1 //===--- BlockGenerators.cpp - Generate code for statements -----*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the BlockGenerator and VectorBlockGenerator classes,
11 // which generate sequential code and vectorized code for a polyhedral
12 // statement, respectively.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "polly/CodeGen/BlockGenerators.h"
17 #include "polly/CodeGen/CodeGeneration.h"
18 #include "polly/CodeGen/IslExprBuilder.h"
19 #include "polly/CodeGen/RuntimeDebugBuilder.h"
20 #include "polly/Options.h"
21 #include "polly/ScopInfo.h"
22 #include "polly/Support/GICHelper.h"
23 #include "polly/Support/SCEVValidator.h"
24 #include "polly/Support/ScopHelper.h"
25 #include "llvm/Analysis/LoopInfo.h"
26 #include "llvm/Analysis/RegionInfo.h"
27 #include "llvm/Analysis/ScalarEvolution.h"
28 #include "llvm/IR/IntrinsicInst.h"
29 #include "llvm/IR/Module.h"
30 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
31 #include "llvm/Transforms/Utils/Local.h"
32 #include "isl/aff.h"
33 #include "isl/ast.h"
34 #include "isl/ast_build.h"
35 #include "isl/set.h"
36 #include <deque>
37 
38 using namespace llvm;
39 using namespace polly;
40 
41 static cl::opt<bool> Aligned("enable-polly-aligned",
42                              cl::desc("Assumed aligned memory accesses."),
43                              cl::Hidden, cl::init(false), cl::ZeroOrMore,
44                              cl::cat(PollyCategory));
45 
46 static cl::opt<bool> DebugPrinting(
47     "polly-codegen-add-debug-printing",
48     cl::desc("Add printf calls that show the values loaded/stored."),
49     cl::Hidden, cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory));
50 
51 BlockGenerator::BlockGenerator(PollyIRBuilder &B, LoopInfo &LI,
52                                ScalarEvolution &SE, DominatorTree &DT,
53                                ScalarAllocaMapTy &ScalarMap,
54                                ScalarAllocaMapTy &PHIOpMap,
55                                EscapeUsersAllocaMapTy &EscapeMap,
56                                ValueMapT &GlobalMap,
57                                IslExprBuilder *ExprBuilder)
58     : Builder(B), LI(LI), SE(SE), ExprBuilder(ExprBuilder), DT(DT),
59       EntryBB(nullptr), PHIOpMap(PHIOpMap), ScalarMap(ScalarMap),
60       EscapeMap(EscapeMap), GlobalMap(GlobalMap) {}
61 
62 Value *BlockGenerator::trySynthesizeNewValue(ScopStmt &Stmt, Value *Old,
63                                              ValueMapT &BBMap,
64                                              LoopToScevMapT &LTS,
65                                              Loop *L) const {
66   if (!SE.isSCEVable(Old->getType()))
67     return nullptr;
68 
69   const SCEV *Scev = SE.getSCEVAtScope(Old, L);
70   if (!Scev)
71     return nullptr;
72 
73   if (isa<SCEVCouldNotCompute>(Scev))
74     return nullptr;
75 
76   const SCEV *NewScev = SCEVLoopAddRecRewriter::rewrite(Scev, LTS, SE);
77   ValueMapT VTV;
78   VTV.insert(BBMap.begin(), BBMap.end());
79   VTV.insert(GlobalMap.begin(), GlobalMap.end());
80 
81   Scop &S = *Stmt.getParent();
82   const DataLayout &DL = S.getFunction().getParent()->getDataLayout();
83   auto IP = Builder.GetInsertPoint();
84 
85   assert(IP != Builder.GetInsertBlock()->end() &&
86          "Only instructions can be insert points for SCEVExpander");
87   Value *Expanded =
88       expandCodeFor(S, SE, DL, "polly", NewScev, Old->getType(), &*IP, &VTV);
89 
90   BBMap[Old] = Expanded;
91   return Expanded;
92 }
93 
94 Value *BlockGenerator::getNewValue(ScopStmt &Stmt, Value *Old, ValueMapT &BBMap,
95                                    LoopToScevMapT &LTS, Loop *L) const {
96   // Constants that do not reference any named value can always remain
97   // unchanged. Handle them early to avoid expensive map lookups. We do not take
98   // the fast-path for external constants which are referenced through globals
99   // as these may need to be rewritten when distributing code accross different
100   // LLVM modules.
101   if (isa<Constant>(Old) && !isa<GlobalValue>(Old))
102     return Old;
103 
104   // Inline asm is like a constant to us.
105   if (isa<InlineAsm>(Old))
106     return Old;
107 
108   if (Value *New = GlobalMap.lookup(Old)) {
109     if (Value *NewRemapped = GlobalMap.lookup(New))
110       New = NewRemapped;
111     if (Old->getType()->getScalarSizeInBits() <
112         New->getType()->getScalarSizeInBits())
113       New = Builder.CreateTruncOrBitCast(New, Old->getType());
114 
115     return New;
116   }
117 
118   if (Value *New = BBMap.lookup(Old))
119     return New;
120 
121   if (Value *New = trySynthesizeNewValue(Stmt, Old, BBMap, LTS, L))
122     return New;
123 
124   // A scop-constant value defined by a global or a function parameter.
125   if (isa<GlobalValue>(Old) || isa<Argument>(Old))
126     return Old;
127 
128   // A scop-constant value defined by an instruction executed outside the scop.
129   if (const Instruction *Inst = dyn_cast<Instruction>(Old))
130     if (!Stmt.getParent()->contains(Inst->getParent()))
131       return Old;
132 
133   // The scalar dependence is neither available nor SCEVCodegenable.
134   llvm_unreachable("Unexpected scalar dependence in region!");
135   return nullptr;
136 }
137 
138 void BlockGenerator::copyInstScalar(ScopStmt &Stmt, Instruction *Inst,
139                                     ValueMapT &BBMap, LoopToScevMapT &LTS) {
140   // We do not generate debug intrinsics as we did not investigate how to
141   // copy them correctly. At the current state, they just crash the code
142   // generation as the meta-data operands are not correctly copied.
143   if (isa<DbgInfoIntrinsic>(Inst))
144     return;
145 
146   Instruction *NewInst = Inst->clone();
147 
148   // Replace old operands with the new ones.
149   for (Value *OldOperand : Inst->operands()) {
150     Value *NewOperand =
151         getNewValue(Stmt, OldOperand, BBMap, LTS, getLoopForStmt(Stmt));
152 
153     if (!NewOperand) {
154       assert(!isa<StoreInst>(NewInst) &&
155              "Store instructions are always needed!");
156       delete NewInst;
157       return;
158     }
159 
160     NewInst->replaceUsesOfWith(OldOperand, NewOperand);
161   }
162 
163   Builder.Insert(NewInst);
164   BBMap[Inst] = NewInst;
165 
166   if (!NewInst->getType()->isVoidTy())
167     NewInst->setName("p_" + Inst->getName());
168 }
169 
170 Value *
171 BlockGenerator::generateLocationAccessed(ScopStmt &Stmt, MemAccInst Inst,
172                                          ValueMapT &BBMap, LoopToScevMapT &LTS,
173                                          isl_id_to_ast_expr *NewAccesses) {
174   const MemoryAccess &MA = Stmt.getArrayAccessFor(Inst);
175 
176   isl_ast_expr *AccessExpr = isl_id_to_ast_expr_get(NewAccesses, MA.getId());
177 
178   if (AccessExpr) {
179     AccessExpr = isl_ast_expr_address_of(AccessExpr);
180     auto Address = ExprBuilder->create(AccessExpr);
181 
182     // Cast the address of this memory access to a pointer type that has the
183     // same element type as the original access, but uses the address space of
184     // the newly generated pointer.
