1 //===--- BlockGenerators.cpp - Generate code for statements -----*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the BlockGenerator and VectorBlockGenerator classes, 10 // which generate sequential code and vectorized code for a polyhedral 11 // statement, respectively. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "polly/CodeGen/BlockGenerators.h" 16 #include "polly/CodeGen/IslExprBuilder.h" 17 #include "polly/CodeGen/RuntimeDebugBuilder.h" 18 #include "polly/Options.h" 19 #include "polly/ScopInfo.h" 20 #include "polly/Support/ISLTools.h" 21 #include "polly/Support/ScopHelper.h" 22 #include "polly/Support/VirtualInstruction.h" 23 #include "llvm/Analysis/LoopInfo.h" 24 #include "llvm/Analysis/RegionInfo.h" 25 #include "llvm/Analysis/ScalarEvolution.h" 26 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 27 #include "llvm/Transforms/Utils/Local.h" 28 #include "isl/ast.h" 29 #include <deque> 30 31 using namespace llvm; 32 using namespace polly; 33 34 static cl::opt<bool> Aligned("enable-polly-aligned", 35 cl::desc("Assumed aligned memory accesses."), 36 cl::Hidden, cl::cat(PollyCategory)); 37 38 bool PollyDebugPrinting; 39 static cl::opt<bool, true> DebugPrintingX( 40 "polly-codegen-add-debug-printing", 41 cl::desc("Add printf calls that show the values loaded/stored."), 42 cl::location(PollyDebugPrinting), cl::Hidden, cl::cat(PollyCategory)); 43 44 static cl::opt<bool> TraceStmts( 45 "polly-codegen-trace-stmts", 46 cl::desc("Add printf calls that print the statement being executed"), 47 cl::Hidden, cl::cat(PollyCategory)); 48 49 static cl::opt<bool> TraceScalars( 50 "polly-codegen-trace-scalars", 51 cl::desc("Add printf calls that print the values of all scalar values " 52 "used in a statement. Requires -polly-codegen-trace-stmts."), 53 cl::Hidden, cl::cat(PollyCategory)); 54 55 BlockGenerator::BlockGenerator( 56 PollyIRBuilder &B, LoopInfo &LI, ScalarEvolution &SE, DominatorTree &DT, 57 AllocaMapTy &ScalarMap, EscapeUsersAllocaMapTy &EscapeMap, 58 ValueMapT &GlobalMap, IslExprBuilder *ExprBuilder, BasicBlock *StartBlock) 59 : Builder(B), LI(LI), SE(SE), ExprBuilder(ExprBuilder), DT(DT), 60 EntryBB(nullptr), ScalarMap(ScalarMap), EscapeMap(EscapeMap), 61 GlobalMap(GlobalMap), StartBlock(StartBlock) {} 62 63 Value *BlockGenerator::trySynthesizeNewValue(ScopStmt &Stmt, Value *Old, 64 ValueMapT &BBMap, 65 LoopToScevMapT <S, 66 Loop *L) const { 67 if (!SE.isSCEVable(Old->getType())) 68 return nullptr; 69 70 const SCEV *Scev = SE.getSCEVAtScope(Old, L); 71 if (!Scev) 72 return nullptr; 73 74 if (isa<SCEVCouldNotCompute>(Scev)) 75 return nullptr; 76 77 const SCEV *NewScev = SCEVLoopAddRecRewriter::rewrite(Scev, LTS, SE); 78 ValueMapT VTV; 79 VTV.insert(BBMap.begin(), BBMap.end()); 80 VTV.insert(GlobalMap.begin(), GlobalMap.end()); 81 82 Scop &S = *Stmt.getParent(); 83 const DataLayout &DL = S.getFunction().getParent()->getDataLayout(); 84 auto IP = Builder.GetInsertPoint(); 85 86 assert(IP != Builder.GetInsertBlock()->end() && 87 "Only instructions can be insert points for SCEVExpander"); 88 Value *Expanded = 89 expandCodeFor(S, SE, DL, "polly", NewScev, Old->getType(), &*IP, &VTV, 90 StartBlock->getSinglePredecessor()); 91 92 BBMap[Old] = Expanded; 93 return Expanded; 94 } 95 96 Value *BlockGenerator::getNewValue(ScopStmt &Stmt, Value *Old, ValueMapT &BBMap, 97 LoopToScevMapT <S, Loop *L) const { 98 99 auto lookupGlobally = [this](Value *Old) -> Value * { 100 Value *New = GlobalMap.lookup(Old); 101 if (!New) 102 return nullptr; 103 104 // Required by: 105 // * Isl/CodeGen/OpenMP/invariant_base_pointer_preloaded.ll 106 // * Isl/CodeGen/OpenMP/invariant_base_pointer_preloaded_different_bb.ll 107 // * Isl/CodeGen/OpenMP/invariant_base_pointer_preloaded_pass_only_needed.ll 108 // * Isl/CodeGen/OpenMP/invariant_base_pointers_preloaded.ll 109 // * Isl/CodeGen/OpenMP/loop-body-references-outer-values-3.ll 110 // * Isl/CodeGen/OpenMP/single_loop_with_loop_invariant_baseptr.ll 111 // GlobalMap should be a mapping from (value in original SCoP) to (copied 112 // value in generated SCoP), without intermediate mappings, which might 113 // easily require transitiveness as well. 114 if (Value *NewRemapped = GlobalMap.lookup(New)) 115 New = NewRemapped; 116 117 // No test case for this code. 118 if (Old->getType()->getScalarSizeInBits() < 119 New->getType()->getScalarSizeInBits()) 120 New = Builder.CreateTruncOrBitCast(New, Old->getType()); 121 122 return New; 123 }; 124 125 Value *New = nullptr; 126 auto VUse = VirtualUse::create(&Stmt, L, Old, true); 127 switch (VUse.getKind()) { 128 case VirtualUse::Block: 129 // BasicBlock are constants, but the BlockGenerator copies them. 130 New = BBMap.lookup(Old); 131 break; 132 133 case VirtualUse::Constant: 134 // Used by: 135 // * Isl/CodeGen/OpenMP/reference-argument-from-non-affine-region.ll 136 // Constants should not be redefined. In this case, the GlobalMap just 137 // contains a mapping to the same constant, which is unnecessary, but 138 // harmless. 139 if ((New = lookupGlobally(Old))) 140 break; 141 142 assert(!BBMap.count(Old)); 143 New = Old; 144 break; 145 146 case VirtualUse::ReadOnly: 147 assert(!GlobalMap.count(Old)); 148 149 // Required for: 150 // * Isl/CodeGen/MemAccess/create_arrays.ll 151 // * Isl/CodeGen/read-only-scalars.ll 152 // * ScheduleOptimizer/pattern-matching-based-opts_10.ll 153 // For some reason these reload a read-only value. The reloaded value ends 154 // up in BBMap, buts its value should be identical. 155 // 156 // Required for: 157 // * Isl/CodeGen/OpenMP/single_loop_with_param.ll 158 // The parallel subfunctions need to reference the read-only value from the 159 // parent function, this is done by reloading them locally. 160 if ((New = BBMap.lookup(Old))) 161 break; 162 163 New = Old; 164 break; 165 166 case VirtualUse::Synthesizable: 167 // Used by: 168 // * Isl/CodeGen/OpenMP/loop-body-references-outer-values-3.ll 169 // * Isl/CodeGen/OpenMP/recomputed-srem.ll 170 // * Isl/CodeGen/OpenMP/reference-other-bb.ll 171 // * Isl/CodeGen/OpenMP/two-parallel-loops-reference-outer-indvar.ll 172 // For some reason synthesizable values end up in GlobalMap. Their values 173 // are the same as trySynthesizeNewValue would return. The legacy 174 // implementation prioritized GlobalMap, so this is what we do here as well. 175 // Ideally, synthesizable values should not end up in GlobalMap. 176 if ((New = lookupGlobally(Old))) 177 break; 178 179 // Required for: 180 // * Isl/CodeGen/RuntimeDebugBuilder/combine_different_values.ll 181 // * Isl/CodeGen/getNumberOfIterations.ll 182 // * Isl/CodeGen/non_affine_float_compare.ll 183 // * ScheduleOptimizer/pattern-matching-based-opts_10.ll 184 // Ideally, synthesizable values are synthesized by trySynthesizeNewValue, 185 // not precomputed (SCEVExpander has its own caching mechanism). 186 // These tests fail without this, but I think trySynthesizeNewValue would 187 // just re-synthesize the same instructions. 188 if ((New = BBMap.lookup(Old))) 189 break; 190 191 New = trySynthesizeNewValue(Stmt, Old, BBMap, LTS, L); 192 break; 193 194 case VirtualUse::Hoisted: 195 // TODO: Hoisted invariant loads should be found in GlobalMap only, but not 196 // redefined locally (which will be ignored anyway). That is, the following 197 // assertion should apply: assert(!BBMap.count(Old)) 198 199 New = lookupGlobally(Old); 200 break; 201 202 case VirtualUse::Intra: 203 case VirtualUse::Inter: 204 assert(!GlobalMap.count(Old) && 205 "Intra and inter-stmt values are never global"); 206 New = BBMap.lookup(Old); 207 break; 208 } 209 assert(New && "Unexpected scalar dependence in region!"); 210 return New; 211 } 212 213 void BlockGenerator::copyInstScalar(ScopStmt &Stmt, Instruction *Inst, 214 ValueMapT &BBMap, LoopToScevMapT <S) { 215 // We do not generate debug intrinsics as we did not investigate how to 216 // copy them correctly. At the current state, they just crash the code 217 // generation as the meta-data operands are not correctly copied. 