1 //===--- BlockGenerators.cpp - Generate code for statements -----*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the BlockGenerator and VectorBlockGenerator classes, 11 // which generate sequential code and vectorized code for a polyhedral 12 // statement, respectively. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "polly/CodeGen/BlockGenerators.h" 17 #include "polly/CodeGen/CodeGeneration.h" 18 #include "polly/CodeGen/IslExprBuilder.h" 19 #include "polly/CodeGen/RuntimeDebugBuilder.h" 20 #include "polly/Options.h" 21 #include "polly/ScopInfo.h" 22 #include "polly/Support/GICHelper.h" 23 #include "polly/Support/SCEVValidator.h" 24 #include "polly/Support/ScopHelper.h" 25 #include "polly/Support/VirtualInstruction.h" 26 #include "llvm/Analysis/LoopInfo.h" 27 #include "llvm/Analysis/RegionInfo.h" 28 #include "llvm/Analysis/ScalarEvolution.h" 29 #include "llvm/Analysis/Utils/Local.h" 30 #include "llvm/IR/IntrinsicInst.h" 31 #include "llvm/IR/Module.h" 32 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 33 #include "isl/aff.h" 34 #include "isl/ast.h" 35 #include "isl/ast_build.h" 36 #include "isl/set.h" 37 #include <deque> 38 39 using namespace llvm; 40 using namespace polly; 41 42 static cl::opt<bool> Aligned("enable-polly-aligned", 43 cl::desc("Assumed aligned memory accesses."), 44 cl::Hidden, cl::init(false), cl::ZeroOrMore, 45 cl::cat(PollyCategory)); 46 47 bool PollyDebugPrinting; 48 static cl::opt<bool, true> DebugPrintingX( 49 "polly-codegen-add-debug-printing", 50 cl::desc("Add printf calls that show the values loaded/stored."), 51 cl::location(PollyDebugPrinting), cl::Hidden, cl::init(false), 52 cl::ZeroOrMore, cl::cat(PollyCategory)); 53 54 BlockGenerator::BlockGenerator( 55 PollyIRBuilder &B, LoopInfo &LI, ScalarEvolution &SE, DominatorTree &DT, 56 AllocaMapTy &ScalarMap, EscapeUsersAllocaMapTy &EscapeMap, 57 ValueMapT &GlobalMap, IslExprBuilder *ExprBuilder, BasicBlock *StartBlock) 58 : Builder(B), LI(LI), SE(SE), ExprBuilder(ExprBuilder), DT(DT), 59 EntryBB(nullptr), ScalarMap(ScalarMap), EscapeMap(EscapeMap), 60 GlobalMap(GlobalMap), StartBlock(StartBlock) {} 61 62 Value *BlockGenerator::trySynthesizeNewValue(ScopStmt &Stmt, Value *Old, 63 ValueMapT &BBMap, 64 LoopToScevMapT <S, 65 Loop *L) const { 66 if (!SE.isSCEVable(Old->getType())) 67 return nullptr; 68 69 const SCEV *Scev = SE.getSCEVAtScope(Old, L); 70 if (!Scev) 71 return nullptr; 72 73 if (isa<SCEVCouldNotCompute>(Scev)) 74 return nullptr; 75 76 const SCEV *NewScev = SCEVLoopAddRecRewriter::rewrite(Scev, LTS, SE); 77 ValueMapT VTV; 78 VTV.insert(BBMap.begin(), BBMap.end()); 79 VTV.insert(GlobalMap.begin(), GlobalMap.end()); 80 81 Scop &S = *Stmt.getParent(); 82 const DataLayout &DL = S.getFunction().getParent()->getDataLayout(); 83 auto IP = Builder.GetInsertPoint(); 84 85 assert(IP != Builder.GetInsertBlock()->end() && 86 "Only instructions can be insert points for SCEVExpander"); 87 Value *Expanded = 88 expandCodeFor(S, SE, DL, "polly", NewScev, Old->getType(), &*IP, &VTV, 89 StartBlock->getSinglePredecessor()); 90 91 BBMap[Old] = Expanded; 92 return Expanded; 93 } 94 95 Value *BlockGenerator::getNewValue(ScopStmt &Stmt, Value *Old, ValueMapT &BBMap, 96 LoopToScevMapT <S, Loop *L) const { 97 98 auto lookupGlobally = [this](Value *Old) -> Value * { 99 Value *New = GlobalMap.lookup(Old); 100 if (!New) 101 return nullptr; 102 103 // Required by: 104 // * Isl/CodeGen/OpenMP/invariant_base_pointer_preloaded.ll 105 // * Isl/CodeGen/OpenMP/invariant_base_pointer_preloaded_different_bb.ll 106 // * Isl/CodeGen/OpenMP/invariant_base_pointer_preloaded_pass_only_needed.ll 107 // * Isl/CodeGen/OpenMP/invariant_base_pointers_preloaded.ll 108 // * Isl/CodeGen/OpenMP/loop-body-references-outer-values-3.ll 109 // * Isl/CodeGen/OpenMP/single_loop_with_loop_invariant_baseptr.ll 110 // GlobalMap should be a mapping from (value in original SCoP) to (copied 111 // value in generated SCoP), without intermediate mappings, which might 112 // easily require transitiveness as well. 113 if (Value *NewRemapped = GlobalMap.lookup(New)) 114 New = NewRemapped; 115 116 // No test case for this code. 117 if (Old->getType()->getScalarSizeInBits() < 118 New->getType()->getScalarSizeInBits()) 119 New = Builder.CreateTruncOrBitCast(New, Old->getType()); 120 121 return New; 122 }; 123 124 Value *New = nullptr; 125 auto VUse = VirtualUse::create(&Stmt, L, Old, true); 126 switch (VUse.getKind()) { 127 case VirtualUse::Block: 128 // BasicBlock are constants, but the BlockGenerator copies them. 129 New = BBMap.lookup(Old); 130 break; 131 132 case VirtualUse::Constant: 133 // Used by: 134 // * Isl/CodeGen/OpenMP/reference-argument-from-non-affine-region.ll 135 // Constants should not be redefined. In this case, the GlobalMap just 136 // contains a mapping to the same constant, which is unnecessary, but 137 // harmless. 138 if ((New = lookupGlobally(Old))) 139 break; 140 141 assert(!BBMap.count(Old)); 142 New = Old; 143 break; 144 145 case VirtualUse::ReadOnly: 146 assert(!GlobalMap.count(Old)); 147 148 // Required for: 149 // * Isl/CodeGen/MemAccess/create_arrays.ll 150 // * Isl/CodeGen/read-only-scalars.ll 151 // * ScheduleOptimizer/pattern-matching-based-opts_10.ll 152 // For some reason these reload a read-only value. The reloaded value ends 153 // up in BBMap, buts its value should be identical. 154 // 155 // Required for: 156 // * Isl/CodeGen/OpenMP/single_loop_with_param.ll 157 // The parallel subfunctions need to reference the read-only value from the 158 // parent function, this is done by reloading them locally. 159 if ((New = BBMap.lookup(Old))) 160 break; 161 162 New = Old; 163 break; 164 165 case VirtualUse::Synthesizable: 166 // Used by: 167 // * Isl/CodeGen/OpenMP/loop-body-references-outer-values-3.ll 168 // * Isl/CodeGen/OpenMP/recomputed-srem.ll 169 // * Isl/CodeGen/OpenMP/reference-other-bb.ll 170 // * Isl/CodeGen/OpenMP/two-parallel-loops-reference-outer-indvar.ll 171 // For some reason synthesizable values end up in GlobalMap. Their values 172 // are the same as trySynthesizeNewValue would return. The legacy 173 // implementation prioritized GlobalMap, so this is what we do here as well. 174 // Ideally, synthesizable values should not end up in GlobalMap. 175 if ((New = lookupGlobally(Old))) 176 break; 177 178 // Required for: 179 // * Isl/CodeGen/RuntimeDebugBuilder/combine_different_values.ll 180 // * Isl/CodeGen/getNumberOfIterations.ll 181 // * Isl/CodeGen/non_affine_float_compare.ll 182 // * ScheduleOptimizer/pattern-matching-based-opts_10.ll 183 // Ideally, synthesizable values are synthesized by trySynthesizeNewValue, 184 // not precomputed (SCEVExpander has its own caching mechanism). 185 // These tests fail without this, but I think trySynthesizeNewValue would 186 // just re-synthesize the same instructions. 187 if ((New = BBMap.lookup(Old))) 188 break; 189 190 New = trySynthesizeNewValue(Stmt, Old, BBMap, LTS, L); 191 break; 192 193 case VirtualUse::Hoisted: 194 // TODO: Hoisted invariant loads should be found in GlobalMap only, but not 195 // redefined locally (which will be ignored anyway). That is, the following 196 // assertion should apply: assert(!BBMap.count(Old)) 197 198 New = lookupGlobally(Old); 199 break; 200 201 case VirtualUse::Intra: 202 case VirtualUse::Inter: 203 assert(!GlobalMap.count(Old) && 204 "Intra and inter-stmt values are never global"); 205 New = BBMap.lookup(Old); 206 break; 207 } 208 assert(New && "Unexpected scalar dependence in region!"); 209 return New; 210 } 211 212 void BlockGenerator::copyInstScalar(ScopStmt &Stmt, Instruction *Inst, 213 ValueMapT &BBMap, LoopToScevMapT <S) { 214 // We do not generate debug intrinsics as we did not investigate how to 215 // copy them correctly. At the current state, they just crash the code 216 // generation as the meta-data operands are not correctly copied. 