1 //===--- BlockGenerators.cpp - Generate code for statements -----*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the BlockGenerator and VectorBlockGenerator classes, 11 // which generate sequential code and vectorized code for a polyhedral 12 // statement, respectively. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "polly/CodeGen/BlockGenerators.h" 17 #include "polly/CodeGen/CodeGeneration.h" 18 #include "polly/CodeGen/IslExprBuilder.h" 19 #include "polly/CodeGen/RuntimeDebugBuilder.h" 20 #include "polly/Options.h" 21 #include "polly/ScopInfo.h" 22 #include "polly/Support/GICHelper.h" 23 #include "polly/Support/SCEVValidator.h" 24 #include "polly/Support/ScopHelper.h" 25 #include "llvm/Analysis/LoopInfo.h" 26 #include "llvm/Analysis/RegionInfo.h" 27 #include "llvm/Analysis/ScalarEvolution.h" 28 #include "llvm/IR/IntrinsicInst.h" 29 #include "llvm/IR/Module.h" 30 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 31 #include "llvm/Transforms/Utils/Local.h" 32 #include "isl/aff.h" 33 #include "isl/ast.h" 34 #include "isl/ast_build.h" 35 #include "isl/set.h" 36 #include <deque> 37 38 using namespace llvm; 39 using namespace polly; 40 41 static cl::opt<bool> Aligned("enable-polly-aligned", 42 cl::desc("Assumed aligned memory accesses."), 43 cl::Hidden, cl::init(false), cl::ZeroOrMore, 44 cl::cat(PollyCategory)); 45 46 static cl::opt<bool> DebugPrinting( 47 "polly-codegen-add-debug-printing", 48 cl::desc("Add printf calls that show the values loaded/stored."), 49 cl::Hidden, cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory)); 50 51 BlockGenerator::BlockGenerator( 52 PollyIRBuilder &B, LoopInfo &LI, ScalarEvolution &SE, DominatorTree &DT, 53 ScalarAllocaMapTy &ScalarMap, ScalarAllocaMapTy &PHIOpMap, 54 EscapeUsersAllocaMapTy &EscapeMap, ValueMapT &GlobalMap, 55 IslExprBuilder *ExprBuilder, BasicBlock *StartBlock) 56 : Builder(B), LI(LI), SE(SE), ExprBuilder(ExprBuilder), DT(DT), 57 EntryBB(nullptr), PHIOpMap(PHIOpMap), ScalarMap(ScalarMap), 58 EscapeMap(EscapeMap), GlobalMap(GlobalMap), StartBlock(StartBlock) {} 59 60 Value *BlockGenerator::trySynthesizeNewValue(ScopStmt &Stmt, Value *Old, 61 ValueMapT &BBMap, 62 LoopToScevMapT <S, 63 Loop *L) const { 64 if (!SE.isSCEVable(Old->getType())) 65 return nullptr; 66 67 const SCEV *Scev = SE.getSCEVAtScope(Old, L); 68 if (!Scev) 69 return nullptr; 70 71 if (isa<SCEVCouldNotCompute>(Scev)) 72 return nullptr; 73 74 const SCEV *NewScev = SCEVLoopAddRecRewriter::rewrite(Scev, LTS, SE); 75 ValueMapT VTV; 76 VTV.insert(BBMap.begin(), BBMap.end()); 77 VTV.insert(GlobalMap.begin(), GlobalMap.end()); 78 79 Scop &S = *Stmt.getParent(); 80 const DataLayout &DL = S.getFunction().getParent()->getDataLayout(); 81 auto IP = Builder.GetInsertPoint(); 82 83 assert(IP != Builder.GetInsertBlock()->end() && 84 "Only instructions can be insert points for SCEVExpander"); 85 Value *Expanded = 86 expandCodeFor(S, SE, DL, "polly", NewScev, Old->getType(), &*IP, &VTV, 87 StartBlock->getSinglePredecessor()); 88 89 BBMap[Old] = Expanded; 90 return Expanded; 91 } 92 93 Value *BlockGenerator::getNewValue(ScopStmt &Stmt, Value *Old, ValueMapT &BBMap, 94 LoopToScevMapT <S, Loop *L) const { 95 // Constants that do not reference any named value can always remain 96 // unchanged. Handle them early to avoid expensive map lookups. We do not take 97 // the fast-path for external constants which are referenced through globals 98 // as these may need to be rewritten when distributing code accross different 99 // LLVM modules. 100 if (isa<Constant>(Old) && !isa<GlobalValue>(Old)) 101 return Old; 102 103 // Inline asm is like a constant to us. 104 if (isa<InlineAsm>(Old)) 105 return Old; 106 107 if (Value *New = GlobalMap.lookup(Old)) { 108 if (Value *NewRemapped = GlobalMap.lookup(New)) 109 New = NewRemapped; 110 if (Old->getType()->getScalarSizeInBits() < 111 New->getType()->getScalarSizeInBits()) 112 New = Builder.CreateTruncOrBitCast(New, Old->getType()); 113 114 return New; 115 } 116 117 if (Value *New = BBMap.lookup(Old)) 118 return New; 119 120 if (Value *New = trySynthesizeNewValue(Stmt, Old, BBMap, LTS, L)) 121 return New; 122 123 // A scop-constant value defined by a global or a function parameter. 124 if (isa<GlobalValue>(Old) || isa<Argument>(Old)) 125 return Old; 126 127 // A scop-constant value defined by an instruction executed outside the scop. 128 if (const Instruction *Inst = dyn_cast<Instruction>(Old)) 129 if (!Stmt.getParent()->contains(Inst->getParent())) 130 return Old; 131 132 // The scalar dependence is neither available nor SCEVCodegenable. 133 llvm_unreachable("Unexpected scalar dependence in region!"); 134 return nullptr; 135 } 136 137 void BlockGenerator::copyInstScalar(ScopStmt &Stmt, Instruction *Inst, 138 ValueMapT &BBMap, LoopToScevMapT <S) { 139 // We do not generate debug intrinsics as we did not investigate how to 140 // copy them correctly. At the current state, they just crash the code 141 // generation as the meta-data operands are not correctly copied. 142 if (isa<DbgInfoIntrinsic>(Inst)) 143 return; 144 145 Instruction *NewInst = Inst->clone(); 146 147 // Replace old operands with the new ones. 148 for (Value *OldOperand : Inst->operands()) { 149 Value *NewOperand = 150 getNewValue(Stmt, OldOperand, BBMap, LTS, getLoopForStmt(Stmt)); 151 152 if (!NewOperand) { 153 assert(!isa<StoreInst>(NewInst) && 154 "Store instructions are always needed!"); 155 delete NewInst; 156 return; 157 } 158 159 NewInst->replaceUsesOfWith(OldOperand, NewOperand); 160 } 161 162 Builder.Insert(NewInst); 163 BBMap[Inst] = NewInst; 164 165 if (!NewInst->getType()->isVoidTy()) 166 NewInst->setName("p_" + Inst->getName()); 167 } 168 169 Value * 170 BlockGenerator::generateLocationAccessed(ScopStmt &Stmt, MemAccInst Inst, 171 ValueMapT &BBMap, LoopToScevMapT <S, 172 isl_id_to_ast_expr *NewAccesses) { 173 const MemoryAccess &MA = Stmt.getArrayAccessFor(Inst); 174 return generateLocationAccessed( 175 Stmt, getLoopForStmt(Stmt), 176 Inst.isNull() ? nullptr : Inst.getPointerOperand(), BBMap, LTS, 177 NewAccesses, MA.getId(), MA.getAccessValue()->getType()); 178 } 179 180 Value *BlockGenerator::generateLocationAccessed( 181 ScopStmt &Stmt, Loop *L, Value *Pointer, ValueMapT &BBMap, 182 LoopToScevMapT <S, isl_id_to_ast_expr *NewAccesses, __isl_take isl_id *Id, 183 Type *ExpectedType) { 184 isl_ast_expr *AccessExpr = isl_id_to_ast_expr_get(NewAccesses, Id); 185 186 if (AccessExpr) { 187 AccessExpr = isl_ast_expr_address_of(AccessExpr); 188 auto Address = ExprBuilder->create(AccessExpr); 189 190 // Cast the address of this memory access to a pointer type that has the 191 // same element type as the original access, but uses the address space of 192 // the newly generated pointer. 