1 //===--- BlockGenerators.cpp - Generate code for statements -----*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the BlockGenerator and VectorBlockGenerator classes, 10 // which generate sequential code and vectorized code for a polyhedral 11 // statement, respectively. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "polly/CodeGen/BlockGenerators.h" 16 #include "polly/CodeGen/IslExprBuilder.h" 17 #include "polly/CodeGen/RuntimeDebugBuilder.h" 18 #include "polly/Options.h" 19 #include "polly/ScopInfo.h" 20 #include "polly/Support/ScopHelper.h" 21 #include "polly/Support/VirtualInstruction.h" 22 #include "llvm/Analysis/LoopInfo.h" 23 #include "llvm/Analysis/RegionInfo.h" 24 #include "llvm/Analysis/ScalarEvolution.h" 25 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 26 #include "llvm/Transforms/Utils/Local.h" 27 #include "isl/ast.h" 28 #include <deque> 29 30 using namespace llvm; 31 using namespace polly; 32 33 static cl::opt<bool> Aligned("enable-polly-aligned", 34 cl::desc("Assumed aligned memory accesses."), 35 cl::Hidden, cl::init(false), cl::ZeroOrMore, 36 cl::cat(PollyCategory)); 37 38 bool PollyDebugPrinting; 39 static cl::opt<bool, true> DebugPrintingX( 40 "polly-codegen-add-debug-printing", 41 cl::desc("Add printf calls that show the values loaded/stored."), 42 cl::location(PollyDebugPrinting), cl::Hidden, cl::init(false), 43 cl::ZeroOrMore, cl::cat(PollyCategory)); 44 45 static cl::opt<bool> TraceStmts( 46 "polly-codegen-trace-stmts", 47 cl::desc("Add printf calls that print the statement being executed"), 48 cl::Hidden, cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory)); 49 50 static cl::opt<bool> TraceScalars( 51 "polly-codegen-trace-scalars", 52 cl::desc("Add printf calls that print the values of all scalar values " 53 "used in a statement. Requires -polly-codegen-trace-stmts."), 54 cl::Hidden, cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory)); 55 56 BlockGenerator::BlockGenerator( 57 PollyIRBuilder &B, LoopInfo &LI, ScalarEvolution &SE, DominatorTree &DT, 58 AllocaMapTy &ScalarMap, EscapeUsersAllocaMapTy &EscapeMap, 59 ValueMapT &GlobalMap, IslExprBuilder *ExprBuilder, BasicBlock *StartBlock) 60 : Builder(B), LI(LI), SE(SE), ExprBuilder(ExprBuilder), DT(DT), 61 EntryBB(nullptr), ScalarMap(ScalarMap), EscapeMap(EscapeMap), 62 GlobalMap(GlobalMap), StartBlock(StartBlock) {} 63 64 Value *BlockGenerator::trySynthesizeNewValue(ScopStmt &Stmt, Value *Old, 65 ValueMapT &BBMap, 66 LoopToScevMapT <S, 67 Loop *L) const { 68 if (!SE.isSCEVable(Old->getType())) 69 return nullptr; 70 71 const SCEV *Scev = SE.getSCEVAtScope(Old, L); 72 if (!Scev) 73 return nullptr; 74 75 if (isa<SCEVCouldNotCompute>(Scev)) 76 return nullptr; 77 78 const SCEV *NewScev = SCEVLoopAddRecRewriter::rewrite(Scev, LTS, SE); 79 ValueMapT VTV; 80 VTV.insert(BBMap.begin(), BBMap.end()); 81 VTV.insert(GlobalMap.begin(), GlobalMap.end()); 82 83 Scop &S = *Stmt.getParent(); 84 const DataLayout &DL = S.getFunction().getParent()->getDataLayout(); 85 auto IP = Builder.GetInsertPoint(); 86 87 assert(IP != Builder.GetInsertBlock()->end() && 88 "Only instructions can be insert points for SCEVExpander"); 89 Value *Expanded = 90 expandCodeFor(S, SE, DL, "polly", NewScev, Old->getType(), &*IP, &VTV, 91 StartBlock->getSinglePredecessor()); 92 93 BBMap[Old] = Expanded; 94 return Expanded; 95 } 96 97 Value *BlockGenerator::getNewValue(ScopStmt &Stmt, Value *Old, ValueMapT &BBMap, 98 LoopToScevMapT <S, Loop *L) const { 99 100 auto lookupGlobally = [this](Value *Old) -> Value * { 101 Value *New = GlobalMap.lookup(Old); 102 if (!New) 103 return nullptr; 104 105 // Required by: 106 // * Isl/CodeGen/OpenMP/invariant_base_pointer_preloaded.ll 107 // * Isl/CodeGen/OpenMP/invariant_base_pointer_preloaded_different_bb.ll 108 // * Isl/CodeGen/OpenMP/invariant_base_pointer_preloaded_pass_only_needed.ll 109 // * Isl/CodeGen/OpenMP/invariant_base_pointers_preloaded.ll 110 // * Isl/CodeGen/OpenMP/loop-body-references-outer-values-3.ll 111 // * Isl/CodeGen/OpenMP/single_loop_with_loop_invariant_baseptr.ll 112 // GlobalMap should be a mapping from (value in original SCoP) to (copied 113 // value in generated SCoP), without intermediate mappings, which might 114 // easily require transitiveness as well. 115 if (Value *NewRemapped = GlobalMap.lookup(New)) 116 New = NewRemapped; 117 118 // No test case for this code. 119 if (Old->getType()->getScalarSizeInBits() < 120 New->getType()->getScalarSizeInBits()) 121 New = Builder.CreateTruncOrBitCast(New, Old->getType()); 122 123 return New; 124 }; 125 126 Value *New = nullptr; 127 auto VUse = VirtualUse::create(&Stmt, L, Old, true); 128 switch (VUse.getKind()) { 129 case VirtualUse::Block: 130 // BasicBlock are constants, but the BlockGenerator copies them. 131 New = BBMap.lookup(Old); 132 break; 133 134 case VirtualUse::Constant: 135 // Used by: 136 // * Isl/CodeGen/OpenMP/reference-argument-from-non-affine-region.ll 137 // Constants should not be redefined. In this case, the GlobalMap just 138 // contains a mapping to the same constant, which is unnecessary, but 139 // harmless. 140 if ((New = lookupGlobally(Old))) 141 break; 142 143 assert(!BBMap.count(Old)); 144 New = Old; 145 break; 146 147 case VirtualUse::ReadOnly: 148 assert(!GlobalMap.count(Old)); 149 150 // Required for: 151 // * Isl/CodeGen/MemAccess/create_arrays.ll 152 // * Isl/CodeGen/read-only-scalars.ll 153 // * ScheduleOptimizer/pattern-matching-based-opts_10.ll 154 // For some reason these reload a read-only value. The reloaded value ends 155 // up in BBMap, buts its value should be identical. 156 // 157 // Required for: 158 // * Isl/CodeGen/OpenMP/single_loop_with_param.ll 159 // The parallel subfunctions need to reference the read-only value from the 160 // parent function, this is done by reloading them locally. 161 if ((New = BBMap.lookup(Old))) 162 break; 163 164 New = Old; 165 break; 166 167 case VirtualUse::Synthesizable: 168 // Used by: 169 // * Isl/CodeGen/OpenMP/loop-body-references-outer-values-3.ll 170 // * Isl/CodeGen/OpenMP/recomputed-srem.ll 171 // * Isl/CodeGen/OpenMP/reference-other-bb.ll 172 // * Isl/CodeGen/OpenMP/two-parallel-loops-reference-outer-indvar.ll 173 // For some reason synthesizable values end up in GlobalMap. Their values 174 // are the same as trySynthesizeNewValue would return. The legacy 175 // implementation prioritized GlobalMap, so this is what we do here as well. 176 // Ideally, synthesizable values should not end up in GlobalMap. 177 if ((New = lookupGlobally(Old))) 178 break; 179 180 // Required for: 181 // * Isl/CodeGen/RuntimeDebugBuilder/combine_different_values.ll 182 // * Isl/CodeGen/getNumberOfIterations.ll 183 // * Isl/CodeGen/non_affine_float_compare.ll 184 // * ScheduleOptimizer/pattern-matching-based-opts_10.ll 185 // Ideally, synthesizable values are synthesized by trySynthesizeNewValue, 186 // not precomputed (SCEVExpander has its own caching mechanism). 187 // These tests fail without this, but I think trySynthesizeNewValue would 188 // just re-synthesize the same instructions. 189 if ((New = BBMap.lookup(Old))) 190 break; 191 192 New = trySynthesizeNewValue(Stmt, Old, BBMap, LTS, L); 193 break; 194 195 case VirtualUse::Hoisted: 196 // TODO: Hoisted invariant loads should be found in GlobalMap only, but not 197 // redefined locally (which will be ignored anyway). That is, the following 198 // assertion should apply: assert(!BBMap.count(Old)) 199 200 New = lookupGlobally(Old); 201 break; 202 203 case VirtualUse::Intra: 204 case VirtualUse::Inter: 205 assert(!GlobalMap.count(Old) && 206 "Intra and inter-stmt values are never global"); 207 New = BBMap.lookup(Old); 208 break; 209 } 210 assert(New && "Unexpected scalar dependence in region!"); 211 return New; 212 } 213 214 void BlockGenerator::copyInstScalar(ScopStmt &Stmt, Instruction *Inst, 215 ValueMapT &BBMap, LoopToScevMapT <S) { 216 // We do not generate debug intrinsics as we did not investigate how to 217 // copy them correctly. At the current state, they just crash the code 218 // generation as the meta-data operands are not correctly copied. 