1 //===--- BlockGenerators.cpp - Generate code for statements -----*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the BlockGenerator and VectorBlockGenerator classes, 10 // which generate sequential code and vectorized code for a polyhedral 11 // statement, respectively. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "polly/CodeGen/BlockGenerators.h" 16 #include "polly/CodeGen/CodeGeneration.h" 17 #include "polly/CodeGen/IslExprBuilder.h" 18 #include "polly/CodeGen/RuntimeDebugBuilder.h" 19 #include "polly/Options.h" 20 #include "polly/ScopInfo.h" 21 #include "polly/Support/GICHelper.h" 22 #include "polly/Support/SCEVValidator.h" 23 #include "polly/Support/ScopHelper.h" 24 #include "polly/Support/VirtualInstruction.h" 25 #include "llvm/Analysis/LoopInfo.h" 26 #include "llvm/Analysis/RegionInfo.h" 27 #include "llvm/Analysis/ScalarEvolution.h" 28 #include "llvm/IR/IntrinsicInst.h" 29 #include "llvm/IR/Module.h" 30 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 31 #include "llvm/Transforms/Utils/Local.h" 32 #include "isl/aff.h" 33 #include "isl/ast.h" 34 #include "isl/ast_build.h" 35 #include "isl/set.h" 36 #include <deque> 37 38 using namespace llvm; 39 using namespace polly; 40 41 static cl::opt<bool> Aligned("enable-polly-aligned", 42 cl::desc("Assumed aligned memory accesses."), 43 cl::Hidden, cl::init(false), cl::ZeroOrMore, 44 cl::cat(PollyCategory)); 45 46 bool PollyDebugPrinting; 47 static cl::opt<bool, true> DebugPrintingX( 48 "polly-codegen-add-debug-printing", 49 cl::desc("Add printf calls that show the values loaded/stored."), 50 cl::location(PollyDebugPrinting), cl::Hidden, cl::init(false), 51 cl::ZeroOrMore, cl::cat(PollyCategory)); 52 53 static cl::opt<bool> TraceStmts( 54 "polly-codegen-trace-stmts", 55 cl::desc("Add printf calls that print the statement being executed"), 56 cl::Hidden, cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory)); 57 58 static cl::opt<bool> TraceScalars( 59 "polly-codegen-trace-scalars", 60 cl::desc("Add printf calls that print the values of all scalar values " 61 "used in a statement. Requires -polly-codegen-trace-stmts."), 62 cl::Hidden, cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory)); 63 64 BlockGenerator::BlockGenerator( 65 PollyIRBuilder &B, LoopInfo &LI, ScalarEvolution &SE, DominatorTree &DT, 66 AllocaMapTy &ScalarMap, EscapeUsersAllocaMapTy &EscapeMap, 67 ValueMapT &GlobalMap, IslExprBuilder *ExprBuilder, BasicBlock *StartBlock) 68 : Builder(B), LI(LI), SE(SE), ExprBuilder(ExprBuilder), DT(DT), 69 EntryBB(nullptr), ScalarMap(ScalarMap), EscapeMap(EscapeMap), 70 GlobalMap(GlobalMap), StartBlock(StartBlock) {} 71 72 Value *BlockGenerator::trySynthesizeNewValue(ScopStmt &Stmt, Value *Old, 73 ValueMapT &BBMap, 74 LoopToScevMapT <S, 75 Loop *L) const { 76 if (!SE.isSCEVable(Old->getType())) 77 return nullptr; 78 79 const SCEV *Scev = SE.getSCEVAtScope(Old, L); 80 if (!Scev) 81 return nullptr; 82 83 if (isa<SCEVCouldNotCompute>(Scev)) 84 return nullptr; 85 86 const SCEV *NewScev = SCEVLoopAddRecRewriter::rewrite(Scev, LTS, SE); 87 ValueMapT VTV; 88 VTV.insert(BBMap.begin(), BBMap.end()); 89 VTV.insert(GlobalMap.begin(), GlobalMap.end()); 90 91 Scop &S = *Stmt.getParent(); 92 const DataLayout &DL = S.getFunction().getParent()->getDataLayout(); 93 auto IP = Builder.GetInsertPoint(); 94 95 assert(IP != Builder.GetInsertBlock()->end() && 96 "Only instructions can be insert points for SCEVExpander"); 97 Value *Expanded = 98 expandCodeFor(S, SE, DL, "polly", NewScev, Old->getType(), &*IP, &VTV, 99 StartBlock->getSinglePredecessor()); 100 101 BBMap[Old] = Expanded; 102 return Expanded; 103 } 104 105 Value *BlockGenerator::getNewValue(ScopStmt &Stmt, Value *Old, ValueMapT &BBMap, 106 LoopToScevMapT <S, Loop *L) const { 107 108 auto lookupGlobally = [this](Value *Old) -> Value * { 109 Value *New = GlobalMap.lookup(Old); 110 if (!New) 111 return nullptr; 112 113 // Required by: 114 // * Isl/CodeGen/OpenMP/invariant_base_pointer_preloaded.ll 115 // * Isl/CodeGen/OpenMP/invariant_base_pointer_preloaded_different_bb.ll 116 // * Isl/CodeGen/OpenMP/invariant_base_pointer_preloaded_pass_only_needed.ll 117 // * Isl/CodeGen/OpenMP/invariant_base_pointers_preloaded.ll 118 // * Isl/CodeGen/OpenMP/loop-body-references-outer-values-3.ll 119 // * Isl/CodeGen/OpenMP/single_loop_with_loop_invariant_baseptr.ll 120 // GlobalMap should be a mapping from (value in original SCoP) to (copied 121 // value in generated SCoP), without intermediate mappings, which might 122 // easily require transitiveness as well. 123 if (Value *NewRemapped = GlobalMap.lookup(New)) 124 New = NewRemapped; 125 126 // No test case for this code. 127 if (Old->getType()->getScalarSizeInBits() < 128 New->getType()->getScalarSizeInBits()) 129 New = Builder.CreateTruncOrBitCast(New, Old->getType()); 130 131 return New; 132 }; 133 134 Value *New = nullptr; 135 auto VUse = VirtualUse::create(&Stmt, L, Old, true); 136 switch (VUse.getKind()) { 137 case VirtualUse::Block: 138 // BasicBlock are constants, but the BlockGenerator copies them. 139 New = BBMap.lookup(Old); 140 break; 141 142 case VirtualUse::Constant: 143 // Used by: 144 // * Isl/CodeGen/OpenMP/reference-argument-from-non-affine-region.ll 145 // Constants should not be redefined. In this case, the GlobalMap just 146 // contains a mapping to the same constant, which is unnecessary, but 147 // harmless. 148 if ((New = lookupGlobally(Old))) 149 break; 150 151 assert(!BBMap.count(Old)); 152 New = Old; 153 break; 154 155 case VirtualUse::ReadOnly: 156 assert(!GlobalMap.count(Old)); 157 158 // Required for: 159 // * Isl/CodeGen/MemAccess/create_arrays.ll 160 // * Isl/CodeGen/read-only-scalars.ll 161 // * ScheduleOptimizer/pattern-matching-based-opts_10.ll 162 // For some reason these reload a read-only value. The reloaded value ends 163 // up in BBMap, buts its value should be identical. 164 // 165 // Required for: 166 // * Isl/CodeGen/OpenMP/single_loop_with_param.ll 167 // The parallel subfunctions need to reference the read-only value from the 168 // parent function, this is done by reloading them locally. 169 if ((New = BBMap.lookup(Old))) 170 break; 171 172 New = Old; 173 break; 174 175 case VirtualUse::Synthesizable: 176 // Used by: 177 // * Isl/CodeGen/OpenMP/loop-body-references-outer-values-3.ll 178 // * Isl/CodeGen/OpenMP/recomputed-srem.ll 179 // * Isl/CodeGen/OpenMP/reference-other-bb.ll 180 // * Isl/CodeGen/OpenMP/two-parallel-loops-reference-outer-indvar.ll 181 // For some reason synthesizable values end up in GlobalMap. Their values 182 // are the same as trySynthesizeNewValue would return. The legacy 183 // implementation prioritized GlobalMap, so this is what we do here as well. 184 // Ideally, synthesizable values should not end up in GlobalMap. 185 if ((New = lookupGlobally(Old))) 186 break; 187 188 // Required for: 189 // * Isl/CodeGen/RuntimeDebugBuilder/combine_different_values.ll 190 // * Isl/CodeGen/getNumberOfIterations.ll 191 // * Isl/CodeGen/non_affine_float_compare.ll 192 // * ScheduleOptimizer/pattern-matching-based-opts_10.ll 193 // Ideally, synthesizable values are synthesized by trySynthesizeNewValue, 194 // not precomputed (SCEVExpander has its own caching mechanism). 195 // These tests fail without this, but I think trySynthesizeNewValue would 196 // just re-synthesize the same instructions. 197 if ((New = BBMap.lookup(Old))) 198 break; 199 200 New = trySynthesizeNewValue(Stmt, Old, BBMap, LTS, L); 201 break; 202 203 case VirtualUse::Hoisted: 204 // TODO: Hoisted invariant loads should be found in GlobalMap only, but not 205 // redefined locally (which will be ignored anyway). That is, the following 206 // assertion should apply: assert(!BBMap.count(Old)) 207 208 New = lookupGlobally(Old); 209 break; 210 211 case VirtualUse::Intra: 212 case VirtualUse::Inter: 213 assert(!GlobalMap.count(Old) && 214 "Intra and inter-stmt values are never global"); 215 New = BBMap.lookup(Old); 216 break; 217 } 218 assert(New && "Unexpected scalar dependence in region!"); 219 return New; 220 } 221 222 void BlockGenerator::copyInstScalar(ScopStmt &Stmt, Instruction *Inst, 223 ValueMapT &BBMap, LoopToScevMapT <S) { 224 // We do not generate debug intrinsics as we did not investigate how to 225 // copy them correctly. At the current state, they just crash the code 226 // generation as the meta-data operands are not correctly copied. 