1 //===--- BlockGenerators.cpp - Generate code for statements -----*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the BlockGenerator and VectorBlockGenerator classes, 11 // which generate sequential code and vectorized code for a polyhedral 12 // statement, respectively. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "polly/CodeGen/BlockGenerators.h" 17 #include "polly/CodeGen/CodeGeneration.h" 18 #include "polly/CodeGen/IslExprBuilder.h" 19 #include "polly/CodeGen/RuntimeDebugBuilder.h" 20 #include "polly/Options.h" 21 #include "polly/ScopInfo.h" 22 #include "polly/Support/GICHelper.h" 23 #include "polly/Support/SCEVValidator.h" 24 #include "polly/Support/ScopHelper.h" 25 #include "llvm/Analysis/LoopInfo.h" 26 #include "llvm/Analysis/RegionInfo.h" 27 #include "llvm/Analysis/ScalarEvolution.h" 28 #include "llvm/IR/IntrinsicInst.h" 29 #include "llvm/IR/Module.h" 30 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 31 #include "llvm/Transforms/Utils/Local.h" 32 #include "isl/aff.h" 33 #include "isl/ast.h" 34 #include "isl/ast_build.h" 35 #include "isl/set.h" 36 #include <deque> 37 38 using namespace llvm; 39 using namespace polly; 40 41 static cl::opt<bool> Aligned("enable-polly-aligned", 42 cl::desc("Assumed aligned memory accesses."), 43 cl::Hidden, cl::init(false), cl::ZeroOrMore, 44 cl::cat(PollyCategory)); 45 46 bool PollyDebugPrinting; 47 static cl::opt<bool, true> DebugPrintingX( 48 "polly-codegen-add-debug-printing", 49 cl::desc("Add printf calls that show the values loaded/stored."), 50 cl::location(PollyDebugPrinting), cl::Hidden, cl::init(false), 51 cl::ZeroOrMore, cl::cat(PollyCategory)); 52 53 BlockGenerator::BlockGenerator( 54 PollyIRBuilder &B, LoopInfo &LI, ScalarEvolution &SE, DominatorTree &DT, 55 AllocaMapTy &ScalarMap, EscapeUsersAllocaMapTy &EscapeMap, 56 ValueMapT &GlobalMap, IslExprBuilder *ExprBuilder, BasicBlock *StartBlock) 57 : Builder(B), LI(LI), SE(SE), ExprBuilder(ExprBuilder), DT(DT), 58 EntryBB(nullptr), ScalarMap(ScalarMap), EscapeMap(EscapeMap), 59 GlobalMap(GlobalMap), StartBlock(StartBlock) {} 60 61 Value *BlockGenerator::trySynthesizeNewValue(ScopStmt &Stmt, Value *Old, 62 ValueMapT &BBMap, 63 LoopToScevMapT <S, 64 Loop *L) const { 65 if (!SE.isSCEVable(Old->getType())) 66 return nullptr; 67 68 const SCEV *Scev = SE.getSCEVAtScope(Old, L); 69 if (!Scev) 70 return nullptr; 71 72 if (isa<SCEVCouldNotCompute>(Scev)) 73 return nullptr; 74 75 const SCEV *NewScev = SCEVLoopAddRecRewriter::rewrite(Scev, LTS, SE); 76 ValueMapT VTV; 77 VTV.insert(BBMap.begin(), BBMap.end()); 78 VTV.insert(GlobalMap.begin(), GlobalMap.end()); 79 80 Scop &S = *Stmt.getParent(); 81 const DataLayout &DL = S.getFunction().getParent()->getDataLayout(); 82 auto IP = Builder.GetInsertPoint(); 83 84 assert(IP != Builder.GetInsertBlock()->end() && 85 "Only instructions can be insert points for SCEVExpander"); 86 Value *Expanded = 87 expandCodeFor(S, SE, DL, "polly", NewScev, Old->getType(), &*IP, &VTV, 88 StartBlock->getSinglePredecessor()); 89 90 BBMap[Old] = Expanded; 91 return Expanded; 92 } 93 94 Value *BlockGenerator::getNewValue(ScopStmt &Stmt, Value *Old, ValueMapT &BBMap, 95 LoopToScevMapT <S, Loop *L) const { 96 // Constants that do not reference any named value can always remain 97 // unchanged. Handle them early to avoid expensive map lookups. We do not take 98 // the fast-path for external constants which are referenced through globals 99 // as these may need to be rewritten when distributing code accross different 100 // LLVM modules. 101 if (isa<Constant>(Old) && !isa<GlobalValue>(Old)) 102 return Old; 103 104 // Inline asm is like a constant to us. 105 if (isa<InlineAsm>(Old)) 106 return Old; 107 108 if (Value *New = GlobalMap.lookup(Old)) { 109 if (Value *NewRemapped = GlobalMap.lookup(New)) 110 New = NewRemapped; 111 if (Old->getType()->getScalarSizeInBits() < 112 New->getType()->getScalarSizeInBits()) 113 New = Builder.CreateTruncOrBitCast(New, Old->getType()); 114 115 return New; 116 } 117 118 if (Value *New = BBMap.lookup(Old)) 119 return New; 120 121 if (Value *New = trySynthesizeNewValue(Stmt, Old, BBMap, LTS, L)) 122 return New; 123 124 // A scop-constant value defined by a global or a function parameter. 125 if (isa<GlobalValue>(Old) || isa<Argument>(Old)) 126 return Old; 127 128 // A scop-constant value defined by an instruction executed outside the scop. 129 if (const Instruction *Inst = dyn_cast<Instruction>(Old)) 130 if (!Stmt.getParent()->contains(Inst->getParent())) 131 return Old; 132 133 // The scalar dependence is neither available nor SCEVCodegenable. 134 llvm_unreachable("Unexpected scalar dependence in region!"); 135 return nullptr; 136 } 137 138 void BlockGenerator::copyInstScalar(ScopStmt &Stmt, Instruction *Inst, 139 ValueMapT &BBMap, LoopToScevMapT <S) { 140 // We do not generate debug intrinsics as we did not investigate how to 141 // copy them correctly. At the current state, they just crash the code 142 // generation as the meta-data operands are not correctly copied. 143 if (isa<DbgInfoIntrinsic>(Inst)) 144 return; 145 146 Instruction *NewInst = Inst->clone(); 147 148 // Replace old operands with the new ones. 149 for (Value *OldOperand : Inst->operands()) { 150 Value *NewOperand = 151 getNewValue(Stmt, OldOperand, BBMap, LTS, getLoopForStmt(Stmt)); 152 153 if (!NewOperand) { 154 assert(!isa<StoreInst>(NewInst) && 155 "Store instructions are always needed!"); 156 delete NewInst; 157 return; 158 } 159 160 NewInst->replaceUsesOfWith(OldOperand, NewOperand); 161 } 162 163 Builder.Insert(NewInst); 164 BBMap[Inst] = NewInst; 165 166 if (!NewInst->getType()->isVoidTy()) 167 NewInst->setName("p_" + Inst->getName()); 168 } 169 170 Value * 171 BlockGenerator::generateLocationAccessed(ScopStmt &Stmt, MemAccInst Inst, 172 ValueMapT &BBMap, LoopToScevMapT <S, 173 isl_id_to_ast_expr *NewAccesses) { 174 const MemoryAccess &MA = Stmt.getArrayAccessFor(Inst); 175 return generateLocationAccessed( 176 Stmt, getLoopForStmt(Stmt), 177 Inst.isNull() ? nullptr : Inst.getPointerOperand(), BBMap, LTS, 178 NewAccesses, MA.getId(), MA.getAccessValue()->getType()); 179 } 180 181 Value *BlockGenerator::generateLocationAccessed( 182 ScopStmt &Stmt, Loop *L, Value *Pointer, ValueMapT &BBMap, 183 LoopToScevMapT <S, isl_id_to_ast_expr *NewAccesses, __isl_take isl_id *Id, 184 Type *ExpectedType) { 185 isl_ast_expr *AccessExpr = isl_id_to_ast_expr_get(NewAccesses, Id); 186 187 if (AccessExpr) { 188 AccessExpr = isl_ast_expr_address_of(AccessExpr); 189 auto Address = ExprBuilder->create(AccessExpr); 190 191 // Cast the address of this memory access to a pointer type that has the 192 // same element type as the original access, but uses the address space of 193 // the newly generated pointer. 