193 auto OldPtrTy = ExpectedType->getPointerTo(); 194 auto NewPtrTy = Address->getType(); 195 OldPtrTy = PointerType::get(OldPtrTy->getElementType(), 196 NewPtrTy->getPointerAddressSpace()); 197 198 if (OldPtrTy != NewPtrTy) 199 Address = Builder.CreateBitOrPointerCast(Address, OldPtrTy); 200 return Address; 201 } 202 assert( 203 Pointer && 204 "If expression was not generated, must use the original pointer value"); 205 return getNewValue(Stmt, Pointer, BBMap, LTS, L); 206 } 207 208 Value * 209 BlockGenerator::getImplicitAddress(MemoryAccess &Access, Loop *L, 210 LoopToScevMapT <S, ValueMapT &BBMap, 211 __isl_keep isl_id_to_ast_expr *NewAccesses) { 212 if (Access.isLatestArrayKind()) 213 return generateLocationAccessed(*Access.getStatement(), L, nullptr, BBMap, 214 LTS, NewAccesses, Access.getId(), 215 Access.getAccessValue()->getType()); 216 217 if (Access.isLatestValueKind() || Access.isLatestExitPHIKind()) 218 return getOrCreateScalarAlloca(Access.getBaseAddr()); 219 220 if (Access.isLatestPHIKind()) 221 return getOrCreatePHIAlloca(Access.getBaseAddr()); 222 223 llvm_unreachable("Unknown access type"); 224 } 225 226 Loop *BlockGenerator::getLoopForStmt(const ScopStmt &Stmt) const { 227 auto *StmtBB = Stmt.getEntryBlock(); 228 return LI.getLoopFor(StmtBB); 229 } 230 231 Value *BlockGenerator::generateArrayLoad(ScopStmt &Stmt, LoadInst *Load, 232 ValueMapT &BBMap, LoopToScevMapT <S, 233 isl_id_to_ast_expr *NewAccesses) { 234 if (Value *PreloadLoad = GlobalMap.lookup(Load)) 235 return PreloadLoad; 236 237 Value *NewPointer = 238 generateLocationAccessed(Stmt, Load, BBMap, LTS, NewAccesses); 239 Value *ScalarLoad = Builder.CreateAlignedLoad( 240 NewPointer, Load->getAlignment(), Load->getName() + "_p_scalar_"); 241 242 if (DebugPrinting) 243 RuntimeDebugBuilder::createCPUPrinter(Builder, "Load from ", NewPointer, 244 ": ", ScalarLoad, "\n"); 245 246 return ScalarLoad; 247 } 248 249 void BlockGenerator::generateArrayStore(ScopStmt &Stmt, StoreInst *Store, 250 ValueMapT &BBMap, LoopToScevMapT <S, 251 isl_id_to_ast_expr *NewAccesses) { 252 Value *NewPointer = 253 generateLocationAccessed(Stmt, Store, BBMap, LTS, NewAccesses); 254 Value *ValueOperand = getNewValue(Stmt, Store->getValueOperand(), BBMap, LTS, 255 getLoopForStmt(Stmt)); 256 257 if (DebugPrinting) 258 RuntimeDebugBuilder::createCPUPrinter(Builder, "Store to ", NewPointer, 259 ": ", ValueOperand, "\n"); 260 261 Builder.CreateAlignedStore(ValueOperand, NewPointer, Store->getAlignment()); 262 } 263 264 bool BlockGenerator::canSyntheziseInStmt(ScopStmt &Stmt, Instruction *Inst) { 265 Loop *L = getLoopForStmt(Stmt); 266 return (Stmt.isBlockStmt() || !Stmt.getRegion()->contains(L)) && 267 canSynthesize(Inst, *Stmt.getParent(), &SE, L); 268 } 269 270 void BlockGenerator::copyInstruction(ScopStmt &Stmt, Instruction *Inst, 271 ValueMapT &BBMap, LoopToScevMapT <S, 272 isl_id_to_ast_expr *NewAccesses) { 273 // Terminator instructions control the control flow. They are explicitly 274 // expressed in the clast and do not need to be copied. 275 if (Inst->isTerminator()) 276 return; 277 278 // Synthesizable statements will be generated on-demand. 279 if (canSyntheziseInStmt(Stmt, Inst)) 280 return; 281 282 if (auto *Load = dyn_cast<LoadInst>(Inst)) { 283 Value *NewLoad = generateArrayLoad(Stmt, Load, BBMap, LTS, NewAccesses); 284 // Compute NewLoad before its insertion in BBMap to make the insertion 285 // deterministic. 286 BBMap[Load] = NewLoad; 287 return; 288 } 289 290 if (auto *Store = dyn_cast<StoreInst>(Inst)) { 291 generateArrayStore(Stmt, Store, BBMap, LTS, NewAccesses); 292 return; 293 } 294 295 if (auto *PHI = dyn_cast<PHINode>(Inst)) { 296 copyPHIInstruction(Stmt, PHI, BBMap, LTS); 297 return; 298 } 299 300 // Skip some special intrinsics for which we do not adjust the semantics to 301 // the new schedule. All others are handled like every other instruction. 302 if (isIgnoredIntrinsic(Inst)) 303 return; 304 305 copyInstScalar(Stmt, Inst, BBMap, LTS); 306 } 307 308 void BlockGenerator::removeDeadInstructions(BasicBlock *BB, ValueMapT &BBMap) { 309 auto NewBB = Builder.GetInsertBlock(); 310 for (auto I = NewBB->rbegin(); I != NewBB->rend(); I++) { 311 Instruction *NewInst = &*I; 312 313 if (!isInstructionTriviallyDead(NewInst)) 314 continue; 315 316 for (auto Pair : BBMap) 317 if (Pair.second == NewInst) { 318 BBMap.erase(Pair.first); 319 } 320 321 NewInst->eraseFromParent(); 322 I = NewBB->rbegin(); 323 } 324 } 325 326 void BlockGenerator::copyStmt(ScopStmt &Stmt, LoopToScevMapT <S, 327 isl_id_to_ast_expr *NewAccesses) { 328 assert(Stmt.isBlockStmt() && 329 "Only block statements can be copied by the block generator"); 330 331 ValueMapT BBMap; 332 333 BasicBlock *BB = Stmt.getBasicBlock(); 334 copyBB(Stmt, BB, BBMap, LTS, NewAccesses); 335 removeDeadInstructions(BB, BBMap); 336 } 337 338 BasicBlock *BlockGenerator::splitBB(BasicBlock *BB) { 339 BasicBlock *CopyBB = SplitBlock(Builder.GetInsertBlock(), 340 &*Builder.GetInsertPoint(), &DT, &LI); 341 CopyBB->setName("polly.stmt." + BB->getName()); 342 return CopyBB; 343 } 344 345 BasicBlock *BlockGenerator::copyBB(ScopStmt &Stmt, BasicBlock *BB, 346 ValueMapT &BBMap, LoopToScevMapT <S, 347 isl_id_to_ast_expr *NewAccesses) { 348 BasicBlock *CopyBB = splitBB(BB); 349 Builder.SetInsertPoint(&CopyBB->front()); 350 generateScalarLoads(Stmt, LTS, BBMap, NewAccesses); 351 352 copyBB(Stmt, BB, CopyBB, BBMap, LTS, NewAccesses); 353 354 // After a basic block was copied store all scalars that escape this block in 355 // their alloca. 356 generateScalarStores(Stmt, LTS, BBMap, NewAccesses); 357 return CopyBB; 358 } 359 360 void BlockGenerator::copyBB(ScopStmt &Stmt, BasicBlock *BB, BasicBlock *CopyBB, 361 ValueMapT &BBMap, LoopToScevMapT <S, 362 isl_id_to_ast_expr *NewAccesses) { 363 EntryBB = &CopyBB->getParent()->getEntryBlock(); 364 365 for (Instruction &Inst : *BB) 366 copyInstruction(Stmt, &Inst, BBMap, LTS, NewAccesses); 367 } 368 369 Value *BlockGenerator::getOrCreateAlloca(Value *ScalarBase, 370 ScalarAllocaMapTy &Map, 371 const char *NameExt) { 372 // If no alloca was found create one and insert it in the entry block. 