218 if (isa<DbgInfoIntrinsic>(Inst)) 219 return; 220 221 Instruction *NewInst = Inst->clone(); 222 223 // Replace old operands with the new ones. 224 for (Value *OldOperand : Inst->operands()) { 225 Value *NewOperand = 226 getNewValue(Stmt, OldOperand, BBMap, LTS, getLoopForStmt(Stmt)); 227 228 if (!NewOperand) { 229 assert(!isa<StoreInst>(NewInst) && 230 "Store instructions are always needed!"); 231 NewInst->deleteValue(); 232 return; 233 } 234 235 NewInst->replaceUsesOfWith(OldOperand, NewOperand); 236 } 237 238 Builder.Insert(NewInst); 239 BBMap[Inst] = NewInst; 240 241 // When copying the instruction onto the Module meant for the GPU, 242 // debug metadata attached to an instruction causes all related 243 // metadata to be pulled into the Module. This includes the DICompileUnit, 244 // which will not be listed in llvm.dbg.cu of the Module since the Module 245 // doesn't contain one. This fails the verification of the Module and the 246 // subsequent generation of the ASM string. 247 if (NewInst->getModule() != Inst->getModule()) 248 NewInst->setDebugLoc(llvm::DebugLoc()); 249 250 if (!NewInst->getType()->isVoidTy()) 251 NewInst->setName("p_" + Inst->getName()); 252 } 253 254 Value * 255 BlockGenerator::generateLocationAccessed(ScopStmt &Stmt, MemAccInst Inst, 256 ValueMapT &BBMap, LoopToScevMapT <S, 257 isl_id_to_ast_expr *NewAccesses) { 258 const MemoryAccess &MA = Stmt.getArrayAccessFor(Inst); 259 return generateLocationAccessed( 260 Stmt, getLoopForStmt(Stmt), 261 Inst.isNull() ? nullptr : Inst.getPointerOperand(), BBMap, LTS, 262 NewAccesses, MA.getId().release(), MA.getAccessValue()->getType()); 263 } 264 265 Value *BlockGenerator::generateLocationAccessed( 266 ScopStmt &Stmt, Loop *L, Value *Pointer, ValueMapT &BBMap, 267 LoopToScevMapT <S, isl_id_to_ast_expr *NewAccesses, __isl_take isl_id *Id, 268 Type *ExpectedType) { 269 isl_ast_expr *AccessExpr = isl_id_to_ast_expr_get(NewAccesses, Id); 270 271 if (AccessExpr) { 272 AccessExpr = isl_ast_expr_address_of(AccessExpr); 273 auto Address = ExprBuilder->create(AccessExpr); 274 275 // Cast the address of this memory access to a pointer type that has the 276 // same element type as the original access, but uses the address space of 277 // the newly generated pointer. 278 auto OldPtrTy = ExpectedType->getPointerTo(); 279 auto NewPtrTy = Address->getType(); 280 OldPtrTy = PointerType::getWithSamePointeeType( 281 OldPtrTy, NewPtrTy->getPointerAddressSpace()); 282 283 if (OldPtrTy != NewPtrTy) 284 Address = Builder.CreateBitOrPointerCast(Address, OldPtrTy); 285 return Address; 286 } 287 assert( 288 Pointer && 289 "If expression was not generated, must use the original pointer value"); 290 return getNewValue(Stmt, Pointer, BBMap, LTS, L); 291 } 292 293 Value * 294 BlockGenerator::getImplicitAddress(MemoryAccess &Access, Loop *L, 295 LoopToScevMapT <S, ValueMapT &BBMap, 296 __isl_keep isl_id_to_ast_expr *NewAccesses) { 297 if (Access.isLatestArrayKind()) 298 return generateLocationAccessed(*Access.getStatement(), L, nullptr, BBMap, 299 LTS, NewAccesses, Access.getId().release(), 300 Access.getAccessValue()->getType()); 301 302 return getOrCreateAlloca(Access); 303 } 304 305 Loop *BlockGenerator::getLoopForStmt(const ScopStmt &Stmt) const { 306 auto *StmtBB = Stmt.getEntryBlock(); 307 return LI.getLoopFor(StmtBB); 308 } 309 310 Value *BlockGenerator::generateArrayLoad(ScopStmt &Stmt, LoadInst *Load, 311 ValueMapT &BBMap, LoopToScevMapT <S, 312 isl_id_to_ast_expr *NewAccesses) { 313 if (Value *PreloadLoad = GlobalMap.lookup(Load)) 314 return PreloadLoad; 315 316 Value *NewPointer = 317 generateLocationAccessed(Stmt, Load, BBMap, LTS, NewAccesses); 318 Value *ScalarLoad = 319 Builder.CreateAlignedLoad(Load->getType(), NewPointer, Load->getAlign(), 320 Load->getName() + "_p_scalar_"); 321 322 if (PollyDebugPrinting) 323 RuntimeDebugBuilder::createCPUPrinter(Builder, "Load from ", NewPointer, 324 ": ", ScalarLoad, "\n"); 325 326 return ScalarLoad; 327 } 328 329 void BlockGenerator::generateArrayStore(ScopStmt &Stmt, StoreInst *Store, 330 ValueMapT &BBMap, LoopToScevMapT <S, 331 isl_id_to_ast_expr *NewAccesses) { 332 MemoryAccess &MA = Stmt.getArrayAccessFor(Store); 333 isl::set AccDom = MA.getAccessRelation().domain(); 334 std::string Subject = MA.getId().get_name(); 335 336 generateConditionalExecution(Stmt, AccDom, Subject.c_str(), [&, this]() { 337 Value *NewPointer = 338 generateLocationAccessed(Stmt, Store, BBMap, LTS, NewAccesses); 339 Value *ValueOperand = getNewValue(Stmt, Store->getValueOperand(), BBMap, 340 LTS, getLoopForStmt(Stmt)); 341 342 if (PollyDebugPrinting) 343 RuntimeDebugBuilder::createCPUPrinter(Builder, "Store to ", NewPointer, 344 ": ", ValueOperand, "\n"); 345 346 Builder.CreateAlignedStore(ValueOperand, NewPointer, Store->getAlign()); 347 }); 348 } 349 350 bool BlockGenerator::canSyntheziseInStmt(ScopStmt &Stmt, Instruction *Inst) { 351 Loop *L = getLoopForStmt(Stmt); 352 return (Stmt.isBlockStmt() || !Stmt.getRegion()->contains(L)) && 353 canSynthesize(Inst, *Stmt.getParent(), &SE, L); 354 } 355 356 void BlockGenerator::copyInstruction(ScopStmt &Stmt, Instruction *Inst, 357 ValueMapT &BBMap, LoopToScevMapT <S, 358 isl_id_to_ast_expr *NewAccesses) { 359 // Terminator instructions control the control flow. They are explicitly 360 // expressed in the clast and do not need to be copied. 361 if (Inst->isTerminator()) 362 return; 363 364 // Synthesizable statements will be generated on-demand. 365 if (canSyntheziseInStmt(Stmt, Inst)) 366 return; 367 368 if (auto *Load = dyn_cast<LoadInst>(Inst)) { 369 Value *NewLoad = generateArrayLoad(Stmt, Load, BBMap, LTS, NewAccesses); 370 // Compute NewLoad before its insertion in BBMap to make the insertion 371 // deterministic. 372 BBMap[Load] = NewLoad; 373 return; 374 } 375 376 if (auto *Store = dyn_cast<StoreInst>(Inst)) { 377 // Identified as redundant by -polly-simplify. 378 if (!Stmt.getArrayAccessOrNULLFor(Store)) 379 return; 380 381 generateArrayStore(Stmt, Store, BBMap, LTS, NewAccesses); 382 return; 383 } 384 385 if (auto *PHI = dyn_cast<PHINode>(Inst)) { 386 copyPHIInstruction(Stmt, PHI, BBMap, LTS); 387 return; 388 } 389 390 // Skip some special intrinsics for which we do not adjust the semantics to 391 // the new schedule. All others are handled like every other instruction. 392 if (isIgnoredIntrinsic(Inst)) 393 return; 394 395 copyInstScalar(Stmt, Inst, BBMap, LTS); 396 } 397 398 void BlockGenerator::removeDeadInstructions(BasicBlock *BB, ValueMapT &BBMap) { 399 auto NewBB = Builder.GetInsertBlock(); 400 for (auto I = NewBB->rbegin(); I != NewBB->rend(); I++) { 401 Instruction *NewInst = &*I; 402 403 if (!isInstructionTriviallyDead(NewInst)) 404 continue; 405 406 for (auto Pair : BBMap) 407 if (Pair.second == NewInst) { 408 BBMap.erase(Pair.first); 409 } 410 411 NewInst->eraseFromParent(); 412 I = NewBB->rbegin(); 413 } 414 } 415 416 void BlockGenerator::copyStmt(ScopStmt &Stmt, LoopToScevMapT <S, 417 __isl_keep isl_id_to_ast_expr *NewAccesses) { 418 assert(Stmt.isBlockStmt() && 419 "Only block statements can be copied by the block generator"); 420 421 ValueMapT BBMap; 422 423 BasicBlock *BB = Stmt.getBasicBlock(); 424 copyBB(Stmt, BB, BBMap, LTS, NewAccesses); 425 removeDeadInstructions(BB, BBMap); 426 } 427 428 BasicBlock *BlockGenerator::splitBB(BasicBlock *BB) { 429 BasicBlock *CopyBB = SplitBlock(Builder.GetInsertBlock(), 430 &*Builder.GetInsertPoint(), &DT, &LI); 431 CopyBB->setName("polly.stmt." + BB->getName()); 432 return CopyBB; 433 } 434 435 BasicBlock *BlockGenerator::copyBB(ScopStmt &Stmt, BasicBlock *BB, 436 ValueMapT &BBMap, LoopToScevMapT <S, 437 isl_id_to_ast_expr *NewAccesses) { 438 BasicBlock *CopyBB = splitBB(BB); 439 Builder.SetInsertPoint(&CopyBB->front()); 440 generateScalarLoads(Stmt, LTS, BBMap, NewAccesses); 441 generateBeginStmtTrace(Stmt, LTS, BBMap); 442 443 copyBB(Stmt, BB, CopyBB, BBMap, LTS, NewAccesses); 444 445 // After a basic block was copied store all scalars that escape this block in 446 // their alloca. 447 generateScalarStores(Stmt, LTS, BBMap, NewAccesses); 448 return CopyBB; 449 } 450 451 void BlockGenerator::copyBB(ScopStmt &Stmt, BasicBlock *BB, BasicBlock *CopyBB, 452 ValueMapT &BBMap, LoopToScevMapT <S, 453 isl_id_to_ast_expr *NewAccesses) { 454 EntryBB = &CopyBB->getParent()->getEntryBlock(); 455 456 // Block statements and the entry blocks of region statement are code 457 // generated from instruction lists. This allow us to optimize the 458 // instructions that belong to a certain scop statement. As the code 459 // structure of region statements might be arbitrary complex, optimizing the 460 // instruction list is not yet supported. 