227 if (isa<DbgInfoIntrinsic>(Inst)) 228 return; 229 230 Instruction *NewInst = Inst->clone(); 231 232 // Replace old operands with the new ones. 233 for (Value *OldOperand : Inst->operands()) { 234 Value *NewOperand = 235 getNewValue(Stmt, OldOperand, BBMap, LTS, getLoopForStmt(Stmt)); 236 237 if (!NewOperand) { 238 assert(!isa<StoreInst>(NewInst) && 239 "Store instructions are always needed!"); 240 NewInst->deleteValue(); 241 return; 242 } 243 244 NewInst->replaceUsesOfWith(OldOperand, NewOperand); 245 } 246 247 Builder.Insert(NewInst); 248 BBMap[Inst] = NewInst; 249 250 // When copying the instruction onto the Module meant for the GPU, 251 // debug metadata attached to an instruction causes all related 252 // metadata to be pulled into the Module. This includes the DICompileUnit, 253 // which will not be listed in llvm.dbg.cu of the Module since the Module 254 // doesn't contain one. This fails the verification of the Module and the 255 // subsequent generation of the ASM string. 256 if (NewInst->getModule() != Inst->getModule()) 257 NewInst->setDebugLoc(llvm::DebugLoc()); 258 259 if (!NewInst->getType()->isVoidTy()) 260 NewInst->setName("p_" + Inst->getName()); 261 } 262 263 Value * 264 BlockGenerator::generateLocationAccessed(ScopStmt &Stmt, MemAccInst Inst, 265 ValueMapT &BBMap, LoopToScevMapT <S, 266 isl_id_to_ast_expr *NewAccesses) { 267 const MemoryAccess &MA = Stmt.getArrayAccessFor(Inst); 268 return generateLocationAccessed( 269 Stmt, getLoopForStmt(Stmt), 270 Inst.isNull() ? nullptr : Inst.getPointerOperand(), BBMap, LTS, 271 NewAccesses, MA.getId().release(), MA.getAccessValue()->getType()); 272 } 273 274 Value *BlockGenerator::generateLocationAccessed( 275 ScopStmt &Stmt, Loop *L, Value *Pointer, ValueMapT &BBMap, 276 LoopToScevMapT <S, isl_id_to_ast_expr *NewAccesses, __isl_take isl_id *Id, 277 Type *ExpectedType) { 278 isl_ast_expr *AccessExpr = isl_id_to_ast_expr_get(NewAccesses, Id); 279 280 if (AccessExpr) { 281 AccessExpr = isl_ast_expr_address_of(AccessExpr); 282 auto Address = ExprBuilder->create(AccessExpr); 283 284 // Cast the address of this memory access to a pointer type that has the 285 // same element type as the original access, but uses the address space of 286 // the newly generated pointer. 287 auto OldPtrTy = ExpectedType->getPointerTo(); 288 auto NewPtrTy = Address->getType(); 289 OldPtrTy = PointerType::get(OldPtrTy->getElementType(), 290 NewPtrTy->getPointerAddressSpace()); 291 292 if (OldPtrTy != NewPtrTy) 293 Address = Builder.CreateBitOrPointerCast(Address, OldPtrTy); 294 return Address; 295 } 296 assert( 297 Pointer && 298 "If expression was not generated, must use the original pointer value"); 299 return getNewValue(Stmt, Pointer, BBMap, LTS, L); 300 } 301 302 Value * 303 BlockGenerator::getImplicitAddress(MemoryAccess &Access, Loop *L, 304 LoopToScevMapT <S, ValueMapT &BBMap, 305 __isl_keep isl_id_to_ast_expr *NewAccesses) { 306 if (Access.isLatestArrayKind()) 307 return generateLocationAccessed(*Access.getStatement(), L, nullptr, BBMap, 308 LTS, NewAccesses, Access.getId().release(), 309 Access.getAccessValue()->getType()); 310 311 return getOrCreateAlloca(Access); 312 } 313 314 Loop *BlockGenerator::getLoopForStmt(const ScopStmt &Stmt) const { 315 auto *StmtBB = Stmt.getEntryBlock(); 316 return LI.getLoopFor(StmtBB); 317 } 318 319 Value *BlockGenerator::generateArrayLoad(ScopStmt &Stmt, LoadInst *Load, 320 ValueMapT &BBMap, LoopToScevMapT <S, 321 isl_id_to_ast_expr *NewAccesses) { 322 if (Value *PreloadLoad = GlobalMap.lookup(Load)) 323 return PreloadLoad; 324 325 Value *NewPointer = 326 generateLocationAccessed(Stmt, Load, BBMap, LTS, NewAccesses); 327 Value *ScalarLoad = Builder.CreateAlignedLoad( 328 NewPointer, Load->getAlignment(), Load->getName() + "_p_scalar_"); 329 330 if (PollyDebugPrinting) 331 RuntimeDebugBuilder::createCPUPrinter(Builder, "Load from ", NewPointer, 332 ": ", ScalarLoad, "\n"); 333 334 return ScalarLoad; 335 } 336 337 void BlockGenerator::generateArrayStore(ScopStmt &Stmt, StoreInst *Store, 338 ValueMapT &BBMap, LoopToScevMapT <S, 339 isl_id_to_ast_expr *NewAccesses) { 340 MemoryAccess &MA = Stmt.getArrayAccessFor(Store); 341 isl::set AccDom = MA.getAccessRelation().domain(); 342 std::string Subject = MA.getId().get_name(); 343 344 generateConditionalExecution(Stmt, AccDom, Subject.c_str(), [&, this]() { 345 Value *NewPointer = 346 generateLocationAccessed(Stmt, Store, BBMap, LTS, NewAccesses); 347 Value *ValueOperand = getNewValue(Stmt, Store->getValueOperand(), BBMap, 348 LTS, getLoopForStmt(Stmt)); 349 350 if (PollyDebugPrinting) 351 RuntimeDebugBuilder::createCPUPrinter(Builder, "Store to ", NewPointer, 352 ": ", ValueOperand, "\n"); 353 354 Builder.CreateAlignedStore(ValueOperand, NewPointer, Store->getAlignment()); 355 }); 356 } 357 358 bool BlockGenerator::canSyntheziseInStmt(ScopStmt &Stmt, Instruction *Inst) { 359 Loop *L = getLoopForStmt(Stmt); 360 return (Stmt.isBlockStmt() || !Stmt.getRegion()->contains(L)) && 361 canSynthesize(Inst, *Stmt.getParent(), &SE, L); 362 } 363 364 void BlockGenerator::copyInstruction(ScopStmt &Stmt, Instruction *Inst, 365 ValueMapT &BBMap, LoopToScevMapT <S, 366 isl_id_to_ast_expr *NewAccesses) { 367 // Terminator instructions control the control flow. They are explicitly 368 // expressed in the clast and do not need to be copied. 369 if (Inst->isTerminator()) 370 return; 371 372 // Synthesizable statements will be generated on-demand. 373 if (canSyntheziseInStmt(Stmt, Inst)) 374 return; 375 376 if (auto *Load = dyn_cast<LoadInst>(Inst)) { 377 Value *NewLoad = generateArrayLoad(Stmt, Load, BBMap, LTS, NewAccesses); 378 // Compute NewLoad before its insertion in BBMap to make the insertion 379 // deterministic. 380 BBMap[Load] = NewLoad; 381 return; 382 } 383 384 if (auto *Store = dyn_cast<StoreInst>(Inst)) { 385 // Identified as redundant by -polly-simplify. 386 if (!Stmt.getArrayAccessOrNULLFor(Store)) 387 return; 388 389 generateArrayStore(Stmt, Store, BBMap, LTS, NewAccesses); 390 return; 391 } 392 393 if (auto *PHI = dyn_cast<PHINode>(Inst)) { 394 copyPHIInstruction(Stmt, PHI, BBMap, LTS); 395 return; 396 } 397 398 // Skip some special intrinsics for which we do not adjust the semantics to 399 // the new schedule. All others are handled like every other instruction. 400 if (isIgnoredIntrinsic(Inst)) 401 return; 402 403 copyInstScalar(Stmt, Inst, BBMap, LTS); 404 } 405 406 void BlockGenerator::removeDeadInstructions(BasicBlock *BB, ValueMapT &BBMap) { 407 auto NewBB = Builder.GetInsertBlock(); 408 for (auto I = NewBB->rbegin(); I != NewBB->rend(); I++) { 409 Instruction *NewInst = &*I; 410 411 if (!isInstructionTriviallyDead(NewInst)) 412 continue; 413 414 for (auto Pair : BBMap) 415 if (Pair.second == NewInst) { 416 BBMap.erase(Pair.first); 417 } 418 419 NewInst->eraseFromParent(); 420 I = NewBB->rbegin(); 421 } 422 } 423 424 void BlockGenerator::copyStmt(ScopStmt &Stmt, LoopToScevMapT <S, 425 isl_id_to_ast_expr *NewAccesses) { 426 assert(Stmt.isBlockStmt() && 427 "Only block statements can be copied by the block generator"); 428 429 ValueMapT BBMap; 430 431 BasicBlock *BB = Stmt.getBasicBlock(); 432 copyBB(Stmt, BB, BBMap, LTS, NewAccesses); 433 removeDeadInstructions(BB, BBMap); 434 } 435 436 BasicBlock *BlockGenerator::splitBB(BasicBlock *BB) { 437 BasicBlock *CopyBB = SplitBlock(Builder.GetInsertBlock(), 438 &*Builder.GetInsertPoint(), &DT, &LI); 439 CopyBB->setName("polly.stmt." + BB->getName()); 440 return CopyBB; 441 } 442 443 BasicBlock *BlockGenerator::copyBB(ScopStmt &Stmt, BasicBlock *BB, 444 ValueMapT &BBMap, LoopToScevMapT <S, 445 isl_id_to_ast_expr *NewAccesses) { 446 BasicBlock *CopyBB = splitBB(BB); 447 Builder.SetInsertPoint(&CopyBB->front()); 448 generateScalarLoads(Stmt, LTS, BBMap, NewAccesses); 449 generateBeginStmtTrace(Stmt, LTS, BBMap); 450 451 copyBB(Stmt, BB, CopyBB, BBMap, LTS, NewAccesses); 452 453 // After a basic block was copied store all scalars that escape this block in 454 // their alloca. 