217 if (isa<DbgInfoIntrinsic>(Inst)) 218 return; 219 220 Instruction *NewInst = Inst->clone(); 221 222 // Replace old operands with the new ones. 223 for (Value *OldOperand : Inst->operands()) { 224 Value *NewOperand = 225 getNewValue(Stmt, OldOperand, BBMap, LTS, getLoopForStmt(Stmt)); 226 227 if (!NewOperand) { 228 assert(!isa<StoreInst>(NewInst) && 229 "Store instructions are always needed!"); 230 NewInst->deleteValue(); 231 return; 232 } 233 234 NewInst->replaceUsesOfWith(OldOperand, NewOperand); 235 } 236 237 Builder.Insert(NewInst); 238 BBMap[Inst] = NewInst; 239 240 // When copying the instruction onto the Module meant for the GPU, 241 // debug metadata attached to an instruction causes all related 242 // metadata to be pulled into the Module. This includes the DICompileUnit, 243 // which will not be listed in llvm.dbg.cu of the Module since the Module 244 // doesn't contain one. This fails the verification of the Module and the 245 // subsequent generation of the ASM string. 246 if (NewInst->getModule() != Inst->getModule()) 247 NewInst->setDebugLoc(llvm::DebugLoc()); 248 249 if (!NewInst->getType()->isVoidTy()) 250 NewInst->setName("p_" + Inst->getName()); 251 } 252 253 Value * 254 BlockGenerator::generateLocationAccessed(ScopStmt &Stmt, MemAccInst Inst, 255 ValueMapT &BBMap, LoopToScevMapT <S, 256 isl_id_to_ast_expr *NewAccesses) { 257 const MemoryAccess &MA = Stmt.getArrayAccessFor(Inst); 258 return generateLocationAccessed( 259 Stmt, getLoopForStmt(Stmt), 260 Inst.isNull() ? nullptr : Inst.getPointerOperand(), BBMap, LTS, 261 NewAccesses, MA.getId().release(), MA.getAccessValue()->getType()); 262 } 263 264 Value *BlockGenerator::generateLocationAccessed( 265 ScopStmt &Stmt, Loop *L, Value *Pointer, ValueMapT &BBMap, 266 LoopToScevMapT <S, isl_id_to_ast_expr *NewAccesses, __isl_take isl_id *Id, 267 Type *ExpectedType) { 268 isl_ast_expr *AccessExpr = isl_id_to_ast_expr_get(NewAccesses, Id); 269 270 if (AccessExpr) { 271 AccessExpr = isl_ast_expr_address_of(AccessExpr); 272 auto Address = ExprBuilder->create(AccessExpr); 273 274 // Cast the address of this memory access to a pointer type that has the 275 // same element type as the original access, but uses the address space of 276 // the newly generated pointer. 277 auto OldPtrTy = ExpectedType->getPointerTo(); 278 auto NewPtrTy = Address->getType(); 279 OldPtrTy = PointerType::get(OldPtrTy->getElementType(), 280 NewPtrTy->getPointerAddressSpace()); 281 282 if (OldPtrTy != NewPtrTy) 283 Address = Builder.CreateBitOrPointerCast(Address, OldPtrTy); 284 return Address; 285 } 286 assert( 287 Pointer && 288 "If expression was not generated, must use the original pointer value"); 289 return getNewValue(Stmt, Pointer, BBMap, LTS, L); 290 } 291 292 Value * 293 BlockGenerator::getImplicitAddress(MemoryAccess &Access, Loop *L, 294 LoopToScevMapT <S, ValueMapT &BBMap, 295 __isl_keep isl_id_to_ast_expr *NewAccesses) { 296 if (Access.isLatestArrayKind()) 297 return generateLocationAccessed(*Access.getStatement(), L, nullptr, BBMap, 298 LTS, NewAccesses, Access.getId().release(), 299 Access.getAccessValue()->getType()); 300 301 return getOrCreateAlloca(Access); 302 } 303 304 Loop *BlockGenerator::getLoopForStmt(const ScopStmt &Stmt) const { 305 auto *StmtBB = Stmt.getEntryBlock(); 306 return LI.getLoopFor(StmtBB); 307 } 308 309 Value *BlockGenerator::generateArrayLoad(ScopStmt &Stmt, LoadInst *Load, 310 ValueMapT &BBMap, LoopToScevMapT <S, 311 isl_id_to_ast_expr *NewAccesses) { 312 if (Value *PreloadLoad = GlobalMap.lookup(Load)) 313 return PreloadLoad; 314 315 Value *NewPointer = 316 generateLocationAccessed(Stmt, Load, BBMap, LTS, NewAccesses); 317 Value *ScalarLoad = Builder.CreateAlignedLoad( 318 NewPointer, Load->getAlignment(), Load->getName() + "_p_scalar_"); 319 320 if (PollyDebugPrinting) 321 RuntimeDebugBuilder::createCPUPrinter(Builder, "Load from ", NewPointer, 322 ": ", ScalarLoad, "\n"); 323 324 return ScalarLoad; 325 } 326 327 void BlockGenerator::generateArrayStore(ScopStmt &Stmt, StoreInst *Store, 328 ValueMapT &BBMap, LoopToScevMapT <S, 329 isl_id_to_ast_expr *NewAccesses) { 330 MemoryAccess &MA = Stmt.getArrayAccessFor(Store); 331 isl::set AccDom = MA.getAccessRelation().domain(); 332 std::string Subject = MA.getId().get_name(); 333 334 generateConditionalExecution(Stmt, AccDom, Subject.c_str(), [&, this]() { 335 Value *NewPointer = 336 generateLocationAccessed(Stmt, Store, BBMap, LTS, NewAccesses); 337 Value *ValueOperand = getNewValue(Stmt, Store->getValueOperand(), BBMap, 338 LTS, getLoopForStmt(Stmt)); 339 340 if (PollyDebugPrinting) 341 RuntimeDebugBuilder::createCPUPrinter(Builder, "Store to ", NewPointer, 342 ": ", ValueOperand, "\n"); 343 344 Builder.CreateAlignedStore(ValueOperand, NewPointer, Store->getAlignment()); 345 }); 346 } 347 348 bool BlockGenerator::canSyntheziseInStmt(ScopStmt &Stmt, Instruction *Inst) { 349 Loop *L = getLoopForStmt(Stmt); 350 return (Stmt.isBlockStmt() || !Stmt.getRegion()->contains(L)) && 351 canSynthesize(Inst, *Stmt.getParent(), &SE, L); 352 } 353 354 void BlockGenerator::copyInstruction(ScopStmt &Stmt, Instruction *Inst, 355 ValueMapT &BBMap, LoopToScevMapT <S, 356 isl_id_to_ast_expr *NewAccesses) { 357 // Terminator instructions control the control flow. They are explicitly 358 // expressed in the clast and do not need to be copied. 359 if (Inst->isTerminator()) 360 return; 361 362 // Synthesizable statements will be generated on-demand. 363 if (canSyntheziseInStmt(Stmt, Inst)) 364 return; 365 366 if (auto *Load = dyn_cast<LoadInst>(Inst)) { 367 Value *NewLoad = generateArrayLoad(Stmt, Load, BBMap, LTS, NewAccesses); 368 // Compute NewLoad before its insertion in BBMap to make the insertion 369 // deterministic. 370 BBMap[Load] = NewLoad; 371 return; 372 } 373 374 if (auto *Store = dyn_cast<StoreInst>(Inst)) { 375 // Identified as redundant by -polly-simplify. 376 if (!Stmt.getArrayAccessOrNULLFor(Store)) 377 return; 378 379 generateArrayStore(Stmt, Store, BBMap, LTS, NewAccesses); 380 return; 381 } 382 383 if (auto *PHI = dyn_cast<PHINode>(Inst)) { 384 copyPHIInstruction(Stmt, PHI, BBMap, LTS); 385 return; 386 } 387 388 // Skip some special intrinsics for which we do not adjust the semantics to 389 // the new schedule. All others are handled like every other instruction. 390 if (isIgnoredIntrinsic(Inst)) 391 return; 392 393 copyInstScalar(Stmt, Inst, BBMap, LTS); 394 } 395 396 void BlockGenerator::removeDeadInstructions(BasicBlock *BB, ValueMapT &BBMap) { 397 auto NewBB = Builder.GetInsertBlock(); 398 for (auto I = NewBB->rbegin(); I != NewBB->rend(); I++) { 399 Instruction *NewInst = &*I; 400 401 if (!isInstructionTriviallyDead(NewInst)) 402 continue; 403 404 for (auto Pair : BBMap) 405 if (Pair.second == NewInst) { 406 BBMap.erase(Pair.first); 407 } 408 409 NewInst->eraseFromParent(); 410 I = NewBB->rbegin(); 411 } 412 } 413 414 void BlockGenerator::copyStmt(ScopStmt &Stmt, LoopToScevMapT <S, 415 isl_id_to_ast_expr *NewAccesses) { 416 assert(Stmt.isBlockStmt() && 417 "Only block statements can be copied by the block generator"); 418 419 ValueMapT BBMap; 420 421 BasicBlock *BB = Stmt.getBasicBlock(); 422 copyBB(Stmt, BB, BBMap, LTS, NewAccesses); 423 removeDeadInstructions(BB, BBMap); 424 } 425 426 BasicBlock *BlockGenerator::splitBB(BasicBlock *BB) { 427 BasicBlock *CopyBB = SplitBlock(Builder.GetInsertBlock(), 428 &*Builder.GetInsertPoint(), &DT, &LI); 429 CopyBB->setName("polly.stmt." + BB->getName()); 430 return CopyBB; 431 } 432 433 BasicBlock *BlockGenerator::copyBB(ScopStmt &Stmt, BasicBlock *BB, 434 ValueMapT &BBMap, LoopToScevMapT <S, 435 isl_id_to_ast_expr *NewAccesses) { 436 BasicBlock *CopyBB = splitBB(BB); 437 Builder.SetInsertPoint(&CopyBB->front()); 438 generateScalarLoads(Stmt, LTS, BBMap, NewAccesses); 439 440 copyBB(Stmt, BB, CopyBB, BBMap, LTS, NewAccesses); 441 442 // After a basic block was copied store all scalars that escape this block in 443 // their alloca. 