461 if (Stmt.isBlockStmt() || (Stmt.isRegionStmt() && Stmt.getEntryBlock() == BB)) 462 for (Instruction *Inst : Stmt.getInstructions()) 463 copyInstruction(Stmt, Inst, BBMap, LTS, NewAccesses); 464 else 465 for (Instruction &Inst : *BB) 466 copyInstruction(Stmt, &Inst, BBMap, LTS, NewAccesses); 467 } 468 469 Value *BlockGenerator::getOrCreateAlloca(const MemoryAccess &Access) { 470 assert(!Access.isLatestArrayKind() && "Trying to get alloca for array kind"); 471 472 return getOrCreateAlloca(Access.getLatestScopArrayInfo()); 473 } 474 475 Value *BlockGenerator::getOrCreateAlloca(const ScopArrayInfo *Array) { 476 assert(!Array->isArrayKind() && "Trying to get alloca for array kind"); 477 478 auto &Addr = ScalarMap[Array]; 479 480 if (Addr) { 481 // Allow allocas to be (temporarily) redirected once by adding a new 482 // old-alloca-addr to new-addr mapping to GlobalMap. This functionality 483 // is used for example by the OpenMP code generation where a first use 484 // of a scalar while still in the host code allocates a normal alloca with 485 // getOrCreateAlloca. When the values of this scalar are accessed during 486 // the generation of the parallel subfunction, these values are copied over 487 // to the parallel subfunction and each request for a scalar alloca slot 488 // must be forwarded to the temporary in-subfunction slot. This mapping is 489 // removed when the subfunction has been generated and again normal host 490 // code is generated. Due to the following reasons it is not possible to 491 // perform the GlobalMap lookup right after creating the alloca below, but 492 // instead we need to check GlobalMap at each call to getOrCreateAlloca: 493 // 494 // 1) GlobalMap may be changed multiple times (for each parallel loop), 495 // 2) The temporary mapping is commonly only known after the initial 496 // alloca has already been generated, and 497 // 3) The original alloca value must be restored after leaving the 498 // sub-function. 499 if (Value *NewAddr = GlobalMap.lookup(&*Addr)) 500 return NewAddr; 501 return Addr; 502 } 503 504 Type *Ty = Array->getElementType(); 505 Value *ScalarBase = Array->getBasePtr(); 506 std::string NameExt; 507 if (Array->isPHIKind()) 508 NameExt = ".phiops"; 509 else 510 NameExt = ".s2a"; 511 512 const DataLayout &DL = Builder.GetInsertBlock()->getModule()->getDataLayout(); 513 514 Addr = 515 new AllocaInst(Ty, DL.getAllocaAddrSpace(), nullptr, 516 DL.getPrefTypeAlign(Ty), ScalarBase->getName() + NameExt); 517 EntryBB = &Builder.GetInsertBlock()->getParent()->getEntryBlock(); 518 Addr->insertBefore(&*EntryBB->getFirstInsertionPt()); 519 520 return Addr; 521 } 522 523 void BlockGenerator::handleOutsideUsers(const Scop &S, ScopArrayInfo *Array) { 524 Instruction *Inst = cast<Instruction>(Array->getBasePtr()); 525 526 // If there are escape users we get the alloca for this instruction and put it 527 // in the EscapeMap for later finalization. Lastly, if the instruction was 528 // copied multiple times we already did this and can exit. 529 if (EscapeMap.count(Inst)) 530 return; 531 532 EscapeUserVectorTy EscapeUsers; 533 for (User *U : Inst->users()) { 534 535 // Non-instruction user will never escape. 536 Instruction *UI = dyn_cast<Instruction>(U); 537 if (!UI) 538 continue; 539 540 if (S.contains(UI)) 541 continue; 542 543 EscapeUsers.push_back(UI); 544 } 545 546 // Exit if no escape uses were found. 547 if (EscapeUsers.empty()) 548 return; 549 550 // Get or create an escape alloca for this instruction. 551 auto *ScalarAddr = getOrCreateAlloca(Array); 552 553 // Remember that this instruction has escape uses and the escape alloca. 554 EscapeMap[Inst] = std::make_pair(ScalarAddr, std::move(EscapeUsers)); 555 } 556 557 void BlockGenerator::generateScalarLoads( 558 ScopStmt &Stmt, LoopToScevMapT <S, ValueMapT &BBMap, 559 __isl_keep isl_id_to_ast_expr *NewAccesses) { 560 for (MemoryAccess *MA : Stmt) { 561 if (MA->isOriginalArrayKind() || MA->isWrite()) 562 continue; 563 564 #ifndef NDEBUG 565 auto StmtDom = 566 Stmt.getDomain().intersect_params(Stmt.getParent()->getContext()); 567 auto AccDom = MA->getAccessRelation().domain(); 568 assert(!StmtDom.is_subset(AccDom).is_false() && 569 "Scalar must be loaded in all statement instances"); 570 #endif 571 572 auto *Address = 573 getImplicitAddress(*MA, getLoopForStmt(Stmt), LTS, BBMap, NewAccesses); 574 assert((!isa<Instruction>(Address) || 575 DT.dominates(cast<Instruction>(Address)->getParent(), 576 Builder.GetInsertBlock())) && 577 "Domination violation"); 578 BBMap[MA->getAccessValue()] = Builder.CreateLoad( 579 MA->getElementType(), Address, Address->getName() + ".reload"); 580 } 581 } 582 583 Value *BlockGenerator::buildContainsCondition(ScopStmt &Stmt, 584 const isl::set &Subdomain) { 585 isl::ast_build AstBuild = Stmt.getAstBuild(); 586 isl::set Domain = Stmt.getDomain(); 587 588 isl::union_map USchedule = AstBuild.get_schedule(); 589 USchedule = USchedule.intersect_domain(Domain); 590 591 assert(!USchedule.is_empty()); 592 isl::map Schedule = isl::map::from_union_map(USchedule); 593 594 isl::set ScheduledDomain = Schedule.range(); 595 isl::set ScheduledSet = Subdomain.apply(Schedule); 596 597 isl::ast_build RestrictedBuild = AstBuild.restrict(ScheduledDomain); 598 599 isl::ast_expr IsInSet = RestrictedBuild.expr_from(ScheduledSet); 600 Value *IsInSetExpr = ExprBuilder->create(IsInSet.copy()); 601 IsInSetExpr = Builder.CreateICmpNE( 602 IsInSetExpr, ConstantInt::get(IsInSetExpr->getType(), 0)); 603 604 return IsInSetExpr; 605 } 606 607 void BlockGenerator::generateConditionalExecution( 608 ScopStmt &Stmt, const isl::set &Subdomain, StringRef Subject, 609 const std::function<void()> &GenThenFunc) { 610 isl::set StmtDom = Stmt.getDomain(); 611 612 // If the condition is a tautology, don't generate a condition around the 613 // code. 614 bool IsPartialWrite = 615 !StmtDom.intersect_params(Stmt.getParent()->getContext()) 616 .is_subset(Subdomain); 617 if (!IsPartialWrite) { 618 GenThenFunc(); 619 return; 620 } 621 622 // Generate the condition. 623 Value *Cond = buildContainsCondition(Stmt, Subdomain); 624 625 // Don't call GenThenFunc if it is never executed. An ast index expression 626 // might not be defined in this case. 627 if (auto *Const = dyn_cast<ConstantInt>(Cond)) 628 if (Const->isZero()) 629 return; 630 631 BasicBlock *HeadBlock = Builder.GetInsertBlock(); 632 StringRef BlockName = HeadBlock->getName(); 633 634 // Generate the conditional block. 635 SplitBlockAndInsertIfThen(Cond, &*Builder.GetInsertPoint(), false, nullptr, 636 &DT, &LI); 637 BranchInst *Branch = cast<BranchInst>(HeadBlock->getTerminator()); 638 BasicBlock *ThenBlock = Branch->getSuccessor(0); 639 BasicBlock *TailBlock = Branch->getSuccessor(1); 640 641 // Assign descriptive names. 642 if (auto *CondInst = dyn_cast<Instruction>(Cond)) 643 CondInst->setName("polly." + Subject + ".cond"); 644 ThenBlock->setName(BlockName + "." + Subject + ".partial"); 645 TailBlock->setName(BlockName + ".cont"); 646 647 // Put the client code into the conditional block and continue in the merge 648 // block afterwards. 649 Builder.SetInsertPoint(ThenBlock, ThenBlock->getFirstInsertionPt()); 650 GenThenFunc(); 651 Builder.SetInsertPoint(TailBlock, TailBlock->getFirstInsertionPt()); 652 } 653 654 static std::string getInstName(Value *Val) { 655 std::string Result; 656 raw_string_ostream OS(Result); 657 Val->printAsOperand(OS, false); 658 return OS.str(); 659 } 660 661 void BlockGenerator::generateBeginStmtTrace(ScopStmt &Stmt, LoopToScevMapT <S, 662 ValueMapT &BBMap) { 663 if (!TraceStmts) 664 return; 665 666 Scop *S = Stmt.getParent(); 667 const char *BaseName = Stmt.getBaseName(); 668 669 isl::ast_build AstBuild = Stmt.getAstBuild(); 670 isl::set Domain = Stmt.getDomain(); 671 672 isl::union_map USchedule = AstBuild.get_schedule().intersect_domain(Domain); 673 isl::map Schedule = isl::map::from_union_map(USchedule); 674 assert(Schedule.is_empty().is_false() && 675 "The stmt must have a valid instance"); 676 677 isl::multi_pw_aff ScheduleMultiPwAff = 678 isl::pw_multi_aff::from_map(Schedule.reverse()); 679 isl::ast_build RestrictedBuild = AstBuild.restrict(Schedule.range()); 680 681 // Sequence of strings to print. 682 SmallVector<llvm::Value *, 8> Values; 683 684 // Print the name of the statement. 