185     auto OldPtrTy = MA.getAccessValue()->getType()->getPointerTo();
186     auto NewPtrTy = Address->getType();
187     OldPtrTy = PointerType::get(OldPtrTy->getElementType(),
188                                 NewPtrTy->getPointerAddressSpace());
189 
190     if (OldPtrTy != NewPtrTy)
191       Address = Builder.CreateBitOrPointerCast(Address, OldPtrTy);
192     return Address;
193   }
194 
195   return getNewValue(Stmt, Inst.getPointerOperand(), BBMap, LTS,
196                      getLoopForStmt(Stmt));
197 }
198 
199 Loop *BlockGenerator::getLoopForStmt(const ScopStmt &Stmt) const {
200   auto *StmtBB = Stmt.getEntryBlock();
201   return LI.getLoopFor(StmtBB);
202 }
203 
204 Value *BlockGenerator::generateScalarLoad(ScopStmt &Stmt, LoadInst *Load,
205                                           ValueMapT &BBMap, LoopToScevMapT &LTS,
206                                           isl_id_to_ast_expr *NewAccesses) {
207   if (Value *PreloadLoad = GlobalMap.lookup(Load))
208     return PreloadLoad;
209 
210   Value *NewPointer =
211       generateLocationAccessed(Stmt, Load, BBMap, LTS, NewAccesses);
212   Value *ScalarLoad = Builder.CreateAlignedLoad(
213       NewPointer, Load->getAlignment(), Load->getName() + "_p_scalar_");
214 
215   if (DebugPrinting)
216     RuntimeDebugBuilder::createCPUPrinter(Builder, "Load from ", NewPointer,
217                                           ": ", ScalarLoad, "\n");
218 
219   return ScalarLoad;
220 }
221 
222 void BlockGenerator::generateScalarStore(ScopStmt &Stmt, StoreInst *Store,
223                                          ValueMapT &BBMap, LoopToScevMapT &LTS,
224                                          isl_id_to_ast_expr *NewAccesses) {
225   Value *NewPointer =
226       generateLocationAccessed(Stmt, Store, BBMap, LTS, NewAccesses);
227   Value *ValueOperand = getNewValue(Stmt, Store->getValueOperand(), BBMap, LTS,
228                                     getLoopForStmt(Stmt));
229 
230   if (DebugPrinting)
231     RuntimeDebugBuilder::createCPUPrinter(Builder, "Store to  ", NewPointer,
232                                           ": ", ValueOperand, "\n");
233 
234   Builder.CreateAlignedStore(ValueOperand, NewPointer, Store->getAlignment());
235 }
236 
237 bool BlockGenerator::canSyntheziseInStmt(ScopStmt &Stmt, Instruction *Inst) {
238   Loop *L = getLoopForStmt(Stmt);
239   return (Stmt.isBlockStmt() || !Stmt.getRegion()->contains(L)) &&
240          canSynthesize(Inst, *Stmt.getParent(), &LI, &SE, L);
241 }
242 
243 void BlockGenerator::copyInstruction(ScopStmt &Stmt, Instruction *Inst,
244                                      ValueMapT &BBMap, LoopToScevMapT &LTS,
245                                      isl_id_to_ast_expr *NewAccesses) {
246   // Terminator instructions control the control flow. They are explicitly
247   // expressed in the clast and do not need to be copied.
248   if (Inst->isTerminator())
249     return;
250 
251   // Synthesizable statements will be generated on-demand.
252   if (canSyntheziseInStmt(Stmt, Inst))
253     return;
254 
255   if (auto *Load = dyn_cast<LoadInst>(Inst)) {
256     Value *NewLoad = generateScalarLoad(Stmt, Load, BBMap, LTS, NewAccesses);
257     // Compute NewLoad before its insertion in BBMap to make the insertion
258     // deterministic.
259     BBMap[Load] = NewLoad;
260     return;
261   }
262 
263   if (auto *Store = dyn_cast<StoreInst>(Inst)) {
264     generateScalarStore(Stmt, Store, BBMap, LTS, NewAccesses);
265     return;
266   }
267 
268   if (auto *PHI = dyn_cast<PHINode>(Inst)) {
269     copyPHIInstruction(Stmt, PHI, BBMap, LTS);
270     return;
271   }
272 
273   // Skip some special intrinsics for which we do not adjust the semantics to
274   // the new schedule. All others are handled like every other instruction.
275   if (isIgnoredIntrinsic(Inst))
276     return;
277 
278   copyInstScalar(Stmt, Inst, BBMap, LTS);
279 }
280 
281 void BlockGenerator::removeDeadInstructions(BasicBlock *BB, ValueMapT &BBMap) {
282   auto NewBB = Builder.GetInsertBlock();
283   for (auto I = NewBB->rbegin(); I != NewBB->rend(); I++) {
284     Instruction *NewInst = &*I;
285 
286     if (!isInstructionTriviallyDead(NewInst))
287       continue;
288 
289     for (auto Pair : BBMap)
290       if (Pair.second == NewInst) {
291         BBMap.erase(Pair.first);
292       }
293 
294     NewInst->eraseFromParent();
295     I = NewBB->rbegin();
296   }
297 }
298 
299 void BlockGenerator::copyStmt(ScopStmt &Stmt, LoopToScevMapT &LTS,
300                               isl_id_to_ast_expr *NewAccesses) {
301   assert(Stmt.isBlockStmt() &&
302          "Only block statements can be copied by the block generator");
303 
304   ValueMapT BBMap;
305 
306   BasicBlock *BB = Stmt.getBasicBlock();
307   copyBB(Stmt, BB, BBMap, LTS, NewAccesses);
308   removeDeadInstructions(BB, BBMap);
309 }
310 
311 BasicBlock *BlockGenerator::splitBB(BasicBlock *BB) {
312   BasicBlock *CopyBB = SplitBlock(Builder.GetInsertBlock(),
313                                   &*Builder.GetInsertPoint(), &DT, &LI);
314   CopyBB->setName("polly.stmt." + BB->getName());
315   return CopyBB;
316 }
317 
318 BasicBlock *BlockGenerator::copyBB(ScopStmt &Stmt, BasicBlock *BB,
319                                    ValueMapT &BBMap, LoopToScevMapT &LTS,
320                                    isl_id_to_ast_expr *NewAccesses) {
321   BasicBlock *CopyBB = splitBB(BB);
322   Builder.SetInsertPoint(&CopyBB->front());
323   generateScalarLoads(Stmt, BBMap);
324 
325   copyBB(Stmt, BB, CopyBB, BBMap, LTS, NewAccesses);
326 
327   // After a basic block was copied store all scalars that escape this block in
328   // their alloca.
329   generateScalarStores(Stmt, LTS, BBMap);
330   return CopyBB;
331 }
332 
333 void BlockGenerator::copyBB(ScopStmt &Stmt, BasicBlock *BB, BasicBlock *CopyBB,
334                             ValueMapT &BBMap, LoopToScevMapT &LTS,
335                             isl_id_to_ast_expr *NewAccesses) {
336   EntryBB = &CopyBB->getParent()->getEntryBlock();
337 
338   for (Instruction &Inst : *BB)
339     copyInstruction(Stmt, &Inst, BBMap, LTS, NewAccesses);
340 }
341 
342 Value *BlockGenerator::getOrCreateAlloca(Value *ScalarBase,
343                                          ScalarAllocaMapTy &Map,
344                                          const char *NameExt) {
345   // If no alloca was found create one and insert it in the entry block.
346   if (!Map.count(ScalarBase)) {
347     auto *Ty = ScalarBase->getType();
348     auto NewAddr = new AllocaInst(Ty, ScalarBase->getName() + NameExt);
349     EntryBB = &Builder.GetInsertBlock()->getParent()->getEntryBlock();
350     NewAddr->insertBefore(&*EntryBB->getFirstInsertionPt());
351     Map[ScalarBase] = NewAddr;
352   }
353 
354   auto Addr = Map[ScalarBase];
355 
356   if (auto NewAddr = GlobalMap.lookup(Addr))
357     return NewAddr;
358 
359   return Addr;
360 }
361 
362 Value *BlockGenerator::getOrCreateAlloca(const MemoryAccess &Access) {
363   assert(!Access.isArrayKind() && "Trying to get alloca for array kind");
364 
365   if (Access.isPHIKind())
366     return getOrCreatePHIAlloca(Access.getBaseAddr());
367   else
368     return getOrCreateScalarAlloca(Access.getBaseAddr());
369 }
370 
371 Value *BlockGenerator::getOrCreateAlloca(const ScopArrayInfo *Array) {
372   assert(!Array->isArrayKind() && "Trying to get alloca for array kind");
373 
374   if (Array->isPHIKind())
375     return getOrCreatePHIAlloca(Array->getBasePtr());
376   else
377     return getOrCreateScalarAlloca(Array->getBasePtr());
378 }
379 
380 Value *BlockGenerator::getOrCreateScalarAlloca(Value *ScalarBase) {
381   return getOrCreateAlloca(ScalarBase, ScalarMap, ".s2a");
382 }
383 
384 Value *BlockGenerator::getOrCreatePHIAlloca(Value *ScalarBase) {
385   return getOrCreateAlloca(ScalarBase, PHIOpMap, ".phiops");
386 }
387 
388 void BlockGenerator::handleOutsideUsers(const Scop &S, Instruction *Inst) {
389   // If there are escape users we get the alloca for this instruction and put it
390   // in the EscapeMap for later finalization. Lastly, if the instruction was
391   // copied multiple times we already did this and can exit.