455 generateScalarStores(Stmt, LTS, BBMap, NewAccesses); 456 return CopyBB; 457 } 458 459 void BlockGenerator::copyBB(ScopStmt &Stmt, BasicBlock *BB, BasicBlock *CopyBB, 460 ValueMapT &BBMap, LoopToScevMapT <S, 461 isl_id_to_ast_expr *NewAccesses) { 462 EntryBB = &CopyBB->getParent()->getEntryBlock(); 463 464 // Block statements and the entry blocks of region statement are code 465 // generated from instruction lists. This allow us to optimize the 466 // instructions that belong to a certain scop statement. As the code 467 // structure of region statements might be arbitrary complex, optimizing the 468 // instruction list is not yet supported. 469 if (Stmt.isBlockStmt() || (Stmt.isRegionStmt() && Stmt.getEntryBlock() == BB)) 470 for (Instruction *Inst : Stmt.getInstructions()) 471 copyInstruction(Stmt, Inst, BBMap, LTS, NewAccesses); 472 else 473 for (Instruction &Inst : *BB) 474 copyInstruction(Stmt, &Inst, BBMap, LTS, NewAccesses); 475 } 476 477 Value *BlockGenerator::getOrCreateAlloca(const MemoryAccess &Access) { 478 assert(!Access.isLatestArrayKind() && "Trying to get alloca for array kind"); 479 480 return getOrCreateAlloca(Access.getLatestScopArrayInfo()); 481 } 482 483 Value *BlockGenerator::getOrCreateAlloca(const ScopArrayInfo *Array) { 484 assert(!Array->isArrayKind() && "Trying to get alloca for array kind"); 485 486 auto &Addr = ScalarMap[Array]; 487 488 if (Addr) { 489 // Allow allocas to be (temporarily) redirected once by adding a new 490 // old-alloca-addr to new-addr mapping to GlobalMap. This functionality 491 // is used for example by the OpenMP code generation where a first use 492 // of a scalar while still in the host code allocates a normal alloca with 493 // getOrCreateAlloca. When the values of this scalar are accessed during 494 // the generation of the parallel subfunction, these values are copied over 495 // to the parallel subfunction and each request for a scalar alloca slot 496 // must be forwarded to the temporary in-subfunction slot. This mapping is 497 // removed when the subfunction has been generated and again normal host 498 // code is generated. Due to the following reasons it is not possible to 499 // perform the GlobalMap lookup right after creating the alloca below, but 500 // instead we need to check GlobalMap at each call to getOrCreateAlloca: 501 // 502 // 1) GlobalMap may be changed multiple times (for each parallel loop), 503 // 2) The temporary mapping is commonly only known after the initial 504 // alloca has already been generated, and 505 // 3) The original alloca value must be restored after leaving the 506 // sub-function. 507 if (Value *NewAddr = GlobalMap.lookup(&*Addr)) 508 return NewAddr; 509 return Addr; 510 } 511 512 Type *Ty = Array->getElementType(); 513 Value *ScalarBase = Array->getBasePtr(); 514 std::string NameExt; 515 if (Array->isPHIKind()) 516 NameExt = ".phiops"; 517 else 518 NameExt = ".s2a"; 519 520 const DataLayout &DL = Builder.GetInsertBlock()->getModule()->getDataLayout(); 521 522 Addr = new AllocaInst(Ty, DL.getAllocaAddrSpace(), 523 ScalarBase->getName() + NameExt); 524 EntryBB = &Builder.GetInsertBlock()->getParent()->getEntryBlock(); 525 Addr->insertBefore(&*EntryBB->getFirstInsertionPt()); 526 527 return Addr; 528 } 529 530 void BlockGenerator::handleOutsideUsers(const Scop &S, ScopArrayInfo *Array) { 531 Instruction *Inst = cast<Instruction>(Array->getBasePtr()); 532 533 // If there are escape users we get the alloca for this instruction and put it 534 // in the EscapeMap for later finalization. Lastly, if the instruction was 535 // copied multiple times we already did this and can exit. 536 if (EscapeMap.count(Inst)) 537 return; 538 539 EscapeUserVectorTy EscapeUsers; 540 for (User *U : Inst->users()) { 541 542 // Non-instruction user will never escape. 543 Instruction *UI = dyn_cast<Instruction>(U); 544 if (!UI) 545 continue; 546 547 if (S.contains(UI)) 548 continue; 549 550 EscapeUsers.push_back(UI); 551 } 552 553 // Exit if no escape uses were found. 554 if (EscapeUsers.empty()) 555 return; 556 557 // Get or create an escape alloca for this instruction. 558 auto *ScalarAddr = getOrCreateAlloca(Array); 559 560 // Remember that this instruction has escape uses and the escape alloca. 561 EscapeMap[Inst] = std::make_pair(ScalarAddr, std::move(EscapeUsers)); 562 } 563 564 void BlockGenerator::generateScalarLoads( 565 ScopStmt &Stmt, LoopToScevMapT <S, ValueMapT &BBMap, 566 __isl_keep isl_id_to_ast_expr *NewAccesses) { 567 for (MemoryAccess *MA : Stmt) { 568 if (MA->isOriginalArrayKind() || MA->isWrite()) 569 continue; 570 571 #ifndef NDEBUG 572 auto StmtDom = 573 Stmt.getDomain().intersect_params(Stmt.getParent()->getContext()); 574 auto AccDom = MA->getAccessRelation().domain(); 575 assert(!StmtDom.is_subset(AccDom).is_false() && 576 "Scalar must be loaded in all statement instances"); 577 #endif 578 579 auto *Address = 580 getImplicitAddress(*MA, getLoopForStmt(Stmt), LTS, BBMap, NewAccesses); 581 assert((!isa<Instruction>(Address) || 582 DT.dominates(cast<Instruction>(Address)->getParent(), 583 Builder.GetInsertBlock())) && 584 "Domination violation"); 585 BBMap[MA->getAccessValue()] = 586 Builder.CreateLoad(Address, Address->getName() + ".reload"); 587 } 588 } 589 590 Value *BlockGenerator::buildContainsCondition(ScopStmt &Stmt, 591 const isl::set &Subdomain) { 592 isl::ast_build AstBuild = Stmt.getAstBuild(); 593 isl::set Domain = Stmt.getDomain(); 594 595 isl::union_map USchedule = AstBuild.get_schedule(); 596 USchedule = USchedule.intersect_domain(Domain); 597 598 assert(!USchedule.is_empty()); 599 isl::map Schedule = isl::map::from_union_map(USchedule); 600 601 isl::set ScheduledDomain = Schedule.range(); 602 isl::set ScheduledSet = Subdomain.apply(Schedule); 603 604 isl::ast_build RestrictedBuild = AstBuild.restrict(ScheduledDomain); 605 606 isl::ast_expr IsInSet = RestrictedBuild.expr_from(ScheduledSet); 607 Value *IsInSetExpr = ExprBuilder->create(IsInSet.copy()); 608 IsInSetExpr = Builder.CreateICmpNE( 609 IsInSetExpr, ConstantInt::get(IsInSetExpr->getType(), 0)); 610 611 return IsInSetExpr; 612 } 613 614 void BlockGenerator::generateConditionalExecution( 615 ScopStmt &Stmt, const isl::set &Subdomain, StringRef Subject, 616 const std::function<void()> &GenThenFunc) { 617 isl::set StmtDom = Stmt.getDomain(); 618 619 // If the condition is a tautology, don't generate a condition around the 620 // code. 621 bool IsPartialWrite = 622 !StmtDom.intersect_params(Stmt.getParent()->getContext()) 623 .is_subset(Subdomain); 624 if (!IsPartialWrite) { 625 GenThenFunc(); 626 return; 627 } 628 629 // Generate the condition. 630 Value *Cond = buildContainsCondition(Stmt, Subdomain); 631 632 // Don't call GenThenFunc if it is never executed. An ast index expression 633 // might not be defined in this case. 634 if (auto *Const = dyn_cast<ConstantInt>(Cond)) 635 if (Const->isZero()) 636 return; 637 638 BasicBlock *HeadBlock = Builder.GetInsertBlock(); 639 StringRef BlockName = HeadBlock->getName(); 640 641 // Generate the conditional block. 642 SplitBlockAndInsertIfThen(Cond, &*Builder.GetInsertPoint(), false, nullptr, 643 &DT, &LI); 644 BranchInst *Branch = cast<BranchInst>(HeadBlock->getTerminator()); 645 BasicBlock *ThenBlock = Branch->getSuccessor(0); 646 BasicBlock *TailBlock = Branch->getSuccessor(1); 647 648 // Assign descriptive names. 649 if (auto *CondInst = dyn_cast<Instruction>(Cond)) 650 CondInst->setName("polly." + Subject + ".cond"); 651 ThenBlock->setName(BlockName + "." + Subject + ".partial"); 652 TailBlock->setName(BlockName + ".cont"); 653 654 // Put the client code into the conditional block and continue in the merge 655 // block afterwards. 656 Builder.SetInsertPoint(ThenBlock, ThenBlock->getFirstInsertionPt()); 657 GenThenFunc(); 658 Builder.SetInsertPoint(TailBlock, TailBlock->getFirstInsertionPt()); 659 } 660 661 static std::string getInstName(Value *Val) { 662 std::string Result; 663 raw_string_ostream OS(Result); 664 Val->printAsOperand(OS, false); 665 return OS.str(); 666 } 667 668 void BlockGenerator::generateBeginStmtTrace(ScopStmt &Stmt, LoopToScevMapT <S, 669 ValueMapT &BBMap) { 670 if (!TraceStmts) 671 return; 672 673 Scop *S = Stmt.getParent(); 674 const char *BaseName = Stmt.getBaseName(); 675 676 isl::ast_build AstBuild = Stmt.getAstBuild(); 677 isl::set Domain = Stmt.getDomain(); 678 679 isl::union_map USchedule = AstBuild.get_schedule().intersect_domain(Domain); 680 isl::map Schedule = isl::map::from_union_map(USchedule); 681 assert(Schedule.is_empty().is_false() && 682 "The stmt must have a valid instance"); 683 684 isl::multi_pw_aff ScheduleMultiPwAff = 685 isl::pw_multi_aff::from_map(Schedule.reverse()); 686 isl::ast_build RestrictedBuild = AstBuild.restrict(Schedule.range()); 687 688 // Sequence of strings to print. 