685 // TODO: Indent by the depth of the statement instance in the schedule tree. 686 Values.push_back(RuntimeDebugBuilder::getPrintableString(Builder, BaseName)); 687 Values.push_back(RuntimeDebugBuilder::getPrintableString(Builder, "(")); 688 689 // Add the coordinate of the statement instance. 690 for (unsigned i : rangeIslSize(0, ScheduleMultiPwAff.dim(isl::dim::out))) { 691 if (i > 0) 692 Values.push_back(RuntimeDebugBuilder::getPrintableString(Builder, ",")); 693 694 isl::ast_expr IsInSet = RestrictedBuild.expr_from(ScheduleMultiPwAff.at(i)); 695 Values.push_back(ExprBuilder->create(IsInSet.copy())); 696 } 697 698 if (TraceScalars) { 699 Values.push_back(RuntimeDebugBuilder::getPrintableString(Builder, ")")); 700 DenseSet<Instruction *> Encountered; 701 702 // Add the value of each scalar (and the result of PHIs) used in the 703 // statement. 704 // TODO: Values used in region-statements. 705 for (Instruction *Inst : Stmt.insts()) { 706 if (!RuntimeDebugBuilder::isPrintable(Inst->getType())) 707 continue; 708 709 if (isa<PHINode>(Inst)) { 710 Values.push_back(RuntimeDebugBuilder::getPrintableString(Builder, " ")); 711 Values.push_back(RuntimeDebugBuilder::getPrintableString( 712 Builder, getInstName(Inst))); 713 Values.push_back(RuntimeDebugBuilder::getPrintableString(Builder, "=")); 714 Values.push_back(getNewValue(Stmt, Inst, BBMap, LTS, 715 LI.getLoopFor(Inst->getParent()))); 716 } else { 717 for (Value *Op : Inst->operand_values()) { 718 // Do not print values that cannot change during the execution of the 719 // SCoP. 720 auto *OpInst = dyn_cast<Instruction>(Op); 721 if (!OpInst) 722 continue; 723 if (!S->contains(OpInst)) 724 continue; 725 726 // Print each scalar at most once, and exclude values defined in the 727 // statement itself. 728 if (Encountered.count(OpInst)) 729 continue; 730 731 Values.push_back( 732 RuntimeDebugBuilder::getPrintableString(Builder, " ")); 733 Values.push_back(RuntimeDebugBuilder::getPrintableString( 734 Builder, getInstName(OpInst))); 735 Values.push_back( 736 RuntimeDebugBuilder::getPrintableString(Builder, "=")); 737 Values.push_back(getNewValue(Stmt, OpInst, BBMap, LTS, 738 LI.getLoopFor(Inst->getParent()))); 739 Encountered.insert(OpInst); 740 } 741 } 742 743 Encountered.insert(Inst); 744 } 745 746 Values.push_back(RuntimeDebugBuilder::getPrintableString(Builder, "\n")); 747 } else { 748 Values.push_back(RuntimeDebugBuilder::getPrintableString(Builder, ")\n")); 749 } 750 751 RuntimeDebugBuilder::createCPUPrinter(Builder, ArrayRef<Value *>(Values)); 752 } 753 754 void BlockGenerator::generateScalarStores( 755 ScopStmt &Stmt, LoopToScevMapT <S, ValueMapT &BBMap, 756 __isl_keep isl_id_to_ast_expr *NewAccesses) { 757 Loop *L = LI.getLoopFor(Stmt.getBasicBlock()); 758 759 assert(Stmt.isBlockStmt() && 760 "Region statements need to use the generateScalarStores() function in " 761 "the RegionGenerator"); 762 763 for (MemoryAccess *MA : Stmt) { 764 if (MA->isOriginalArrayKind() || MA->isRead()) 765 continue; 766 767 isl::set AccDom = MA->getAccessRelation().domain(); 768 std::string Subject = MA->getId().get_name(); 769 770 generateConditionalExecution( 771 Stmt, AccDom, Subject.c_str(), [&, this, MA]() { 772 Value *Val = MA->getAccessValue(); 773 if (MA->isAnyPHIKind()) { 774 assert(MA->getIncoming().size() >= 1 && 775 "Block statements have exactly one exiting block, or " 776 "multiple but " 777 "with same incoming block and value"); 778 assert(std::all_of(MA->getIncoming().begin(), 779 MA->getIncoming().end(), 780 [&](std::pair<BasicBlock *, Value *> p) -> bool { 781 return p.first == Stmt.getBasicBlock(); 782 }) && 783 "Incoming block must be statement's block"); 784 Val = MA->getIncoming()[0].second; 785 } 786 auto Address = getImplicitAddress(*MA, getLoopForStmt(Stmt), LTS, 787 BBMap, NewAccesses); 788 789 Val = getNewValue(Stmt, Val, BBMap, LTS, L); 790 assert((!isa<Instruction>(Val) || 791 DT.dominates(cast<Instruction>(Val)->getParent(), 792 Builder.GetInsertBlock())) && 793 "Domination violation"); 794 assert((!isa<Instruction>(Address) || 795 DT.dominates(cast<Instruction>(Address)->getParent(), 796 Builder.GetInsertBlock())) && 797 "Domination violation"); 798 799 // The new Val might have a different type than the old Val due to 800 // ScalarEvolution looking through bitcasts. 801 Address = Builder.CreateBitOrPointerCast( 802 Address, Val->getType()->getPointerTo( 803 Address->getType()->getPointerAddressSpace())); 804 805 Builder.CreateStore(Val, Address); 806 }); 807 } 808 } 809 810 void BlockGenerator::createScalarInitialization(Scop &S) { 811 BasicBlock *ExitBB = S.getExit(); 812 BasicBlock *PreEntryBB = S.getEnteringBlock(); 813 814 Builder.SetInsertPoint(&*StartBlock->begin()); 815 816 for (auto &Array : S.arrays()) { 817 if (Array->getNumberOfDimensions() != 0) 818 continue; 819 if (Array->isPHIKind()) { 820 // For PHI nodes, the only values we need to store are the ones that 821 // reach the PHI node from outside the region. In general there should 822 // only be one such incoming edge and this edge should enter through 823 // 'PreEntryBB'. 824 auto PHI = cast<PHINode>(Array->getBasePtr()); 825 826 for (auto BI = PHI->block_begin(), BE = PHI->block_end(); BI != BE; BI++) 827 if (!S.contains(*BI) && *BI != PreEntryBB) 828 llvm_unreachable("Incoming edges from outside the scop should always " 829 "come from PreEntryBB"); 830 831 int Idx = PHI->getBasicBlockIndex(PreEntryBB); 832 if (Idx < 0) 833 continue; 834 835 Value *ScalarValue = PHI->getIncomingValue(Idx); 836 837 Builder.CreateStore(ScalarValue, getOrCreateAlloca(Array)); 838 continue; 839 } 840 841 auto *Inst = dyn_cast<Instruction>(Array->getBasePtr()); 842 843 if (Inst && S.contains(Inst)) 844 continue; 845 846 // PHI nodes that are not marked as such in their SAI object are either exit 847 // PHI nodes we model as common scalars but without initialization, or 848 // incoming phi nodes that need to be initialized. Check if the first is the 849 // case for Inst and do not create and initialize memory if so. 850 if (auto *PHI = dyn_cast_or_null<PHINode>(Inst)) 851 if (!S.hasSingleExitEdge() && PHI->getBasicBlockIndex(ExitBB) >= 0) 852 continue; 853 854 Builder.CreateStore(Array->getBasePtr(), getOrCreateAlloca(Array)); 855 } 856 } 857 858 void BlockGenerator::createScalarFinalization(Scop &S) { 859 // The exit block of the __unoptimized__ region. 860 BasicBlock *ExitBB = S.getExitingBlock(); 861 // The merge block __just after__ the region and the optimized region. 862 BasicBlock *MergeBB = S.getExit(); 863 864 // The exit block of the __optimized__ region. 865 BasicBlock *OptExitBB = *(pred_begin(MergeBB)); 866 if (OptExitBB == ExitBB) 867 OptExitBB = *(++pred_begin(MergeBB)); 868 869 Builder.SetInsertPoint(OptExitBB->getTerminator()); 870 for (const auto &EscapeMapping : EscapeMap) { 871 // Extract the escaping instruction and the escaping users as well as the 872 // alloca the instruction was demoted to. 873 Instruction *EscapeInst = EscapeMapping.first; 874 const auto &EscapeMappingValue = EscapeMapping.second; 875 const EscapeUserVectorTy &EscapeUsers = EscapeMappingValue.second; 876 auto *ScalarAddr = cast<AllocaInst>(&*EscapeMappingValue.first); 877 878 // Reload the demoted instruction in the optimized version of the SCoP. 879 Value *EscapeInstReload = 880 Builder.CreateLoad(ScalarAddr->getAllocatedType(), ScalarAddr, 881 EscapeInst->getName() + ".final_reload"); 882 EscapeInstReload = 883 Builder.CreateBitOrPointerCast(EscapeInstReload, EscapeInst->getType()); 884 885 // Create the merge PHI that merges the optimized and unoptimized version. 886 PHINode *MergePHI = PHINode::Create(EscapeInst->getType(), 2, 887 EscapeInst->getName() + ".merge"); 888 MergePHI->insertBefore(&*MergeBB->getFirstInsertionPt()); 889 890 // Add the respective values to the merge PHI. 891 MergePHI->addIncoming(EscapeInstReload, OptExitBB); 892 MergePHI->addIncoming(EscapeInst, ExitBB); 893 894 // The information of scalar evolution about the escaping instruction needs 895 // to be revoked so the new merged instruction will be used. 896 if (SE.isSCEVable(EscapeInst->getType())) 897 SE.forgetValue(EscapeInst); 898 899 // Replace all uses of the demoted instruction with the merge PHI. 900 for (Instruction *EUser : EscapeUsers) 901 EUser->replaceUsesOfWith(EscapeInst, MergePHI); 902 } 903 } 904 905 void BlockGenerator::findOutsideUsers(Scop &S) { 906 for (auto &Array : S.arrays()) { 907 908 if (Array->getNumberOfDimensions() != 0) 909 continue; 910 911 if (Array->isPHIKind()) 912 continue; 913 914 auto *Inst = dyn_cast<Instruction>(Array->getBasePtr()); 915 916 if (!Inst) 917 continue; 918 919 // Scop invariant hoisting moves some of the base pointers out of the scop. 920 // We can ignore these, as the invariant load hoisting already registers the 921 // relevant outside users. 