1 //===--- BlockGenerators.cpp - Generate code for statements -----*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the BlockGenerator and VectorBlockGenerator classes,
11 // which generate sequential code and vectorized code for a polyhedral
12 // statement, respectively.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "polly/CodeGen/BlockGenerators.h"
17 #include "polly/CodeGen/CodeGeneration.h"
18 #include "polly/CodeGen/IslExprBuilder.h"
19 #include "polly/CodeGen/RuntimeDebugBuilder.h"
20 #include "polly/Options.h"
21 #include "polly/ScopInfo.h"
22 #include "polly/Support/GICHelper.h"
23 #include "polly/Support/SCEVValidator.h"
24 #include "polly/Support/ScopHelper.h"
25 #include "llvm/Analysis/LoopInfo.h"
26 #include "llvm/Analysis/RegionInfo.h"
27 #include "llvm/Analysis/ScalarEvolution.h"
28 #include "llvm/IR/IntrinsicInst.h"
29 #include "llvm/IR/Module.h"
30 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
31 #include "llvm/Transforms/Utils/Local.h"
32 #include "isl/aff.h"
33 #include "isl/ast.h"
34 #include "isl/ast_build.h"
35 #include "isl/set.h"
36 #include <deque>
37 
38 using namespace llvm;
39 using namespace polly;
40 
41 static cl::opt<bool> Aligned("enable-polly-aligned",
42                              cl::desc("Assumed aligned memory accesses."),
43                              cl::Hidden, cl::init(false), cl::ZeroOrMore,
44                              cl::cat(PollyCategory));
45 
46 static cl::opt<bool> DebugPrinting(
47     "polly-codegen-add-debug-printing",
48     cl::desc("Add printf calls that show the values loaded/stored."),
49     cl::Hidden, cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory));
50 
51 BlockGenerator::BlockGenerator(PollyIRBuilder &B, LoopInfo &LI,
52                                ScalarEvolution &SE, DominatorTree &DT,
53                                ScalarAllocaMapTy &ScalarMap,
54                                ScalarAllocaMapTy &PHIOpMap,
55                                EscapeUsersAllocaMapTy &EscapeMap,
56                                ValueMapT &GlobalMap,
57                                IslExprBuilder *ExprBuilder)
58     : Builder(B), LI(LI), SE(SE), ExprBuilder(ExprBuilder), DT(DT),
59       EntryBB(nullptr), PHIOpMap(PHIOpMap), ScalarMap(ScalarMap),
60       EscapeMap(EscapeMap), GlobalMap(GlobalMap) {}
61 
62 Value *BlockGenerator::trySynthesizeNewValue(ScopStmt &Stmt, Value *Old,
63                                              ValueMapT &BBMap,
64                                              LoopToScevMapT &LTS,
65                                              Loop *L) const {
66   if (!SE.isSCEVable(Old->getType()))
67     return nullptr;
68 
69   const SCEV *Scev = SE.getSCEVAtScope(Old, L);
70   if (!Scev)
71     return nullptr;
72 
73   if (isa<SCEVCouldNotCompute>(Scev))
74     return nullptr;
75 
76   const SCEV *NewScev = SCEVLoopAddRecRewriter::rewrite(Scev, LTS, SE);
77   ValueMapT VTV;
78   VTV.insert(BBMap.begin(), BBMap.end());
79   VTV.insert(GlobalMap.begin(), GlobalMap.end());
80 
81   Scop &S = *Stmt.getParent();
82   const DataLayout &DL = S.getFunction().getParent()->getDataLayout();
83   auto IP = Builder.GetInsertPoint();
84 
85   assert(IP != Builder.GetInsertBlock()->end() &&
86          "Only instructions can be insert points for SCEVExpander");
87   Value *Expanded =
88       expandCodeFor(S, SE, DL, "polly", NewScev, Old->getType(), &*IP, &VTV);
89 
90   BBMap[Old] = Expanded;
91   return Expanded;
92 }
93 
94 Value *BlockGenerator::getNewValue(ScopStmt &Stmt, Value *Old, ValueMapT &BBMap,
95                                    LoopToScevMapT &LTS, Loop *L) const {
96   // Constants that do not reference any named value can always remain
97   // unchanged. Handle them early to avoid expensive map lookups. We do not take
98   // the fast-path for external constants which are referenced through globals
99   // as these may need to be rewritten when distributing code accross different
100   // LLVM modules.
101   if (isa<Constant>(Old) && !isa<GlobalValue>(Old))
102     return Old;
103 
104   // Inline asm is like a constant to us.
105   if (isa<InlineAsm>(Old))
106     return Old;
107 
108   if (Value *New = GlobalMap.lookup(Old)) {
109     if (Value *NewRemapped = GlobalMap.lookup(New))
110       New = NewRemapped;
111     if (Old->getType()->getScalarSizeInBits() <
112         New->getType()->getScalarSizeInBits())
113       New = Builder.CreateTruncOrBitCast(New, Old->getType());
114 
115     return New;
116   }
117 
118   if (Value *New = BBMap.lookup(Old))
119     return New;
120 
121   if (Value *New = trySynthesizeNewValue(Stmt, Old, BBMap, LTS, L))
122     return New;
123 
124   // A scop-constant value defined by a global or a function parameter.
125   if (isa<GlobalValue>(Old) || isa<Argument>(Old))
126     return Old;
127 
128   // A scop-constant value defined by an instruction executed outside the scop.
129   if (const Instruction *Inst = dyn_cast<Instruction>(Old))
130     if (!Stmt.getParent()->contains(Inst->getParent()))
131       return Old;
132 
133   // The scalar dependence is neither available nor SCEVCodegenable.
134   llvm_unreachable("Unexpected scalar dependence in region!");
135   return nullptr;
136 }
137 
138 void BlockGenerator::copyInstScalar(ScopStmt &Stmt, Instruction *Inst,
139                                     ValueMapT &BBMap, LoopToScevMapT &LTS) {
140   // We do not generate debug intrinsics as we did not investigate how to
141   // copy them correctly. At the current state, they just crash the code
142   // generation as the meta-data operands are not correctly copied.
143   if (isa<DbgInfoIntrinsic>(Inst))
144     return;
145 
146   Instruction *NewInst = Inst->clone();
147 
148   // Replace old operands with the new ones.
149   for (Value *OldOperand : Inst->operands()) {
150     Value *NewOperand =
151         getNewValue(Stmt, OldOperand, BBMap, LTS, getLoopForStmt(Stmt));
152 
153     if (!NewOperand) {
154       assert(!isa<StoreInst>(NewInst) &&
155              "Store instructions are always needed!");
156       delete NewInst;
157       return;
158     }
159 
160     NewInst->replaceUsesOfWith(OldOperand, NewOperand);
161   }
162 
163   Builder.Insert(NewInst);
164   BBMap[Inst] = NewInst;
165 
166   if (!NewInst->getType()->isVoidTy())
167     NewInst->setName("p_" + Inst->getName());
168 }
169 
170 Value *
171 BlockGenerator::generateLocationAccessed(ScopStmt &Stmt, MemAccInst Inst,
172                                          ValueMapT &BBMap, LoopToScevMapT &LTS,
173                                          isl_id_to_ast_expr *NewAccesses) {
174   const MemoryAccess &MA = Stmt.getArrayAccessFor(Inst);
175 
176   isl_ast_expr *AccessExpr = isl_id_to_ast_expr_get(NewAccesses, MA.getId());
177 
178   if (AccessExpr) {
179     AccessExpr = isl_ast_expr_address_of(AccessExpr);
180     auto Address = ExprBuilder->create(AccessExpr);
181 
182     // Cast the address of this memory access to a pointer type that has the
183     // same element type as the original access, but uses the address space of
184     // the newly generated pointer.
