1 //===--- BlockGenerators.cpp - Generate code for statements -----*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the BlockGenerator and VectorBlockGenerator classes, 11 // which generate sequential code and vectorized code for a polyhedral 12 // statement, respectively. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "polly/CodeGen/BlockGenerators.h" 17 #include "polly/CodeGen/CodeGeneration.h" 18 #include "polly/CodeGen/IslExprBuilder.h" 19 #include "polly/CodeGen/RuntimeDebugBuilder.h" 20 #include "polly/Options.h" 21 #include "polly/ScopInfo.h" 22 #include "polly/Support/GICHelper.h" 23 #include "polly/Support/SCEVValidator.h" 24 #include "polly/Support/ScopHelper.h" 25 #include "llvm/Analysis/LoopInfo.h" 26 #include "llvm/Analysis/RegionInfo.h" 27 #include "llvm/Analysis/ScalarEvolution.h" 28 #include "llvm/IR/IntrinsicInst.h" 29 #include "llvm/IR/Module.h" 30 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 31 #include "llvm/Transforms/Utils/Local.h" 32 #include "isl/aff.h" 33 #include "isl/ast.h" 34 #include "isl/ast_build.h" 35 #include "isl/set.h" 36 #include <deque> 37 38 using namespace llvm; 39 using namespace polly; 40 41 static cl::opt<bool> Aligned("enable-polly-aligned", 42 cl::desc("Assumed aligned memory accesses."), 43 cl::Hidden, cl::init(false), cl::ZeroOrMore, 44 cl::cat(PollyCategory)); 45 46 static cl::opt<bool> DebugPrinting( 47 "polly-codegen-add-debug-printing", 48 cl::desc("Add printf calls that show the values loaded/stored."), 49 cl::Hidden, cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory)); 50 51 BlockGenerator::BlockGenerator(PollyIRBuilder &B, LoopInfo &LI, 52 ScalarEvolution &SE, DominatorTree &DT, 53 ScalarAllocaMapTy &ScalarMap, 54 ScalarAllocaMapTy &PHIOpMap, 55 EscapeUsersAllocaMapTy &EscapeMap, 56 ValueMapT &GlobalMap, 57 IslExprBuilder *ExprBuilder) 58 : Builder(B), LI(LI), SE(SE), ExprBuilder(ExprBuilder), DT(DT), 59 EntryBB(nullptr), PHIOpMap(PHIOpMap), ScalarMap(ScalarMap), 60 EscapeMap(EscapeMap), GlobalMap(GlobalMap) {} 61 62 Value *BlockGenerator::trySynthesizeNewValue(ScopStmt &Stmt, Value *Old, 63 ValueMapT &BBMap, 64 LoopToScevMapT <S, 65 Loop *L) const { 66 if (!SE.isSCEVable(Old->getType())) 67 return nullptr; 68 69 const SCEV *Scev = SE.getSCEVAtScope(Old, L); 70 if (!Scev) 71 return nullptr; 72 73 if (isa<SCEVCouldNotCompute>(Scev)) 74 return nullptr; 75 76 const SCEV *NewScev = SCEVLoopAddRecRewriter::rewrite(Scev, LTS, SE); 77 ValueMapT VTV; 78 VTV.insert(BBMap.begin(), BBMap.end()); 79 VTV.insert(GlobalMap.begin(), GlobalMap.end()); 80 81 Scop &S = *Stmt.getParent(); 82 const DataLayout &DL = S.getFunction().getParent()->getDataLayout(); 83 auto IP = Builder.GetInsertPoint(); 84 85 assert(IP != Builder.GetInsertBlock()->end() && 86 "Only instructions can be insert points for SCEVExpander"); 87 Value *Expanded = 88 expandCodeFor(S, SE, DL, "polly", NewScev, Old->getType(), &*IP, &VTV); 89 90 BBMap[Old] = Expanded; 91 return Expanded; 92 } 93 94 Value *BlockGenerator::getNewValue(ScopStmt &Stmt, Value *Old, ValueMapT &BBMap, 95 LoopToScevMapT <S, Loop *L) const { 96 // Constants that do not reference any named value can always remain 97 // unchanged. Handle them early to avoid expensive map lookups. We do not take 98 // the fast-path for external constants which are referenced through globals 99 // as these may need to be rewritten when distributing code accross different 100 // LLVM modules. 101 if (isa<Constant>(Old) && !isa<GlobalValue>(Old)) 102 return Old; 103 104 // Inline asm is like a constant to us. 105 if (isa<InlineAsm>(Old)) 106 return Old; 107 108 if (Value *New = GlobalMap.lookup(Old)) { 109 if (Value *NewRemapped = GlobalMap.lookup(New)) 110 New = NewRemapped; 111 if (Old->getType()->getScalarSizeInBits() < 112 New->getType()->getScalarSizeInBits()) 113 New = Builder.CreateTruncOrBitCast(New, Old->getType()); 114 115 return New; 116 } 117 118 if (Value *New = BBMap.lookup(Old)) 119 return New; 120 121 if (Value *New = trySynthesizeNewValue(Stmt, Old, BBMap, LTS, L)) 122 return New; 123 124 // A scop-constant value defined by a global or a function parameter. 125 if (isa<GlobalValue>(Old) || isa<Argument>(Old)) 126 return Old; 127 128 // A scop-constant value defined by an instruction executed outside the scop. 129 if (const Instruction *Inst = dyn_cast<Instruction>(Old)) 130 if (!Stmt.getParent()->contains(Inst->getParent())) 131 return Old; 132 133 // The scalar dependence is neither available nor SCEVCodegenable. 134 llvm_unreachable("Unexpected scalar dependence in region!"); 135 return nullptr; 136 } 137 138 void BlockGenerator::copyInstScalar(ScopStmt &Stmt, Instruction *Inst, 139 ValueMapT &BBMap, LoopToScevMapT <S) { 140 // We do not generate debug intrinsics as we did not investigate how to 141 // copy them correctly. At the current state, they just crash the code 142 // generation as the meta-data operands are not correctly copied. 143 if (isa<DbgInfoIntrinsic>(Inst)) 144 return; 145 146 Instruction *NewInst = Inst->clone(); 147 148 // Replace old operands with the new ones. 149 for (Value *OldOperand : Inst->operands()) { 150 Value *NewOperand = 151 getNewValue(Stmt, OldOperand, BBMap, LTS, getLoopForStmt(Stmt)); 152 153 if (!NewOperand) { 154 assert(!isa<StoreInst>(NewInst) && 155 "Store instructions are always needed!"); 156 delete NewInst; 157 return; 158 } 159 160 NewInst->replaceUsesOfWith(OldOperand, NewOperand); 161 } 162 163 Builder.Insert(NewInst); 164 BBMap[Inst] = NewInst; 165 166 if (!NewInst->getType()->isVoidTy()) 167 NewInst->setName("p_" + Inst->getName()); 168 } 169 170 Value * 171 BlockGenerator::generateLocationAccessed(ScopStmt &Stmt, MemAccInst Inst, 172 ValueMapT &BBMap, LoopToScevMapT <S, 173 isl_id_to_ast_expr *NewAccesses) { 174 const MemoryAccess &MA = Stmt.getArrayAccessFor(Inst); 175 176 isl_ast_expr *AccessExpr = isl_id_to_ast_expr_get(NewAccesses, MA.getId()); 177 178 if (AccessExpr) { 179 AccessExpr = isl_ast_expr_address_of(AccessExpr); 180 auto Address = ExprBuilder->create(AccessExpr); 181 182 // Cast the address of this memory access to a pointer type that has the 183 // same element type as the original access, but uses the address space of 184 // the newly generated pointer. 