen-trace-stmts", 47 cl::desc("Add printf calls that print the statement being executed"), 48 cl::Hidden, cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory)); 49 50 static cl::opt<bool> TraceScalars( 51 "polly-codegen-trace-scalars", 52 cl::desc("Add printf calls that print the values of all scalar values " 53 "used in a statement. Requires -polly-codegen-trace-stmts."), 54 cl::Hidden, cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory)); 55 56 BlockGenerator::BlockGenerator( 57 PollyIRBuilder &B, LoopInfo &LI, ScalarEvolution &SE, DominatorTree &DT, 58 AllocaMapTy &ScalarMap, EscapeUsersAllocaMapTy &EscapeMap, 59 ValueMapT &GlobalMap, IslExprBuilder *ExprBuilder, BasicBlock *StartBlock) 60 : Builder(B), LI(LI), SE(SE), ExprBuilder(ExprBuilder), DT(DT), 61 EntryBB(nullptr), ScalarMap(ScalarMap), EscapeMap(EscapeMap), 62 GlobalMap(GlobalMap), StartBlock(StartBlock) {} 63 64 Value *BlockGenerator::trySynthesizeNewValue(ScopStmt &Stmt, Value *Old, 65 ValueMapT &BBMap, 66 LoopToScevMapT <S, 67 Loop *L) const { 68 if (!SE.isSCEVable(Old->getType())) 69 return nullptr; 70 71 const SCEV *Scev = SE.getSCEVAtScope(Old, L); 72 if (!Scev) 73 return nullptr; 74 75 if (isa<SCEVCouldNotCompute>(Scev)) 76 return nullptr; 77 78 const SCEV *NewScev = SCEVLoopAddRecRewriter::rewrite(Scev, LTS, SE); 79 ValueMapT VTV; 80 VTV.insert(BBMap.begin(), BBMap.end()); 81 VTV.insert(GlobalMap.begin(), GlobalMap.end()); 82 83 Scop &S = *Stmt.getParent(); 84 const DataLayout &DL = S.getFunction().getParent()->getDataLayout(); 85 auto IP = Builder.GetInsertPoint(); 86 87 assert(IP != Builder.GetInsertBlock()->end() && 88 "Only instructions can be insert points for SCEVExpander"); 89 Value *Expanded = 90 expandCodeFor(S, SE, DL, "polly", NewScev, Old->getType(), &*IP, &VTV, 91 StartBlock->getSinglePredecessor()); 92 93 BBMap[Old] = Expanded; 94 return Expanded; 95 } 96 97 Value *BlockGenerator::getNewValue(ScopStmt &Stmt, Value *Old, ValueMapT &BBMap, 98 LoopToScevMapT <S, Loop *L) const { 99 100 auto lookupGlobally = [this](Value *Old) -> Value * { 101 Value *New = GlobalMap.lookup(Old); 102 if (!New) 103 return nullptr; 104 105 // Required by: 106 // * Isl/CodeGen/OpenMP/invariant_base_pointer_preloaded.ll 107 // * Isl/CodeGen/OpenMP/invariant_base_pointer_preloaded_different_bb.ll 108 // * Isl/CodeGen/OpenMP/invariant_base_pointer_preloaded_pass_only_needed.ll 109 // * Isl/CodeGen/OpenMP/invariant_base_pointers_preloaded.ll 110 // * Isl/CodeGen/OpenMP/loop-body-references-outer-values-3.ll 111 // * Isl/CodeGen/OpenMP/single_loop_with_loop_invariant_baseptr.ll 112 // GlobalMap should be a mapping from (value in original SCoP) to (copied 113 // value in generated SCoP), without intermediate mappings, which might 114 // easily require transitiveness as well. 115 if (Value *NewRemapped = GlobalMap.lookup(New)) 116 New = NewRemapped; 117 118 // No test case for this code. 119 if (Old->getType()->getScalarSizeInBits() < 120 New->getType()->getScalarSizeInBits()) 121 New = Builder.CreateTruncOrBitCast(New, Old->getType()); 122 123 return New; 124 }; 125 126 Value *New = nullptr; 127 auto VUse = VirtualUse::create(&Stmt, L, Old, true); 128 switch (VUse.getKind()) { 129 case VirtualUse::Block: 130 // BasicBlock are constants, but the BlockGenerator copies them. 131 New = BBMap.lookup(Old); 132 break; 133 134 case VirtualUse::Constant: 135 // Used by: 136 // * Isl/CodeGen/OpenMP/reference-argument-from-non-affine-region.ll 137 // Constants should not be redefined. In this case, the GlobalMap just 138 // contains a mapping to the same constant, which is unnecessary, but 139 // harmless. 140 if ((New = lookupGlobally(Old))) 141 break; 142 143 assert(!BBMap.count(Old)); 144 New = Old; 145 break; 146 147 case VirtualUse::ReadOnly: 148 assert(!GlobalMap.count(Old)); 149 150 // Required for: 151 // * Isl/CodeGen/MemAccess/create_arrays.ll 152 // * Isl/CodeGen/read-only-scalars.ll 153 // * ScheduleOptimizer/pattern-matching-based-opts_10.ll 154 // For some reason these reload a read-only value. The reloaded value ends 155 // up in BBMap, buts its value should be identical. 156 // 157 // Required for: 158 // * Isl/CodeGen/OpenMP/single_loop_with_param.ll 159 // The parallel subfunctions need to reference the read-only value from the 160 // parent function, this is done by reloading them locally. 161 if ((New = BBMap.lookup(Old))) 162 break; 163 164 New = Old; 165 break; 166 167 case VirtualUse::Synthesizable: 168 // Used by: 169 // * Isl/CodeGen/OpenMP/loop-body-references-outer-values-3.ll 170 // * Isl/CodeGen/OpenMP/recomputed-srem.ll 171 // * Isl/CodeGen/OpenMP/reference-other-bb.ll 172 // * Isl/CodeGen/OpenMP/two-parallel-loops-reference-outer-indvar.ll 173 // For some reason synthesizable values end up in GlobalMap. Their values 174 // are the same as trySynthesizeNewValue would return. The legacy 175 // implementation prioritized GlobalMap, so this is what we do here as well. 176 // Ideally, synthesizable values should not end up in GlobalMap. 177 if ((New = lookupGlobally(Old))) 178 break; 179 180 // Required for: 181 // * Isl/CodeGen/RuntimeDebugBuilder/combine_different_values.ll 182 // * Isl/CodeGen/getNumberOfIterations.ll 183 // * Isl/CodeGen/non_affine_float_compare.ll 184 // * ScheduleOptimizer/pattern-matching-based-opts_10.ll 185 // Ideally, synthesizable values are synthesized by trySynthesizeNewValue, 186 // not precomputed (SCEVExpander has its own caching mechanism). 187 // These tests fail without this, but I think trySynthesizeNewValue would 188 // just re-synthesize the same instructions. 189 if ((New = BBMap.lookup(Old))) 190 break; 191 192 New = trySynthesizeNewValue(Stmt, Old, BBMap, LTS, L); 193 break; 194 195 case VirtualUse::Hoisted: 196 // TODO: Hoisted invariant loads should be found in GlobalMap only, but not 197 // redefined locally (which will be ignored anyway). That is, the following 198 // assertion should apply: assert(!BBMap.count(Old)) 199 200 New = lookupGlobally(Old); 201 break; 202 203 case VirtualUse::Intra: 204 case VirtualUse::Inter: 205 assert(!GlobalMap.count(Old) && 206 "Intra and inter-stmt values are never global"); 207 New = BBMap.lookup(Old); 208 break; 209 } 210 assert(New && "Unexpected scalar dependence in region!"); 211 return New; 212 } 213 214 void BlockGenerator::copyInstScalar(ScopStmt &Stmt, Instruction *Inst, 215 ValueMapT &BBMap, LoopToScevMapT <S) { 216 // We do not generate debug intrinsics as we did not investigate how to 217 // copy them correctly. At the current state, they just crash the code 218 // generation as the meta-data operands are not correctly copied. 219 if (isa<DbgInfoIntrinsic>(Inst)) 220 return; 221 222 Instruction *NewInst = Inst->clone(); 223 224 // Replace old operands with the new ones. 225 for (Value *OldOperand : Inst->operands()) { 226 Value *NewOperand = 227 getNewValue(Stmt, OldOperand, BBMap, LTS, getLoopForStmt(Stmt)); 228 229 if (!NewOperand) { 230 assert(!isa<StoreInst>(NewInst) && 231 "Store instructions are always needed!"); 232 NewInst->deleteValue(); 233 return; 234 } 235 236 NewInst->replaceUsesOfWith(OldOperand, NewOperand); 237 } 238 239 Builder.Insert(NewInst); 240 BBMap[Inst] = NewInst; 241 242 // When copying the instruction onto the Module meant for the GPU, 243 // debug metadata attached to an instruction causes all related 244 // metadata to be pulled into the Module. This includes the DICompileUnit, 245 // which will not be listed in llvm.dbg.cu of the Module since the Module 246 // doesn't contain one. This fails the verification of the Module and the 247 // subsequent generation of the ASM string. 