444 generateScalarStores(Stmt, LTS, BBMap, NewAccesses); 445 return CopyBB; 446 } 447 448 void BlockGenerator::copyBB(ScopStmt &Stmt, BasicBlock *BB, BasicBlock *CopyBB, 449 ValueMapT &BBMap, LoopToScevMapT <S, 450 isl_id_to_ast_expr *NewAccesses) { 451 EntryBB = &CopyBB->getParent()->getEntryBlock(); 452 453 // Block statements and the entry blocks of region statement are code 454 // generated from instruction lists. This allow us to optimize the 455 // instructions that belong to a certain scop statement. As the code 456 // structure of region statements might be arbitrary complex, optimizing the 457 // instruction list is not yet supported. 458 if (Stmt.isBlockStmt() || (Stmt.isRegionStmt() && Stmt.getEntryBlock() == BB)) 459 for (Instruction *Inst : Stmt.getInstructions()) 460 copyInstruction(Stmt, Inst, BBMap, LTS, NewAccesses); 461 else 462 for (Instruction &Inst : *BB) 463 copyInstruction(Stmt, &Inst, BBMap, LTS, NewAccesses); 464 } 465 466 Value *BlockGenerator::getOrCreateAlloca(const MemoryAccess &Access) { 467 assert(!Access.isLatestArrayKind() && "Trying to get alloca for array kind"); 468 469 return getOrCreateAlloca(Access.getLatestScopArrayInfo()); 470 } 471 472 Value *BlockGenerator::getOrCreateAlloca(const ScopArrayInfo *Array) { 473 assert(!Array->isArrayKind() && "Trying to get alloca for array kind"); 474 475 auto &Addr = ScalarMap[Array]; 476 477 if (Addr) { 478 // Allow allocas to be (temporarily) redirected once by adding a new 479 // old-alloca-addr to new-addr mapping to GlobalMap. This functionality 480 // is used for example by the OpenMP code generation where a first use 481 // of a scalar while still in the host code allocates a normal alloca with 482 // getOrCreateAlloca. When the values of this scalar are accessed during 483 // the generation of the parallel subfunction, these values are copied over 484 // to the parallel subfunction and each request for a scalar alloca slot 485 // must be forwarded to the temporary in-subfunction slot. This mapping is 486 // removed when the subfunction has been generated and again normal host 487 // code is generated. Due to the following reasons it is not possible to 488 // perform the GlobalMap lookup right after creating the alloca below, but 489 // instead we need to check GlobalMap at each call to getOrCreateAlloca: 490 // 491 // 1) GlobalMap may be changed multiple times (for each parallel loop), 492 // 2) The temporary mapping is commonly only known after the initial 493 // alloca has already been generated, and 494 // 3) The original alloca value must be restored after leaving the 495 // sub-function. 496 if (Value *NewAddr = GlobalMap.lookup(&*Addr)) 497 return NewAddr; 498 return Addr; 499 } 500 501 Type *Ty = Array->getElementType(); 502 Value *ScalarBase = Array->getBasePtr(); 503 std::string NameExt; 504 if (Array->isPHIKind()) 505 NameExt = ".phiops"; 506 else 507 NameExt = ".s2a"; 508 509 const DataLayout &DL = Builder.GetInsertBlock()->getModule()->getDataLayout(); 510 511 Addr = new AllocaInst(Ty, DL.getAllocaAddrSpace(), 512 ScalarBase->getName() + NameExt); 513 EntryBB = &Builder.GetInsertBlock()->getParent()->getEntryBlock(); 514 Addr->insertBefore(&*EntryBB->getFirstInsertionPt()); 515 516 return Addr; 517 } 518 519 void BlockGenerator::handleOutsideUsers(const Scop &S, ScopArrayInfo *Array) { 520 Instruction *Inst = cast<Instruction>(Array->getBasePtr()); 521 522 // If there are escape users we get the alloca for this instruction and put it 523 // in the EscapeMap for later finalization. Lastly, if the instruction was 524 // copied multiple times we already did this and can exit. 525 if (EscapeMap.count(Inst)) 526 return; 527 528 EscapeUserVectorTy EscapeUsers; 529 for (User *U : Inst->users()) { 530 531 // Non-instruction user will never escape. 532 Instruction *UI = dyn_cast<Instruction>(U); 533 if (!UI) 534 continue; 535 536 if (S.contains(UI)) 537 continue; 538 539 EscapeUsers.push_back(UI); 540 } 541 542 // Exit if no escape uses were found. 543 if (EscapeUsers.empty()) 544 return; 545 546 // Get or create an escape alloca for this instruction. 547 auto *ScalarAddr = getOrCreateAlloca(Array); 548 549 // Remember that this instruction has escape uses and the escape alloca. 550 EscapeMap[Inst] = std::make_pair(ScalarAddr, std::move(EscapeUsers)); 551 } 552 553 void BlockGenerator::generateScalarLoads( 554 ScopStmt &Stmt, LoopToScevMapT <S, ValueMapT &BBMap, 555 __isl_keep isl_id_to_ast_expr *NewAccesses) { 556 for (MemoryAccess *MA : Stmt) { 557 if (MA->isOriginalArrayKind() || MA->isWrite()) 558 continue; 559 560 #ifndef NDEBUG 561 auto StmtDom = 562 Stmt.getDomain().intersect_params(Stmt.getParent()->getContext()); 563 auto AccDom = MA->getAccessRelation().domain(); 564 assert(!StmtDom.is_subset(AccDom).is_false() && 565 "Scalar must be loaded in all statement instances"); 566 #endif 567 568 auto *Address = 569 getImplicitAddress(*MA, getLoopForStmt(Stmt), LTS, BBMap, NewAccesses); 570 assert((!isa<Instruction>(Address) || 571 DT.dominates(cast<Instruction>(Address)->getParent(), 572 Builder.GetInsertBlock())) && 573 "Domination violation"); 574 BBMap[MA->getAccessValue()] = 575 Builder.CreateLoad(Address, Address->getName() + ".reload"); 576 } 577 } 578 579 Value *BlockGenerator::buildContainsCondition(ScopStmt &Stmt, 580 const isl::set &Subdomain) { 581 isl::ast_build AstBuild = Stmt.getAstBuild(); 582 isl::set Domain = Stmt.getDomain(); 583 584 isl::union_map USchedule = AstBuild.get_schedule(); 585 USchedule = USchedule.intersect_domain(Domain); 586 587 assert(!USchedule.is_empty()); 588 isl::map Schedule = isl::map::from_union_map(USchedule); 589 590 isl::set ScheduledDomain = Schedule.range(); 591 isl::set ScheduledSet = Subdomain.apply(Schedule); 592 593 isl::ast_build RestrictedBuild = AstBuild.restrict(ScheduledDomain); 594 595 isl::ast_expr IsInSet = RestrictedBuild.expr_from(ScheduledSet); 596 Value *IsInSetExpr = ExprBuilder->create(IsInSet.copy()); 597 IsInSetExpr = Builder.CreateICmpNE( 598 IsInSetExpr, ConstantInt::get(IsInSetExpr->getType(), 0)); 599 600 return IsInSetExpr; 601 } 602 603 void BlockGenerator::generateConditionalExecution( 604 ScopStmt &Stmt, const isl::set &Subdomain, StringRef Subject, 605 const std::function<void()> &GenThenFunc) { 606 isl::set StmtDom = Stmt.getDomain(); 607 608 // If the condition is a tautology, don't generate a condition around the 609 // code. 610 bool IsPartialWrite = 611 !StmtDom.intersect_params(Stmt.getParent()->getContext()) 612 .is_subset(Subdomain); 613 if (!IsPartialWrite) { 614 GenThenFunc(); 615 return; 616 } 617 618 // Generate the condition. 619 Value *Cond = buildContainsCondition(Stmt, Subdomain); 620 621 // Don't call GenThenFunc if it is never executed. An ast index expression 622 // might not be defined in this case. 623 if (auto *Const = dyn_cast<ConstantInt>(Cond)) 624 if (Const->isZero()) 625 return; 626 627 BasicBlock *HeadBlock = Builder.GetInsertBlock(); 628 StringRef BlockName = HeadBlock->getName(); 629 630 // Generate the conditional block. 631 SplitBlockAndInsertIfThen(Cond, &*Builder.GetInsertPoint(), false, nullptr, 632 &DT, &LI); 633 BranchInst *Branch = cast<BranchInst>(HeadBlock->getTerminator()); 634 BasicBlock *ThenBlock = Branch->getSuccessor(0); 635 BasicBlock *TailBlock = Branch->getSuccessor(1); 636 637 // Assign descriptive names. 