922 if (!S.contains(Inst)) 923 continue; 924 925 handleOutsideUsers(S, Array); 926 } 927 } 928 929 void BlockGenerator::createExitPHINodeMerges(Scop &S) { 930 if (S.hasSingleExitEdge()) 931 return; 932 933 auto *ExitBB = S.getExitingBlock(); 934 auto *MergeBB = S.getExit(); 935 auto *AfterMergeBB = MergeBB->getSingleSuccessor(); 936 BasicBlock *OptExitBB = *(pred_begin(MergeBB)); 937 if (OptExitBB == ExitBB) 938 OptExitBB = *(++pred_begin(MergeBB)); 939 940 Builder.SetInsertPoint(OptExitBB->getTerminator()); 941 942 for (auto &SAI : S.arrays()) { 943 auto *Val = SAI->getBasePtr(); 944 945 // Only Value-like scalars need a merge PHI. Exit block PHIs receive either 946 // the original PHI's value or the reloaded incoming values from the 947 // generated code. An llvm::Value is merged between the original code's 948 // value or the generated one. 949 if (!SAI->isExitPHIKind()) 950 continue; 951 952 PHINode *PHI = dyn_cast<PHINode>(Val); 953 if (!PHI) 954 continue; 955 956 if (PHI->getParent() != AfterMergeBB) 957 continue; 958 959 std::string Name = PHI->getName().str(); 960 Value *ScalarAddr = getOrCreateAlloca(SAI); 961 Value *Reload = Builder.CreateLoad(SAI->getElementType(), ScalarAddr, 962 Name + ".ph.final_reload"); 963 Reload = Builder.CreateBitOrPointerCast(Reload, PHI->getType()); 964 Value *OriginalValue = PHI->getIncomingValueForBlock(MergeBB); 965 assert((!isa<Instruction>(OriginalValue) || 966 cast<Instruction>(OriginalValue)->getParent() != MergeBB) && 967 "Original value must no be one we just generated."); 968 auto *MergePHI = PHINode::Create(PHI->getType(), 2, Name + ".ph.merge"); 969 MergePHI->insertBefore(&*MergeBB->getFirstInsertionPt()); 970 MergePHI->addIncoming(Reload, OptExitBB); 971 MergePHI->addIncoming(OriginalValue, ExitBB); 972 int Idx = PHI->getBasicBlockIndex(MergeBB); 973 PHI->setIncomingValue(Idx, MergePHI); 974 } 975 } 976 977 void BlockGenerator::invalidateScalarEvolution(Scop &S) { 978 for (auto &Stmt : S) 979 if (Stmt.isCopyStmt()) 980 continue; 981 else if (Stmt.isBlockStmt()) 982 for (auto &Inst : *Stmt.getBasicBlock()) 983 SE.forgetValue(&Inst); 984 else if (Stmt.isRegionStmt()) 985 for (auto *BB : Stmt.getRegion()->blocks()) 986 for (auto &Inst : *BB) 987 SE.forgetValue(&Inst); 988 else 989 llvm_unreachable("Unexpected statement type found"); 990 991 // Invalidate SCEV of loops surrounding the EscapeUsers. 992 for (const auto &EscapeMapping : EscapeMap) { 993 const EscapeUserVectorTy &EscapeUsers = EscapeMapping.second.second; 994 for (Instruction *EUser : EscapeUsers) { 995 if (Loop *L = LI.getLoopFor(EUser->getParent())) 996 while (L) { 997 SE.forgetLoop(L); 998 L = L->getParentLoop(); 999 } 1000 } 1001 } 1002 } 1003 1004 void BlockGenerator::finalizeSCoP(Scop &S) { 1005 findOutsideUsers(S); 1006 createScalarInitialization(S); 1007 createExitPHINodeMerges(S); 1008 createScalarFinalization(S); 1009 invalidateScalarEvolution(S); 1010 } 1011 1012 VectorBlockGenerator::VectorBlockGenerator(BlockGenerator &BlockGen, 1013 std::vector<LoopToScevMapT> &VLTS, 1014 isl_map *Schedule) 1015 : BlockGenerator(BlockGen), VLTS(VLTS), Schedule(Schedule) { 1016 assert(Schedule && "No statement domain provided"); 1017 } 1018 1019 Value *VectorBlockGenerator::getVectorValue(ScopStmt &Stmt, Value *Old, 1020 ValueMapT &VectorMap, 1021 VectorValueMapT &ScalarMaps, 1022 Loop *L) { 1023 if (Value *NewValue = VectorMap.lookup(Old)) 1024 return NewValue; 1025 1026 int Width = getVectorWidth(); 1027 1028 Value *Vector = UndefValue::get(FixedVectorType::get(Old->getType(), Width)); 1029 1030 for (int Lane = 0; Lane < Width; Lane++) 1031 Vector = Builder.CreateInsertElement( 1032 Vector, getNewValue(Stmt, Old, ScalarMaps[Lane], VLTS[Lane], L), 1033 Builder.getInt32(Lane)); 1034 1035 VectorMap[Old] = Vector; 1036 1037 return Vector; 1038 } 1039 1040 Value *VectorBlockGenerator::generateStrideOneLoad( 1041 ScopStmt &Stmt, LoadInst *Load, VectorValueMapT &ScalarMaps, 1042 __isl_keep isl_id_to_ast_expr *NewAccesses, bool NegativeStride = false) { 1043 unsigned VectorWidth = getVectorWidth(); 1044 Type *VectorType = FixedVectorType::get(Load->getType(), VectorWidth); 1045 Type *VectorPtrType = 1046 PointerType::get(VectorType, Load->getPointerAddressSpace()); 1047 unsigned Offset = NegativeStride ? VectorWidth - 1 : 0; 1048 1049 Value *NewPointer = generateLocationAccessed(Stmt, Load, ScalarMaps[Offset], 1050 VLTS[Offset], NewAccesses); 1051 Value *VectorPtr = 1052 Builder.CreateBitCast(NewPointer, VectorPtrType, "vector_ptr"); 1053 LoadInst *VecLoad = Builder.CreateLoad(VectorType, VectorPtr, 1054 Load->getName() + "_p_vec_full"); 1055 if (!Aligned) 1056 VecLoad->setAlignment(Align(8)); 1057 1058 if (NegativeStride) { 1059 SmallVector<Constant *, 16> Indices; 1060 for (int i = VectorWidth - 1; i >= 0; i--) 1061 Indices.push_back(ConstantInt::get(Builder.getInt32Ty(), i)); 1062 Constant *SV = llvm::ConstantVector::get(Indices); 1063 Value *RevVecLoad = Builder.CreateShuffleVector( 1064 VecLoad, VecLoad, SV, Load->getName() + "_reverse"); 1065 return RevVecLoad; 1066 } 1067 1068 return VecLoad; 1069 } 1070 1071 Value *VectorBlockGenerator::generateStrideZeroLoad( 1072 ScopStmt &Stmt, LoadInst *Load, ValueMapT &BBMap, 1073 __isl_keep isl_id_to_ast_expr *NewAccesses) { 1074 Type *VectorType = FixedVectorType::get(Load->getType(), 1); 1075 Type *VectorPtrType = 1076 PointerType::get(VectorType, Load->getPointerAddressSpace()); 1077 Value *NewPointer = 1078 generateLocationAccessed(Stmt, Load, BBMap, VLTS[0], NewAccesses); 1079 Value *VectorPtr = Builder.CreateBitCast(NewPointer, VectorPtrType, 1080 Load->getName() + "_p_vec_p"); 1081 LoadInst *ScalarLoad = Builder.CreateLoad(VectorType, VectorPtr, 1082 Load->getName() + "_p_splat_one"); 1083 1084 if (!Aligned) 1085 ScalarLoad->setAlignment(Align(8)); 1086 1087 Constant *SplatVector = Constant::getNullValue( 1088 FixedVectorType::get(Builder.getInt32Ty(), getVectorWidth())); 1089 1090 Value *VectorLoad = Builder.CreateShuffleVector( 1091 ScalarLoad, ScalarLoad, SplatVector, Load->getName() + "_p_splat"); 1092 return VectorLoad; 1093 } 1094 1095 Value *VectorBlockGenerator::generateUnknownStrideLoad( 1096 ScopStmt &Stmt, LoadInst *Load, VectorValueMapT &ScalarMaps, 1097 __isl_keep isl_id_to_ast_expr *NewAccesses) { 1098 int VectorWidth = getVectorWidth(); 1099 Type *ElemTy = Load->getType(); 1100 auto *FVTy = FixedVectorType::get(ElemTy, VectorWidth); 1101 1102 Value *Vector = UndefValue::get(FVTy); 1103 1104 for (int i = 0; i < VectorWidth; i++) { 1105 Value *NewPointer = generateLocationAccessed(Stmt, Load, ScalarMaps[i], 1106 VLTS[i], NewAccesses); 1107 Value *ScalarLoad = 1108 Builder.CreateLoad(ElemTy, NewPointer, Load->getName() + "_p_scalar_"); 1109 Vector = Builder.CreateInsertElement( 1110 Vector, ScalarLoad, Builder.getInt32(i), Load->getName() + "_p_vec_"); 1111 } 1112 1113 return Vector; 1114 } 1115 1116 void VectorBlockGenerator::generateLoad( 1117 ScopStmt &Stmt, LoadInst *Load, ValueMapT &VectorMap, 1118 VectorValueMapT &ScalarMaps, __isl_keep isl_id_to_ast_expr *NewAccesses) { 1119 if (Value *PreloadLoad = GlobalMap.lookup(Load)) { 1120 VectorMap[Load] = Builder.CreateVectorSplat(getVectorWidth(), PreloadLoad, 1121 Load->getName() + "_p"); 1122 return; 1123 } 1124 1125 if (!VectorType::isValidElementType(Load->getType())) { 1126 for (int i = 0; i < getVectorWidth(); i++) 1127 ScalarMaps[i][Load] = 1128 generateArrayLoad(Stmt, Load, ScalarMaps[i], VLTS[i], NewAccesses); 1129 return; 1130 } 1131 1132 const MemoryAccess &Access = Stmt.getArrayAccessFor(Load); 1133 1134 // Make sure we have scalar values available to access the pointer to 1135 // the data location. 