185     auto OldPtrTy = MA.getAccessValue()->getType()->getPointerTo();
186     auto NewPtrTy = Address->getType();
187     OldPtrTy = PointerType::get(OldPtrTy->getElementType(),
188                                 NewPtrTy->getPointerAddressSpace());
189 
190     if (OldPtrTy != NewPtrTy)
191       Address = Builder.CreateBitOrPointerCast(Address, OldPtrTy);
192     return Address;
193   }
194 
195   return getNewValue(Stmt, Inst.getPointerOperand(), BBMap, LTS,
196                      getLoopForStmt(Stmt));
197 }
198 
199 Loop *BlockGenerator::getLoopForStmt(const ScopStmt &Stmt) const {
200   auto *StmtBB = Stmt.getEntryBlock();
201   return LI.getLoopFor(StmtBB);
202 }
203 
204 Value *BlockGenerator::generateScalarLoad(ScopStmt &Stmt, LoadInst *Load,
205                                           ValueMapT &BBMap, LoopToScevMapT &LTS,
206                                           isl_id_to_ast_expr *NewAccesses) {
207   if (Value *PreloadLoad = GlobalMap.lookup(Load))
208     return PreloadLoad;
209 
210   Value *NewPointer =
211       generateLocationAccessed(Stmt, Load, BBMap, LTS, NewAccesses);
212   Value *ScalarLoad = Builder.CreateAlignedLoad(
213       NewPointer, Load->getAlignment(), Load->getName() + "_p_scalar_");
214 
215   if (DebugPrinting)
216     RuntimeDebugBuilder::createCPUPrinter(Builder, "Load from ", NewPointer,
217                                           ": ", ScalarLoad, "\n");
218 
219   return ScalarLoad;
220 }
221 
222 void BlockGenerator::generateScalarStore(ScopStmt &Stmt, StoreInst *Store,
223                                          ValueMapT &BBMap, LoopToScevMapT &LTS,
224                                          isl_id_to_ast_expr *NewAccesses) {
225   Value *NewPointer =
226       generateLocationAccessed(Stmt, Store, BBMap, LTS, NewAccesses);
227   Value *ValueOperand = getNewValue(Stmt, Store->getValueOperand(), BBMap, LTS,
228                                     getLoopForStmt(Stmt));
229 
230   if (DebugPrinting)
231     RuntimeDebugBuilder::createCPUPrinter(Builder, "Store to  ", NewPointer,
232                                           ": ", ValueOperand, "\n");
233 
234   Builder.CreateAlignedStore(ValueOperand, NewPointer, Store->getAlignment());
235 }
236 
237 bool BlockGenerator::canSyntheziseInStmt(ScopStmt &Stmt, Instruction *Inst) {
238   Loop *L = getLoopForStmt(Stmt);
239   return (Stmt.isBlockStmt() || !Stmt.getRegion()->contains(L)) &&
240          canSynthesize(Inst, *Stmt.getParent(), &LI, &SE, L);
241 }
242 
243 void BlockGenerator::copyInstruction(ScopStmt &Stmt, Instruction *Inst,
244                                      ValueMapT &BBMap, LoopToScevMapT &LTS,
245                                      isl_id_to_ast_expr *NewAccesses) {
246   // Terminator instructions control the control flow. They are explicitly
247   // expressed in the clast and do not need to be copied.
248   if (Inst->isTerminator())
249     return;
250 
251   // Synthesizable statements will be generated on-demand.
252   if (canSyntheziseInStmt(Stmt, Inst))
253     return;
254 
255   if (auto *Load = dyn_cast<LoadInst>(Inst)) {
256     Value *NewLoad = generateScalarLoad(Stmt, Load, BBMap, LTS, NewAccesses);
257     // Compute NewLoad before its insertion in BBMap to make the insertion
258     // deterministic.
259     BBMap[Load] = NewLoad;
260     return;
261   }
262 
263   if (auto *Store = dyn_cast<StoreInst>(Inst)) {
264     generateScalarStore(Stmt, Store, BBMap, LTS, NewAccesses);
265     return;
266   }
267 
268   if (auto *PHI = dyn_cast<PHINode>(Inst)) {
269     copyPHIInstruction(Stmt, PHI, BBMap, LTS);
270     return;
271   }
272 
273   // Skip some special intrinsics for which we do not adjust the semantics to
274   // the new schedule. All others are handled like every other instruction.
275   if (isIgnoredIntrinsic(Inst))
276     return;
277 
278   copyInstScalar(Stmt, Inst, BBMap, LTS);
279 }
280 
281 void BlockGenerator::removeDeadInstructions(BasicBlock *BB, ValueMapT &BBMap) {
282   for (auto I = BB->rbegin(), E = BB->rend(); I != E; I++) {
283     Instruction *Inst = &*I;
284     Value *NewVal = BBMap[Inst];
285 
286     if (!NewVal)
287       continue;
288 
289     Instruction *NewInst = dyn_cast<Instruction>(NewVal);
290 
291     if (!NewInst)
292       continue;
293 
294     if (!isInstructionTriviallyDead(NewInst))
295       continue;
296 
297     BBMap.erase(Inst);
298     NewInst->eraseFromParent();
299   }
300 }
301 
302 void BlockGenerator::copyStmt(ScopStmt &Stmt, LoopToScevMapT &LTS,
303                               isl_id_to_ast_expr *NewAccesses) {
304   assert(Stmt.isBlockStmt() &&
305          "Only block statements can be copied by the block generator");
306 
307   ValueMapT BBMap;
308 
309   BasicBlock *BB = Stmt.getBasicBlock();
310   copyBB(Stmt, BB, BBMap, LTS, NewAccesses);
311   removeDeadInstructions(BB, BBMap);
312 }
313 
314 BasicBlock *BlockGenerator::splitBB(BasicBlock *BB) {
315   BasicBlock *CopyBB = SplitBlock(Builder.GetInsertBlock(),
316                                   &*Builder.GetInsertPoint(), &DT, &LI);
317   CopyBB->setName("polly.stmt." + BB->getName());
318   return CopyBB;
319 }
320 
321 BasicBlock *BlockGenerator::copyBB(ScopStmt &Stmt, BasicBlock *BB,
322                                    ValueMapT &BBMap, LoopToScevMapT &LTS,
323                                    isl_id_to_ast_expr *NewAccesses) {
324   BasicBlock *CopyBB = splitBB(BB);
325   Builder.SetInsertPoint(&CopyBB->front());
326   generateScalarLoads(Stmt, BBMap);
327 
328   copyBB(Stmt, BB, CopyBB, BBMap, LTS, NewAccesses);
329 
330   // After a basic block was copied store all scalars that escape this block in
331   // their alloca.
332   generateScalarStores(Stmt, LTS, BBMap);
333   return CopyBB;
334 }
335 
336 void BlockGenerator::copyBB(ScopStmt &Stmt, BasicBlock *BB, BasicBlock *CopyBB,
337                             ValueMapT &BBMap, LoopToScevMapT &LTS,
338                             isl_id_to_ast_expr *NewAccesses) {
339   EntryBB = &CopyBB->getParent()->getEntryBlock();
340 
341   for (Instruction &Inst : *BB)
342     copyInstruction(Stmt, &Inst, BBMap, LTS, NewAccesses);
343 }
344 
345 Value *BlockGenerator::getOrCreateAlloca(Value *ScalarBase,
346                                          ScalarAllocaMapTy &Map,
347                                          const char *NameExt) {
348   // If no alloca was found create one and insert it in the entry block.
349   if (!Map.count(ScalarBase)) {
350     auto *Ty = ScalarBase->getType();
351     auto NewAddr = new AllocaInst(Ty, ScalarBase->getName() + NameExt);
352     EntryBB = &Builder.GetInsertBlock()->getParent()->getEntryBlock();
353     NewAddr->insertBefore(&*EntryBB->getFirstInsertionPt());
354     Map[ScalarBase] = NewAddr;
355   }
356 
357   auto Addr = Map[ScalarBase];
358 
359   if (auto NewAddr = GlobalMap.lookup(Addr))
360     return NewAddr;
361 
362   return Addr;
363 }
364 
365 Value *BlockGenerator::getOrCreateAlloca(const MemoryAccess &Access) {
366   if (Access.isPHIKind())
367     return getOrCreatePHIAlloca(Access.getBaseAddr());
368   else
369     return getOrCreateScalarAlloca(Access.getBaseAddr());
370 }
371 
372 Value *BlockGenerator::getOrCreateAlloca(const ScopArrayInfo *Array) {
373   if (Array->isPHIKind())
374     return getOrCreatePHIAlloca(Array->getBasePtr());
375   else
376     return getOrCreateScalarAlloca(Array->getBasePtr());
377 }
378 
379 Value *BlockGenerator::getOrCreateScalarAlloca(Value *ScalarBase) {
380   return getOrCreateAlloca(ScalarBase, ScalarMap, ".s2a");
381 }
382 
383 Value *BlockGenerator::getOrCreatePHIAlloca(Value *ScalarBase) {
384   return getOrCreateAlloca(ScalarBase, PHIOpMap, ".phiops");
385 }
386 
387 void BlockGenerator::handleOutsideUsers(const Scop &S, Instruction *Inst) {
388   // If there are escape users we get the alloca for this instruction and put it
389   // in the EscapeMap for later finalization. Lastly, if the instruction was
390   // copied multiple times we already did this and can exit.