638 if (auto *CondInst = dyn_cast<Instruction>(Cond)) 639 CondInst->setName("polly." + Subject + ".cond"); 640 ThenBlock->setName(BlockName + "." + Subject + ".partial"); 641 TailBlock->setName(BlockName + ".cont"); 642 643 // Put the client code into the conditional block and continue in the merge 644 // block afterwards. 645 Builder.SetInsertPoint(ThenBlock, ThenBlock->getFirstInsertionPt()); 646 GenThenFunc(); 647 Builder.SetInsertPoint(TailBlock, TailBlock->getFirstInsertionPt()); 648 } 649 650 void BlockGenerator::generateScalarStores( 651 ScopStmt &Stmt, LoopToScevMapT <S, ValueMapT &BBMap, 652 __isl_keep isl_id_to_ast_expr *NewAccesses) { 653 Loop *L = LI.getLoopFor(Stmt.getBasicBlock()); 654 655 assert(Stmt.isBlockStmt() && 656 "Region statements need to use the generateScalarStores() function in " 657 "the RegionGenerator"); 658 659 for (MemoryAccess *MA : Stmt) { 660 if (MA->isOriginalArrayKind() || MA->isRead()) 661 continue; 662 663 isl::set AccDom = MA->getAccessRelation().domain(); 664 std::string Subject = MA->getId().get_name(); 665 666 generateConditionalExecution( 667 Stmt, AccDom, Subject.c_str(), [&, this, MA]() { 668 Value *Val = MA->getAccessValue(); 669 if (MA->isAnyPHIKind()) { 670 assert(MA->getIncoming().size() >= 1 && 671 "Block statements have exactly one exiting block, or " 672 "multiple but " 673 "with same incoming block and value"); 674 assert(std::all_of(MA->getIncoming().begin(), 675 MA->getIncoming().end(), 676 [&](std::pair<BasicBlock *, Value *> p) -> bool { 677 return p.first == Stmt.getBasicBlock(); 678 }) && 679 "Incoming block must be statement's block"); 680 Val = MA->getIncoming()[0].second; 681 } 682 auto Address = getImplicitAddress(*MA, getLoopForStmt(Stmt), LTS, 683 BBMap, NewAccesses); 684 685 Val = getNewValue(Stmt, Val, BBMap, LTS, L); 686 assert((!isa<Instruction>(Val) || 687 DT.dominates(cast<Instruction>(Val)->getParent(), 688 Builder.GetInsertBlock())) && 689 "Domination violation"); 690 assert((!isa<Instruction>(Address) || 691 DT.dominates(cast<Instruction>(Address)->getParent(), 692 Builder.GetInsertBlock())) && 693 "Domination violation"); 694 695 // The new Val might have a different type than the old Val due to 696 // ScalarEvolution looking through bitcasts. 697 if (Val->getType() != Address->getType()->getPointerElementType()) 698 Address = Builder.CreateBitOrPointerCast( 699 Address, Val->getType()->getPointerTo()); 700 701 Builder.CreateStore(Val, Address); 702 }); 703 } 704 } 705 706 void BlockGenerator::createScalarInitialization(Scop &S) { 707 BasicBlock *ExitBB = S.getExit(); 708 BasicBlock *PreEntryBB = S.getEnteringBlock(); 709 710 Builder.SetInsertPoint(&*StartBlock->begin()); 711 712 for (auto &Array : S.arrays()) { 713 if (Array->getNumberOfDimensions() != 0) 714 continue; 715 if (Array->isPHIKind()) { 716 // For PHI nodes, the only values we need to store are the ones that 717 // reach the PHI node from outside the region. In general there should 718 // only be one such incoming edge and this edge should enter through 719 // 'PreEntryBB'. 720 auto PHI = cast<PHINode>(Array->getBasePtr()); 721 722 for (auto BI = PHI->block_begin(), BE = PHI->block_end(); BI != BE; BI++) 723 if (!S.contains(*BI) && *BI != PreEntryBB) 724 llvm_unreachable("Incoming edges from outside the scop should always " 725 "come from PreEntryBB"); 726 727 int Idx = PHI->getBasicBlockIndex(PreEntryBB); 728 if (Idx < 0) 729 continue; 730 731 Value *ScalarValue = PHI->getIncomingValue(Idx); 732 733 Builder.CreateStore(ScalarValue, getOrCreateAlloca(Array)); 734 continue; 735 } 736 737 auto *Inst = dyn_cast<Instruction>(Array->getBasePtr()); 738 739 if (Inst && S.contains(Inst)) 740 continue; 741 742 // PHI nodes that are not marked as such in their SAI object are either exit 743 // PHI nodes we model as common scalars but without initialization, or 744 // incoming phi nodes that need to be initialized. Check if the first is the 745 // case for Inst and do not create and initialize memory if so. 746 if (auto *PHI = dyn_cast_or_null<PHINode>(Inst)) 747 if (!S.hasSingleExitEdge() && PHI->getBasicBlockIndex(ExitBB) >= 0) 748 continue; 749 750 Builder.CreateStore(Array->getBasePtr(), getOrCreateAlloca(Array)); 751 } 752 } 753 754 void BlockGenerator::createScalarFinalization(Scop &S) { 755 // The exit block of the __unoptimized__ region. 756 BasicBlock *ExitBB = S.getExitingBlock(); 757 // The merge block __just after__ the region and the optimized region. 758 BasicBlock *MergeBB = S.getExit(); 759 760 // The exit block of the __optimized__ region. 761 BasicBlock *OptExitBB = *(pred_begin(MergeBB)); 762 if (OptExitBB == ExitBB) 763 OptExitBB = *(++pred_begin(MergeBB)); 764 765 Builder.SetInsertPoint(OptExitBB->getTerminator()); 766 for (const auto &EscapeMapping : EscapeMap) { 767 // Extract the escaping instruction and the escaping users as well as the 768 // alloca the instruction was demoted to. 769 Instruction *EscapeInst = EscapeMapping.first; 770 const auto &EscapeMappingValue = EscapeMapping.second; 771 const EscapeUserVectorTy &EscapeUsers = EscapeMappingValue.second; 772 Value *ScalarAddr = EscapeMappingValue.first; 773 774 // Reload the demoted instruction in the optimized version of the SCoP. 775 Value *EscapeInstReload = 776 Builder.CreateLoad(ScalarAddr, EscapeInst->getName() + ".final_reload"); 777 EscapeInstReload = 778 Builder.CreateBitOrPointerCast(EscapeInstReload, EscapeInst->getType()); 779 780 // Create the merge PHI that merges the optimized and unoptimized version. 781 PHINode *MergePHI = PHINode::Create(EscapeInst->getType(), 2, 782 EscapeInst->getName() + ".merge"); 783 MergePHI->insertBefore(&*MergeBB->getFirstInsertionPt()); 784 785 // Add the respective values to the merge PHI. 786 MergePHI->addIncoming(EscapeInstReload, OptExitBB); 787 MergePHI->addIncoming(EscapeInst, ExitBB); 788 789 // The information of scalar evolution about the escaping instruction needs 790 // to be revoked so the new merged instruction will be used. 791 if (SE.isSCEVable(EscapeInst->getType())) 792 SE.forgetValue(EscapeInst); 793 794 // Replace all uses of the demoted instruction with the merge PHI. 795 for (Instruction *EUser : EscapeUsers) 796 EUser->replaceUsesOfWith(EscapeInst, MergePHI); 797 } 798 } 799 800 void BlockGenerator::findOutsideUsers(Scop &S) { 801 for (auto &Array : S.arrays()) { 802 803 if (Array->getNumberOfDimensions() != 0) 804 continue; 805 806 if (Array->isPHIKind()) 807 continue; 808 809 auto *Inst = dyn_cast<Instruction>(Array->getBasePtr()); 810 811 if (!Inst) 812 continue; 813 814 // Scop invariant hoisting moves some of the base pointers out of the scop. 815 // We can ignore these, as the invariant load hoisting already registers the 816 // relevant outside users. 