373 if (!Map.count(ScalarBase)) { 374 auto *Ty = ScalarBase->getType(); 375 auto NewAddr = new AllocaInst(Ty, ScalarBase->getName() + NameExt); 376 EntryBB = &Builder.GetInsertBlock()->getParent()->getEntryBlock(); 377 NewAddr->insertBefore(&*EntryBB->getFirstInsertionPt()); 378 Map[ScalarBase] = NewAddr; 379 } 380 381 auto Addr = Map[ScalarBase]; 382 383 if (auto NewAddr = GlobalMap.lookup(Addr)) 384 return NewAddr; 385 386 return Addr; 387 } 388 389 Value *BlockGenerator::getOrCreateAlloca(const MemoryAccess &Access) { 390 assert(!Access.isArrayKind() && "Trying to get alloca for array kind"); 391 392 if (Access.isPHIKind()) 393 return getOrCreatePHIAlloca(Access.getBaseAddr()); 394 else 395 return getOrCreateScalarAlloca(Access.getBaseAddr()); 396 } 397 398 Value *BlockGenerator::getOrCreateAlloca(const ScopArrayInfo *Array) { 399 assert(!Array->isArrayKind() && "Trying to get alloca for array kind"); 400 401 if (Array->isPHIKind()) 402 return getOrCreatePHIAlloca(Array->getBasePtr()); 403 else 404 return getOrCreateScalarAlloca(Array->getBasePtr()); 405 } 406 407 Value *BlockGenerator::getOrCreateScalarAlloca(Value *ScalarBase) { 408 return getOrCreateAlloca(ScalarBase, ScalarMap, ".s2a"); 409 } 410 411 Value *BlockGenerator::getOrCreatePHIAlloca(Value *ScalarBase) { 412 return getOrCreateAlloca(ScalarBase, PHIOpMap, ".phiops"); 413 } 414 415 void BlockGenerator::handleOutsideUsers(const Scop &S, Instruction *Inst) { 416 // If there are escape users we get the alloca for this instruction and put it 417 // in the EscapeMap for later finalization. Lastly, if the instruction was 418 // copied multiple times we already did this and can exit. 419 if (EscapeMap.count(Inst)) 420 return; 421 422 EscapeUserVectorTy EscapeUsers; 423 for (User *U : Inst->users()) { 424 425 // Non-instruction user will never escape. 426 Instruction *UI = dyn_cast<Instruction>(U); 427 if (!UI) 428 continue; 429 430 if (S.contains(UI)) 431 continue; 432 433 EscapeUsers.push_back(UI); 434 } 435 436 // Exit if no escape uses were found. 437 if (EscapeUsers.empty()) 438 return; 439 440 // Get or create an escape alloca for this instruction. 441 auto *ScalarAddr = getOrCreateScalarAlloca(Inst); 442 443 // Remember that this instruction has escape uses and the escape alloca. 444 EscapeMap[Inst] = std::make_pair(ScalarAddr, std::move(EscapeUsers)); 445 } 446 447 void BlockGenerator::generateScalarLoads( 448 ScopStmt &Stmt, LoopToScevMapT <S, ValueMapT &BBMap, 449 __isl_keep isl_id_to_ast_expr *NewAccesses) { 450 for (MemoryAccess *MA : Stmt) { 451 if (MA->isOriginalArrayKind() || MA->isWrite()) 452 continue; 453 454 #ifndef NDEBUG 455 auto *StmtDom = Stmt.getDomain(); 456 auto *AccDom = isl_map_domain(MA->getAccessRelation()); 457 assert(isl_set_is_subset(StmtDom, AccDom) && 458 "Scalar must be loaded in all statement instances"); 459 isl_set_free(StmtDom); 460 isl_set_free(AccDom); 461 #endif 462 463 auto *Address = 464 getImplicitAddress(*MA, getLoopForStmt(Stmt), LTS, BBMap, NewAccesses); 465 assert((!isa<Instruction>(Address) || 466 DT.dominates(cast<Instruction>(Address)->getParent(), 467 Builder.GetInsertBlock())) && 468 "Domination violation"); 469 BBMap[MA->getBaseAddr()] = 470 Builder.CreateLoad(Address, Address->getName() + ".reload"); 471 } 472 } 473 474 void BlockGenerator::generateScalarStores( 475 ScopStmt &Stmt, LoopToScevMapT <S, ValueMapT &BBMap, 476 __isl_keep isl_id_to_ast_expr *NewAccesses) { 477 Loop *L = LI.getLoopFor(Stmt.getBasicBlock()); 478 479 assert(Stmt.isBlockStmt() && "Region statements need to use the " 480 "generateScalarStores() function in the " 481 "RegionGenerator"); 482 483 for (MemoryAccess *MA : Stmt) { 484 if (MA->isOriginalArrayKind() || MA->isRead()) 485 continue; 486 487 #ifndef NDEBUG 488 auto *StmtDom = Stmt.getDomain(); 489 auto *AccDom = isl_map_domain(MA->getAccessRelation()); 490 assert(isl_set_is_subset(StmtDom, AccDom) && 491 "Scalar must be stored in all statement instances"); 492 isl_set_free(StmtDom); 493 isl_set_free(AccDom); 494 #endif 495 496 Value *Val = MA->getAccessValue(); 497 if (MA->isAnyPHIKind()) { 498 assert(MA->getIncoming().size() >= 1 && 499 "Block statements have exactly one exiting block, or multiple but " 500 "with same incoming block and value"); 501 assert(std::all_of(MA->getIncoming().begin(), MA->getIncoming().end(), 502 [&](std::pair<BasicBlock *, Value *> p) -> bool { 503 return p.first == Stmt.getBasicBlock(); 504 }) && 505 "Incoming block must be statement's block"); 506 Val = MA->getIncoming()[0].second; 507 } 508 auto Address = 509 getImplicitAddress(*MA, getLoopForStmt(Stmt), LTS, BBMap, NewAccesses); 510 511 Val = getNewValue(Stmt, Val, BBMap, LTS, L); 512 assert((!isa<Instruction>(Val) || 513 DT.dominates(cast<Instruction>(Val)->getParent(), 514 Builder.GetInsertBlock())) && 515 "Domination violation"); 516 assert((!isa<Instruction>(Address) || 517 DT.dominates(cast<Instruction>(Address)->getParent(), 518 Builder.GetInsertBlock())) && 519 "Domination violation"); 520 Builder.CreateStore(Val, Address); 521 } 522 } 523 524 void BlockGenerator::createScalarInitialization(Scop &S) { 525 BasicBlock *ExitBB = S.getExit(); 526 BasicBlock *PreEntryBB = S.getEnteringBlock(); 527 528 Builder.SetInsertPoint(&*StartBlock->begin()); 529 530 for (auto &Array : S.arrays()) { 531 if (Array->getNumberOfDimensions() != 0) 532 continue; 533 if (Array->isPHIKind()) { 534 // For PHI nodes, the only values we need to store are the ones that 535 // reach the PHI node from outside the region. In general there should 536 // only be one such incoming edge and this edge should enter through 537 // 'PreEntryBB'. 538 auto PHI = cast<PHINode>(Array->getBasePtr()); 539 540 for (auto BI = PHI->block_begin(), BE = PHI->block_end(); BI != BE; BI++) 541 if (!S.contains(*BI) && *BI != PreEntryBB) 542 llvm_unreachable("Incoming edges from outside the scop should always " 543 "come from PreEntryBB"); 544 545 int Idx = PHI->getBasicBlockIndex(PreEntryBB); 546 if (Idx < 0) 547 continue; 548 549 Value *ScalarValue = PHI->getIncomingValue(Idx); 550 551 Builder.CreateStore(ScalarValue, getOrCreatePHIAlloca(PHI)); 552 continue; 553 } 554 555 auto *Inst = dyn_cast<Instruction>(Array->getBasePtr()); 556 557 if (Inst && S.contains(Inst)) 558 continue; 559 560 // PHI nodes that are not marked as such in their SAI object are either exit 561 // PHI nodes we model as common scalars but without initialization, or 562 // incoming phi nodes that need to be initialized. Check if the first is the 563 // case for Inst and do not create and initialize memory if so. 564 if (auto *PHI = dyn_cast_or_null<PHINode>(Inst)) 565 if (!S.hasSingleExitEdge() && PHI->getBasicBlockIndex(ExitBB) >= 0) 566 continue; 567 568 Builder.CreateStore(Array->getBasePtr(), 569 getOrCreateScalarAlloca(Array->getBasePtr())); 570 } 571 } 572 573 void BlockGenerator::createScalarFinalization(Scop &S) { 574 // The exit block of the __unoptimized__ region. 