1136 extractScalarValues(Load, VectorMap, ScalarMaps); 1137 1138 Value *NewLoad; 1139 if (Access.isStrideZero(isl::manage_copy(Schedule))) 1140 NewLoad = generateStrideZeroLoad(Stmt, Load, ScalarMaps[0], NewAccesses); 1141 else if (Access.isStrideOne(isl::manage_copy(Schedule))) 1142 NewLoad = generateStrideOneLoad(Stmt, Load, ScalarMaps, NewAccesses); 1143 else if (Access.isStrideX(isl::manage_copy(Schedule), -1)) 1144 NewLoad = generateStrideOneLoad(Stmt, Load, ScalarMaps, NewAccesses, true); 1145 else 1146 NewLoad = generateUnknownStrideLoad(Stmt, Load, ScalarMaps, NewAccesses); 1147 1148 VectorMap[Load] = NewLoad; 1149 } 1150 1151 void VectorBlockGenerator::copyUnaryInst(ScopStmt &Stmt, UnaryInstruction *Inst, 1152 ValueMapT &VectorMap, 1153 VectorValueMapT &ScalarMaps) { 1154 int VectorWidth = getVectorWidth(); 1155 Value *NewOperand = getVectorValue(Stmt, Inst->getOperand(0), VectorMap, 1156 ScalarMaps, getLoopForStmt(Stmt)); 1157 1158 assert(isa<CastInst>(Inst) && "Can not generate vector code for instruction"); 1159 1160 const CastInst *Cast = dyn_cast<CastInst>(Inst); 1161 auto *DestType = FixedVectorType::get(Inst->getType(), VectorWidth); 1162 VectorMap[Inst] = Builder.CreateCast(Cast->getOpcode(), NewOperand, DestType); 1163 } 1164 1165 void VectorBlockGenerator::copyBinaryInst(ScopStmt &Stmt, BinaryOperator *Inst, 1166 ValueMapT &VectorMap, 1167 VectorValueMapT &ScalarMaps) { 1168 Loop *L = getLoopForStmt(Stmt); 1169 Value *OpZero = Inst->getOperand(0); 1170 Value *OpOne = Inst->getOperand(1); 1171 1172 Value *NewOpZero, *NewOpOne; 1173 NewOpZero = getVectorValue(Stmt, OpZero, VectorMap, ScalarMaps, L); 1174 NewOpOne = getVectorValue(Stmt, OpOne, VectorMap, ScalarMaps, L); 1175 1176 Value *NewInst = Builder.CreateBinOp(Inst->getOpcode(), NewOpZero, NewOpOne, 1177 Inst->getName() + "p_vec"); 1178 VectorMap[Inst] = NewInst; 1179 } 1180 1181 void VectorBlockGenerator::copyStore( 1182 ScopStmt &Stmt, StoreInst *Store, ValueMapT &VectorMap, 1183 VectorValueMapT &ScalarMaps, __isl_keep isl_id_to_ast_expr *NewAccesses) { 1184 const MemoryAccess &Access = Stmt.getArrayAccessFor(Store); 1185 1186 Value *Vector = getVectorValue(Stmt, Store->getValueOperand(), VectorMap, 1187 ScalarMaps, getLoopForStmt(Stmt)); 1188 1189 // Make sure we have scalar values available to access the pointer to 1190 // the data location. 1191 extractScalarValues(Store, VectorMap, ScalarMaps); 1192 1193 if (Access.isStrideOne(isl::manage_copy(Schedule))) { 1194 Type *VectorType = FixedVectorType::get(Store->getValueOperand()->getType(), 1195 getVectorWidth()); 1196 Type *VectorPtrType = 1197 PointerType::get(VectorType, Store->getPointerAddressSpace()); 1198 Value *NewPointer = generateLocationAccessed(Stmt, Store, ScalarMaps[0], 1199 VLTS[0], NewAccesses); 1200 1201 Value *VectorPtr = 1202 Builder.CreateBitCast(NewPointer, VectorPtrType, "vector_ptr"); 1203 StoreInst *Store = Builder.CreateStore(Vector, VectorPtr); 1204 1205 if (!Aligned) 1206 Store->setAlignment(Align(8)); 1207 } else { 1208 for (unsigned i = 0; i < ScalarMaps.size(); i++) { 1209 Value *Scalar = Builder.CreateExtractElement(Vector, Builder.getInt32(i)); 1210 Value *NewPointer = generateLocationAccessed(Stmt, Store, ScalarMaps[i], 1211 VLTS[i], NewAccesses); 1212 Builder.CreateStore(Scalar, NewPointer); 1213 } 1214 } 1215 } 1216 1217 bool VectorBlockGenerator::hasVectorOperands(const Instruction *Inst, 1218 ValueMapT &VectorMap) { 1219 for (Value *Operand : Inst->operands()) 1220 if (VectorMap.count(Operand)) 1221 return true; 1222 return false; 1223 } 1224 1225 bool VectorBlockGenerator::extractScalarValues(const Instruction *Inst, 1226 ValueMapT &VectorMap, 1227 VectorValueMapT &ScalarMaps) { 1228 bool HasVectorOperand = false; 1229 int VectorWidth = getVectorWidth(); 1230 1231 for (Value *Operand : Inst->operands()) { 1232 ValueMapT::iterator VecOp = VectorMap.find(Operand); 1233 1234 if (VecOp == VectorMap.end()) 1235 continue; 1236 1237 HasVectorOperand = true; 1238 Value *NewVector = VecOp->second; 1239 1240 for (int i = 0; i < VectorWidth; ++i) { 1241 ValueMapT &SM = ScalarMaps[i]; 1242 1243 // If there is one scalar extracted, all scalar elements should have 1244 // already been extracted by the code here. So no need to check for the 1245 // existence of all of them. 1246 if (SM.count(Operand)) 1247 break; 1248 1249 SM[Operand] = 1250 Builder.CreateExtractElement(NewVector, Builder.getInt32(i)); 1251 } 1252 } 1253 1254 return HasVectorOperand; 1255 } 1256 1257 void VectorBlockGenerator::copyInstScalarized( 1258 ScopStmt &Stmt, Instruction *Inst, ValueMapT &VectorMap, 1259 VectorValueMapT &ScalarMaps, __isl_keep isl_id_to_ast_expr *NewAccesses) { 1260 bool HasVectorOperand; 1261 int VectorWidth = getVectorWidth(); 1262 1263 HasVectorOperand = extractScalarValues(Inst, VectorMap, ScalarMaps); 1264 1265 for (int VectorLane = 0; VectorLane < getVectorWidth(); VectorLane++) 1266 BlockGenerator::copyInstruction(Stmt, Inst, ScalarMaps[VectorLane], 1267 VLTS[VectorLane], NewAccesses); 1268 1269 if (!VectorType::isValidElementType(Inst->getType()) || !HasVectorOperand) 1270 return; 1271 1272 // Make the result available as vector value. 1273 auto *FVTy = FixedVectorType::get(Inst->getType(), VectorWidth); 1274 Value *Vector = UndefValue::get(FVTy); 1275 1276 for (int i = 0; i < VectorWidth; i++) 1277 Vector = Builder.CreateInsertElement(Vector, ScalarMaps[i][Inst], 1278 Builder.getInt32(i)); 1279 1280 VectorMap[Inst] = Vector; 1281 } 1282 1283 int VectorBlockGenerator::getVectorWidth() { return VLTS.size(); } 1284 1285 void VectorBlockGenerator::copyInstruction( 1286 ScopStmt &Stmt, Instruction *Inst, ValueMapT &VectorMap, 1287 VectorValueMapT &ScalarMaps, __isl_keep isl_id_to_ast_expr *NewAccesses) { 1288 // Terminator instructions control the control flow. They are explicitly 1289 // expressed in the clast and do not need to be copied. 1290 if (Inst->isTerminator()) 1291 return; 1292 1293 if (canSyntheziseInStmt(Stmt, Inst)) 1294 return; 1295 1296 if (auto *Load = dyn_cast<LoadInst>(Inst)) { 1297 generateLoad(Stmt, Load, VectorMap, ScalarMaps, NewAccesses); 1298 return; 1299 } 1300 1301 if (hasVectorOperands(Inst, VectorMap)) { 1302 if (auto *Store = dyn_cast<StoreInst>(Inst)) { 1303 // Identified as redundant by -polly-simplify. 1304 if (!Stmt.getArrayAccessOrNULLFor(Store)) 1305 return; 1306 1307 copyStore(Stmt, Store, VectorMap, ScalarMaps, NewAccesses); 1308 return; 1309 } 1310 1311 if (auto *Unary = dyn_cast<UnaryInstruction>(Inst)) { 1312 copyUnaryInst(Stmt, Unary, VectorMap, ScalarMaps); 1313 return; 1314 } 1315 1316 if (auto *Binary = dyn_cast<BinaryOperator>(Inst)) { 1317 copyBinaryInst(Stmt, Binary, VectorMap, ScalarMaps); 1318 return; 1319 } 1320 1321 // Fallthrough: We generate scalar instructions, if we don't know how to 1322 // generate vector code. 1323 } 1324 1325 copyInstScalarized(Stmt, Inst, VectorMap, ScalarMaps, NewAccesses); 1326 } 1327 1328 void VectorBlockGenerator::generateScalarVectorLoads( 1329 ScopStmt &Stmt, ValueMapT &VectorBlockMap) { 1330 for (MemoryAccess *MA : Stmt) { 1331 if (MA->isArrayKind() || MA->isWrite()) 1332 continue; 1333 1334 auto *Address = getOrCreateAlloca(*MA); 1335 Type *VectorType = FixedVectorType::get(MA->getElementType(), 1); 1336 Type *VectorPtrType = PointerType::get( 1337 VectorType, Address->getType()->getPointerAddressSpace()); 1338 Value *VectorPtr = Builder.CreateBitCast(Address, VectorPtrType, 1339 Address->getName() + "_p_vec_p"); 1340 auto *Val = Builder.CreateLoad(VectorType, VectorPtr, 1341 Address->getName() + ".reload"); 1342 Constant *SplatVector = Constant::getNullValue( 1343 FixedVectorType::get(Builder.getInt32Ty(), getVectorWidth())); 1344 1345 Value *VectorVal = Builder.CreateShuffleVector( 1346 Val, Val, SplatVector, Address->getName() + "_p_splat"); 1347 VectorBlockMap[MA->getAccessValue()] = VectorVal; 1348 } 1349 } 1350 1351 void VectorBlockGenerator::verifyNoScalarStores(ScopStmt &Stmt) { 1352 for (MemoryAccess *MA : Stmt) { 1353 if (MA->isArrayKind() || MA->isRead()) 1354 continue; 1355 1356 llvm_unreachable("Scalar stores not expected in vector loop"); 1357 } 1358 } 1359 1360 void VectorBlockGenerator::copyStmt( 1361 ScopStmt &Stmt, __isl_keep isl_id_to_ast_expr *NewAccesses) { 1362 assert(Stmt.isBlockStmt() && 1363 "TODO: Only block statements can be copied by the vector block " 1364 "generator"); 1365 1366 BasicBlock *BB = Stmt.getBasicBlock(); 1367 BasicBlock *CopyBB = SplitBlock(Builder.GetInsertBlock(), 1368 &*Builder.GetInsertPoint(), &DT, &LI); 1369 CopyBB->setName("polly.stmt." + BB->getName()); 1370 Builder.SetInsertPoint(&CopyBB->front()); 1371 1372 // Create two maps that store the mapping from the original instructions of 1373 // the old basic block to their copies in the new basic block. Those maps 1374 // are basic block local. 