817 if (!S.contains(Inst)) 818 continue; 819 820 handleOutsideUsers(S, Array); 821 } 822 } 823 824 void BlockGenerator::createExitPHINodeMerges(Scop &S) { 825 if (S.hasSingleExitEdge()) 826 return; 827 828 auto *ExitBB = S.getExitingBlock(); 829 auto *MergeBB = S.getExit(); 830 auto *AfterMergeBB = MergeBB->getSingleSuccessor(); 831 BasicBlock *OptExitBB = *(pred_begin(MergeBB)); 832 if (OptExitBB == ExitBB) 833 OptExitBB = *(++pred_begin(MergeBB)); 834 835 Builder.SetInsertPoint(OptExitBB->getTerminator()); 836 837 for (auto &SAI : S.arrays()) { 838 auto *Val = SAI->getBasePtr(); 839 840 // Only Value-like scalars need a merge PHI. Exit block PHIs receive either 841 // the original PHI's value or the reloaded incoming values from the 842 // generated code. An llvm::Value is merged between the original code's 843 // value or the generated one. 844 if (!SAI->isExitPHIKind()) 845 continue; 846 847 PHINode *PHI = dyn_cast<PHINode>(Val); 848 if (!PHI) 849 continue; 850 851 if (PHI->getParent() != AfterMergeBB) 852 continue; 853 854 std::string Name = PHI->getName(); 855 Value *ScalarAddr = getOrCreateAlloca(SAI); 856 Value *Reload = Builder.CreateLoad(ScalarAddr, Name + ".ph.final_reload"); 857 Reload = Builder.CreateBitOrPointerCast(Reload, PHI->getType()); 858 Value *OriginalValue = PHI->getIncomingValueForBlock(MergeBB); 859 assert((!isa<Instruction>(OriginalValue) || 860 cast<Instruction>(OriginalValue)->getParent() != MergeBB) && 861 "Original value must no be one we just generated."); 862 auto *MergePHI = PHINode::Create(PHI->getType(), 2, Name + ".ph.merge"); 863 MergePHI->insertBefore(&*MergeBB->getFirstInsertionPt()); 864 MergePHI->addIncoming(Reload, OptExitBB); 865 MergePHI->addIncoming(OriginalValue, ExitBB); 866 int Idx = PHI->getBasicBlockIndex(MergeBB); 867 PHI->setIncomingValue(Idx, MergePHI); 868 } 869 } 870 871 void BlockGenerator::invalidateScalarEvolution(Scop &S) { 872 for (auto &Stmt : S) 873 if (Stmt.isCopyStmt()) 874 continue; 875 else if (Stmt.isBlockStmt()) 876 for (auto &Inst : *Stmt.getBasicBlock()) 877 SE.forgetValue(&Inst); 878 else if (Stmt.isRegionStmt()) 879 for (auto *BB : Stmt.getRegion()->blocks()) 880 for (auto &Inst : *BB) 881 SE.forgetValue(&Inst); 882 else 883 llvm_unreachable("Unexpected statement type found"); 884 885 // Invalidate SCEV of loops surrounding the EscapeUsers. 886 for (const auto &EscapeMapping : EscapeMap) { 887 const EscapeUserVectorTy &EscapeUsers = EscapeMapping.second.second; 888 for (Instruction *EUser : EscapeUsers) { 889 if (Loop *L = LI.getLoopFor(EUser->getParent())) 890 while (L) { 891 SE.forgetLoop(L); 892 L = L->getParentLoop(); 893 } 894 } 895 } 896 } 897 898 void BlockGenerator::finalizeSCoP(Scop &S) { 899 findOutsideUsers(S); 900 createScalarInitialization(S); 901 createExitPHINodeMerges(S); 902 createScalarFinalization(S); 903 invalidateScalarEvolution(S); 904 } 905 906 VectorBlockGenerator::VectorBlockGenerator(BlockGenerator &BlockGen, 907 std::vector<LoopToScevMapT> &VLTS, 908 isl_map *Schedule) 909 : BlockGenerator(BlockGen), VLTS(VLTS), Schedule(Schedule) { 910 assert(Schedule && "No statement domain provided"); 911 } 912 913 Value *VectorBlockGenerator::getVectorValue(ScopStmt &Stmt, Value *Old, 914 ValueMapT &VectorMap, 915 VectorValueMapT &ScalarMaps, 916 Loop *L) { 917 if (Value *NewValue = VectorMap.lookup(Old)) 918 return NewValue; 919 920 int Width = getVectorWidth(); 921 922 Value *Vector = UndefValue::get(VectorType::get(Old->getType(), Width)); 923 924 for (int Lane = 0; Lane < Width; Lane++) 925 Vector = Builder.CreateInsertElement( 926 Vector, getNewValue(Stmt, Old, ScalarMaps[Lane], VLTS[Lane], L), 927 Builder.getInt32(Lane)); 928 929 VectorMap[Old] = Vector; 930 931 return Vector; 932 } 933 934 Type *VectorBlockGenerator::getVectorPtrTy(const Value *Val, int Width) { 935 PointerType *PointerTy = dyn_cast<PointerType>(Val->getType()); 936 assert(PointerTy && "PointerType expected"); 937 938 Type *ScalarType = PointerTy->getElementType(); 939 VectorType *VectorType = VectorType::get(ScalarType, Width); 940 941 return PointerType::getUnqual(VectorType); 942 } 943 944 Value *VectorBlockGenerator::generateStrideOneLoad( 945 ScopStmt &Stmt, LoadInst *Load, VectorValueMapT &ScalarMaps, 946 __isl_keep isl_id_to_ast_expr *NewAccesses, bool NegativeStride = false) { 947 unsigned VectorWidth = getVectorWidth(); 948 auto *Pointer = Load->getPointerOperand(); 949 Type *VectorPtrType = getVectorPtrTy(Pointer, VectorWidth); 950 unsigned Offset = NegativeStride ? VectorWidth - 1 : 0; 951 952 Value *NewPointer = generateLocationAccessed(Stmt, Load, ScalarMaps[Offset], 953 VLTS[Offset], NewAccesses); 954 Value *VectorPtr = 955 Builder.CreateBitCast(NewPointer, VectorPtrType, "vector_ptr"); 956 LoadInst *VecLoad = 957 Builder.CreateLoad(VectorPtr, Load->getName() + "_p_vec_full"); 958 if (!Aligned) 959 VecLoad->setAlignment(8); 960 961 if (NegativeStride) { 962 SmallVector<Constant *, 16> Indices; 963 for (int i = VectorWidth - 1; i >= 0; i--) 964 Indices.push_back(ConstantInt::get(Builder.getInt32Ty(), i)); 965 Constant *SV = llvm::ConstantVector::get(Indices); 966 Value *RevVecLoad = Builder.CreateShuffleVector( 967 VecLoad, VecLoad, SV, Load->getName() + "_reverse"); 968 return RevVecLoad; 969 } 970 971 return VecLoad; 972 } 973 974 Value *VectorBlockGenerator::generateStrideZeroLoad( 975 ScopStmt &Stmt, LoadInst *Load, ValueMapT &BBMap, 976 __isl_keep isl_id_to_ast_expr *NewAccesses) { 977 auto *Pointer = Load->getPointerOperand(); 978 Type *VectorPtrType = getVectorPtrTy(Pointer, 1); 979 Value *NewPointer = 980 generateLocationAccessed(Stmt, Load, BBMap, VLTS[0], NewAccesses); 981 Value *VectorPtr = Builder.CreateBitCast(NewPointer, VectorPtrType, 982 Load->getName() + "_p_vec_p"); 983 LoadInst *ScalarLoad = 984 Builder.CreateLoad(VectorPtr, Load->getName() + "_p_splat_one"); 985 986 if (!Aligned) 987 ScalarLoad->setAlignment(8); 988 989 Constant *SplatVector = Constant::getNullValue( 990 VectorType::get(Builder.getInt32Ty(), getVectorWidth())); 991 992 Value *VectorLoad = Builder.CreateShuffleVector( 993 ScalarLoad, ScalarLoad, SplatVector, Load->getName() + "_p_splat"); 994 return VectorLoad; 995 } 996 997 Value *VectorBlockGenerator::generateUnknownStrideLoad( 998 ScopStmt &Stmt, LoadInst *Load, VectorValueMapT &ScalarMaps, 999 __isl_keep isl_id_to_ast_expr *NewAccesses) { 1000 int VectorWidth = getVectorWidth(); 1001 auto *Pointer = Load->getPointerOperand(); 1002 VectorType *VectorType = VectorType::get( 1003 dyn_cast<PointerType>(Pointer->getType())->getElementType(), VectorWidth); 1004 1005 Value *Vector = UndefValue::get(VectorType); 1006 1007 for (int i = 0; i < VectorWidth; i++) { 1008 Value *NewPointer = generateLocationAccessed(Stmt, Load, ScalarMaps[i], 1009 VLTS[i], NewAccesses); 1010 Value *ScalarLoad = 1011 Builder.CreateLoad(NewPointer, Load->getName() + "_p_scalar_"); 1012 Vector = Builder.CreateInsertElement( 1013 Vector, ScalarLoad, Builder.getInt32(i), Load->getName() + "_p_vec_"); 1014 } 1015 1016 return Vector; 1017 } 1018 1019 void VectorBlockGenerator::generateLoad( 1020 ScopStmt &Stmt, LoadInst *Load, ValueMapT &VectorMap, 1021 VectorValueMapT &ScalarMaps, __isl_keep isl_id_to_ast_expr *NewAccesses) { 1022 if (Value *PreloadLoad = GlobalMap.lookup(Load)) { 1023 VectorMap[Load] = Builder.CreateVectorSplat(getVectorWidth(), PreloadLoad, 1024 Load->getName() + "_p"); 1025 return; 1026 } 1027 1028 if (!VectorType::isValidElementType(Load->getType())) { 1029 for (int i = 0; i < getVectorWidth(); i++) 1030 ScalarMaps[i][Load] = 1031 generateArrayLoad(Stmt, Load, ScalarMaps[i], VLTS[i], NewAccesses); 1032 return; 1033 } 1034 1035 const MemoryAccess &Access = Stmt.getArrayAccessFor(Load); 1036 1037 // Make sure we have scalar values available to access the pointer to 1038 // the data location. 