392   if (EscapeMap.count(Inst))
393     return;
394 
395   EscapeUserVectorTy EscapeUsers;
396   for (User *U : Inst->users()) {
397 
398     // Non-instruction user will never escape.
399     Instruction *UI = dyn_cast<Instruction>(U);
400     if (!UI)
401       continue;
402 
403     if (S.contains(UI))
404       continue;
405 
406     EscapeUsers.push_back(UI);
407   }
408 
409   // Exit if no escape uses were found.
410   if (EscapeUsers.empty())
411     return;
412 
413   // Get or create an escape alloca for this instruction.
414   auto *ScalarAddr = getOrCreateScalarAlloca(Inst);
415 
416   // Remember that this instruction has escape uses and the escape alloca.
417   EscapeMap[Inst] = std::make_pair(ScalarAddr, std::move(EscapeUsers));
418 }
419 
420 void BlockGenerator::generateScalarLoads(ScopStmt &Stmt, ValueMapT &BBMap) {
421   for (MemoryAccess *MA : Stmt) {
422     if (MA->isArrayKind() || MA->isWrite())
423       continue;
424 
425     auto *Address = getOrCreateAlloca(*MA);
426     assert((!isa<Instruction>(Address) ||
427             DT.dominates(cast<Instruction>(Address)->getParent(),
428                          Builder.GetInsertBlock())) &&
429            "Domination violation");
430     BBMap[MA->getBaseAddr()] =
431         Builder.CreateLoad(Address, Address->getName() + ".reload");
432   }
433 }
434 
435 void BlockGenerator::generateScalarStores(ScopStmt &Stmt, LoopToScevMapT &LTS,
436                                           ValueMapT &BBMap) {
437   Loop *L = LI.getLoopFor(Stmt.getBasicBlock());
438 
439   assert(Stmt.isBlockStmt() && "Region statements need to use the "
440                                "generateScalarStores() function in the "
441                                "RegionGenerator");
442 
443   for (MemoryAccess *MA : Stmt) {
444     if (MA->isArrayKind() || MA->isRead())
445       continue;
446 
447     Value *Val = MA->getAccessValue();
448     if (MA->isAnyPHIKind()) {
449       assert(MA->getIncoming().size() >= 1 &&
450              "Block statements have exactly one exiting block, or multiple but "
451              "with same incoming block and value");
452       assert(std::all_of(MA->getIncoming().begin(), MA->getIncoming().end(),
453                          [&](std::pair<BasicBlock *, Value *> p) -> bool {
454                            return p.first == Stmt.getBasicBlock();
455                          }) &&
456              "Incoming block must be statement's block");
457       Val = MA->getIncoming()[0].second;
458     }
459     auto *Address = getOrCreateAlloca(*MA);
460 
461     Val = getNewValue(Stmt, Val, BBMap, LTS, L);
462     assert((!isa<Instruction>(Val) ||
463             DT.dominates(cast<Instruction>(Val)->getParent(),
464                          Builder.GetInsertBlock())) &&
465            "Domination violation");
466     assert((!isa<Instruction>(Address) ||
467             DT.dominates(cast<Instruction>(Address)->getParent(),
468                          Builder.GetInsertBlock())) &&
469            "Domination violation");
470     Builder.CreateStore(Val, Address);
471   }
472 }
473 
474 void BlockGenerator::createScalarInitialization(Scop &S) {
475   BasicBlock *ExitBB = S.getExit();
476 
477   // The split block __just before__ the region and optimized region.
478   BasicBlock *SplitBB = S.getEnteringBlock();
479   BranchInst *SplitBBTerm = cast<BranchInst>(SplitBB->getTerminator());
480   assert(SplitBBTerm->getNumSuccessors() == 2 && "Bad region entering block!");
481 
482   // Get the start block of the __optimized__ region.
483   BasicBlock *StartBB = SplitBBTerm->getSuccessor(0);
484   if (StartBB == S.getEntry())
485     StartBB = SplitBBTerm->getSuccessor(1);
486 
487   Builder.SetInsertPoint(&*StartBB->begin());
488 
489   for (auto &Array : S.arrays()) {
490     if (Array->getNumberOfDimensions() != 0)
491       continue;
492     if (Array->isPHIKind()) {
493       // For PHI nodes, the only values we need to store are the ones that
494       // reach the PHI node from outside the region. In general there should
495       // only be one such incoming edge and this edge should enter through
496       // 'SplitBB'.
497       auto PHI = cast<PHINode>(Array->getBasePtr());
498 
499       for (auto BI = PHI->block_begin(), BE = PHI->block_end(); BI != BE; BI++)
500         if (!S.contains(*BI) && *BI != SplitBB)
501           llvm_unreachable("Incoming edges from outside the scop should always "
502                            "come from SplitBB");
503 
504       int Idx = PHI->getBasicBlockIndex(SplitBB);
505       if (Idx < 0)
506         continue;
507 
508       Value *ScalarValue = PHI->getIncomingValue(Idx);
509 
510       Builder.CreateStore(ScalarValue, getOrCreatePHIAlloca(PHI));
511       continue;
512     }
513 
514     auto *Inst = dyn_cast<Instruction>(Array->getBasePtr());
515 
516     if (Inst && S.contains(Inst))
517       continue;
518 
519     // PHI nodes that are not marked as such in their SAI object are either exit
520     // PHI nodes we model as common scalars but without initialization, or
521     // incoming phi nodes that need to be initialized. Check if the first is the
522     // case for Inst and do not create and initialize memory if so.
523     if (auto *PHI = dyn_cast_or_null<PHINode>(Inst))
524       if (!S.hasSingleExitEdge() && PHI->getBasicBlockIndex(ExitBB) >= 0)
525         continue;
526 
527     Builder.CreateStore(Array->getBasePtr(),
528                         getOrCreateScalarAlloca(Array->getBasePtr()));
529   }
530 }
531 
532 void BlockGenerator::createScalarFinalization(Scop &S) {
533   // The exit block of the __unoptimized__ region.
534   BasicBlock *ExitBB = S.getExitingBlock();
535   // The merge block __just after__ the region and the optimized region.
536   BasicBlock *MergeBB = S.getExit();
537 
538   // The exit block of the __optimized__ region.
539   BasicBlock *OptExitBB = *(pred_begin(MergeBB));
540   if (OptExitBB == ExitBB)
541     OptExitBB = *(++pred_begin(MergeBB));
542 
543   Builder.SetInsertPoint(OptExitBB->getTerminator());
544   for (const auto &EscapeMapping : EscapeMap) {
545     // Extract the escaping instruction and the escaping users as well as the
546     // alloca the instruction was demoted to.
547     Instruction *EscapeInst = EscapeMapping.first;
548     const auto &EscapeMappingValue = EscapeMapping.second;
549     const EscapeUserVectorTy &EscapeUsers = EscapeMappingValue.second;
550     Value *ScalarAddr = EscapeMappingValue.first;
551 
552     // Reload the demoted instruction in the optimized version of the SCoP.
553     Value *EscapeInstReload =
554         Builder.CreateLoad(ScalarAddr, EscapeInst->getName() + ".final_reload");
555     EscapeInstReload =
556         Builder.CreateBitOrPointerCast(EscapeInstReload, EscapeInst->getType());
557 
558     // Create the merge PHI that merges the optimized and unoptimized version.