248 if (NewInst->getModule() != Inst->getModule()) 249 NewInst->setDebugLoc(llvm::DebugLoc()); 250 251 if (!NewInst->getType()->isVoidTy()) 252 NewInst->setName("p_" + Inst->getName()); 253 } 254 255 Value * 256 BlockGenerator::generateLocationAccessed(ScopStmt &Stmt, MemAccInst Inst, 257 ValueMapT &BBMap, LoopToScevMapT <S, 258 isl_id_to_ast_expr *NewAccesses) { 259 const MemoryAccess &MA = Stmt.getArrayAccessFor(Inst); 260 return generateLocationAccessed( 261 Stmt, getLoopForStmt(Stmt), 262 Inst.isNull() ? nullptr : Inst.getPointerOperand(), BBMap, LTS, 263 NewAccesses, MA.getId().release(), MA.getAccessValue()->getType()); 264 } 265 266 Value *BlockGenerator::generateLocationAccessed( 267 ScopStmt &Stmt, Loop *L, Value *Pointer, ValueMapT &BBMap, 268 LoopToScevMapT <S, isl_id_to_ast_expr *NewAccesses, __isl_take isl_id *Id, 269 Type *ExpectedType) { 270 isl_ast_expr *AccessExpr = isl_id_to_ast_expr_get(NewAccesses, Id); 271 272 if (AccessExpr) { 273 AccessExpr = isl_ast_expr_address_of(AccessExpr); 274 auto Address = ExprBuilder->create(AccessExpr); 275 276 // Cast the address of this memory access to a pointer type that has the 277 // same element type as the original access, but uses the address space of 278 // the newly generated pointer. 279 auto OldPtrTy = ExpectedType->getPointerTo(); 280 auto NewPtrTy = Address->getType(); 281 OldPtrTy = PointerType::get(OldPtrTy->getElementType(), 282 NewPtrTy->getPointerAddressSpace()); 283 284 if (OldPtrTy != NewPtrTy) 285 Address = Builder.CreateBitOrPointerCast(Address, OldPtrTy); 286 return Address; 287 } 288 assert( 289 Pointer && 290 "If expression was not generated, must use the original pointer value"); 291 return getNewValue(Stmt, Pointer, BBMap, LTS, L); 292 } 293 294 Value * 295 BlockGenerator::getImplicitAddress(MemoryAccess &Access, Loop *L, 296 LoopToScevMapT <S, ValueMapT &BBMap, 297 __isl_keep isl_id_to_ast_expr *NewAccesses) { 298 if (Access.isLatestArrayKind()) 299 return generateLocationAccessed(*Access.getStatement(), L, nullptr, BBMap, 300 LTS, NewAccesses, Access.getId().release(), 301 Access.getAccessValue()->getType()); 302 303 return getOrCreateAlloca(Access); 304 } 305 306 Loop *BlockGenerator::getLoopForStmt(const ScopStmt &Stmt) const { 307 auto *StmtBB = Stmt.getEntryBlock(); 308 return LI.getLoopFor(StmtBB); 309 } 310 311 Value *BlockGenerator::generateArrayLoad(ScopStmt &Stmt, LoadInst *Load, 312 ValueMapT &BBMap, LoopToScevMapT <S, 313 isl_id_to_ast_expr *NewAccesses) { 314 if (Value *PreloadLoad = GlobalMap.lookup(Load)) 315 return PreloadLoad; 316 317 Value *NewPointer = 318 generateLocationAccessed(Stmt, Load, BBMap, LTS, NewAccesses); 319 Value *ScalarLoad = Builder.CreateAlignedLoad(NewPointer, Load->getAlign(), 320 Load->getName() + "_p_scalar_"); 321 322 if (PollyDebugPrinting) 323 RuntimeDebugBuilder::createCPUPrinter(Builder, "Load from ", NewPointer, 324 ": ", ScalarLoad, "\n"); 325 326 return ScalarLoad; 327 } 328 329 void BlockGenerator::generateArrayStore(ScopStmt &Stmt, StoreInst *Store, 330 ValueMapT &BBMap, LoopToScevMapT <S, 331 isl_id_to_ast_expr *NewAccesses) { 332 MemoryAccess &MA = Stmt.getArrayAccessFor(Store); 333 isl::set AccDom = MA.getAccessRelation().domain(); 334 std::string Subject = MA.getId().get_name(); 335 336 generateConditionalExecution(Stmt, AccDom, Subject.c_str(), [&, this]() { 337 Value *NewPointer = 338 generateLocationAccessed(Stmt, Store, BBMap, LTS, NewAccesses); 339 Value *ValueOperand = getNewValue(Stmt, Store->getValueOperand(), BBMap, 340 LTS, getLoopForStmt(Stmt)); 341 342 if (PollyDebugPrinting) 343 RuntimeDebugBuilder::createCPUPrinter(Builder, "Store to ", NewPointer, 344 ": ", ValueOperand, "\n"); 345 346 Builder.CreateAlignedStore(ValueOperand, NewPointer, Store->getAlign()); 347 }); 348 } 349 350 bool BlockGenerator::canSyntheziseInStmt(ScopStmt &Stmt, Instruction *Inst) { 351 Loop *L = getLoopForStmt(Stmt); 352 return (Stmt.isBlockStmt() || !Stmt.getRegion()->contains(L)) && 353 canSynthesize(Inst, *Stmt.getParent(), &SE, L); 354 } 355 356 void BlockGenerator::copyInstruction(ScopStmt &Stmt, Instruction *Inst, 357 ValueMapT &BBMap, LoopToScevMapT <S, 358 isl_id_to_ast_expr *NewAccesses) { 359 // Terminator instructions control the control flow. They are explicitly 360 // expressed in the clast and do not need to be copied. 361 if (Inst->isTerminator()) 362 return; 363 364 // Synthesizable statements will be generated on-demand. 365 if (canSyntheziseInStmt(Stmt, Inst)) 366 return; 367 368 if (auto *Load = dyn_cast<LoadInst>(Inst)) { 369 Value *NewLoad = generateArrayLoad(Stmt, Load, BBMap, LTS, NewAccesses); 370 // Compute NewLoad before its insertion in BBMap to make the insertion 371 // deterministic. 372 BBMap[Load] = NewLoad; 373 return; 374 } 375 376 if (auto *Store = dyn_cast<StoreInst>(Inst)) { 377 // Identified as redundant by -polly-simplify. 378 if (!Stmt.getArrayAccessOrNULLFor(Store)) 379 return; 380 381 generateArrayStore(Stmt, Store, BBMap, LTS, NewAccesses); 382 return; 383 } 384 385 if (auto *PHI = dyn_cast<PHINode>(Inst)) { 386 copyPHIInstruction(Stmt, PHI, BBMap, LTS); 387 return; 388 } 389 390 // Skip some special intrinsics for which we do not adjust the semantics to 391 // the new schedule. All others are handled like every other instruction. 392 if (isIgnoredIntrinsic(Inst)) 393 return; 394 395 copyInstScalar(Stmt, Inst, BBMap, LTS); 396 } 397 398 void BlockGenerator::removeDeadInstructions(BasicBlock *BB, ValueMapT &BBMap) { 399 auto NewBB = Builder.GetInsertBlock(); 400 for (auto I = NewBB->rbegin(); I != NewBB->rend(); I++) { 401 Instruction *NewInst = &*I; 402 403 if (!isInstructionTriviallyDead(NewInst)) 404 continue; 405 406 for (auto Pair : BBMap) 407 if (Pair.second == NewInst) { 408 BBMap.erase(Pair.first); 409 } 410 411 NewInst->eraseFromParent(); 412 I = NewBB->rbegin(); 413 } 414 } 415 416 void BlockGenerator::copyStmt(ScopStmt &Stmt, LoopToScevMapT <S, 417 isl_id_to_ast_expr *NewAccesses) { 418 assert(Stmt.isBlockStmt() && 419 "Only block statements can be copied by the block generator"); 420 421 ValueMapT BBMap; 422 423 BasicBlock *BB = Stmt.getBasicBlock(); 424 copyBB(Stmt, BB, BBMap, LTS, NewAccesses); 425 removeDeadInstructions(BB, BBMap); 426 } 427 428 BasicBlock *BlockGenerator::splitBB(BasicBlock *BB) { 429 BasicBlock *CopyBB = SplitBlock(Builder.GetInsertBlock(), 430 &*Builder.GetInsertPoint(), &DT, &LI); 431 CopyBB->setName("polly.stmt." + BB->getName()); 432 return CopyBB; 433 } 434 435 BasicBlock *BlockGenerator::copyBB(ScopStmt &Stmt, BasicBlock *BB, 436 ValueMapT &BBMap, LoopToScevMapT <S, 437 isl_id_to_ast_expr *NewAccesses) { 438 BasicBlock *CopyBB = splitBB(BB); 439 Builder.SetInsertPoint(&CopyBB->front()); 440 generateScalarLoads(Stmt, LTS, BBMap, NewAccesses); 441 generateBeginStmtTrace(Stmt, LTS, BBMap); 442 443 copyBB(Stmt, BB, CopyBB, BBMap, LTS, NewAccesses); 444 445 // After a basic block was copied store all scalars that escape this block in 446 // their alloca. 447 generateScalarStores(Stmt, LTS, BBMap, NewAccesses); 448 return CopyBB; 449 } 450 451 void BlockGenerator::copyBB(ScopStmt &Stmt, BasicBlock *BB, BasicBlock *CopyBB, 452 ValueMapT &BBMap, LoopToScevMapT <S, 453 isl_id_to_ast_expr *NewAccesses) { 454 EntryBB = &CopyBB->getParent()->getEntryBlock(); 455 456 // Block statements and the entry blocks of region statement are code 457 // generated from instruction lists. This allow us to optimize the 458 // instructions that belong to a certain scop statement. As the code 459 // structure of region statements might be arbitrary complex, optimizing the 460 // instruction list is not yet supported. 461 if (Stmt.isBlockStmt() || (Stmt.isRegionStmt() && Stmt.getEntryBlock() == BB)) 462 for (Instruction *Inst : Stmt.getInstructions()) 463 copyInstruction(Stmt, Inst, BBMap, LTS, NewAccesses); 464 else 465 for (Instruction &Inst : *BB) 466 copyInstruction(Stmt, &Inst, BBMap, LTS, NewAccesses); 467 } 468 469 Value *BlockGenerator::getOrCreateAlloca(const MemoryAccess &Access) { 470 assert(!Access.isLatestArrayKind() && "Trying to get alloca for array kind"); 471 472 return getOrCreateAlloca(Access.getLatestScopArrayInfo()); 473 } 474 475 Value *BlockGenerator::getOrCreateAlloca(const ScopArrayInfo *Array) { 476 assert(!Array->isArrayKind() && "Trying to get alloca for array kind"); 477 478 auto &Addr = ScalarMap[Array]; 479 480 if (Addr) { 481 // Allow allocas to be (temporarily) redirected once by adding a new 482 // old-alloca-addr to new-addr mapping to GlobalMap. This functionality 483 // is used for example by the OpenMP code generation where a first use 484 // of a scalar while still in the host code allocates a normal alloca with 485 // getOrCreateAlloca. When the values of this scalar are accessed during 486 // the generation of the parallel subfunction, these values are copied over 487 // to the parallel subfunction and each request for a scalar alloca slot 488 // must be forwarded to the temporary in-subfunction slot. This mapping is 489 // removed when the subfunction has been generated and again normal host 490 // code is generated. Due to the following reasons it is not possible to 491 // perform the GlobalMap lookup right after creating the alloca below, but 492 // instead we need to check GlobalMap at each call to getOrCreateAlloca: 493 // 494 // 1) GlobalMap may be changed multiple times (for each parallel loop), 495 // 2) The temporary mapping is commonly only known after the initial 496 // alloca has already been generated, and 497 // 3) The original alloca value must be restored after leaving the 498 // sub-function. 