575 BasicBlock *ExitBB = S.getExitingBlock(); 576 // The merge block __just after__ the region and the optimized region. 577 BasicBlock *MergeBB = S.getExit(); 578 579 // The exit block of the __optimized__ region. 580 BasicBlock *OptExitBB = *(pred_begin(MergeBB)); 581 if (OptExitBB == ExitBB) 582 OptExitBB = *(++pred_begin(MergeBB)); 583 584 Builder.SetInsertPoint(OptExitBB->getTerminator()); 585 for (const auto &EscapeMapping : EscapeMap) { 586 // Extract the escaping instruction and the escaping users as well as the 587 // alloca the instruction was demoted to. 588 Instruction *EscapeInst = EscapeMapping.first; 589 const auto &EscapeMappingValue = EscapeMapping.second; 590 const EscapeUserVectorTy &EscapeUsers = EscapeMappingValue.second; 591 Value *ScalarAddr = EscapeMappingValue.first; 592 593 // Reload the demoted instruction in the optimized version of the SCoP. 594 Value *EscapeInstReload = 595 Builder.CreateLoad(ScalarAddr, EscapeInst->getName() + ".final_reload"); 596 EscapeInstReload = 597 Builder.CreateBitOrPointerCast(EscapeInstReload, EscapeInst->getType()); 598 599 // Create the merge PHI that merges the optimized and unoptimized version. 600 PHINode *MergePHI = PHINode::Create(EscapeInst->getType(), 2, 601 EscapeInst->getName() + ".merge"); 602 MergePHI->insertBefore(&*MergeBB->getFirstInsertionPt()); 603 604 // Add the respective values to the merge PHI. 605 MergePHI->addIncoming(EscapeInstReload, OptExitBB); 606 MergePHI->addIncoming(EscapeInst, ExitBB); 607 608 // The information of scalar evolution about the escaping instruction needs 609 // to be revoked so the new merged instruction will be used. 610 if (SE.isSCEVable(EscapeInst->getType())) 611 SE.forgetValue(EscapeInst); 612 613 // Replace all uses of the demoted instruction with the merge PHI. 614 for (Instruction *EUser : EscapeUsers) 615 EUser->replaceUsesOfWith(EscapeInst, MergePHI); 616 } 617 } 618 619 void BlockGenerator::findOutsideUsers(Scop &S) { 620 for (auto &Array : S.arrays()) { 621 622 if (Array->getNumberOfDimensions() != 0) 623 continue; 624 625 if (Array->isPHIKind()) 626 continue; 627 628 auto *Inst = dyn_cast<Instruction>(Array->getBasePtr()); 629 630 if (!Inst) 631 continue; 632 633 // Scop invariant hoisting moves some of the base pointers out of the scop. 634 // We can ignore these, as the invariant load hoisting already registers the 635 // relevant outside users. 636 if (!S.contains(Inst)) 637 continue; 638 639 handleOutsideUsers(S, Inst); 640 } 641 } 642 643 void BlockGenerator::createExitPHINodeMerges(Scop &S) { 644 if (S.hasSingleExitEdge()) 645 return; 646 647 auto *ExitBB = S.getExitingBlock(); 648 auto *MergeBB = S.getExit(); 649 auto *AfterMergeBB = MergeBB->getSingleSuccessor(); 650 BasicBlock *OptExitBB = *(pred_begin(MergeBB)); 651 if (OptExitBB == ExitBB) 652 OptExitBB = *(++pred_begin(MergeBB)); 653 654 Builder.SetInsertPoint(OptExitBB->getTerminator()); 655 656 for (auto &SAI : S.arrays()) { 657 auto *Val = SAI->getBasePtr(); 658 659 // Only Value-like scalars need a merge PHI. Exit block PHIs receive either 660 // the original PHI's value or the reloaded incoming values from the 661 // generated code. An llvm::Value is merged between the original code's 662 // value or the generated one. 663 if (!SAI->isExitPHIKind()) 664 continue; 665 666 PHINode *PHI = dyn_cast<PHINode>(Val); 667 if (!PHI) 668 continue; 669 670 if (PHI->getParent() != AfterMergeBB) 671 continue; 672 673 std::string Name = PHI->getName(); 674 Value *ScalarAddr = getOrCreateScalarAlloca(PHI); 675 Value *Reload = Builder.CreateLoad(ScalarAddr, Name + ".ph.final_reload"); 676 Reload = Builder.CreateBitOrPointerCast(Reload, PHI->getType()); 677 Value *OriginalValue = PHI->getIncomingValueForBlock(MergeBB); 678 assert((!isa<Instruction>(OriginalValue) || 679 cast<Instruction>(OriginalValue)->getParent() != MergeBB) && 680 "Original value must no be one we just generated."); 681 auto *MergePHI = PHINode::Create(PHI->getType(), 2, Name + ".ph.merge"); 682 MergePHI->insertBefore(&*MergeBB->getFirstInsertionPt()); 683 MergePHI->addIncoming(Reload, OptExitBB); 684 MergePHI->addIncoming(OriginalValue, ExitBB); 685 int Idx = PHI->getBasicBlockIndex(MergeBB); 686 PHI->setIncomingValue(Idx, MergePHI); 687 } 688 } 689 690 void BlockGenerator::invalidateScalarEvolution(Scop &S) { 691 for (auto &Stmt : S) 692 if (Stmt.isCopyStmt()) 693 continue; 694 else if (Stmt.isBlockStmt()) 695 for (auto &Inst : *Stmt.getBasicBlock()) 696 SE.forgetValue(&Inst); 697 else if (Stmt.isRegionStmt()) 698 for (auto *BB : Stmt.getRegion()->blocks()) 699 for (auto &Inst : *BB) 700 SE.forgetValue(&Inst); 701 else 702 llvm_unreachable("Unexpected statement type found"); 703 } 704 705 void BlockGenerator::finalizeSCoP(Scop &S) { 706 findOutsideUsers(S); 707 createScalarInitialization(S); 708 createExitPHINodeMerges(S); 709 createScalarFinalization(S); 710 invalidateScalarEvolution(S); 711 } 712 713 VectorBlockGenerator::VectorBlockGenerator(BlockGenerator &BlockGen, 714 std::vector<LoopToScevMapT> &VLTS, 715 isl_map *Schedule) 716 : BlockGenerator(BlockGen), VLTS(VLTS), Schedule(Schedule) { 717 assert(Schedule && "No statement domain provided"); 718 } 719 720 Value *VectorBlockGenerator::getVectorValue(ScopStmt &Stmt, Value *Old, 721 ValueMapT &VectorMap, 722 VectorValueMapT &ScalarMaps, 723 Loop *L) { 724 if (Value *NewValue = VectorMap.lookup(Old)) 725 return NewValue; 726 727 int Width = getVectorWidth(); 728 729 Value *Vector = UndefValue::get(VectorType::get(Old->getType(), Width)); 730 731 for (int Lane = 0; Lane < Width; Lane++) 732 Vector = Builder.CreateInsertElement( 733 Vector, getNewValue(Stmt, Old, ScalarMaps[Lane], VLTS[Lane], L), 734 Builder.getInt32(Lane)); 735 736 VectorMap[Old] = Vector; 737 738 return Vector; 739 } 740 741 Type *VectorBlockGenerator::getVectorPtrTy(const Value *Val, int Width) { 742 PointerType *PointerTy = dyn_cast<PointerType>(Val->getType()); 743 assert(PointerTy && "PointerType expected"); 744 745 Type *ScalarType = PointerTy->getElementType(); 746 VectorType *VectorType = VectorType::get(ScalarType, Width); 747 748 return PointerType::getUnqual(VectorType); 749 } 750 751 Value *VectorBlockGenerator::generateStrideOneLoad( 752 ScopStmt &Stmt, LoadInst *Load, VectorValueMapT &ScalarMaps, 753 __isl_keep isl_id_to_ast_expr *NewAccesses, bool NegativeStride = false) { 754 unsigned VectorWidth = getVectorWidth(); 755 auto *Pointer = Load->getPointerOperand(); 756 Type *VectorPtrType = getVectorPtrTy(Pointer, VectorWidth); 757 unsigned