559     PHINode *MergePHI = PHINode::Create(EscapeInst->getType(), 2,
560                                         EscapeInst->getName() + ".merge");
561     MergePHI->insertBefore(&*MergeBB->getFirstInsertionPt());
562 
563     // Add the respective values to the merge PHI.
564     MergePHI->addIncoming(EscapeInstReload, OptExitBB);
565     MergePHI->addIncoming(EscapeInst, ExitBB);
566 
567     // The information of scalar evolution about the escaping instruction needs
568     // to be revoked so the new merged instruction will be used.
569     if (SE.isSCEVable(EscapeInst->getType()))
570       SE.forgetValue(EscapeInst);
571 
572     // Replace all uses of the demoted instruction with the merge PHI.
573     for (Instruction *EUser : EscapeUsers)
574       EUser->replaceUsesOfWith(EscapeInst, MergePHI);
575   }
576 }
577 
578 void BlockGenerator::findOutsideUsers(Scop &S) {
579   for (auto &Array : S.arrays()) {
580 
581     if (Array->getNumberOfDimensions() != 0)
582       continue;
583 
584     if (Array->isPHIKind())
585       continue;
586 
587     auto *Inst = dyn_cast<Instruction>(Array->getBasePtr());
588 
589     if (!Inst)
590       continue;
591 
592     // Scop invariant hoisting moves some of the base pointers out of the scop.
593     // We can ignore these, as the invariant load hoisting already registers the
594     // relevant outside users.
595     if (!S.contains(Inst))
596       continue;
597 
598     handleOutsideUsers(S, Inst);
599   }
600 }
601 
602 void BlockGenerator::createExitPHINodeMerges(Scop &S) {
603   if (S.hasSingleExitEdge())
604     return;
605 
606   auto *ExitBB = S.getExitingBlock();
607   auto *MergeBB = S.getExit();
608   auto *AfterMergeBB = MergeBB->getSingleSuccessor();
609   BasicBlock *OptExitBB = *(pred_begin(MergeBB));
610   if (OptExitBB == ExitBB)
611     OptExitBB = *(++pred_begin(MergeBB));
612 
613   Builder.SetInsertPoint(OptExitBB->getTerminator());
614 
615   for (auto &SAI : S.arrays()) {
616     auto *Val = SAI->getBasePtr();
617 
618     // Only Value-like scalars need a merge PHI. Exit block PHIs receive either
619     // the original PHI's value or the reloaded incoming values from the
620     // generated code. An llvm::Value is merged between the original code's
621     // value or the generated one.
622     if (!SAI->isValueKind() && !SAI->isExitPHIKind())
623       continue;
624 
625     PHINode *PHI = dyn_cast<PHINode>(Val);
626     if (!PHI)
627       continue;
628 
629     if (PHI->getParent() != AfterMergeBB)
630       continue;
631 
632     std::string Name = PHI->getName();
633     Value *ScalarAddr = getOrCreateScalarAlloca(PHI);
634     Value *Reload = Builder.CreateLoad(ScalarAddr, Name + ".ph.final_reload");
635     Reload = Builder.CreateBitOrPointerCast(Reload, PHI->getType());
636     Value *OriginalValue = PHI->getIncomingValueForBlock(MergeBB);
637     assert((!isa<Instruction>(OriginalValue) ||
638             cast<Instruction>(OriginalValue)->getParent() != MergeBB) &&
639            "Original value must no be one we just generated.");
640     auto *MergePHI = PHINode::Create(PHI->getType(), 2, Name + ".ph.merge");
641     MergePHI->insertBefore(&*MergeBB->getFirstInsertionPt());
642     MergePHI->addIncoming(Reload, OptExitBB);
643     MergePHI->addIncoming(OriginalValue, ExitBB);
644     int Idx = PHI->getBasicBlockIndex(MergeBB);
645     PHI->setIncomingValue(Idx, MergePHI);
646   }
647 }
648 
649 void BlockGenerator::invalidateScalarEvolution(Scop &S) {
650   for (auto &Stmt : S)
651     if (Stmt.isBlockStmt())
652       for (auto &Inst : *Stmt.getBasicBlock())
653         SE.forgetValue(&Inst);
654     else if (Stmt.isRegionStmt())
655       for (auto *BB : Stmt.getRegion()->blocks())
656         for (auto &Inst : *BB)
657           SE.forgetValue(&Inst);
658     else
659       llvm_unreachable("Unexpected statement type found");
660 }
661 
662 void BlockGenerator::finalizeSCoP(Scop &S) {
663   findOutsideUsers(S);
664   createScalarInitialization(S);
665   createExitPHINodeMerges(S);
666   createScalarFinalization(S);
667   invalidateScalarEvolution(S);
668 }
669 
670 VectorBlockGenerator::VectorBlockGenerator(BlockGenerator &BlockGen,
671                                            std::vector<LoopToScevMapT> &VLTS,
672                                            isl_map *Schedule)
673     : BlockGenerator(BlockGen), VLTS(VLTS), Schedule(Schedule) {
674   assert(Schedule && "No statement domain provided");
675 }
676 
677 Value *VectorBlockGenerator::getVectorValue(ScopStmt &Stmt, Value *Old,
678                                             ValueMapT &VectorMap,
679                                             VectorValueMapT &ScalarMaps,
680                                             Loop *L) {
681   if (Value *NewValue = VectorMap.lookup(Old))
682     return NewValue;
683 
684   int Width = getVectorWidth();
685 
686   Value *Vector = UndefValue::get(VectorType::get(Old->getType(), Width));
687 
688   for (int Lane = 0; Lane < Width; Lane++)
689     Vector = Builder.CreateInsertElement(
690         Vector, getNewValue(Stmt, Old, ScalarMaps[Lane], VLTS[Lane], L),
691         Builder.getInt32(Lane));
692 
693   VectorMap[Old] = Vector;
694 
695   return Vector;
696 }
697 
698 Type *VectorBlockGenerator::getVectorPtrTy(const Value *Val, int Width) {
699   PointerType *PointerTy = dyn_cast<PointerType>(Val->getType());
700   assert(PointerTy && "PointerType expected");
701 
702   Type *ScalarType = PointerTy->getElementType();
703   VectorType *VectorType = VectorType::get(ScalarType, Width);
704 
705   return PointerType::getUnqual(VectorType);
706 }
707 
708 Value *VectorBlockGenerator::generateStrideOneLoad(
709     ScopStmt &Stmt, LoadInst *Load, VectorValueMapT &ScalarMaps,
710     __isl_keep isl_id_to_ast_expr *NewAccesses, bool NegativeStride = false) {
711   unsigned VectorWidth = getVectorWidth();
712   auto *Pointer = Load->getPointerOperand();
713   Type *VectorPtrType = getVectorPtrTy(Pointer, VectorWidth);
714   unsigned Offset = NegativeStride ? VectorWidth - 1 : 0;
715 
716   Value *NewPointer = generateLocationAccessed(Stmt, Load, ScalarMaps[Offset],
717                                                VLTS[Offset], NewAccesses);
718   Value *VectorPtr =
719       Builder.CreateBitCast(NewPointer, VectorPtrType, "vector_ptr");
720   LoadInst *VecLoad =
721       Builder.CreateLoad(VectorPtr, Load->getName() + "_p_vec_full");
722   if (!Aligned)
723     VecLoad->setAlignment(8);
724 
725   if (NegativeStride) {
726     SmallVector<Constant *, 16> Indices;
727     for (int i = VectorWidth - 1; i >= 0; i--)
728       Indices.push_back(ConstantInt::get(Builder.getInt32Ty(), i));
729     Constant *SV = llvm::ConstantVector::get(Indices);
730     Value *RevVecLoad = Builder.CreateShuffleVector(
731         VecLoad, VecLoad, SV, Load->getName() + "_reverse");
732     return RevVecLoad;
733   }
734 
735   return VecLoad;
736 }
737 
738 Value *VectorBlockGenerator::generateStrideZeroLoad(
739     ScopStmt &Stmt, LoadInst *Load, ValueMapT &BBMap,
740     __isl_keep isl_id_to_ast_expr *NewAccesses) {
741   auto *Pointer = Load->getPointerOperand();
742   Type *VectorPtrType = getVectorPtrTy(Pointer, 1);
743   Value *NewPointer =
744       generateLocationAccessed(Stmt, Load, BBMap, VLTS[0], NewAccesses);