499 if (Value *NewAddr = GlobalMap.lookup(&*Addr)) 500 return NewAddr; 501 return Addr; 502 } 503 504 Type *Ty = Array->getElementType(); 505 Value *ScalarBase = Array->getBasePtr(); 506 std::string NameExt; 507 if (Array->isPHIKind()) 508 NameExt = ".phiops"; 509 else 510 NameExt = ".s2a"; 511 512 const DataLayout &DL = Builder.GetInsertBlock()->getModule()->getDataLayout(); 513 514 Addr = new AllocaInst(Ty, DL.getAllocaAddrSpace(), 515 ScalarBase->getName() + NameExt); 516 EntryBB = &Builder.GetInsertBlock()->getParent()->getEntryBlock(); 517 Addr->insertBefore(&*EntryBB->getFirstInsertionPt()); 518 519 return Addr; 520 } 521 522 void BlockGenerator::handleOutsideUsers(const Scop &S, ScopArrayInfo *Array) { 523 Instruction *Inst = cast<Instruction>(Array->getBasePtr()); 524 525 // If there are escape users we get the alloca for this instruction and put it 526 // in the EscapeMap for later finalization. Lastly, if the instruction was 527 // copied multiple times we already did this and can exit. 528 if (EscapeMap.count(Inst)) 529 return; 530 531 EscapeUserVectorTy EscapeUsers; 532 for (User *U : Inst->users()) { 533 534 // Non-instruction user will never escape. 535 Instruction *UI = dyn_cast<Instruction>(U); 536 if (!UI) 537 continue; 538 539 if (S.contains(UI)) 540 continue; 541 542 EscapeUsers.push_back(UI); 543 } 544 545 // Exit if no escape uses were found. 546 if (EscapeUsers.empty()) 547 return; 548 549 // Get or create an escape alloca for this instruction. 550 auto *ScalarAddr = getOrCreateAlloca(Array); 551 552 // Remember that this instruction has escape uses and the escape alloca. 553 EscapeMap[Inst] = std::make_pair(ScalarAddr, std::move(EscapeUsers)); 554 } 555 556 void BlockGenerator::generateScalarLoads( 557 ScopStmt &Stmt, LoopToScevMapT <S, ValueMapT &BBMap, 558 __isl_keep isl_id_to_ast_expr *NewAccesses) { 559 for (MemoryAccess *MA : Stmt) { 560 if (MA->isOriginalArrayKind() || MA->isWrite()) 561 continue; 562 563 #ifndef NDEBUG 564 auto StmtDom = 565 Stmt.getDomain().intersect_params(Stmt.getParent()->getContext()); 566 auto AccDom = MA->getAccessRelation().domain(); 567 assert(!StmtDom.is_subset(AccDom).is_false() && 568 "Scalar must be loaded in all statement instances"); 569 #endif 570 571 auto *Address = 572 getImplicitAddress(*MA, getLoopForStmt(Stmt), LTS, BBMap, NewAccesses); 573 assert((!isa<Instruction>(Address) || 574 DT.dominates(cast<Instruction>(Address)->getParent(), 575 Builder.GetInsertBlock())) && 576 "Domination violation"); 577 BBMap[MA->getAccessValue()] = 578 Builder.CreateLoad(Address, Address->getName() + ".reload"); 579 } 580 } 581 582 Value *BlockGenerator::buildContainsCondition(ScopStmt &Stmt, 583 const isl::set &Subdomain) { 584 isl::ast_build AstBuild = Stmt.getAstBuild(); 585 isl::set Domain = Stmt.getDomain(); 586 587 isl::union_map USchedule = AstBuild.get_schedule(); 588 USchedule = USchedule.intersect_domain(Domain); 589 590 assert(!USchedule.is_empty()); 591 isl::map Schedule = isl::map::from_union_map(USchedule); 592 593 isl::set ScheduledDomain = Schedule.range(); 594 isl::set ScheduledSet = Subdomain.apply(Schedule); 595 596 isl::ast_build RestrictedBuild = AstBuild.restrict(ScheduledDomain); 597 598 isl::ast_expr IsInSet = RestrictedBuild.expr_from(ScheduledSet); 599 Value *IsInSetExpr = ExprBuilder->create(IsInSet.copy()); 600 IsInSetExpr = Builder.CreateICmpNE( 601 IsInSetExpr, ConstantInt::get(IsInSetExpr->getType(), 0)); 602 603 return IsInSetExpr; 604 } 605 606 void BlockGenerator::generateConditionalExecution( 607 ScopStmt &Stmt, const isl::set &Subdomain, StringRef Subject, 608 const std::function<void()> &GenThenFunc) { 609 isl::set StmtDom = Stmt.getDomain(); 610 611 // If the condition is a tautology, don't generate a condition around the 612 // code. 613 bool IsPartialWrite = 614 !StmtDom.intersect_params(Stmt.getParent()->getContext()) 615 .is_subset(Subdomain); 616 if (!IsPartialWrite) { 617 GenThenFunc(); 618 return; 619 } 620 621 // Generate the condition. 622 Value *Cond = buildContainsCondition(Stmt, Subdomain); 623 624 // Don't call GenThenFunc if it is never executed. An ast index expression 625 // might not be defined in this case. 626 if (auto *Const = dyn_cast<ConstantInt>(Cond)) 627 if (Const->isZero()) 628 return; 629 630 BasicBlock *HeadBlock = Builder.GetInsertBlock(); 631 StringRef BlockName = HeadBlock->getName(); 632 633 // Generate the conditional block. 634 SplitBlockAndInsertIfThen(Cond, &*Builder.GetInsertPoint(), false, nullptr, 635 &DT, &LI); 636 BranchInst *Branch = cast<BranchInst>(HeadBlock->getTerminator()); 637 BasicBlock *ThenBlock = Branch->getSuccessor(0); 638 BasicBlock *TailBlock = Branch->getSuccessor(1); 639 640 // Assign descriptive names. 641 if (auto *CondInst = dyn_cast<Instruction>(Cond)) 642 CondInst->setName("polly." + Subject + ".cond"); 643 ThenBlock->setName(BlockName + "." + Subject + ".partial"); 644 TailBlock->setName(BlockName + ".cont"); 645 646 // Put the client code into the conditional block and continue in the merge 647 // block afterwards. 648 Builder.SetInsertPoint(ThenBlock, ThenBlock->getFirstInsertionPt()); 649 GenThenFunc(); 650 Builder.SetInsertPoint(TailBlock, TailBlock->getFirstInsertionPt()); 651 } 652 653 static std::string getInstName(Value *Val) { 654 std::string Result; 655 raw_string_ostream OS(Result); 656 Val->printAsOperand(OS, false); 657 return OS.str(); 658 } 659 660 void BlockGenerator::generateBeginStmtTrace(ScopStmt &Stmt, LoopToScevMapT <S, 661 ValueMapT &BBMap) { 662 if (!TraceStmts) 663 return; 664 665 Scop *S = Stmt.getParent(); 666 const char *BaseName = Stmt.getBaseName(); 667 668 isl::ast_build AstBuild = Stmt.getAstBuild(); 669 isl::set Domain = Stmt.getDomain(); 670 671 isl::union_map USchedule = AstBuild.get_schedule().intersect_domain(Domain); 672 isl::map Schedule = isl::map::from_union_map(USchedule); 673 assert(Schedule.is_empty().is_false() && 674 "The stmt must have a valid instance"); 675 676 isl::multi_pw_aff ScheduleMultiPwAff = 677 isl::pw_multi_aff::from_map(Schedule.reverse()); 678 isl::ast_build RestrictedBuild = AstBuild.restrict(Schedule.range()); 679 680 // Sequence of strings to print. 681 SmallVector<llvm::Value *, 8> Values; 682 683 // Print the name of the statement. 684 // TODO: Indent by the depth of the statement instance in the schedule tree. 685 Values.push_back(RuntimeDebugBuilder::getPrintableString(Builder, BaseName)); 686 Values.push_back(RuntimeDebugBuilder::getPrintableString(Builder, "(")); 687 688 // Add the coordinate of the statement instance. 689 int DomDims = ScheduleMultiPwAff.dim(isl::dim::out); 690 for (int i = 0; i < DomDims; i += 1) { 691 if (i > 0) 692 Values.push_back(RuntimeDebugBuilder::getPrintableString(Builder, ",")); 693 694 isl::ast_expr IsInSet = 695 RestrictedBuild.expr_from(ScheduleMultiPwAff.get_pw_aff(i)); 696 Values.push_back(ExprBuilder->create(IsInSet.copy())); 697 } 698 699 if (TraceScalars) { 700 Values.push_back(RuntimeDebugBuilder::getPrintableString(Builder, ")")); 701 DenseSet<Instruction *> Encountered; 702 703 // Add the value of each scalar (and the result of PHIs) used in the 704 // statement. 705 // TODO: Values used in region-statements. 