391   if (EscapeMap.count(Inst))
392     return;
393 
394   EscapeUserVectorTy EscapeUsers;
395   for (User *U : Inst->users()) {
396 
397     // Non-instruction user will never escape.
398     Instruction *UI = dyn_cast<Instruction>(U);
399     if (!UI)
400       continue;
401 
402     if (S.contains(UI))
403       continue;
404 
405     EscapeUsers.push_back(UI);
406   }
407 
408   // Exit if no escape uses were found.
409   if (EscapeUsers.empty())
410     return;
411 
412   // Get or create an escape alloca for this instruction.
413   auto *ScalarAddr = getOrCreateScalarAlloca(Inst);
414 
415   // Remember that this instruction has escape uses and the escape alloca.
416   EscapeMap[Inst] = std::make_pair(ScalarAddr, std::move(EscapeUsers));
417 }
418 
419 void BlockGenerator::generateScalarLoads(ScopStmt &Stmt, ValueMapT &BBMap) {
420   for (MemoryAccess *MA : Stmt) {
421     if (MA->isArrayKind() || MA->isWrite())
422       continue;
423 
424     auto *Address = getOrCreateAlloca(*MA);
425     assert((!isa<Instruction>(Address) ||
426             DT.dominates(cast<Instruction>(Address)->getParent(),
427                          Builder.GetInsertBlock())) &&
428            "Domination violation");
429     BBMap[MA->getBaseAddr()] =
430         Builder.CreateLoad(Address, Address->getName() + ".reload");
431   }
432 }
433 
434 void BlockGenerator::generateScalarStores(ScopStmt &Stmt, LoopToScevMapT &LTS,
435                                           ValueMapT &BBMap) {
436   Loop *L = LI.getLoopFor(Stmt.getBasicBlock());
437 
438   assert(Stmt.isBlockStmt() && "Region statements need to use the "
439                                "generateScalarStores() function in the "
440                                "RegionGenerator");
441 
442   for (MemoryAccess *MA : Stmt) {
443     if (MA->isArrayKind() || MA->isRead())
444       continue;
445 
446     Value *Val = MA->getAccessValue();
447     if (MA->isAnyPHIKind()) {
448       assert(MA->getIncoming().size() >= 1 &&
449              "Block statements have exactly one exiting block, or multiple but "
450              "with same incoming block and value");
451       assert(std::all_of(MA->getIncoming().begin(), MA->getIncoming().end(),
452                          [&](std::pair<BasicBlock *, Value *> p) -> bool {
453                            return p.first == Stmt.getBasicBlock();
454                          }) &&
455              "Incoming block must be statement's block");
456       Val = MA->getIncoming()[0].second;
457     }
458     auto *Address = getOrCreateAlloca(*MA);
459 
460     Val = getNewValue(Stmt, Val, BBMap, LTS, L);
461     assert((!isa<Instruction>(Val) ||
462             DT.dominates(cast<Instruction>(Val)->getParent(),
463                          Builder.GetInsertBlock())) &&
464            "Domination violation");
465     assert((!isa<Instruction>(Address) ||
466             DT.dominates(cast<Instruction>(Address)->getParent(),
467                          Builder.GetInsertBlock())) &&
468            "Domination violation");
469     Builder.CreateStore(Val, Address);
470   }
471 }
472 
473 void BlockGenerator::createScalarInitialization(Scop &S) {
474   BasicBlock *ExitBB = S.getExit();
475 
476   // The split block __just before__ the region and optimized region.
477   BasicBlock *SplitBB = S.getEnteringBlock();
478   BranchInst *SplitBBTerm = cast<BranchInst>(SplitBB->getTerminator());
479   assert(SplitBBTerm->getNumSuccessors() == 2 && "Bad region entering block!");
480 
481   // Get the start block of the __optimized__ region.
482   BasicBlock *StartBB = SplitBBTerm->getSuccessor(0);
483   if (StartBB == S.getEntry())
484     StartBB = SplitBBTerm->getSuccessor(1);
485 
486   Builder.SetInsertPoint(StartBB->getTerminator());
487 
488   for (auto &Pair : S.arrays()) {
489     auto &Array = Pair.second;
490     if (Array->getNumberOfDimensions() != 0)
491       continue;
492     if (Array->isPHIKind()) {
493       // For PHI nodes, the only values we need to store are the ones that
494       // reach the PHI node from outside the region. In general there should
495       // only be one such incoming edge and this edge should enter through
496       // 'SplitBB'.
497       auto PHI = cast<PHINode>(Array->getBasePtr());
498 
499       for (auto BI = PHI->block_begin(), BE = PHI->block_end(); BI != BE; BI++)
500         if (!S.contains(*BI) && *BI != SplitBB)
501           llvm_unreachable("Incoming edges from outside the scop should always "
502                            "come from SplitBB");
503 
504       int Idx = PHI->getBasicBlockIndex(SplitBB);
505       if (Idx < 0)
506         continue;
507 
508       Value *ScalarValue = PHI->getIncomingValue(Idx);
509 
510       Builder.CreateStore(ScalarValue, getOrCreatePHIAlloca(PHI));
511       continue;
512     }
513 
514     auto *Inst = dyn_cast<Instruction>(Array->getBasePtr());
515 
516     if (Inst && S.contains(Inst))
517       continue;
518 
519     // PHI nodes that are not marked as such in their SAI object are either exit
520     // PHI nodes we model as common scalars but without initialization, or
521     // incoming phi nodes that need to be initialized. Check if the first is the
522     // case for Inst and do not create and initialize memory if so.
523     if (auto *PHI = dyn_cast_or_null<PHINode>(Inst))
524       if (!S.hasSingleExitEdge() && PHI->getBasicBlockIndex(ExitBB) >= 0)
525         continue;
526 
527     Builder.CreateStore(Array->getBasePtr(),
528                         getOrCreateScalarAlloca(Array->getBasePtr()));
529   }
530 }
531 
532 void BlockGenerator::createScalarFinalization(Scop &S) {
533   // The exit block of the __unoptimized__ region.
534   BasicBlock *ExitBB = S.getExitingBlock();
535   // The merge block __just after__ the region and the optimized region.
536   BasicBlock *MergeBB = S.getExit();
537 
538   // The exit block of the __optimized__ region.
539   BasicBlock *OptExitBB = *(pred_begin(MergeBB));
540   if (OptExitBB == ExitBB)
541     OptExitBB = *(++pred_begin(MergeBB));
542 
543   Builder.SetInsertPoint(OptExitBB->getTerminator());
544   for (const auto &EscapeMapping : EscapeMap) {
545     // Extract the escaping instruction and the escaping users as well as the
546     // alloca the instruction was demoted to.
547     Instruction *EscapeInst = EscapeMapping.getFirst();
548     const auto &EscapeMappingValue = EscapeMapping.getSecond();
549     const EscapeUserVectorTy &EscapeUsers = EscapeMappingValue.second;
550     Value *ScalarAddr = EscapeMappingValue.first;
551 
552     // Reload the demoted instruction in the optimized version of the SCoP.