194 auto OldPtrTy = ExpectedType->getPointerTo(); 195 auto NewPtrTy = Address->getType(); 196 OldPtrTy = PointerType::get(OldPtrTy->getElementType(), 197 NewPtrTy->getPointerAddressSpace()); 198 199 if (OldPtrTy != NewPtrTy) 200 Address = Builder.CreateBitOrPointerCast(Address, OldPtrTy); 201 return Address; 202 } 203 assert( 204 Pointer && 205 "If expression was not generated, must use the original pointer value"); 206 return getNewValue(Stmt, Pointer, BBMap, LTS, L); 207 } 208 209 Value * 210 BlockGenerator::getImplicitAddress(MemoryAccess &Access, Loop *L, 211 LoopToScevMapT <S, ValueMapT &BBMap, 212 __isl_keep isl_id_to_ast_expr *NewAccesses) { 213 if (Access.isLatestArrayKind()) 214 return generateLocationAccessed(*Access.getStatement(), L, nullptr, BBMap, 215 LTS, NewAccesses, Access.getId(), 216 Access.getAccessValue()->getType()); 217 218 return getOrCreateAlloca(Access); 219 } 220 221 Loop *BlockGenerator::getLoopForStmt(const ScopStmt &Stmt) const { 222 auto *StmtBB = Stmt.getEntryBlock(); 223 return LI.getLoopFor(StmtBB); 224 } 225 226 Value *BlockGenerator::generateArrayLoad(ScopStmt &Stmt, LoadInst *Load, 227 ValueMapT &BBMap, LoopToScevMapT <S, 228 isl_id_to_ast_expr *NewAccesses) { 229 if (Value *PreloadLoad = GlobalMap.lookup(Load)) 230 return PreloadLoad; 231 232 Value *NewPointer = 233 generateLocationAccessed(Stmt, Load, BBMap, LTS, NewAccesses); 234 Value *ScalarLoad = Builder.CreateAlignedLoad( 235 NewPointer, Load->getAlignment(), Load->getName() + "_p_scalar_"); 236 237 if (PollyDebugPrinting) 238 RuntimeDebugBuilder::createCPUPrinter(Builder, "Load from ", NewPointer, 239 ": ", ScalarLoad, "\n"); 240 241 return ScalarLoad; 242 } 243 244 void BlockGenerator::generateArrayStore(ScopStmt &Stmt, StoreInst *Store, 245 ValueMapT &BBMap, LoopToScevMapT <S, 246 isl_id_to_ast_expr *NewAccesses) { 247 Value *NewPointer = 248 generateLocationAccessed(Stmt, Store, BBMap, LTS, NewAccesses); 249 Value *ValueOperand = getNewValue(Stmt, Store->getValueOperand(), BBMap, LTS, 250 getLoopForStmt(Stmt)); 251 252 if (PollyDebugPrinting) 253 RuntimeDebugBuilder::createCPUPrinter(Builder, "Store to ", NewPointer, 254 ": ", ValueOperand, "\n"); 255 256 Builder.CreateAlignedStore(ValueOperand, NewPointer, Store->getAlignment()); 257 } 258 259 bool BlockGenerator::canSyntheziseInStmt(ScopStmt &Stmt, Instruction *Inst) { 260 Loop *L = getLoopForStmt(Stmt); 261 return (Stmt.isBlockStmt() || !Stmt.getRegion()->contains(L)) && 262 canSynthesize(Inst, *Stmt.getParent(), &SE, L); 263 } 264 265 void BlockGenerator::copyInstruction(ScopStmt &Stmt, Instruction *Inst, 266 ValueMapT &BBMap, LoopToScevMapT <S, 267 isl_id_to_ast_expr *NewAccesses) { 268 // Terminator instructions control the control flow. They are explicitly 269 // expressed in the clast and do not need to be copied. 270 if (Inst->isTerminator()) 271 return; 272 273 // Synthesizable statements will be generated on-demand. 274 if (canSyntheziseInStmt(Stmt, Inst)) 275 return; 276 277 if (auto *Load = dyn_cast<LoadInst>(Inst)) { 278 Value *NewLoad = generateArrayLoad(Stmt, Load, BBMap, LTS, NewAccesses); 279 // Compute NewLoad before its insertion in BBMap to make the insertion 280 // deterministic. 281 BBMap[Load] = NewLoad; 282 return; 283 } 284 285 if (auto *Store = dyn_cast<StoreInst>(Inst)) { 286 // Identified as redundant by -polly-simplify. 287 if (!Stmt.getArrayAccessOrNULLFor(Store)) 288 return; 289 290 generateArrayStore(Stmt, Store, BBMap, LTS, NewAccesses); 291 return; 292 } 293 294 if (auto *PHI = dyn_cast<PHINode>(Inst)) { 295 copyPHIInstruction(Stmt, PHI, BBMap, LTS); 296 return; 297 } 298 299 // Skip some special intrinsics for which we do not adjust the semantics to 300 // the new schedule. All others are handled like every other instruction. 301 if (isIgnoredIntrinsic(Inst)) 302 return; 303 304 copyInstScalar(Stmt, Inst, BBMap, LTS); 305 } 306 307 void BlockGenerator::removeDeadInstructions(BasicBlock *BB, ValueMapT &BBMap) { 308 auto NewBB = Builder.GetInsertBlock(); 309 for (auto I = NewBB->rbegin(); I != NewBB->rend(); I++) { 310 Instruction *NewInst = &*I; 311 312 if (!isInstructionTriviallyDead(NewInst)) 313 continue; 314 315 for (auto Pair : BBMap) 316 if (Pair.second == NewInst) { 317 BBMap.erase(Pair.first); 318 } 319 320 NewInst->eraseFromParent(); 321 I = NewBB->rbegin(); 322 } 323 } 324 325 void BlockGenerator::copyStmt(ScopStmt &Stmt, LoopToScevMapT <S, 326 isl_id_to_ast_expr *NewAccesses) { 327 assert(Stmt.isBlockStmt() && 328 "Only block statements can be copied by the block generator"); 329 330 ValueMapT BBMap; 331 332 BasicBlock *BB = Stmt.getBasicBlock(); 333 copyBB(Stmt, BB, BBMap, LTS, NewAccesses); 334 removeDeadInstructions(BB, BBMap); 335 } 336 337 BasicBlock *BlockGenerator::splitBB(BasicBlock *BB) { 338 BasicBlock *CopyBB = SplitBlock(Builder.GetInsertBlock(), 339 &*Builder.GetInsertPoint(), &DT, &LI); 340 CopyBB->setName("polly.stmt." + BB->getName()); 341 return CopyBB; 342 } 343 344 BasicBlock *BlockGenerator::copyBB(ScopStmt &Stmt, BasicBlock *BB, 345 ValueMapT &BBMap, LoopToScevMapT <S, 346 isl_id_to_ast_expr *NewAccesses) { 347 BasicBlock *CopyBB = splitBB(BB); 348 Builder.SetInsertPoint(&CopyBB->front()); 349 generateScalarLoads(Stmt, LTS, BBMap, NewAccesses); 350 351 copyBB(Stmt, BB, CopyBB, BBMap, LTS, NewAccesses); 352 353 // After a basic block was copied store all scalars that escape this block in 354 // their alloca. 355 generateScalarStores(Stmt, LTS, BBMap, NewAccesses); 356 return CopyBB; 357 } 358 359 void BlockGenerator::copyBB(ScopStmt &Stmt, BasicBlock *BB, BasicBlock *CopyBB, 360 ValueMapT &BBMap, LoopToScevMapT <S, 361 isl_id_to_ast_expr *NewAccesses) { 362 EntryBB = &CopyBB->getParent()->getEntryBlock(); 363 364 for (Instruction &Inst : *BB) 365 copyInstruction(Stmt, &Inst, BBMap, LTS, NewAccesses); 366 } 367 368 Value *BlockGenerator::getOrCreateAlloca(const MemoryAccess &Access) { 369 assert(!Access.isLatestArrayKind() && "Trying to get alloca for array kind"); 370 371 return getOrCreateAlloca(Access.getLatestScopArrayInfo()); 372 } 373 374 Value *BlockGenerator::getOrCreateAlloca(const ScopArrayInfo *Array) { 375 assert(!Array->isArrayKind() && "Trying to get alloca for array kind"); 376 377 auto &Addr = ScalarMap[Array]; 378 379 if (Addr) { 380 // Allow allocas to be (temporarily) redirected once by adding a new 381 // old-alloca-addr to new-addr mapping to GlobalMap. This funcitionality 382 // is used for example by the OpenMP code generation where a first use 383 // of a scalar while still in the host code allocates a normal alloca with 384 // getOrCreateAlloca. When the values of this scalar are accessed during 385 // the generation of the parallel subfunction, these values are copied over 386 // to the parallel subfunction and each request for a scalar alloca slot 387 // must be forwared to the temporary in-subfunction slot. This mapping is 388 // removed when the subfunction has been generated and again normal host 389 // code is generated. Due to the following reasons it is not possible to 390 // perform the GlobalMap lookup right after creating the alloca below, but 391 // instead we need to check GlobalMap at each call to getOrCreateAlloca: 392 // 393 // 1) GlobalMap may be changed multiple times (for each parallel loop), 394 // 2) The temporary mapping is commonly only known after the initial 395 // alloca has already been generated, and 396 // 3) The original alloca value must be restored after leaving the 397 // sub-function. 