706 for (Instruction *Inst : Stmt.insts()) { 707 if (!RuntimeDebugBuilder::isPrintable(Inst->getType())) 708 continue; 709 710 if (isa<PHINode>(Inst)) { 711 Values.push_back(RuntimeDebugBuilder::getPrintableString(Builder, " ")); 712 Values.push_back(RuntimeDebugBuilder::getPrintableString( 713 Builder, getInstName(Inst))); 714 Values.push_back(RuntimeDebugBuilder::getPrintableString(Builder, "=")); 715 Values.push_back(getNewValue(Stmt, Inst, BBMap, LTS, 716 LI.getLoopFor(Inst->getParent()))); 717 } else { 718 for (Value *Op : Inst->operand_values()) { 719 // Do not print values that cannot change during the execution of the 720 // SCoP. 721 auto *OpInst = dyn_cast<Instruction>(Op); 722 if (!OpInst) 723 continue; 724 if (!S->contains(OpInst)) 725 continue; 726 727 // Print each scalar at most once, and exclude values defined in the 728 // statement itself. 729 if (Encountered.count(OpInst)) 730 continue; 731 732 Values.push_back( 733 RuntimeDebugBuilder::getPrintableString(Builder, " ")); 734 Values.push_back(RuntimeDebugBuilder::getPrintableString( 735 Builder, getInstName(OpInst))); 736 Values.push_back( 737 RuntimeDebugBuilder::getPrintableString(Builder, "=")); 738 Values.push_back(getNewValue(Stmt, OpInst, BBMap, LTS, 739 LI.getLoopFor(Inst->getParent()))); 740 Encountered.insert(OpInst); 741 } 742 } 743 744 Encountered.insert(Inst); 745 } 746 747 Values.push_back(RuntimeDebugBuilder::getPrintableString(Builder, "\n")); 748 } else { 749 Values.push_back(RuntimeDebugBuilder::getPrintableString(Builder, ")\n")); 750 } 751 752 RuntimeDebugBuilder::createCPUPrinter(Builder, ArrayRef<Value *>(Values)); 753 } 754 755 void BlockGenerator::generateScalarStores( 756 ScopStmt &Stmt, LoopToScevMapT <S, ValueMapT &BBMap, 757 __isl_keep isl_id_to_ast_expr *NewAccesses) { 758 Loop *L = LI.getLoopFor(Stmt.getBasicBlock()); 759 760 assert(Stmt.isBlockStmt() && 761 "Region statements need to use the generateScalarStores() function in " 762 "the RegionGenerator"); 763 764 for (MemoryAccess *MA : Stmt) { 765 if (MA->isOriginalArrayKind() || MA->isRead()) 766 continue; 767 768 isl::set AccDom = MA->getAccessRelation().domain(); 769 std::string Subject = MA->getId().get_name(); 770 771 generateConditionalExecution( 772 Stmt, AccDom, Subject.c_str(), [&, this, MA]() { 773 Value *Val = MA->getAccessValue(); 774 if (MA->isAnyPHIKind()) { 775 assert(MA->getIncoming().size() >= 1 && 776 "Block statements have exactly one exiting block, or " 777 "multiple but " 778 "with same incoming block and value"); 779 assert(std::all_of(MA->getIncoming().begin(), 780 MA->getIncoming().end(), 781 [&](std::pair<BasicBlock *, Value *> p) -> bool { 782 return p.first == Stmt.getBasicBlock(); 783 }) && 784 "Incoming block must be statement's block"); 785 Val = MA->getIncoming()[0].second; 786 } 787 auto Address = getImplicitAddress(*MA, getLoopForStmt(Stmt), LTS, 788 BBMap, NewAccesses); 789 790 Val = getNewValue(Stmt, Val, BBMap, LTS, L); 791 assert((!isa<Instruction>(Val) || 792 DT.dominates(cast<Instruction>(Val)->getParent(), 793 Builder.GetInsertBlock())) && 794 "Domination violation"); 795 assert((!isa<Instruction>(Address) || 796 DT.dominates(cast<Instruction>(Address)->getParent(), 797 Builder.GetInsertBlock())) && 798 "Domination violation"); 799 800 // The new Val might have a different type than the old Val due to 801 // ScalarEvolution looking through bitcasts. 802 if (Val->getType() != Address->getType()->getPointerElementType()) 803 Address = Builder.CreateBitOrPointerCast( 804 Address, Val->getType()->getPointerTo()); 805 806 Builder.CreateStore(Val, Address); 807 }); 808 } 809 } 810 811 void BlockGenerator::createScalarInitialization(Scop &S) { 812 BasicBlock *ExitBB = S.getExit(); 813 BasicBlock *PreEntryBB = S.getEnteringBlock(); 814 815 Builder.SetInsertPoint(&*StartBlock->begin()); 816 817 for (auto &Array : S.arrays()) { 818 if (Array->getNumberOfDimensions() != 0) 819 continue; 820 if (Array->isPHIKind()) { 821 // For PHI nodes, the only values we need to store are the ones that 822 // reach the PHI node from outside the region. In general there should 823 // only be one such incoming edge and this edge should enter through 824 // 'PreEntryBB'. 825 auto PHI = cast<PHINode>(Array->getBasePtr()); 826 827 for (auto BI = PHI->block_begin(), BE = PHI->block_end(); BI != BE; BI++) 828 if (!S.contains(*BI) && *BI != PreEntryBB) 829 llvm_unreachable("Incoming edges from outside the scop should always " 830 "come from PreEntryBB"); 831 832 int Idx = PHI->getBasicBlockIndex(PreEntryBB); 833 if (Idx < 0) 834 continue; 835 836 Value *ScalarValue = PHI->getIncomingValue(Idx); 837 838 Builder.CreateStore(ScalarValue, getOrCreateAlloca(Array)); 839 continue; 840 } 841 842 auto *Inst = dyn_cast<Instruction>(Array->getBasePtr()); 843 844 if (Inst && S.contains(Inst)) 845 continue; 846 847 // PHI nodes that are not marked as such in their SAI object are either exit 848 // PHI nodes we model as common scalars but without initialization, or 849 // incoming phi nodes that need to be initialized. Check if the first is the 850 // case for Inst and do not create and initialize memory if so. 851 if (auto *PHI = dyn_cast_or_null<PHINode>(Inst)) 852 if (!S.hasSingleExitEdge() && PHI->getBasicBlockIndex(ExitBB) >= 0) 853 continue; 854 855 Builder.CreateStore(Array->getBasePtr(), getOrCreateAlloca(Array)); 856 } 857 } 858 859 void BlockGenerator::createScalarFinalization(Scop &S) { 860 // The exit block of the __unoptimized__ region. 861 BasicBlock *ExitBB = S.getExitingBlock(); 862 // The merge block __just after__ the region and the optimized region. 863 BasicBlock *MergeBB = S.getExit(); 864 865 // The exit block of the __optimized__ region. 866 BasicBlock *OptExitBB = *(pred_begin(MergeBB)); 867 if (OptExitBB == ExitBB) 868 OptExitBB = *(++pred_begin(MergeBB)); 869 870 Builder.SetInsertPoint(OptExitBB->getTerminator()); 871 for (const auto &EscapeMapping : EscapeMap) { 872 // Extract the escaping instruction and the escaping users as well as the 873 // alloca the instruction was demoted to. 874 Instruction *EscapeInst = EscapeMapping.first; 875 const auto &EscapeMappingValue = EscapeMapping.second; 876 const EscapeUserVectorTy &EscapeUsers = EscapeMappingValue.second; 877 Value *ScalarAddr = EscapeMappingValue.first; 878 879 // Reload the demoted instruction in the optimized version of the SCoP. 880 Value *EscapeInstReload = 881 Builder.CreateLoad(ScalarAddr, EscapeInst->getName() + ".final_reload"); 882 EscapeInstReload = 883 Builder.CreateBitOrPointerCast(EscapeInstReload, EscapeInst->getType()); 884 885 // Create the merge PHI that merges the optimized and unoptimized version. 886 PHINode *MergePHI = PHINode::Create(EscapeInst->getType(), 2, 887 EscapeInst->getName() + ".merge"); 888 MergePHI->insertBefore(&*MergeBB->getFirstInsertionPt()); 889 890 // Add the respective values to the merge PHI. 891 MergePHI->addIncoming(EscapeInstReload, OptExitBB); 892 MergePHI->addIncoming(EscapeInst, ExitBB); 893 894 // The information of scalar evolution about the escaping instruction needs 895 // to be revoked so the new merged instruction will be used. 896 if (SE.isSCEVable(EscapeInst->getType())) 897 SE.forgetValue(EscapeInst); 898 899 // Replace all uses of the demoted instruction with the merge PHI. 900 for (Instruction *EUser : EscapeUsers) 901 EUser->replaceUsesOfWith(EscapeInst, MergePHI); 902 } 903 } 904 905 void BlockGenerator::findOutsideUsers(Scop &S) { 906 for (auto &Array : S.arrays()) { 907 908 if (Array->getNumberOfDimensions() != 0) 909 continue; 910 911 if (Array->isPHIKind()) 912 continue; 913 914 auto *Inst = dyn_cast<Instruction>(Array->getBasePtr()); 915 916 if (!Inst) 917 continue; 918 919 // Scop invariant hoisting moves some of the base pointers out of the scop. 920 // We can ignore these, as the invariant load hoisting already registers the 921 // relevant outside users. 