553     Value *EscapeInstReload =
554         Builder.CreateLoad(ScalarAddr, EscapeInst->getName() + ".final_reload");
555     EscapeInstReload =
556         Builder.CreateBitOrPointerCast(EscapeInstReload, EscapeInst->getType());
557 
558     // Create the merge PHI that merges the optimized and unoptimized version.
559     PHINode *MergePHI = PHINode::Create(EscapeInst->getType(), 2,
560                                         EscapeInst->getName() + ".merge");
561     MergePHI->insertBefore(&*MergeBB->getFirstInsertionPt());
562 
563     // Add the respective values to the merge PHI.
564     MergePHI->addIncoming(EscapeInstReload, OptExitBB);
565     MergePHI->addIncoming(EscapeInst, ExitBB);
566 
567     // The information of scalar evolution about the escaping instruction needs
568     // to be revoked so the new merged instruction will be used.
569     if (SE.isSCEVable(EscapeInst->getType()))
570       SE.forgetValue(EscapeInst);
571 
572     // Replace all uses of the demoted instruction with the merge PHI.
573     for (Instruction *EUser : EscapeUsers)
574       EUser->replaceUsesOfWith(EscapeInst, MergePHI);
575   }
576 }
577 
578 void BlockGenerator::findOutsideUsers(Scop &S) {
579   for (auto &Pair : S.arrays()) {
580     auto &Array = Pair.second;
581 
582     if (Array->getNumberOfDimensions() != 0)
583       continue;
584 
585     if (Array->isPHIKind())
586       continue;
587 
588     auto *Inst = dyn_cast<Instruction>(Array->getBasePtr());
589 
590     if (!Inst)
591       continue;
592 
593     // Scop invariant hoisting moves some of the base pointers out of the scop.
594     // We can ignore these, as the invariant load hoisting already registers the
595     // relevant outside users.
596     if (!S.contains(Inst))
597       continue;
598 
599     handleOutsideUsers(S, Inst);
600   }
601 }
602 
603 void BlockGenerator::createExitPHINodeMerges(Scop &S) {
604   if (S.hasSingleExitEdge())
605     return;
606 
607   auto *ExitBB = S.getExitingBlock();
608   auto *MergeBB = S.getExit();
609   auto *AfterMergeBB = MergeBB->getSingleSuccessor();
610   BasicBlock *OptExitBB = *(pred_begin(MergeBB));
611   if (OptExitBB == ExitBB)
612     OptExitBB = *(++pred_begin(MergeBB));
613 
614   Builder.SetInsertPoint(OptExitBB->getTerminator());
615 
616   for (auto &Pair : S.arrays()) {
617     auto &SAI = Pair.second;
618     auto *Val = SAI->getBasePtr();
619 
620     // Only Value-like scalars need a merge PHI. Exit block PHIs receive either
621     // the original PHI's value or the reloaded incoming values from the
622     // generated code. An llvm::Value is merged between the original code's
623     // value or the generated one.
624     if (!SAI->isValueKind() && !SAI->isExitPHIKind())
625       continue;
626 
627     PHINode *PHI = dyn_cast<PHINode>(Val);
628     if (!PHI)
629       continue;
630 
631     if (PHI->getParent() != AfterMergeBB)
632       continue;
633 
634     std::string Name = PHI->getName();
635     Value *ScalarAddr = getOrCreateScalarAlloca(PHI);
636     Value *Reload = Builder.CreateLoad(ScalarAddr, Name + ".ph.final_reload");
637     Reload = Builder.CreateBitOrPointerCast(Reload, PHI->getType());
638     Value *OriginalValue = PHI->getIncomingValueForBlock(MergeBB);
639     assert((!isa<Instruction>(OriginalValue) ||
640             cast<Instruction>(OriginalValue)->getParent() != MergeBB) &&
641            "Original value must no be one we just generated.");
642     auto *MergePHI = PHINode::Create(PHI->getType(), 2, Name + ".ph.merge");
643     MergePHI->insertBefore(&*MergeBB->getFirstInsertionPt());
644     MergePHI->addIncoming(Reload, OptExitBB);
645     MergePHI->addIncoming(OriginalValue, ExitBB);
646     int Idx = PHI->getBasicBlockIndex(MergeBB);
647     PHI->setIncomingValue(Idx, MergePHI);
648   }
649 }
650 
651 void BlockGenerator::finalizeSCoP(Scop &S) {
652   findOutsideUsers(S);
653   createScalarInitialization(S);
654   createExitPHINodeMerges(S);
655   createScalarFinalization(S);
656 }
657 
658 VectorBlockGenerator::VectorBlockGenerator(BlockGenerator &BlockGen,
659                                            std::vector<LoopToScevMapT> &VLTS,
660                                            isl_map *Schedule)
661     : BlockGenerator(BlockGen), VLTS(VLTS), Schedule(Schedule) {
662   assert(Schedule && "No statement domain provided");
663 }
664 
665 Value *VectorBlockGenerator::getVectorValue(ScopStmt &Stmt, Value *Old,
666                                             ValueMapT &VectorMap,
667                                             VectorValueMapT &ScalarMaps,
668                                             Loop *L) {
669   if (Value *NewValue = VectorMap.lookup(Old))
670     return NewValue;
671 
672   int Width = getVectorWidth();
673 
674   Value *Vector = UndefValue::get(VectorType::get(Old->getType(), Width));
675 
676   for (int Lane = 0; Lane < Width; Lane++)
677     Vector = Builder.CreateInsertElement(
678         Vector, getNewValue(Stmt, Old, ScalarMaps[Lane], VLTS[Lane], L),
679         Builder.getInt32(Lane));
680 
681   VectorMap[Old] = Vector;
682 
683   return Vector;
684 }
685 
686 Type *VectorBlockGenerator::getVectorPtrTy(const Value *Val, int Width) {
687   PointerType *PointerTy = dyn_cast<PointerType>(Val->getType());
688   assert(PointerTy && "PointerType expected");
689 
690   Type *ScalarType = PointerTy->getElementType();
691   VectorType *VectorType = VectorType::get(ScalarType, Width);
692 
693   return PointerType::getUnqual(VectorType);
694 }
695 
696 Value *VectorBlockGenerator::generateStrideOneLoad(
697     ScopStmt &Stmt, LoadInst *Load, VectorValueMapT &ScalarMaps,
698     __isl_keep isl_id_to_ast_expr *NewAccesses, bool NegativeStride = false) {
699   unsigned VectorWidth = getVectorWidth();
700   auto *Pointer = Load->getPointerOperand();
701   Type *VectorPtrType = getVectorPtrTy(Pointer, VectorWidth);
702   unsigned Offset = NegativeStride ? VectorWidth - 1 : 0;
703 
704   Value *NewPointer = generateLocationAccessed(Stmt, Load, ScalarMaps[Offset],
705                                                VLTS[Offset], NewAccesses);
706   Value *VectorPtr =
707       Builder.CreateBitCast(NewPointer, VectorPtrType, "vector_ptr");
708   LoadInst *VecLoad =
709       Builder.CreateLoad(VectorPtr, Load->getName() + "_p_vec_full");
710   if (!Aligned)
711     VecLoad->setAlignment(8);
712 
713   if (NegativeStride) {
714     SmallVector<Constant *, 16> Indices;
715     for (int i = VectorWidth - 1; i >= 0; i--)
716       Indices.push_back(ConstantInt::get(Builder.getInt32Ty(), i));
717     Constant *SV = llvm::ConstantVector::get(Indices);
718     Value *RevVecLoad = Builder.CreateShuffleVector(
719         VecLoad, VecLoad, SV, Load->getName() + "_reverse");
720     return RevVecLoad;
721   }
722 
723   return VecLoad;
724 }
725 
726 Value *VectorBlockGenerator::generateStrideZeroLoad(
727     ScopStmt &Stmt, LoadInst *Load, ValueMapT &BBMap,
728     __isl_keep isl_id_to_ast_expr *NewAccesses) {
729   auto *Pointer = Load->getPointerOperand();
730   Type *VectorPtrType = getVectorPtrTy(Pointer, 1);
731   Value *NewPointer =
732       generateLocationAccessed(Stmt, Load, BBMap, VLTS[0], NewAccesses);