689 SmallVector<llvm::Value *, 8> Values; 690 691 // Print the name of the statement. 692 // TODO: Indent by the depth of the statement instance in the schedule tree. 693 Values.push_back(RuntimeDebugBuilder::getPrintableString(Builder, BaseName)); 694 Values.push_back(RuntimeDebugBuilder::getPrintableString(Builder, "(")); 695 696 // Add the coordinate of the statement instance. 697 int DomDims = ScheduleMultiPwAff.dim(isl::dim::out); 698 for (int i = 0; i < DomDims; i += 1) { 699 if (i > 0) 700 Values.push_back(RuntimeDebugBuilder::getPrintableString(Builder, ",")); 701 702 isl::ast_expr IsInSet = 703 RestrictedBuild.expr_from(ScheduleMultiPwAff.get_pw_aff(i)); 704 Values.push_back(ExprBuilder->create(IsInSet.copy())); 705 } 706 707 if (TraceScalars) { 708 Values.push_back(RuntimeDebugBuilder::getPrintableString(Builder, ")")); 709 DenseSet<Instruction *> Encountered; 710 711 // Add the value of each scalar (and the result of PHIs) used in the 712 // statement. 713 // TODO: Values used in region-statements. 714 for (Instruction *Inst : Stmt.insts()) { 715 if (!RuntimeDebugBuilder::isPrintable(Inst->getType())) 716 continue; 717 718 if (isa<PHINode>(Inst)) { 719 Values.push_back(RuntimeDebugBuilder::getPrintableString(Builder, " ")); 720 Values.push_back(RuntimeDebugBuilder::getPrintableString( 721 Builder, getInstName(Inst))); 722 Values.push_back(RuntimeDebugBuilder::getPrintableString(Builder, "=")); 723 Values.push_back(getNewValue(Stmt, Inst, BBMap, LTS, 724 LI.getLoopFor(Inst->getParent()))); 725 } else { 726 for (Value *Op : Inst->operand_values()) { 727 // Do not print values that cannot change during the execution of the 728 // SCoP. 729 auto *OpInst = dyn_cast<Instruction>(Op); 730 if (!OpInst) 731 continue; 732 if (!S->contains(OpInst)) 733 continue; 734 735 // Print each scalar at most once, and exclude values defined in the 736 // statement itself. 737 if (Encountered.count(OpInst)) 738 continue; 739 740 Values.push_back( 741 RuntimeDebugBuilder::getPrintableString(Builder, " ")); 742 Values.push_back(RuntimeDebugBuilder::getPrintableString( 743 Builder, getInstName(OpInst))); 744 Values.push_back( 745 RuntimeDebugBuilder::getPrintableString(Builder, "=")); 746 Values.push_back(getNewValue(Stmt, OpInst, BBMap, LTS, 747 LI.getLoopFor(Inst->getParent()))); 748 Encountered.insert(OpInst); 749 } 750 } 751 752 Encountered.insert(Inst); 753 } 754 755 Values.push_back(RuntimeDebugBuilder::getPrintableString(Builder, "\n")); 756 } else { 757 Values.push_back(RuntimeDebugBuilder::getPrintableString(Builder, ")\n")); 758 } 759 760 RuntimeDebugBuilder::createCPUPrinter(Builder, ArrayRef<Value *>(Values)); 761 } 762 763 void BlockGenerator::generateScalarStores( 764 ScopStmt &Stmt, LoopToScevMapT <S, ValueMapT &BBMap, 765 __isl_keep isl_id_to_ast_expr *NewAccesses) { 766 Loop *L = LI.getLoopFor(Stmt.getBasicBlock()); 767 768 assert(Stmt.isBlockStmt() && 769 "Region statements need to use the generateScalarStores() function in " 770 "the RegionGenerator"); 771 772 for (MemoryAccess *MA : Stmt) { 773 if (MA->isOriginalArrayKind() || MA->isRead()) 774 continue; 775 776 isl::set AccDom = MA->getAccessRelation().domain(); 777 std::string Subject = MA->getId().get_name(); 778 779 generateConditionalExecution( 780 Stmt, AccDom, Subject.c_str(), [&, this, MA]() { 781 Value *Val = MA->getAccessValue(); 782 if (MA->isAnyPHIKind()) { 783 assert(MA->getIncoming().size() >= 1 && 784 "Block statements have exactly one exiting block, or " 785 "multiple but " 786 "with same incoming block and value"); 787 assert(std::all_of(MA->getIncoming().begin(), 788 MA->getIncoming().end(), 789 [&](std::pair<BasicBlock *, Value *> p) -> bool { 790 return p.first == Stmt.getBasicBlock(); 791 }) && 792 "Incoming block must be statement's block"); 793 Val = MA->getIncoming()[0].second; 794 } 795 auto Address = getImplicitAddress(*MA, getLoopForStmt(Stmt), LTS, 796 BBMap, NewAccesses); 797 798 Val = getNewValue(Stmt, Val, BBMap, LTS, L); 799 assert((!isa<Instruction>(Val) || 800 DT.dominates(cast<Instruction>(Val)->getParent(), 801 Builder.GetInsertBlock())) && 802 "Domination violation"); 803 assert((!isa<Instruction>(Address) || 804 DT.dominates(cast<Instruction>(Address)->getParent(), 805 Builder.GetInsertBlock())) && 806 "Domination violation"); 807 808 // The new Val might have a different type than the old Val due to 809 // ScalarEvolution looking through bitcasts. 810 if (Val->getType() != Address->getType()->getPointerElementType()) 811 Address = Builder.CreateBitOrPointerCast( 812 Address, Val->getType()->getPointerTo()); 813 814 Builder.CreateStore(Val, Address); 815 }); 816 } 817 } 818 819 void BlockGenerator::createScalarInitialization(Scop &S) { 820 BasicBlock *ExitBB = S.getExit(); 821 BasicBlock *PreEntryBB = S.getEnteringBlock(); 822 823 Builder.SetInsertPoint(&*StartBlock->begin()); 824 825 for (auto &Array : S.arrays()) { 826 if (Array->getNumberOfDimensions() != 0) 827 continue; 828 if (Array->isPHIKind()) { 829 // For PHI nodes, the only values we need to store are the ones that 830 // reach the PHI node from outside the region. In general there should 831 // only be one such incoming edge and this edge should enter through 832 // 'PreEntryBB'. 833 auto PHI = cast<PHINode>(Array->getBasePtr()); 834 835 for (auto BI = PHI->block_begin(), BE = PHI->block_end(); BI != BE; BI++) 836 if (!S.contains(*BI) && *BI != PreEntryBB) 837 llvm_unreachable("Incoming edges from outside the scop should always " 838 "come from PreEntryBB"); 839 840 int Idx = PHI->getBasicBlockIndex(PreEntryBB); 841 if (Idx < 0) 842 continue; 843 844 Value *ScalarValue = PHI->getIncomingValue(Idx); 845 846 Builder.CreateStore(ScalarValue, getOrCreateAlloca(Array)); 847 continue; 848 } 849 850 auto *Inst = dyn_cast<Instruction>(Array->getBasePtr()); 851 852 if (Inst && S.contains(Inst)) 853 continue; 854 855 // PHI nodes that are not marked as such in their SAI object are either exit 856 // PHI nodes we model as common scalars but without initialization, or 857 // incoming phi nodes that need to be initialized. Check if the first is the 858 // case for Inst and do not create and initialize memory if so. 859 if (auto *PHI = dyn_cast_or_null<PHINode>(Inst)) 860 if (!S.hasSingleExitEdge() && PHI->getBasicBlockIndex(ExitBB) >= 0) 861 continue; 862 863 Builder.CreateStore(Array->getBasePtr(), getOrCreateAlloca(Array)); 864 } 865 } 866 867 void BlockGenerator::createScalarFinalization(Scop &S) { 868 // The exit block of the __unoptimized__ region. 869 BasicBlock *ExitBB = S.getExitingBlock(); 870 // The merge block __just after__ the region and the optimized region. 871 BasicBlock *MergeBB = S.getExit(); 872 873 // The exit block of the __optimized__ region. 874 BasicBlock *OptExitBB = *(pred_begin(MergeBB)); 875 if (OptExitBB == ExitBB) 876 OptExitBB = *(++pred_begin(MergeBB)); 877 878 Builder.SetInsertPoint(OptExitBB->getTerminator()); 879 for (const auto &EscapeMapping : EscapeMap) { 880 // Extract the escaping instruction and the escaping users as well as the 881 // alloca the instruction was demoted to. 882 Instruction *EscapeInst = EscapeMapping.first; 883 const auto &EscapeMappingValue = EscapeMapping.second; 884 const EscapeUserVectorTy &EscapeUsers = EscapeMappingValue.second; 885 Value *ScalarAddr = EscapeMappingValue.first; 886 887 // Reload the demoted instruction in the optimized version of the SCoP. 888 Value *EscapeInstReload = 889 Builder.CreateLoad(ScalarAddr, EscapeInst->getName() + ".final_reload"); 890 EscapeInstReload = 891 Builder.CreateBitOrPointerCast(EscapeInstReload, EscapeInst->getType()); 892 893 // Create the merge PHI that merges the optimized and unoptimized version. 