398 if (Value *NewAddr = GlobalMap.lookup(&*Addr)) 399 return NewAddr; 400 return Addr; 401 } 402 403 Type *Ty = Array->getElementType(); 404 Value *ScalarBase = Array->getBasePtr(); 405 std::string NameExt; 406 if (Array->isPHIKind()) 407 NameExt = ".phiops"; 408 else 409 NameExt = ".s2a"; 410 411 const DataLayout &DL = Builder.GetInsertBlock()->getModule()->getDataLayout(); 412 413 Addr = new AllocaInst(Ty, DL.getAllocaAddrSpace(), 414 ScalarBase->getName() + NameExt); 415 EntryBB = &Builder.GetInsertBlock()->getParent()->getEntryBlock(); 416 Addr->insertBefore(&*EntryBB->getFirstInsertionPt()); 417 418 return Addr; 419 } 420 421 void BlockGenerator::handleOutsideUsers(const Scop &S, ScopArrayInfo *Array) { 422 Instruction *Inst = cast<Instruction>(Array->getBasePtr()); 423 424 // If there are escape users we get the alloca for this instruction and put it 425 // in the EscapeMap for later finalization. Lastly, if the instruction was 426 // copied multiple times we already did this and can exit. 427 if (EscapeMap.count(Inst)) 428 return; 429 430 EscapeUserVectorTy EscapeUsers; 431 for (User *U : Inst->users()) { 432 433 // Non-instruction user will never escape. 434 Instruction *UI = dyn_cast<Instruction>(U); 435 if (!UI) 436 continue; 437 438 if (S.contains(UI)) 439 continue; 440 441 EscapeUsers.push_back(UI); 442 } 443 444 // Exit if no escape uses were found. 445 if (EscapeUsers.empty()) 446 return; 447 448 // Get or create an escape alloca for this instruction. 449 auto *ScalarAddr = getOrCreateAlloca(Array); 450 451 // Remember that this instruction has escape uses and the escape alloca. 452 EscapeMap[Inst] = std::make_pair(ScalarAddr, std::move(EscapeUsers)); 453 } 454 455 void BlockGenerator::generateScalarLoads( 456 ScopStmt &Stmt, LoopToScevMapT <S, ValueMapT &BBMap, 457 __isl_keep isl_id_to_ast_expr *NewAccesses) { 458 for (MemoryAccess *MA : Stmt) { 459 if (MA->isOriginalArrayKind() || MA->isWrite()) 460 continue; 461 462 #ifndef NDEBUG 463 auto *StmtDom = Stmt.getDomain(); 464 auto *AccDom = isl_map_domain(MA->getAccessRelation()); 465 assert(isl_set_is_subset(StmtDom, AccDom) && 466 "Scalar must be loaded in all statement instances"); 467 isl_set_free(StmtDom); 468 isl_set_free(AccDom); 469 #endif 470 471 auto *Address = 472 getImplicitAddress(*MA, getLoopForStmt(Stmt), LTS, BBMap, NewAccesses); 473 assert((!isa<Instruction>(Address) || 474 DT.dominates(cast<Instruction>(Address)->getParent(), 475 Builder.GetInsertBlock())) && 476 "Domination violation"); 477 BBMap[MA->getAccessValue()] = 478 Builder.CreateLoad(Address, Address->getName() + ".reload"); 479 } 480 } 481 482 void BlockGenerator::generateScalarStores( 483 ScopStmt &Stmt, LoopToScevMapT <S, ValueMapT &BBMap, 484 __isl_keep isl_id_to_ast_expr *NewAccesses) { 485 Loop *L = LI.getLoopFor(Stmt.getBasicBlock()); 486 487 assert(Stmt.isBlockStmt() && 488 "Region statements need to use the generateScalarStores() function in " 489 "the RegionGenerator"); 490 491 for (MemoryAccess *MA : Stmt) { 492 if (MA->isOriginalArrayKind() || MA->isRead()) 493 continue; 494 495 #ifndef NDEBUG 496 auto *StmtDom = Stmt.getDomain(); 497 auto *AccDom = isl_map_domain(MA->getAccessRelation()); 498 assert(isl_set_is_subset(StmtDom, AccDom) && 499 "Scalar must be stored in all statement instances"); 500 isl_set_free(StmtDom); 501 isl_set_free(AccDom); 502 #endif 503 504 Value *Val = MA->getAccessValue(); 505 if (MA->isAnyPHIKind()) { 506 assert(MA->getIncoming().size() >= 1 && 507 "Block statements have exactly one exiting block, or multiple but " 508 "with same incoming block and value"); 509 assert(std::all_of(MA->getIncoming().begin(), MA->getIncoming().end(), 510 [&](std::pair<BasicBlock *, Value *> p) -> bool { 511 return p.first == Stmt.getBasicBlock(); 512 }) && 513 "Incoming block must be statement's block"); 514 Val = MA->getIncoming()[0].second; 515 } 516 auto Address = 517 getImplicitAddress(*MA, getLoopForStmt(Stmt), LTS, BBMap, NewAccesses); 518 519 Val = getNewValue(Stmt, Val, BBMap, LTS, L); 520 assert((!isa<Instruction>(Val) || 521 DT.dominates(cast<Instruction>(Val)->getParent(), 522 Builder.GetInsertBlock())) && 523 "Domination violation"); 524 assert((!isa<Instruction>(Address) || 525 DT.dominates(cast<Instruction>(Address)->getParent(), 526 Builder.GetInsertBlock())) && 527 "Domination violation"); 528 Builder.CreateStore(Val, Address); 529 } 530 } 531 532 void BlockGenerator::createScalarInitialization(Scop &S) { 533 BasicBlock *ExitBB = S.getExit(); 534 BasicBlock *PreEntryBB = S.getEnteringBlock(); 535 536 Builder.SetInsertPoint(&*StartBlock->begin()); 537 538 for (auto &Array : S.arrays()) { 539 if (Array->getNumberOfDimensions() != 0) 540 continue; 541 if (Array->isPHIKind()) { 542 // For PHI nodes, the only values we need to store are the ones that 543 // reach the PHI node from outside the region. In general there should 544 // only be one such incoming edge and this edge should enter through 545 // 'PreEntryBB'. 546 auto PHI = cast<PHINode>(Array->getBasePtr()); 547 548 for (auto BI = PHI->block_begin(), BE = PHI->block_end(); BI != BE; BI++) 549 if (!S.contains(*BI) && *BI != PreEntryBB) 550 llvm_unreachable("Incoming edges from outside the scop should always " 551 "come from PreEntryBB"); 552 553 int Idx = PHI->getBasicBlockIndex(PreEntryBB); 554 if (Idx < 0) 555 continue; 556 557 Value *ScalarValue = PHI->getIncomingValue(Idx); 558 559 Builder.CreateStore(ScalarValue, getOrCreateAlloca(Array)); 560 continue; 561 } 562 563 auto *Inst = dyn_cast<Instruction>(Array->getBasePtr()); 564 565 if (Inst && S.contains(Inst)) 566 continue; 567 568 // PHI nodes that are not marked as such in their SAI object are either exit 569 // PHI nodes we model as common scalars but without initialization, or 570 // incoming phi nodes that need to be initialized. Check if the first is the 571 // case for Inst and do not create and initialize memory if so. 572 if (auto *PHI = dyn_cast_or_null<PHINode>(Inst)) 573 if (!S.hasSingleExitEdge() && PHI->getBasicBlockIndex(ExitBB) >= 0) 574 continue; 575 576 Builder.CreateStore(Array->getBasePtr(), getOrCreateAlloca(Array)); 577 } 578 } 579 580 void BlockGenerator::createScalarFinalization(Scop &S) { 581 // The exit block of the __unoptimized__ region. 