745   Value *VectorPtr = Builder.CreateBitCast(NewPointer, VectorPtrType,
746                                            Load->getName() + "_p_vec_p");
747   LoadInst *ScalarLoad =
748       Builder.CreateLoad(VectorPtr, Load->getName() + "_p_splat_one");
749 
750   if (!Aligned)
751     ScalarLoad->setAlignment(8);
752 
753   Constant *SplatVector = Constant::getNullValue(
754       VectorType::get(Builder.getInt32Ty(), getVectorWidth()));
755 
756   Value *VectorLoad = Builder.CreateShuffleVector(
757       ScalarLoad, ScalarLoad, SplatVector, Load->getName() + "_p_splat");
758   return VectorLoad;
759 }
760 
761 Value *VectorBlockGenerator::generateUnknownStrideLoad(
762     ScopStmt &Stmt, LoadInst *Load, VectorValueMapT &ScalarMaps,
763     __isl_keep isl_id_to_ast_expr *NewAccesses) {
764   int VectorWidth = getVectorWidth();
765   auto *Pointer = Load->getPointerOperand();
766   VectorType *VectorType = VectorType::get(
767       dyn_cast<PointerType>(Pointer->getType())->getElementType(), VectorWidth);
768 
769   Value *Vector = UndefValue::get(VectorType);
770 
771   for (int i = 0; i < VectorWidth; i++) {
772     Value *NewPointer = generateLocationAccessed(Stmt, Load, ScalarMaps[i],
773                                                  VLTS[i], NewAccesses);
774     Value *ScalarLoad =
775         Builder.CreateLoad(NewPointer, Load->getName() + "_p_scalar_");
776     Vector = Builder.CreateInsertElement(
777         Vector, ScalarLoad, Builder.getInt32(i), Load->getName() + "_p_vec_");
778   }
779 
780   return Vector;
781 }
782 
783 void VectorBlockGenerator::generateLoad(
784     ScopStmt &Stmt, LoadInst *Load, ValueMapT &VectorMap,
785     VectorValueMapT &ScalarMaps, __isl_keep isl_id_to_ast_expr *NewAccesses) {
786   if (Value *PreloadLoad = GlobalMap.lookup(Load)) {
787     VectorMap[Load] = Builder.CreateVectorSplat(getVectorWidth(), PreloadLoad,
788                                                 Load->getName() + "_p");
789     return;
790   }
791 
792   if (!VectorType::isValidElementType(Load->getType())) {
793     for (int i = 0; i < getVectorWidth(); i++)
794       ScalarMaps[i][Load] =
795           generateScalarLoad(Stmt, Load, ScalarMaps[i], VLTS[i], NewAccesses);
796     return;
797   }
798 
799   const MemoryAccess &Access = Stmt.getArrayAccessFor(Load);
800 
801   // Make sure we have scalar values available to access the pointer to
802   // the data location.
803   extractScalarValues(Load, VectorMap, ScalarMaps);
804 
805   Value *NewLoad;
806   if (Access.isStrideZero(isl_map_copy(Schedule)))
807     NewLoad = generateStrideZeroLoad(Stmt, Load, ScalarMaps[0], NewAccesses);
808   else if (Access.isStrideOne(isl_map_copy(Schedule)))
809     NewLoad = generateStrideOneLoad(Stmt, Load, ScalarMaps, NewAccesses);
810   else if (Access.isStrideX(isl_map_copy(Schedule), -1))
811     NewLoad = generateStrideOneLoad(Stmt, Load, ScalarMaps, NewAccesses, true);
812   else
813     NewLoad = generateUnknownStrideLoad(Stmt, Load, ScalarMaps, NewAccesses);
814 
815   VectorMap[Load] = NewLoad;
816 }
817 
818 void VectorBlockGenerator::copyUnaryInst(ScopStmt &Stmt, UnaryInstruction *Inst,
819                                          ValueMapT &VectorMap,
820                                          VectorValueMapT &ScalarMaps) {
821   int VectorWidth = getVectorWidth();
822   Value *NewOperand = getVectorValue(Stmt, Inst->getOperand(0), VectorMap,
823                                      ScalarMaps, getLoopForStmt(Stmt));
824 
825   assert(isa<CastInst>(Inst) && "Can not generate vector code for instruction");
826 
827   const CastInst *Cast = dyn_cast<CastInst>(Inst);
828   VectorType *DestType = VectorType::get(Inst->getType(), VectorWidth);
829   VectorMap[Inst] = Builder.CreateCast(Cast->getOpcode(), NewOperand, DestType);
830 }
831 
832 void VectorBlockGenerator::copyBinaryInst(ScopStmt &Stmt, BinaryOperator *Inst,
833                                           ValueMapT &VectorMap,
834                                           VectorValueMapT &ScalarMaps) {
835   Loop *L = getLoopForStmt(Stmt);
836   Value *OpZero = Inst->getOperand(0);
837   Value *OpOne = Inst->getOperand(1);
838 
839   Value *NewOpZero, *NewOpOne;
840   NewOpZero = getVectorValue(Stmt, OpZero, VectorMap, ScalarMaps, L);
841   NewOpOne = getVectorValue(Stmt, OpOne, VectorMap, ScalarMaps, L);
842 
843   Value *NewInst = Builder.CreateBinOp(Inst->getOpcode(), NewOpZero, NewOpOne,
844                                        Inst->getName() + "p_vec");
845   VectorMap[Inst] = NewInst;
846 }
847 
848 void VectorBlockGenerator::copyStore(
849     ScopStmt &Stmt, StoreInst *Store, ValueMapT &VectorMap,
850     VectorValueMapT &ScalarMaps, __isl_keep isl_id_to_ast_expr *NewAccesses) {
851   const MemoryAccess &Access = Stmt.getArrayAccessFor(Store);
852 
853   auto *Pointer = Store->getPointerOperand();
854   Value *Vector = getVectorValue(Stmt, Store->getValueOperand(), VectorMap,
855                                  ScalarMaps, getLoopForStmt(Stmt));
856 
857   // Make sure we have scalar values available to access the pointer to
858   // the data location.
859   extractScalarValues(Store, VectorMap, ScalarMaps);
860 
861   if (Access.isStrideOne(isl_map_copy(Schedule))) {
862     Type *VectorPtrType = getVectorPtrTy(Pointer, getVectorWidth());
863     Value *NewPointer = generateLocationAccessed(Stmt, Store, ScalarMaps[0],
864                                                  VLTS[0], NewAccesses);
865 
866     Value *VectorPtr =
867         Builder.CreateBitCast(NewPointer, VectorPtrType, "vector_ptr");
868     StoreInst *Store = Builder.CreateStore(Vector, VectorPtr);
869 
870     if (!Aligned)
871       Store->setAlignment(8);
872   } else {
873     for (unsigned i = 0; i < ScalarMaps.size(); i++) {
874       Value *Scalar = Builder.CreateExtractElement(Vector, Builder.getInt32(i));
875       Value *NewPointer = generateLocationAccessed(Stmt, Store, ScalarMaps[i],
876                                                    VLTS[i], NewAccesses);
877       Builder.CreateStore(Scalar, NewPointer);
878     }
879   }
880 }
881 
882 bool VectorBlockGenerator::hasVectorOperands(const Instruction *Inst,
883                                              ValueMapT &VectorMap) {
884   for (Value *Operand : Inst->operands())
885     if (VectorMap.count(Operand))
886       return true;
887   return false;
888 }
889 
890 bool VectorBlockGenerator::extractScalarValues(const Instruction *Inst,
891                                                ValueMapT &VectorMap,
892                                                VectorValueMapT &ScalarMaps) {
893   bool HasVectorOperand = false;
894   int VectorWidth = getVectorWidth();
895 
896   for (Value *Operand : Inst->operands()) {
897     ValueMapT::iterator VecOp = VectorMap.find(Operand);
898 
899     if (VecOp == VectorMap.end())
900       continue;
901 
902     HasVectorOperand = true;
903     Value *NewVector = VecOp->second;
904 
905     for (int i = 0; i < VectorWidth; ++i) {
906       ValueMapT &SM = ScalarMaps[i];
907 
908       // If there is one scalar extracted, all scalar elements should have
909       // already been extracted by the code here. So no need to check for the
910       // existence of all of them.