185 auto OldPtrTy = MA.getAccessValue()->getType()->getPointerTo(); 186 auto NewPtrTy = Address->getType(); 187 OldPtrTy = PointerType::get(OldPtrTy->getElementType(), 188 NewPtrTy->getPointerAddressSpace()); 189 190 if (OldPtrTy != NewPtrTy) 191 Address = Builder.CreateBitOrPointerCast(Address, OldPtrTy); 192 return Address; 193 } 194 195 return getNewValue(Stmt, Inst.getPointerOperand(), BBMap, LTS, 196 getLoopForStmt(Stmt)); 197 } 198 199 Loop *BlockGenerator::getLoopForStmt(const ScopStmt &Stmt) const { 200 auto *StmtBB = Stmt.getEntryBlock(); 201 return LI.getLoopFor(StmtBB); 202 } 203 204 Value *BlockGenerator::generateScalarLoad(ScopStmt &Stmt, LoadInst *Load, 205 ValueMapT &BBMap, LoopToScevMapT <S, 206 isl_id_to_ast_expr *NewAccesses) { 207 if (Value *PreloadLoad = GlobalMap.lookup(Load)) 208 return PreloadLoad; 209 210 Value *NewPointer = 211 generateLocationAccessed(Stmt, Load, BBMap, LTS, NewAccesses); 212 Value *ScalarLoad = Builder.CreateAlignedLoad( 213 NewPointer, Load->getAlignment(), Load->getName() + "_p_scalar_"); 214 215 if (DebugPrinting) 216 RuntimeDebugBuilder::createCPUPrinter(Builder, "Load from ", NewPointer, 217 ": ", ScalarLoad, "\n"); 218 219 return ScalarLoad; 220 } 221 222 void BlockGenerator::generateScalarStore(ScopStmt &Stmt, StoreInst *Store, 223 ValueMapT &BBMap, LoopToScevMapT <S, 224 isl_id_to_ast_expr *NewAccesses) { 225 Value *NewPointer = 226 generateLocationAccessed(Stmt, Store, BBMap, LTS, NewAccesses); 227 Value *ValueOperand = getNewValue(Stmt, Store->getValueOperand(), BBMap, LTS, 228 getLoopForStmt(Stmt)); 229 230 if (DebugPrinting) 231 RuntimeDebugBuilder::createCPUPrinter(Builder, "Store to ", NewPointer, 232 ": ", ValueOperand, "\n"); 233 234 Builder.CreateAlignedStore(ValueOperand, NewPointer, Store->getAlignment()); 235 } 236 237 bool BlockGenerator::canSyntheziseInStmt(ScopStmt &Stmt, Instruction *Inst) { 238 Loop *L = getLoopForStmt(Stmt); 239 return (Stmt.isBlockStmt() || !Stmt.getRegion()->contains(L)) && 240 canSynthesize(Inst, *Stmt.getParent(), &LI, &SE, L); 241 } 242 243 void BlockGenerator::copyInstruction(ScopStmt &Stmt, Instruction *Inst, 244 ValueMapT &BBMap, LoopToScevMapT <S, 245 isl_id_to_ast_expr *NewAccesses) { 246 // Terminator instructions control the control flow. They are explicitly 247 // expressed in the clast and do not need to be copied. 248 if (Inst->isTerminator()) 249 return; 250 251 // Synthesizable statements will be generated on-demand. 252 if (canSyntheziseInStmt(Stmt, Inst)) 253 return; 254 255 if (auto *Load = dyn_cast<LoadInst>(Inst)) { 256 Value *NewLoad = generateScalarLoad(Stmt, Load, BBMap, LTS, NewAccesses); 257 // Compute NewLoad before its insertion in BBMap to make the insertion 258 // deterministic. 259 BBMap[Load] = NewLoad; 260 return; 261 } 262 263 if (auto *Store = dyn_cast<StoreInst>(Inst)) { 264 generateScalarStore(Stmt, Store, BBMap, LTS, NewAccesses); 265 return; 266 } 267 268 if (auto *PHI = dyn_cast<PHINode>(Inst)) { 269 copyPHIInstruction(Stmt, PHI, BBMap, LTS); 270 return; 271 } 272 273 // Skip some special intrinsics for which we do not adjust the semantics to 274 // the new schedule. All others are handled like every other instruction. 275 if (isIgnoredIntrinsic(Inst)) 276 return; 277 278 copyInstScalar(Stmt, Inst, BBMap, LTS); 279 } 280 281 void BlockGenerator::removeDeadInstructions(BasicBlock *BB, ValueMapT &BBMap) { 282 for (auto I = BB->rbegin(), E = BB->rend(); I != E; I++) { 283 Instruction *Inst = &*I; 284 Value *NewVal = BBMap[Inst]; 285 286 if (!NewVal) 287 continue; 288 289 Instruction *NewInst = dyn_cast<Instruction>(NewVal); 290 291 if (!NewInst) 292 continue; 293 294 if (!isInstructionTriviallyDead(NewInst)) 295 continue; 296 297 BBMap.erase(Inst); 298 NewInst->eraseFromParent(); 299 } 300 } 301 302 void BlockGenerator::copyStmt(ScopStmt &Stmt, LoopToScevMapT <S, 303 isl_id_to_ast_expr *NewAccesses) { 304 assert(Stmt.isBlockStmt() && 305 "Only block statements can be copied by the block generator"); 306 307 ValueMapT BBMap; 308 309 BasicBlock *BB = Stmt.getBasicBlock(); 310 copyBB(Stmt, BB, BBMap, LTS, NewAccesses); 311 removeDeadInstructions(BB, BBMap); 312 } 313 314 BasicBlock *BlockGenerator::splitBB(BasicBlock *BB) { 315 BasicBlock *CopyBB = SplitBlock(Builder.GetInsertBlock(), 316 &*Builder.GetInsertPoint(), &DT, &LI); 317 CopyBB->setName("polly.stmt." + BB->getName()); 318 return CopyBB; 319 } 320 321 BasicBlock *BlockGenerator::copyBB(ScopStmt &Stmt, BasicBlock *BB, 322 ValueMapT &BBMap, LoopToScevMapT <S, 323 isl_id_to_ast_expr *NewAccesses) { 324 BasicBlock *CopyBB = splitBB(BB); 325 Builder.SetInsertPoint(&CopyBB->front()); 326 generateScalarLoads(Stmt, BBMap); 327 328 copyBB(Stmt, BB, CopyBB, BBMap, LTS, NewAccesses); 329 330 // After a basic block was copied store all scalars that escape this block in 331 // their alloca. 332 generateScalarStores(Stmt, LTS, BBMap); 333 return CopyBB; 334 } 335 336 void BlockGenerator::copyBB(ScopStmt &Stmt, BasicBlock *BB, BasicBlock *CopyBB, 337 ValueMapT &BBMap, LoopToScevMapT <S, 338 isl_id_to_ast_expr *NewAccesses) { 339 EntryBB = &CopyBB->getParent()->getEntryBlock(); 340 341 for (Instruction &Inst : *BB) 342 copyInstruction(Stmt, &Inst, BBMap, LTS, NewAccesses); 343 } 344 345 Value *BlockGenerator::getOrCreateAlloca(Value *ScalarBase, 346 ScalarAllocaMapTy &Map, 347 const char *NameExt) { 348 // If no alloca was found create one and insert it in the entry block. 349 if (!Map.count(ScalarBase)) { 350 auto *Ty = ScalarBase->getType(); 351 auto NewAddr = new AllocaInst(Ty, ScalarBase->getName() + NameExt); 352 EntryBB = &Builder.GetInsertBlock()->getParent()->getEntryBlock(); 353 NewAddr->insertBefore(&*EntryBB->getFirstInsertionPt()); 354 Map[ScalarBase] = NewAddr; 355 } 356 357 auto Addr = Map[ScalarBase]; 358 359 if (auto NewAddr = GlobalMap.lookup(Addr)) 360 return NewAddr; 361 362 return Addr; 363 } 364 365 Value *BlockGenerator::getOrCreateAlloca(const MemoryAccess &Access) { 366 if (Access.isPHIKind()) 367 return getOrCreatePHIAlloca(Access.getBaseAddr()); 368 else 369 return getOrCreateScalarAlloca(Access.getBaseAddr()); 370 } 371 372 Value *BlockGenerator::getOrCreateAlloca(const ScopArrayInfo *Array) { 373 if (Array->isPHIKind()) 374 return getOrCreatePHIAlloca(Array->getBasePtr()); 375 else 376 return getOrCreateScalarAlloca(Array->getBasePtr()); 377 } 378 379 Value *BlockGenerator::getOrCreateScalarAlloca(Value *ScalarBase) { 380 return getOrCreateAlloca(ScalarBase, ScalarMap, ".s2a"); 381 } 382 383 Value *BlockGenerator::getOrCreatePHIAlloca(Value *ScalarBase) { 384 return getOrCreateAlloca(ScalarBase, PHIOpMap, ".phiops"); 385 } 386 387 void BlockGenerator::handleOutsideUsers(const Scop &S, Instruction *Inst) { 388 // If there are escape users we get the alloca for this instruction and put it 389 // in the EscapeMap for later finalization. Lastly, if the instruction was 390 // copied multiple times we already did this and can exit. 391 if (EscapeMap.count(Inst)) 392 return; 393 394 EscapeUserVectorTy EscapeUsers; 395 for (User *U : Inst->users()) { 396 397 // Non-instruction user will never escape. 