219 if (isa<DbgInfoIntrinsic>(Inst)) 220 return; 221 222 Instruction *NewInst = Inst->clone(); 223 224 // Replace old operands with the new ones. 225 for (Value *OldOperand : Inst->operands()) { 226 Value *NewOperand = 227 getNewValue(Stmt, OldOperand, BBMap, LTS, getLoopForStmt(Stmt)); 228 229 if (!NewOperand) { 230 assert(!isa<StoreInst>(NewInst) && 231 "Store instructions are always needed!"); 232 NewInst->deleteValue(); 233 return; 234 } 235 236 NewInst->replaceUsesOfWith(OldOperand, NewOperand); 237 } 238 239 Builder.Insert(NewInst); 240 BBMap[Inst] = NewInst; 241 242 // When copying the instruction onto the Module meant for the GPU, 243 // debug metadata attached to an instruction causes all related 244 // metadata to be pulled into the Module. This includes the DICompileUnit, 245 // which will not be listed in llvm.dbg.cu of the Module since the Module 246 // doesn't contain one. This fails the verification of the Module and the 247 // subsequent generation of the ASM string. 248 if (NewInst->getModule() != Inst->getModule()) 249 NewInst->setDebugLoc(llvm::DebugLoc()); 250 251 if (!NewInst->getType()->isVoidTy()) 252 NewInst->setName("p_" + Inst->getName()); 253 } 254 255 Value * 256 BlockGenerator::generateLocationAccessed(ScopStmt &Stmt, MemAccInst Inst, 257 ValueMapT &BBMap, LoopToScevMapT <S, 258 isl_id_to_ast_expr *NewAccesses) { 259 const MemoryAccess &MA = Stmt.getArrayAccessFor(Inst); 260 return generateLocationAccessed( 261 Stmt, getLoopForStmt(Stmt), 262 Inst.isNull() ? nullptr : Inst.getPointerOperand(), BBMap, LTS, 263 NewAccesses, MA.getId().release(), MA.getAccessValue()->getType()); 264 } 265 266 Value *BlockGenerator::generateLocationAccessed( 267 ScopStmt &Stmt, Loop *L, Value *Pointer, ValueMapT &BBMap, 268 LoopToScevMapT <S, isl_id_to_ast_expr *NewAccesses, __isl_take isl_id *Id, 269 Type *ExpectedType) { 270 isl_ast_expr *AccessExpr = isl_id_to_ast_expr_get(NewAccesses, Id); 271 272 if (AccessExpr) { 273 AccessExpr = isl_ast_expr_address_of(AccessExpr); 274 auto Address = ExprBuilder->create(AccessExpr); 275 276 // Cast the address of this memory access to a pointer type that has the 277 // same element type as the original access, but uses the address space of 278 // the newly generated pointer. 279 auto OldPtrTy = ExpectedType->getPointerTo(); 280 auto NewPtrTy = Address->getType(); 281 OldPtrTy = PointerType::get(OldPtrTy->getElementType(), 282 NewPtrTy->getPointerAddressSpace()); 283 284 if (OldPtrTy != NewPtrTy) 285 Address = Builder.CreateBitOrPointerCast(Address, OldPtrTy); 286 return Address; 287 } 288 assert( 289 Pointer && 290 "If expression was not generated, must use the original pointer value"); 291 return getNewValue(Stmt, Pointer, BBMap, LTS, L); 292 } 293 294 Value * 295 BlockGenerator::getImplicitAddress(MemoryAccess &Access, Loop *L, 296 LoopToScevMapT <S, ValueMapT &BBMap, 297 __isl_keep isl_id_to_ast_expr *NewAccesses) { 298 if (Access.isLatestArrayKind()) 299 return generateLocationAccessed(*Access.getStatement(), L, nullptr, BBMap, 300 LTS, NewAccesses, Access.getId().release(), 301 Access.getAccessValue()->getType()); 302 303 return getOrCreateAlloca(Access); 304 } 305 306 Loop *BlockGenerator::getLoopForStmt(const ScopStmt &Stmt) const { 307 auto *StmtBB = Stmt.getEntryBlock(); 308 return LI.getLoopFor(StmtBB); 309 } 310 311 Value *BlockGenerator::generateArrayLoad(ScopStmt &Stmt, LoadInst *Load, 312 ValueMapT &BBMap, LoopToScevMapT <S, 313 isl_id_to_ast_expr *NewAccesses) { 314 if (Value *PreloadLoad = GlobalMap.lookup(Load)) 315 return PreloadLoad; 316 317 Value *NewPointer = 318 generateLocationAccessed(Stmt, Load, BBMap, LTS, NewAccesses); 319 Value *ScalarLoad = Builder.CreateAlignedLoad(NewPointer, Load->getAlign(), 320 Load->getName() + "_p_scalar_"); 321 322 if (PollyDebugPrinting) 323 RuntimeDebugBuilder::createCPUPrinter(Builder, "Load from ", NewPointer, 324 ": ", ScalarLoad, "\n"); 325 326 return ScalarLoad; 327 } 328 329 void BlockGenerator::generateArrayStore(ScopStmt &Stmt, StoreInst *Store, 330 ValueMapT &BBMap, LoopToScevMapT <S, 331 isl_id_to_ast_expr *NewAccesses) { 332 MemoryAccess &MA = Stmt.getArrayAccessFor(Store); 333 isl::set AccDom = MA.getAccessRelation().domain(); 334 std::string Subject = MA.getId().get_name(); 335 336 generateConditionalExecution(Stmt, AccDom, Subject.c_str(), [&, this]() { 337 Value *NewPointer = 338 generateLocationAccessed(Stmt, Store, BBMap, LTS, NewAccesses); 339 Value *ValueOperand = getNewValue(Stmt, Store->getValueOperand(), BBMap, 340 LTS, getLoopForStmt(Stmt)); 341 342 if (PollyDebugPrinting) 343 RuntimeDebugBuilder::createCPUPrinter(Builder, "Store to ", NewPointer, 344 ": ", ValueOperand, "\n"); 345 346 Builder.CreateAlignedStore(ValueOperand, NewPointer, Store->getAlign()); 347 }); 348 } 349 350 bool BlockGenerator::canSyntheziseInStmt(ScopStmt &Stmt, Instruction *Inst) { 351 Loop *L = getLoopForStmt(Stmt); 352 return (Stmt.isBlockStmt() || !Stmt.getRegion()->contains(L)) && 353 canSynthesize(Inst, *Stmt.getParent(), &SE, L); 354 } 355 356 void BlockGenerator::copyInstruction(ScopStmt &Stmt, Instruction *Inst, 357 ValueMapT &BBMap, LoopToScevMapT <S, 358 isl_id_to_ast_expr *NewAccesses) { 359 // Terminator instructions control the control flow. They are explicitly 360 // expressed in the clast and do not need to be copied. 361 if (Inst->isTerminator()) 362 return; 363 364 // Synthesizable statements will be generated on-demand. 365 if (canSyntheziseInStmt(Stmt, Inst)) 366 return; 367 368 if (auto *Load = dyn_cast<LoadInst>(Inst)) { 369 Value *NewLoad = generateArrayLoad(Stmt, Load, BBMap, LTS, NewAccesses); 370 // Compute NewLoad before its insertion in BBMap to make the insertion 371 // deterministic. 372 BBMap[Load] = NewLoad; 373 return; 374 } 375 376 if (auto *Store = dyn_cast<StoreInst>(Inst)) { 377 // Identified as redundant by -polly-simplify. 378 if (!Stmt.getArrayAccessOrNULLFor(Store)) 379 return; 380 381 generateArrayStore(Stmt, Store, BBMap, LTS, NewAccesses); 382 return; 383 } 384 385 if (auto *PHI = dyn_cast<PHINode>(Inst)) { 386 copyPHIInstruction(Stmt, PHI, BBMap, LTS); 387 return; 388 } 389 390 // Skip some special intrinsics for which we do not adjust the semantics to 391 // the new schedule. All others are handled like every other instruction. 392 if (isIgnoredIntrinsic(Inst)) 393 return; 394 395 copyInstScalar(Stmt, Inst, BBMap, LTS); 396 } 397 398 void BlockGenerator::removeDeadInstructions(BasicBlock *BB, ValueMapT &BBMap) { 399 auto NewBB = Builder.GetInsertBlock(); 400 for (auto I = NewBB->rbegin(); I != NewBB->rend(); I++) { 401 Instruction *NewInst = &*I; 402 403 if (!isInstructionTriviallyDead(NewInst)) 404 continue; 405 406 for (auto Pair : BBMap) 407 if (Pair.second == NewInst) { 408 BBMap.erase(Pair.first); 409 } 410 411 NewInst->eraseFromParent(); 412 I = NewBB->rbegin(); 413 } 414 } 415 416 void BlockGenerator::copyStmt(ScopStmt &Stmt, LoopToScevMapT <S, 417 isl_id_to_ast_expr *NewAccesses) { 418 assert(Stmt.isBlockStmt() && 419 "Only block statements can be copied by the block generator"); 420 421 ValueMapT BBMap; 422 423 BasicBlock *BB = Stmt.getBasicBlock(); 424 copyBB(Stmt, BB, BBMap, LTS, NewAccesses); 425 removeDeadInstructions(BB, BBMap); 426 } 427 428 BasicBlock *BlockGenerator::splitBB(BasicBlock *BB) { 429 BasicBlock *CopyBB = SplitBlock(Builder.GetInsertBlock(), 430 &*Builder.GetInsertPoint(), &DT, &LI); 431 CopyBB->setName("polly.stmt." + BB->getName()); 432 return CopyBB; 433 } 434 435 BasicBlock *BlockGenerator::copyBB(ScopStmt &Stmt, BasicBlock *BB, 436 ValueMapT &BBMap, LoopToScevMapT <S, 437 isl_id_to_ast_expr *NewAccesses) { 438 BasicBlock *CopyBB = splitBB(BB); 439 Builder.SetInsertPoint(&CopyBB->front()); 440 generateScalarLoads(Stmt, LTS, BBMap, NewAccesses); 441 generateBeginStmtTrace(Stmt, LTS, BBMap); 442 443 copyBB(Stmt, BB, CopyBB, BBMap, LTS, NewAccesses); 444 445 // After a basic block was copied store all scalars that escape this block in 446 // their alloca. 447 generateScalarStores(Stmt, LTS, BBMap, NewAccesses); 448 return CopyBB; 449 } 450 451 void BlockGenerator::copyBB(ScopStmt &Stmt, BasicBlock *BB, BasicBlock *CopyBB, 452 ValueMapT &BBMap, LoopToScevMapT <S, 453 isl_id_to_ast_expr *NewAccesses) { 454 EntryBB = &CopyBB->getParent()->getEntryBlock(); 455 456 // Block statements and the entry blocks of region statement are code 457 // generated from instruction lists. This allow us to optimize the 458 // instructions that belong to a certain scop statement. As the code 459 // structure of region statements might be arbitrary complex, optimizing the 460 // instruction list is not yet supported. 