922 if (!S.contains(Inst)) 923 continue; 924 925 handleOutsideUsers(S, Array); 926 } 927 } 928 929 void BlockGenerator::createExitPHINodeMerges(Scop &S) { 930 if (S.hasSingleExitEdge()) 931 return; 932 933 auto *ExitBB = S.getExitingBlock(); 934 auto *MergeBB = S.getExit(); 935 auto *AfterMergeBB = MergeBB->getSingleSuccessor(); 936 BasicBlock *OptExitBB = *(pred_begin(MergeBB)); 937 if (OptExitBB == ExitBB) 938 OptExitBB = *(++pred_begin(MergeBB)); 939 940 Builder.SetInsertPoint(OptExitBB->getTerminator()); 941 942 for (auto &SAI : S.arrays()) { 943 auto *Val = SAI->getBasePtr(); 944 945 // Only Value-like scalars need a merge PHI. Exit block PHIs receive either 946 // the original PHI's value or the reloaded incoming values from the 947 // generated code. An llvm::Value is merged between the original code's 948 // value or the generated one. 949 if (!SAI->isExitPHIKind()) 950 continue; 951 952 PHINode *PHI = dyn_cast<PHINode>(Val); 953 if (!PHI) 954 continue; 955 956 if (PHI->getParent() != AfterMergeBB) 957 continue; 958 959 std::string Name = PHI->getName().str(); 960 Value *ScalarAddr = getOrCreateAlloca(SAI); 961 Value *Reload = Builder.CreateLoad(ScalarAddr, Name + ".ph.final_reload"); 962 Reload = Builder.CreateBitOrPointerCast(Reload, PHI->getType()); 963 Value *OriginalValue = PHI->getIncomingValueForBlock(MergeBB); 964 assert((!isa<Instruction>(OriginalValue) || 965 cast<Instruction>(OriginalValue)->getParent() != MergeBB) && 966 "Original value must no be one we just generated."); 967 auto *MergePHI = PHINode::Create(PHI->getType(), 2, Name + ".ph.merge"); 968 MergePHI->insertBefore(&*MergeBB->getFirstInsertionPt()); 969 MergePHI->addIncoming(Reload, OptExitBB); 970 MergePHI->addIncoming(OriginalValue, ExitBB); 971 int Idx = PHI->getBasicBlockIndex(MergeBB); 972 PHI->setIncomingValue(Idx, MergePHI); 973 } 974 } 975 976 void BlockGenerator::invalidateScalarEvolution(Scop &S) { 977 for (auto &Stmt : S) 978 if (Stmt.isCopyStmt()) 979 continue; 980 else if (Stmt.isBlockStmt()) 981 for (auto &Inst : *Stmt.getBasicBlock()) 982 SE.forgetValue(&Inst); 983 else if (Stmt.isRegionStmt()) 984 for (auto *BB : Stmt.getRegion()->blocks()) 985 for (auto &Inst : *BB) 986 SE.forgetValue(&Inst); 987 else 988 llvm_unreachable("Unexpected statement type found"); 989 990 // Invalidate SCEV of loops surrounding the EscapeUsers. 991 for (const auto &EscapeMapping : EscapeMap) { 992 const EscapeUserVectorTy &EscapeUsers = EscapeMapping.second.second; 993 for (Instruction *EUser : EscapeUsers) { 994 if (Loop *L = LI.getLoopFor(EUser->getParent())) 995 while (L) { 996 SE.forgetLoop(L); 997 L = L->getParentLoop(); 998 } 999 } 1000 } 1001 } 1002 1003 void BlockGenerator::finalizeSCoP(Scop &S) { 1004 findOutsideUsers(S); 1005 createScalarInitialization(S); 1006 createExitPHINodeMerges(S); 1007 createScalarFinalization(S); 1008 invalidateScalarEvolution(S); 1009 } 1010 1011 VectorBlockGenerator::VectorBlockGenerator(BlockGenerator &BlockGen, 1012 std::vector<LoopToScevMapT> &VLTS, 1013 isl_map *Schedule) 1014 : BlockGenerator(BlockGen), VLTS(VLTS), Schedule(Schedule) { 1015 assert(Schedule && "No statement domain provided"); 1016 } 1017 1018 Value *VectorBlockGenerator::getVectorValue(ScopStmt &Stmt, Value *Old, 1019 ValueMapT &VectorMap, 1020 VectorValueMapT &ScalarMaps, 1021 Loop *L) { 1022 if (Value *NewValue = VectorMap.lookup(Old)) 1023 return NewValue; 1024 1025 int Width = getVectorWidth(); 1026 1027 Value *Vector = UndefValue::get(VectorType::get(Old->getType(), Width)); 1028 1029 for (int Lane = 0; Lane < Width; Lane++) 1030 Vector = Builder.CreateInsertElement( 1031 Vector, getNewValue(Stmt, Old, ScalarMaps[Lane], VLTS[Lane], L), 1032 Builder.getInt32(Lane)); 1033 1034 VectorMap[Old] = Vector; 1035 1036 return Vector; 1037 } 1038 1039 Type *VectorBlockGenerator::getVectorPtrTy(const Value *Val, int Width) { 1040 PointerType *PointerTy = dyn_cast<PointerType>(Val->getType()); 1041 assert(PointerTy && "PointerType expected"); 1042 1043 Type *ScalarType = PointerTy->getElementType(); 1044 VectorType *VectorType = VectorType::get(ScalarType, Width); 1045 1046 return PointerType::getUnqual(VectorType); 1047 } 1048 1049 Value *VectorBlockGenerator::generateStrideOneLoad( 1050 ScopStmt &Stmt, LoadInst *Load, VectorValueMapT &ScalarMaps, 1051 __isl_keep isl_id_to_ast_expr *NewAccesses, bool NegativeStride = false) { 1052 unsigned VectorWidth = getVectorWidth(); 1053 auto *Pointer = Load->getPointerOperand(); 1054 Type *VectorPtrType = getVectorPtrTy(Pointer, VectorWidth); 1055 unsigned Offset = NegativeStride ? VectorWidth - 1 : 0; 1056 1057 Value *NewPointer = generateLocationAccessed(Stmt, Load, ScalarMaps[Offset], 1058 VLTS[Offset], NewAccesses); 1059 Value *VectorPtr = 1060 Builder.CreateBitCast(NewPointer, VectorPtrType, "vector_ptr"); 1061 LoadInst *VecLoad = 1062 Builder.CreateLoad(VectorPtr, Load->getName() + "_p_vec_full"); 1063 if (!Aligned) 1064 VecLoad->setAlignment(Align(8)); 1065 1066 if (NegativeStride) { 1067 SmallVector<Constant *, 16> Indices; 1068 for (int i = VectorWidth - 1; i >= 0; i--) 1069 Indices.push_back(ConstantInt::get(Builder.getInt32Ty(), i)); 1070 Constant *SV = llvm::ConstantVector::get(Indices); 1071 Value *RevVecLoad = Builder.CreateShuffleVector( 1072 VecLoad, VecLoad, SV, Load->getName() + "_reverse"); 1073 return RevVecLoad; 1074 } 1075 1076 return VecLoad; 1077 } 1078 1079 Value *VectorBlockGenerator::generateStrideZeroLoad( 1080 ScopStmt &Stmt, LoadInst *Load, ValueMapT &BBMap, 1081 __isl_keep isl_id_to_ast_expr *NewAccesses) { 1082 auto *Pointer = Load->getPointerOperand(); 1083 Type *VectorPtrType = getVectorPtrTy(Pointer, 1); 1084 Value *NewPointer = 1085 generateLocationAccessed(Stmt, Load, BBMap, VLTS[0], NewAccesses); 1086 Value *VectorPtr = Builder.CreateBitCast(NewPointer, VectorPtrType, 1087 Load->getName() + "_p_vec_p"); 1088 LoadInst *ScalarLoad = 1089 Builder.CreateLoad(VectorPtr, Load->getName() + "_p_splat_one"); 1090 1091 if (!Aligned) 1092 ScalarLoad->setAlignment(Align(8)); 1093 1094 Constant *SplatVector = Constant::getNullValue( 1095 VectorType::get(Builder.getInt32Ty(), getVectorWidth())); 1096 1097 Value *VectorLoad = Builder.CreateShuffleVector( 1098 ScalarLoad, ScalarLoad, SplatVector, Load->getName() + "_p_splat"); 1099 return VectorLoad; 1100 } 1101 1102 Value *VectorBlockGenerator::generateUnknownStrideLoad( 1103 ScopStmt &Stmt, LoadInst *Load, VectorValueMapT &ScalarMaps, 1104 __isl_keep isl_id_to_ast_expr *NewAccesses) { 1105 int VectorWidth = getVectorWidth(); 1106 auto *Pointer = Load->getPointerOperand(); 1107 VectorType *VectorType = VectorType::get( 1108 dyn_cast<PointerType>(Pointer->getType())->getElementType(), VectorWidth); 1109 1110 Value *Vector = UndefValue::get(VectorType); 1111 1112 for (int i = 0; i < VectorWidth; i++) { 1113 Value *NewPointer = generateLocationAccessed(Stmt, Load, ScalarMaps[i], 1114 VLTS[i], NewAccesses); 1115 Value *ScalarLoad = 1116 Builder.CreateLoad(NewPointer, Load->getName() + "_p_scalar_"); 1117 Vector = Builder.CreateInsertElement( 1118 Vector, ScalarLoad, Builder.getInt32(i), Load->getName() + "_p_vec_"); 1119 } 1120 1121 return Vector; 1122 } 1123 1124 void VectorBlockGenerator::generateLoad( 1125 ScopStmt &Stmt, LoadInst *Load, ValueMapT &VectorMap, 1126 VectorValueMapT &ScalarMaps, __isl_keep isl_id_to_ast_expr *NewAccesses) { 1127 if (Value *PreloadLoad = GlobalMap.lookup(Load)) { 1128 VectorMap[Load] = Builder.CreateVectorSplat(getVectorWidth(), PreloadLoad, 1129 Load->getName() + "_p"); 1130 return; 1131 } 1132 1133 if (!VectorType::isValidElementType(Load->getType())) { 1134 for (int i = 0; i < getVectorWidth(); i++) 1135 ScalarMaps[i][Load] = 1136 generateArrayLoad(Stmt, Load, ScalarMaps[i], VLTS[i], NewAccesses); 1137 return; 1138 } 1139 1140 const MemoryAccess &Access = Stmt.getArrayAccessFor(Load); 1141 1142 // Make sure we have scalar values available to access the pointer to 1143 // the data location. 