398 Instruction *UI = dyn_cast<Instruction>(U); 399 if (!UI) 400 continue; 401 402 if (S.contains(UI)) 403 continue; 404 405 EscapeUsers.push_back(UI); 406 } 407 408 // Exit if no escape uses were found. 409 if (EscapeUsers.empty()) 410 return; 411 412 // Get or create an escape alloca for this instruction. 413 auto *ScalarAddr = getOrCreateScalarAlloca(Inst); 414 415 // Remember that this instruction has escape uses and the escape alloca. 416 EscapeMap[Inst] = std::make_pair(ScalarAddr, std::move(EscapeUsers)); 417 } 418 419 void BlockGenerator::generateScalarLoads(ScopStmt &Stmt, ValueMapT &BBMap) { 420 for (MemoryAccess *MA : Stmt) { 421 if (MA->isArrayKind() || MA->isWrite()) 422 continue; 423 424 auto *Address = getOrCreateAlloca(*MA); 425 assert((!isa<Instruction>(Address) || 426 DT.dominates(cast<Instruction>(Address)->getParent(), 427 Builder.GetInsertBlock())) && 428 "Domination violation"); 429 BBMap[MA->getBaseAddr()] = 430 Builder.CreateLoad(Address, Address->getName() + ".reload"); 431 } 432 } 433 434 void BlockGenerator::generateScalarStores(ScopStmt &Stmt, LoopToScevMapT <S, 435 ValueMapT &BBMap) { 436 Loop *L = LI.getLoopFor(Stmt.getBasicBlock()); 437 438 assert(Stmt.isBlockStmt() && "Region statements need to use the " 439 "generateScalarStores() function in the " 440 "RegionGenerator"); 441 442 for (MemoryAccess *MA : Stmt) { 443 if (MA->isArrayKind() || MA->isRead()) 444 continue; 445 446 Value *Val = MA->getAccessValue(); 447 if (MA->isAnyPHIKind()) { 448 assert(MA->getIncoming().size() >= 1 && 449 "Block statements have exactly one exiting block, or multiple but " 450 "with same incoming block and value"); 451 assert(std::all_of(MA->getIncoming().begin(), MA->getIncoming().end(), 452 [&](std::pair<BasicBlock *, Value *> p) -> bool { 453 return p.first == Stmt.getBasicBlock(); 454 }) && 455 "Incoming block must be statement's block"); 456 Val = MA->getIncoming()[0].second; 457 } 458 auto *Address = getOrCreateAlloca(*MA); 459 460 Val = getNewValue(Stmt, Val, BBMap, LTS, L); 461 assert((!isa<Instruction>(Val) || 462 DT.dominates(cast<Instruction>(Val)->getParent(), 463 Builder.GetInsertBlock())) && 464 "Domination violation"); 465 assert((!isa<Instruction>(Address) || 466 DT.dominates(cast<Instruction>(Address)->getParent(), 467 Builder.GetInsertBlock())) && 468 "Domination violation"); 469 Builder.CreateStore(Val, Address); 470 } 471 } 472 473 void BlockGenerator::createScalarInitialization(Scop &S) { 474 BasicBlock *ExitBB = S.getExit(); 475 476 // The split block __just before__ the region and optimized region. 477 BasicBlock *SplitBB = S.getEnteringBlock(); 478 BranchInst *SplitBBTerm = cast<BranchInst>(SplitBB->getTerminator()); 479 assert(SplitBBTerm->getNumSuccessors() == 2 && "Bad region entering block!"); 480 481 // Get the start block of the __optimized__ region. 482 BasicBlock *StartBB = SplitBBTerm->getSuccessor(0); 483 if (StartBB == S.getEntry()) 484 StartBB = SplitBBTerm->getSuccessor(1); 485 486 Builder.SetInsertPoint(StartBB->getTerminator()); 487 488 for (auto &Pair : S.arrays()) { 489 auto &Array = Pair.second; 490 if (Array->getNumberOfDimensions() != 0) 491 continue; 492 if (Array->isPHIKind()) { 493 // For PHI nodes, the only values we need to store are the ones that 494 // reach the PHI node from outside the region. In general there should 495 // only be one such incoming edge and this edge should enter through 496 // 'SplitBB'. 497 auto PHI = cast<PHINode>(Array->getBasePtr()); 498 499 for (auto BI = PHI->block_begin(), BE = PHI->block_end(); BI != BE; BI++) 500 if (!S.contains(*BI) && *BI != SplitBB) 501 llvm_unreachable("Incoming edges from outside the scop should always " 502 "come from SplitBB"); 503 504 int Idx = PHI->getBasicBlockIndex(SplitBB); 505 if (Idx < 0) 506 continue; 507 508 Value *ScalarValue = PHI->getIncomingValue(Idx); 509 510 Builder.CreateStore(ScalarValue, getOrCreatePHIAlloca(PHI)); 511 continue; 512 } 513 514 auto *Inst = dyn_cast<Instruction>(Array->getBasePtr()); 515 516 if (Inst && S.contains(Inst)) 517 continue; 518 519 // PHI nodes that are not marked as such in their SAI object are either exit 520 // PHI nodes we model as common scalars but without initialization, or 521 // incoming phi nodes that need to be initialized. Check if the first is the 522 // case for Inst and do not create and initialize memory if so. 523 if (auto *PHI = dyn_cast_or_null<PHINode>(Inst)) 524 if (!S.hasSingleExitEdge() && PHI->getBasicBlockIndex(ExitBB) >= 0) 525 continue; 526 527 Builder.CreateStore(Array->getBasePtr(), 528 getOrCreateScalarAlloca(Array->getBasePtr())); 529 } 530 } 531 532 void BlockGenerator::createScalarFinalization(Scop &S) { 533 // The exit block of the __unoptimized__ region. 534 BasicBlock *ExitBB = S.getExitingBlock(); 535 // The merge block __just after__ the region and the optimized region. 536 BasicBlock *MergeBB = S.getExit(); 537 538 // The exit block of the __optimized__ region. 539 BasicBlock *OptExitBB = *(pred_begin(MergeBB)); 540 if (OptExitBB == ExitBB) 541 OptExitBB = *(++pred_begin(MergeBB)); 542 543 Builder.SetInsertPoint(OptExitBB->getTerminator()); 544 for (const auto &EscapeMapping : EscapeMap) { 545 // Extract the escaping instruction and the escaping users as well as the 546 // alloca the instruction was demoted to. 547 Instruction *EscapeInst = EscapeMapping.getFirst(); 548 const auto &EscapeMappingValue = EscapeMapping.getSecond(); 549 const EscapeUserVectorTy &EscapeUsers = EscapeMappingValue.second; 550 Value *ScalarAddr = EscapeMappingValue.first; 551 552 // Reload the demoted instruction in the optimized version of the SCoP. 553 Value *EscapeInstReload = 554 Builder.CreateLoad(ScalarAddr, EscapeInst->getName() + ".final_reload"); 555 EscapeInstReload = 556 Builder.CreateBitOrPointerCast(EscapeInstReload, EscapeInst->getType()); 557 558 // Create the merge PHI that merges the optimized and unoptimized version. 