894 PHINode *MergePHI = PHINode::Create(EscapeInst->getType(), 2, 895 EscapeInst->getName() + ".merge"); 896 MergePHI->insertBefore(&*MergeBB->getFirstInsertionPt()); 897 898 // Add the respective values to the merge PHI. 899 MergePHI->addIncoming(EscapeInstReload, OptExitBB); 900 MergePHI->addIncoming(EscapeInst, ExitBB); 901 902 // The information of scalar evolution about the escaping instruction needs 903 // to be revoked so the new merged instruction will be used. 904 if (SE.isSCEVable(EscapeInst->getType())) 905 SE.forgetValue(EscapeInst); 906 907 // Replace all uses of the demoted instruction with the merge PHI. 908 for (Instruction *EUser : EscapeUsers) 909 EUser->replaceUsesOfWith(EscapeInst, MergePHI); 910 } 911 } 912 913 void BlockGenerator::findOutsideUsers(Scop &S) { 914 for (auto &Array : S.arrays()) { 915 916 if (Array->getNumberOfDimensions() != 0) 917 continue; 918 919 if (Array->isPHIKind()) 920 continue; 921 922 auto *Inst = dyn_cast<Instruction>(Array->getBasePtr()); 923 924 if (!Inst) 925 continue; 926 927 // Scop invariant hoisting moves some of the base pointers out of the scop. 928 // We can ignore these, as the invariant load hoisting already registers the 929 // relevant outside users. 930 if (!S.contains(Inst)) 931 continue; 932 933 handleOutsideUsers(S, Array); 934 } 935 } 936 937 void BlockGenerator::createExitPHINodeMerges(Scop &S) { 938 if (S.hasSingleExitEdge()) 939 return; 940 941 auto *ExitBB = S.getExitingBlock(); 942 auto *MergeBB = S.getExit(); 943 auto *AfterMergeBB = MergeBB->getSingleSuccessor(); 944 BasicBlock *OptExitBB = *(pred_begin(MergeBB)); 945 if (OptExitBB == ExitBB) 946 OptExitBB = *(++pred_begin(MergeBB)); 947 948 Builder.SetInsertPoint(OptExitBB->getTerminator()); 949 950 for (auto &SAI : S.arrays()) { 951 auto *Val = SAI->getBasePtr(); 952 953 // Only Value-like scalars need a merge PHI. Exit block PHIs receive either 954 // the original PHI's value or the reloaded incoming values from the 955 // generated code. An llvm::Value is merged between the original code's 956 // value or the generated one. 957 if (!SAI->isExitPHIKind()) 958 continue; 959 960 PHINode *PHI = dyn_cast<PHINode>(Val); 961 if (!PHI) 962 continue; 963 964 if (PHI->getParent() != AfterMergeBB) 965 continue; 966 967 std::string Name = PHI->getName(); 968 Value *ScalarAddr = getOrCreateAlloca(SAI); 969 Value *Reload = Builder.CreateLoad(ScalarAddr, Name + ".ph.final_reload"); 970 Reload = Builder.CreateBitOrPointerCast(Reload, PHI->getType()); 971 Value *OriginalValue = PHI->getIncomingValueForBlock(MergeBB); 972 assert((!isa<Instruction>(OriginalValue) || 973 cast<Instruction>(OriginalValue)->getParent() != MergeBB) && 974 "Original value must no be one we just generated."); 975 auto *MergePHI = PHINode::Create(PHI->getType(), 2, Name + ".ph.merge"); 976 MergePHI->insertBefore(&*MergeBB->getFirstInsertionPt()); 977 MergePHI->addIncoming(Reload, OptExitBB); 978 MergePHI->addIncoming(OriginalValue, ExitBB); 979 int Idx = PHI->getBasicBlockIndex(MergeBB); 980 PHI->setIncomingValue(Idx, MergePHI); 981 } 982 } 983 984 void BlockGenerator::invalidateScalarEvolution(Scop &S) { 985 for (auto &Stmt : S) 986 if (Stmt.isCopyStmt()) 987 continue; 988 else if (Stmt.isBlockStmt()) 989 for (auto &Inst : *Stmt.getBasicBlock()) 990 SE.forgetValue(&Inst); 991 else if (Stmt.isRegionStmt()) 992 for (auto *BB : Stmt.getRegion()->blocks()) 993 for (auto &Inst : *BB) 994 SE.forgetValue(&Inst); 995 else 996 llvm_unreachable("Unexpected statement type found"); 997 998 // Invalidate SCEV of loops surrounding the EscapeUsers. 999 for (const auto &EscapeMapping : EscapeMap) { 1000 const EscapeUserVectorTy &EscapeUsers = EscapeMapping.second.second; 1001 for (Instruction *EUser : EscapeUsers) { 1002 if (Loop *L = LI.getLoopFor(EUser->getParent())) 1003 while (L) { 1004 SE.forgetLoop(L); 1005 L = L->getParentLoop(); 1006 } 1007 } 1008 } 1009 } 1010 1011 void BlockGenerator::finalizeSCoP(Scop &S) { 1012 findOutsideUsers(S); 1013 createScalarInitialization(S); 1014 createExitPHINodeMerges(S); 1015 createScalarFinalization(S); 1016 invalidateScalarEvolution(S); 1017 } 1018 1019 VectorBlockGenerator::VectorBlockGenerator(BlockGenerator &BlockGen, 1020 std::vector<LoopToScevMapT> &VLTS, 1021 isl_map *Schedule) 1022 : BlockGenerator(BlockGen), VLTS(VLTS), Schedule(Schedule) { 1023 assert(Schedule && "No statement domain provided"); 1024 } 1025 1026 Value *VectorBlockGenerator::getVectorValue(ScopStmt &Stmt, Value *Old, 1027 ValueMapT &VectorMap, 1028 VectorValueMapT &ScalarMaps, 1029 Loop *L) { 1030 if (Value *NewValue = VectorMap.lookup(Old)) 1031 return NewValue; 1032 1033 int Width = getVectorWidth(); 1034 1035 Value *Vector = UndefValue::get(VectorType::get(Old->getType(), Width)); 1036 1037 for (int Lane = 0; Lane < Width; Lane++) 1038 Vector = Builder.CreateInsertElement( 1039 Vector, getNewValue(Stmt, Old, ScalarMaps[Lane], VLTS[Lane], L), 1040 Builder.getInt32(Lane)); 1041 1042 VectorMap[Old] = Vector; 1043 1044 return Vector; 1045 } 1046 1047 Type *VectorBlockGenerator::getVectorPtrTy(const Value *Val, int Width) { 1048 PointerType *PointerTy = dyn_cast<PointerType>(Val->getType()); 1049 assert(PointerTy && "PointerType expected"); 1050 1051 Type *ScalarType = PointerTy->getElementType(); 1052 VectorType *VectorType = VectorType::get(ScalarType, Width); 1053 1054 return PointerType::getUnqual(VectorType); 1055 } 1056 1057 Value *VectorBlockGenerator::generateStrideOneLoad( 1058 ScopStmt &Stmt, LoadInst *Load, VectorValueMapT &ScalarMaps, 1059 __isl_keep isl_id_to_ast_expr *NewAccesses, bool NegativeStride = false) { 1060 unsigned VectorWidth = getVectorWidth(); 1061 auto *Pointer = Load->getPointerOperand(); 1062 Type *VectorPtrType = getVectorPtrTy(Pointer, VectorWidth); 1063 unsigned Offset = NegativeStride ? VectorWidth - 1 : 0; 1064 1065 Value *NewPointer = generateLocationAccessed(Stmt, Load, ScalarMaps[Offset], 1066 VLTS[Offset], NewAccesses); 1067 Value *VectorPtr = 1068 Builder.CreateBitCast(NewPointer, VectorPtrType, "vector_ptr"); 1069 LoadInst *VecLoad = 1070 Builder.CreateLoad(VectorPtr, Load->getName() + "_p_vec_full"); 1071 if (!Aligned) 1072 VecLoad->setAlignment(8); 1073 1074 if (NegativeStride) { 1075 SmallVector<Constant *, 16> Indices; 1076 for (int i = VectorWidth - 1; i >= 0; i--) 1077 Indices.push_back(ConstantInt::get(Builder.getInt32Ty(), i)); 1078 Constant *SV = llvm::ConstantVector::get(Indices); 1079 Value *RevVecLoad = Builder.CreateShuffleVector( 1080 VecLoad, VecLoad, SV, Load->getName() + "_reverse"); 1081 return RevVecLoad; 1082 } 1083 1084 return VecLoad; 1085 } 1086 1087 Value *VectorBlockGenerator::generateStrideZeroLoad( 1088 ScopStmt &Stmt, LoadInst *Load, ValueMapT &BBMap, 1089 __isl_keep isl_id_to_ast_expr *NewAccesses) { 1090 auto *Pointer = Load->getPointerOperand(); 1091 Type *VectorPtrType = getVectorPtrTy(Pointer, 1); 1092 Value *NewPointer = 1093 generateLocationAccessed(Stmt, Load, BBMap, VLTS[0], NewAccesses); 1094 Value *VectorPtr = Builder.CreateBitCast(NewPointer, VectorPtrType, 1095 Load->getName() + "_p_vec_p"); 1096 LoadInst *ScalarLoad = 1097 Builder.CreateLoad(VectorPtr, Load->getName() + "_p_splat_one"); 1098 1099 if (!Aligned) 1100 ScalarLoad->setAlignment(8); 1101 1102 Constant *SplatVector = Constant::getNullValue( 1103 VectorType::get(Builder.getInt32Ty(), getVectorWidth())); 1104 1105 Value *VectorLoad = Builder.CreateShuffleVector( 1106 ScalarLoad, ScalarLoad, SplatVector, Load->getName() + "_p_splat"); 1107 return VectorLoad; 1108 } 1109 1110 Value *VectorBlockGenerator::generateUnknownStrideLoad( 1111 ScopStmt &Stmt, LoadInst *Load, VectorValueMapT &ScalarMaps, 1112 __isl_keep isl_id_to_ast_expr *NewAccesses) { 1113 int VectorWidth = getVectorWidth(); 1114 auto *Pointer = Load->getPointerOperand(); 1115 VectorType *VectorType = VectorType::get( 1116 dyn_cast<PointerType>(Pointer->getType())->getElementType(), VectorWidth); 1117 1118 Value *Vector = UndefValue::get(VectorType); 1119 1120 for (int i = 0; i < VectorWidth; i++) { 1121 Value *NewPointer = generateLocationAccessed(Stmt, Load, ScalarMaps[i], 1122 VLTS[i], NewAccesses); 1123 Value *ScalarLoad = 1124 Builder.CreateLoad(NewPointer, Load->getName() + "_p_scalar_"); 1125 Vector = Builder.CreateInsertElement( 1126 Vector, ScalarLoad, Builder.getInt32(i), Load->getName() + "_p_vec_"); 1127 } 1128 1129 return Vector; 1130 } 1131 1132 void VectorBlockGenerator::generateLoad( 1133 ScopStmt &Stmt, LoadInst *Load, ValueMapT &VectorMap, 1134 VectorValueMapT &ScalarMaps, __isl_keep isl_id_to_ast_expr *NewAccesses) { 1135 if (Value *PreloadLoad = GlobalMap.lookup(Load)) { 1136 VectorMap[Load] = Builder.CreateVectorSplat(getVectorWidth(), PreloadLoad, 1137 Load->getName() + "_p"); 1138 return; 1139 } 1140 1141 if (!VectorType::isValidElementType(Load->getType())) { 1142 for (int i = 0; i < getVectorWidth(); i++) 1143 ScalarMaps[i][Load] = 1144 generateArrayLoad(Stmt, Load, ScalarMaps[i], VLTS[i], NewAccesses); 1145 return; 1146 } 1147 1148 const MemoryAccess &Access = Stmt.getArrayAccessFor(Load); 1149 1150 // Make sure we have scalar values available to access the pointer to 1151 // the data location. 