733   Value *VectorPtr = Builder.CreateBitCast(NewPointer, VectorPtrType,
734                                            Load->getName() + "_p_vec_p");
735   LoadInst *ScalarLoad =
736       Builder.CreateLoad(VectorPtr, Load->getName() + "_p_splat_one");
737 
738   if (!Aligned)
739     ScalarLoad->setAlignment(8);
740 
741   Constant *SplatVector = Constant::getNullValue(
742       VectorType::get(Builder.getInt32Ty(), getVectorWidth()));
743 
744   Value *VectorLoad = Builder.CreateShuffleVector(
745       ScalarLoad, ScalarLoad, SplatVector, Load->getName() + "_p_splat");
746   return VectorLoad;
747 }
748 
749 Value *VectorBlockGenerator::generateUnknownStrideLoad(
750     ScopStmt &Stmt, LoadInst *Load, VectorValueMapT &ScalarMaps,
751     __isl_keep isl_id_to_ast_expr *NewAccesses) {
752   int VectorWidth = getVectorWidth();
753   auto *Pointer = Load->getPointerOperand();
754   VectorType *VectorType = VectorType::get(
755       dyn_cast<PointerType>(Pointer->getType())->getElementType(), VectorWidth);
756 
757   Value *Vector = UndefValue::get(VectorType);
758 
759   for (int i = 0; i < VectorWidth; i++) {
760     Value *NewPointer = generateLocationAccessed(Stmt, Load, ScalarMaps[i],
761                                                  VLTS[i], NewAccesses);
762     Value *ScalarLoad =
763         Builder.CreateLoad(NewPointer, Load->getName() + "_p_scalar_");
764     Vector = Builder.CreateInsertElement(
765         Vector, ScalarLoad, Builder.getInt32(i), Load->getName() + "_p_vec_");
766   }
767 
768   return Vector;
769 }
770 
771 void VectorBlockGenerator::generateLoad(
772     ScopStmt &Stmt, LoadInst *Load, ValueMapT &VectorMap,
773     VectorValueMapT &ScalarMaps, __isl_keep isl_id_to_ast_expr *NewAccesses) {
774   if (Value *PreloadLoad = GlobalMap.lookup(Load)) {
775     VectorMap[Load] = Builder.CreateVectorSplat(getVectorWidth(), PreloadLoad,
776                                                 Load->getName() + "_p");
777     return;
778   }
779 
780   if (!VectorType::isValidElementType(Load->getType())) {
781     for (int i = 0; i < getVectorWidth(); i++)
782       ScalarMaps[i][Load] =
783           generateScalarLoad(Stmt, Load, ScalarMaps[i], VLTS[i], NewAccesses);
784     return;
785   }
786 
787   const MemoryAccess &Access = Stmt.getArrayAccessFor(Load);
788 
789   // Make sure we have scalar values available to access the pointer to
790   // the data location.
791   extractScalarValues(Load, VectorMap, ScalarMaps);
792 
793   Value *NewLoad;
794   if (Access.isStrideZero(isl_map_copy(Schedule)))
795     NewLoad = generateStrideZeroLoad(Stmt, Load, ScalarMaps[0], NewAccesses);
796   else if (Access.isStrideOne(isl_map_copy(Schedule)))
797     NewLoad = generateStrideOneLoad(Stmt, Load, ScalarMaps, NewAccesses);
798   else if (Access.isStrideX(isl_map_copy(Schedule), -1))
799     NewLoad = generateStrideOneLoad(Stmt, Load, ScalarMaps, NewAccesses, true);
800   else
801     NewLoad = generateUnknownStrideLoad(Stmt, Load, ScalarMaps, NewAccesses);
802 
803   VectorMap[Load] = NewLoad;
804 }
805 
806 void VectorBlockGenerator::copyUnaryInst(ScopStmt &Stmt, UnaryInstruction *Inst,
807                                          ValueMapT &VectorMap,
808                                          VectorValueMapT &ScalarMaps) {
809   int VectorWidth = getVectorWidth();
810   Value *NewOperand = getVectorValue(Stmt, Inst->getOperand(0), VectorMap,
811                                      ScalarMaps, getLoopForStmt(Stmt));
812 
813   assert(isa<CastInst>(Inst) && "Can not generate vector code for instruction");
814 
815   const CastInst *Cast = dyn_cast<CastInst>(Inst);
816   VectorType *DestType = VectorType::get(Inst->getType(), VectorWidth);
817   VectorMap[Inst] = Builder.CreateCast(Cast->getOpcode(), NewOperand, DestType);
818 }
819 
820 void VectorBlockGenerator::copyBinaryInst(ScopStmt &Stmt, BinaryOperator *Inst,
821                                           ValueMapT &VectorMap,
822                                           VectorValueMapT &ScalarMaps) {
823   Loop *L = getLoopForStmt(Stmt);
824   Value *OpZero = Inst->getOperand(0);
825   Value *OpOne = Inst->getOperand(1);
826 
827   Value *NewOpZero, *NewOpOne;
828   NewOpZero = getVectorValue(Stmt, OpZero, VectorMap, ScalarMaps, L);
829   NewOpOne = getVectorValue(Stmt, OpOne, VectorMap, ScalarMaps, L);
830 
831   Value *NewInst = Builder.CreateBinOp(Inst->getOpcode(), NewOpZero, NewOpOne,
832                                        Inst->getName() + "p_vec");
833   VectorMap[Inst] = NewInst;
834 }
835 
836 void VectorBlockGenerator::copyStore(
837     ScopStmt &Stmt, StoreInst *Store, ValueMapT &VectorMap,
838     VectorValueMapT &ScalarMaps, __isl_keep isl_id_to_ast_expr *NewAccesses) {
839   const MemoryAccess &Access = Stmt.getArrayAccessFor(Store);
840 
841   auto *Pointer = Store->getPointerOperand();
842   Value *Vector = getVectorValue(Stmt, Store->getValueOperand(), VectorMap,
843                                  ScalarMaps, getLoopForStmt(Stmt));
844 
845   // Make sure we have scalar values available to access the pointer to
846   // the data location.
847   extractScalarValues(Store, VectorMap, ScalarMaps);
848 
849   if (Access.isStrideOne(isl_map_copy(Schedule))) {
850     Type *VectorPtrType = getVectorPtrTy(Pointer, getVectorWidth());
851     Value *NewPointer = generateLocationAccessed(Stmt, Store, ScalarMaps[0],
852                                                  VLTS[0], NewAccesses);
853 
854     Value *VectorPtr =
855         Builder.CreateBitCast(NewPointer, VectorPtrType, "vector_ptr");
856     StoreInst *Store = Builder.CreateStore(Vector, VectorPtr);
857 
858     if (!Aligned)
859       Store->setAlignment(8);
860   } else {
861     for (unsigned i = 0; i < ScalarMaps.size(); i++) {
862       Value *Scalar = Builder.CreateExtractElement(Vector, Builder.getInt32(i));
863       Value *NewPointer = generateLocationAccessed(Stmt, Store, ScalarMaps[i],
864                                                    VLTS[i], NewAccesses);
865       Builder.CreateStore(Scalar, NewPointer);
866     }
867   }
868 }
869 
870 bool VectorBlockGenerator::hasVectorOperands(const Instruction *Inst,
871                                              ValueMapT &VectorMap) {
872   for (Value *Operand : Inst->operands())
873     if (VectorMap.count(Operand))
874       return true;
875   return false;
876 }
877 
878 bool VectorBlockGenerator::extractScalarValues(const Instruction *Inst,
879                                                ValueMapT &VectorMap,
880                                                VectorValueMapT &ScalarMaps) {
881   bool HasVectorOperand = false;
882   int VectorWidth = getVectorWidth();
883 
884   for (Value *Operand : Inst->operands()) {
885     ValueMapT::iterator VecOp = VectorMap.find(Operand);
886 
887     if (VecOp == VectorMap.end())
888       continue;
889 
890     HasVectorOperand = true;
891     Value *NewVector = VecOp->second;
892 
893     for (int i = 0; i < VectorWidth; ++i) {
894       ValueMapT &SM = ScalarMaps[i];
895 
896       // If there is one scalar extracted, all scalar elements should have
897       // already been extracted by the code here. So no need to check for the
898       // existance of all of them.