461 if (Stmt.isBlockStmt() || (Stmt.isRegionStmt() && Stmt.getEntryBlock() == BB)) 462 for (Instruction *Inst : Stmt.getInstructions()) 463 copyInstruction(Stmt, Inst, BBMap, LTS, NewAccesses); 464 else 465 for (Instruction &Inst : *BB) 466 copyInstruction(Stmt, &Inst, BBMap, LTS, NewAccesses); 467 } 468 469 Value *BlockGenerator::getOrCreateAlloca(const MemoryAccess &Access) { 470 assert(!Access.isLatestArrayKind() && "Trying to get alloca for array kind"); 471 472 return getOrCreateAlloca(Access.getLatestScopArrayInfo()); 473 } 474 475 Value *BlockGenerator::getOrCreateAlloca(const ScopArrayInfo *Array) { 476 assert(!Array->isArrayKind() && "Trying to get alloca for array kind"); 477 478 auto &Addr = ScalarMap[Array]; 479 480 if (Addr) { 481 // Allow allocas to be (temporarily) redirected once by adding a new 482 // old-alloca-addr to new-addr mapping to GlobalMap. This functionality 483 // is used for example by the OpenMP code generation where a first use 484 // of a scalar while still in the host code allocates a normal alloca with 485 // getOrCreateAlloca. When the values of this scalar are accessed during 486 // the generation of the parallel subfunction, these values are copied over 487 // to the parallel subfunction and each request for a scalar alloca slot 488 // must be forwarded to the temporary in-subfunction slot. This mapping is 489 // removed when the subfunction has been generated and again normal host 490 // code is generated. Due to the following reasons it is not possible to 491 // perform the GlobalMap lookup right after creating the alloca below, but 492 // instead we need to check GlobalMap at each call to getOrCreateAlloca: 493 // 494 // 1) GlobalMap may be changed multiple times (for each parallel loop), 495 // 2) The temporary mapping is commonly only known after the initial 496 // alloca has already been generated, and 497 // 3) The original alloca value must be restored after leaving the 498 // sub-function. 499 if (Value *NewAddr = GlobalMap.lookup(&*Addr)) 500 return NewAddr; 501 return Addr; 502 } 503 504 Type *Ty = Array->getElementType(); 505 Value *ScalarBase = Array->getBasePtr(); 506 std::string NameExt; 507 if (Array->isPHIKind()) 508 NameExt = ".phiops"; 509 else 510 NameExt = ".s2a"; 511 512 const DataLayout &DL = Builder.GetInsertBlock()->getModule()->getDataLayout(); 513 514 Addr = 515 new AllocaInst(Ty, DL.getAllocaAddrSpace(), nullptr, 516 DL.getPrefTypeAlign(Ty), ScalarBase->getName() + NameExt); 517 EntryBB = &Builder.GetInsertBlock()->getParent()->getEntryBlock(); 518 Addr->insertBefore(&*EntryBB->getFirstInsertionPt()); 519 520 return Addr; 521 } 522 523 void BlockGenerator::handleOutsideUsers(const Scop &S, ScopArrayInfo *Array) { 524 Instruction *Inst = cast<Instruction>(Array->getBasePtr()); 525 526 // If there are escape users we get the alloca for this instruction and put it 527 // in the EscapeMap for later finalization. Lastly, if the instruction was 528 // copied multiple times we already did this and can exit. 529 if (EscapeMap.count(Inst)) 530 return; 531 532 EscapeUserVectorTy EscapeUsers; 533 for (User *U : Inst->users()) { 534 535 // Non-instruction user will never escape. 536 Instruction *UI = dyn_cast<Instruction>(U); 537 if (!UI) 538 continue; 539 540 if (S.contains(UI)) 541 continue; 542 543 EscapeUsers.push_back(UI); 544 } 545 546 // Exit if no escape uses were found. 547 if (EscapeUsers.empty()) 548 return; 549 550 // Get or create an escape alloca for this instruction. 551 auto *ScalarAddr = getOrCreateAlloca(Array); 552 553 // Remember that this instruction has escape uses and the escape alloca. 554 EscapeMap[Inst] = std::make_pair(ScalarAddr, std::move(EscapeUsers)); 555 } 556 557 void BlockGenerator::generateScalarLoads( 558 ScopStmt &Stmt, LoopToScevMapT <S, ValueMapT &BBMap, 559 __isl_keep isl_id_to_ast_expr *NewAccesses) { 560 for (MemoryAccess *MA : Stmt) { 561 if (MA->isOriginalArrayKind() || MA->isWrite()) 562 continue; 563 564 #ifndef NDEBUG 565 auto StmtDom = 566 Stmt.getDomain().intersect_params(Stmt.getParent()->getContext()); 567 auto AccDom = MA->getAccessRelation().domain(); 568 assert(!StmtDom.is_subset(AccDom).is_false() && 569 "Scalar must be loaded in all statement instances"); 570 #endif 571 572 auto *Address = 573 getImplicitAddress(*MA, getLoopForStmt(Stmt), LTS, BBMap, NewAccesses); 574 assert((!isa<Instruction>(Address) || 575 DT.dominates(cast<Instruction>(Address)->getParent(), 576 Builder.GetInsertBlock())) && 577 "Domination violation"); 578 BBMap[MA->getAccessValue()] = 579 Builder.CreateLoad(Address, Address->getName() + ".reload"); 580 } 581 } 582 583 Value *BlockGenerator::buildContainsCondition(ScopStmt &Stmt, 584 const isl::set &Subdomain) { 585 isl::ast_build AstBuild = Stmt.getAstBuild(); 586 isl::set Domain = Stmt.getDomain(); 587 588 isl::union_map USchedule = AstBuild.get_schedule(); 589 USchedule = USchedule.intersect_domain(Domain); 590 591 assert(!USchedule.is_empty()); 592 isl::map Schedule = isl::map::from_union_map(USchedule); 593 594 isl::set ScheduledDomain = Schedule.range(); 595 isl::set ScheduledSet = Subdomain.apply(Schedule); 596 597 isl::ast_build RestrictedBuild = AstBuild.restrict(ScheduledDomain); 598 599 isl::ast_expr IsInSet = RestrictedBuild.expr_from(ScheduledSet); 600 Value *IsInSetExpr = ExprBuilder->create(IsInSet.copy()); 601 IsInSetExpr = Builder.CreateICmpNE( 602 IsInSetExpr, ConstantInt::get(IsInSetExpr->getType(), 0)); 603 604 return IsInSetExpr; 605 } 606 607 void BlockGenerator::generateConditionalExecution( 608 ScopStmt &Stmt, const isl::set &Subdomain, StringRef Subject, 609 const std::function<void()> &GenThenFunc) { 610 isl::set StmtDom = Stmt.getDomain(); 611 612 // If the condition is a tautology, don't generate a condition around the 613 // code. 614 bool IsPartialWrite = 615 !StmtDom.intersect_params(Stmt.getParent()->getContext()) 616 .is_subset(Subdomain); 617 if (!IsPartialWrite) { 618 GenThenFunc(); 619 return; 620 } 621 622 // Generate the condition. 623 Value *Cond = buildContainsCondition(Stmt, Subdomain); 624 625 // Don't call GenThenFunc if it is never executed. An ast index expression 626 // might not be defined in this case. 627 if (auto *Const = dyn_cast<ConstantInt>(Cond)) 628 if (Const->isZero()) 629 return; 630 631 BasicBlock *HeadBlock = Builder.GetInsertBlock(); 632 StringRef BlockName = HeadBlock->getName(); 633 634 // Generate the conditional block. 635 SplitBlockAndInsertIfThen(Cond, &*Builder.GetInsertPoint(), false, nullptr, 636 &DT, &LI); 637 BranchInst *Branch = cast<BranchInst>(HeadBlock->getTerminator()); 638 BasicBlock *ThenBlock = Branch->getSuccessor(0); 639 BasicBlock *TailBlock = Branch->getSuccessor(1); 640 641 // Assign descriptive names. 642 if (auto *CondInst = dyn_cast<Instruction>(Cond)) 643 CondInst->setName("polly." + Subject + ".cond"); 644 ThenBlock->setName(BlockName + "." + Subject + ".partial"); 645 TailBlock->setName(BlockName + ".cont"); 646 647 // Put the client code into the conditional block and continue in the merge 648 // block afterwards. 649 Builder.SetInsertPoint(ThenBlock, ThenBlock->getFirstInsertionPt()); 650 GenThenFunc(); 651 Builder.SetInsertPoint(TailBlock, TailBlock->getFirstInsertionPt()); 652 } 653 654 static std::string getInstName(Value *Val) { 655 std::string Result; 656 raw_string_ostream OS(Result); 657 Val->printAsOperand(OS, false); 658 return OS.str(); 659 } 660 661 void BlockGenerator::generateBeginStmtTrace(ScopStmt &Stmt, LoopToScevMapT <S, 662 ValueMapT &BBMap) { 663 if (!TraceStmts) 664 return; 665 666 Scop *S = Stmt.getParent(); 667 const char *BaseName = Stmt.getBaseName(); 668 669 isl::ast_build AstBuild = Stmt.getAstBuild(); 670 isl::set Domain = Stmt.getDomain(); 671 672 isl::union_map USchedule = AstBuild.get_schedule().intersect_domain(Domain); 673 isl::map Schedule = isl::map::from_union_map(USchedule); 674 assert(Schedule.is_empty().is_false() && 675 "The stmt must have a valid instance"); 676 677 isl::multi_pw_aff ScheduleMultiPwAff = 678 isl::pw_multi_aff::from_map(Schedule.reverse()); 679 isl::ast_build RestrictedBuild = AstBuild.restrict(Schedule.range()); 680 681 // Sequence of strings to print. 682 SmallVector<llvm::Value *, 8> Values; 683 684 // Print the name of the statement. 