1039 extractScalarValues(Load, VectorMap, ScalarMaps); 1040 1041 Value *NewLoad; 1042 if (Access.isStrideZero(isl::manage_copy(Schedule))) 1043 NewLoad = generateStrideZeroLoad(Stmt, Load, ScalarMaps[0], NewAccesses); 1044 else if (Access.isStrideOne(isl::manage_copy(Schedule))) 1045 NewLoad = generateStrideOneLoad(Stmt, Load, ScalarMaps, NewAccesses); 1046 else if (Access.isStrideX(isl::manage_copy(Schedule), -1)) 1047 NewLoad = generateStrideOneLoad(Stmt, Load, ScalarMaps, NewAccesses, true); 1048 else 1049 NewLoad = generateUnknownStrideLoad(Stmt, Load, ScalarMaps, NewAccesses); 1050 1051 VectorMap[Load] = NewLoad; 1052 } 1053 1054 void VectorBlockGenerator::copyUnaryInst(ScopStmt &Stmt, UnaryInstruction *Inst, 1055 ValueMapT &VectorMap, 1056 VectorValueMapT &ScalarMaps) { 1057 int VectorWidth = getVectorWidth(); 1058 Value *NewOperand = getVectorValue(Stmt, Inst->getOperand(0), VectorMap, 1059 ScalarMaps, getLoopForStmt(Stmt)); 1060 1061 assert(isa<CastInst>(Inst) && "Can not generate vector code for instruction"); 1062 1063 const CastInst *Cast = dyn_cast<CastInst>(Inst); 1064 VectorType *DestType = VectorType::get(Inst->getType(), VectorWidth); 1065 VectorMap[Inst] = Builder.CreateCast(Cast->getOpcode(), NewOperand, DestType); 1066 } 1067 1068 void VectorBlockGenerator::copyBinaryInst(ScopStmt &Stmt, BinaryOperator *Inst, 1069 ValueMapT &VectorMap, 1070 VectorValueMapT &ScalarMaps) { 1071 Loop *L = getLoopForStmt(Stmt); 1072 Value *OpZero = Inst->getOperand(0); 1073 Value *OpOne = Inst->getOperand(1); 1074 1075 Value *NewOpZero, *NewOpOne; 1076 NewOpZero = getVectorValue(Stmt, OpZero, VectorMap, ScalarMaps, L); 1077 NewOpOne = getVectorValue(Stmt, OpOne, VectorMap, ScalarMaps, L); 1078 1079 Value *NewInst = Builder.CreateBinOp(Inst->getOpcode(), NewOpZero, NewOpOne, 1080 Inst->getName() + "p_vec"); 1081 VectorMap[Inst] = NewInst; 1082 } 1083 1084 void VectorBlockGenerator::copyStore( 1085 ScopStmt &Stmt, StoreInst *Store, ValueMapT &VectorMap, 1086 VectorValueMapT &ScalarMaps, __isl_keep isl_id_to_ast_expr *NewAccesses) { 1087 const MemoryAccess &Access = Stmt.getArrayAccessFor(Store); 1088 1089 auto *Pointer = Store->getPointerOperand(); 1090 Value *Vector = getVectorValue(Stmt, Store->getValueOperand(), VectorMap, 1091 ScalarMaps, getLoopForStmt(Stmt)); 1092 1093 // Make sure we have scalar values available to access the pointer to 1094 // the data location. 1095 extractScalarValues(Store, VectorMap, ScalarMaps); 1096 1097 if (Access.isStrideOne(isl::manage_copy(Schedule))) { 1098 Type *VectorPtrType = getVectorPtrTy(Pointer, getVectorWidth()); 1099 Value *NewPointer = generateLocationAccessed(Stmt, Store, ScalarMaps[0], 1100 VLTS[0], NewAccesses); 1101 1102 Value *VectorPtr = 1103 Builder.CreateBitCast(NewPointer, VectorPtrType, "vector_ptr"); 1104 StoreInst *Store = Builder.CreateStore(Vector, VectorPtr); 1105 1106 if (!Aligned) 1107 Store->setAlignment(8); 1108 } else { 1109 for (unsigned i = 0; i < ScalarMaps.size(); i++) { 1110 Value *Scalar = Builder.CreateExtractElement(Vector, Builder.getInt32(i)); 1111 Value *NewPointer = generateLocationAccessed(Stmt, Store, ScalarMaps[i], 1112 VLTS[i], NewAccesses); 1113 Builder.CreateStore(Scalar, NewPointer); 1114 } 1115 } 1116 } 1117 1118 bool VectorBlockGenerator::hasVectorOperands(const Instruction *Inst, 1119 ValueMapT &VectorMap) { 1120 for (Value *Operand : Inst->operands()) 1121 if (VectorMap.count(Operand)) 1122 return true; 1123 return false; 1124 } 1125 1126 bool VectorBlockGenerator::extractScalarValues(const Instruction *Inst, 1127 ValueMapT &VectorMap, 1128 VectorValueMapT &ScalarMaps) { 1129 bool HasVectorOperand = false; 1130 int VectorWidth = getVectorWidth(); 1131 1132 for (Value *Operand : Inst->operands()) { 1133 ValueMapT::iterator VecOp = VectorMap.find(Operand); 1134 1135 if (VecOp == VectorMap.end()) 1136 continue; 1137 1138 HasVectorOperand = true; 1139 Value *NewVector = VecOp->second; 1140 1141 for (int i = 0; i < VectorWidth; ++i) { 1142 ValueMapT &SM = ScalarMaps[i]; 1143 1144 // If there is one scalar extracted, all scalar elements should have 1145 // already been extracted by the code here. So no need to check for the 1146 // existence of all of them. 1147 if (SM.count(Operand)) 1148 break; 1149 1150 SM[Operand] = 1151 Builder.CreateExtractElement(NewVector, Builder.getInt32(i)); 1152 } 1153 } 1154 1155 return HasVectorOperand; 1156 } 1157 1158 void VectorBlockGenerator::copyInstScalarized( 1159 ScopStmt &Stmt, Instruction *Inst, ValueMapT &VectorMap, 1160 VectorValueMapT &ScalarMaps, __isl_keep isl_id_to_ast_expr *NewAccesses) { 1161 bool HasVectorOperand; 1162 int VectorWidth = getVectorWidth(); 1163 1164 HasVectorOperand = extractScalarValues(Inst, VectorMap, ScalarMaps); 1165 1166 for (int VectorLane = 0; VectorLane < getVectorWidth(); VectorLane++) 1167 BlockGenerator::copyInstruction(Stmt, Inst, ScalarMaps[VectorLane], 1168 VLTS[VectorLane], NewAccesses); 1169 1170 if (!VectorType::isValidElementType(Inst->getType()) || !HasVectorOperand) 1171 return; 1172 1173 // Make the result available as vector value. 1174 VectorType *VectorType = VectorType::get(Inst->getType(), VectorWidth); 1175 Value *Vector = UndefValue::get(VectorType); 1176 1177 for (int i = 0; i < VectorWidth; i++) 1178 Vector = Builder.CreateInsertElement(Vector, ScalarMaps[i][Inst], 1179 Builder.getInt32(i)); 1180 1181 VectorMap[Inst] = Vector; 1182 } 1183 1184 int VectorBlockGenerator::getVectorWidth() { return VLTS.size(); } 1185 1186 void VectorBlockGenerator::copyInstruction( 1187 ScopStmt &Stmt, Instruction *Inst, ValueMapT &VectorMap, 1188 VectorValueMapT &ScalarMaps, __isl_keep isl_id_to_ast_expr *NewAccesses) { 1189 // Terminator instructions control the control flow. They are explicitly 1190 // expressed in the clast and do not need to be copied. 1191 if (Inst->isTerminator()) 1192 return; 1193 1194 if (canSyntheziseInStmt(Stmt, Inst)) 1195 return; 1196 1197 if (auto *Load = dyn_cast<LoadInst>(Inst)) { 1198 generateLoad(Stmt, Load, VectorMap, ScalarMaps, NewAccesses); 1199 return; 1200 } 1201 1202 if (hasVectorOperands(Inst, VectorMap)) { 1203 if (auto *Store = dyn_cast<StoreInst>(Inst)) { 1204 // Identified as redundant by -polly-simplify. 1205 if (!Stmt.getArrayAccessOrNULLFor(Store)) 1206 return; 1207 1208 copyStore(Stmt, Store, VectorMap, ScalarMaps, NewAccesses); 1209 return; 1210 } 1211 1212 if (auto *Unary = dyn_cast<UnaryInstruction>(Inst)) { 1213 copyUnaryInst(Stmt, Unary, VectorMap, ScalarMaps); 1214 return; 1215 } 1216 1217 if (auto *Binary = dyn_cast<BinaryOperator>(Inst)) { 1218 copyBinaryInst(Stmt, Binary, VectorMap, ScalarMaps); 1219 return; 1220 } 1221 1222 // Fallthrough: We generate scalar instructions, if we don't know how to 1223 // generate vector code. 1224 } 1225 1226 copyInstScalarized(Stmt, Inst, VectorMap, ScalarMaps, NewAccesses); 1227 } 1228 1229 void VectorBlockGenerator::generateScalarVectorLoads( 1230 ScopStmt &Stmt, ValueMapT &VectorBlockMap) { 1231 for (MemoryAccess *MA : Stmt) { 1232 if (MA->isArrayKind() || MA->isWrite()) 1233 continue; 1234 1235 auto *Address = getOrCreateAlloca(*MA); 1236 Type *VectorPtrType = getVectorPtrTy(Address, 1); 1237 Value *VectorPtr = Builder.CreateBitCast(Address, VectorPtrType, 1238 Address->getName() + "_p_vec_p"); 1239 auto *Val = Builder.CreateLoad(VectorPtr, Address->getName() + ".reload"); 1240 Constant *SplatVector = Constant::getNullValue( 1241 VectorType::get(Builder.getInt32Ty(), getVectorWidth())); 1242 1243 Value *VectorVal = Builder.CreateShuffleVector( 1244 Val, Val, SplatVector, Address->getName() + "_p_splat"); 1245 VectorBlockMap[MA->getAccessValue()] = VectorVal; 1246 } 1247 } 1248 1249 void VectorBlockGenerator::verifyNoScalarStores(ScopStmt &Stmt) { 1250 for (MemoryAccess *MA : Stmt) { 1251 if (MA->isArrayKind() || MA->isRead()) 1252 continue; 1253 1254 llvm_unreachable("Scalar stores not expected in vector loop"); 1255 } 1256 } 1257 1258 void VectorBlockGenerator::copyStmt( 1259 ScopStmt &Stmt, __isl_keep isl_id_to_ast_expr *NewAccesses) { 1260 assert(Stmt.isBlockStmt() && 1261 "TODO: Only block statements can be copied by the vector block " 1262 "generator"); 1263 1264 BasicBlock *BB = Stmt.getBasicBlock(); 1265 BasicBlock *CopyBB = SplitBlock(Builder.GetInsertBlock(), 1266 &*Builder.GetInsertPoint(), &DT, &LI); 1267 CopyBB->setName("polly.stmt." + BB->getName()); 1268 Builder.SetInsertPoint(&CopyBB->front()); 1269 1270 // Create two maps that store the mapping from the original instructions of 1271 // the old basic block to their copies in the new basic block. Those maps 1272 // are basic block local. 