582 BasicBlock *ExitBB = S.getExitingBlock(); 583 // The merge block __just after__ the region and the optimized region. 584 BasicBlock *MergeBB = S.getExit(); 585 586 // The exit block of the __optimized__ region. 587 BasicBlock *OptExitBB = *(pred_begin(MergeBB)); 588 if (OptExitBB == ExitBB) 589 OptExitBB = *(++pred_begin(MergeBB)); 590 591 Builder.SetInsertPoint(OptExitBB->getTerminator()); 592 for (const auto &EscapeMapping : EscapeMap) { 593 // Extract the escaping instruction and the escaping users as well as the 594 // alloca the instruction was demoted to. 595 Instruction *EscapeInst = EscapeMapping.first; 596 const auto &EscapeMappingValue = EscapeMapping.second; 597 const EscapeUserVectorTy &EscapeUsers = EscapeMappingValue.second; 598 Value *ScalarAddr = EscapeMappingValue.first; 599 600 // Reload the demoted instruction in the optimized version of the SCoP. 601 Value *EscapeInstReload = 602 Builder.CreateLoad(ScalarAddr, EscapeInst->getName() + ".final_reload"); 603 EscapeInstReload = 604 Builder.CreateBitOrPointerCast(EscapeInstReload, EscapeInst->getType()); 605 606 // Create the merge PHI that merges the optimized and unoptimized version. 607 PHINode *MergePHI = PHINode::Create(EscapeInst->getType(), 2, 608 EscapeInst->getName() + ".merge"); 609 MergePHI->insertBefore(&*MergeBB->getFirstInsertionPt()); 610 611 // Add the respective values to the merge PHI. 612 MergePHI->addIncoming(EscapeInstReload, OptExitBB); 613 MergePHI->addIncoming(EscapeInst, ExitBB); 614 615 // The information of scalar evolution about the escaping instruction needs 616 // to be revoked so the new merged instruction will be used. 617 if (SE.isSCEVable(EscapeInst->getType())) 618 SE.forgetValue(EscapeInst); 619 620 // Replace all uses of the demoted instruction with the merge PHI. 621 for (Instruction *EUser : EscapeUsers) 622 EUser->replaceUsesOfWith(EscapeInst, MergePHI); 623 } 624 } 625 626 void BlockGenerator::findOutsideUsers(Scop &S) { 627 for (auto &Array : S.arrays()) { 628 629 if (Array->getNumberOfDimensions() != 0) 630 continue; 631 632 if (Array->isPHIKind()) 633 continue; 634 635 auto *Inst = dyn_cast<Instruction>(Array->getBasePtr()); 636 637 if (!Inst) 638 continue; 639 640 // Scop invariant hoisting moves some of the base pointers out of the scop. 641 // We can ignore these, as the invariant load hoisting already registers the 642 // relevant outside users. 643 if (!S.contains(Inst)) 644 continue; 645 646 handleOutsideUsers(S, Array); 647 } 648 } 649 650 void BlockGenerator::createExitPHINodeMerges(Scop &S) { 651 if (S.hasSingleExitEdge()) 652 return; 653 654 auto *ExitBB = S.getExitingBlock(); 655 auto *MergeBB = S.getExit(); 656 auto *AfterMergeBB = MergeBB->getSingleSuccessor(); 657 BasicBlock *OptExitBB = *(pred_begin(MergeBB)); 658 if (OptExitBB == ExitBB) 659 OptExitBB = *(++pred_begin(MergeBB)); 660 661 Builder.SetInsertPoint(OptExitBB->getTerminator()); 662 663 for (auto &SAI : S.arrays()) { 664 auto *Val = SAI->getBasePtr(); 665 666 // Only Value-like scalars need a merge PHI. Exit block PHIs receive either 667 // the original PHI's value or the reloaded incoming values from the 668 // generated code. An llvm::Value is merged between the original code's 669 // value or the generated one. 670 if (!SAI->isExitPHIKind()) 671 continue; 672 673 PHINode *PHI = dyn_cast<PHINode>(Val); 674 if (!PHI) 675 continue; 676 677 if (PHI->getParent() != AfterMergeBB) 678 continue; 679 680 std::string Name = PHI->getName(); 681 Value *ScalarAddr = getOrCreateAlloca(SAI); 682 Value *Reload = Builder.CreateLoad(ScalarAddr, Name + ".ph.final_reload"); 683 Reload = Builder.CreateBitOrPointerCast(Reload, PHI->getType()); 684 Value *OriginalValue = PHI->getIncomingValueForBlock(MergeBB); 685 assert((!isa<Instruction>(OriginalValue) || 686 cast<Instruction>(OriginalValue)->getParent() != MergeBB) && 687 "Original value must no be one we just generated."); 688 auto *MergePHI = PHINode::Create(PHI->getType(), 2, Name + ".ph.merge"); 689 MergePHI->insertBefore(&*MergeBB->getFirstInsertionPt()); 690 MergePHI->addIncoming(Reload, OptExitBB); 691 MergePHI->addIncoming(OriginalValue, ExitBB); 692 int Idx = PHI->getBasicBlockIndex(MergeBB); 693 PHI->setIncomingValue(Idx, MergePHI); 694 } 695 } 696 697 void BlockGenerator::invalidateScalarEvolution(Scop &S) { 698 for (auto &Stmt : S) 699 if (Stmt.isCopyStmt()) 700 continue; 701 else if (Stmt.isBlockStmt()) 702 for (auto &Inst : *Stmt.getBasicBlock()) 703 SE.forgetValue(&Inst); 704 else if (Stmt.isRegionStmt()) 705 for (auto *BB : Stmt.getRegion()->blocks()) 706 for (auto &Inst : *BB) 707 SE.forgetValue(&Inst); 708 else 709 llvm_unreachable("Unexpected statement type found"); 710 } 711 712 void BlockGenerator::finalizeSCoP(Scop &S) { 713 findOutsideUsers(S); 714 createScalarInitialization(S); 715 createExitPHINodeMerges(S); 716 createScalarFinalization(S); 717 invalidateScalarEvolution(S); 718 } 719 720 VectorBlockGenerator::VectorBlockGenerator(BlockGenerator &BlockGen, 721 std::vector<LoopToScevMapT> &VLTS, 722 isl_map *Schedule) 723 : BlockGenerator(BlockGen), VLTS(VLTS), Schedule(Schedule) { 724 assert(Schedule && "No statement domain provided"); 725 } 726 727 Value *VectorBlockGenerator::getVectorValue(ScopStmt &Stmt, Value *Old, 728 ValueMapT &VectorMap, 729 VectorValueMapT &ScalarMaps, 730 Loop *L) { 731 if (Value *NewValue = VectorMap.lookup(Old)) 732 return NewValue; 733 734 int Width = getVectorWidth(); 735 736 Value *Vector = UndefValue::get(VectorType::get(Old->getType(), Width)); 737 738 for (int Lane = 0; Lane < Width; Lane++) 739 Vector = Builder.CreateInsertElement( 740 Vector, getNewValue(Stmt, Old, ScalarMaps[Lane], VLTS[Lane], L), 741 Builder.getInt32(Lane)); 742 743 VectorMap[Old] = Vector; 744 745 return Vector; 746 } 747 748 Type *VectorBlockGenerator::getVectorPtrTy(const Value *Val, int Width) { 749 PointerType *PointerTy = dyn_cast<PointerType>(Val->getType()); 750 assert(PointerTy && "PointerType expected"); 751 752 Type *ScalarType = PointerTy->getElementType(); 753 VectorType *VectorType = VectorType::get(ScalarType, Width); 754 755 return PointerType::getUnqual(VectorType); 756 } 757 758 Value *VectorBlockGenerator::generateStrideOneLoad( 759 ScopStmt &Stmt, LoadInst *Load, VectorValueMapT &ScalarMaps, 760 __isl_keep isl_id_to_ast_expr *NewAccesses, bool NegativeStride = false) { 761 unsigned VectorWidth = getVectorWidth(); 762 auto *Pointer = Load->getPointerOperand(); 763 Type *VectorPtrType = getVectorPtrTy(Pointer, VectorWidth); 764 unsigned Offset = NegativeStride ? VectorWidth - 1 : 0; 765 766 Value *NewPointer = generateLocationAccessed(Stmt, Load, ScalarMaps[Offset], 767 VLTS[Offset], NewAccesses); 768 Value *VectorPtr = 769 Builder.CreateBitCast(NewPointer, VectorPtrType, "vector_ptr"); 770 LoadInst *VecLoad = 771 Builder.CreateLoad(VectorPtr, Load->getName() + "_p_vec_full"); 772 if (!Aligned) 773 VecLoad->setAlignment(8); 774 775 if (NegativeStride) { 776 SmallVector<Constant *, 16> Indices; 777 for (int i = VectorWidth - 1; i >= 0; i--) 778 Indices.push_back(ConstantInt::get(Builder.getInt32Ty(), i)); 779 Constant *SV = llvm::ConstantVector::get(Indices); 780 Value *RevVecLoad = Builder.CreateShuffleVector( 781 VecLoad, VecLoad, SV, Load->getName() + "_reverse"); 782 return RevVecLoad; 783 } 784 785 return VecLoad; 786 } 787 788 Value *VectorBlockGenerator::generateStrideZeroLoad( 789 ScopStmt &Stmt, LoadInst *Load, ValueMapT &BBMap, 790 __isl_keep isl_id_to_ast_expr *NewAccesses) { 791 auto *Pointer = Load->getPointerOperand(); 792 Type *VectorPtrType = getVectorPtrTy(Pointer, 1); 793 Value *NewPointer = 794 generateLocationAccessed(Stmt, Load, BBMap, VLTS[0], NewAccesses); 795 Value *VectorPtr = Builder.CreateBitCast(NewPointer, VectorPtrType, 796 Load->getName() + "_p_vec_p"); 797 LoadInst *ScalarLoad = 798 Builder.CreateLoad(VectorPtr, Load->getName() + "_p_splat_one"); 799 800 if (!Aligned) 801 ScalarLoad->setAlignment(8); 802 803 Constant *SplatVector = Constant::getNullValue( 804 VectorType::get(Builder.getInt32Ty(), getVectorWidth())); 805 806 Value *VectorLoad = Builder.CreateShuffleVector( 807 ScalarLoad, ScalarLoad, SplatVector, Load->getName() + "_p_splat"); 808 return VectorLoad; 809 } 810 811 Value *VectorBlockGenerator::generateUnknownStrideLoad( 812 ScopStmt &Stmt, LoadInst *Load, VectorValueMapT &ScalarMaps, 813 __isl_keep isl_id_to_ast_expr *NewAccesses) { 814 int VectorWidth = getVectorWidth(); 815 auto *Pointer = Load->getPointerOperand(); 816 VectorType *VectorType = VectorType::get( 817 dyn_cast<PointerType>(Pointer->getType())->getElementType(), VectorWidth); 818 819 Value *Vector = UndefValue::get(VectorType); 820 821 for (int i = 0; i < VectorWidth; i++) { 822 Value *NewPointer = generateLocationAccessed(Stmt, Load, ScalarMaps[i], 823 VLTS[i], NewAccesses); 824 Value *ScalarLoad = 825 Builder.CreateLoad(NewPointer, Load->getName() + "_p_scalar_"); 826 Vector = Builder.CreateInsertElement( 827 Vector, ScalarLoad, Builder.getInt32(i), Load->getName() + "_p_vec_"); 828 } 829 830 return Vector; 831 } 832 833 void VectorBlockGenerator::generateLoad( 834 ScopStmt &Stmt, LoadInst *Load, ValueMapT &VectorMap, 835 VectorValueMapT &ScalarMaps, __isl_keep isl_id_to_ast_expr *NewAccesses) { 836 if (Value *PreloadLoad = GlobalMap.lookup(Load)) { 837 VectorMap[Load] = Builder.CreateVectorSplat(getVectorWidth(), PreloadLoad, 838 Load->getName() + "_p"); 839 return; 840 } 841 842 if (!VectorType::isValidElementType(Load->getType())) { 843 for (int i = 0; i < getVectorWidth(); i++) 844 ScalarMaps[i][Load] = 845 generateArrayLoad(Stmt, Load, ScalarMaps[i], VLTS[i], NewAccesses); 846 return; 847 } 848 849 const MemoryAccess &Access = Stmt.getArrayAccessFor(Load); 850 851 // Make sure we have scalar values available to access the pointer to 852 // the data location. 853 extractScalarValues(Load, VectorMap, ScalarMaps); 854 855 Value *NewLoad; 856 if (Access.isStrideZero(isl_map_copy(Schedule))) 857 NewLoad = generateStrideZeroLoad(Stmt, Load, ScalarMaps[0], NewAccesses); 858 else if (Access.isStrideOne(isl_map_copy(Schedule))) 859 NewLoad = generateStrideOneLoad(Stmt, Load, ScalarMaps, NewAccesses); 860 else if (Access.isStrideX(isl_map_copy(Schedule), -1)) 861 NewLoad = generateStrideOneLoad(Stmt, Load, ScalarMaps, NewAccesses, true); 862 else 863 NewLoad = generateUnknownStrideLoad(Stmt, Load, ScalarMaps, NewAccesses); 864 865 VectorMap[Load] = NewLoad; 866 } 867 868 void VectorBlockGenerator::copyUnaryInst(ScopStmt &Stmt, UnaryInstruction *Inst, 869 ValueMapT &VectorMap, 870 VectorValueMapT &ScalarMaps) { 871 int VectorWidth = getVectorWidth(); 872 Value *NewOperand = getVectorValue(Stmt, Inst->getOperand(0), VectorMap, 873 ScalarMaps, getLoopForStmt(Stmt)); 874 875 assert(isa<CastInst>(Inst) && "Can not generate vector code for instruction"); 876 877 const CastInst *Cast = dyn_cast<CastInst>(Inst); 878 VectorType *DestType = VectorType::get(Inst->getType(), VectorWidth); 879 VectorMap[Inst] = Builder.CreateCast(Cast->getOpcode(), NewOperand, DestType); 880 } 881 882 void VectorBlockGenerator::copyBinaryInst(ScopStmt &Stmt, BinaryOperator *Inst, 883 ValueMapT &VectorMap, 884 VectorValueMapT &ScalarMaps) { 885 Loop *L = getLoopForStmt(Stmt); 886 Value *OpZero = Inst->getOperand(0); 887 Value *OpOne = Inst->getOperand(1); 888 889 Value *NewOpZero, *NewOpOne; 890 NewOpZero = getVectorValue(Stmt, OpZero, VectorMap, ScalarMaps, L); 891 NewOpOne = getVectorValue(Stmt, OpOne, VectorMap, ScalarMaps, L); 892 893 Value *NewInst = Builder.CreateBinOp(Inst->getOpcode(), NewOpZero, NewOpOne, 894 Inst->getName() + "p_vec"); 895 VectorMap[Inst] = NewInst; 896 } 897 898 void VectorBlockGenerator::copyStore( 899 ScopStmt &Stmt, StoreInst *Store, ValueMapT &VectorMap, 900 VectorValueMapT &ScalarMaps, __isl_keep isl_id_to_ast_expr *NewAccesses) { 901 const MemoryAccess &Access = Stmt.getArrayAccessFor(Store); 902 903 auto *Pointer = Store->getPointerOperand(); 904 Value *Vector = getVectorValue(Stmt, Store->getValueOperand(), VectorMap, 905 ScalarMaps, getLoopForStmt(Stmt)); 906 907 // Make sure we have scalar values available to access the pointer to 908 // the data location. 