1375 // 1376 // As vector code generation is supported there is one map for scalar values 1377 // and one for vector values. 1378 // 1379 // In case we just do scalar code generation, the vectorMap is not used and 1380 // the scalarMap has just one dimension, which contains the mapping. 1381 // 1382 // In case vector code generation is done, an instruction may either appear 1383 // in the vector map once (as it is calculating >vectorwidth< values at a 1384 // time. Or (if the values are calculated using scalar operations), it 1385 // appears once in every dimension of the scalarMap. 1386 VectorValueMapT ScalarBlockMap(getVectorWidth()); 1387 ValueMapT VectorBlockMap; 1388 1389 generateScalarVectorLoads(Stmt, VectorBlockMap); 1390 1391 for (Instruction *Inst : Stmt.getInstructions()) 1392 copyInstruction(Stmt, Inst, VectorBlockMap, ScalarBlockMap, NewAccesses); 1393 1394 verifyNoScalarStores(Stmt); 1395 } 1396 1397 BasicBlock *RegionGenerator::repairDominance(BasicBlock *BB, 1398 BasicBlock *BBCopy) { 1399 1400 BasicBlock *BBIDom = DT.getNode(BB)->getIDom()->getBlock(); 1401 BasicBlock *BBCopyIDom = EndBlockMap.lookup(BBIDom); 1402 1403 if (BBCopyIDom) 1404 DT.changeImmediateDominator(BBCopy, BBCopyIDom); 1405 1406 return StartBlockMap.lookup(BBIDom); 1407 } 1408 1409 // This is to determine whether an llvm::Value (defined in @p BB) is usable when 1410 // leaving a subregion. The straight-forward DT.dominates(BB, R->getExitBlock()) 1411 // does not work in cases where the exit block has edges from outside the 1412 // region. In that case the llvm::Value would never be usable in in the exit 1413 // block. The RegionGenerator however creates an new exit block ('ExitBBCopy') 1414 // for the subregion's exiting edges only. We need to determine whether an 1415 // llvm::Value is usable in there. We do this by checking whether it dominates 1416 // all exiting blocks individually. 1417 static bool isDominatingSubregionExit(const DominatorTree &DT, Region *R, 1418 BasicBlock *BB) { 1419 for (auto ExitingBB : predecessors(R->getExit())) { 1420 // Check for non-subregion incoming edges. 1421 if (!R->contains(ExitingBB)) 1422 continue; 1423 1424 if (!DT.dominates(BB, ExitingBB)) 1425 return false; 1426 } 1427 1428 return true; 1429 } 1430 1431 // Find the direct dominator of the subregion's exit block if the subregion was 1432 // simplified. 1433 static BasicBlock *findExitDominator(DominatorTree &DT, Region *R) { 1434 BasicBlock *Common = nullptr; 1435 for (auto ExitingBB : predecessors(R->getExit())) { 1436 // Check for non-subregion incoming edges. 1437 if (!R->contains(ExitingBB)) 1438 continue; 1439 1440 // First exiting edge. 1441 if (!Common) { 1442 Common = ExitingBB; 1443 continue; 1444 } 1445 1446 Common = DT.findNearestCommonDominator(Common, ExitingBB); 1447 } 1448 1449 assert(Common && R->contains(Common)); 1450 return Common; 1451 } 1452 1453 void RegionGenerator::copyStmt(ScopStmt &Stmt, LoopToScevMapT <S, 1454 __isl_keep isl_id_to_ast_expr *IdToAstExp) { 1455 assert(Stmt.isRegionStmt() && 1456 "Only region statements can be copied by the region generator"); 1457 1458 // Forget all old mappings. 1459 StartBlockMap.clear(); 1460 EndBlockMap.clear(); 1461 RegionMaps.clear(); 1462 IncompletePHINodeMap.clear(); 1463 1464 // Collection of all values related to this subregion. 1465 ValueMapT ValueMap; 1466 1467 // The region represented by the statement. 1468 Region *R = Stmt.getRegion(); 1469 1470 // Create a dedicated entry for the region where we can reload all demoted 1471 // inputs. 1472 BasicBlock *EntryBB = R->getEntry(); 1473 BasicBlock *EntryBBCopy = SplitBlock(Builder.GetInsertBlock(), 1474 &*Builder.GetInsertPoint(), &DT, &LI); 1475 EntryBBCopy->setName("polly.stmt." + EntryBB->getName() + ".entry"); 1476 Builder.SetInsertPoint(&EntryBBCopy->front()); 1477 1478 ValueMapT &EntryBBMap = RegionMaps[EntryBBCopy]; 1479 generateScalarLoads(Stmt, LTS, EntryBBMap, IdToAstExp); 1480 generateBeginStmtTrace(Stmt, LTS, EntryBBMap); 1481 1482 for (auto PI = pred_begin(EntryBB), PE = pred_end(EntryBB); PI != PE; ++PI) 1483 if (!R->contains(*PI)) { 1484 StartBlockMap[*PI] = EntryBBCopy; 1485 EndBlockMap[*PI] = EntryBBCopy; 1486 } 1487 1488 // Iterate over all blocks in the region in a breadth-first search. 1489 std::deque<BasicBlock *> Blocks; 1490 SmallSetVector<BasicBlock *, 8> SeenBlocks; 1491 Blocks.push_back(EntryBB); 1492 SeenBlocks.insert(EntryBB); 1493 1494 while (!Blocks.empty()) { 1495 BasicBlock *BB = Blocks.front(); 1496 Blocks.pop_front(); 1497 1498 // First split the block and update dominance information. 1499 BasicBlock *BBCopy = splitBB(BB); 1500 BasicBlock *BBCopyIDom = repairDominance(BB, BBCopy); 1501 1502 // Get the mapping for this block and initialize it with either the scalar 1503 // loads from the generated entering block (which dominates all blocks of 1504 // this subregion) or the maps of the immediate dominator, if part of the 1505 // subregion. The latter necessarily includes the former. 1506 ValueMapT *InitBBMap; 1507 if (BBCopyIDom) { 1508 assert(RegionMaps.count(BBCopyIDom)); 1509 InitBBMap = &RegionMaps[BBCopyIDom]; 1510 } else 1511 InitBBMap = &EntryBBMap; 1512 auto Inserted = RegionMaps.insert(std::make_pair(BBCopy, *InitBBMap)); 1513 ValueMapT &RegionMap = Inserted.first->second; 1514 1515 // Copy the block with the BlockGenerator. 1516 Builder.SetInsertPoint(&BBCopy->front()); 1517 copyBB(Stmt, BB, BBCopy, RegionMap, LTS, IdToAstExp); 1518 1519 // In order to remap PHI nodes we store also basic block mappings. 1520 StartBlockMap[BB] = BBCopy; 1521 EndBlockMap[BB] = Builder.GetInsertBlock(); 1522 1523 // Add values to incomplete PHI nodes waiting for this block to be copied. 1524 for (const PHINodePairTy &PHINodePair : IncompletePHINodeMap[BB]) 1525 addOperandToPHI(Stmt, PHINodePair.first, PHINodePair.second, BB, LTS); 1526 IncompletePHINodeMap[BB].clear(); 1527 1528 // And continue with new successors inside the region. 1529 for (auto SI = succ_begin(BB), SE = succ_end(BB); SI != SE; SI++) 1530 if (R->contains(*SI) && SeenBlocks.insert(*SI)) 1531 Blocks.push_back(*SI); 1532 1533 // Remember value in case it is visible after this subregion. 1534 if (isDominatingSubregionExit(DT, R, BB)) 1535 ValueMap.insert(RegionMap.begin(), RegionMap.end()); 1536 } 1537 1538 // Now create a new dedicated region exit block and add it to the region map. 1539 BasicBlock *ExitBBCopy = SplitBlock(Builder.GetInsertBlock(), 1540 &*Builder.GetInsertPoint(), &DT, &LI); 1541 ExitBBCopy->setName("polly.stmt." + R->getExit()->getName() + ".exit"); 1542 StartBlockMap[R->getExit()] = ExitBBCopy; 1543 EndBlockMap[R->getExit()] = ExitBBCopy; 1544 1545 BasicBlock *ExitDomBBCopy = EndBlockMap.lookup(findExitDominator(DT, R)); 1546 assert(ExitDomBBCopy && 1547 "Common exit dominator must be within region; at least the entry node " 1548 "must match"); 1549 DT.changeImmediateDominator(ExitBBCopy, ExitDomBBCopy); 1550 1551 // As the block generator doesn't handle control flow we need to add the 1552 // region control flow by hand after all blocks have been copied. 1553 for (BasicBlock *BB : SeenBlocks) { 1554 1555 BasicBlock *BBCopyStart = StartBlockMap[BB]; 1556 BasicBlock *BBCopyEnd = EndBlockMap[BB]; 1557 Instruction *TI = BB->getTerminator(); 1558 if (isa<UnreachableInst>(TI)) { 1559 while (!BBCopyEnd->empty()) 1560 BBCopyEnd->begin()->eraseFromParent(); 1561 new UnreachableInst(BBCopyEnd->getContext(), BBCopyEnd); 1562 continue; 1563 } 1564 1565 Instruction *BICopy = BBCopyEnd->getTerminator(); 1566 1567 ValueMapT &RegionMap = RegionMaps[BBCopyStart]; 1568 RegionMap.insert(StartBlockMap.begin(), StartBlockMap.end()); 1569 1570 Builder.SetInsertPoint(BICopy); 1571 copyInstScalar(Stmt, TI, RegionMap, LTS); 1572 BICopy->eraseFromParent(); 1573 } 1574 1575 // Add counting PHI nodes to all loops in the region that can be used as 1576 // replacement for SCEVs referring to the old loop. 1577 for (BasicBlock *BB : SeenBlocks) { 1578 Loop *L = LI.getLoopFor(BB); 1579 if (L == nullptr || L->getHeader() != BB || !R->contains(L)) 1580 continue; 1581 1582 BasicBlock *BBCopy = StartBlockMap[BB]; 1583 Value *NullVal = Builder.getInt32(0); 1584 PHINode *LoopPHI = 1585 PHINode::Create(Builder.getInt32Ty(), 2, "polly.subregion.iv"); 1586 Instruction *LoopPHIInc = BinaryOperator::CreateAdd( 1587 LoopPHI, Builder.getInt32(1), "polly.subregion.iv.inc"); 1588 LoopPHI->insertBefore(&BBCopy->front()); 1589 LoopPHIInc->insertBefore(BBCopy->getTerminator()); 1590 1591 for (auto *PredBB : predecessors(BB)) { 1592 if (!R->contains(PredBB)) 1593 continue; 1594 if (L->contains(PredBB)) 1595 LoopPHI->addIncoming(LoopPHIInc, EndBlockMap[PredBB]); 1596 else 1597 LoopPHI->addIncoming(NullVal, EndBlockMap[PredBB]); 1598 } 1599 1600 for (auto *PredBBCopy : predecessors(BBCopy)) 1601 if (LoopPHI->getBasicBlockIndex(PredBBCopy) < 0) 1602 LoopPHI->addIncoming(NullVal, PredBBCopy); 1603 1604 LTS[L] = SE.getUnknown(LoopPHI); 1605 } 1606 1607 // Continue generating code in the exit block. 