911       if (SM.count(Operand))
912         break;
913 
914       SM[Operand] =
915           Builder.CreateExtractElement(NewVector, Builder.getInt32(i));
916     }
917   }
918 
919   return HasVectorOperand;
920 }
921 
922 void VectorBlockGenerator::copyInstScalarized(
923     ScopStmt &Stmt, Instruction *Inst, ValueMapT &VectorMap,
924     VectorValueMapT &ScalarMaps, __isl_keep isl_id_to_ast_expr *NewAccesses) {
925   bool HasVectorOperand;
926   int VectorWidth = getVectorWidth();
927 
928   HasVectorOperand = extractScalarValues(Inst, VectorMap, ScalarMaps);
929 
930   for (int VectorLane = 0; VectorLane < getVectorWidth(); VectorLane++)
931     BlockGenerator::copyInstruction(Stmt, Inst, ScalarMaps[VectorLane],
932                                     VLTS[VectorLane], NewAccesses);
933 
934   if (!VectorType::isValidElementType(Inst->getType()) || !HasVectorOperand)
935     return;
936 
937   // Make the result available as vector value.
938   VectorType *VectorType = VectorType::get(Inst->getType(), VectorWidth);
939   Value *Vector = UndefValue::get(VectorType);
940 
941   for (int i = 0; i < VectorWidth; i++)
942     Vector = Builder.CreateInsertElement(Vector, ScalarMaps[i][Inst],
943                                          Builder.getInt32(i));
944 
945   VectorMap[Inst] = Vector;
946 }
947 
948 int VectorBlockGenerator::getVectorWidth() { return VLTS.size(); }
949 
950 void VectorBlockGenerator::copyInstruction(
951     ScopStmt &Stmt, Instruction *Inst, ValueMapT &VectorMap,
952     VectorValueMapT &ScalarMaps, __isl_keep isl_id_to_ast_expr *NewAccesses) {
953   // Terminator instructions control the control flow. They are explicitly
954   // expressed in the clast and do not need to be copied.
955   if (Inst->isTerminator())
956     return;
957 
958   if (canSyntheziseInStmt(Stmt, Inst))
959     return;
960 
961   if (auto *Load = dyn_cast<LoadInst>(Inst)) {
962     generateLoad(Stmt, Load, VectorMap, ScalarMaps, NewAccesses);
963     return;
964   }
965 
966   if (hasVectorOperands(Inst, VectorMap)) {
967     if (auto *Store = dyn_cast<StoreInst>(Inst)) {
968       copyStore(Stmt, Store, VectorMap, ScalarMaps, NewAccesses);
969       return;
970     }
971 
972     if (auto *Unary = dyn_cast<UnaryInstruction>(Inst)) {
973       copyUnaryInst(Stmt, Unary, VectorMap, ScalarMaps);
974       return;
975     }
976 
977     if (auto *Binary = dyn_cast<BinaryOperator>(Inst)) {
978       copyBinaryInst(Stmt, Binary, VectorMap, ScalarMaps);
979       return;
980     }
981 
982     // Falltrough: We generate scalar instructions, if we don't know how to
983     // generate vector code.
984   }
985 
986   copyInstScalarized(Stmt, Inst, VectorMap, ScalarMaps, NewAccesses);
987 }
988 
989 void VectorBlockGenerator::generateScalarVectorLoads(
990     ScopStmt &Stmt, ValueMapT &VectorBlockMap) {
991   for (MemoryAccess *MA : Stmt) {
992     if (MA->isArrayKind() || MA->isWrite())
993       continue;
994 
995     auto *Address = getOrCreateAlloca(*MA);
996     Type *VectorPtrType = getVectorPtrTy(Address, 1);
997     Value *VectorPtr = Builder.CreateBitCast(Address, VectorPtrType,
998                                              Address->getName() + "_p_vec_p");
999     auto *Val = Builder.CreateLoad(VectorPtr, Address->getName() + ".reload");
1000     Constant *SplatVector = Constant::getNullValue(
1001         VectorType::get(Builder.getInt32Ty(), getVectorWidth()));
1002 
1003     Value *VectorVal = Builder.CreateShuffleVector(
1004         Val, Val, SplatVector, Address->getName() + "_p_splat");
1005     VectorBlockMap[MA->getBaseAddr()] = VectorVal;
1006   }
1007 }
1008 
1009 void VectorBlockGenerator::verifyNoScalarStores(ScopStmt &Stmt) {
1010   for (MemoryAccess *MA : Stmt) {
1011     if (MA->isArrayKind() || MA->isRead())
1012       continue;
1013 
1014     llvm_unreachable("Scalar stores not expected in vector loop");
1015   }
1016 }
1017 
1018 void VectorBlockGenerator::copyStmt(
1019     ScopStmt &Stmt, __isl_keep isl_id_to_ast_expr *NewAccesses) {
1020   assert(Stmt.isBlockStmt() && "TODO: Only block statements can be copied by "
1021                                "the vector block generator");
1022 
1023   BasicBlock *BB = Stmt.getBasicBlock();
1024   BasicBlock *CopyBB = SplitBlock(Builder.GetInsertBlock(),
1025                                   &*Builder.GetInsertPoint(), &DT, &LI);
1026   CopyBB->setName("polly.stmt." + BB->getName());
1027   Builder.SetInsertPoint(&CopyBB->front());
1028 
1029   // Create two maps that store the mapping from the original instructions of
1030   // the old basic block to their copies in the new basic block. Those maps
1031   // are basic block local.
1032   //
1033   // As vector code generation is supported there is one map for scalar values
1034   // and one for vector values.
1035   //
1036   // In case we just do scalar code generation, the vectorMap is not used and
1037   // the scalarMap has just one dimension, which contains the mapping.
1038   //
1039   // In case vector code generation is done, an instruction may either appear
1040   // in the vector map once (as it is calculating >vectorwidth< values at a
1041   // time. Or (if the values are calculated using scalar operations), it
1042   // appears once in every dimension of the scalarMap.
1043   VectorValueMapT ScalarBlockMap(getVectorWidth());
1044   ValueMapT VectorBlockMap;
1045 
1046   generateScalarVectorLoads(Stmt, VectorBlockMap);
1047 
1048   for (Instruction &Inst : *BB)
1049     copyInstruction(Stmt, &Inst, VectorBlockMap, ScalarBlockMap, NewAccesses);
1050 
1051   verifyNoScalarStores(Stmt);
1052 }
1053 
1054 BasicBlock *RegionGenerator::repairDominance(BasicBlock *BB,
1055                                              BasicBlock *BBCopy) {
1056 
1057   BasicBlock *BBIDom = DT.getNode(BB)->getIDom()->getBlock();
1058   BasicBlock *BBCopyIDom = BlockMap.lookup(BBIDom);
1059 
1060   if (BBCopyIDom)
1061     DT.changeImmediateDominator(BBCopy, BBCopyIDom);
1062 
1063   return BBCopyIDom;
1064 }
1065 
1066 // This is to determine whether an llvm::Value (defined in @p BB) is usable when
1067 // leaving a subregion. The straight-forward DT.dominates(BB, R->getExitBlock())
1068 // does not work in cases where the exit block has edges from outside the
1069 // region. In that case the llvm::Value would never be usable in in the exit
1070 // block. The RegionGenerator however creates an new exit block ('ExitBBCopy')
1071 // for the subregion's exiting edges only. We need to determine whether an
1072 // llvm::Value is usable in there. We do this by checking whether it dominates
1073 // all exiting blocks individually.
1074 static bool isDominatingSubregionExit(const DominatorTree &DT, Region *R,
1075                                       BasicBlock *BB) {
1076   for (auto ExitingBB : predecessors(R->getExit())) {
1077     // Check for non-subregion incoming edges.