559 PHINode *MergePHI = PHINode::Create(EscapeInst->getType(), 2, 560 EscapeInst->getName() + ".merge"); 561 MergePHI->insertBefore(&*MergeBB->getFirstInsertionPt()); 562 563 // Add the respective values to the merge PHI. 564 MergePHI->addIncoming(EscapeInstReload, OptExitBB); 565 MergePHI->addIncoming(EscapeInst, ExitBB); 566 567 // The information of scalar evolution about the escaping instruction needs 568 // to be revoked so the new merged instruction will be used. 569 if (SE.isSCEVable(EscapeInst->getType())) 570 SE.forgetValue(EscapeInst); 571 572 // Replace all uses of the demoted instruction with the merge PHI. 573 for (Instruction *EUser : EscapeUsers) 574 EUser->replaceUsesOfWith(EscapeInst, MergePHI); 575 } 576 } 577 578 void BlockGenerator::findOutsideUsers(Scop &S) { 579 for (auto &Pair : S.arrays()) { 580 auto &Array = Pair.second; 581 582 if (Array->getNumberOfDimensions() != 0) 583 continue; 584 585 if (Array->isPHIKind()) 586 continue; 587 588 auto *Inst = dyn_cast<Instruction>(Array->getBasePtr()); 589 590 if (!Inst) 591 continue; 592 593 // Scop invariant hoisting moves some of the base pointers out of the scop. 594 // We can ignore these, as the invariant load hoisting already registers the 595 // relevant outside users. 596 if (!S.contains(Inst)) 597 continue; 598 599 handleOutsideUsers(S, Inst); 600 } 601 } 602 603 void BlockGenerator::createExitPHINodeMerges(Scop &S) { 604 if (S.hasSingleExitEdge()) 605 return; 606 607 auto *ExitBB = S.getExitingBlock(); 608 auto *MergeBB = S.getExit(); 609 auto *AfterMergeBB = MergeBB->getSingleSuccessor(); 610 BasicBlock *OptExitBB = *(pred_begin(MergeBB)); 611 if (OptExitBB == ExitBB) 612 OptExitBB = *(++pred_begin(MergeBB)); 613 614 Builder.SetInsertPoint(OptExitBB->getTerminator()); 615 616 for (auto &Pair : S.arrays()) { 617 auto &SAI = Pair.second; 618 auto *Val = SAI->getBasePtr(); 619 620 // Only Value-like scalars need a merge PHI. Exit block PHIs receive either 621 // the original PHI's value or the reloaded incoming values from the 622 // generated code. An llvm::Value is merged between the original code's 623 // value or the generated one. 624 if (!SAI->isValueKind() && !SAI->isExitPHIKind()) 625 continue; 626 627 PHINode *PHI = dyn_cast<PHINode>(Val); 628 if (!PHI) 629 continue; 630 631 if (PHI->getParent() != AfterMergeBB) 632 continue; 633 634 std::string Name = PHI->getName(); 635 Value *ScalarAddr = getOrCreateScalarAlloca(PHI); 636 Value *Reload = Builder.CreateLoad(ScalarAddr, Name + ".ph.final_reload"); 637 Reload = Builder.CreateBitOrPointerCast(Reload, PHI->getType()); 638 Value *OriginalValue = PHI->getIncomingValueForBlock(MergeBB); 639 assert((!isa<Instruction>(OriginalValue) || 640 cast<Instruction>(OriginalValue)->getParent() != MergeBB) && 641 "Original value must no be one we just generated."); 642 auto *MergePHI = PHINode::Create(PHI->getType(), 2, Name + ".ph.merge"); 643 MergePHI->insertBefore(&*MergeBB->getFirstInsertionPt()); 644 MergePHI->addIncoming(Reload, OptExitBB); 645 MergePHI->addIncoming(OriginalValue, ExitBB); 646 int Idx = PHI->getBasicBlockIndex(MergeBB); 647 PHI->setIncomingValue(Idx, MergePHI); 648 } 649 } 650 651 void BlockGenerator::finalizeSCoP(Scop &S) { 652 findOutsideUsers(S); 653 createScalarInitialization(S); 654 createExitPHINodeMerges(S); 655 createScalarFinalization(S); 656 } 657 658 VectorBlockGenerator::VectorBlockGenerator(BlockGenerator &BlockGen, 659 std::vector<LoopToScevMapT> &VLTS, 660 isl_map *Schedule) 661 : BlockGenerator(BlockGen), VLTS(VLTS), Schedule(Schedule) { 662 assert(Schedule && "No statement domain provided"); 663 } 664 665 Value *VectorBlockGenerator::getVectorValue(ScopStmt &Stmt, Value *Old, 666 ValueMapT &VectorMap, 667 VectorValueMapT &ScalarMaps, 668 Loop *L) { 669 if (Value *NewValue = VectorMap.lookup(Old)) 670 return NewValue; 671 672 int Width = getVectorWidth(); 673 674 Value *Vector = UndefValue::get(VectorType::get(Old->getType(), Width)); 675 676 for (int Lane = 0; Lane < Width; Lane++) 677 Vector = Builder.CreateInsertElement( 678 Vector, getNewValue(Stmt, Old, ScalarMaps[Lane], VLTS[Lane], L), 679 Builder.getInt32(Lane)); 680 681 VectorMap[Old] = Vector; 682 683 return Vector; 684 } 685 686 Type *VectorBlockGenerator::getVectorPtrTy(const Value *Val, int Width) { 687 PointerType *PointerTy = dyn_cast<PointerType>(Val->getType()); 688 assert(PointerTy && "PointerType expected"); 689 690 Type *ScalarType = PointerTy->getElementType(); 691 VectorType *VectorType = VectorType::get(ScalarType, Width); 692 693 return PointerType::getUnqual(VectorType); 694 } 695 696 Value *VectorBlockGenerator::generateStrideOneLoad( 697 ScopStmt &Stmt, LoadInst *Load, VectorValueMapT &ScalarMaps, 698 __isl_keep isl_id_to_ast_expr *NewAccesses, bool NegativeStride = false) { 699 unsigned VectorWidth = getVectorWidth(); 700 auto *Pointer = Load->getPointerOperand(); 701 Type *VectorPtrType = getVectorPtrTy(Pointer, VectorWidth); 702 unsigned Offset = NegativeStride ? VectorWidth - 1 : 0; 703 704 Value *NewPointer = generateLocationAccessed(Stmt, Load, ScalarMaps[Offset], 705 VLTS[Offset], NewAccesses); 706 Value *VectorPtr = 707 Builder.CreateBitCast(NewPointer, VectorPtrType, "vector_ptr"); 708 LoadInst *VecLoad = 709 Builder.CreateLoad(VectorPtr, Load->getName() + "_p_vec_full"); 710 if (!Aligned) 711 VecLoad->setAlignment(8); 712 713 if (NegativeStride) { 714 SmallVector<Constant *, 16> Indices; 715 for (int i = VectorWidth - 1; i >= 0; i--) 716 Indices.push_back(ConstantInt::get(Builder.getInt32Ty(), i)); 717 Constant *SV = llvm::ConstantVector::get(Indices); 718 Value *RevVecLoad = Builder.CreateShuffleVector( 719 VecLoad, VecLoad, SV, Load->getName() + "_reverse"); 720 return RevVecLoad; 721 } 722 723 return VecLoad; 724 } 725 726 Value *VectorBlockGenerator::generateStrideZeroLoad( 727 ScopStmt &Stmt, LoadInst *Load, ValueMapT &BBMap, 728 __isl_keep isl_id_to_ast_expr *NewAccesses) { 