1273 // 1274 // As vector code generation is supported there is one map for scalar values 1275 // and one for vector values. 1276 // 1277 // In case we just do scalar code generation, the vectorMap is not used and 1278 // the scalarMap has just one dimension, which contains the mapping. 1279 // 1280 // In case vector code generation is done, an instruction may either appear 1281 // in the vector map once (as it is calculating >vectorwidth< values at a 1282 // time. Or (if the values are calculated using scalar operations), it 1283 // appears once in every dimension of the scalarMap. 1284 VectorValueMapT ScalarBlockMap(getVectorWidth()); 1285 ValueMapT VectorBlockMap; 1286 1287 generateScalarVectorLoads(Stmt, VectorBlockMap); 1288 1289 for (Instruction &Inst : *BB) 1290 copyInstruction(Stmt, &Inst, VectorBlockMap, ScalarBlockMap, NewAccesses); 1291 1292 verifyNoScalarStores(Stmt); 1293 } 1294 1295 BasicBlock *RegionGenerator::repairDominance(BasicBlock *BB, 1296 BasicBlock *BBCopy) { 1297 1298 BasicBlock *BBIDom = DT.getNode(BB)->getIDom()->getBlock(); 1299 BasicBlock *BBCopyIDom = EndBlockMap.lookup(BBIDom); 1300 1301 if (BBCopyIDom) 1302 DT.changeImmediateDominator(BBCopy, BBCopyIDom); 1303 1304 return StartBlockMap.lookup(BBIDom); 1305 } 1306 1307 // This is to determine whether an llvm::Value (defined in @p BB) is usable when 1308 // leaving a subregion. The straight-forward DT.dominates(BB, R->getExitBlock()) 1309 // does not work in cases where the exit block has edges from outside the 1310 // region. In that case the llvm::Value would never be usable in in the exit 1311 // block. The RegionGenerator however creates an new exit block ('ExitBBCopy') 1312 // for the subregion's exiting edges only. We need to determine whether an 1313 // llvm::Value is usable in there. We do this by checking whether it dominates 1314 // all exiting blocks individually. 1315 static bool isDominatingSubregionExit(const DominatorTree &DT, Region *R, 1316 BasicBlock *BB) { 1317 for (auto ExitingBB : predecessors(R->getExit())) { 1318 // Check for non-subregion incoming edges. 1319 if (!R->contains(ExitingBB)) 1320 continue; 1321 1322 if (!DT.dominates(BB, ExitingBB)) 1323 return false; 1324 } 1325 1326 return true; 1327 } 1328 1329 // Find the direct dominator of the subregion's exit block if the subregion was 1330 // simplified. 1331 static BasicBlock *findExitDominator(DominatorTree &DT, Region *R) { 1332 BasicBlock *Common = nullptr; 1333 for (auto ExitingBB : predecessors(R->getExit())) { 1334 // Check for non-subregion incoming edges. 1335 if (!R->contains(ExitingBB)) 1336 continue; 1337 1338 // First exiting edge. 1339 if (!Common) { 1340 Common = ExitingBB; 1341 continue; 1342 } 1343 1344 Common = DT.findNearestCommonDominator(Common, ExitingBB); 1345 } 1346 1347 assert(Common && R->contains(Common)); 1348 return Common; 1349 } 1350 1351 void RegionGenerator::copyStmt(ScopStmt &Stmt, LoopToScevMapT <S, 1352 isl_id_to_ast_expr *IdToAstExp) { 1353 assert(Stmt.isRegionStmt() && 1354 "Only region statements can be copied by the region generator"); 1355 1356 // Forget all old mappings. 1357 StartBlockMap.clear(); 1358 EndBlockMap.clear(); 1359 RegionMaps.clear(); 1360 IncompletePHINodeMap.clear(); 1361 1362 // Collection of all values related to this subregion. 1363 ValueMapT ValueMap; 1364 1365 // The region represented by the statement. 1366 Region *R = Stmt.getRegion(); 1367 1368 // Create a dedicated entry for the region where we can reload all demoted 1369 // inputs. 1370 BasicBlock *EntryBB = R->getEntry(); 1371 BasicBlock *EntryBBCopy = SplitBlock(Builder.GetInsertBlock(), 1372 &*Builder.GetInsertPoint(), &DT, &LI); 1373 EntryBBCopy->setName("polly.stmt." + EntryBB->getName() + ".entry"); 1374 Builder.SetInsertPoint(&EntryBBCopy->front()); 1375 1376 ValueMapT &EntryBBMap = RegionMaps[EntryBBCopy]; 1377 generateScalarLoads(Stmt, LTS, EntryBBMap, IdToAstExp); 1378 1379 for (auto PI = pred_begin(EntryBB), PE = pred_end(EntryBB); PI != PE; ++PI) 1380 if (!R->contains(*PI)) { 1381 StartBlockMap[*PI] = EntryBBCopy; 1382 EndBlockMap[*PI] = EntryBBCopy; 1383 } 1384 1385 // Iterate over all blocks in the region in a breadth-first search. 1386 std::deque<BasicBlock *> Blocks; 1387 SmallSetVector<BasicBlock *, 8> SeenBlocks; 1388 Blocks.push_back(EntryBB); 1389 SeenBlocks.insert(EntryBB); 1390 1391 while (!Blocks.empty()) { 1392 BasicBlock *BB = Blocks.front(); 1393 Blocks.pop_front(); 1394 1395 // First split the block and update dominance information. 1396 BasicBlock *BBCopy = splitBB(BB); 1397 BasicBlock *BBCopyIDom = repairDominance(BB, BBCopy); 1398 1399 // Get the mapping for this block and initialize it with either the scalar 1400 // loads from the generated entering block (which dominates all blocks of 1401 // this subregion) or the maps of the immediate dominator, if part of the 1402 // subregion. The latter necessarily includes the former. 1403 ValueMapT *InitBBMap; 1404 if (BBCopyIDom) { 1405 assert(RegionMaps.count(BBCopyIDom)); 1406 InitBBMap = &RegionMaps[BBCopyIDom]; 1407 } else 1408 InitBBMap = &EntryBBMap; 1409 auto Inserted = RegionMaps.insert(std::make_pair(BBCopy, *InitBBMap)); 1410 ValueMapT &RegionMap = Inserted.first->second; 1411 1412 // Copy the block with the BlockGenerator. 1413 Builder.SetInsertPoint(&BBCopy->front()); 1414 copyBB(Stmt, BB, BBCopy, RegionMap, LTS, IdToAstExp); 1415 1416 // In order to remap PHI nodes we store also basic block mappings. 1417 StartBlockMap[BB] = BBCopy; 1418 EndBlockMap[BB] = Builder.GetInsertBlock(); 1419 1420 // Add values to incomplete PHI nodes waiting for this block to be copied. 1421 for (const PHINodePairTy &PHINodePair : IncompletePHINodeMap[BB]) 1422 addOperandToPHI(Stmt, PHINodePair.first, PHINodePair.second, BB, LTS); 1423 IncompletePHINodeMap[BB].clear(); 1424 1425 // And continue with new successors inside the region. 1426 for (auto SI = succ_begin(BB), SE = succ_end(BB); SI != SE; SI++) 1427 if (R->contains(*SI) && SeenBlocks.insert(*SI)) 1428 Blocks.push_back(*SI); 1429 1430 // Remember value in case it is visible after this subregion. 1431 if (isDominatingSubregionExit(DT, R, BB)) 1432 ValueMap.insert(RegionMap.begin(), RegionMap.end()); 1433 } 1434 1435 // Now create a new dedicated region exit block and add it to the region map. 1436 BasicBlock *ExitBBCopy = SplitBlock(Builder.GetInsertBlock(), 1437 &*Builder.GetInsertPoint(), &DT, &LI); 1438 ExitBBCopy->setName("polly.stmt." + R->getExit()->getName() + ".exit"); 1439 StartBlockMap[R->getExit()] = ExitBBCopy; 1440 EndBlockMap[R->getExit()] = ExitBBCopy; 1441 1442 BasicBlock *ExitDomBBCopy = EndBlockMap.lookup(findExitDominator(DT, R)); 1443 assert(ExitDomBBCopy && 1444 "Common exit dominator must be within region; at least the entry node " 1445 "must match"); 1446 DT.changeImmediateDominator(ExitBBCopy, ExitDomBBCopy); 1447 1448 // As the block generator doesn't handle control flow we need to add the 1449 // region control flow by hand after all blocks have been copied. 