685 // TODO: Indent by the depth of the statement instance in the schedule tree. 686 Values.push_back(RuntimeDebugBuilder::getPrintableString(Builder, BaseName)); 687 Values.push_back(RuntimeDebugBuilder::getPrintableString(Builder, "(")); 688 689 // Add the coordinate of the statement instance. 690 int DomDims = ScheduleMultiPwAff.dim(isl::dim::out); 691 for (int i = 0; i < DomDims; i += 1) { 692 if (i > 0) 693 Values.push_back(RuntimeDebugBuilder::getPrintableString(Builder, ",")); 694 695 isl::ast_expr IsInSet = 696 RestrictedBuild.expr_from(ScheduleMultiPwAff.get_pw_aff(i)); 697 Values.push_back(ExprBuilder->create(IsInSet.copy())); 698 } 699 700 if (TraceScalars) { 701 Values.push_back(RuntimeDebugBuilder::getPrintableString(Builder, ")")); 702 DenseSet<Instruction *> Encountered; 703 704 // Add the value of each scalar (and the result of PHIs) used in the 705 // statement. 706 // TODO: Values used in region-statements. 707 for (Instruction *Inst : Stmt.insts()) { 708 if (!RuntimeDebugBuilder::isPrintable(Inst->getType())) 709 continue; 710 711 if (isa<PHINode>(Inst)) { 712 Values.push_back(RuntimeDebugBuilder::getPrintableString(Builder, " ")); 713 Values.push_back(RuntimeDebugBuilder::getPrintableString( 714 Builder, getInstName(Inst))); 715 Values.push_back(RuntimeDebugBuilder::getPrintableString(Builder, "=")); 716 Values.push_back(getNewValue(Stmt, Inst, BBMap, LTS, 717 LI.getLoopFor(Inst->getParent()))); 718 } else { 719 for (Value *Op : Inst->operand_values()) { 720 // Do not print values that cannot change during the execution of the 721 // SCoP. 722 auto *OpInst = dyn_cast<Instruction>(Op); 723 if (!OpInst) 724 continue; 725 if (!S->contains(OpInst)) 726 continue; 727 728 // Print each scalar at most once, and exclude values defined in the 729 // statement itself. 730 if (Encountered.count(OpInst)) 731 continue; 732 733 Values.push_back( 734 RuntimeDebugBuilder::getPrintableString(Builder, " ")); 735 Values.push_back(RuntimeDebugBuilder::getPrintableString( 736 Builder, getInstName(OpInst))); 737 Values.push_back( 738 RuntimeDebugBuilder::getPrintableString(Builder, "=")); 739 Values.push_back(getNewValue(Stmt, OpInst, BBMap, LTS, 740 LI.getLoopFor(Inst->getParent()))); 741 Encountered.insert(OpInst); 742 } 743 } 744 745 Encountered.insert(Inst); 746 } 747 748 Values.push_back(RuntimeDebugBuilder::getPrintableString(Builder, "\n")); 749 } else { 750 Values.push_back(RuntimeDebugBuilder::getPrintableString(Builder, ")\n")); 751 } 752 753 RuntimeDebugBuilder::createCPUPrinter(Builder, ArrayRef<Value *>(Values)); 754 } 755 756 void BlockGenerator::generateScalarStores( 757 ScopStmt &Stmt, LoopToScevMapT <S, ValueMapT &BBMap, 758 __isl_keep isl_id_to_ast_expr *NewAccesses) { 759 Loop *L = LI.getLoopFor(Stmt.getBasicBlock()); 760 761 assert(Stmt.isBlockStmt() && 762 "Region statements need to use the generateScalarStores() function in " 763 "the RegionGenerator"); 764 765 for (MemoryAccess *MA : Stmt) { 766 if (MA->isOriginalArrayKind() || MA->isRead()) 767 continue; 768 769 isl::set AccDom = MA->getAccessRelation().domain(); 770 std::string Subject = MA->getId().get_name(); 771 772 generateConditionalExecution( 773 Stmt, AccDom, Subject.c_str(), [&, this, MA]() { 774 Value *Val = MA->getAccessValue(); 775 if (MA->isAnyPHIKind()) { 776 assert(MA->getIncoming().size() >= 1 && 777 "Block statements have exactly one exiting block, or " 778 "multiple but " 779 "with same incoming block and value"); 780 assert(std::all_of(MA->getIncoming().begin(), 781 MA->getIncoming().end(), 782 [&](std::pair<BasicBlock *, Value *> p) -> bool { 783 return p.first == Stmt.getBasicBlock(); 784 }) && 785 "Incoming block must be statement's block"); 786 Val = MA->getIncoming()[0].second; 787 } 788 auto Address = getImplicitAddress(*MA, getLoopForStmt(Stmt), LTS, 789 BBMap, NewAccesses); 790 791 Val = getNewValue(Stmt, Val, BBMap, LTS, L); 792 assert((!isa<Instruction>(Val) || 793 DT.dominates(cast<Instruction>(Val)->getParent(), 794 Builder.GetInsertBlock())) && 795 "Domination violation"); 796 assert((!isa<Instruction>(Address) || 797 DT.dominates(cast<Instruction>(Address)->getParent(), 798 Builder.GetInsertBlock())) && 799 "Domination violation"); 800 801 // The new Val might have a different type than the old Val due to 802 // ScalarEvolution looking through bitcasts. 803 if (Val->getType() != Address->getType()->getPointerElementType()) 804 Address = Builder.CreateBitOrPointerCast( 805 Address, Val->getType()->getPointerTo()); 806 807 Builder.CreateStore(Val, Address); 808 }); 809 } 810 } 811 812 void BlockGenerator::createScalarInitialization(Scop &S) { 813 BasicBlock *ExitBB = S.getExit(); 814 BasicBlock *PreEntryBB = S.getEnteringBlock(); 815 816 Builder.SetInsertPoint(&*StartBlock->begin()); 817 818 for (auto &Array : S.arrays()) { 819 if (Array->getNumberOfDimensions() != 0) 820 continue; 821 if (Array->isPHIKind()) { 822 // For PHI nodes, the only values we need to store are the ones that 823 // reach the PHI node from outside the region. In general there should 824 // only be one such incoming edge and this edge should enter through 825 // 'PreEntryBB'. 826 auto PHI = cast<PHINode>(Array->getBasePtr()); 827 828 for (auto BI = PHI->block_begin(), BE = PHI->block_end(); BI != BE; BI++) 829 if (!S.contains(*BI) && *BI != PreEntryBB) 830 llvm_unreachable("Incoming edges from outside the scop should always " 831 "come from PreEntryBB"); 832 833 int Idx = PHI->getBasicBlockIndex(PreEntryBB); 834 if (Idx < 0) 835 continue; 836 837 Value *ScalarValue = PHI->getIncomingValue(Idx); 838 839 Builder.CreateStore(ScalarValue, getOrCreateAlloca(Array)); 840 continue; 841 } 842 843 auto *Inst = dyn_cast<Instruction>(Array->getBasePtr()); 844 845 if (Inst && S.contains(Inst)) 846 continue; 847 848 // PHI nodes that are not marked as such in their SAI object are either exit 849 // PHI nodes we model as common scalars but without initialization, or 850 // incoming phi nodes that need to be initialized. Check if the first is the 851 // case for Inst and do not create and initialize memory if so. 852 if (auto *PHI = dyn_cast_or_null<PHINode>(Inst)) 853 if (!S.hasSingleExitEdge() && PHI->getBasicBlockIndex(ExitBB) >= 0) 854 continue; 855 856 Builder.CreateStore(Array->getBasePtr(), getOrCreateAlloca(Array)); 857 } 858 } 859 860 void BlockGenerator::createScalarFinalization(Scop &S) { 861 // The exit block of the __unoptimized__ region. 862 BasicBlock *ExitBB = S.getExitingBlock(); 863 // The merge block __just after__ the region and the optimized region. 864 BasicBlock *MergeBB = S.getExit(); 865 866 // The exit block of the __optimized__ region. 867 BasicBlock *OptExitBB = *(pred_begin(MergeBB)); 868 if (OptExitBB == ExitBB) 869 OptExitBB = *(++pred_begin(MergeBB)); 870 871 Builder.SetInsertPoint(OptExitBB->getTerminator()); 872 for (const auto &EscapeMapping : EscapeMap) { 873 // Extract the escaping instruction and the escaping users as well as the 874 // alloca the instruction was demoted to. 875 Instruction *EscapeInst = EscapeMapping.first; 876 const auto &EscapeMappingValue = EscapeMapping.second; 877 const EscapeUserVectorTy &EscapeUsers = EscapeMappingValue.second; 878 Value *ScalarAddr = EscapeMappingValue.first; 879 880 // Reload the demoted instruction in the optimized version of the SCoP. 881 Value *EscapeInstReload = 882 Builder.CreateLoad(ScalarAddr, EscapeInst->getName() + ".final_reload"); 883 EscapeInstReload = 884 Builder.CreateBitOrPointerCast(EscapeInstReload, EscapeInst->getType()); 885 886 // Create the merge PHI that merges the optimized and unoptimized version. 887 PHINode *MergePHI = PHINode::Create(EscapeInst->getType(), 2, 888 EscapeInst->getName() + ".merge"); 889 MergePHI->insertBefore(&*MergeBB->getFirstInsertionPt()); 890 891 // Add the respective values to the merge PHI. 892 MergePHI->addIncoming(EscapeInstReload, OptExitBB); 893 MergePHI->addIncoming(EscapeInst, ExitBB); 894 895 // The information of scalar evolution about the escaping instruction needs 896 // to be revoked so the new merged instruction will be used. 897 if (SE.isSCEVable(EscapeInst->getType())) 898 SE.forgetValue(EscapeInst); 899 900 // Replace all uses of the demoted instruction with the merge PHI. 901 for (Instruction *EUser : EscapeUsers) 902 EUser->replaceUsesOfWith(EscapeInst, MergePHI); 903 } 904 } 905 906 void BlockGenerator::findOutsideUsers(Scop &S) { 907 for (auto &Array : S.arrays()) { 908 909 if (Array->getNumberOfDimensions() != 0) 910 continue; 911 912 if (Array->isPHIKind()) 913 continue; 914 915 auto *Inst = dyn_cast<Instruction>(Array->getBasePtr()); 916 917 if (!Inst) 918 continue; 919 920 // Scop invariant hoisting moves some of the base pointers out of the scop. 921 // We can ignore these, as the invariant load hoisting already registers the 922 // relevant outside users. 