1152 extractScalarValues(Load, VectorMap, ScalarMaps); 1153 1154 Value *NewLoad; 1155 if (Access.isStrideZero(isl::manage_copy(Schedule))) 1156 NewLoad = generateStrideZeroLoad(Stmt, Load, ScalarMaps[0], NewAccesses); 1157 else if (Access.isStrideOne(isl::manage_copy(Schedule))) 1158 NewLoad = generateStrideOneLoad(Stmt, Load, ScalarMaps, NewAccesses); 1159 else if (Access.isStrideX(isl::manage_copy(Schedule), -1)) 1160 NewLoad = generateStrideOneLoad(Stmt, Load, ScalarMaps, NewAccesses, true); 1161 else 1162 NewLoad = generateUnknownStrideLoad(Stmt, Load, ScalarMaps, NewAccesses); 1163 1164 VectorMap[Load] = NewLoad; 1165 } 1166 1167 void VectorBlockGenerator::copyUnaryInst(ScopStmt &Stmt, UnaryInstruction *Inst, 1168 ValueMapT &VectorMap, 1169 VectorValueMapT &ScalarMaps) { 1170 int VectorWidth = getVectorWidth(); 1171 Value *NewOperand = getVectorValue(Stmt, Inst->getOperand(0), VectorMap, 1172 ScalarMaps, getLoopForStmt(Stmt)); 1173 1174 assert(isa<CastInst>(Inst) && "Can not generate vector code for instruction"); 1175 1176 const CastInst *Cast = dyn_cast<CastInst>(Inst); 1177 VectorType *DestType = VectorType::get(Inst->getType(), VectorWidth); 1178 VectorMap[Inst] = Builder.CreateCast(Cast->getOpcode(), NewOperand, DestType); 1179 } 1180 1181 void VectorBlockGenerator::copyBinaryInst(ScopStmt &Stmt, BinaryOperator *Inst, 1182 ValueMapT &VectorMap, 1183 VectorValueMapT &ScalarMaps) { 1184 Loop *L = getLoopForStmt(Stmt); 1185 Value *OpZero = Inst->getOperand(0); 1186 Value *OpOne = Inst->getOperand(1); 1187 1188 Value *NewOpZero, *NewOpOne; 1189 NewOpZero = getVectorValue(Stmt, OpZero, VectorMap, ScalarMaps, L); 1190 NewOpOne = getVectorValue(Stmt, OpOne, VectorMap, ScalarMaps, L); 1191 1192 Value *NewInst = Builder.CreateBinOp(Inst->getOpcode(), NewOpZero, NewOpOne, 1193 Inst->getName() + "p_vec"); 1194 VectorMap[Inst] = NewInst; 1195 } 1196 1197 void VectorBlockGenerator::copyStore( 1198 ScopStmt &Stmt, StoreInst *Store, ValueMapT &VectorMap, 1199 VectorValueMapT &ScalarMaps, __isl_keep isl_id_to_ast_expr *NewAccesses) { 1200 const MemoryAccess &Access = Stmt.getArrayAccessFor(Store); 1201 1202 auto *Pointer = Store->getPointerOperand(); 1203 Value *Vector = getVectorValue(Stmt, Store->getValueOperand(), VectorMap, 1204 ScalarMaps, getLoopForStmt(Stmt)); 1205 1206 // Make sure we have scalar values available to access the pointer to 1207 // the data location. 1208 extractScalarValues(Store, VectorMap, ScalarMaps); 1209 1210 if (Access.isStrideOne(isl::manage_copy(Schedule))) { 1211 Type *VectorPtrType = getVectorPtrTy(Pointer, getVectorWidth()); 1212 Value *NewPointer = generateLocationAccessed(Stmt, Store, ScalarMaps[0], 1213 VLTS[0], NewAccesses); 1214 1215 Value *VectorPtr = 1216 Builder.CreateBitCast(NewPointer, VectorPtrType, "vector_ptr"); 1217 StoreInst *Store = Builder.CreateStore(Vector, VectorPtr); 1218 1219 if (!Aligned) 1220 Store->setAlignment(8); 1221 } else { 1222 for (unsigned i = 0; i < ScalarMaps.size(); i++) { 1223 Value *Scalar = Builder.CreateExtractElement(Vector, Builder.getInt32(i)); 1224 Value *NewPointer = generateLocationAccessed(Stmt, Store, ScalarMaps[i], 1225 VLTS[i], NewAccesses); 1226 Builder.CreateStore(Scalar, NewPointer); 1227 } 1228 } 1229 } 1230 1231 bool VectorBlockGenerator::hasVectorOperands(const Instruction *Inst, 1232 ValueMapT &VectorMap) { 1233 for (Value *Operand : Inst->operands()) 1234 if (VectorMap.count(Operand)) 1235 return true; 1236 return false; 1237 } 1238 1239 bool VectorBlockGenerator::extractScalarValues(const Instruction *Inst, 1240 ValueMapT &VectorMap, 1241 VectorValueMapT &ScalarMaps) { 1242 bool HasVectorOperand = false; 1243 int VectorWidth = getVectorWidth(); 1244 1245 for (Value *Operand : Inst->operands()) { 1246 ValueMapT::iterator VecOp = VectorMap.find(Operand); 1247 1248 if (VecOp == VectorMap.end()) 1249 continue; 1250 1251 HasVectorOperand = true; 1252 Value *NewVector = VecOp->second; 1253 1254 for (int i = 0; i < VectorWidth; ++i) { 1255 ValueMapT &SM = ScalarMaps[i]; 1256 1257 // If there is one scalar extracted, all scalar elements should have 1258 // already been extracted by the code here. So no need to check for the 1259 // existence of all of them. 1260 if (SM.count(Operand)) 1261 break; 1262 1263 SM[Operand] = 1264 Builder.CreateExtractElement(NewVector, Builder.getInt32(i)); 1265 } 1266 } 1267 1268 return HasVectorOperand; 1269 } 1270 1271 void VectorBlockGenerator::copyInstScalarized( 1272 ScopStmt &Stmt, Instruction *Inst, ValueMapT &VectorMap, 1273 VectorValueMapT &ScalarMaps, __isl_keep isl_id_to_ast_expr *NewAccesses) { 1274 bool HasVectorOperand; 1275 int VectorWidth = getVectorWidth(); 1276 1277 HasVectorOperand = extractScalarValues(Inst, VectorMap, ScalarMaps); 1278 1279 for (int VectorLane = 0; VectorLane < getVectorWidth(); VectorLane++) 1280 BlockGenerator::copyInstruction(Stmt, Inst, ScalarMaps[VectorLane], 1281 VLTS[VectorLane], NewAccesses); 1282 1283 if (!VectorType::isValidElementType(Inst->getType()) || !HasVectorOperand) 1284 return; 1285 1286 // Make the result available as vector value. 1287 VectorType *VectorType = VectorType::get(Inst->getType(), VectorWidth); 1288 Value *Vector = UndefValue::get(VectorType); 1289 1290 for (int i = 0; i < VectorWidth; i++) 1291 Vector = Builder.CreateInsertElement(Vector, ScalarMaps[i][Inst], 1292 Builder.getInt32(i)); 1293 1294 VectorMap[Inst] = Vector; 1295 } 1296 1297 int VectorBlockGenerator::getVectorWidth() { return VLTS.size(); } 1298 1299 void VectorBlockGenerator::copyInstruction( 1300 ScopStmt &Stmt, Instruction *Inst, ValueMapT &VectorMap, 1301 VectorValueMapT &ScalarMaps, __isl_keep isl_id_to_ast_expr *NewAccesses) { 1302 // Terminator instructions control the control flow. They are explicitly 1303 // expressed in the clast and do not need to be copied. 1304 if (Inst->isTerminator()) 1305 return; 1306 1307 if (canSyntheziseInStmt(Stmt, Inst)) 1308 return; 1309 1310 if (auto *Load = dyn_cast<LoadInst>(Inst)) { 1311 generateLoad(Stmt, Load, VectorMap, ScalarMaps, NewAccesses); 1312 return; 1313 } 1314 1315 if (hasVectorOperands(Inst, VectorMap)) { 1316 if (auto *Store = dyn_cast<StoreInst>(Inst)) { 1317 // Identified as redundant by -polly-simplify. 1318 if (!Stmt.getArrayAccessOrNULLFor(Store)) 1319 return; 1320 1321 copyStore(Stmt, Store, VectorMap, ScalarMaps, NewAccesses); 1322 return; 1323 } 1324 1325 if (auto *Unary = dyn_cast<UnaryInstruction>(Inst)) { 1326 copyUnaryInst(Stmt, Unary, VectorMap, ScalarMaps); 1327 return; 1328 } 1329 1330 if (auto *Binary = dyn_cast<BinaryOperator>(Inst)) { 1331 copyBinaryInst(Stmt, Binary, VectorMap, ScalarMaps); 1332 return; 1333 } 1334 1335 // Fallthrough: We generate scalar instructions, if we don't know how to 1336 // generate vector code. 1337 } 1338 1339 copyInstScalarized(Stmt, Inst, VectorMap, ScalarMaps, NewAccesses); 1340 } 1341 1342 void VectorBlockGenerator::generateScalarVectorLoads( 1343 ScopStmt &Stmt, ValueMapT &VectorBlockMap) { 1344 for (MemoryAccess *MA : Stmt) { 1345 if (MA->isArrayKind() || MA->isWrite()) 1346 continue; 1347 1348 auto *Address = getOrCreateAlloca(*MA); 1349 Type *VectorPtrType = getVectorPtrTy(Address, 1); 1350 Value *VectorPtr = Builder.CreateBitCast(Address, VectorPtrType, 1351 Address->getName() + "_p_vec_p"); 1352 auto *Val = Builder.CreateLoad(VectorPtr, Address->getName() + ".reload"); 1353 Constant *SplatVector = Constant::getNullValue( 1354 VectorType::get(Builder.getInt32Ty(), getVectorWidth())); 1355 1356 Value *VectorVal = Builder.CreateShuffleVector( 1357 Val, Val, SplatVector, Address->getName() + "_p_splat"); 1358 VectorBlockMap[MA->getAccessValue()] = VectorVal; 1359 } 1360 } 1361 1362 void VectorBlockGenerator::verifyNoScalarStores(ScopStmt &Stmt) { 1363 for (MemoryAccess *MA : Stmt) { 1364 if (MA->isArrayKind() || MA->isRead()) 1365 continue; 1366 1367 llvm_unreachable("Scalar stores not expected in vector loop"); 1368 } 1369 } 1370 1371 void VectorBlockGenerator::copyStmt( 1372 ScopStmt &Stmt, __isl_keep isl_id_to_ast_expr *NewAccesses) { 1373 assert(Stmt.isBlockStmt() && 1374 "TODO: Only block statements can be copied by the vector block " 1375 "generator"); 1376 1377 BasicBlock *BB = Stmt.getBasicBlock(); 1378 BasicBlock *CopyBB = SplitBlock(Builder.GetInsertBlock(), 1379 &*Builder.GetInsertPoint(), &DT, &LI); 1380 CopyBB->setName("polly.stmt." + BB->getName()); 1381 Builder.SetInsertPoint(&CopyBB->front()); 1382 1383 // Create two maps that store the mapping from the original instructions of 1384 // the old basic block to their copies in the new basic block. Those maps 1385 // are basic block local. 