1078     if (!R->contains(ExitingBB))
1079       continue;
1080 
1081     if (!DT.dominates(BB, ExitingBB))
1082       return false;
1083   }
1084 
1085   return true;
1086 }
1087 
1088 // Find the direct dominator of the subregion's exit block if the subregion was
1089 // simplified.
1090 static BasicBlock *findExitDominator(DominatorTree &DT, Region *R) {
1091   BasicBlock *Common = nullptr;
1092   for (auto ExitingBB : predecessors(R->getExit())) {
1093     // Check for non-subregion incoming edges.
1094     if (!R->contains(ExitingBB))
1095       continue;
1096 
1097     // First exiting edge.
1098     if (!Common) {
1099       Common = ExitingBB;
1100       continue;
1101     }
1102 
1103     Common = DT.findNearestCommonDominator(Common, ExitingBB);
1104   }
1105 
1106   assert(Common && R->contains(Common));
1107   return Common;
1108 }
1109 
1110 void RegionGenerator::copyStmt(ScopStmt &Stmt, LoopToScevMapT &LTS,
1111                                isl_id_to_ast_expr *IdToAstExp) {
1112   assert(Stmt.isRegionStmt() &&
1113          "Only region statements can be copied by the region generator");
1114 
1115   // Forget all old mappings.
1116   BlockMap.clear();
1117   RegionMaps.clear();
1118   IncompletePHINodeMap.clear();
1119 
1120   // Collection of all values related to this subregion.
1121   ValueMapT ValueMap;
1122 
1123   // The region represented by the statement.
1124   Region *R = Stmt.getRegion();
1125 
1126   // Create a dedicated entry for the region where we can reload all demoted
1127   // inputs.
1128   BasicBlock *EntryBB = R->getEntry();
1129   BasicBlock *EntryBBCopy = SplitBlock(Builder.GetInsertBlock(),
1130                                        &*Builder.GetInsertPoint(), &DT, &LI);
1131   EntryBBCopy->setName("polly.stmt." + EntryBB->getName() + ".entry");
1132   Builder.SetInsertPoint(&EntryBBCopy->front());
1133 
1134   ValueMapT &EntryBBMap = RegionMaps[EntryBBCopy];
1135   generateScalarLoads(Stmt, EntryBBMap);
1136 
1137   for (auto PI = pred_begin(EntryBB), PE = pred_end(EntryBB); PI != PE; ++PI)
1138     if (!R->contains(*PI))
1139       BlockMap[*PI] = EntryBBCopy;
1140 
1141   // Iterate over all blocks in the region in a breadth-first search.
1142   std::deque<BasicBlock *> Blocks;
1143   SmallPtrSet<BasicBlock *, 8> SeenBlocks;
1144   Blocks.push_back(EntryBB);
1145   SeenBlocks.insert(EntryBB);
1146 
1147   while (!Blocks.empty()) {
1148     BasicBlock *BB = Blocks.front();
1149     Blocks.pop_front();
1150 
1151     // First split the block and update dominance information.
1152     BasicBlock *BBCopy = splitBB(BB);
1153     BasicBlock *BBCopyIDom = repairDominance(BB, BBCopy);
1154 
1155     // Get the mapping for this block and initialize it with either the scalar
1156     // loads from the generated entering block (which dominates all blocks of
1157     // this subregion) or the maps of the immediate dominator, if part of the
1158     // subregion. The latter necessarily includes the former.
1159     ValueMapT *InitBBMap;
1160     if (BBCopyIDom) {
1161       assert(RegionMaps.count(BBCopyIDom));
1162       InitBBMap = &RegionMaps[BBCopyIDom];
1163     } else
1164       InitBBMap = &EntryBBMap;
1165     auto Inserted = RegionMaps.insert(std::make_pair(BBCopy, *InitBBMap));
1166     ValueMapT &RegionMap = Inserted.first->second;
1167 
1168     // Copy the block with the BlockGenerator.
1169     Builder.SetInsertPoint(&BBCopy->front());
1170     copyBB(Stmt, BB, BBCopy, RegionMap, LTS, IdToAstExp);
1171 
1172     // In order to remap PHI nodes we store also basic block mappings.
1173     BlockMap[BB] = BBCopy;
1174 
1175     // Add values to incomplete PHI nodes waiting for this block to be copied.
1176     for (const PHINodePairTy &PHINodePair : IncompletePHINodeMap[BB])
1177       addOperandToPHI(Stmt, PHINodePair.first, PHINodePair.second, BB, LTS);
1178     IncompletePHINodeMap[BB].clear();
1179 
1180     // And continue with new successors inside the region.
1181     for (auto SI = succ_begin(BB), SE = succ_end(BB); SI != SE; SI++)
1182       if (R->contains(*SI) && SeenBlocks.insert(*SI).second)
1183         Blocks.push_back(*SI);
1184 
1185     // Remember value in case it is visible after this subregion.
1186     if (isDominatingSubregionExit(DT, R, BB))
1187       ValueMap.insert(RegionMap.begin(), RegionMap.end());
1188   }
1189 
1190   // Now create a new dedicated region exit block and add it to the region map.
1191   BasicBlock *ExitBBCopy = SplitBlock(Builder.GetInsertBlock(),
1192                                       &*Builder.GetInsertPoint(), &DT, &LI);
1193   ExitBBCopy->setName("polly.stmt." + R->getExit()->getName() + ".exit");
1194   BlockMap[R->getExit()] = ExitBBCopy;
1195 
1196   BasicBlock *ExitDomBBCopy = BlockMap.lookup(findExitDominator(DT, R));
1197   assert(ExitDomBBCopy && "Common exit dominator must be within region; at "
1198                           "least the entry node must match");
1199   DT.changeImmediateDominator(ExitBBCopy, ExitDomBBCopy);
1200 
1201   // As the block generator doesn't handle control flow we need to add the
1202   // region control flow by hand after all blocks have been copied.
1203   for (BasicBlock *BB : SeenBlocks) {
1204 
1205     BasicBlock *BBCopy = BlockMap[BB];
1206     TerminatorInst *TI = BB->getTerminator();
1207     if (isa<UnreachableInst>(TI)) {
1208       while (!BBCopy->empty())
1209         BBCopy->begin()->eraseFromParent();
1210       new UnreachableInst(BBCopy->getContext(), BBCopy);
1211       continue;
1212     }
1213 
1214     Instruction *BICopy = BBCopy->getTerminator();
1215 
1216     ValueMapT &RegionMap = RegionMaps[BBCopy];
1217     RegionMap.insert(BlockMap.begin(), BlockMap.end());
1218 
1219     Builder.SetInsertPoint(BICopy);
1220     copyInstScalar(Stmt, TI, RegionMap, LTS);
1221     BICopy->eraseFromParent();
1222   }
1223 
1224   // Add counting PHI nodes to all loops in the region that can be used as
1225   // replacement for SCEVs refering to the old loop.
1226   for (BasicBlock *BB : SeenBlocks) {
1227     Loop *L = LI.getLoopFor(BB);
1228     if (L == nullptr || L->getHeader() != BB || !R->contains(L))
1229       continue;
1230 
1231     BasicBlock *BBCopy = BlockMap[BB];
1232     Value *NullVal = Builder.getInt32(0);
1233     PHINode *LoopPHI =
1234         PHINode::Create(Builder.getInt32Ty(), 2, "polly.subregion.iv");
1235     Instruction *LoopPHIInc = BinaryOperator::CreateAdd(
1236         LoopPHI, Builder.getInt32(1), "polly.subregion.iv.inc");
1237     LoopPHI->insertBefore(&BBCopy->front());
1238     LoopPHIInc->insertBefore(BBCopy->getTerminator());
1239 
1240     for (auto *PredBB : make_range(pred_begin(BB), pred_end(BB))) {
1241       if (!R->contains(PredBB))
1242         continue;
1243       if (L->contains(PredBB))
1244         LoopPHI->addIncoming(LoopPHIInc, BlockMap[PredBB]);
1245       else
1246         LoopPHI->addIncoming(NullVal, BlockMap[PredBB]);
1247     }
1248 
1249     for (auto *PredBBCopy : make_range(pred_begin(BBCopy), pred_end(BBCopy)))
1250       if (LoopPHI->getBasicBlockIndex(PredBBCopy) < 0)
1251         LoopPHI->addIncoming(NullVal, PredBBCopy);
1252 
1253     LTS[L] = SE.getUnknown(LoopPHI);
1254   }
1255 
1256   // Continue generating code in the exit block.