729 auto *Pointer = Load->getPointerOperand(); 730 Type *VectorPtrType = getVectorPtrTy(Pointer, 1); 731 Value *NewPointer = 732 generateLocationAccessed(Stmt, Load, BBMap, VLTS[0], NewAccesses); 733 Value *VectorPtr = Builder.CreateBitCast(NewPointer, VectorPtrType, 734 Load->getName() + "_p_vec_p"); 735 LoadInst *ScalarLoad = 736 Builder.CreateLoad(VectorPtr, Load->getName() + "_p_splat_one"); 737 738 if (!Aligned) 739 ScalarLoad->setAlignment(8); 740 741 Constant *SplatVector = Constant::getNullValue( 742 VectorType::get(Builder.getInt32Ty(), getVectorWidth())); 743 744 Value *VectorLoad = Builder.CreateShuffleVector( 745 ScalarLoad, ScalarLoad, SplatVector, Load->getName() + "_p_splat"); 746 return VectorLoad; 747 } 748 749 Value *VectorBlockGenerator::generateUnknownStrideLoad( 750 ScopStmt &Stmt, LoadInst *Load, VectorValueMapT &ScalarMaps, 751 __isl_keep isl_id_to_ast_expr *NewAccesses) { 752 int VectorWidth = getVectorWidth(); 753 auto *Pointer = Load->getPointerOperand(); 754 VectorType *VectorType = VectorType::get( 755 dyn_cast<PointerType>(Pointer->getType())->getElementType(), VectorWidth); 756 757 Value *Vector = UndefValue::get(VectorType); 758 759 for (int i = 0; i < VectorWidth; i++) { 760 Value *NewPointer = generateLocationAccessed(Stmt, Load, ScalarMaps[i], 761 VLTS[i], NewAccesses); 762 Value *ScalarLoad = 763 Builder.CreateLoad(NewPointer, Load->getName() + "_p_scalar_"); 764 Vector = Builder.CreateInsertElement( 765 Vector, ScalarLoad, Builder.getInt32(i), Load->getName() + "_p_vec_"); 766 } 767 768 return Vector; 769 } 770 771 void VectorBlockGenerator::generateLoad( 772 ScopStmt &Stmt, LoadInst *Load, ValueMapT &VectorMap, 773 VectorValueMapT &ScalarMaps, __isl_keep isl_id_to_ast_expr *NewAccesses) { 774 if (Value *PreloadLoad = GlobalMap.lookup(Load)) { 775 VectorMap[Load] = Builder.CreateVectorSplat(getVectorWidth(), PreloadLoad, 776 Load->getName() + "_p"); 777 return; 778 } 779 780 if (!VectorType::isValidElementType(Load->getType())) { 781 for (int i = 0; i < getVectorWidth(); i++) 782 ScalarMaps[i][Load] = 783 generateScalarLoad(Stmt, Load, ScalarMaps[i], VLTS[i], NewAccesses); 784 return; 785 } 786 787 const MemoryAccess &Access = Stmt.getArrayAccessFor(Load); 788 789 // Make sure we have scalar values available to access the pointer to 790 // the data location. 791 extractScalarValues(Load, VectorMap, ScalarMaps); 792 793 Value *NewLoad; 794 if (Access.isStrideZero(isl_map_copy(Schedule))) 795 NewLoad = generateStrideZeroLoad(Stmt, Load, ScalarMaps[0], NewAccesses); 796 else if (Access.isStrideOne(isl_map_copy(Schedule))) 797 NewLoad = generateStrideOneLoad(Stmt, Load, ScalarMaps, NewAccesses); 798 else if (Access.isStrideX(isl_map_copy(Schedule), -1)) 799 NewLoad = generateStrideOneLoad(Stmt, Load, ScalarMaps, NewAccesses, true); 800 else 801 NewLoad = generateUnknownStrideLoad(Stmt, Load, ScalarMaps, NewAccesses); 802 803 VectorMap[Load] = NewLoad; 804 } 805 806 void VectorBlockGenerator::copyUnaryInst(ScopStmt &Stmt, UnaryInstruction *Inst, 807 ValueMapT &VectorMap, 808 VectorValueMapT &ScalarMaps) { 809 int VectorWidth = getVectorWidth(); 810 Value *NewOperand = getVectorValue(Stmt, Inst->getOperand(0), VectorMap, 811 ScalarMaps, getLoopForStmt(Stmt)); 812 813 assert(isa<CastInst>(Inst) && "Can not generate vector code for instruction"); 814 815 const CastInst *Cast = dyn_cast<CastInst>(Inst); 816 VectorType *DestType = VectorType::get(Inst->getType(), VectorWidth); 817 VectorMap[Inst] = Builder.CreateCast(Cast->getOpcode(), NewOperand, DestType); 818 } 819 820 void VectorBlockGenerator::copyBinaryInst(ScopStmt &Stmt, BinaryOperator *Inst, 821 ValueMapT &VectorMap, 822 VectorValueMapT &ScalarMaps) { 823 Loop *L = getLoopForStmt(Stmt); 824 Value *OpZero = Inst->getOperand(0); 825 Value *OpOne = Inst->getOperand(1); 826 827 Value *NewOpZero, *NewOpOne; 828 NewOpZero = getVectorValue(Stmt, OpZero, VectorMap, ScalarMaps, L); 829 NewOpOne = getVectorValue(Stmt, OpOne, VectorMap, ScalarMaps, L); 830 831 Value *NewInst = Builder.CreateBinOp(Inst->getOpcode(), NewOpZero, NewOpOne, 832 Inst->getName() + "p_vec"); 833 VectorMap[Inst] = NewInst; 834 } 835 836 void VectorBlockGenerator::copyStore( 837 ScopStmt &Stmt, StoreInst *Store, ValueMapT &VectorMap, 838 VectorValueMapT &ScalarMaps, __isl_keep isl_id_to_ast_expr *NewAccesses) { 839 const MemoryAccess &Access = Stmt.getArrayAccessFor(Store); 840 841 auto *Pointer = Store->getPointerOperand(); 842 Value *Vector = getVectorValue(Stmt, Store->getValueOperand(), VectorMap, 843 ScalarMaps, getLoopForStmt(Stmt)); 844 845 // Make sure we have scalar values available to access the pointer to 846 // the data location. 847 extractScalarValues(Store, VectorMap, ScalarMaps); 848 849 if (Access.isStrideOne(isl_map_copy(Schedule))) { 850 Type *VectorPtrType = getVectorPtrTy(Pointer, getVectorWidth()); 851 Value *NewPointer = generateLocationAccessed(Stmt, Store, ScalarMaps[0], 852 VLTS[0], NewAccesses); 853 854 Value *VectorPtr = 855 Builder.CreateBitCast(NewPointer, VectorPtrType, "vector_ptr"); 856 StoreInst *Store = Builder.CreateStore(Vector, VectorPtr); 857 858 if (!Aligned) 859 Store->setAlignment(8); 860 } else { 861 for (unsigned i = 0; i < ScalarMaps.size(); i++) { 862 Value *Scalar = Builder.CreateExtractElement(Vector, Builder.getInt32(i)); 863 Value *NewPointer = generateLocationAccessed(Stmt, Store, ScalarMaps[i], 864 VLTS[i], NewAccesses); 865 Builder.CreateStore(Scalar, NewPointer); 866 } 867 } 868 } 869 870 bool VectorBlockGenerator::hasVectorOperands(const Instruction *Inst, 871 ValueMapT &VectorMap) { 872 for (Value *Operand : Inst->operands()) 873 if (VectorMap.count(Operand)) 874 return true; 875 return false; 876 } 877 878 bool VectorBlockGenerator::extractScalarValues(const Instruction *Inst, 879 ValueMapT &VectorMap, 880 VectorValueMapT &ScalarMaps) { 881 bool HasVectorOperand = false; 882 int VectorWidth = getVectorWidth(); 883 884 for (Value *Operand : Inst->operands()) { 885 ValueMapT::iterator VecOp = VectorMap.find(Operand); 886 887 if (VecOp == VectorMap.end()) 888 continue; 889 890 HasVectorOperand = true; 891 Value *NewVector = VecOp->second; 892 893 for (int i = 0; i < VectorWidth; ++i) { 894 ValueMapT &SM = ScalarMaps[i]; 895 896 // If there is one scalar extracted, all scalar