899       if (SM.count(Operand))
900         break;
901 
902       SM[Operand] =
903           Builder.CreateExtractElement(NewVector, Builder.getInt32(i));
904     }
905   }
906 
907   return HasVectorOperand;
908 }
909 
910 void VectorBlockGenerator::copyInstScalarized(
911     ScopStmt &Stmt, Instruction *Inst, ValueMapT &VectorMap,
912     VectorValueMapT &ScalarMaps, __isl_keep isl_id_to_ast_expr *NewAccesses) {
913   bool HasVectorOperand;
914   int VectorWidth = getVectorWidth();
915 
916   HasVectorOperand = extractScalarValues(Inst, VectorMap, ScalarMaps);
917 
918   for (int VectorLane = 0; VectorLane < getVectorWidth(); VectorLane++)
919     BlockGenerator::copyInstruction(Stmt, Inst, ScalarMaps[VectorLane],
920                                     VLTS[VectorLane], NewAccesses);
921 
922   if (!VectorType::isValidElementType(Inst->getType()) || !HasVectorOperand)
923     return;
924 
925   // Make the result available as vector value.
926   VectorType *VectorType = VectorType::get(Inst->getType(), VectorWidth);
927   Value *Vector = UndefValue::get(VectorType);
928 
929   for (int i = 0; i < VectorWidth; i++)
930     Vector = Builder.CreateInsertElement(Vector, ScalarMaps[i][Inst],
931                                          Builder.getInt32(i));
932 
933   VectorMap[Inst] = Vector;
934 }
935 
936 int VectorBlockGenerator::getVectorWidth() { return VLTS.size(); }
937 
938 void VectorBlockGenerator::copyInstruction(
939     ScopStmt &Stmt, Instruction *Inst, ValueMapT &VectorMap,
940     VectorValueMapT &ScalarMaps, __isl_keep isl_id_to_ast_expr *NewAccesses) {
941   // Terminator instructions control the control flow. They are explicitly
942   // expressed in the clast and do not need to be copied.
943   if (Inst->isTerminator())
944     return;
945 
946   if (canSyntheziseInStmt(Stmt, Inst))
947     return;
948 
949   if (auto *Load = dyn_cast<LoadInst>(Inst)) {
950     generateLoad(Stmt, Load, VectorMap, ScalarMaps, NewAccesses);
951     return;
952   }
953 
954   if (hasVectorOperands(Inst, VectorMap)) {
955     if (auto *Store = dyn_cast<StoreInst>(Inst)) {
956       copyStore(Stmt, Store, VectorMap, ScalarMaps, NewAccesses);
957       return;
958     }
959 
960     if (auto *Unary = dyn_cast<UnaryInstruction>(Inst)) {
961       copyUnaryInst(Stmt, Unary, VectorMap, ScalarMaps);
962       return;
963     }
964 
965     if (auto *Binary = dyn_cast<BinaryOperator>(Inst)) {
966       copyBinaryInst(Stmt, Binary, VectorMap, ScalarMaps);
967       return;
968     }
969 
970     // Falltrough: We generate scalar instructions, if we don't know how to
971     // generate vector code.
972   }
973 
974   copyInstScalarized(Stmt, Inst, VectorMap, ScalarMaps, NewAccesses);
975 }
976 
977 void VectorBlockGenerator::generateScalarVectorLoads(
978     ScopStmt &Stmt, ValueMapT &VectorBlockMap) {
979   for (MemoryAccess *MA : Stmt) {
980     if (MA->isArrayKind() || MA->isWrite())
981       continue;
982 
983     auto *Address = getOrCreateAlloca(*MA);
984     Type *VectorPtrType = getVectorPtrTy(Address, 1);
985     Value *VectorPtr = Builder.CreateBitCast(Address, VectorPtrType,
986                                              Address->getName() + "_p_vec_p");
987     auto *Val = Builder.CreateLoad(VectorPtr, Address->getName() + ".reload");
988     Constant *SplatVector = Constant::getNullValue(
989         VectorType::get(Builder.getInt32Ty(), getVectorWidth()));
990 
991     Value *VectorVal = Builder.CreateShuffleVector(
992         Val, Val, SplatVector, Address->getName() + "_p_splat");
993     VectorBlockMap[MA->getBaseAddr()] = VectorVal;
994   }
995 }
996 
997 void VectorBlockGenerator::verifyNoScalarStores(ScopStmt &Stmt) {
998   for (MemoryAccess *MA : Stmt) {
999     if (MA->isArrayKind() || MA->isRead())
1000       continue;
1001 
1002     llvm_unreachable("Scalar stores not expected in vector loop");
1003   }
1004 }
1005 
1006 void VectorBlockGenerator::copyStmt(
1007     ScopStmt &Stmt, __isl_keep isl_id_to_ast_expr *NewAccesses) {
1008   assert(Stmt.isBlockStmt() && "TODO: Only block statements can be copied by "
1009                                "the vector block generator");
1010 
1011   BasicBlock *BB = Stmt.getBasicBlock();
1012   BasicBlock *CopyBB = SplitBlock(Builder.GetInsertBlock(),
1013                                   &*Builder.GetInsertPoint(), &DT, &LI);
1014   CopyBB->setName("polly.stmt." + BB->getName());
1015   Builder.SetInsertPoint(&CopyBB->front());
1016 
1017   // Create two maps that store the mapping from the original instructions of
1018   // the old basic block to their copies in the new basic block. Those maps
1019   // are basic block local.
1020   //
1021   // As vector code generation is supported there is one map for scalar values
1022   // and one for vector values.
1023   //
1024   // In case we just do scalar code generation, the vectorMap is not used and
1025   // the scalarMap has just one dimension, which contains the mapping.
1026   //
1027   // In case vector code generation is done, an instruction may either appear
1028   // in the vector map once (as it is calculating >vectorwidth< values at a
1029   // time. Or (if the values are calculated using scalar operations), it
1030   // appears once in every dimension of the scalarMap.
1031   VectorValueMapT ScalarBlockMap(getVectorWidth());
1032   ValueMapT VectorBlockMap;
1033 
1034   generateScalarVectorLoads(Stmt, VectorBlockMap);
1035 
1036   for (Instruction &Inst : *BB)
1037     copyInstruction(Stmt, &Inst, VectorBlockMap, ScalarBlockMap, NewAccesses);
1038 
1039   verifyNoScalarStores(Stmt);
1040 }
1041 
1042 BasicBlock *RegionGenerator::repairDominance(BasicBlock *BB,
1043                                              BasicBlock *BBCopy) {
1044 
1045   BasicBlock *BBIDom = DT.getNode(BB)->getIDom()->getBlock();
1046   BasicBlock *BBCopyIDom = BlockMap.lookup(BBIDom);
1047 
1048   if (BBCopyIDom)
1049     DT.changeImmediateDominator(BBCopy, BBCopyIDom);
1050 
1051   return BBCopyIDom;
1052 }
1053 
1054 // This is to determine whether an llvm::Value (defined in @p BB) is usable when
1055 // leaving a subregion. The straight-forward DT.dominates(BB, R->getExitBlock())
1056 // does not work in cases where the exit block has edges from outside the
1057 // region. In that case the llvm::Value would never be usable in in the exit
1058 // block. The RegionGenerator however creates an new exit block ('ExitBBCopy')
1059 // for the subregion's exiting edges only. We need to determine whether an
1060 // llvm::Value is usable in there. We do this by checking whether it dominates
1061 // all exiting blocks individually.
1062 static bool isDominatingSubregionExit(const DominatorTree &DT, Region *R,
1063                                       BasicBlock *BB) {
1064   for (auto ExitingBB : predecessors(R->getExit())) {
1065     // Check for non-subregion incoming edges.
1066     if (!R->contains(ExitingBB))
1067       continue;
1068 
1069     if (!DT.dominates(BB, ExitingBB))
1070       return false;
1071   }
1072 
1073   return true;
1074 }
1075 
1076 // Find the direct dominator of the subregion's exit block if the subregion was
1077 // simplified.