909 extractScalarValues(Store, VectorMap, ScalarMaps); 910 911 if (Access.isStrideOne(isl_map_copy(Schedule))) { 912 Type *VectorPtrType = getVectorPtrTy(Pointer, getVectorWidth()); 913 Value *NewPointer = generateLocationAccessed(Stmt, Store, ScalarMaps[0], 914 VLTS[0], NewAccesses); 915 916 Value *VectorPtr = 917 Builder.CreateBitCast(NewPointer, VectorPtrType, "vector_ptr"); 918 StoreInst *Store = Builder.CreateStore(Vector, VectorPtr); 919 920 if (!Aligned) 921 Store->setAlignment(8); 922 } else { 923 for (unsigned i = 0; i < ScalarMaps.size(); i++) { 924 Value *Scalar = Builder.CreateExtractElement(Vector, Builder.getInt32(i)); 925 Value *NewPointer = generateLocationAccessed(Stmt, Store, ScalarMaps[i], 926 VLTS[i], NewAccesses); 927 Builder.CreateStore(Scalar, NewPointer); 928 } 929 } 930 } 931 932 bool VectorBlockGenerator::hasVectorOperands(const Instruction *Inst, 933 ValueMapT &VectorMap) { 934 for (Value *Operand : Inst->operands()) 935 if (VectorMap.count(Operand)) 936 return true; 937 return false; 938 } 939 940 bool VectorBlockGenerator::extractScalarValues(const Instruction *Inst, 941 ValueMapT &VectorMap, 942 VectorValueMapT &ScalarMaps) { 943 bool HasVectorOperand = false; 944 int VectorWidth = getVectorWidth(); 945 946 for (Value *Operand : Inst->operands()) { 947 ValueMapT::iterator VecOp = VectorMap.find(Operand); 948 949 if (VecOp == VectorMap.end()) 950 continue; 951 952 HasVectorOperand = true; 953 Value *NewVector = VecOp->second; 954 955 for (int i = 0; i < VectorWidth; ++i) { 956 ValueMapT &SM = ScalarMaps[i]; 957 958 // If there is one scalar extracted, all scalar elements should have 959 // already been extracted by the code here. So no need to check for the 960 // existence of all of them. 961 if (SM.count(Operand)) 962 break; 963 964 SM[Operand] = 965 Builder.CreateExtractElement(NewVector, Builder.getInt32(i)); 966 } 967 } 968 969 return HasVectorOperand; 970 } 971 972 void VectorBlockGenerator::copyInstScalarized( 973 ScopStmt &Stmt, Instruction *Inst, ValueMapT &VectorMap, 974 VectorValueMapT &ScalarMaps, __isl_keep isl_id_to_ast_expr *NewAccesses) { 975 bool HasVectorOperand; 976 int VectorWidth = getVectorWidth(); 977 978 HasVectorOperand = extractScalarValues(Inst, VectorMap, ScalarMaps); 979 980 for (int VectorLane = 0; VectorLane < getVectorWidth(); VectorLane++) 981 BlockGenerator::copyInstruction(Stmt, Inst, ScalarMaps[VectorLane], 982 VLTS[VectorLane], NewAccesses); 983 984 if (!VectorType::isValidElementType(Inst->getType()) || !HasVectorOperand) 985 return; 986 987 // Make the result available as vector value. 988 VectorType *VectorType = VectorType::get(Inst->getType(), VectorWidth); 989 Value *Vector = UndefValue::get(VectorType); 990 991 for (int i = 0; i < VectorWidth; i++) 992 Vector = Builder.CreateInsertElement(Vector, ScalarMaps[i][Inst], 993 Builder.getInt32(i)); 994 995 VectorMap[Inst] = Vector; 996 } 997 998 int VectorBlockGenerator::getVectorWidth() { return VLTS.size(); } 999 1000 void VectorBlockGenerator::copyInstruction( 1001 ScopStmt &Stmt, Instruction *Inst, ValueMapT &VectorMap, 1002 VectorValueMapT &ScalarMaps, __isl_keep isl_id_to_ast_expr *NewAccesses) { 1003 // Terminator instructions control the control flow. They are explicitly 1004 // expressed in the clast and do not need to be copied. 1005 if (Inst->isTerminator()) 1006 return; 1007 1008 if (canSyntheziseInStmt(Stmt, Inst)) 1009 return; 1010 1011 if (auto *Load = dyn_cast<LoadInst>(Inst)) { 1012 generateLoad(Stmt, Load, VectorMap, ScalarMaps, NewAccesses); 1013 return; 1014 } 1015 1016 if (hasVectorOperands(Inst, VectorMap)) { 1017 if (auto *Store = dyn_cast<StoreInst>(Inst)) { 1018 // Identified as redundant by -polly-simplify. 1019 if (!Stmt.getArrayAccessOrNULLFor(Store)) 1020 return; 1021 1022 copyStore(Stmt, Store, VectorMap, ScalarMaps, NewAccesses); 1023 return; 1024 } 1025 1026 if (auto *Unary = dyn_cast<UnaryInstruction>(Inst)) { 1027 copyUnaryInst(Stmt, Unary, VectorMap, ScalarMaps); 1028 return; 1029 } 1030 1031 if (auto *Binary = dyn_cast<BinaryOperator>(Inst)) { 1032 copyBinaryInst(Stmt, Binary, VectorMap, ScalarMaps); 1033 return; 1034 } 1035 1036 // Falltrough: We generate scalar instructions, if we don't know how to 1037 // generate vector code. 1038 } 1039 1040 copyInstScalarized(Stmt, Inst, VectorMap, ScalarMaps, NewAccesses); 1041 } 1042 1043 void VectorBlockGenerator::generateScalarVectorLoads( 1044 ScopStmt &Stmt, ValueMapT &VectorBlockMap) { 1045 for (MemoryAccess *MA : Stmt) { 1046 if (MA->isArrayKind() || MA->isWrite()) 1047 continue; 1048 1049 auto *Address = getOrCreateAlloca(*MA); 1050 Type *VectorPtrType = getVectorPtrTy(Address, 1); 1051 Value *VectorPtr = Builder.CreateBitCast(Address, VectorPtrType, 1052 Address->getName() + "_p_vec_p"); 1053 auto *Val = Builder.CreateLoad(VectorPtr, Address->getName() + ".reload"); 1054 Constant *SplatVector = Constant::getNullValue( 1055 VectorType::get(Builder.getInt32Ty(), getVectorWidth())); 1056 1057 Value *VectorVal = Builder.CreateShuffleVector( 1058 Val, Val, SplatVector, Address->getName() + "_p_splat"); 1059 VectorBlockMap[MA->getAccessValue()] = VectorVal; 1060 } 1061 } 1062 1063 void VectorBlockGenerator::verifyNoScalarStores(ScopStmt &Stmt) { 1064 for (MemoryAccess *MA : Stmt) { 1065 if (MA->isArrayKind() || MA->isRead()) 1066 continue; 1067 1068 llvm_unreachable("Scalar stores not expected in vector loop"); 1069 } 1070 } 1071 1072 void VectorBlockGenerator::copyStmt( 1073 ScopStmt &Stmt, __isl_keep isl_id_to_ast_expr *NewAccesses) { 1074 assert(Stmt.isBlockStmt() && 1075 "TODO: Only block statements can be copied by the vector block " 1076 "generator"); 1077 1078 BasicBlock *BB = Stmt.getBasicBlock(); 1079 BasicBlock *CopyBB = SplitBlock(Builder.GetInsertBlock(), 1080 &*Builder.GetInsertPoint(), &DT, &LI); 1081 CopyBB->setName("polly.stmt." + BB->getName()); 1082 Builder.SetInsertPoint(&CopyBB->front()); 1083 1084 // Create two maps that store the mapping from the original instructions of 1085 // the old basic block to their copies in the new basic block. Those maps 1086 // are basic block local. 1087 // 1088 // As vector code generation is supported there is one map for scalar values 1089 // and one for vector values. 1090 // 1091 // In case we just do scalar code generation, the vectorMap is not used and 1092 // the scalarMap has just one dimension, which contains the mapping. 1093 // 1094 // In case vector code generation is done, an instruction may either appear 1095 // in the vector map once (as it is calculating >vectorwidth< values at a 1096 // time. Or (if the values are calculated using scalar operations), it 1097 // appears once in every dimension of the scalarMap. 1098 VectorValueMapT ScalarBlockMap(getVectorWidth()); 1099 ValueMapT VectorBlockMap; 1100 1101 generateScalarVectorLoads(Stmt, VectorBlockMap); 1102 1103 for (Instruction &Inst : *BB) 1104 copyInstruction(Stmt, &Inst, VectorBlockMap, ScalarBlockMap, NewAccesses); 1105 1106 verifyNoScalarStores(Stmt); 1107 } 1108 1109 BasicBlock *RegionGenerator::repairDominance(BasicBlock *BB, 1110 BasicBlock *BBCopy) { 1111 1112 BasicBlock *BBIDom = DT.getNode(BB)->getIDom()->getBlock(); 1113 BasicBlock *BBCopyIDom = BlockMap.lookup(BBIDom); 1114 1115 if (BBCopyIDom) 1116 DT.changeImmediateDominator(BBCopy, BBCopyIDom); 1117 1118 return BBCopyIDom; 1119 } 1120 1121 // This is to determine whether an llvm::Value (defined in @p BB) is usable when 1122 // leaving a subregion. The straight-forward DT.dominates(BB, R->getExitBlock()) 1123 // does not work in cases where the exit block has edges from outside the 1124 // region. In that case the llvm::Value would never be usable in in the exit 1125 // block. The RegionGenerator however creates an new exit block ('ExitBBCopy') 1126 // for the subregion's exiting edges only. We need to determine whether an 1127 // llvm::Value is usable in there. We do this by checking whether it dominates 1128 // all exiting blocks individually. 