1386 // 1387 // As vector code generation is supported there is one map for scalar values 1388 // and one for vector values. 1389 // 1390 // In case we just do scalar code generation, the vectorMap is not used and 1391 // the scalarMap has just one dimension, which contains the mapping. 1392 // 1393 // In case vector code generation is done, an instruction may either appear 1394 // in the vector map once (as it is calculating >vectorwidth< values at a 1395 // time. Or (if the values are calculated using scalar operations), it 1396 // appears once in every dimension of the scalarMap. 1397 VectorValueMapT ScalarBlockMap(getVectorWidth()); 1398 ValueMapT VectorBlockMap; 1399 1400 generateScalarVectorLoads(Stmt, VectorBlockMap); 1401 1402 for (Instruction &Inst : *BB) 1403 copyInstruction(Stmt, &Inst, VectorBlockMap, ScalarBlockMap, NewAccesses); 1404 1405 verifyNoScalarStores(Stmt); 1406 } 1407 1408 BasicBlock *RegionGenerator::repairDominance(BasicBlock *BB, 1409 BasicBlock *BBCopy) { 1410 1411 BasicBlock *BBIDom = DT.getNode(BB)->getIDom()->getBlock(); 1412 BasicBlock *BBCopyIDom = EndBlockMap.lookup(BBIDom); 1413 1414 if (BBCopyIDom) 1415 DT.changeImmediateDominator(BBCopy, BBCopyIDom); 1416 1417 return StartBlockMap.lookup(BBIDom); 1418 } 1419 1420 // This is to determine whether an llvm::Value (defined in @p BB) is usable when 1421 // leaving a subregion. The straight-forward DT.dominates(BB, R->getExitBlock()) 1422 // does not work in cases where the exit block has edges from outside the 1423 // region. In that case the llvm::Value would never be usable in in the exit 1424 // block. The RegionGenerator however creates an new exit block ('ExitBBCopy') 1425 // for the subregion's exiting edges only. We need to determine whether an 1426 // llvm::Value is usable in there. We do this by checking whether it dominates 1427 // all exiting blocks individually. 1428 static bool isDominatingSubregionExit(const DominatorTree &DT, Region *R, 1429 BasicBlock *BB) { 1430 for (auto ExitingBB : predecessors(R->getExit())) { 1431 // Check for non-subregion incoming edges. 1432 if (!R->contains(ExitingBB)) 1433 continue; 1434 1435 if (!DT.dominates(BB, ExitingBB)) 1436 return false; 1437 } 1438 1439 return true; 1440 } 1441 1442 // Find the direct dominator of the subregion's exit block if the subregion was 1443 // simplified. 1444 static BasicBlock *findExitDominator(DominatorTree &DT, Region *R) { 1445 BasicBlock *Common = nullptr; 1446 for (auto ExitingBB : predecessors(R->getExit())) { 1447 // Check for non-subregion incoming edges. 1448 if (!R->contains(ExitingBB)) 1449 continue; 1450 1451 // First exiting edge. 1452 if (!Common) { 1453 Common = ExitingBB; 1454 continue; 1455 } 1456 1457 Common = DT.findNearestCommonDominator(Common, ExitingBB); 1458 } 1459 1460 assert(Common && R->contains(Common)); 1461 return Common; 1462 } 1463 1464 void RegionGenerator::copyStmt(ScopStmt &Stmt, LoopToScevMapT <S, 1465 isl_id_to_ast_expr *IdToAstExp) { 1466 assert(Stmt.isRegionStmt() && 1467 "Only region statements can be copied by the region generator"); 1468 1469 // Forget all old mappings. 1470 StartBlockMap.clear(); 1471 EndBlockMap.clear(); 1472 RegionMaps.clear(); 1473 IncompletePHINodeMap.clear(); 1474 1475 // Collection of all values related to this subregion. 1476 ValueMapT ValueMap; 1477 1478 // The region represented by the statement. 1479 Region *R = Stmt.getRegion(); 1480 1481 // Create a dedicated entry for the region where we can reload all demoted 1482 // inputs. 1483 BasicBlock *EntryBB = R->getEntry(); 1484 BasicBlock *EntryBBCopy = SplitBlock(Builder.GetInsertBlock(), 1485 &*Builder.GetInsertPoint(), &DT, &LI); 1486 EntryBBCopy->setName("polly.stmt." + EntryBB->getName() + ".entry"); 1487 Builder.SetInsertPoint(&EntryBBCopy->front()); 1488 1489 ValueMapT &EntryBBMap = RegionMaps[EntryBBCopy]; 1490 generateScalarLoads(Stmt, LTS, EntryBBMap, IdToAstExp); 1491 generateBeginStmtTrace(Stmt, LTS, EntryBBMap); 1492 1493 for (auto PI = pred_begin(EntryBB), PE = pred_end(EntryBB); PI != PE; ++PI) 1494 if (!R->contains(*PI)) { 1495 StartBlockMap[*PI] = EntryBBCopy; 1496 EndBlockMap[*PI] = EntryBBCopy; 1497 } 1498 1499 // Iterate over all blocks in the region in a breadth-first search. 1500 std::deque<BasicBlock *> Blocks; 1501 SmallSetVector<BasicBlock *, 8> SeenBlocks; 1502 Blocks.push_back(EntryBB); 1503 SeenBlocks.insert(EntryBB); 1504 1505 while (!Blocks.empty()) { 1506 BasicBlock *BB = Blocks.front(); 1507 Blocks.pop_front(); 1508 1509 // First split the block and update dominance information. 1510 BasicBlock *BBCopy = splitBB(BB); 1511 BasicBlock *BBCopyIDom = repairDominance(BB, BBCopy); 1512 1513 // Get the mapping for this block and initialize it with either the scalar 1514 // loads from the generated entering block (which dominates all blocks of 1515 // this subregion) or the maps of the immediate dominator, if part of the 1516 // subregion. The latter necessarily includes the former. 1517 ValueMapT *InitBBMap; 1518 if (BBCopyIDom) { 1519 assert(RegionMaps.count(BBCopyIDom)); 1520 InitBBMap = &RegionMaps[BBCopyIDom]; 1521 } else 1522 InitBBMap = &EntryBBMap; 1523 auto Inserted = RegionMaps.insert(std::make_pair(BBCopy, *InitBBMap)); 1524 ValueMapT &RegionMap = Inserted.first->second; 1525 1526 // Copy the block with the BlockGenerator. 1527 Builder.SetInsertPoint(&BBCopy->front()); 1528 copyBB(Stmt, BB, BBCopy, RegionMap, LTS, IdToAstExp); 1529 1530 // In order to remap PHI nodes we store also basic block mappings. 1531 StartBlockMap[BB] = BBCopy; 1532 EndBlockMap[BB] = Builder.GetInsertBlock(); 1533 1534 // Add values to incomplete PHI nodes waiting for this block to be copied. 1535 for (const PHINodePairTy &PHINodePair : IncompletePHINodeMap[BB]) 1536 addOperandToPHI(Stmt, PHINodePair.first, PHINodePair.second, BB, LTS); 1537 IncompletePHINodeMap[BB].clear(); 1538 1539 // And continue with new successors inside the region. 1540 for (auto SI = succ_begin(BB), SE = succ_end(BB); SI != SE; SI++) 1541 if (R->contains(*SI) && SeenBlocks.insert(*SI)) 1542 Blocks.push_back(*SI); 1543 1544 // Remember value in case it is visible after this subregion. 1545 if (isDominatingSubregionExit(DT, R, BB)) 1546 ValueMap.insert(RegionMap.begin(), RegionMap.end()); 1547 } 1548 1549 // Now create a new dedicated region exit block and add it to the region map. 1550 BasicBlock *ExitBBCopy = SplitBlock(Builder.GetInsertBlock(), 1551 &*Builder.GetInsertPoint(), &DT, &LI); 1552 ExitBBCopy->setName("polly.stmt." + R->getExit()->getName() + ".exit"); 1553 StartBlockMap[R->getExit()] = ExitBBCopy; 1554 EndBlockMap[R->getExit()] = ExitBBCopy; 1555 1556 BasicBlock *ExitDomBBCopy = EndBlockMap.lookup(findExitDominator(DT, R)); 1557 assert(ExitDomBBCopy && 1558 "Common exit dominator must be within region; at least the entry node " 1559 "must match"); 1560 DT.changeImmediateDominator(ExitBBCopy, ExitDomBBCopy); 1561 1562 // As the block generator doesn't handle control flow we need to add the 1563 // region control flow by hand after all blocks have been copied. 