923 if (!S.contains(Inst)) 924 continue; 925 926 handleOutsideUsers(S, Array); 927 } 928 } 929 930 void BlockGenerator::createExitPHINodeMerges(Scop &S) { 931 if (S.hasSingleExitEdge()) 932 return; 933 934 auto *ExitBB = S.getExitingBlock(); 935 auto *MergeBB = S.getExit(); 936 auto *AfterMergeBB = MergeBB->getSingleSuccessor(); 937 BasicBlock *OptExitBB = *(pred_begin(MergeBB)); 938 if (OptExitBB == ExitBB) 939 OptExitBB = *(++pred_begin(MergeBB)); 940 941 Builder.SetInsertPoint(OptExitBB->getTerminator()); 942 943 for (auto &SAI : S.arrays()) { 944 auto *Val = SAI->getBasePtr(); 945 946 // Only Value-like scalars need a merge PHI. Exit block PHIs receive either 947 // the original PHI's value or the reloaded incoming values from the 948 // generated code. An llvm::Value is merged between the original code's 949 // value or the generated one. 950 if (!SAI->isExitPHIKind()) 951 continue; 952 953 PHINode *PHI = dyn_cast<PHINode>(Val); 954 if (!PHI) 955 continue; 956 957 if (PHI->getParent() != AfterMergeBB) 958 continue; 959 960 std::string Name = PHI->getName().str(); 961 Value *ScalarAddr = getOrCreateAlloca(SAI); 962 Value *Reload = Builder.CreateLoad(ScalarAddr, Name + ".ph.final_reload"); 963 Reload = Builder.CreateBitOrPointerCast(Reload, PHI->getType()); 964 Value *OriginalValue = PHI->getIncomingValueForBlock(MergeBB); 965 assert((!isa<Instruction>(OriginalValue) || 966 cast<Instruction>(OriginalValue)->getParent() != MergeBB) && 967 "Original value must no be one we just generated."); 968 auto *MergePHI = PHINode::Create(PHI->getType(), 2, Name + ".ph.merge"); 969 MergePHI->insertBefore(&*MergeBB->getFirstInsertionPt()); 970 MergePHI->addIncoming(Reload, OptExitBB); 971 MergePHI->addIncoming(OriginalValue, ExitBB); 972 int Idx = PHI->getBasicBlockIndex(MergeBB); 973 PHI->setIncomingValue(Idx, MergePHI); 974 } 975 } 976 977 void BlockGenerator::invalidateScalarEvolution(Scop &S) { 978 for (auto &Stmt : S) 979 if (Stmt.isCopyStmt()) 980 continue; 981 else if (Stmt.isBlockStmt()) 982 for (auto &Inst : *Stmt.getBasicBlock()) 983 SE.forgetValue(&Inst); 984 else if (Stmt.isRegionStmt()) 985 for (auto *BB : Stmt.getRegion()->blocks()) 986 for (auto &Inst : *BB) 987 SE.forgetValue(&Inst); 988 else 989 llvm_unreachable("Unexpected statement type found"); 990 991 // Invalidate SCEV of loops surrounding the EscapeUsers. 992 for (const auto &EscapeMapping : EscapeMap) { 993 const EscapeUserVectorTy &EscapeUsers = EscapeMapping.second.second; 994 for (Instruction *EUser : EscapeUsers) { 995 if (Loop *L = LI.getLoopFor(EUser->getParent())) 996 while (L) { 997 SE.forgetLoop(L); 998 L = L->getParentLoop(); 999 } 1000 } 1001 } 1002 } 1003 1004 void BlockGenerator::finalizeSCoP(Scop &S) { 1005 findOutsideUsers(S); 1006 createScalarInitialization(S); 1007 createExitPHINodeMerges(S); 1008 createScalarFinalization(S); 1009 invalidateScalarEvolution(S); 1010 } 1011 1012 VectorBlockGenerator::VectorBlockGenerator(BlockGenerator &BlockGen, 1013 std::vector<LoopToScevMapT> &VLTS, 1014 isl_map *Schedule) 1015 : BlockGenerator(BlockGen), VLTS(VLTS), Schedule(Schedule) { 1016 assert(Schedule && "No statement domain provided"); 1017 } 1018 1019 Value *VectorBlockGenerator::getVectorValue(ScopStmt &Stmt, Value *Old, 1020 ValueMapT &VectorMap, 1021 VectorValueMapT &ScalarMaps, 1022 Loop *L) { 1023 if (Value *NewValue = VectorMap.lookup(Old)) 1024 return NewValue; 1025 1026 int Width = getVectorWidth(); 1027 1028 Value *Vector = UndefValue::get(VectorType::get(Old->getType(), Width)); 1029 1030 for (int Lane = 0; Lane < Width; Lane++) 1031 Vector = Builder.CreateInsertElement( 1032 Vector, getNewValue(Stmt, Old, ScalarMaps[Lane], VLTS[Lane], L), 1033 Builder.getInt32(Lane)); 1034 1035 VectorMap[Old] = Vector; 1036 1037 return Vector; 1038 } 1039 1040 Type *VectorBlockGenerator::getVectorPtrTy(const Value *Val, int Width) { 1041 PointerType *PointerTy = dyn_cast<PointerType>(Val->getType()); 1042 assert(PointerTy && "PointerType expected"); 1043 1044 Type *ScalarType = PointerTy->getElementType(); 1045 VectorType *VectorType = VectorType::get(ScalarType, Width); 1046 1047 return PointerType::getUnqual(VectorType); 1048 } 1049 1050 Value *VectorBlockGenerator::generateStrideOneLoad( 1051 ScopStmt &Stmt, LoadInst *Load, VectorValueMapT &ScalarMaps, 1052 __isl_keep isl_id_to_ast_expr *NewAccesses, bool NegativeStride = false) { 1053 unsigned VectorWidth = getVectorWidth(); 1054 auto *Pointer = Load->getPointerOperand(); 1055 Type *VectorPtrType = getVectorPtrTy(Pointer, VectorWidth); 1056 unsigned Offset = NegativeStride ? VectorWidth - 1 : 0; 1057 1058 Value *NewPointer = generateLocationAccessed(Stmt, Load, ScalarMaps[Offset], 1059 VLTS[Offset], NewAccesses); 1060 Value *VectorPtr = 1061 Builder.CreateBitCast(NewPointer, VectorPtrType, "vector_ptr"); 1062 LoadInst *VecLoad = 1063 Builder.CreateLoad(VectorPtr, Load->getName() + "_p_vec_full"); 1064 if (!Aligned) 1065 VecLoad->setAlignment(Align(8)); 1066 1067 if (NegativeStride) { 1068 SmallVector<Constant *, 16> Indices; 1069 for (int i = VectorWidth - 1; i >= 0; i--) 1070 Indices.push_back(ConstantInt::get(Builder.getInt32Ty(), i)); 1071 Constant *SV = llvm::ConstantVector::get(Indices); 1072 Value *RevVecLoad = Builder.CreateShuffleVector( 1073 VecLoad, VecLoad, SV, Load->getName() + "_reverse"); 1074 return RevVecLoad; 1075 } 1076 1077 return VecLoad; 1078 } 1079 1080 Value *VectorBlockGenerator::generateStrideZeroLoad( 1081 ScopStmt &Stmt, LoadInst *Load, ValueMapT &BBMap, 1082 __isl_keep isl_id_to_ast_expr *NewAccesses) { 1083 auto *Pointer = Load->getPointerOperand(); 1084 Type *VectorPtrType = getVectorPtrTy(Pointer, 1); 1085 Value *NewPointer = 1086 generateLocationAccessed(Stmt, Load, BBMap, VLTS[0], NewAccesses); 1087 Value *VectorPtr = Builder.CreateBitCast(NewPointer, VectorPtrType, 1088 Load->getName() + "_p_vec_p"); 1089 LoadInst *ScalarLoad = 1090 Builder.CreateLoad(VectorPtr, Load->getName() + "_p_splat_one"); 1091 1092 if (!Aligned) 1093 ScalarLoad->setAlignment(Align(8)); 1094 1095 Constant *SplatVector = Constant::getNullValue( 1096 VectorType::get(Builder.getInt32Ty(), getVectorWidth())); 1097 1098 Value *VectorLoad = Builder.CreateShuffleVector( 1099 ScalarLoad, ScalarLoad, SplatVector, Load->getName() + "_p_splat"); 1100 return VectorLoad; 1101 } 1102 1103 Value *VectorBlockGenerator::generateUnknownStrideLoad( 1104 ScopStmt &Stmt, LoadInst *Load, VectorValueMapT &ScalarMaps, 1105 __isl_keep isl_id_to_ast_expr *NewAccesses) { 1106 int VectorWidth = getVectorWidth(); 1107 auto *Pointer = Load->getPointerOperand(); 1108 VectorType *VectorType = VectorType::get( 1109 dyn_cast<PointerType>(Pointer->getType())->getElementType(), VectorWidth); 1110 1111 Value *Vector = UndefValue::get(VectorType); 1112 1113 for (int i = 0; i < VectorWidth; i++) { 1114 Value *NewPointer = generateLocationAccessed(Stmt, Load, ScalarMaps[i], 1115 VLTS[i], NewAccesses); 1116 Value *ScalarLoad = 1117 Builder.CreateLoad(NewPointer, Load->getName() + "_p_scalar_"); 1118 Vector = Builder.CreateInsertElement( 1119 Vector, ScalarLoad, Builder.getInt32(i), Load->getName() + "_p_vec_"); 1120 } 1121 1122 return Vector; 1123 } 1124 1125 void VectorBlockGenerator::generateLoad( 1126 ScopStmt &Stmt, LoadInst *Load, ValueMapT &VectorMap, 1127 VectorValueMapT &ScalarMaps, __isl_keep isl_id_to_ast_expr *NewAccesses) { 1128 if (Value *PreloadLoad = GlobalMap.lookup(Load)) { 1129 VectorMap[Load] = Builder.CreateVectorSplat(getVectorWidth(), PreloadLoad, 1130 Load->getName() + "_p"); 1131 return; 1132 } 1133 1134 if (!VectorType::isValidElementType(Load->getType())) { 1135 for (int i = 0; i < getVectorWidth(); i++) 1136 ScalarMaps[i][Load] = 1137 generateArrayLoad(Stmt, Load, ScalarMaps[i], VLTS[i], NewAccesses); 1138 return; 1139 } 1140 1141 const MemoryAccess &Access = Stmt.getArrayAccessFor(Load); 1142 1143 // Make sure we have scalar values available to access the pointer to 1144 // the data location. 