Offset = NegativeStride ? VectorWidth - 1 : 0; 758 759 Value *NewPointer = generateLocationAccessed(Stmt, Load, ScalarMaps[Offset], 760 VLTS[Offset], NewAccesses); 761 Value *VectorPtr = 762 Builder.CreateBitCast(NewPointer, VectorPtrType, "vector_ptr"); 763 LoadInst *VecLoad = 764 Builder.CreateLoad(VectorPtr, Load->getName() + "_p_vec_full"); 765 if (!Aligned) 766 VecLoad->setAlignment(8); 767 768 if (NegativeStride) { 769 SmallVector<Constant *, 16> Indices; 770 for (int i = VectorWidth - 1; i >= 0; i--) 771 Indices.push_back(ConstantInt::get(Builder.getInt32Ty(), i)); 772 Constant *SV = llvm::ConstantVector::get(Indices); 773 Value *RevVecLoad = Builder.CreateShuffleVector( 774 VecLoad, VecLoad, SV, Load->getName() + "_reverse"); 775 return RevVecLoad; 776 } 777 778 return VecLoad; 779 } 780 781 Value *VectorBlockGenerator::generateStrideZeroLoad( 782 ScopStmt &Stmt, LoadInst *Load, ValueMapT &BBMap, 783 __isl_keep isl_id_to_ast_expr *NewAccesses) { 784 auto *Pointer = Load->getPointerOperand(); 785 Type *VectorPtrType = getVectorPtrTy(Pointer, 1); 786 Value *NewPointer = 787 generateLocationAccessed(Stmt, Load, BBMap, VLTS[0], NewAccesses); 788 Value *VectorPtr = Builder.CreateBitCast(NewPointer, VectorPtrType, 789 Load->getName() + "_p_vec_p"); 790 LoadInst *ScalarLoad = 791 Builder.CreateLoad(VectorPtr, Load->getName() + "_p_splat_one"); 792 793 if (!Aligned) 794 ScalarLoad->setAlignment(8); 795 796 Constant *SplatVector = Constant::getNullValue( 797 VectorType::get(Builder.getInt32Ty(), getVectorWidth())); 798 799 Value *VectorLoad = Builder.CreateShuffleVector( 800 ScalarLoad, ScalarLoad, SplatVector, Load->getName() + "_p_splat"); 801 return VectorLoad; 802 } 803 804 Value *VectorBlockGenerator::generateUnknownStrideLoad( 805 ScopStmt &Stmt, LoadInst *Load, VectorValueMapT &ScalarMaps, 806 __isl_keep isl_id_to_ast_expr *NewAccesses) { 807 int VectorWidth = getVectorWidth(); 808 auto *Pointer = Load->getPointerOperand(); 809 VectorType *VectorType = VectorType::get( 810 dyn_cast<PointerType>(Pointer->getType())->getElementType(), VectorWidth); 811 812 Value *Vector = UndefValue::get(VectorType); 813 814 for (int i = 0; i < VectorWidth; i++) { 815 Value *NewPointer = generateLocationAccessed(Stmt, Load, ScalarMaps[i], 816 VLTS[i], NewAccesses); 817 Value *ScalarLoad = 818 Builder.CreateLoad(NewPointer, Load->getName() + "_p_scalar_"); 819 Vector = Builder.CreateInsertElement( 820 Vector, ScalarLoad, Builder.getInt32(i), Load->getName() + "_p_vec_"); 821 } 822 823 return Vector; 824 } 825 826 void VectorBlockGenerator::generateLoad( 827 ScopStmt &Stmt, LoadInst *Load, ValueMapT &VectorMap, 828 VectorValueMapT &ScalarMaps, __isl_keep isl_id_to_ast_expr *NewAccesses) { 829 if (Value *PreloadLoad = GlobalMap.lookup(Load)) { 830 VectorMap[Load] = Builder.CreateVectorSplat(getVectorWidth(), PreloadLoad, 831 Load->getName() + "_p"); 832 return; 833 } 834 835 if (!VectorType::isValidElementType(Load->getType())) { 836 for (int i = 0; i < getVectorWidth(); i++) 837 ScalarMaps[i][Load] = 838 generateArrayLoad(Stmt, Load, ScalarMaps[i], VLTS[i], NewAccesses); 839 return; 840 } 841 842 const MemoryAccess &Access = Stmt.getArrayAccessFor(Load); 843 844 // Make sure we have scalar values available to access the pointer to 845 // the data location. 846 extractScalarValues(Load, VectorMap, ScalarMaps); 847 848 Value *NewLoad; 849 if (Access.isStrideZero(isl_map_copy(Schedule))) 850 NewLoad = generateStrideZeroLoad(Stmt, Load, ScalarMaps[0], NewAccesses); 851 else if (Access.isStrideOne(isl_map_copy(Schedule))) 852 NewLoad = generateStrideOneLoad(Stmt, Load, ScalarMaps, NewAccesses); 853 else if (Access.isStrideX(isl_map_copy(Schedule), -1)) 854 NewLoad = generateStrideOneLoad(Stmt, Load, ScalarMaps, NewAccesses, true); 855 else 856 NewLoad = generateUnknownStrideLoad(Stmt, Load, ScalarMaps, NewAccesses); 857 858 VectorMap[Load] = NewLoad; 859 } 860 861 void VectorBlockGenerator::copyUnaryInst(ScopStmt &Stmt, UnaryInstruction *Inst, 862 ValueMapT &VectorMap, 863 VectorValueMapT &ScalarMaps) { 864 int VectorWidth = getVectorWidth(); 865 Value *NewOperand = getVectorValue(Stmt, Inst->getOperand(0), VectorMap, 866 ScalarMaps, getLoopForStmt(Stmt)); 867 868 assert(isa<CastInst>(Inst) && "Can not generate vector code for instruction"); 869 870 const CastInst *Cast = dyn_cast<CastInst>(Inst); 871 VectorType *DestType = VectorType::get(Inst->getType(), VectorWidth); 872 VectorMap[Inst] = Builder.CreateCast(Cast->getOpcode(), NewOperand, DestType); 873 } 874 875 void VectorBlockGenerator::copyBinaryInst(ScopStmt &Stmt, BinaryOperator *Inst, 876 ValueMapT &VectorMap, 877 VectorValueMapT &ScalarMaps) { 878 Loop *L = getLoopForStmt(Stmt); 879 Value *OpZero = Inst->getOperand(0); 880 Value *OpOne = Inst->getOperand(1); 881 882 Value *NewOpZero, *NewOpOne; 883 NewOpZero = getVectorValue(Stmt, OpZero, VectorMap, ScalarMaps, L); 884 NewOpOne = getVectorValue(Stmt, OpOne, VectorMap, ScalarMaps, L); 885 886 Value *NewInst = Builder.CreateBinOp(Inst->getOpcode(), NewOpZero, NewOpOne, 887 Inst->getName() + "p_vec"); 888 VectorMap[Inst] = NewInst; 889 } 890 891 void VectorBlockGenerator::copyStore( 892 ScopStmt &Stmt, StoreInst *Store, ValueMapT &VectorMap, 893 VectorValueMapT &ScalarMaps, __isl_keep isl_id_to_ast_expr *NewAccesses) { 894 const MemoryAccess &Access = Stmt.getArrayAccessFor(Store); 895 896 auto *Pointer = Store->getPointerOperand(); 897 Value *Vector = getVectorValue(Stmt, Store->getValueOperand(), VectorMap, 898 ScalarMaps, getLoopForStmt(Stmt)); 899 900 // Make sure we have scalar values available to access the pointer to 901 // the data location. 