1608 Builder.SetInsertPoint(&*ExitBBCopy->getFirstInsertionPt()); 1609 1610 // Write values visible to other statements. 1611 generateScalarStores(Stmt, LTS, ValueMap, IdToAstExp); 1612 StartBlockMap.clear(); 1613 EndBlockMap.clear(); 1614 RegionMaps.clear(); 1615 IncompletePHINodeMap.clear(); 1616 } 1617 1618 PHINode *RegionGenerator::buildExitPHI(MemoryAccess *MA, LoopToScevMapT <S, 1619 ValueMapT &BBMap, Loop *L) { 1620 ScopStmt *Stmt = MA->getStatement(); 1621 Region *SubR = Stmt->getRegion(); 1622 auto Incoming = MA->getIncoming(); 1623 1624 PollyIRBuilder::InsertPointGuard IPGuard(Builder); 1625 PHINode *OrigPHI = cast<PHINode>(MA->getAccessInstruction()); 1626 BasicBlock *NewSubregionExit = Builder.GetInsertBlock(); 1627 1628 // This can happen if the subregion is simplified after the ScopStmts 1629 // have been created; simplification happens as part of CodeGeneration. 1630 if (OrigPHI->getParent() != SubR->getExit()) { 1631 BasicBlock *FormerExit = SubR->getExitingBlock(); 1632 if (FormerExit) 1633 NewSubregionExit = StartBlockMap.lookup(FormerExit); 1634 } 1635 1636 PHINode *NewPHI = PHINode::Create(OrigPHI->getType(), Incoming.size(), 1637 "polly." + OrigPHI->getName(), 1638 NewSubregionExit->getFirstNonPHI()); 1639 1640 // Add the incoming values to the PHI. 1641 for (auto &Pair : Incoming) { 1642 BasicBlock *OrigIncomingBlock = Pair.first; 1643 BasicBlock *NewIncomingBlockStart = StartBlockMap.lookup(OrigIncomingBlock); 1644 BasicBlock *NewIncomingBlockEnd = EndBlockMap.lookup(OrigIncomingBlock); 1645 Builder.SetInsertPoint(NewIncomingBlockEnd->getTerminator()); 1646 assert(RegionMaps.count(NewIncomingBlockStart)); 1647 assert(RegionMaps.count(NewIncomingBlockEnd)); 1648 ValueMapT *LocalBBMap = &RegionMaps[NewIncomingBlockStart]; 1649 1650 Value *OrigIncomingValue = Pair.second; 1651 Value *NewIncomingValue = 1652 getNewValue(*Stmt, OrigIncomingValue, *LocalBBMap, LTS, L); 1653 NewPHI->addIncoming(NewIncomingValue, NewIncomingBlockEnd); 1654 } 1655 1656 return NewPHI; 1657 } 1658 1659 Value *RegionGenerator::getExitScalar(MemoryAccess *MA, LoopToScevMapT <S, 1660 ValueMapT &BBMap) { 1661 ScopStmt *Stmt = MA->getStatement(); 1662 1663 // TODO: Add some test cases that ensure this is really the right choice. 1664 Loop *L = LI.getLoopFor(Stmt->getRegion()->getExit()); 1665 1666 if (MA->isAnyPHIKind()) { 1667 auto Incoming = MA->getIncoming(); 1668 assert(!Incoming.empty() && 1669 "PHI WRITEs must have originate from at least one incoming block"); 1670 1671 // If there is only one incoming value, we do not need to create a PHI. 1672 if (Incoming.size() == 1) { 1673 Value *OldVal = Incoming[0].second; 1674 return getNewValue(*Stmt, OldVal, BBMap, LTS, L); 1675 } 1676 1677 return buildExitPHI(MA, LTS, BBMap, L); 1678 } 1679 1680 // MemoryKind::Value accesses leaving the subregion must dominate the exit 1681 // block; just pass the copied value. 1682 Value *OldVal = MA->getAccessValue(); 1683 return getNewValue(*Stmt, OldVal, BBMap, LTS, L); 1684 } 1685 1686 void RegionGenerator::generateScalarStores( 1687 ScopStmt &Stmt, LoopToScevMapT <S, ValueMapT &BBMap, 1688 __isl_keep isl_id_to_ast_expr *NewAccesses) { 1689 assert(Stmt.getRegion() && 1690 "Block statements need to use the generateScalarStores() " 1691 "function in the BlockGenerator"); 1692 1693 // Get the exit scalar values before generating the writes. 1694 // This is necessary because RegionGenerator::getExitScalar may insert 1695 // PHINodes that depend on the region's exiting blocks. But 1696 // BlockGenerator::generateConditionalExecution may insert a new basic block 1697 // such that the current basic block is not a direct successor of the exiting 1698 // blocks anymore. Hence, build the PHINodes while the current block is still 1699 // the direct successor. 1700 SmallDenseMap<MemoryAccess *, Value *> NewExitScalars; 1701 for (MemoryAccess *MA : Stmt) { 1702 if (MA->isOriginalArrayKind() || MA->isRead()) 1703 continue; 1704 1705 Value *NewVal = getExitScalar(MA, LTS, BBMap); 1706 NewExitScalars[MA] = NewVal; 1707 } 1708 1709 for (MemoryAccess *MA : Stmt) { 1710 if (MA->isOriginalArrayKind() || MA->isRead()) 1711 continue; 1712 1713 isl::set AccDom = MA->getAccessRelation().domain(); 1714 std::string Subject = MA->getId().get_name(); 1715 generateConditionalExecution( 1716 Stmt, AccDom, Subject.c_str(), [&, this, MA]() { 1717 Value *NewVal = NewExitScalars.lookup(MA); 1718 assert(NewVal && "The exit scalar must be determined before"); 1719 Value *Address = getImplicitAddress(*MA, getLoopForStmt(Stmt), LTS, 1720 BBMap, NewAccesses); 1721 assert((!isa<Instruction>(NewVal) || 1722 DT.dominates(cast<Instruction>(NewVal)->getParent(), 1723 Builder.GetInsertBlock())) && 1724 "Domination violation"); 1725 assert((!isa<Instruction>(Address) || 1726 DT.dominates(cast<Instruction>(Address)->getParent(), 1727 Builder.GetInsertBlock())) && 1728 "Domination violation"); 1729 Builder.CreateStore(NewVal, Address); 1730 }); 1731 } 1732 } 1733 1734 void RegionGenerator::addOperandToPHI(ScopStmt &Stmt, PHINode *PHI, 1735 PHINode *PHICopy, BasicBlock *IncomingBB, 1736 LoopToScevMapT <S) { 1737 // If the incoming block was not yet copied mark this PHI as incomplete. 1738 // Once the block will be copied the incoming value will be added. 1739 BasicBlock *BBCopyStart = StartBlockMap[IncomingBB]; 1740 BasicBlock *BBCopyEnd = EndBlockMap[IncomingBB]; 1741 if (!BBCopyStart) { 1742 assert(!BBCopyEnd); 1743 assert(Stmt.represents(IncomingBB) && 1744 "Bad incoming block for PHI in non-affine region"); 1745 IncompletePHINodeMap[IncomingBB].push_back(std::make_pair(PHI, PHICopy)); 1746 return; 1747 } 1748 1749 assert(RegionMaps.count(BBCopyStart) && 1750 "Incoming PHI block did not have a BBMap"); 1751 ValueMapT &BBCopyMap = RegionMaps[BBCopyStart]; 1752 1753 Value *OpCopy = nullptr; 1754 1755 if (Stmt.represents(IncomingBB)) { 1756 Value *Op = PHI->getIncomingValueForBlock(IncomingBB); 1757 1758 // If the current insert block is different from the PHIs incoming block 1759 // change it, otherwise do not. 1760 auto IP = Builder.GetInsertPoint(); 1761 if (IP->getParent() != BBCopyEnd) 1762 Builder.SetInsertPoint(BBCopyEnd->getTerminator()); 1763 OpCopy = getNewValue(Stmt, Op, BBCopyMap, LTS, getLoopForStmt(Stmt)); 1764 if (IP->getParent() != BBCopyEnd) 1765 Builder.SetInsertPoint(&*IP); 1766 } else { 1767 // All edges from outside the non-affine region become a single edge 1768 // in the new copy of the non-affine region. Make sure to only add the 1769 // corresponding edge the first time we encounter a basic block from 1770 // outside the non-affine region. 1771 if (PHICopy->getBasicBlockIndex(BBCopyEnd) >= 0) 1772 return; 1773 1774 // Get the reloaded value. 1775 OpCopy = getNewValue(Stmt, PHI, BBCopyMap, LTS, getLoopForStmt(Stmt)); 1776 } 1777 1778 assert(OpCopy && "Incoming PHI value was not copied properly"); 1779 PHICopy->addIncoming(OpCopy, BBCopyEnd); 1780 } 1781 1782 void RegionGenerator::copyPHIInstruction(ScopStmt &Stmt, PHINode *PHI, 1783 ValueMapT &BBMap, 1784 LoopToScevMapT <S) { 1785 unsigned NumIncoming = PHI->getNumIncomingValues(); 1786 PHINode *PHICopy = 1787 Builder.CreatePHI(PHI->getType(), NumIncoming, "polly." + PHI->getName()); 1788 PHICopy->moveBefore(PHICopy->getParent()->getFirstNonPHI()); 1789 BBMap[PHI] = PHICopy; 1790 1791 for (BasicBlock *IncomingBB : PHI->blocks()) 1792 addOperandToPHI(Stmt, PHI, PHICopy, IncomingBB, LTS); 1793 } 1794