elements should have 897 // already been extracted by the code here. So no need to check for the 898 // existance of all of them. 899 if (SM.count(Operand)) 900 break; 901 902 SM[Operand] = 903 Builder.CreateExtractElement(NewVector, Builder.getInt32(i)); 904 } 905 } 906 907 return HasVectorOperand; 908 } 909 910 void VectorBlockGenerator::copyInstScalarized( 911 ScopStmt &Stmt, Instruction *Inst, ValueMapT &VectorMap, 912 VectorValueMapT &ScalarMaps, __isl_keep isl_id_to_ast_expr *NewAccesses) { 913 bool HasVectorOperand; 914 int VectorWidth = getVectorWidth(); 915 916 HasVectorOperand = extractScalarValues(Inst, VectorMap, ScalarMaps); 917 918 for (int VectorLane = 0; VectorLane < getVectorWidth(); VectorLane++) 919 BlockGenerator::copyInstruction(Stmt, Inst, ScalarMaps[VectorLane], 920 VLTS[VectorLane], NewAccesses); 921 922 if (!VectorType::isValidElementType(Inst->getType()) || !HasVectorOperand) 923 return; 924 925 // Make the result available as vector value. 926 VectorType *VectorType = VectorType::get(Inst->getType(), VectorWidth); 927 Value *Vector = UndefValue::get(VectorType); 928 929 for (int i = 0; i < VectorWidth; i++) 930 Vector = Builder.CreateInsertElement(Vector, ScalarMaps[i][Inst], 931 Builder.getInt32(i)); 932 933 VectorMap[Inst] = Vector; 934 } 935 936 int VectorBlockGenerator::getVectorWidth() { return VLTS.size(); } 937 938 void VectorBlockGenerator::copyInstruction( 939 ScopStmt &Stmt, Instruction *Inst, ValueMapT &VectorMap, 940 VectorValueMapT &ScalarMaps, __isl_keep isl_id_to_ast_expr *NewAccesses) { 941 // Terminator instructions control the control flow. They are explicitly 942 // expressed in the clast and do not need to be copied. 943 if (Inst->isTerminator()) 944 return; 945 946 if (canSyntheziseInStmt(Stmt, Inst)) 947 return; 948 949 if (auto *Load = dyn_cast<LoadInst>(Inst)) { 950 generateLoad(Stmt, Load, VectorMap, ScalarMaps, NewAccesses); 951 return; 952 } 953 954 if (hasVectorOperands(Inst, VectorMap)) { 955 if (auto *Store = dyn_cast<StoreInst>(Inst)) { 956 copyStore(Stmt, Store, VectorMap, ScalarMaps, NewAccesses); 957 return; 958 } 959 960 if (auto *Unary = dyn_cast<UnaryInstruction>(Inst)) { 961 copyUnaryInst(Stmt, Unary, VectorMap, ScalarMaps); 962 return; 963 } 964 965 if (auto *Binary = dyn_cast<BinaryOperator>(Inst)) { 966 copyBinaryInst(Stmt, Binary, VectorMap, ScalarMaps); 967 return; 968 } 969 970 // Falltrough: We generate scalar instructions, if we don't know how to 971 // generate vector code. 972 } 973 974 copyInstScalarized(Stmt, Inst, VectorMap, ScalarMaps, NewAccesses); 975 } 976 977 void VectorBlockGenerator::generateScalarVectorLoads( 978 ScopStmt &Stmt, ValueMapT &VectorBlockMap) { 979 for (MemoryAccess *MA : Stmt) { 980 if (MA->isArrayKind() || MA->isWrite()) 981 continue; 982 983 auto *Address = getOrCreateAlloca(*MA); 984 Type *VectorPtrType = getVectorPtrTy(Address, 1); 985 Value *VectorPtr = Builder.CreateBitCast(Address, VectorPtrType, 986 Address->getName() + "_p_vec_p"); 987 auto *Val = Builder.CreateLoad(VectorPtr, Address->getName() + ".reload"); 988 Constant *SplatVector = Constant::getNullValue( 989 VectorType::get(Builder.getInt32Ty(), getVectorWidth())); 990 991 Value *VectorVal = Builder.CreateShuffleVector( 992 Val, Val, SplatVector, Address->getName() + "_p_splat"); 993 VectorBlockMap[MA->getBaseAddr()] = VectorVal; 994 } 995 } 996 997 void VectorBlockGenerator::verifyNoScalarStores(ScopStmt &Stmt) { 998 for (MemoryAccess *MA : Stmt) { 999 if (MA->isArrayKind() || MA->isRead()) 1000 continue; 1001 1002 llvm_unreachable("Scalar stores not expected in vector loop"); 1003 } 1004 } 1005 1006 void VectorBlockGenerator::copyStmt( 1007 ScopStmt &Stmt, __isl_keep isl_id_to_ast_expr *NewAccesses) { 1008 assert(Stmt.isBlockStmt() && "TODO: Only block statements can be copied by " 1009 "the vector block generator"); 1010 1011 BasicBlock *BB = Stmt.getBasicBlock(); 1012 BasicBlock *CopyBB = SplitBlock(Builder.GetInsertBlock(), 1013 &*Builder.GetInsertPoint(), &DT, &LI); 1014 CopyBB->setName("polly.stmt." + BB->getName()); 1015 Builder.SetInsertPoint(&CopyBB->front()); 1016 1017 // Create two maps that store the mapping from the original instructions of 1018 // the old basic block to their copies in the new basic block. Those maps 1019 // are basic block local. 1020 // 1021 // As vector code generation is supported there is one map for scalar values 1022 // and one for vector values. 1023 // 1024 // In case we just do scalar code generation, the vectorMap is not used and 1025 // the scalarMap has just one dimension, which contains the mapping. 1026 // 1027 // In case vector code generation is done, an instruction may either appear 1028 // in the vector map once (as it is calculating >vectorwidth< values at a 1029 // time. Or (if the values are calculated using scalar operations), it 1030 // appears once in every dimension of the scalarMap. 1031 VectorValueMapT ScalarBlockMap(getVectorWidth()); 1032 ValueMapT VectorBlockMap; 1033 1034 generateScalarVectorLoads(Stmt, VectorBlockMap); 1035 1036 for (Instruction &Inst : *BB) 1037 copyInstruction(Stmt, &Inst, VectorBlockMap, ScalarBlockMap, NewAccesses); 1038 1039 verifyNoScalarStores(Stmt); 1040 } 1041 1042 BasicBlock *RegionGenerator::repairDominance(BasicBlock *BB, 1043 BasicBlock *BBCopy) { 1044 1045 BasicBlock *BBIDom = DT.getNode(BB)->getIDom()->getBlock(); 1046 BasicBlock *BBCopyIDom = BlockMap.lookup(BBIDom); 1047 1048 if (BBCopyIDom) 1049 DT.changeImmediateDominator(BBCopy, BBCopyIDom); 1050 1051 return BBCopyIDom; 1052 } 1053 1054 // This is to determine whether an llvm::Value (defined in @p BB) is usable when 1055 // leaving a subregion. The straight-forward DT.dominates(BB, R->getExitBlock()) 1056 // does not work in cases where the exit block has edges from outside the 1057 // region. In that case the llvm::Value would never be usable in in the exit 1058 // block. The RegionGenerator however creates an new exit block ('ExitBBCopy') 1059 // for the subregion's exiting edges only. We need to determine whether an 1060 // llvm::Value is usable in there. We do this by checking whether it dominates 1061 // all exiting blocks individually. 1062 static bool isDominatingSubregionExit(const DominatorTree &DT, Region *R, 1063 BasicBlock *BB) { 1064 for (auto ExitingBB : predecessors(R->getExit())) { 1065 // Check for non-subregion incoming edges. 