902 extractScalarValues(Store, VectorMap, ScalarMaps); 903 904 if (Access.isStrideOne(isl_map_copy(Schedule))) { 905 Type *VectorPtrType = getVectorPtrTy(Pointer, getVectorWidth()); 906 Value *NewPointer = generateLocationAccessed(Stmt, Store, ScalarMaps[0], 907 VLTS[0], NewAccesses); 908 909 Value *VectorPtr = 910 Builder.CreateBitCast(NewPointer, VectorPtrType, "vector_ptr"); 911 StoreInst *Store = Builder.CreateStore(Vector, VectorPtr); 912 913 if (!Aligned) 914 Store->setAlignment(8); 915 } else { 916 for (unsigned i = 0; i < ScalarMaps.size(); i++) { 917 Value *Scalar = Builder.CreateExtractElement(Vector, Builder.getInt32(i)); 918 Value *NewPointer = generateLocationAccessed(Stmt, Store, ScalarMaps[i], 919 VLTS[i], NewAccesses); 920 Builder.CreateStore(Scalar, NewPointer); 921 } 922 } 923 } 924 925 bool VectorBlockGenerator::hasVectorOperands(const Instruction *Inst, 926 ValueMapT &VectorMap) { 927 for (Value *Operand : Inst->operands()) 928 if (VectorMap.count(Operand)) 929 return true; 930 return false; 931 } 932 933 bool VectorBlockGenerator::extractScalarValues(const Instruction *Inst, 934 ValueMapT &VectorMap, 935 VectorValueMapT &ScalarMaps) { 936 bool HasVectorOperand = false; 937 int VectorWidth = getVectorWidth(); 938 939 for (Value *Operand : Inst->operands()) { 940 ValueMapT::iterator VecOp = VectorMap.find(Operand); 941 942 if (VecOp == VectorMap.end()) 943 continue; 944 945 HasVectorOperand = true; 946 Value *NewVector = VecOp->second; 947 948 for (int i = 0; i < VectorWidth; ++i) { 949 ValueMapT &SM = ScalarMaps[i]; 950 951 // If there is one scalar extracted, all scalar elements should have 952 // already been extracted by the code here. So no need to check for the 953 // existence of all of them. 954 if (SM.count(Operand)) 955 break; 956 957 SM[Operand] = 958 Builder.CreateExtractElement(NewVector, Builder.getInt32(i)); 959 } 960 } 961 962 return HasVectorOperand; 963 } 964 965 void VectorBlockGenerator::copyInstScalarized( 966 ScopStmt &Stmt, Instruction *Inst, ValueMapT &VectorMap, 967 VectorValueMapT &ScalarMaps, __isl_keep isl_id_to_ast_expr *NewAccesses) { 968 bool HasVectorOperand; 969 int VectorWidth = getVectorWidth(); 970 971 HasVectorOperand = extractScalarValues(Inst, VectorMap, ScalarMaps); 972 973 for (int VectorLane = 0; VectorLane < getVectorWidth(); VectorLane++) 974 BlockGenerator::copyInstruction(Stmt, Inst, ScalarMaps[VectorLane], 975 VLTS[VectorLane], NewAccesses); 976 977 if (!VectorType::isValidElementType(Inst->getType()) || !HasVectorOperand) 978 return; 979 980 // Make the result available as vector value. 981 VectorType *VectorType = VectorType::get(Inst->getType(), VectorWidth); 982 Value *Vector = UndefValue::get(VectorType); 983 984 for (int i = 0; i < VectorWidth; i++) 985 Vector = Builder.CreateInsertElement(Vector, ScalarMaps[i][Inst], 986 Builder.getInt32(i)); 987 988 VectorMap[Inst] = Vector; 989 } 990 991 int VectorBlockGenerator::getVectorWidth() { return VLTS.size(); } 992 993 void VectorBlockGenerator::copyInstruction( 994 ScopStmt &Stmt, Instruction *Inst, ValueMapT &VectorMap, 995 VectorValueMapT &ScalarMaps, __isl_keep isl_id_to_ast_expr *NewAccesses) { 996 // Terminator instructions control the control flow. They are explicitly 997 // expressed in the clast and do not need to be copied. 998 if (Inst->isTerminator()) 999 return; 1000 1001 if (canSyntheziseInStmt(Stmt, Inst)) 1002 return; 1003 1004 if (auto *Load = dyn_cast<LoadInst>(Inst)) { 1005 generateLoad(Stmt, Load, VectorMap, ScalarMaps, NewAccesses); 1006 return; 1007 } 1008 1009 if (hasVectorOperands(Inst, VectorMap)) { 1010 if (auto *Store = dyn_cast<StoreInst>(Inst)) { 1011 copyStore(Stmt, Store, VectorMap, ScalarMaps, NewAccesses); 1012 return; 1013 } 1014 1015 if (auto *Unary = dyn_cast<UnaryInstruction>(Inst)) { 1016 copyUnaryInst(Stmt, Unary, VectorMap, ScalarMaps); 1017 return; 1018 } 1019 1020 if (auto *Binary = dyn_cast<BinaryOperator>(Inst)) { 1021 copyBinaryInst(Stmt, Binary, VectorMap, ScalarMaps); 1022 return; 1023 } 1024 1025 // Falltrough: We generate scalar instructions, if we don't know how to 1026 // generate vector code. 1027 } 1028 1029 copyInstScalarized(Stmt, Inst, VectorMap, ScalarMaps, NewAccesses); 1030 } 1031 1032 void VectorBlockGenerator::generateScalarVectorLoads( 1033 ScopStmt &Stmt, ValueMapT &VectorBlockMap) { 1034 for (MemoryAccess *MA : Stmt) { 1035 if (MA->isArrayKind() || MA->isWrite()) 1036 continue; 1037 1038 auto *Address = getOrCreateAlloca(*MA); 1039 Type *VectorPtrType = getVectorPtrTy(Address, 1); 1040 Value *VectorPtr = Builder.CreateBitCast(Address, VectorPtrType, 1041 Address->getName() + "_p_vec_p"); 1042 auto *Val = Builder.CreateLoad(VectorPtr, Address->getName() + ".reload"); 1043 Constant *SplatVector = Constant::getNullValue( 1044 VectorType::get(Builder.getInt32Ty(), getVectorWidth())); 1045 1046 Value *VectorVal = Builder.CreateShuffleVector( 1047 Val, Val, SplatVector, Address->getName() + "_p_splat"); 1048 VectorBlockMap[MA->getBaseAddr()] = VectorVal; 1049 } 1050 } 1051 1052 void VectorBlockGenerator::verifyNoScalarStores(ScopStmt &Stmt) { 1053 for (MemoryAccess *MA : Stmt) { 1054 if (MA->isArrayKind() || MA->isRead()) 1055 continue; 1056 1057 llvm_unreachable("Scalar stores not expected in vector loop"); 1058 } 1059 } 1060 1061 void VectorBlockGenerator::copyStmt( 1062 ScopStmt &Stmt, __isl_keep isl_id_to_ast_expr *NewAccesses) { 1063 assert(Stmt.isBlockStmt() && "TODO: Only block statements can be copied by " 1064 "the vector block generator"); 1065 1066 BasicBlock *BB = Stmt.getBasicBlock(); 1067 BasicBlock *CopyBB = SplitBlock(Builder.GetInsertBlock(), 1068 &*Builder.GetInsertPoint(), &DT, &LI); 1069 CopyBB->setName("polly.stmt." + BB->getName()); 1070 Builder.SetInsertPoint(&CopyBB->front()); 1071 1072 // Create two maps that store the mapping from the original instructions of 1073 // the old basic block to their copies in the new basic block. Those maps 1074 // are basic block local. 1075 // 1076 // As vector code generation is supported there is one map for scalar values 1077 // and one for vector values. 1078 // 1079 // In case we just do scalar code generation, the vectorMap is not used and 1080 // the scalarMap has just one dimension, which contains the mapping. 1081 // 1082 // In case vector code generation is done, an instruction may either appear 1083 // in the vector map once (as it is calculating >vectorwidth< values at a 1084 // time. Or (if the values are calculated using scalar operations), it 1085 // appears once in every dimension of the scalarMap. 1086 VectorValueMapT ScalarBlockMap(getVectorWidth()); 1087 ValueMapT VectorBlockMap; 1088 1089 generateScalarVectorLoads(Stmt, VectorBlockMap); 1090 1091 for (Instruction &Inst : *BB) 1092 copyInstruction(Stmt, &Inst, VectorBlockMap, ScalarBlockMap, NewAccesses); 1093 1094 verifyNoScalarStores(Stmt); 1095 } 1096 1097 BasicBlock *RegionGenerator::repairDominance(BasicBlock *BB, 1098 BasicBlock *BBCopy) { 1099 1100 BasicBlock *BBIDom = DT.getNode(BB)->getIDom()->getBlock(); 1101 BasicBlock *BBCopyIDom = BlockMap.lookup(BBIDom); 1102 1103 if (BBCopyIDom) 1104 DT.changeImmediateDominator(BBCopy, BBCopyIDom); 1105 1106 return BBCopyIDom; 1107 } 1108 1109 // This is to determine whether an llvm::Value (defined in @p BB) is usable when 1110 // leaving a subregion. The straight-forward DT.dominates(BB, R->getExitBlock()) 1111 // does not work in cases where the exit block has edges from outside the 1112 // region. In that case the llvm::Value would never be usable in in the exit 1113 // block. The RegionGenerator however creates an new exit block ('ExitBBCopy') 1114 // for the subregion's exiting edges only. We need to determine whether an 1115 // llvm::Value is usable in there. We do this by checking whether it dominates 1116 // all exiting blocks individually. 