1129 static bool isDominatingSubregionExit(const DominatorTree &DT, Region *R, 1130 BasicBlock *BB) { 1131 for (auto ExitingBB : predecessors(R->getExit())) { 1132 // Check for non-subregion incoming edges. 1133 if (!R->contains(ExitingBB)) 1134 continue; 1135 1136 if (!DT.dominates(BB, ExitingBB)) 1137 return false; 1138 } 1139 1140 return true; 1141 } 1142 1143 // Find the direct dominator of the subregion's exit block if the subregion was 1144 // simplified. 1145 static BasicBlock *findExitDominator(DominatorTree &DT, Region *R) { 1146 BasicBlock *Common = nullptr; 1147 for (auto ExitingBB : predecessors(R->getExit())) { 1148 // Check for non-subregion incoming edges. 1149 if (!R->contains(ExitingBB)) 1150 continue; 1151 1152 // First exiting edge. 1153 if (!Common) { 1154 Common = ExitingBB; 1155 continue; 1156 } 1157 1158 Common = DT.findNearestCommonDominator(Common, ExitingBB); 1159 } 1160 1161 assert(Common && R->contains(Common)); 1162 return Common; 1163 } 1164 1165 void RegionGenerator::copyStmt(ScopStmt &Stmt, LoopToScevMapT <S, 1166 isl_id_to_ast_expr *IdToAstExp) { 1167 assert(Stmt.isRegionStmt() && 1168 "Only region statements can be copied by the region generator"); 1169 1170 // Forget all old mappings. 1171 BlockMap.clear(); 1172 RegionMaps.clear(); 1173 IncompletePHINodeMap.clear(); 1174 1175 // Collection of all values related to this subregion. 1176 ValueMapT ValueMap; 1177 1178 // The region represented by the statement. 1179 Region *R = Stmt.getRegion(); 1180 1181 // Create a dedicated entry for the region where we can reload all demoted 1182 // inputs. 1183 BasicBlock *EntryBB = R->getEntry(); 1184 BasicBlock *EntryBBCopy = SplitBlock(Builder.GetInsertBlock(), 1185 &*Builder.GetInsertPoint(), &DT, &LI); 1186 EntryBBCopy->setName("polly.stmt." + EntryBB->getName() + ".entry"); 1187 Builder.SetInsertPoint(&EntryBBCopy->front()); 1188 1189 ValueMapT &EntryBBMap = RegionMaps[EntryBBCopy]; 1190 generateScalarLoads(Stmt, LTS, EntryBBMap, IdToAstExp); 1191 1192 for (auto PI = pred_begin(EntryBB), PE = pred_end(EntryBB); PI != PE; ++PI) 1193 if (!R->contains(*PI)) 1194 BlockMap[*PI] = EntryBBCopy; 1195 1196 // Iterate over all blocks in the region in a breadth-first search. 1197 std::deque<BasicBlock *> Blocks; 1198 SmallSetVector<BasicBlock *, 8> SeenBlocks; 1199 Blocks.push_back(EntryBB); 1200 SeenBlocks.insert(EntryBB); 1201 1202 while (!Blocks.empty()) { 1203 BasicBlock *BB = Blocks.front(); 1204 Blocks.pop_front(); 1205 1206 // First split the block and update dominance information. 1207 BasicBlock *BBCopy = splitBB(BB); 1208 BasicBlock *BBCopyIDom = repairDominance(BB, BBCopy); 1209 1210 // Get the mapping for this block and initialize it with either the scalar 1211 // loads from the generated entering block (which dominates all blocks of 1212 // this subregion) or the maps of the immediate dominator, if part of the 1213 // subregion. The latter necessarily includes the former. 1214 ValueMapT *InitBBMap; 1215 if (BBCopyIDom) { 1216 assert(RegionMaps.count(BBCopyIDom)); 1217 InitBBMap = &RegionMaps[BBCopyIDom]; 1218 } else 1219 InitBBMap = &EntryBBMap; 1220 auto Inserted = RegionMaps.insert(std::make_pair(BBCopy, *InitBBMap)); 1221 ValueMapT &RegionMap = Inserted.first->second; 1222 1223 // Copy the block with the BlockGenerator. 1224 Builder.SetInsertPoint(&BBCopy->front()); 1225 copyBB(Stmt, BB, BBCopy, RegionMap, LTS, IdToAstExp); 1226 1227 // In order to remap PHI nodes we store also basic block mappings. 1228 BlockMap[BB] = BBCopy; 1229 1230 // Add values to incomplete PHI nodes waiting for this block to be copied. 1231 for (const PHINodePairTy &PHINodePair : IncompletePHINodeMap[BB]) 1232 addOperandToPHI(Stmt, PHINodePair.first, PHINodePair.second, BB, LTS); 1233 IncompletePHINodeMap[BB].clear(); 1234 1235 // And continue with new successors inside the region. 1236 for (auto SI = succ_begin(BB), SE = succ_end(BB); SI != SE; SI++) 1237 if (R->contains(*SI) && SeenBlocks.insert(*SI)) 1238 Blocks.push_back(*SI); 1239 1240 // Remember value in case it is visible after this subregion. 1241 if (isDominatingSubregionExit(DT, R, BB)) 1242 ValueMap.insert(RegionMap.begin(), RegionMap.end()); 1243 } 1244 1245 // Now create a new dedicated region exit block and add it to the region map. 1246 BasicBlock *ExitBBCopy = SplitBlock(Builder.GetInsertBlock(), 1247 &*Builder.GetInsertPoint(), &DT, &LI); 1248 ExitBBCopy->setName("polly.stmt." + R->getExit()->getName() + ".exit"); 1249 BlockMap[R->getExit()] = ExitBBCopy; 1250 1251 BasicBlock *ExitDomBBCopy = BlockMap.lookup(findExitDominator(DT, R)); 1252 assert(ExitDomBBCopy && 1253 "Common exit dominator must be within region; at least the entry node " 1254 "must match"); 1255 DT.changeImmediateDominator(ExitBBCopy, ExitDomBBCopy); 1256 1257 // As the block generator doesn't handle control flow we need to add the 1258 // region control flow by hand after all blocks have been copied. 1259 for (BasicBlock *BB : SeenBlocks) { 1260 1261 BasicBlock *BBCopy = BlockMap[BB]; 1262 TerminatorInst *TI = BB->getTerminator(); 1263 if (isa<UnreachableInst>(TI)) { 1264 while (!BBCopy->empty()) 1265 BBCopy->begin()->eraseFromParent(); 1266 new UnreachableInst(BBCopy->getContext(), BBCopy); 1267 continue; 1268 } 1269 1270 Instruction *BICopy = BBCopy->getTerminator(); 1271 1272 ValueMapT &RegionMap = RegionMaps[BBCopy]; 1273 RegionMap.insert(BlockMap.begin(), BlockMap.end()); 1274 1275 Builder.SetInsertPoint(BICopy); 1276 copyInstScalar(Stmt, TI, RegionMap, LTS); 1277 BICopy->eraseFromParent(); 1278 } 1279 1280 // Add counting PHI nodes to all loops in the region that can be used as 1281 // replacement for SCEVs refering to the old loop. 1282 for (BasicBlock *BB : SeenBlocks) { 1283 Loop *L = LI.getLoopFor(BB); 1284 if (L == nullptr || L->getHeader() != BB || !R->contains(L)) 1285 continue; 1286 1287 BasicBlock *BBCopy = BlockMap[BB]; 1288 Value *NullVal = Builder.getInt32(0); 1289 PHINode *LoopPHI = 1290 PHINode::Create(Builder.getInt32Ty(), 2, "polly.subregion.iv"); 1291 Instruction *LoopPHIInc = BinaryOperator::CreateAdd( 1292 LoopPHI, Builder.getInt32(1), "polly.subregion.iv.inc"); 1293 LoopPHI->insertBefore(&BBCopy->front()); 1294 LoopPHIInc->insertBefore(BBCopy->getTerminator()); 1295 1296 for (auto *PredBB : make_range(pred_begin(BB), pred_end(BB))) { 1297 if (!R->contains(PredBB)) 1298 continue; 1299 if (L->contains(PredBB)) 1300 LoopPHI->addIncoming(LoopPHIInc, BlockMap[PredBB]); 1301 else 1302 LoopPHI->addIncoming(NullVal, BlockMap[PredBB]); 1303 } 1304 1305 for (auto *PredBBCopy : make_range(pred_begin(BBCopy), pred_end(BBCopy))) 1306 if (LoopPHI->getBasicBlockIndex(PredBBCopy) < 0) 1307 LoopPHI->addIncoming(NullVal, PredBBCopy); 1308 1309 LTS[L] = SE.getUnknown(LoopPHI); 1310 } 1311 1312 // Continue generating code in the exit block. 