1066 if (!R->contains(ExitingBB)) 1067 continue; 1068 1069 if (!DT.dominates(BB, ExitingBB)) 1070 return false; 1071 } 1072 1073 return true; 1074 } 1075 1076 // Find the direct dominator of the subregion's exit block if the subregion was 1077 // simplified. 1078 static BasicBlock *findExitDominator(DominatorTree &DT, Region *R) { 1079 BasicBlock *Common = nullptr; 1080 for (auto ExitingBB : predecessors(R->getExit())) { 1081 // Check for non-subregion incoming edges. 1082 if (!R->contains(ExitingBB)) 1083 continue; 1084 1085 // First exiting edge. 1086 if (!Common) { 1087 Common = ExitingBB; 1088 continue; 1089 } 1090 1091 Common = DT.findNearestCommonDominator(Common, ExitingBB); 1092 } 1093 1094 assert(Common && R->contains(Common)); 1095 return Common; 1096 } 1097 1098 void RegionGenerator::copyStmt(ScopStmt &Stmt, LoopToScevMapT <S, 1099 isl_id_to_ast_expr *IdToAstExp) { 1100 assert(Stmt.isRegionStmt() && 1101 "Only region statements can be copied by the region generator"); 1102 1103 // Forget all old mappings. 1104 BlockMap.clear(); 1105 RegionMaps.clear(); 1106 IncompletePHINodeMap.clear(); 1107 1108 // Collection of all values related to this subregion. 1109 ValueMapT ValueMap; 1110 1111 // The region represented by the statement. 1112 Region *R = Stmt.getRegion(); 1113 1114 // Create a dedicated entry for the region where we can reload all demoted 1115 // inputs. 1116 BasicBlock *EntryBB = R->getEntry(); 1117 BasicBlock *EntryBBCopy = SplitBlock(Builder.GetInsertBlock(), 1118 &*Builder.GetInsertPoint(), &DT, &LI); 1119 EntryBBCopy->setName("polly.stmt." + EntryBB->getName() + ".entry"); 1120 Builder.SetInsertPoint(&EntryBBCopy->front()); 1121 1122 ValueMapT &EntryBBMap = RegionMaps[EntryBBCopy]; 1123 generateScalarLoads(Stmt, EntryBBMap); 1124 1125 for (auto PI = pred_begin(EntryBB), PE = pred_end(EntryBB); PI != PE; ++PI) 1126 if (!R->contains(*PI)) 1127 BlockMap[*PI] = EntryBBCopy; 1128 1129 // Iterate over all blocks in the region in a breadth-first search. 1130 std::deque<BasicBlock *> Blocks; 1131 SmallPtrSet<BasicBlock *, 8> SeenBlocks; 1132 Blocks.push_back(EntryBB); 1133 SeenBlocks.insert(EntryBB); 1134 1135 while (!Blocks.empty()) { 1136 BasicBlock *BB = Blocks.front(); 1137 Blocks.pop_front(); 1138 1139 // First split the block and update dominance information. 1140 BasicBlock *BBCopy = splitBB(BB); 1141 BasicBlock *BBCopyIDom = repairDominance(BB, BBCopy); 1142 1143 // Get the mapping for this block and initialize it with either the scalar 1144 // loads from the generated entering block (which dominates all blocks of 1145 // this subregion) or the maps of the immediate dominator, if part of the 1146 // subregion. The latter necessarily includes the former. 1147 ValueMapT *InitBBMap; 1148 if (BBCopyIDom) { 1149 assert(RegionMaps.count(BBCopyIDom)); 1150 InitBBMap = &RegionMaps[BBCopyIDom]; 1151 } else 1152 InitBBMap = &EntryBBMap; 1153 auto Inserted = RegionMaps.insert(std::make_pair(BBCopy, *InitBBMap)); 1154 ValueMapT &RegionMap = Inserted.first->second; 1155 1156 // Copy the block with the BlockGenerator. 1157 Builder.SetInsertPoint(&BBCopy->front()); 1158 copyBB(Stmt, BB, BBCopy, RegionMap, LTS, IdToAstExp); 1159 1160 // In order to remap PHI nodes we store also basic block mappings. 1161 BlockMap[BB] = BBCopy; 1162 1163 // Add values to incomplete PHI nodes waiting for this block to be copied. 1164 for (const PHINodePairTy &PHINodePair : IncompletePHINodeMap[BB]) 1165 addOperandToPHI(Stmt, PHINodePair.first, PHINodePair.second, BB, LTS); 1166 IncompletePHINodeMap[BB].clear(); 1167 1168 // And continue with new successors inside the region. 1169 for (auto SI = succ_begin(BB), SE = succ_end(BB); SI != SE; SI++) 1170 if (R->contains(*SI) && SeenBlocks.insert(*SI).second) 1171 Blocks.push_back(*SI); 1172 1173 // Remember value in case it is visible after this subregion. 1174 if (isDominatingSubregionExit(DT, R, BB)) 1175 ValueMap.insert(RegionMap.begin(), RegionMap.end()); 1176 } 1177 1178 // Now create a new dedicated region exit block and add it to the region map. 1179 BasicBlock *ExitBBCopy = SplitBlock(Builder.GetInsertBlock(), 1180 &*Builder.GetInsertPoint(), &DT, &LI); 1181 ExitBBCopy->setName("polly.stmt." + R->getExit()->getName() + ".exit"); 1182 BlockMap[R->getExit()] = ExitBBCopy; 1183 1184 BasicBlock *ExitDomBBCopy = BlockMap.lookup(findExitDominator(DT, R)); 1185 assert(ExitDomBBCopy && "Common exit dominator must be within region; at " 1186 "least the entry node must match"); 1187 DT.changeImmediateDominator(ExitBBCopy, ExitDomBBCopy); 1188 1189 // As the block generator doesn't handle control flow we need to add the 1190 // region control flow by hand after all blocks have been copied. 1191 for (BasicBlock *BB : SeenBlocks) { 1192 1193 BasicBlock *BBCopy = BlockMap[BB]; 1194 TerminatorInst *TI = BB->getTerminator(); 1195 if (isa<UnreachableInst>(TI)) { 1196 while (!BBCopy->empty()) 1197 BBCopy->begin()->eraseFromParent(); 1198 new UnreachableInst(BBCopy->getContext(), BBCopy); 1199 continue; 1200 } 1201 1202 Instruction *BICopy = BBCopy->getTerminator(); 1203 1204 ValueMapT &RegionMap = RegionMaps[BBCopy]; 1205 RegionMap.insert(BlockMap.begin(), BlockMap.end()); 1206 1207 Builder.SetInsertPoint(BICopy); 1208 copyInstScalar(Stmt, TI, RegionMap, LTS); 1209 BICopy->eraseFromParent(); 1210 } 1211 1212 // Add counting PHI nodes to all loops in the region that can be used as 1213 // replacement for SCEVs refering to the old loop. 1214 for (BasicBlock *BB : SeenBlocks) { 1215 Loop *L = LI.getLoopFor(BB); 1216 if (L == nullptr || L->getHeader() != BB || !R->contains(L)) 1217 continue; 1218 1219 BasicBlock *BBCopy = BlockMap[BB]; 1220 Value *NullVal = Builder.getInt32(0); 1221 PHINode *LoopPHI = 1222 PHINode::Create(Builder.getInt32Ty(), 2, "polly.subregion.iv"); 1223 Instruction *LoopPHIInc = BinaryOperator::CreateAdd( 1224 LoopPHI, Builder.getInt32(1), "polly.subregion.iv.inc"); 1225 LoopPHI->insertBefore(&BBCopy->front()); 1226 LoopPHIInc->insertBefore(BBCopy->getTerminator()); 1227 1228 for (auto *PredBB : make_range(pred_begin(BB), pred_end(BB))) { 1229 if (!R->contains(PredBB)) 1230 continue; 1231 if (L->contains(PredBB)) 1232 LoopPHI->addIncoming(LoopPHIInc, BlockMap[PredBB]); 1233 else 1234 LoopPHI->addIncoming(NullVal, BlockMap[PredBB]); 1235 } 1236 1237 for (auto *PredBBCopy : make_range(pred_begin(BBCopy), pred_end(BBCopy))) 1238 if (LoopPHI->getBasicBlockIndex(PredBBCopy) < 0) 1239 LoopPHI->addIncoming(NullVal, PredBBCopy); 1240 1241 LTS[L] = SE.getUnknown(LoopPHI); 1242 } 1243 1244 // Continue generating code in the exit block. 