1117 static bool isDominatingSubregionExit(const DominatorTree &DT, Region *R, 1118 BasicBlock *BB) { 1119 for (auto ExitingBB : predecessors(R->getExit())) { 1120 // Check for non-subregion incoming edges. 1121 if (!R->contains(ExitingBB)) 1122 continue; 1123 1124 if (!DT.dominates(BB, ExitingBB)) 1125 return false; 1126 } 1127 1128 return true; 1129 } 1130 1131 // Find the direct dominator of the subregion's exit block if the subregion was 1132 // simplified. 1133 static BasicBlock *findExitDominator(DominatorTree &DT, Region *R) { 1134 BasicBlock *Common = nullptr; 1135 for (auto ExitingBB : predecessors(R->getExit())) { 1136 // Check for non-subregion incoming edges. 1137 if (!R->contains(ExitingBB)) 1138 continue; 1139 1140 // First exiting edge. 1141 if (!Common) { 1142 Common = ExitingBB; 1143 continue; 1144 } 1145 1146 Common = DT.findNearestCommonDominator(Common, ExitingBB); 1147 } 1148 1149 assert(Common && R->contains(Common)); 1150 return Common; 1151 } 1152 1153 void RegionGenerator::copyStmt(ScopStmt &Stmt, LoopToScevMapT <S, 1154 isl_id_to_ast_expr *IdToAstExp) { 1155 assert(Stmt.isRegionStmt() && 1156 "Only region statements can be copied by the region generator"); 1157 1158 // Forget all old mappings. 1159 BlockMap.clear(); 1160 RegionMaps.clear(); 1161 IncompletePHINodeMap.clear(); 1162 1163 // Collection of all values related to this subregion. 1164 ValueMapT ValueMap; 1165 1166 // The region represented by the statement. 1167 Region *R = Stmt.getRegion(); 1168 1169 // Create a dedicated entry for the region where we can reload all demoted 1170 // inputs. 1171 BasicBlock *EntryBB = R->getEntry(); 1172 BasicBlock *EntryBBCopy = SplitBlock(Builder.GetInsertBlock(), 1173 &*Builder.GetInsertPoint(), &DT, &LI); 1174 EntryBBCopy->setName("polly.stmt." + EntryBB->getName() + ".entry"); 1175 Builder.SetInsertPoint(&EntryBBCopy->front()); 1176 1177 ValueMapT &EntryBBMap = RegionMaps[EntryBBCopy]; 1178 generateScalarLoads(Stmt, LTS, EntryBBMap, IdToAstExp); 1179 1180 for (auto PI = pred_begin(EntryBB), PE = pred_end(EntryBB); PI != PE; ++PI) 1181 if (!R->contains(*PI)) 1182 BlockMap[*PI] = EntryBBCopy; 1183 1184 // Iterate over all blocks in the region in a breadth-first search. 1185 std::deque<BasicBlock *> Blocks; 1186 SmallSetVector<BasicBlock *, 8> SeenBlocks; 1187 Blocks.push_back(EntryBB); 1188 SeenBlocks.insert(EntryBB); 1189 1190 while (!Blocks.empty()) { 1191 BasicBlock *BB = Blocks.front(); 1192 Blocks.pop_front(); 1193 1194 // First split the block and update dominance information. 1195 BasicBlock *BBCopy = splitBB(BB); 1196 BasicBlock *BBCopyIDom = repairDominance(BB, BBCopy); 1197 1198 // Get the mapping for this block and initialize it with either the scalar 1199 // loads from the generated entering block (which dominates all blocks of 1200 // this subregion) or the maps of the immediate dominator, if part of the 1201 // subregion. The latter necessarily includes the former. 1202 ValueMapT *InitBBMap; 1203 if (BBCopyIDom) { 1204 assert(RegionMaps.count(BBCopyIDom)); 1205 InitBBMap = &RegionMaps[BBCopyIDom]; 1206 } else 1207 InitBBMap = &EntryBBMap; 1208 auto Inserted = RegionMaps.insert(std::make_pair(BBCopy, *InitBBMap)); 1209 ValueMapT &RegionMap = Inserted.first->second; 1210 1211 // Copy the block with the BlockGenerator. 1212 Builder.SetInsertPoint(&BBCopy->front()); 1213 copyBB(Stmt, BB, BBCopy, RegionMap, LTS, IdToAstExp); 1214 1215 // In order to remap PHI nodes we store also basic block mappings. 1216 BlockMap[BB] = BBCopy; 1217 1218 // Add values to incomplete PHI nodes waiting for this block to be copied. 1219 for (const PHINodePairTy &PHINodePair : IncompletePHINodeMap[BB]) 1220 addOperandToPHI(Stmt, PHINodePair.first, PHINodePair.second, BB, LTS); 1221 IncompletePHINodeMap[BB].clear(); 1222 1223 // And continue with new successors inside the region. 1224 for (auto SI = succ_begin(BB), SE = succ_end(BB); SI != SE; SI++) 1225 if (R->contains(*SI) && SeenBlocks.insert(*SI)) 1226 Blocks.push_back(*SI); 1227 1228 // Remember value in case it is visible after this subregion. 1229 if (isDominatingSubregionExit(DT, R, BB)) 1230 ValueMap.insert(RegionMap.begin(), RegionMap.end()); 1231 } 1232 1233 // Now create a new dedicated region exit block and add it to the region map. 1234 BasicBlock *ExitBBCopy = SplitBlock(Builder.GetInsertBlock(), 1235 &*Builder.GetInsertPoint(), &DT, &LI); 1236 ExitBBCopy->setName("polly.stmt." + R->getExit()->getName() + ".exit"); 1237 BlockMap[R->getExit()] = ExitBBCopy; 1238 1239 BasicBlock *ExitDomBBCopy = BlockMap.lookup(findExitDominator(DT, R)); 1240 assert(ExitDomBBCopy && "Common exit dominator must be within region; at " 1241 "least the entry node must match"); 1242 DT.changeImmediateDominator(ExitBBCopy, ExitDomBBCopy); 1243 1244 // As the block generator doesn't handle control flow we need to add the 1245 // region control flow by hand after all blocks have been copied. 1246 for (BasicBlock *BB : SeenBlocks) { 1247 1248 BasicBlock *BBCopy = BlockMap[BB]; 1249 TerminatorInst *TI = BB->getTerminator(); 1250 if (isa<UnreachableInst>(TI)) { 1251 while (!BBCopy->empty()) 1252 BBCopy->begin()->eraseFromParent(); 1253 new UnreachableInst(BBCopy->getContext(), BBCopy); 1254 continue; 1255 } 1256 1257 Instruction *BICopy = BBCopy->getTerminator(); 1258 1259 ValueMapT &RegionMap = RegionMaps[BBCopy]; 1260 RegionMap.insert(BlockMap.begin(), BlockMap.end()); 1261 1262 Builder.SetInsertPoint(BICopy); 1263 copyInstScalar(Stmt, TI, RegionMap, LTS); 1264 BICopy->eraseFromParent(); 1265 } 1266 1267 // Add counting PHI nodes to all loops in the region that can be used as 1268 // replacement for SCEVs refering to the old loop. 1269 for (BasicBlock *BB : SeenBlocks) { 1270 Loop *L = LI.getLoopFor(BB); 1271 if (L == nullptr || L->getHeader() != BB || !R->contains(L)) 1272 continue; 1273 1274 BasicBlock *BBCopy = BlockMap[BB]; 1275 Value *NullVal = Builder.getInt32(0); 1276 PHINode *LoopPHI = 1277 PHINode::Create(Builder.getInt32Ty(), 2, "polly.subregion.iv"); 1278 Instruction *LoopPHIInc = BinaryOperator::CreateAdd( 1279 LoopPHI, Builder.getInt32(1), "polly.subregion.iv.inc"); 1280 LoopPHI->insertBefore(&BBCopy->front()); 1281 LoopPHIInc->insertBefore(BBCopy->getTerminator()); 1282 1283 for (auto *PredBB : make_range(pred_begin(BB), pred_end(BB))) { 1284 if (!R->contains(PredBB)) 1285 continue; 1286 if (L->contains(PredBB)) 1287 LoopPHI->addIncoming(LoopPHIInc, BlockMap[PredBB]); 1288 else 1289 LoopPHI->addIncoming(NullVal, BlockMap[PredBB]); 1290 } 1291 1292 for (auto *PredBBCopy : make_range(pred_begin(BBCopy), pred_end(BBCopy))) 1293 if (LoopPHI->getBasicBlockIndex(PredBBCopy) < 0) 1294 LoopPHI->addIncoming(NullVal, PredBBCopy); 1295 1296 LTS[L] = SE.getUnknown(LoopPHI); 1297 } 1298 1299 // Continue generating code in the exit block. 