1145 extractScalarValues(Load, VectorMap, ScalarMaps); 1146 1147 Value *NewLoad; 1148 if (Access.isStrideZero(isl::manage_copy(Schedule))) 1149 NewLoad = generateStrideZeroLoad(Stmt, Load, ScalarMaps[0], NewAccesses); 1150 else if (Access.isStrideOne(isl::manage_copy(Schedule))) 1151 NewLoad = generateStrideOneLoad(Stmt, Load, ScalarMaps, NewAccesses); 1152 else if (Access.isStrideX(isl::manage_copy(Schedule), -1)) 1153 NewLoad = generateStrideOneLoad(Stmt, Load, ScalarMaps, NewAccesses, true); 1154 else 1155 NewLoad = generateUnknownStrideLoad(Stmt, Load, ScalarMaps, NewAccesses); 1156 1157 VectorMap[Load] = NewLoad; 1158 } 1159 1160 void VectorBlockGenerator::copyUnaryInst(ScopStmt &Stmt, UnaryInstruction *Inst, 1161 ValueMapT &VectorMap, 1162 VectorValueMapT &ScalarMaps) { 1163 int VectorWidth = getVectorWidth(); 1164 Value *NewOperand = getVectorValue(Stmt, Inst->getOperand(0), VectorMap, 1165 ScalarMaps, getLoopForStmt(Stmt)); 1166 1167 assert(isa<CastInst>(Inst) && "Can not generate vector code for instruction"); 1168 1169 const CastInst *Cast = dyn_cast<CastInst>(Inst); 1170 VectorType *DestType = VectorType::get(Inst->getType(), VectorWidth); 1171 VectorMap[Inst] = Builder.CreateCast(Cast->getOpcode(), NewOperand, DestType); 1172 } 1173 1174 void VectorBlockGenerator::copyBinaryInst(ScopStmt &Stmt, BinaryOperator *Inst, 1175 ValueMapT &VectorMap, 1176 VectorValueMapT &ScalarMaps) { 1177 Loop *L = getLoopForStmt(Stmt); 1178 Value *OpZero = Inst->getOperand(0); 1179 Value *OpOne = Inst->getOperand(1); 1180 1181 Value *NewOpZero, *NewOpOne; 1182 NewOpZero = getVectorValue(Stmt, OpZero, VectorMap, ScalarMaps, L); 1183 NewOpOne = getVectorValue(Stmt, OpOne, VectorMap, ScalarMaps, L); 1184 1185 Value *NewInst = Builder.CreateBinOp(Inst->getOpcode(), NewOpZero, NewOpOne, 1186 Inst->getName() + "p_vec"); 1187 VectorMap[Inst] = NewInst; 1188 } 1189 1190 void VectorBlockGenerator::copyStore( 1191 ScopStmt &Stmt, StoreInst *Store, ValueMapT &VectorMap, 1192 VectorValueMapT &ScalarMaps, __isl_keep isl_id_to_ast_expr *NewAccesses) { 1193 const MemoryAccess &Access = Stmt.getArrayAccessFor(Store); 1194 1195 auto *Pointer = Store->getPointerOperand(); 1196 Value *Vector = getVectorValue(Stmt, Store->getValueOperand(), VectorMap, 1197 ScalarMaps, getLoopForStmt(Stmt)); 1198 1199 // Make sure we have scalar values available to access the pointer to 1200 // the data location. 1201 extractScalarValues(Store, VectorMap, ScalarMaps); 1202 1203 if (Access.isStrideOne(isl::manage_copy(Schedule))) { 1204 Type *VectorPtrType = getVectorPtrTy(Pointer, getVectorWidth()); 1205 Value *NewPointer = generateLocationAccessed(Stmt, Store, ScalarMaps[0], 1206 VLTS[0], NewAccesses); 1207 1208 Value *VectorPtr = 1209 Builder.CreateBitCast(NewPointer, VectorPtrType, "vector_ptr"); 1210 StoreInst *Store = Builder.CreateStore(Vector, VectorPtr); 1211 1212 if (!Aligned) 1213 Store->setAlignment(Align(8)); 1214 } else { 1215 for (unsigned i = 0; i < ScalarMaps.size(); i++) { 1216 Value *Scalar = Builder.CreateExtractElement(Vector, Builder.getInt32(i)); 1217 Value *NewPointer = generateLocationAccessed(Stmt, Store, ScalarMaps[i], 1218 VLTS[i], NewAccesses); 1219 Builder.CreateStore(Scalar, NewPointer); 1220 } 1221 } 1222 } 1223 1224 bool VectorBlockGenerator::hasVectorOperands(const Instruction *Inst, 1225 ValueMapT &VectorMap) { 1226 for (Value *Operand : Inst->operands()) 1227 if (VectorMap.count(Operand)) 1228 return true; 1229 return false; 1230 } 1231 1232 bool VectorBlockGenerator::extractScalarValues(const Instruction *Inst, 1233 ValueMapT &VectorMap, 1234 VectorValueMapT &ScalarMaps) { 1235 bool HasVectorOperand = false; 1236 int VectorWidth = getVectorWidth(); 1237 1238 for (Value *Operand : Inst->operands()) { 1239 ValueMapT::iterator VecOp = VectorMap.find(Operand); 1240 1241 if (VecOp == VectorMap.end()) 1242 continue; 1243 1244 HasVectorOperand = true; 1245 Value *NewVector = VecOp->second; 1246 1247 for (int i = 0; i < VectorWidth; ++i) { 1248 ValueMapT &SM = ScalarMaps[i]; 1249 1250 // If there is one scalar extracted, all scalar elements should have 1251 // already been extracted by the code here. So no need to check for the 1252 // existence of all of them. 1253 if (SM.count(Operand)) 1254 break; 1255 1256 SM[Operand] = 1257 Builder.CreateExtractElement(NewVector, Builder.getInt32(i)); 1258 } 1259 } 1260 1261 return HasVectorOperand; 1262 } 1263 1264 void VectorBlockGenerator::copyInstScalarized( 1265 ScopStmt &Stmt, Instruction *Inst, ValueMapT &VectorMap, 1266 VectorValueMapT &ScalarMaps, __isl_keep isl_id_to_ast_expr *NewAccesses) { 1267 bool HasVectorOperand; 1268 int VectorWidth = getVectorWidth(); 1269 1270 HasVectorOperand = extractScalarValues(Inst, VectorMap, ScalarMaps); 1271 1272 for (int VectorLane = 0; VectorLane < getVectorWidth(); VectorLane++) 1273 BlockGenerator::copyInstruction(Stmt, Inst, ScalarMaps[VectorLane], 1274 VLTS[VectorLane], NewAccesses); 1275 1276 if (!VectorType::isValidElementType(Inst->getType()) || !HasVectorOperand) 1277 return; 1278 1279 // Make the result available as vector value. 1280 VectorType *VectorType = VectorType::get(Inst->getType(), VectorWidth); 1281 Value *Vector = UndefValue::get(VectorType); 1282 1283 for (int i = 0; i < VectorWidth; i++) 1284 Vector = Builder.CreateInsertElement(Vector, ScalarMaps[i][Inst], 1285 Builder.getInt32(i)); 1286 1287 VectorMap[Inst] = Vector; 1288 } 1289 1290 int VectorBlockGenerator::getVectorWidth() { return VLTS.size(); } 1291 1292 void VectorBlockGenerator::copyInstruction( 1293 ScopStmt &Stmt, Instruction *Inst, ValueMapT &VectorMap, 1294 VectorValueMapT &ScalarMaps, __isl_keep isl_id_to_ast_expr *NewAccesses) { 1295 // Terminator instructions control the control flow. They are explicitly 1296 // expressed in the clast and do not need to be copied. 1297 if (Inst->isTerminator()) 1298 return; 1299 1300 if (canSyntheziseInStmt(Stmt, Inst)) 1301 return; 1302 1303 if (auto *Load = dyn_cast<LoadInst>(Inst)) { 1304 generateLoad(Stmt, Load, VectorMap, ScalarMaps, NewAccesses); 1305 return; 1306 } 1307 1308 if (hasVectorOperands(Inst, VectorMap)) { 1309 if (auto *Store = dyn_cast<StoreInst>(Inst)) { 1310 // Identified as redundant by -polly-simplify. 1311 if (!Stmt.getArrayAccessOrNULLFor(Store)) 1312 return; 1313 1314 copyStore(Stmt, Store, VectorMap, ScalarMaps, NewAccesses); 1315 return; 1316 } 1317 1318 if (auto *Unary = dyn_cast<UnaryInstruction>(Inst)) { 1319 copyUnaryInst(Stmt, Unary, VectorMap, ScalarMaps); 1320 return; 1321 } 1322 1323 if (auto *Binary = dyn_cast<BinaryOperator>(Inst)) { 1324 copyBinaryInst(Stmt, Binary, VectorMap, ScalarMaps); 1325 return; 1326 } 1327 1328 // Fallthrough: We generate scalar instructions, if we don't know how to 1329 // generate vector code. 1330 } 1331 1332 copyInstScalarized(Stmt, Inst, VectorMap, ScalarMaps, NewAccesses); 1333 } 1334 1335 void VectorBlockGenerator::generateScalarVectorLoads( 1336 ScopStmt &Stmt, ValueMapT &VectorBlockMap) { 1337 for (MemoryAccess *MA : Stmt) { 1338 if (MA->isArrayKind() || MA->isWrite()) 1339 continue; 1340 1341 auto *Address = getOrCreateAlloca(*MA); 1342 Type *VectorPtrType = getVectorPtrTy(Address, 1); 1343 Value *VectorPtr = Builder.CreateBitCast(Address, VectorPtrType, 1344 Address->getName() + "_p_vec_p"); 1345 auto *Val = Builder.CreateLoad(VectorPtr, Address->getName() + ".reload"); 1346 Constant *SplatVector = Constant::getNullValue( 1347 VectorType::get(Builder.getInt32Ty(), getVectorWidth())); 1348 1349 Value *VectorVal = Builder.CreateShuffleVector( 1350 Val, Val, SplatVector, Address->getName() + "_p_splat"); 1351 VectorBlockMap[MA->getAccessValue()] = VectorVal; 1352 } 1353 } 1354 1355 void VectorBlockGenerator::verifyNoScalarStores(ScopStmt &Stmt) { 1356 for (MemoryAccess *MA : Stmt) { 1357 if (MA->isArrayKind() || MA->isRead()) 1358 continue; 1359 1360 llvm_unreachable("Scalar stores not expected in vector loop"); 1361 } 1362 } 1363 1364 void VectorBlockGenerator::copyStmt( 1365 ScopStmt &Stmt, __isl_keep isl_id_to_ast_expr *NewAccesses) { 1366 assert(Stmt.isBlockStmt() && 1367 "TODO: Only block statements can be copied by the vector block " 1368 "generator"); 1369 1370 BasicBlock *BB = Stmt.getBasicBlock(); 1371 BasicBlock *CopyBB = SplitBlock(Builder.GetInsertBlock(), 1372 &*Builder.GetInsertPoint(), &DT, &LI); 1373 CopyBB->setName("polly.stmt." + BB->getName()); 1374 Builder.SetInsertPoint(&CopyBB->front()); 1375 1376 // Create two maps that store the mapping from the original instructions of 1377 // the old basic block to their copies in the new basic block. Those maps 1378 // are basic block local. 