1245 Builder.SetInsertPoint(&*ExitBBCopy->getFirstInsertionPt()); 1246 1247 // Write values visible to other statements. 1248 generateScalarStores(Stmt, LTS, ValueMap); 1249 BlockMap.clear(); 1250 RegionMaps.clear(); 1251 IncompletePHINodeMap.clear(); 1252 } 1253 1254 PHINode *RegionGenerator::buildExitPHI(MemoryAccess *MA, LoopToScevMapT <S, 1255 ValueMapT &BBMap, Loop *L) { 1256 ScopStmt *Stmt = MA->getStatement(); 1257 Region *SubR = Stmt->getRegion(); 1258 auto Incoming = MA->getIncoming(); 1259 1260 PollyIRBuilder::InsertPointGuard IPGuard(Builder); 1261 PHINode *OrigPHI = cast<PHINode>(MA->getAccessInstruction()); 1262 BasicBlock *NewSubregionExit = Builder.GetInsertBlock(); 1263 1264 // This can happen if the subregion is simplified after the ScopStmts 1265 // have been created; simplification happens as part of CodeGeneration. 1266 if (OrigPHI->getParent() != SubR->getExit()) { 1267 BasicBlock *FormerExit = SubR->getExitingBlock(); 1268 if (FormerExit) 1269 NewSubregionExit = BlockMap.lookup(FormerExit); 1270 } 1271 1272 PHINode *NewPHI = PHINode::Create(OrigPHI->getType(), Incoming.size(), 1273 "polly." + OrigPHI->getName(), 1274 NewSubregionExit->getFirstNonPHI()); 1275 1276 // Add the incoming values to the PHI. 1277 for (auto &Pair : Incoming) { 1278 BasicBlock *OrigIncomingBlock = Pair.first; 1279 BasicBlock *NewIncomingBlock = BlockMap.lookup(OrigIncomingBlock); 1280 Builder.SetInsertPoint(NewIncomingBlock->getTerminator()); 1281 assert(RegionMaps.count(NewIncomingBlock)); 1282 ValueMapT *LocalBBMap = &RegionMaps[NewIncomingBlock]; 1283 1284 Value *OrigIncomingValue = Pair.second; 1285 Value *NewIncomingValue = 1286 getNewValue(*Stmt, OrigIncomingValue, *LocalBBMap, LTS, L); 1287 NewPHI->addIncoming(NewIncomingValue, NewIncomingBlock); 1288 } 1289 1290 return NewPHI; 1291 } 1292 1293 Value *RegionGenerator::getExitScalar(MemoryAccess *MA, LoopToScevMapT <S, 1294 ValueMapT &BBMap) { 1295 ScopStmt *Stmt = MA->getStatement(); 1296 1297 // TODO: Add some test cases that ensure this is really the right choice. 1298 Loop *L = LI.getLoopFor(Stmt->getRegion()->getExit()); 1299 1300 if (MA->isAnyPHIKind()) { 1301 auto Incoming = MA->getIncoming(); 1302 assert(!Incoming.empty() && 1303 "PHI WRITEs must have originate from at least one incoming block"); 1304 1305 // If there is only one incoming value, we do not need to create a PHI. 1306 if (Incoming.size() == 1) { 1307 Value *OldVal = Incoming[0].second; 1308 return getNewValue(*Stmt, OldVal, BBMap, LTS, L); 1309 } 1310 1311 return buildExitPHI(MA, LTS, BBMap, L); 1312 } 1313 1314 // MK_Value accesses leaving the subregion must dominate the exit block; just 1315 // pass the copied value 1316 Value *OldVal = MA->getAccessValue(); 1317 return getNewValue(*Stmt, OldVal, BBMap, LTS, L); 1318 } 1319 1320 void RegionGenerator::generateScalarStores(ScopStmt &Stmt, LoopToScevMapT <S, 1321 ValueMapT &BBMap) { 1322 assert(Stmt.getRegion() && 1323 "Block statements need to use the generateScalarStores() " 1324 "function in the BlockGenerator"); 1325 1326 for (MemoryAccess *MA : Stmt) { 1327 if (MA->isArrayKind() || MA->isRead()) 1328 continue; 1329 1330 Value *NewVal = getExitScalar(MA, LTS, BBMap); 1331 Value *Address = getOrCreateAlloca(*MA); 1332 assert((!isa<Instruction>(NewVal) || 1333 DT.dominates(cast<Instruction>(NewVal)->getParent(), 1334 Builder.GetInsertBlock())) && 1335 "Domination violation"); 1336 assert((!isa<Instruction>(Address) || 1337 DT.dominates(cast<Instruction>(Address)->getParent(), 1338 Builder.GetInsertBlock())) && 1339 "Domination violation"); 1340 Builder.CreateStore(NewVal, Address); 1341 } 1342 } 1343 1344 void RegionGenerator::addOperandToPHI(ScopStmt &Stmt, const PHINode *PHI, 1345 PHINode *PHICopy, BasicBlock *IncomingBB, 1346 LoopToScevMapT <S) { 1347 Region *StmtR = Stmt.getRegion(); 1348 1349 // If the incoming block was not yet copied mark this PHI as incomplete. 1350 // Once the block will be copied the incoming value will be added. 1351 BasicBlock *BBCopy = BlockMap[IncomingBB]; 1352 if (!BBCopy) { 1353 assert(StmtR->contains(IncomingBB) && 1354 "Bad incoming block for PHI in non-affine region"); 1355 IncompletePHINodeMap[IncomingBB].push_back(std::make_pair(PHI, PHICopy)); 1356 return; 1357 } 1358 1359 Value *OpCopy = nullptr; 1360 if (StmtR->contains(IncomingBB)) { 1361 assert(RegionMaps.count(BBCopy) && 1362 "Incoming PHI block did not have a BBMap"); 1363 ValueMapT &BBCopyMap = RegionMaps[BBCopy]; 1364 1365 Value *Op = PHI->getIncomingValueForBlock(IncomingBB); 1366 1367 // If the current insert block is different from the PHIs incoming block 1368 // change it, otherwise do not. 1369 auto IP = Builder.GetInsertPoint(); 1370 if (IP->getParent() != BBCopy) 1371 Builder.SetInsertPoint(BBCopy->getTerminator()); 1372 OpCopy = getNewValue(Stmt, Op, BBCopyMap, LTS, getLoopForStmt(Stmt)); 1373 if (IP->getParent() != BBCopy) 1374 Builder.SetInsertPoint(&*IP); 1375 } else { 1376 1377 if (PHICopy->getBasicBlockIndex(BBCopy) >= 0) 1378 return; 1379 1380 Value *PHIOpAddr = getOrCreatePHIAlloca(const_cast<PHINode *>(PHI)); 1381 OpCopy = new LoadInst(PHIOpAddr, PHIOpAddr->getName() + ".reload", 1382 BlockMap[IncomingBB]->getTerminator()); 1383 } 1384 1385 assert(OpCopy && "Incoming PHI value was not copied properly"); 1386 assert(BBCopy && "Incoming PHI block was not copied properly"); 1387 PHICopy->addIncoming(OpCopy, BBCopy); 1388 } 1389 1390 void RegionGenerator::copyPHIInstruction(ScopStmt &Stmt, PHINode *PHI, 1391 ValueMapT &BBMap, 1392 LoopToScevMapT <S) { 1393 unsigned NumIncoming = PHI->getNumIncomingValues(); 1394 PHINode *PHICopy = 1395 Builder.CreatePHI(PHI->getType(), NumIncoming, "polly." + PHI->getName()); 1396 PHICopy->moveBefore(PHICopy->getParent()->getFirstNonPHI()); 1397 BBMap[PHI] = PHICopy; 1398 1399 for (unsigned u = 0; u < NumIncoming; u++) 1400 addOperandToPHI(Stmt, PHI, PHICopy, PHI->getIncomingBlock(u), LTS); 1401 } 1402