1144 extractScalarValues(Load, VectorMap, ScalarMaps); 1145 1146 Value *NewLoad; 1147 if (Access.isStrideZero(isl::manage_copy(Schedule))) 1148 NewLoad = generateStrideZeroLoad(Stmt, Load, ScalarMaps[0], NewAccesses); 1149 else if (Access.isStrideOne(isl::manage_copy(Schedule))) 1150 NewLoad = generateStrideOneLoad(Stmt, Load, ScalarMaps, NewAccesses); 1151 else if (Access.isStrideX(isl::manage_copy(Schedule), -1)) 1152 NewLoad = generateStrideOneLoad(Stmt, Load, ScalarMaps, NewAccesses, true); 1153 else 1154 NewLoad = generateUnknownStrideLoad(Stmt, Load, ScalarMaps, NewAccesses); 1155 1156 VectorMap[Load] = NewLoad; 1157 } 1158 1159 void VectorBlockGenerator::copyUnaryInst(ScopStmt &Stmt, UnaryInstruction *Inst, 1160 ValueMapT &VectorMap, 1161 VectorValueMapT &ScalarMaps) { 1162 int VectorWidth = getVectorWidth(); 1163 Value *NewOperand = getVectorValue(Stmt, Inst->getOperand(0), VectorMap, 1164 ScalarMaps, getLoopForStmt(Stmt)); 1165 1166 assert(isa<CastInst>(Inst) && "Can not generate vector code for instruction"); 1167 1168 const CastInst *Cast = dyn_cast<CastInst>(Inst); 1169 VectorType *DestType = VectorType::get(Inst->getType(), VectorWidth); 1170 VectorMap[Inst] = Builder.CreateCast(Cast->getOpcode(), NewOperand, DestType); 1171 } 1172 1173 void VectorBlockGenerator::copyBinaryInst(ScopStmt &Stmt, BinaryOperator *Inst, 1174 ValueMapT &VectorMap, 1175 VectorValueMapT &ScalarMaps) { 1176 Loop *L = getLoopForStmt(Stmt); 1177 Value *OpZero = Inst->getOperand(0); 1178 Value *OpOne = Inst->getOperand(1); 1179 1180 Value *NewOpZero, *NewOpOne; 1181 NewOpZero = getVectorValue(Stmt, OpZero, VectorMap, ScalarMaps, L); 1182 NewOpOne = getVectorValue(Stmt, OpOne, VectorMap, ScalarMaps, L); 1183 1184 Value *NewInst = Builder.CreateBinOp(Inst->getOpcode(), NewOpZero, NewOpOne, 1185 Inst->getName() + "p_vec"); 1186 VectorMap[Inst] = NewInst; 1187 } 1188 1189 void VectorBlockGenerator::copyStore( 1190 ScopStmt &Stmt, StoreInst *Store, ValueMapT &VectorMap, 1191 VectorValueMapT &ScalarMaps, __isl_keep isl_id_to_ast_expr *NewAccesses) { 1192 const MemoryAccess &Access = Stmt.getArrayAccessFor(Store); 1193 1194 auto *Pointer = Store->getPointerOperand(); 1195 Value *Vector = getVectorValue(Stmt, Store->getValueOperand(), VectorMap, 1196 ScalarMaps, getLoopForStmt(Stmt)); 1197 1198 // Make sure we have scalar values available to access the pointer to 1199 // the data location. 1200 extractScalarValues(Store, VectorMap, ScalarMaps); 1201 1202 if (Access.isStrideOne(isl::manage_copy(Schedule))) { 1203 Type *VectorPtrType = getVectorPtrTy(Pointer, getVectorWidth()); 1204 Value *NewPointer = generateLocationAccessed(Stmt, Store, ScalarMaps[0], 1205 VLTS[0], NewAccesses); 1206 1207 Value *VectorPtr = 1208 Builder.CreateBitCast(NewPointer, VectorPtrType, "vector_ptr"); 1209 StoreInst *Store = Builder.CreateStore(Vector, VectorPtr); 1210 1211 if (!Aligned) 1212 Store->setAlignment(Align(8)); 1213 } else { 1214 for (unsigned i = 0; i < ScalarMaps.size(); i++) { 1215 Value *Scalar = Builder.CreateExtractElement(Vector, Builder.getInt32(i)); 1216 Value *NewPointer = generateLocationAccessed(Stmt, Store, ScalarMaps[i], 1217 VLTS[i], NewAccesses); 1218 Builder.CreateStore(Scalar, NewPointer); 1219 } 1220 } 1221 } 1222 1223 bool VectorBlockGenerator::hasVectorOperands(const Instruction *Inst, 1224 ValueMapT &VectorMap) { 1225 for (Value *Operand : Inst->operands()) 1226 if (VectorMap.count(Operand)) 1227 return true; 1228 return false; 1229 } 1230 1231 bool VectorBlockGenerator::extractScalarValues(const Instruction *Inst, 1232 ValueMapT &VectorMap, 1233 VectorValueMapT &ScalarMaps) { 1234 bool HasVectorOperand = false; 1235 int VectorWidth = getVectorWidth(); 1236 1237 for (Value *Operand : Inst->operands()) { 1238 ValueMapT::iterator VecOp = VectorMap.find(Operand); 1239 1240 if (VecOp == VectorMap.end()) 1241 continue; 1242 1243 HasVectorOperand = true; 1244 Value *NewVector = VecOp->second; 1245 1246 for (int i = 0; i < VectorWidth; ++i) { 1247 ValueMapT &SM = ScalarMaps[i]; 1248 1249 // If there is one scalar extracted, all scalar elements should have 1250 // already been extracted by the code here. So no need to check for the 1251 // existence of all of them. 1252 if (SM.count(Operand)) 1253 break; 1254 1255 SM[Operand] = 1256 Builder.CreateExtractElement(NewVector, Builder.getInt32(i)); 1257 } 1258 } 1259 1260 return HasVectorOperand; 1261 } 1262 1263 void VectorBlockGenerator::copyInstScalarized( 1264 ScopStmt &Stmt, Instruction *Inst, ValueMapT &VectorMap, 1265 VectorValueMapT &ScalarMaps, __isl_keep isl_id_to_ast_expr *NewAccesses) { 1266 bool HasVectorOperand; 1267 int VectorWidth = getVectorWidth(); 1268 1269 HasVectorOperand = extractScalarValues(Inst, VectorMap, ScalarMaps); 1270 1271 for (int VectorLane = 0; VectorLane < getVectorWidth(); VectorLane++) 1272 BlockGenerator::copyInstruction(Stmt, Inst, ScalarMaps[VectorLane], 1273 VLTS[VectorLane], NewAccesses); 1274 1275 if (!VectorType::isValidElementType(Inst->getType()) || !HasVectorOperand) 1276 return; 1277 1278 // Make the result available as vector value. 1279 VectorType *VectorType = VectorType::get(Inst->getType(), VectorWidth); 1280 Value *Vector = UndefValue::get(VectorType); 1281 1282 for (int i = 0; i < VectorWidth; i++) 1283 Vector = Builder.CreateInsertElement(Vector, ScalarMaps[i][Inst], 1284 Builder.getInt32(i)); 1285 1286 VectorMap[Inst] = Vector; 1287 } 1288 1289 int VectorBlockGenerator::getVectorWidth() { return VLTS.size(); } 1290 1291 void VectorBlockGenerator::copyInstruction( 1292 ScopStmt &Stmt, Instruction *Inst, ValueMapT &VectorMap, 1293 VectorValueMapT &ScalarMaps, __isl_keep isl_id_to_ast_expr *NewAccesses) { 1294 // Terminator instructions control the control flow. They are explicitly 1295 // expressed in the clast and do not need to be copied. 1296 if (Inst->isTerminator()) 1297 return; 1298 1299 if (canSyntheziseInStmt(Stmt, Inst)) 1300 return; 1301 1302 if (auto *Load = dyn_cast<LoadInst>(Inst)) { 1303 generateLoad(Stmt, Load, VectorMap, ScalarMaps, NewAccesses); 1304 return; 1305 } 1306 1307 if (hasVectorOperands(Inst, VectorMap)) { 1308 if (auto *Store = dyn_cast<StoreInst>(Inst)) { 1309 // Identified as redundant by -polly-simplify. 1310 if (!Stmt.getArrayAccessOrNULLFor(Store)) 1311 return; 1312 1313 copyStore(Stmt, Store, VectorMap, ScalarMaps, NewAccesses); 1314 return; 1315 } 1316 1317 if (auto *Unary = dyn_cast<UnaryInstruction>(Inst)) { 1318 copyUnaryInst(Stmt, Unary, VectorMap, ScalarMaps); 1319 return; 1320 } 1321 1322 if (auto *Binary = dyn_cast<BinaryOperator>(Inst)) { 1323 copyBinaryInst(Stmt, Binary, VectorMap, ScalarMaps); 1324 return; 1325 } 1326 1327 // Fallthrough: We generate scalar instructions, if we don't know how to 1328 // generate vector code. 1329 } 1330 1331 copyInstScalarized(Stmt, Inst, VectorMap, ScalarMaps, NewAccesses); 1332 } 1333 1334 void VectorBlockGenerator::generateScalarVectorLoads( 1335 ScopStmt &Stmt, ValueMapT &VectorBlockMap) { 1336 for (MemoryAccess *MA : Stmt) { 1337 if (MA->isArrayKind() || MA->isWrite()) 1338 continue; 1339 1340 auto *Address = getOrCreateAlloca(*MA); 1341 Type *VectorPtrType = getVectorPtrTy(Address, 1); 1342 Value *VectorPtr = Builder.CreateBitCast(Address, VectorPtrType, 1343 Address->getName() + "_p_vec_p"); 1344 auto *Val = Builder.CreateLoad(VectorPtr, Address->getName() + ".reload"); 1345 Constant *SplatVector = Constant::getNullValue( 1346 VectorType::get(Builder.getInt32Ty(), getVectorWidth())); 1347 1348 Value *VectorVal = Builder.CreateShuffleVector( 1349 Val, Val, SplatVector, Address->getName() + "_p_splat"); 1350 VectorBlockMap[MA->getAccessValue()] = VectorVal; 1351 } 1352 } 1353 1354 void VectorBlockGenerator::verifyNoScalarStores(ScopStmt &Stmt) { 1355 for (MemoryAccess *MA : Stmt) { 1356 if (MA->isArrayKind() || MA->isRead()) 1357 continue; 1358 1359 llvm_unreachable("Scalar stores not expected in vector loop"); 1360 } 1361 } 1362 1363 void VectorBlockGenerator::copyStmt( 1364 ScopStmt &Stmt, __isl_keep isl_id_to_ast_expr *NewAccesses) { 1365 assert(Stmt.isBlockStmt() && 1366 "TODO: Only block statements can be copied by the vector block " 1367 "generator"); 1368 1369 BasicBlock *BB = Stmt.getBasicBlock(); 1370 BasicBlock *CopyBB = SplitBlock(Builder.GetInsertBlock(), 1371 &*Builder.GetInsertPoint(), &DT, &LI); 1372 CopyBB->setName("polly.stmt." + BB->getName()); 1373 Builder.SetInsertPoint(&CopyBB->front()); 1374 1375 // Create two maps that store the mapping from the original instructions of 1376 // the old basic block to their copies in the new basic block. Those maps 1377 // are basic block local. 1378 // 1379 // As vector code generation is supported there is one map for scalar values 1380 // and one for vector values. 