1379 // 1380 // As vector code generation is supported there is one map for scalar values 1381 // and one for vector values. 1382 // 1383 // In case we just do scalar code generation, the vectorMap is not used and 1384 // the scalarMap has just one dimension, which contains the mapping. 1385 // 1386 // In case vector code generation is done, an instruction may either appear 1387 // in the vector map once (as it is calculating >vectorwidth< values at a 1388 // time. Or (if the values are calculated using scalar operations), it 1389 // appears once in every dimension of the scalarMap. 1390 VectorValueMapT ScalarBlockMap(getVectorWidth()); 1391 ValueMapT VectorBlockMap; 1392 1393 generateScalarVectorLoads(Stmt, VectorBlockMap); 1394 1395 for (Instruction *Inst : Stmt.getInstructions()) 1396 copyInstruction(Stmt, Inst, VectorBlockMap, ScalarBlockMap, NewAccesses); 1397 1398 verifyNoScalarStores(Stmt); 1399 } 1400 1401 BasicBlock *RegionGenerator::repairDominance(BasicBlock *BB, 1402 BasicBlock *BBCopy) { 1403 1404 BasicBlock *BBIDom = DT.getNode(BB)->getIDom()->getBlock(); 1405 BasicBlock *BBCopyIDom = EndBlockMap.lookup(BBIDom); 1406 1407 if (BBCopyIDom) 1408 DT.changeImmediateDominator(BBCopy, BBCopyIDom); 1409 1410 return StartBlockMap.lookup(BBIDom); 1411 } 1412 1413 // This is to determine whether an llvm::Value (defined in @p BB) is usable when 1414 // leaving a subregion. The straight-forward DT.dominates(BB, R->getExitBlock()) 1415 // does not work in cases where the exit block has edges from outside the 1416 // region. In that case the llvm::Value would never be usable in in the exit 1417 // block. The RegionGenerator however creates an new exit block ('ExitBBCopy') 1418 // for the subregion's exiting edges only. We need to determine whether an 1419 // llvm::Value is usable in there. We do this by checking whether it dominates 1420 // all exiting blocks individually. 1421 static bool isDominatingSubregionExit(const DominatorTree &DT, Region *R, 1422 BasicBlock *BB) { 1423 for (auto ExitingBB : predecessors(R->getExit())) { 1424 // Check for non-subregion incoming edges. 1425 if (!R->contains(ExitingBB)) 1426 continue; 1427 1428 if (!DT.dominates(BB, ExitingBB)) 1429 return false; 1430 } 1431 1432 return true; 1433 } 1434 1435 // Find the direct dominator of the subregion's exit block if the subregion was 1436 // simplified. 1437 static BasicBlock *findExitDominator(DominatorTree &DT, Region *R) { 1438 BasicBlock *Common = nullptr; 1439 for (auto ExitingBB : predecessors(R->getExit())) { 1440 // Check for non-subregion incoming edges. 1441 if (!R->contains(ExitingBB)) 1442 continue; 1443 1444 // First exiting edge. 1445 if (!Common) { 1446 Common = ExitingBB; 1447 continue; 1448 } 1449 1450 Common = DT.findNearestCommonDominator(Common, ExitingBB); 1451 } 1452 1453 assert(Common && R->contains(Common)); 1454 return Common; 1455 } 1456 1457 void RegionGenerator::copyStmt(ScopStmt &Stmt, LoopToScevMapT <S, 1458 isl_id_to_ast_expr *IdToAstExp) { 1459 assert(Stmt.isRegionStmt() && 1460 "Only region statements can be copied by the region generator"); 1461 1462 // Forget all old mappings. 1463 StartBlockMap.clear(); 1464 EndBlockMap.clear(); 1465 RegionMaps.clear(); 1466 IncompletePHINodeMap.clear(); 1467 1468 // Collection of all values related to this subregion. 1469 ValueMapT ValueMap; 1470 1471 // The region represented by the statement. 1472 Region *R = Stmt.getRegion(); 1473 1474 // Create a dedicated entry for the region where we can reload all demoted 1475 // inputs. 1476 BasicBlock *EntryBB = R->getEntry(); 1477 BasicBlock *EntryBBCopy = SplitBlock(Builder.GetInsertBlock(), 1478 &*Builder.GetInsertPoint(), &DT, &LI); 1479 EntryBBCopy->setName("polly.stmt." + EntryBB->getName() + ".entry"); 1480 Builder.SetInsertPoint(&EntryBBCopy->front()); 1481 1482 ValueMapT &EntryBBMap = RegionMaps[EntryBBCopy]; 1483 generateScalarLoads(Stmt, LTS, EntryBBMap, IdToAstExp); 1484 generateBeginStmtTrace(Stmt, LTS, EntryBBMap); 1485 1486 for (auto PI = pred_begin(EntryBB), PE = pred_end(EntryBB); PI != PE; ++PI) 1487 if (!R->contains(*PI)) { 1488 StartBlockMap[*PI] = EntryBBCopy; 1489 EndBlockMap[*PI] = EntryBBCopy; 1490 } 1491 1492 // Iterate over all blocks in the region in a breadth-first search. 1493 std::deque<BasicBlock *> Blocks; 1494 SmallSetVector<BasicBlock *, 8> SeenBlocks; 1495 Blocks.push_back(EntryBB); 1496 SeenBlocks.insert(EntryBB); 1497 1498 while (!Blocks.empty()) { 1499 BasicBlock *BB = Blocks.front(); 1500 Blocks.pop_front(); 1501 1502 // First split the block and update dominance information. 1503 BasicBlock *BBCopy = splitBB(BB); 1504 BasicBlock *BBCopyIDom = repairDominance(BB, BBCopy); 1505 1506 // Get the mapping for this block and initialize it with either the scalar 1507 // loads from the generated entering block (which dominates all blocks of 1508 // this subregion) or the maps of the immediate dominator, if part of the 1509 // subregion. The latter necessarily includes the former. 1510 ValueMapT *InitBBMap; 1511 if (BBCopyIDom) { 1512 assert(RegionMaps.count(BBCopyIDom)); 1513 InitBBMap = &RegionMaps[BBCopyIDom]; 1514 } else 1515 InitBBMap = &EntryBBMap; 1516 auto Inserted = RegionMaps.insert(std::make_pair(BBCopy, *InitBBMap)); 1517 ValueMapT &RegionMap = Inserted.first->second; 1518 1519 // Copy the block with the BlockGenerator. 1520 Builder.SetInsertPoint(&BBCopy->front()); 1521 copyBB(Stmt, BB, BBCopy, RegionMap, LTS, IdToAstExp); 1522 1523 // In order to remap PHI nodes we store also basic block mappings. 1524 StartBlockMap[BB] = BBCopy; 1525 EndBlockMap[BB] = Builder.GetInsertBlock(); 1526 1527 // Add values to incomplete PHI nodes waiting for this block to be copied. 1528 for (const PHINodePairTy &PHINodePair : IncompletePHINodeMap[BB]) 1529 addOperandToPHI(Stmt, PHINodePair.first, PHINodePair.second, BB, LTS); 1530 IncompletePHINodeMap[BB].clear(); 1531 1532 // And continue with new successors inside the region. 1533 for (auto SI = succ_begin(BB), SE = succ_end(BB); SI != SE; SI++) 1534 if (R->contains(*SI) && SeenBlocks.insert(*SI)) 1535 Blocks.push_back(*SI); 1536 1537 // Remember value in case it is visible after this subregion. 1538 if (isDominatingSubregionExit(DT, R, BB)) 1539 ValueMap.insert(RegionMap.begin(), RegionMap.end()); 1540 } 1541 1542 // Now create a new dedicated region exit block and add it to the region map. 1543 BasicBlock *ExitBBCopy = SplitBlock(Builder.GetInsertBlock(), 1544 &*Builder.GetInsertPoint(), &DT, &LI); 1545 ExitBBCopy->setName("polly.stmt." + R->getExit()->getName() + ".exit"); 1546 StartBlockMap[R->getExit()] = ExitBBCopy; 1547 EndBlockMap[R->getExit()] = ExitBBCopy; 1548 1549 BasicBlock *ExitDomBBCopy = EndBlockMap.lookup(findExitDominator(DT, R)); 1550 assert(ExitDomBBCopy && 1551 "Common exit dominator must be within region; at least the entry node " 1552 "must match"); 1553 DT.changeImmediateDominator(ExitBBCopy, ExitDomBBCopy); 1554 1555 // As the block generator doesn't handle control flow we need to add the 1556 // region control flow by hand after all blocks have been copied. 1557 for (BasicBlock *BB : SeenBlocks) { 1558 1559 BasicBlock *BBCopyStart = StartBlockMap[BB]; 1560 BasicBlock *BBCopyEnd = EndBlockMap[BB]; 1561 Instruction *TI = BB->getTerminator(); 1562 if (isa<UnreachableInst>(TI)) { 1563 while (!BBCopyEnd->empty()) 1564 BBCopyEnd->begin()->eraseFromParent(); 1565 new UnreachableInst(BBCopyEnd->getContext(), BBCopyEnd); 1566 continue; 1567 } 1568 1569 Instruction *BICopy = BBCopyEnd->getTerminator(); 1570 1571 ValueMapT &RegionMap = RegionMaps[BBCopyStart]; 1572 RegionMap.insert(StartBlockMap.begin(), StartBlockMap.end()); 1573 1574 Builder.SetInsertPoint(BICopy); 1575 copyInstScalar(Stmt, TI, RegionMap, LTS); 1576 BICopy->eraseFromParent(); 1577 } 1578 1579 // Add counting PHI nodes to all loops in the region that can be used as 1580 // replacement for SCEVs referring to the old loop. 1581 for (BasicBlock *BB : SeenBlocks) { 1582 Loop *L = LI.getLoopFor(BB); 1583 if (L == nullptr || L->getHeader() != BB || !R->contains(L)) 1584 continue; 1585 1586 BasicBlock *BBCopy = StartBlockMap[BB]; 1587 Value *NullVal = Builder.getInt32(0); 1588 PHINode *LoopPHI = 1589 PHINode::Create(Builder.getInt32Ty(), 2, "polly.subregion.iv"); 1590 Instruction *LoopPHIInc = BinaryOperator::CreateAdd( 1591 LoopPHI, Builder.getInt32(1), "polly.subregion.iv.inc"); 1592 LoopPHI->insertBefore(&BBCopy->front()); 1593 LoopPHIInc->insertBefore(BBCopy->getTerminator()); 1594 1595 for (auto *PredBB : make_range(pred_begin(BB), pred_end(BB))) { 1596 if (!R->contains(PredBB)) 1597 continue; 1598 if (L->contains(PredBB)) 1599 LoopPHI->addIncoming(LoopPHIInc, EndBlockMap[PredBB]); 1600 else 1601 LoopPHI->addIncoming(NullVal, EndBlockMap[PredBB]); 1602 } 1603 1604 for (auto *PredBBCopy : make_range(pred_begin(BBCopy), pred_end(BBCopy))) 1605 if (LoopPHI->getBasicBlockIndex(PredBBCopy) < 0) 1606 LoopPHI->addIncoming(NullVal, PredBBCopy); 1607 1608 LTS[L] = SE.getUnknown(LoopPHI); 1609 } 1610 1611 // Continue generating code in the exit block. 