1313 Builder.SetInsertPoint(&*ExitBBCopy->getFirstInsertionPt()); 1314 1315 // Write values visible to other statements. 1316 generateScalarStores(Stmt, LTS, ValueMap, IdToAstExp); 1317 BlockMap.clear(); 1318 RegionMaps.clear(); 1319 IncompletePHINodeMap.clear(); 1320 } 1321 1322 PHINode *RegionGenerator::buildExitPHI(MemoryAccess *MA, LoopToScevMapT <S, 1323 ValueMapT &BBMap, Loop *L) { 1324 ScopStmt *Stmt = MA->getStatement(); 1325 Region *SubR = Stmt->getRegion(); 1326 auto Incoming = MA->getIncoming(); 1327 1328 PollyIRBuilder::InsertPointGuard IPGuard(Builder); 1329 PHINode *OrigPHI = cast<PHINode>(MA->getAccessInstruction()); 1330 BasicBlock *NewSubregionExit = Builder.GetInsertBlock(); 1331 1332 // This can happen if the subregion is simplified after the ScopStmts 1333 // have been created; simplification happens as part of CodeGeneration. 1334 if (OrigPHI->getParent() != SubR->getExit()) { 1335 BasicBlock *FormerExit = SubR->getExitingBlock(); 1336 if (FormerExit) 1337 NewSubregionExit = BlockMap.lookup(FormerExit); 1338 } 1339 1340 PHINode *NewPHI = PHINode::Create(OrigPHI->getType(), Incoming.size(), 1341 "polly." + OrigPHI->getName(), 1342 NewSubregionExit->getFirstNonPHI()); 1343 1344 // Add the incoming values to the PHI. 1345 for (auto &Pair : Incoming) { 1346 BasicBlock *OrigIncomingBlock = Pair.first; 1347 BasicBlock *NewIncomingBlock = BlockMap.lookup(OrigIncomingBlock); 1348 Builder.SetInsertPoint(NewIncomingBlock->getTerminator()); 1349 assert(RegionMaps.count(NewIncomingBlock)); 1350 ValueMapT *LocalBBMap = &RegionMaps[NewIncomingBlock]; 1351 1352 Value *OrigIncomingValue = Pair.second; 1353 Value *NewIncomingValue = 1354 getNewValue(*Stmt, OrigIncomingValue, *LocalBBMap, LTS, L); 1355 NewPHI->addIncoming(NewIncomingValue, NewIncomingBlock); 1356 } 1357 1358 return NewPHI; 1359 } 1360 1361 Value *RegionGenerator::getExitScalar(MemoryAccess *MA, LoopToScevMapT <S, 1362 ValueMapT &BBMap) { 1363 ScopStmt *Stmt = MA->getStatement(); 1364 1365 // TODO: Add some test cases that ensure this is really the right choice. 1366 Loop *L = LI.getLoopFor(Stmt->getRegion()->getExit()); 1367 1368 if (MA->isAnyPHIKind()) { 1369 auto Incoming = MA->getIncoming(); 1370 assert(!Incoming.empty() && 1371 "PHI WRITEs must have originate from at least one incoming block"); 1372 1373 // If there is only one incoming value, we do not need to create a PHI. 1374 if (Incoming.size() == 1) { 1375 Value *OldVal = Incoming[0].second; 1376 return getNewValue(*Stmt, OldVal, BBMap, LTS, L); 1377 } 1378 1379 return buildExitPHI(MA, LTS, BBMap, L); 1380 } 1381 1382 // MemoryKind::Value accesses leaving the subregion must dominate the exit 1383 // block; just pass the copied value. 1384 Value *OldVal = MA->getAccessValue(); 1385 return getNewValue(*Stmt, OldVal, BBMap, LTS, L); 1386 } 1387 1388 void RegionGenerator::generateScalarStores( 1389 ScopStmt &Stmt, LoopToScevMapT <S, ValueMapT &BBMap, 1390 __isl_keep isl_id_to_ast_expr *NewAccesses) { 1391 assert(Stmt.getRegion() && 1392 "Block statements need to use the generateScalarStores() " 1393 "function in the BlockGenerator"); 1394 1395 for (MemoryAccess *MA : Stmt) { 1396 if (MA->isOriginalArrayKind() || MA->isRead()) 1397 continue; 1398 1399 Value *NewVal = getExitScalar(MA, LTS, BBMap); 1400 Value *Address = 1401 getImplicitAddress(*MA, getLoopForStmt(Stmt), LTS, BBMap, NewAccesses); 1402 assert((!isa<Instruction>(NewVal) || 1403 DT.dominates(cast<Instruction>(NewVal)->getParent(), 1404 Builder.GetInsertBlock())) && 1405 "Domination violation"); 1406 assert((!isa<Instruction>(Address) || 1407 DT.dominates(cast<Instruction>(Address)->getParent(), 1408 Builder.GetInsertBlock())) && 1409 "Domination violation"); 1410 Builder.CreateStore(NewVal, Address); 1411 } 1412 } 1413 1414 void RegionGenerator::addOperandToPHI(ScopStmt &Stmt, PHINode *PHI, 1415 PHINode *PHICopy, BasicBlock *IncomingBB, 1416 LoopToScevMapT <S) { 1417 // If the incoming block was not yet copied mark this PHI as incomplete. 1418 // Once the block will be copied the incoming value will be added. 1419 BasicBlock *BBCopy = BlockMap[IncomingBB]; 1420 if (!BBCopy) { 1421 assert(Stmt.contains(IncomingBB) && 1422 "Bad incoming block for PHI in non-affine region"); 1423 IncompletePHINodeMap[IncomingBB].push_back(std::make_pair(PHI, PHICopy)); 1424 return; 1425 } 1426 1427 assert(RegionMaps.count(BBCopy) && "Incoming PHI block did not have a BBMap"); 1428 ValueMapT &BBCopyMap = RegionMaps[BBCopy]; 1429 1430 Value *OpCopy = nullptr; 1431 1432 if (Stmt.contains(IncomingBB)) { 1433 Value *Op = PHI->getIncomingValueForBlock(IncomingBB); 1434 1435 // If the current insert block is different from the PHIs incoming block 1436 // change it, otherwise do not. 1437 auto IP = Builder.GetInsertPoint(); 1438 if (IP->getParent() != BBCopy) 1439 Builder.SetInsertPoint(BBCopy->getTerminator()); 1440 OpCopy = getNewValue(Stmt, Op, BBCopyMap, LTS, getLoopForStmt(Stmt)); 1441 if (IP->getParent() != BBCopy) 1442 Builder.SetInsertPoint(&*IP); 1443 } else { 1444 // All edges from outside the non-affine region become a single edge 1445 // in the new copy of the non-affine region. Make sure to only add the 1446 // corresponding edge the first time we encounter a basic block from 1447 // outside the non-affine region. 1448 if (PHICopy->getBasicBlockIndex(BBCopy) >= 0) 1449 return; 1450 1451 // Get the reloaded value. 1452 OpCopy = getNewValue(Stmt, PHI, BBCopyMap, LTS, getLoopForStmt(Stmt)); 1453 } 1454 1455 assert(OpCopy && "Incoming PHI value was not copied properly"); 1456 assert(BBCopy && "Incoming PHI block was not copied properly"); 1457 PHICopy->addIncoming(OpCopy, BBCopy); 1458 } 1459 1460 void RegionGenerator::copyPHIInstruction(ScopStmt &Stmt, PHINode *PHI, 1461 ValueMapT &BBMap, 1462 LoopToScevMapT <S) { 1463 unsigned NumIncoming = PHI->getNumIncomingValues(); 1464 PHINode *PHICopy = 1465 Builder.CreatePHI(PHI->getType(), NumIncoming, "polly." + PHI->getName()); 1466 PHICopy->moveBefore(PHICopy->getParent()->getFirstNonPHI()); 1467 BBMap[PHI] = PHICopy; 1468 1469 for (BasicBlock *IncomingBB : PHI->blocks()) 1470 addOperandToPHI(Stmt, PHI, PHICopy, IncomingBB, LTS); 1471 } 1472