1381 // 1382 // In case we just do scalar code generation, the vectorMap is not used and 1383 // the scalarMap has just one dimension, which contains the mapping. 1384 // 1385 // In case vector code generation is done, an instruction may either appear 1386 // in the vector map once (as it is calculating >vectorwidth< values at a 1387 // time. Or (if the values are calculated using scalar operations), it 1388 // appears once in every dimension of the scalarMap. 1389 VectorValueMapT ScalarBlockMap(getVectorWidth()); 1390 ValueMapT VectorBlockMap; 1391 1392 generateScalarVectorLoads(Stmt, VectorBlockMap); 1393 1394 for (Instruction *Inst : Stmt.getInstructions()) 1395 copyInstruction(Stmt, Inst, VectorBlockMap, ScalarBlockMap, NewAccesses); 1396 1397 verifyNoScalarStores(Stmt); 1398 } 1399 1400 BasicBlock *RegionGenerator::repairDominance(BasicBlock *BB, 1401 BasicBlock *BBCopy) { 1402 1403 BasicBlock *BBIDom = DT.getNode(BB)->getIDom()->getBlock(); 1404 BasicBlock *BBCopyIDom = EndBlockMap.lookup(BBIDom); 1405 1406 if (BBCopyIDom) 1407 DT.changeImmediateDominator(BBCopy, BBCopyIDom); 1408 1409 return StartBlockMap.lookup(BBIDom); 1410 } 1411 1412 // This is to determine whether an llvm::Value (defined in @p BB) is usable when 1413 // leaving a subregion. The straight-forward DT.dominates(BB, R->getExitBlock()) 1414 // does not work in cases where the exit block has edges from outside the 1415 // region. In that case the llvm::Value would never be usable in in the exit 1416 // block. The RegionGenerator however creates an new exit block ('ExitBBCopy') 1417 // for the subregion's exiting edges only. We need to determine whether an 1418 // llvm::Value is usable in there. We do this by checking whether it dominates 1419 // all exiting blocks individually. 1420 static bool isDominatingSubregionExit(const DominatorTree &DT, Region *R, 1421 BasicBlock *BB) { 1422 for (auto ExitingBB : predecessors(R->getExit())) { 1423 // Check for non-subregion incoming edges. 1424 if (!R->contains(ExitingBB)) 1425 continue; 1426 1427 if (!DT.dominates(BB, ExitingBB)) 1428 return false; 1429 } 1430 1431 return true; 1432 } 1433 1434 // Find the direct dominator of the subregion's exit block if the subregion was 1435 // simplified. 1436 static BasicBlock *findExitDominator(DominatorTree &DT, Region *R) { 1437 BasicBlock *Common = nullptr; 1438 for (auto ExitingBB : predecessors(R->getExit())) { 1439 // Check for non-subregion incoming edges. 1440 if (!R->contains(ExitingBB)) 1441 continue; 1442 1443 // First exiting edge. 1444 if (!Common) { 1445 Common = ExitingBB; 1446 continue; 1447 } 1448 1449 Common = DT.findNearestCommonDominator(Common, ExitingBB); 1450 } 1451 1452 assert(Common && R->contains(Common)); 1453 return Common; 1454 } 1455 1456 void RegionGenerator::copyStmt(ScopStmt &Stmt, LoopToScevMapT <S, 1457 isl_id_to_ast_expr *IdToAstExp) { 1458 assert(Stmt.isRegionStmt() && 1459 "Only region statements can be copied by the region generator"); 1460 1461 // Forget all old mappings. 1462 StartBlockMap.clear(); 1463 EndBlockMap.clear(); 1464 RegionMaps.clear(); 1465 IncompletePHINodeMap.clear(); 1466 1467 // Collection of all values related to this subregion. 1468 ValueMapT ValueMap; 1469 1470 // The region represented by the statement. 1471 Region *R = Stmt.getRegion(); 1472 1473 // Create a dedicated entry for the region where we can reload all demoted 1474 // inputs. 1475 BasicBlock *EntryBB = R->getEntry(); 1476 BasicBlock *EntryBBCopy = SplitBlock(Builder.GetInsertBlock(), 1477 &*Builder.GetInsertPoint(), &DT, &LI); 1478 EntryBBCopy->setName("polly.stmt." + EntryBB->getName() + ".entry"); 1479 Builder.SetInsertPoint(&EntryBBCopy->front()); 1480 1481 ValueMapT &EntryBBMap = RegionMaps[EntryBBCopy]; 1482 generateScalarLoads(Stmt, LTS, EntryBBMap, IdToAstExp); 1483 generateBeginStmtTrace(Stmt, LTS, EntryBBMap); 1484 1485 for (auto PI = pred_begin(EntryBB), PE = pred_end(EntryBB); PI != PE; ++PI) 1486 if (!R->contains(*PI)) { 1487 StartBlockMap[*PI] = EntryBBCopy; 1488 EndBlockMap[*PI] = EntryBBCopy; 1489 } 1490 1491 // Iterate over all blocks in the region in a breadth-first search. 1492 std::deque<BasicBlock *> Blocks; 1493 SmallSetVector<BasicBlock *, 8> SeenBlocks; 1494 Blocks.push_back(EntryBB); 1495 SeenBlocks.insert(EntryBB); 1496 1497 while (!Blocks.empty()) { 1498 BasicBlock *BB = Blocks.front(); 1499 Blocks.pop_front(); 1500 1501 // First split the block and update dominance information. 1502 BasicBlock *BBCopy = splitBB(BB); 1503 BasicBlock *BBCopyIDom = repairDominance(BB, BBCopy); 1504 1505 // Get the mapping for this block and initialize it with either the scalar 1506 // loads from the generated entering block (which dominates all blocks of 1507 // this subregion) or the maps of the immediate dominator, if part of the 1508 // subregion. The latter necessarily includes the former. 1509 ValueMapT *InitBBMap; 1510 if (BBCopyIDom) { 1511 assert(RegionMaps.count(BBCopyIDom)); 1512 InitBBMap = &RegionMaps[BBCopyIDom]; 1513 } else 1514 InitBBMap = &EntryBBMap; 1515 auto Inserted = RegionMaps.insert(std::make_pair(BBCopy, *InitBBMap)); 1516 ValueMapT &RegionMap = Inserted.first->second; 1517 1518 // Copy the block with the BlockGenerator. 1519 Builder.SetInsertPoint(&BBCopy->front()); 1520 copyBB(Stmt, BB, BBCopy, RegionMap, LTS, IdToAstExp); 1521 1522 // In order to remap PHI nodes we store also basic block mappings. 1523 StartBlockMap[BB] = BBCopy; 1524 EndBlockMap[BB] = Builder.GetInsertBlock(); 1525 1526 // Add values to incomplete PHI nodes waiting for this block to be copied. 1527 for (const PHINodePairTy &PHINodePair : IncompletePHINodeMap[BB]) 1528 addOperandToPHI(Stmt, PHINodePair.first, PHINodePair.second, BB, LTS); 1529 IncompletePHINodeMap[BB].clear(); 1530 1531 // And continue with new successors inside the region. 1532 for (auto SI = succ_begin(BB), SE = succ_end(BB); SI != SE; SI++) 1533 if (R->contains(*SI) && SeenBlocks.insert(*SI)) 1534 Blocks.push_back(*SI); 1535 1536 // Remember value in case it is visible after this subregion. 1537 if (isDominatingSubregionExit(DT, R, BB)) 1538 ValueMap.insert(RegionMap.begin(), RegionMap.end()); 1539 } 1540 1541 // Now create a new dedicated region exit block and add it to the region map. 1542 BasicBlock *ExitBBCopy = SplitBlock(Builder.GetInsertBlock(), 1543 &*Builder.GetInsertPoint(), &DT, &LI); 1544 ExitBBCopy->setName("polly.stmt." + R->getExit()->getName() + ".exit"); 1545 StartBlockMap[R->getExit()] = ExitBBCopy; 1546 EndBlockMap[R->getExit()] = ExitBBCopy; 1547 1548 BasicBlock *ExitDomBBCopy = EndBlockMap.lookup(findExitDominator(DT, R)); 1549 assert(ExitDomBBCopy && 1550 "Common exit dominator must be within region; at least the entry node " 1551 "must match"); 1552 DT.changeImmediateDominator(ExitBBCopy, ExitDomBBCopy); 1553 1554 // As the block generator doesn't handle control flow we need to add the 1555 // region control flow by hand after all blocks have been copied. 1556 for (BasicBlock *BB : SeenBlocks) { 1557 1558 BasicBlock *BBCopyStart = StartBlockMap[BB]; 1559 BasicBlock *BBCopyEnd = EndBlockMap[BB]; 1560 Instruction *TI = BB->getTerminator(); 1561 if (isa<UnreachableInst>(TI)) { 1562 while (!BBCopyEnd->empty()) 1563 BBCopyEnd->begin()->eraseFromParent(); 1564 new UnreachableInst(BBCopyEnd->getContext(), BBCopyEnd); 1565 continue; 1566 } 1567 1568 Instruction *BICopy = BBCopyEnd->getTerminator(); 1569 1570 ValueMapT &RegionMap = RegionMaps[BBCopyStart]; 1571 RegionMap.insert(StartBlockMap.begin(), StartBlockMap.end()); 1572 1573 Builder.SetInsertPoint(BICopy); 1574 copyInstScalar(Stmt, TI, RegionMap, LTS); 1575 BICopy->eraseFromParent(); 1576 } 1577 1578 // Add counting PHI nodes to all loops in the region that can be used as 1579 // replacement for SCEVs referring to the old loop. 1580 for (BasicBlock *BB : SeenBlocks) { 1581 Loop *L = LI.getLoopFor(BB); 1582 if (L == nullptr || L->getHeader() != BB || !R->contains(L)) 1583 continue; 1584 1585 BasicBlock *BBCopy = StartBlockMap[BB]; 1586 Value *NullVal = Builder.getInt32(0); 1587 PHINode *LoopPHI = 1588 PHINode::Create(Builder.getInt32Ty(), 2, "polly.subregion.iv"); 1589 Instruction *LoopPHIInc = BinaryOperator::CreateAdd( 1590 LoopPHI, Builder.getInt32(1), "polly.subregion.iv.inc"); 1591 LoopPHI->insertBefore(&BBCopy->front()); 1592 LoopPHIInc->insertBefore(BBCopy->getTerminator()); 1593 1594 for (auto *PredBB : make_range(pred_begin(BB), pred_end(BB))) { 1595 if (!R->contains(PredBB)) 1596 continue; 1597 if (L->contains(PredBB)) 1598 LoopPHI->addIncoming(LoopPHIInc, EndBlockMap[PredBB]); 1599 else 1600 LoopPHI->addIncoming(NullVal, EndBlockMap[PredBB]); 1601 } 1602 1603 for (auto *PredBBCopy : make_range(pred_begin(BBCopy), pred_end(BBCopy))) 1604 if (LoopPHI->getBasicBlockIndex(PredBBCopy) < 0) 1605 LoopPHI->addIncoming(NullVal, PredBBCopy); 1606 1607 LTS[L] = SE.getUnknown(LoopPHI); 1608 } 1609 1610 // Continue generating code in the exit block. 