1300 Builder.SetInsertPoint(&*ExitBBCopy->getFirstInsertionPt()); 1301 1302 // Write values visible to other statements. 1303 generateScalarStores(Stmt, LTS, ValueMap, IdToAstExp); 1304 BlockMap.clear(); 1305 RegionMaps.clear(); 1306 IncompletePHINodeMap.clear(); 1307 } 1308 1309 PHINode *RegionGenerator::buildExitPHI(MemoryAccess *MA, LoopToScevMapT <S, 1310 ValueMapT &BBMap, Loop *L) { 1311 ScopStmt *Stmt = MA->getStatement(); 1312 Region *SubR = Stmt->getRegion(); 1313 auto Incoming = MA->getIncoming(); 1314 1315 PollyIRBuilder::InsertPointGuard IPGuard(Builder); 1316 PHINode *OrigPHI = cast<PHINode>(MA->getAccessInstruction()); 1317 BasicBlock *NewSubregionExit = Builder.GetInsertBlock(); 1318 1319 // This can happen if the subregion is simplified after the ScopStmts 1320 // have been created; simplification happens as part of CodeGeneration. 1321 if (OrigPHI->getParent() != SubR->getExit()) { 1322 BasicBlock *FormerExit = SubR->getExitingBlock(); 1323 if (FormerExit) 1324 NewSubregionExit = BlockMap.lookup(FormerExit); 1325 } 1326 1327 PHINode *NewPHI = PHINode::Create(OrigPHI->getType(), Incoming.size(), 1328 "polly." + OrigPHI->getName(), 1329 NewSubregionExit->getFirstNonPHI()); 1330 1331 // Add the incoming values to the PHI. 1332 for (auto &Pair : Incoming) { 1333 BasicBlock *OrigIncomingBlock = Pair.first; 1334 BasicBlock *NewIncomingBlock = BlockMap.lookup(OrigIncomingBlock); 1335 Builder.SetInsertPoint(NewIncomingBlock->getTerminator()); 1336 assert(RegionMaps.count(NewIncomingBlock)); 1337 ValueMapT *LocalBBMap = &RegionMaps[NewIncomingBlock]; 1338 1339 Value *OrigIncomingValue = Pair.second; 1340 Value *NewIncomingValue = 1341 getNewValue(*Stmt, OrigIncomingValue, *LocalBBMap, LTS, L); 1342 NewPHI->addIncoming(NewIncomingValue, NewIncomingBlock); 1343 } 1344 1345 return NewPHI; 1346 } 1347 1348 Value *RegionGenerator::getExitScalar(MemoryAccess *MA, LoopToScevMapT <S, 1349 ValueMapT &BBMap) { 1350 ScopStmt *Stmt = MA->getStatement(); 1351 1352 // TODO: Add some test cases that ensure this is really the right choice. 1353 Loop *L = LI.getLoopFor(Stmt->getRegion()->getExit()); 1354 1355 if (MA->isAnyPHIKind()) { 1356 auto Incoming = MA->getIncoming(); 1357 assert(!Incoming.empty() && 1358 "PHI WRITEs must have originate from at least one incoming block"); 1359 1360 // If there is only one incoming value, we do not need to create a PHI. 1361 if (Incoming.size() == 1) { 1362 Value *OldVal = Incoming[0].second; 1363 return getNewValue(*Stmt, OldVal, BBMap, LTS, L); 1364 } 1365 1366 return buildExitPHI(MA, LTS, BBMap, L); 1367 } 1368 1369 // MK_Value accesses leaving the subregion must dominate the exit block; just 1370 // pass the copied value 1371 Value *OldVal = MA->getAccessValue(); 1372 return getNewValue(*Stmt, OldVal, BBMap, LTS, L); 1373 } 1374 1375 void RegionGenerator::generateScalarStores( 1376 ScopStmt &Stmt, LoopToScevMapT <S, ValueMapT &BBMap, 1377 __isl_keep isl_id_to_ast_expr *NewAccesses) { 1378 assert(Stmt.getRegion() && 1379 "Block statements need to use the generateScalarStores() " 1380 "function in the BlockGenerator"); 1381 1382 for (MemoryAccess *MA : Stmt) { 1383 if (MA->isOriginalArrayKind() || MA->isRead()) 1384 continue; 1385 1386 Value *NewVal = getExitScalar(MA, LTS, BBMap); 1387 Value *Address = 1388 getImplicitAddress(*MA, getLoopForStmt(Stmt), LTS, BBMap, NewAccesses); 1389 assert((!isa<Instruction>(NewVal) || 1390 DT.dominates(cast<Instruction>(NewVal)->getParent(), 1391 Builder.GetInsertBlock())) && 1392 "Domination violation"); 1393 assert((!isa<Instruction>(Address) || 1394 DT.dominates(cast<Instruction>(Address)->getParent(), 1395 Builder.GetInsertBlock())) && 1396 "Domination violation"); 1397 Builder.CreateStore(NewVal, Address); 1398 } 1399 } 1400 1401 void RegionGenerator::addOperandToPHI(ScopStmt &Stmt, const PHINode *PHI, 1402 PHINode *PHICopy, BasicBlock *IncomingBB, 1403 LoopToScevMapT <S) { 1404 Region *StmtR = Stmt.getRegion(); 1405 1406 // If the incoming block was not yet copied mark this PHI as incomplete. 1407 // Once the block will be copied the incoming value will be added. 1408 BasicBlock *BBCopy = BlockMap[IncomingBB]; 1409 if (!BBCopy) { 1410 assert(StmtR->contains(IncomingBB) && 1411 "Bad incoming block for PHI in non-affine region"); 1412 IncompletePHINodeMap[IncomingBB].push_back(std::make_pair(PHI, PHICopy)); 1413 return; 1414 } 1415 1416 Value *OpCopy = nullptr; 1417 if (StmtR->contains(IncomingBB)) { 1418 assert(RegionMaps.count(BBCopy) && 1419 "Incoming PHI block did not have a BBMap"); 1420 ValueMapT &BBCopyMap = RegionMaps[BBCopy]; 1421 1422 Value *Op = PHI->getIncomingValueForBlock(IncomingBB); 1423 1424 // If the current insert block is different from the PHIs incoming block 1425 // change it, otherwise do not. 1426 auto IP = Builder.GetInsertPoint(); 1427 if (IP->getParent() != BBCopy) 1428 Builder.SetInsertPoint(BBCopy->getTerminator()); 1429 OpCopy = getNewValue(Stmt, Op, BBCopyMap, LTS, getLoopForStmt(Stmt)); 1430 if (IP->getParent() != BBCopy) 1431 Builder.SetInsertPoint(&*IP); 1432 } else { 1433 1434 if (PHICopy->getBasicBlockIndex(BBCopy) >= 0) 1435 return; 1436 1437 Value *PHIOpAddr = getOrCreatePHIAlloca(const_cast<PHINode *>(PHI)); 1438 OpCopy = new LoadInst(PHIOpAddr, PHIOpAddr->getName() + ".reload", 1439 BlockMap[IncomingBB]->getTerminator()); 1440 } 1441 1442 assert(OpCopy && "Incoming PHI value was not copied properly"); 1443 assert(BBCopy && "Incoming PHI block was not copied properly"); 1444 PHICopy->addIncoming(OpCopy, BBCopy); 1445 } 1446 1447 void RegionGenerator::copyPHIInstruction(ScopStmt &Stmt, PHINode *PHI, 1448 ValueMapT &BBMap, 1449 LoopToScevMapT <S) { 1450 unsigned NumIncoming = PHI->getNumIncomingValues(); 1451 PHINode *PHICopy = 1452 Builder.CreatePHI(PHI->getType(), NumIncoming, "polly." + PHI->getName()); 1453 PHICopy->moveBefore(PHICopy->getParent()->getFirstNonPHI()); 1454 BBMap[PHI] = PHICopy; 1455 1456 for (unsigned u = 0; u < NumIncoming; u++) 1457 addOperandToPHI(Stmt, PHI, PHICopy, PHI->getIncomingBlock(u), LTS); 1458 } 1459