1612 Builder.SetInsertPoint(&*ExitBBCopy->getFirstInsertionPt()); 1613 1614 // Write values visible to other statements. 1615 generateScalarStores(Stmt, LTS, ValueMap, IdToAstExp); 1616 StartBlockMap.clear(); 1617 EndBlockMap.clear(); 1618 RegionMaps.clear(); 1619 IncompletePHINodeMap.clear(); 1620 } 1621 1622 PHINode *RegionGenerator::buildExitPHI(MemoryAccess *MA, LoopToScevMapT <S, 1623 ValueMapT &BBMap, Loop *L) { 1624 ScopStmt *Stmt = MA->getStatement(); 1625 Region *SubR = Stmt->getRegion(); 1626 auto Incoming = MA->getIncoming(); 1627 1628 PollyIRBuilder::InsertPointGuard IPGuard(Builder); 1629 PHINode *OrigPHI = cast<PHINode>(MA->getAccessInstruction()); 1630 BasicBlock *NewSubregionExit = Builder.GetInsertBlock(); 1631 1632 // This can happen if the subregion is simplified after the ScopStmts 1633 // have been created; simplification happens as part of CodeGeneration. 1634 if (OrigPHI->getParent() != SubR->getExit()) { 1635 BasicBlock *FormerExit = SubR->getExitingBlock(); 1636 if (FormerExit) 1637 NewSubregionExit = StartBlockMap.lookup(FormerExit); 1638 } 1639 1640 PHINode *NewPHI = PHINode::Create(OrigPHI->getType(), Incoming.size(), 1641 "polly." + OrigPHI->getName(), 1642 NewSubregionExit->getFirstNonPHI()); 1643 1644 // Add the incoming values to the PHI. 1645 for (auto &Pair : Incoming) { 1646 BasicBlock *OrigIncomingBlock = Pair.first; 1647 BasicBlock *NewIncomingBlockStart = StartBlockMap.lookup(OrigIncomingBlock); 1648 BasicBlock *NewIncomingBlockEnd = EndBlockMap.lookup(OrigIncomingBlock); 1649 Builder.SetInsertPoint(NewIncomingBlockEnd->getTerminator()); 1650 assert(RegionMaps.count(NewIncomingBlockStart)); 1651 assert(RegionMaps.count(NewIncomingBlockEnd)); 1652 ValueMapT *LocalBBMap = &RegionMaps[NewIncomingBlockStart]; 1653 1654 Value *OrigIncomingValue = Pair.second; 1655 Value *NewIncomingValue = 1656 getNewValue(*Stmt, OrigIncomingValue, *LocalBBMap, LTS, L); 1657 NewPHI->addIncoming(NewIncomingValue, NewIncomingBlockEnd); 1658 } 1659 1660 return NewPHI; 1661 } 1662 1663 Value *RegionGenerator::getExitScalar(MemoryAccess *MA, LoopToScevMapT <S, 1664 ValueMapT &BBMap) { 1665 ScopStmt *Stmt = MA->getStatement(); 1666 1667 // TODO: Add some test cases that ensure this is really the right choice. 1668 Loop *L = LI.getLoopFor(Stmt->getRegion()->getExit()); 1669 1670 if (MA->isAnyPHIKind()) { 1671 auto Incoming = MA->getIncoming(); 1672 assert(!Incoming.empty() && 1673 "PHI WRITEs must have originate from at least one incoming block"); 1674 1675 // If there is only one incoming value, we do not need to create a PHI. 1676 if (Incoming.size() == 1) { 1677 Value *OldVal = Incoming[0].second; 1678 return getNewValue(*Stmt, OldVal, BBMap, LTS, L); 1679 } 1680 1681 return buildExitPHI(MA, LTS, BBMap, L); 1682 } 1683 1684 // MemoryKind::Value accesses leaving the subregion must dominate the exit 1685 // block; just pass the copied value. 1686 Value *OldVal = MA->getAccessValue(); 1687 return getNewValue(*Stmt, OldVal, BBMap, LTS, L); 1688 } 1689 1690 void RegionGenerator::generateScalarStores( 1691 ScopStmt &Stmt, LoopToScevMapT <S, ValueMapT &BBMap, 1692 __isl_keep isl_id_to_ast_expr *NewAccesses) { 1693 assert(Stmt.getRegion() && 1694 "Block statements need to use the generateScalarStores() " 1695 "function in the BlockGenerator"); 1696 1697 // Get the exit scalar values before generating the writes. 1698 // This is necessary because RegionGenerator::getExitScalar may insert 1699 // PHINodes that depend on the region's exiting blocks. But 1700 // BlockGenerator::generateConditionalExecution may insert a new basic block 1701 // such that the current basic block is not a direct successor of the exiting 1702 // blocks anymore. Hence, build the PHINodes while the current block is still 1703 // the direct successor. 1704 SmallDenseMap<MemoryAccess *, Value *> NewExitScalars; 1705 for (MemoryAccess *MA : Stmt) { 1706 if (MA->isOriginalArrayKind() || MA->isRead()) 1707 continue; 1708 1709 Value *NewVal = getExitScalar(MA, LTS, BBMap); 1710 NewExitScalars[MA] = NewVal; 1711 } 1712 1713 for (MemoryAccess *MA : Stmt) { 1714 if (MA->isOriginalArrayKind() || MA->isRead()) 1715 continue; 1716 1717 isl::set AccDom = MA->getAccessRelation().domain(); 1718 std::string Subject = MA->getId().get_name(); 1719 generateConditionalExecution( 1720 Stmt, AccDom, Subject.c_str(), [&, this, MA]() { 1721 Value *NewVal = NewExitScalars.lookup(MA); 1722 assert(NewVal && "The exit scalar must be determined before"); 1723 Value *Address = getImplicitAddress(*MA, getLoopForStmt(Stmt), LTS, 1724 BBMap, NewAccesses); 1725 assert((!isa<Instruction>(NewVal) || 1726 DT.dominates(cast<Instruction>(NewVal)->getParent(), 1727 Builder.GetInsertBlock())) && 1728 "Domination violation"); 1729 assert((!isa<Instruction>(Address) || 1730 DT.dominates(cast<Instruction>(Address)->getParent(), 1731 Builder.GetInsertBlock())) && 1732 "Domination violation"); 1733 Builder.CreateStore(NewVal, Address); 1734 }); 1735 } 1736 } 1737 1738 void RegionGenerator::addOperandToPHI(ScopStmt &Stmt, PHINode *PHI, 1739 PHINode *PHICopy, BasicBlock *IncomingBB, 1740 LoopToScevMapT <S) { 1741 // If the incoming block was not yet copied mark this PHI as incomplete. 1742 // Once the block will be copied the incoming value will be added. 1743 BasicBlock *BBCopyStart = StartBlockMap[IncomingBB]; 1744 BasicBlock *BBCopyEnd = EndBlockMap[IncomingBB]; 1745 if (!BBCopyStart) { 1746 assert(!BBCopyEnd); 1747 assert(Stmt.represents(IncomingBB) && 1748 "Bad incoming block for PHI in non-affine region"); 1749 IncompletePHINodeMap[IncomingBB].push_back(std::make_pair(PHI, PHICopy)); 1750 return; 1751 } 1752 1753 assert(RegionMaps.count(BBCopyStart) && 1754 "Incoming PHI block did not have a BBMap"); 1755 ValueMapT &BBCopyMap = RegionMaps[BBCopyStart]; 1756 1757 Value *OpCopy = nullptr; 1758 1759 if (Stmt.represents(IncomingBB)) { 1760 Value *Op = PHI->getIncomingValueForBlock(IncomingBB); 1761 1762 // If the current insert block is different from the PHIs incoming block 1763 // change it, otherwise do not. 1764 auto IP = Builder.GetInsertPoint(); 1765 if (IP->getParent() != BBCopyEnd) 1766 Builder.SetInsertPoint(BBCopyEnd->getTerminator()); 1767 OpCopy = getNewValue(Stmt, Op, BBCopyMap, LTS, getLoopForStmt(Stmt)); 1768 if (IP->getParent() != BBCopyEnd) 1769 Builder.SetInsertPoint(&*IP); 1770 } else { 1771 // All edges from outside the non-affine region become a single edge 1772 // in the new copy of the non-affine region. Make sure to only add the 1773 // corresponding edge the first time we encounter a basic block from 1774 // outside the non-affine region. 1775 if (PHICopy->getBasicBlockIndex(BBCopyEnd) >= 0) 1776 return; 1777 1778 // Get the reloaded value. 1779 OpCopy = getNewValue(Stmt, PHI, BBCopyMap, LTS, getLoopForStmt(Stmt)); 1780 } 1781 1782 assert(OpCopy && "Incoming PHI value was not copied properly"); 1783 PHICopy->addIncoming(OpCopy, BBCopyEnd); 1784 } 1785 1786 void RegionGenerator::copyPHIInstruction(ScopStmt &Stmt, PHINode *PHI, 1787 ValueMapT &BBMap, 1788 LoopToScevMapT <S) { 1789 unsigned NumIncoming = PHI->getNumIncomingValues(); 1790 PHINode *PHICopy = 1791 Builder.CreatePHI(PHI->getType(), NumIncoming, "polly." + PHI->getName()); 1792 PHICopy->moveBefore(PHICopy->getParent()->getFirstNonPHI()); 1793 BBMap[PHI] = PHICopy; 1794 1795 for (BasicBlock *IncomingBB : PHI->blocks()) 1796 addOperandToPHI(Stmt, PHI, PHICopy, IncomingBB, LTS); 1797 } 1798