1257   Builder.SetInsertPoint(&*ExitBBCopy->getFirstInsertionPt());
1258 
1259   // Write values visible to other statements.
1260   generateScalarStores(Stmt, LTS, ValueMap);
1261   BlockMap.clear();
1262   RegionMaps.clear();
1263   IncompletePHINodeMap.clear();
1264 }
1265 
1266 PHINode *RegionGenerator::buildExitPHI(MemoryAccess *MA, LoopToScevMapT &LTS,
1267                                        ValueMapT &BBMap, Loop *L) {
1268   ScopStmt *Stmt = MA->getStatement();
1269   Region *SubR = Stmt->getRegion();
1270   auto Incoming = MA->getIncoming();
1271 
1272   PollyIRBuilder::InsertPointGuard IPGuard(Builder);
1273   PHINode *OrigPHI = cast<PHINode>(MA->getAccessInstruction());
1274   BasicBlock *NewSubregionExit = Builder.GetInsertBlock();
1275 
1276   // This can happen if the subregion is simplified after the ScopStmts
1277   // have been created; simplification happens as part of CodeGeneration.
1278   if (OrigPHI->getParent() != SubR->getExit()) {
1279     BasicBlock *FormerExit = SubR->getExitingBlock();
1280     if (FormerExit)
1281       NewSubregionExit = BlockMap.lookup(FormerExit);
1282   }
1283 
1284   PHINode *NewPHI = PHINode::Create(OrigPHI->getType(), Incoming.size(),
1285                                     "polly." + OrigPHI->getName(),
1286                                     NewSubregionExit->getFirstNonPHI());
1287 
1288   // Add the incoming values to the PHI.
1289   for (auto &Pair : Incoming) {
1290     BasicBlock *OrigIncomingBlock = Pair.first;
1291     BasicBlock *NewIncomingBlock = BlockMap.lookup(OrigIncomingBlock);
1292     Builder.SetInsertPoint(NewIncomingBlock->getTerminator());
1293     assert(RegionMaps.count(NewIncomingBlock));
1294     ValueMapT *LocalBBMap = &RegionMaps[NewIncomingBlock];
1295 
1296     Value *OrigIncomingValue = Pair.second;
1297     Value *NewIncomingValue =
1298         getNewValue(*Stmt, OrigIncomingValue, *LocalBBMap, LTS, L);
1299     NewPHI->addIncoming(NewIncomingValue, NewIncomingBlock);
1300   }
1301 
1302   return NewPHI;
1303 }
1304 
1305 Value *RegionGenerator::getExitScalar(MemoryAccess *MA, LoopToScevMapT &LTS,
1306                                       ValueMapT &BBMap) {
1307   ScopStmt *Stmt = MA->getStatement();
1308 
1309   // TODO: Add some test cases that ensure this is really the right choice.
1310   Loop *L = LI.getLoopFor(Stmt->getRegion()->getExit());
1311 
1312   if (MA->isAnyPHIKind()) {
1313     auto Incoming = MA->getIncoming();
1314     assert(!Incoming.empty() &&
1315            "PHI WRITEs must have originate from at least one incoming block");
1316 
1317     // If there is only one incoming value, we do not need to create a PHI.
1318     if (Incoming.size() == 1) {
1319       Value *OldVal = Incoming[0].second;
1320       return getNewValue(*Stmt, OldVal, BBMap, LTS, L);
1321     }
1322 
1323     return buildExitPHI(MA, LTS, BBMap, L);
1324   }
1325 
1326   // MK_Value accesses leaving the subregion must dominate the exit block; just
1327   // pass the copied value
1328   Value *OldVal = MA->getAccessValue();
1329   return getNewValue(*Stmt, OldVal, BBMap, LTS, L);
1330 }
1331 
1332 void RegionGenerator::generateScalarStores(ScopStmt &Stmt, LoopToScevMapT &LTS,
1333                                            ValueMapT &BBMap) {
1334   assert(Stmt.getRegion() &&
1335          "Block statements need to use the generateScalarStores() "
1336          "function in the BlockGenerator");
1337 
1338   for (MemoryAccess *MA : Stmt) {
1339     if (MA->isArrayKind() || MA->isRead())
1340       continue;
1341 
1342     Value *NewVal = getExitScalar(MA, LTS, BBMap);
1343     Value *Address = getOrCreateAlloca(*MA);
1344     assert((!isa<Instruction>(NewVal) ||
1345             DT.dominates(cast<Instruction>(NewVal)->getParent(),
1346                          Builder.GetInsertBlock())) &&
1347            "Domination violation");
1348     assert((!isa<Instruction>(Address) ||
1349             DT.dominates(cast<Instruction>(Address)->getParent(),
1350                          Builder.GetInsertBlock())) &&
1351            "Domination violation");
1352     Builder.CreateStore(NewVal, Address);
1353   }
1354 }
1355 
1356 void RegionGenerator::addOperandToPHI(ScopStmt &Stmt, const PHINode *PHI,
1357                                       PHINode *PHICopy, BasicBlock *IncomingBB,
1358                                       LoopToScevMapT &LTS) {
1359   Region *StmtR = Stmt.getRegion();
1360 
1361   // If the incoming block was not yet copied mark this PHI as incomplete.
1362   // Once the block will be copied the incoming value will be added.
1363   BasicBlock *BBCopy = BlockMap[IncomingBB];
1364   if (!BBCopy) {
1365     assert(StmtR->contains(IncomingBB) &&
1366            "Bad incoming block for PHI in non-affine region");
1367     IncompletePHINodeMap[IncomingBB].push_back(std::make_pair(PHI, PHICopy));
1368     return;
1369   }
1370 
1371   Value *OpCopy = nullptr;
1372   if (StmtR->contains(IncomingBB)) {
1373     assert(RegionMaps.count(BBCopy) &&
1374            "Incoming PHI block did not have a BBMap");
1375     ValueMapT &BBCopyMap = RegionMaps[BBCopy];
1376 
1377     Value *Op = PHI->getIncomingValueForBlock(IncomingBB);
1378 
1379     // If the current insert block is different from the PHIs incoming block
1380     // change it, otherwise do not.
1381     auto IP = Builder.GetInsertPoint();
1382     if (IP->getParent() != BBCopy)
1383       Builder.SetInsertPoint(BBCopy->getTerminator());
1384     OpCopy = getNewValue(Stmt, Op, BBCopyMap, LTS, getLoopForStmt(Stmt));
1385     if (IP->getParent() != BBCopy)
1386       Builder.SetInsertPoint(&*IP);
1387   } else {
1388 
1389     if (PHICopy->getBasicBlockIndex(BBCopy) >= 0)
1390       return;
1391 
1392     Value *PHIOpAddr = getOrCreatePHIAlloca(const_cast<PHINode *>(PHI));
1393     OpCopy = new LoadInst(PHIOpAddr, PHIOpAddr->getName() + ".reload",
1394                           BlockMap[IncomingBB]->getTerminator());
1395   }
1396 
1397   assert(OpCopy && "Incoming PHI value was not copied properly");
1398   assert(BBCopy && "Incoming PHI block was not copied properly");
1399   PHICopy->addIncoming(OpCopy, BBCopy);
1400 }
1401 
1402 void RegionGenerator::copyPHIInstruction(ScopStmt &Stmt, PHINode *PHI,
1403                                          ValueMapT &BBMap,
1404                                          LoopToScevMapT &LTS) {
1405   unsigned NumIncoming = PHI->getNumIncomingValues();
1406   PHINode *PHICopy =
1407       Builder.CreatePHI(PHI->getType(), NumIncoming, "polly." + PHI->getName());
1408   PHICopy->moveBefore(PHICopy->getParent()->getFirstNonPHI());
1409   BBMap[PHI] = PHICopy;
1410 
1411   for (unsigned u = 0; u < NumIncoming; u++)
1412     addOperandToPHI(Stmt, PHI, PHICopy, PHI->getIncomingBlock(u), LTS);
1413 }
1414