1078 static BasicBlock *findExitDominator(DominatorTree &DT, Region *R) {
1079   BasicBlock *Common = nullptr;
1080   for (auto ExitingBB : predecessors(R->getExit())) {
1081     // Check for non-subregion incoming edges.
1082     if (!R->contains(ExitingBB))
1083       continue;
1084 
1085     // First exiting edge.
1086     if (!Common) {
1087       Common = ExitingBB;
1088       continue;
1089     }
1090 
1091     Common = DT.findNearestCommonDominator(Common, ExitingBB);
1092   }
1093 
1094   assert(Common && R->contains(Common));
1095   return Common;
1096 }
1097 
1098 void RegionGenerator::copyStmt(ScopStmt &Stmt, LoopToScevMapT &LTS,
1099                                isl_id_to_ast_expr *IdToAstExp) {
1100   assert(Stmt.isRegionStmt() &&
1101          "Only region statements can be copied by the region generator");
1102 
1103   // Forget all old mappings.
1104   BlockMap.clear();
1105   RegionMaps.clear();
1106   IncompletePHINodeMap.clear();
1107 
1108   // Collection of all values related to this subregion.
1109   ValueMapT ValueMap;
1110 
1111   // The region represented by the statement.
1112   Region *R = Stmt.getRegion();
1113 
1114   // Create a dedicated entry for the region where we can reload all demoted
1115   // inputs.
1116   BasicBlock *EntryBB = R->getEntry();
1117   BasicBlock *EntryBBCopy = SplitBlock(Builder.GetInsertBlock(),
1118                                        &*Builder.GetInsertPoint(), &DT, &LI);
1119   EntryBBCopy->setName("polly.stmt." + EntryBB->getName() + ".entry");
1120   Builder.SetInsertPoint(&EntryBBCopy->front());
1121 
1122   ValueMapT &EntryBBMap = RegionMaps[EntryBBCopy];
1123   generateScalarLoads(Stmt, EntryBBMap);
1124 
1125   for (auto PI = pred_begin(EntryBB), PE = pred_end(EntryBB); PI != PE; ++PI)
1126     if (!R->contains(*PI))
1127       BlockMap[*PI] = EntryBBCopy;
1128 
1129   // Iterate over all blocks in the region in a breadth-first search.
1130   std::deque<BasicBlock *> Blocks;
1131   SmallPtrSet<BasicBlock *, 8> SeenBlocks;
1132   Blocks.push_back(EntryBB);
1133   SeenBlocks.insert(EntryBB);
1134 
1135   while (!Blocks.empty()) {
1136     BasicBlock *BB = Blocks.front();
1137     Blocks.pop_front();
1138 
1139     // First split the block and update dominance information.
1140     BasicBlock *BBCopy = splitBB(BB);
1141     BasicBlock *BBCopyIDom = repairDominance(BB, BBCopy);
1142 
1143     // Get the mapping for this block and initialize it with either the scalar
1144     // loads from the generated entering block (which dominates all blocks of
1145     // this subregion) or the maps of the immediate dominator, if part of the
1146     // subregion. The latter necessarily includes the former.
1147     ValueMapT *InitBBMap;
1148     if (BBCopyIDom) {
1149       assert(RegionMaps.count(BBCopyIDom));
1150       InitBBMap = &RegionMaps[BBCopyIDom];
1151     } else
1152       InitBBMap = &EntryBBMap;
1153     auto Inserted = RegionMaps.insert(std::make_pair(BBCopy, *InitBBMap));
1154     ValueMapT &RegionMap = Inserted.first->second;
1155 
1156     // Copy the block with the BlockGenerator.
1157     Builder.SetInsertPoint(&BBCopy->front());
1158     copyBB(Stmt, BB, BBCopy, RegionMap, LTS, IdToAstExp);
1159 
1160     // In order to remap PHI nodes we store also basic block mappings.
1161     BlockMap[BB] = BBCopy;
1162 
1163     // Add values to incomplete PHI nodes waiting for this block to be copied.
1164     for (const PHINodePairTy &PHINodePair : IncompletePHINodeMap[BB])
1165       addOperandToPHI(Stmt, PHINodePair.first, PHINodePair.second, BB, LTS);
1166     IncompletePHINodeMap[BB].clear();
1167 
1168     // And continue with new successors inside the region.
1169     for (auto SI = succ_begin(BB), SE = succ_end(BB); SI != SE; SI++)
1170       if (R->contains(*SI) && SeenBlocks.insert(*SI).second)
1171         Blocks.push_back(*SI);
1172 
1173     // Remember value in case it is visible after this subregion.
1174     if (isDominatingSubregionExit(DT, R, BB))
1175       ValueMap.insert(RegionMap.begin(), RegionMap.end());
1176   }
1177 
1178   // Now create a new dedicated region exit block and add it to the region map.
1179   BasicBlock *ExitBBCopy = SplitBlock(Builder.GetInsertBlock(),
1180                                       &*Builder.GetInsertPoint(), &DT, &LI);
1181   ExitBBCopy->setName("polly.stmt." + R->getExit()->getName() + ".exit");
1182   BlockMap[R->getExit()] = ExitBBCopy;
1183 
1184   BasicBlock *ExitDomBBCopy = BlockMap.lookup(findExitDominator(DT, R));
1185   assert(ExitDomBBCopy && "Common exit dominator must be within region; at "
1186                           "least the entry node must match");
1187   DT.changeImmediateDominator(ExitBBCopy, ExitDomBBCopy);
1188 
1189   // As the block generator doesn't handle control flow we need to add the
1190   // region control flow by hand after all blocks have been copied.
1191   for (BasicBlock *BB : SeenBlocks) {
1192 
1193     BasicBlock *BBCopy = BlockMap[BB];
1194     TerminatorInst *TI = BB->getTerminator();
1195     if (isa<UnreachableInst>(TI)) {
1196       while (!BBCopy->empty())
1197         BBCopy->begin()->eraseFromParent();
1198       new UnreachableInst(BBCopy->getContext(), BBCopy);
1199       continue;
1200     }
1201 
1202     Instruction *BICopy = BBCopy->getTerminator();
1203 
1204     ValueMapT &RegionMap = RegionMaps[BBCopy];
1205     RegionMap.insert(BlockMap.begin(), BlockMap.end());
1206 
1207     Builder.SetInsertPoint(BICopy);
1208     copyInstScalar(Stmt, TI, RegionMap, LTS);
1209     BICopy->eraseFromParent();
1210   }
1211 
1212   // Add counting PHI nodes to all loops in the region that can be used as
1213   // replacement for SCEVs refering to the old loop.
1214   for (BasicBlock *BB : SeenBlocks) {
1215     Loop *L = LI.getLoopFor(BB);
1216     if (L == nullptr || L->getHeader() != BB || !R->contains(L))
1217       continue;
1218 
1219     BasicBlock *BBCopy = BlockMap[BB];
1220     Value *NullVal = Builder.getInt32(0);
1221     PHINode *LoopPHI =
1222         PHINode::Create(Builder.getInt32Ty(), 2, "polly.subregion.iv");
1223     Instruction *LoopPHIInc = BinaryOperator::CreateAdd(
1224         LoopPHI, Builder.getInt32(1), "polly.subregion.iv.inc");
1225     LoopPHI->insertBefore(&BBCopy->front());
1226     LoopPHIInc->insertBefore(BBCopy->getTerminator());
1227 
1228     for (auto *PredBB : make_range(pred_begin(BB), pred_end(BB))) {
1229       if (!R->contains(PredBB))
1230         continue;
1231       if (L->contains(PredBB))
1232         LoopPHI->addIncoming(LoopPHIInc, BlockMap[PredBB]);
1233       else
1234         LoopPHI->addIncoming(NullVal, BlockMap[PredBB]);
1235     }
1236 
1237     for (auto *PredBBCopy : make_range(pred_begin(BBCopy), pred_end(BBCopy)))
1238       if (LoopPHI->getBasicBlockIndex(PredBBCopy) < 0)
1239         LoopPHI->addIncoming(NullVal, PredBBCopy);
1240 
1241     LTS[L] = SE.getUnknown(LoopPHI);
1242   }
1243 
1244   // Continue generating code in the exit block.