1564 for (BasicBlock *BB : SeenBlocks) { 1565 1566 BasicBlock *BBCopyStart = StartBlockMap[BB]; 1567 BasicBlock *BBCopyEnd = EndBlockMap[BB]; 1568 Instruction *TI = BB->getTerminator(); 1569 if (isa<UnreachableInst>(TI)) { 1570 while (!BBCopyEnd->empty()) 1571 BBCopyEnd->begin()->eraseFromParent(); 1572 new UnreachableInst(BBCopyEnd->getContext(), BBCopyEnd); 1573 continue; 1574 } 1575 1576 Instruction *BICopy = BBCopyEnd->getTerminator(); 1577 1578 ValueMapT &RegionMap = RegionMaps[BBCopyStart]; 1579 RegionMap.insert(StartBlockMap.begin(), StartBlockMap.end()); 1580 1581 Builder.SetInsertPoint(BICopy); 1582 copyInstScalar(Stmt, TI, RegionMap, LTS); 1583 BICopy->eraseFromParent(); 1584 } 1585 1586 // Add counting PHI nodes to all loops in the region that can be used as 1587 // replacement for SCEVs referring to the old loop. 1588 for (BasicBlock *BB : SeenBlocks) { 1589 Loop *L = LI.getLoopFor(BB); 1590 if (L == nullptr || L->getHeader() != BB || !R->contains(L)) 1591 continue; 1592 1593 BasicBlock *BBCopy = StartBlockMap[BB]; 1594 Value *NullVal = Builder.getInt32(0); 1595 PHINode *LoopPHI = 1596 PHINode::Create(Builder.getInt32Ty(), 2, "polly.subregion.iv"); 1597 Instruction *LoopPHIInc = BinaryOperator::CreateAdd( 1598 LoopPHI, Builder.getInt32(1), "polly.subregion.iv.inc"); 1599 LoopPHI->insertBefore(&BBCopy->front()); 1600 LoopPHIInc->insertBefore(BBCopy->getTerminator()); 1601 1602 for (auto *PredBB : make_range(pred_begin(BB), pred_end(BB))) { 1603 if (!R->contains(PredBB)) 1604 continue; 1605 if (L->contains(PredBB)) 1606 LoopPHI->addIncoming(LoopPHIInc, EndBlockMap[PredBB]); 1607 else 1608 LoopPHI->addIncoming(NullVal, EndBlockMap[PredBB]); 1609 } 1610 1611 for (auto *PredBBCopy : make_range(pred_begin(BBCopy), pred_end(BBCopy))) 1612 if (LoopPHI->getBasicBlockIndex(PredBBCopy) < 0) 1613 LoopPHI->addIncoming(NullVal, PredBBCopy); 1614 1615 LTS[L] = SE.getUnknown(LoopPHI); 1616 } 1617 1618 // Continue generating code in the exit block. 1619 Builder.SetInsertPoint(&*ExitBBCopy->getFirstInsertionPt()); 1620 1621 // Write values visible to other statements. 1622 generateScalarStores(Stmt, LTS, ValueMap, IdToAstExp); 1623 StartBlockMap.clear(); 1624 EndBlockMap.clear(); 1625 RegionMaps.clear(); 1626 IncompletePHINodeMap.clear(); 1627 } 1628 1629 PHINode *RegionGenerator::buildExitPHI(MemoryAccess *MA, LoopToScevMapT <S, 1630 ValueMapT &BBMap, Loop *L) { 1631 ScopStmt *Stmt = MA->getStatement(); 1632 Region *SubR = Stmt->getRegion(); 1633 auto Incoming = MA->getIncoming(); 1634 1635 PollyIRBuilder::InsertPointGuard IPGuard(Builder); 1636 PHINode *OrigPHI = cast<PHINode>(MA->getAccessInstruction()); 1637 BasicBlock *NewSubregionExit = Builder.GetInsertBlock(); 1638 1639 // This can happen if the subregion is simplified after the ScopStmts 1640 // have been created; simplification happens as part of CodeGeneration. 1641 if (OrigPHI->getParent() != SubR->getExit()) { 1642 BasicBlock *FormerExit = SubR->getExitingBlock(); 1643 if (FormerExit) 1644 NewSubregionExit = StartBlockMap.lookup(FormerExit); 1645 } 1646 1647 PHINode *NewPHI = PHINode::Create(OrigPHI->getType(), Incoming.size(), 1648 "polly." + OrigPHI->getName(), 1649 NewSubregionExit->getFirstNonPHI()); 1650 1651 // Add the incoming values to the PHI. 1652 for (auto &Pair : Incoming) { 1653 BasicBlock *OrigIncomingBlock = Pair.first; 1654 BasicBlock *NewIncomingBlockStart = StartBlockMap.lookup(OrigIncomingBlock); 1655 BasicBlock *NewIncomingBlockEnd = EndBlockMap.lookup(OrigIncomingBlock); 1656 Builder.SetInsertPoint(NewIncomingBlockEnd->getTerminator()); 1657 assert(RegionMaps.count(NewIncomingBlockStart)); 1658 assert(RegionMaps.count(NewIncomingBlockEnd)); 1659 ValueMapT *LocalBBMap = &RegionMaps[NewIncomingBlockStart]; 1660 1661 Value *OrigIncomingValue = Pair.second; 1662 Value *NewIncomingValue = 1663 getNewValue(*Stmt, OrigIncomingValue, *LocalBBMap, LTS, L); 1664 NewPHI->addIncoming(NewIncomingValue, NewIncomingBlockEnd); 1665 } 1666 1667 return NewPHI; 1668 } 1669 1670 Value *RegionGenerator::getExitScalar(MemoryAccess *MA, LoopToScevMapT <S, 1671 ValueMapT &BBMap) { 1672 ScopStmt *Stmt = MA->getStatement(); 1673 1674 // TODO: Add some test cases that ensure this is really the right choice. 1675 Loop *L = LI.getLoopFor(Stmt->getRegion()->getExit()); 1676 1677 if (MA->isAnyPHIKind()) { 1678 auto Incoming = MA->getIncoming(); 1679 assert(!Incoming.empty() && 1680 "PHI WRITEs must have originate from at least one incoming block"); 1681 1682 // If there is only one incoming value, we do not need to create a PHI. 1683 if (Incoming.size() == 1) { 1684 Value *OldVal = Incoming[0].second; 1685 return getNewValue(*Stmt, OldVal, BBMap, LTS, L); 1686 } 1687 1688 return buildExitPHI(MA, LTS, BBMap, L); 1689 } 1690 1691 // MemoryKind::Value accesses leaving the subregion must dominate the exit 1692 // block; just pass the copied value. 1693 Value *OldVal = MA->getAccessValue(); 1694 return getNewValue(*Stmt, OldVal, BBMap, LTS, L); 1695 } 1696 1697 void RegionGenerator::generateScalarStores( 1698 ScopStmt &Stmt, LoopToScevMapT <S, ValueMapT &BBMap, 1699 __isl_keep isl_id_to_ast_expr *NewAccesses) { 1700 assert(Stmt.getRegion() && 1701 "Block statements need to use the generateScalarStores() " 1702 "function in the BlockGenerator"); 1703 1704 for (MemoryAccess *MA : Stmt) { 1705 if (MA->isOriginalArrayKind() || MA->isRead()) 1706 continue; 1707 1708 isl::set AccDom = MA->getAccessRelation().domain(); 1709 std::string Subject = MA->getId().get_name(); 1710 generateConditionalExecution( 1711 Stmt, AccDom, Subject.c_str(), [&, this, MA]() { 1712 Value *NewVal = getExitScalar(MA, LTS, BBMap); 1713 Value *Address = getImplicitAddress(*MA, getLoopForStmt(Stmt), LTS, 1714 BBMap, NewAccesses); 1715 assert((!isa<Instruction>(NewVal) || 1716 DT.dominates(cast<Instruction>(NewVal)->getParent(), 1717 Builder.GetInsertBlock())) && 1718 "Domination violation"); 1719 assert((!isa<Instruction>(Address) || 1720 DT.dominates(cast<Instruction>(Address)->getParent(), 1721 Builder.GetInsertBlock())) && 1722 "Domination violation"); 1723 Builder.CreateStore(NewVal, Address); 1724 }); 1725 } 1726 } 1727 1728 void RegionGenerator::addOperandToPHI(ScopStmt &Stmt, PHINode *PHI, 1729 PHINode *PHICopy, BasicBlock *IncomingBB, 1730 LoopToScevMapT <S) { 1731 // If the incoming block was not yet copied mark this PHI as incomplete. 1732 // Once the block will be copied the incoming value will be added. 1733 BasicBlock *BBCopyStart = StartBlockMap[IncomingBB]; 1734 BasicBlock *BBCopyEnd = EndBlockMap[IncomingBB]; 1735 if (!BBCopyStart) { 1736 assert(!BBCopyEnd); 1737 assert(Stmt.represents(IncomingBB) && 1738 "Bad incoming block for PHI in non-affine region"); 1739 IncompletePHINodeMap[IncomingBB].push_back(std::make_pair(PHI, PHICopy)); 1740 return; 1741 } 1742 1743 assert(RegionMaps.count(BBCopyStart) && 1744 "Incoming PHI block did not have a BBMap"); 1745 ValueMapT &BBCopyMap = RegionMaps[BBCopyStart]; 1746 1747 Value *OpCopy = nullptr; 1748 1749 if (Stmt.represents(IncomingBB)) { 1750 Value *Op = PHI->getIncomingValueForBlock(IncomingBB); 1751 1752 // If the current insert block is different from the PHIs incoming block 1753 // change it, otherwise do not. 1754 auto IP = Builder.GetInsertPoint(); 1755 if (IP->getParent() != BBCopyEnd) 1756 Builder.SetInsertPoint(BBCopyEnd->getTerminator()); 1757 OpCopy = getNewValue(Stmt, Op, BBCopyMap, LTS, getLoopForStmt(Stmt)); 1758 if (IP->getParent() != BBCopyEnd) 1759 Builder.SetInsertPoint(&*IP); 1760 } else { 1761 // All edges from outside the non-affine region become a single edge 1762 // in the new copy of the non-affine region. Make sure to only add the 1763 // corresponding edge the first time we encounter a basic block from 1764 // outside the non-affine region. 1765 if (PHICopy->getBasicBlockIndex(BBCopyEnd) >= 0) 1766 return; 1767 1768 // Get the reloaded value. 1769 OpCopy = getNewValue(Stmt, PHI, BBCopyMap, LTS, getLoopForStmt(Stmt)); 1770 } 1771 1772 assert(OpCopy && "Incoming PHI value was not copied properly"); 1773 PHICopy->addIncoming(OpCopy, BBCopyEnd); 1774 } 1775 1776 void RegionGenerator::copyPHIInstruction(ScopStmt &Stmt, PHINode *PHI, 1777 ValueMapT &BBMap, 1778 LoopToScevMapT <S) { 1779 unsigned NumIncoming = PHI->getNumIncomingValues(); 1780 PHINode *PHICopy = 1781 Builder.CreatePHI(PHI->getType(), NumIncoming, "polly." + PHI->getName()); 1782 PHICopy->moveBefore(PHICopy->getParent()->getFirstNonPHI()); 1783 BBMap[PHI] = PHICopy; 1784 1785 for (BasicBlock *IncomingBB : PHI->blocks()) 1786 addOperandToPHI(Stmt, PHI, PHICopy, IncomingBB, LTS); 1787 } 1788