1611 Builder.SetInsertPoint(&*ExitBBCopy->getFirstInsertionPt()); 1612 1613 // Write values visible to other statements. 1614 generateScalarStores(Stmt, LTS, ValueMap, IdToAstExp); 1615 StartBlockMap.clear(); 1616 EndBlockMap.clear(); 1617 RegionMaps.clear(); 1618 IncompletePHINodeMap.clear(); 1619 } 1620 1621 PHINode *RegionGenerator::buildExitPHI(MemoryAccess *MA, LoopToScevMapT <S, 1622 ValueMapT &BBMap, Loop *L) { 1623 ScopStmt *Stmt = MA->getStatement(); 1624 Region *SubR = Stmt->getRegion(); 1625 auto Incoming = MA->getIncoming(); 1626 1627 PollyIRBuilder::InsertPointGuard IPGuard(Builder); 1628 PHINode *OrigPHI = cast<PHINode>(MA->getAccessInstruction()); 1629 BasicBlock *NewSubregionExit = Builder.GetInsertBlock(); 1630 1631 // This can happen if the subregion is simplified after the ScopStmts 1632 // have been created; simplification happens as part of CodeGeneration. 1633 if (OrigPHI->getParent() != SubR->getExit()) { 1634 BasicBlock *FormerExit = SubR->getExitingBlock(); 1635 if (FormerExit) 1636 NewSubregionExit = StartBlockMap.lookup(FormerExit); 1637 } 1638 1639 PHINode *NewPHI = PHINode::Create(OrigPHI->getType(), Incoming.size(), 1640 "polly." + OrigPHI->getName(), 1641 NewSubregionExit->getFirstNonPHI()); 1642 1643 // Add the incoming values to the PHI. 1644 for (auto &Pair : Incoming) { 1645 BasicBlock *OrigIncomingBlock = Pair.first; 1646 BasicBlock *NewIncomingBlockStart = StartBlockMap.lookup(OrigIncomingBlock); 1647 BasicBlock *NewIncomingBlockEnd = EndBlockMap.lookup(OrigIncomingBlock); 1648 Builder.SetInsertPoint(NewIncomingBlockEnd->getTerminator()); 1649 assert(RegionMaps.count(NewIncomingBlockStart)); 1650 assert(RegionMaps.count(NewIncomingBlockEnd)); 1651 ValueMapT *LocalBBMap = &RegionMaps[NewIncomingBlockStart]; 1652 1653 Value *OrigIncomingValue = Pair.second; 1654 Value *NewIncomingValue = 1655 getNewValue(*Stmt, OrigIncomingValue, *LocalBBMap, LTS, L); 1656 NewPHI->addIncoming(NewIncomingValue, NewIncomingBlockEnd); 1657 } 1658 1659 return NewPHI; 1660 } 1661 1662 Value *RegionGenerator::getExitScalar(MemoryAccess *MA, LoopToScevMapT <S, 1663 ValueMapT &BBMap) { 1664 ScopStmt *Stmt = MA->getStatement(); 1665 1666 // TODO: Add some test cases that ensure this is really the right choice. 1667 Loop *L = LI.getLoopFor(Stmt->getRegion()->getExit()); 1668 1669 if (MA->isAnyPHIKind()) { 1670 auto Incoming = MA->getIncoming(); 1671 assert(!Incoming.empty() && 1672 "PHI WRITEs must have originate from at least one incoming block"); 1673 1674 // If there is only one incoming value, we do not need to create a PHI. 1675 if (Incoming.size() == 1) { 1676 Value *OldVal = Incoming[0].second; 1677 return getNewValue(*Stmt, OldVal, BBMap, LTS, L); 1678 } 1679 1680 return buildExitPHI(MA, LTS, BBMap, L); 1681 } 1682 1683 // MemoryKind::Value accesses leaving the subregion must dominate the exit 1684 // block; just pass the copied value. 1685 Value *OldVal = MA->getAccessValue(); 1686 return getNewValue(*Stmt, OldVal, BBMap, LTS, L); 1687 } 1688 1689 void RegionGenerator::generateScalarStores( 1690 ScopStmt &Stmt, LoopToScevMapT <S, ValueMapT &BBMap, 1691 __isl_keep isl_id_to_ast_expr *NewAccesses) { 1692 assert(Stmt.getRegion() && 1693 "Block statements need to use the generateScalarStores() " 1694 "function in the BlockGenerator"); 1695 1696 // Get the exit scalar values before generating the writes. 1697 // This is necessary because RegionGenerator::getExitScalar may insert 1698 // PHINodes that depend on the region's exiting blocks. But 1699 // BlockGenerator::generateConditionalExecution may insert a new basic block 1700 // such that the current basic block is not a direct successor of the exiting 1701 // blocks anymore. Hence, build the PHINodes while the current block is still 1702 // the direct successor. 1703 SmallDenseMap<MemoryAccess *, Value *> NewExitScalars; 1704 for (MemoryAccess *MA : Stmt) { 1705 if (MA->isOriginalArrayKind() || MA->isRead()) 1706 continue; 1707 1708 Value *NewVal = getExitScalar(MA, LTS, BBMap); 1709 NewExitScalars[MA] = NewVal; 1710 } 1711 1712 for (MemoryAccess *MA : Stmt) { 1713 if (MA->isOriginalArrayKind() || MA->isRead()) 1714 continue; 1715 1716 isl::set AccDom = MA->getAccessRelation().domain(); 1717 std::string Subject = MA->getId().get_name(); 1718 generateConditionalExecution( 1719 Stmt, AccDom, Subject.c_str(), [&, this, MA]() { 1720 Value *NewVal = NewExitScalars.lookup(MA); 1721 assert(NewVal && "The exit scalar must be determined before"); 1722 Value *Address = getImplicitAddress(*MA, getLoopForStmt(Stmt), LTS, 1723 BBMap, NewAccesses); 1724 assert((!isa<Instruction>(NewVal) || 1725 DT.dominates(cast<Instruction>(NewVal)->getParent(), 1726 Builder.GetInsertBlock())) && 1727 "Domination violation"); 1728 assert((!isa<Instruction>(Address) || 1729 DT.dominates(cast<Instruction>(Address)->getParent(), 1730 Builder.GetInsertBlock())) && 1731 "Domination violation"); 1732 Builder.CreateStore(NewVal, Address); 1733 }); 1734 } 1735 } 1736 1737 void RegionGenerator::addOperandToPHI(ScopStmt &Stmt, PHINode *PHI, 1738 PHINode *PHICopy, BasicBlock *IncomingBB, 1739 LoopToScevMapT <S) { 1740 // If the incoming block was not yet copied mark this PHI as incomplete. 1741 // Once the block will be copied the incoming value will be added. 1742 BasicBlock *BBCopyStart = StartBlockMap[IncomingBB]; 1743 BasicBlock *BBCopyEnd = EndBlockMap[IncomingBB]; 1744 if (!BBCopyStart) { 1745 assert(!BBCopyEnd); 1746 assert(Stmt.represents(IncomingBB) && 1747 "Bad incoming block for PHI in non-affine region"); 1748 IncompletePHINodeMap[IncomingBB].push_back(std::make_pair(PHI, PHICopy)); 1749 return; 1750 } 1751 1752 assert(RegionMaps.count(BBCopyStart) && 1753 "Incoming PHI block did not have a BBMap"); 1754 ValueMapT &BBCopyMap = RegionMaps[BBCopyStart]; 1755 1756 Value *OpCopy = nullptr; 1757 1758 if (Stmt.represents(IncomingBB)) { 1759 Value *Op = PHI->getIncomingValueForBlock(IncomingBB); 1760 1761 // If the current insert block is different from the PHIs incoming block 1762 // change it, otherwise do not. 1763 auto IP = Builder.GetInsertPoint(); 1764 if (IP->getParent() != BBCopyEnd) 1765 Builder.SetInsertPoint(BBCopyEnd->getTerminator()); 1766 OpCopy = getNewValue(Stmt, Op, BBCopyMap, LTS, getLoopForStmt(Stmt)); 1767 if (IP->getParent() != BBCopyEnd) 1768 Builder.SetInsertPoint(&*IP); 1769 } else { 1770 // All edges from outside the non-affine region become a single edge 1771 // in the new copy of the non-affine region. Make sure to only add the 1772 // corresponding edge the first time we encounter a basic block from 1773 // outside the non-affine region. 1774 if (PHICopy->getBasicBlockIndex(BBCopyEnd) >= 0) 1775 return; 1776 1777 // Get the reloaded value. 1778 OpCopy = getNewValue(Stmt, PHI, BBCopyMap, LTS, getLoopForStmt(Stmt)); 1779 } 1780 1781 assert(OpCopy && "Incoming PHI value was not copied properly"); 1782 PHICopy->addIncoming(OpCopy, BBCopyEnd); 1783 } 1784 1785 void RegionGenerator::copyPHIInstruction(ScopStmt &Stmt, PHINode *PHI, 1786 ValueMapT &BBMap, 1787 LoopToScevMapT <S) { 1788 unsigned NumIncoming = PHI->getNumIncomingValues(); 1789 PHINode *PHICopy = 1790 Builder.CreatePHI(PHI->getType(), NumIncoming, "polly." + PHI->getName()); 1791 PHICopy->moveBefore(PHICopy->getParent()->getFirstNonPHI()); 1792 BBMap[PHI] = PHICopy; 1793 1794 for (BasicBlock *IncomingBB : PHI->blocks()) 1795 addOperandToPHI(Stmt, PHI, PHICopy, IncomingBB, LTS); 1796 } 1797