1245   Builder.SetInsertPoint(&*ExitBBCopy->getFirstInsertionPt());
1246 
1247   // Write values visible to other statements.
1248   generateScalarStores(Stmt, LTS, ValueMap);
1249   BlockMap.clear();
1250   RegionMaps.clear();
1251   IncompletePHINodeMap.clear();
1252 }
1253 
1254 PHINode *RegionGenerator::buildExitPHI(MemoryAccess *MA, LoopToScevMapT &LTS,
1255                                        ValueMapT &BBMap, Loop *L) {
1256   ScopStmt *Stmt = MA->getStatement();
1257   Region *SubR = Stmt->getRegion();
1258   auto Incoming = MA->getIncoming();
1259 
1260   PollyIRBuilder::InsertPointGuard IPGuard(Builder);
1261   PHINode *OrigPHI = cast<PHINode>(MA->getAccessInstruction());
1262   BasicBlock *NewSubregionExit = Builder.GetInsertBlock();
1263 
1264   // This can happen if the subregion is simplified after the ScopStmts
1265   // have been created; simplification happens as part of CodeGeneration.
1266   if (OrigPHI->getParent() != SubR->getExit()) {
1267     BasicBlock *FormerExit = SubR->getExitingBlock();
1268     if (FormerExit)
1269       NewSubregionExit = BlockMap.lookup(FormerExit);
1270   }
1271 
1272   PHINode *NewPHI = PHINode::Create(OrigPHI->getType(), Incoming.size(),
1273                                     "polly." + OrigPHI->getName(),
1274                                     NewSubregionExit->getFirstNonPHI());
1275 
1276   // Add the incoming values to the PHI.
1277   for (auto &Pair : Incoming) {
1278     BasicBlock *OrigIncomingBlock = Pair.first;
1279     BasicBlock *NewIncomingBlock = BlockMap.lookup(OrigIncomingBlock);
1280     Builder.SetInsertPoint(NewIncomingBlock->getTerminator());
1281     assert(RegionMaps.count(NewIncomingBlock));
1282     ValueMapT *LocalBBMap = &RegionMaps[NewIncomingBlock];
1283 
1284     Value *OrigIncomingValue = Pair.second;
1285     Value *NewIncomingValue =
1286         getNewValue(*Stmt, OrigIncomingValue, *LocalBBMap, LTS, L);
1287     NewPHI->addIncoming(NewIncomingValue, NewIncomingBlock);
1288   }
1289 
1290   return NewPHI;
1291 }
1292 
1293 Value *RegionGenerator::getExitScalar(MemoryAccess *MA, LoopToScevMapT &LTS,
1294                                       ValueMapT &BBMap) {
1295   ScopStmt *Stmt = MA->getStatement();
1296 
1297   // TODO: Add some test cases that ensure this is really the right choice.
1298   Loop *L = LI.getLoopFor(Stmt->getRegion()->getExit());
1299 
1300   if (MA->isAnyPHIKind()) {
1301     auto Incoming = MA->getIncoming();
1302     assert(!Incoming.empty() &&
1303            "PHI WRITEs must have originate from at least one incoming block");
1304 
1305     // If there is only one incoming value, we do not need to create a PHI.
1306     if (Incoming.size() == 1) {
1307       Value *OldVal = Incoming[0].second;
1308       return getNewValue(*Stmt, OldVal, BBMap, LTS, L);
1309     }
1310 
1311     return buildExitPHI(MA, LTS, BBMap, L);
1312   }
1313 
1314   // MK_Value accesses leaving the subregion must dominate the exit block; just
1315   // pass the copied value
1316   Value *OldVal = MA->getAccessValue();
1317   return getNewValue(*Stmt, OldVal, BBMap, LTS, L);
1318 }
1319 
1320 void RegionGenerator::generateScalarStores(ScopStmt &Stmt, LoopToScevMapT &LTS,
1321                                            ValueMapT &BBMap) {
1322   assert(Stmt.getRegion() &&
1323          "Block statements need to use the generateScalarStores() "
1324          "function in the BlockGenerator");
1325 
1326   for (MemoryAccess *MA : Stmt) {
1327     if (MA->isArrayKind() || MA->isRead())
1328       continue;
1329 
1330     Value *NewVal = getExitScalar(MA, LTS, BBMap);
1331     Value *Address = getOrCreateAlloca(*MA);
1332     assert((!isa<Instruction>(NewVal) ||
1333             DT.dominates(cast<Instruction>(NewVal)->getParent(),
1334                          Builder.GetInsertBlock())) &&
1335            "Domination violation");
1336     assert((!isa<Instruction>(Address) ||
1337             DT.dominates(cast<Instruction>(Address)->getParent(),
1338                          Builder.GetInsertBlock())) &&
1339            "Domination violation");
1340     Builder.CreateStore(NewVal, Address);
1341   }
1342 }
1343 
1344 void RegionGenerator::addOperandToPHI(ScopStmt &Stmt, const PHINode *PHI,
1345                                       PHINode *PHICopy, BasicBlock *IncomingBB,
1346                                       LoopToScevMapT &LTS) {
1347   Region *StmtR = Stmt.getRegion();
1348 
1349   // If the incoming block was not yet copied mark this PHI as incomplete.
1350   // Once the block will be copied the incoming value will be added.
1351   BasicBlock *BBCopy = BlockMap[IncomingBB];
1352   if (!BBCopy) {
1353     assert(StmtR->contains(IncomingBB) &&
1354            "Bad incoming block for PHI in non-affine region");
1355     IncompletePHINodeMap[IncomingBB].push_back(std::make_pair(PHI, PHICopy));
1356     return;
1357   }
1358 
1359   Value *OpCopy = nullptr;
1360   if (StmtR->contains(IncomingBB)) {
1361     assert(RegionMaps.count(BBCopy) &&
1362            "Incoming PHI block did not have a BBMap");
1363     ValueMapT &BBCopyMap = RegionMaps[BBCopy];
1364 
1365     Value *Op = PHI->getIncomingValueForBlock(IncomingBB);
1366 
1367     // If the current insert block is different from the PHIs incoming block
1368     // change it, otherwise do not.
1369     auto IP = Builder.GetInsertPoint();
1370     if (IP->getParent() != BBCopy)
1371       Builder.SetInsertPoint(BBCopy->getTerminator());
1372     OpCopy = getNewValue(Stmt, Op, BBCopyMap, LTS, getLoopForStmt(Stmt));
1373     if (IP->getParent() != BBCopy)
1374       Builder.SetInsertPoint(&*IP);
1375   } else {
1376 
1377     if (PHICopy->getBasicBlockIndex(BBCopy) >= 0)
1378       return;
1379 
1380     Value *PHIOpAddr = getOrCreatePHIAlloca(const_cast<PHINode *>(PHI));
1381     OpCopy = new LoadInst(PHIOpAddr, PHIOpAddr->getName() + ".reload",
1382                           BlockMap[IncomingBB]->getTerminator());
1383   }
1384 
1385   assert(OpCopy && "Incoming PHI value was not copied properly");
1386   assert(BBCopy && "Incoming PHI block was not copied properly");
1387   PHICopy->addIncoming(OpCopy, BBCopy);
1388 }
1389 
1390 void RegionGenerator::copyPHIInstruction(ScopStmt &Stmt, PHINode *PHI,
1391                                          ValueMapT &BBMap,
1392                                          LoopToScevMapT &LTS) {
1393   unsigned NumIncoming = PHI->getNumIncomingValues();
1394   PHINode *PHICopy =
1395       Builder.CreatePHI(PHI->getType(), NumIncoming, "polly." + PHI->getName());
1396   PHICopy->moveBefore(PHICopy->getParent()->getFirstNonPHI());
1397   BBMap[PHI] = PHICopy;
1398 
1399   for (unsigned u = 0; u < NumIncoming; u++)
1400     addOperandToPHI(Stmt, PHI, PHICopy, PHI->getIncomingBlock(u), LTS);
1401 }
1402