1450 for (BasicBlock *BB : SeenBlocks) { 1451 1452 BasicBlock *BBCopyStart = StartBlockMap[BB]; 1453 BasicBlock *BBCopyEnd = EndBlockMap[BB]; 1454 TerminatorInst *TI = BB->getTerminator(); 1455 if (isa<UnreachableInst>(TI)) { 1456 while (!BBCopyEnd->empty()) 1457 BBCopyEnd->begin()->eraseFromParent(); 1458 new UnreachableInst(BBCopyEnd->getContext(), BBCopyEnd); 1459 continue; 1460 } 1461 1462 Instruction *BICopy = BBCopyEnd->getTerminator(); 1463 1464 ValueMapT &RegionMap = RegionMaps[BBCopyStart]; 1465 RegionMap.insert(StartBlockMap.begin(), StartBlockMap.end()); 1466 1467 Builder.SetInsertPoint(BICopy); 1468 copyInstScalar(Stmt, TI, RegionMap, LTS); 1469 BICopy->eraseFromParent(); 1470 } 1471 1472 // Add counting PHI nodes to all loops in the region that can be used as 1473 // replacement for SCEVs referring to the old loop. 1474 for (BasicBlock *BB : SeenBlocks) { 1475 Loop *L = LI.getLoopFor(BB); 1476 if (L == nullptr || L->getHeader() != BB || !R->contains(L)) 1477 continue; 1478 1479 BasicBlock *BBCopy = StartBlockMap[BB]; 1480 Value *NullVal = Builder.getInt32(0); 1481 PHINode *LoopPHI = 1482 PHINode::Create(Builder.getInt32Ty(), 2, "polly.subregion.iv"); 1483 Instruction *LoopPHIInc = BinaryOperator::CreateAdd( 1484 LoopPHI, Builder.getInt32(1), "polly.subregion.iv.inc"); 1485 LoopPHI->insertBefore(&BBCopy->front()); 1486 LoopPHIInc->insertBefore(BBCopy->getTerminator()); 1487 1488 for (auto *PredBB : make_range(pred_begin(BB), pred_end(BB))) { 1489 if (!R->contains(PredBB)) 1490 continue; 1491 if (L->contains(PredBB)) 1492 LoopPHI->addIncoming(LoopPHIInc, EndBlockMap[PredBB]); 1493 else 1494 LoopPHI->addIncoming(NullVal, EndBlockMap[PredBB]); 1495 } 1496 1497 for (auto *PredBBCopy : make_range(pred_begin(BBCopy), pred_end(BBCopy))) 1498 if (LoopPHI->getBasicBlockIndex(PredBBCopy) < 0) 1499 LoopPHI->addIncoming(NullVal, PredBBCopy); 1500 1501 LTS[L] = SE.getUnknown(LoopPHI); 1502 } 1503 1504 // Continue generating code in the exit block. 1505 Builder.SetInsertPoint(&*ExitBBCopy->getFirstInsertionPt()); 1506 1507 // Write values visible to other statements. 1508 generateScalarStores(Stmt, LTS, ValueMap, IdToAstExp); 1509 StartBlockMap.clear(); 1510 EndBlockMap.clear(); 1511 RegionMaps.clear(); 1512 IncompletePHINodeMap.clear(); 1513 } 1514 1515 PHINode *RegionGenerator::buildExitPHI(MemoryAccess *MA, LoopToScevMapT <S, 1516 ValueMapT &BBMap, Loop *L) { 1517 ScopStmt *Stmt = MA->getStatement(); 1518 Region *SubR = Stmt->getRegion(); 1519 auto Incoming = MA->getIncoming(); 1520 1521 PollyIRBuilder::InsertPointGuard IPGuard(Builder); 1522 PHINode *OrigPHI = cast<PHINode>(MA->getAccessInstruction()); 1523 BasicBlock *NewSubregionExit = Builder.GetInsertBlock(); 1524 1525 // This can happen if the subregion is simplified after the ScopStmts 1526 // have been created; simplification happens as part of CodeGeneration. 1527 if (OrigPHI->getParent() != SubR->getExit()) { 1528 BasicBlock *FormerExit = SubR->getExitingBlock(); 1529 if (FormerExit) 1530 NewSubregionExit = StartBlockMap.lookup(FormerExit); 1531 } 1532 1533 PHINode *NewPHI = PHINode::Create(OrigPHI->getType(), Incoming.size(), 1534 "polly." + OrigPHI->getName(), 1535 NewSubregionExit->getFirstNonPHI()); 1536 1537 // Add the incoming values to the PHI. 1538 for (auto &Pair : Incoming) { 1539 BasicBlock *OrigIncomingBlock = Pair.first; 1540 BasicBlock *NewIncomingBlockStart = StartBlockMap.lookup(OrigIncomingBlock); 1541 BasicBlock *NewIncomingBlockEnd = EndBlockMap.lookup(OrigIncomingBlock); 1542 Builder.SetInsertPoint(NewIncomingBlockEnd->getTerminator()); 1543 assert(RegionMaps.count(NewIncomingBlockStart)); 1544 assert(RegionMaps.count(NewIncomingBlockEnd)); 1545 ValueMapT *LocalBBMap = &RegionMaps[NewIncomingBlockStart]; 1546 1547 Value *OrigIncomingValue = Pair.second; 1548 Value *NewIncomingValue = 1549 getNewValue(*Stmt, OrigIncomingValue, *LocalBBMap, LTS, L); 1550 NewPHI->addIncoming(NewIncomingValue, NewIncomingBlockEnd); 1551 } 1552 1553 return NewPHI; 1554 } 1555 1556 Value *RegionGenerator::getExitScalar(MemoryAccess *MA, LoopToScevMapT <S, 1557 ValueMapT &BBMap) { 1558 ScopStmt *Stmt = MA->getStatement(); 1559 1560 // TODO: Add some test cases that ensure this is really the right choice. 1561 Loop *L = LI.getLoopFor(Stmt->getRegion()->getExit()); 1562 1563 if (MA->isAnyPHIKind()) { 1564 auto Incoming = MA->getIncoming(); 1565 assert(!Incoming.empty() && 1566 "PHI WRITEs must have originate from at least one incoming block"); 1567 1568 // If there is only one incoming value, we do not need to create a PHI. 1569 if (Incoming.size() == 1) { 1570 Value *OldVal = Incoming[0].second; 1571 return getNewValue(*Stmt, OldVal, BBMap, LTS, L); 1572 } 1573 1574 return buildExitPHI(MA, LTS, BBMap, L); 1575 } 1576 1577 // MemoryKind::Value accesses leaving the subregion must dominate the exit 1578 // block; just pass the copied value. 1579 Value *OldVal = MA->getAccessValue(); 1580 return getNewValue(*Stmt, OldVal, BBMap, LTS, L); 1581 } 1582 1583 void RegionGenerator::generateScalarStores( 1584 ScopStmt &Stmt, LoopToScevMapT <S, ValueMapT &BBMap, 1585 __isl_keep isl_id_to_ast_expr *NewAccesses) { 1586 assert(Stmt.getRegion() && 1587 "Block statements need to use the generateScalarStores() " 1588 "function in the BlockGenerator"); 1589 1590 for (MemoryAccess *MA : Stmt) { 1591 if (MA->isOriginalArrayKind() || MA->isRead()) 1592 continue; 1593 1594 isl::set AccDom = MA->getAccessRelation().domain(); 1595 std::string Subject = MA->getId().get_name(); 1596 generateConditionalExecution( 1597 Stmt, AccDom, Subject.c_str(), [&, this, MA]() { 1598 Value *NewVal = getExitScalar(MA, LTS, BBMap); 1599 Value *Address = getImplicitAddress(*MA, getLoopForStmt(Stmt), LTS, 1600 BBMap, NewAccesses); 1601 assert((!isa<Instruction>(NewVal) || 1602 DT.dominates(cast<Instruction>(NewVal)->getParent(), 1603 Builder.GetInsertBlock())) && 1604 "Domination violation"); 1605 assert((!isa<Instruction>(Address) || 1606 DT.dominates(cast<Instruction>(Address)->getParent(), 1607 Builder.GetInsertBlock())) && 1608 "Domination violation"); 1609 Builder.CreateStore(NewVal, Address); 1610 }); 1611 } 1612 } 1613 1614 void RegionGenerator::addOperandToPHI(ScopStmt &Stmt, PHINode *PHI, 1615 PHINode *PHICopy, BasicBlock *IncomingBB, 1616 LoopToScevMapT <S) { 1617 // If the incoming block was not yet copied mark this PHI as incomplete. 1618 // Once the block will be copied the incoming value will be added. 1619 BasicBlock *BBCopyStart = StartBlockMap[IncomingBB]; 1620 BasicBlock *BBCopyEnd = EndBlockMap[IncomingBB]; 1621 if (!BBCopyStart) { 1622 assert(!BBCopyEnd); 1623 assert(Stmt.represents(IncomingBB) && 1624 "Bad incoming block for PHI in non-affine region"); 1625 IncompletePHINodeMap[IncomingBB].push_back(std::make_pair(PHI, PHICopy)); 1626 return; 1627 } 1628 1629 assert(RegionMaps.count(BBCopyStart) && 1630 "Incoming PHI block did not have a BBMap"); 1631 ValueMapT &BBCopyMap = RegionMaps[BBCopyStart]; 1632 1633 Value *OpCopy = nullptr; 1634 1635 if (Stmt.represents(IncomingBB)) { 1636 Value *Op = PHI->getIncomingValueForBlock(IncomingBB); 1637 1638 // If the current insert block is different from the PHIs incoming block 1639 // change it, otherwise do not. 1640 auto IP = Builder.GetInsertPoint(); 1641 if (IP->getParent() != BBCopyEnd) 1642 Builder.SetInsertPoint(BBCopyEnd->getTerminator()); 1643 OpCopy = getNewValue(Stmt, Op, BBCopyMap, LTS, getLoopForStmt(Stmt)); 1644 if (IP->getParent() != BBCopyEnd) 1645 Builder.SetInsertPoint(&*IP); 1646 } else { 1647 // All edges from outside the non-affine region become a single edge 1648 // in the new copy of the non-affine region. Make sure to only add the 1649 // corresponding edge the first time we encounter a basic block from 1650 // outside the non-affine region. 1651 if (PHICopy->getBasicBlockIndex(BBCopyEnd) >= 0) 1652 return; 1653 1654 // Get the reloaded value. 1655 OpCopy = getNewValue(Stmt, PHI, BBCopyMap, LTS, getLoopForStmt(Stmt)); 1656 } 1657 1658 assert(OpCopy && "Incoming PHI value was not copied properly"); 1659 PHICopy->addIncoming(OpCopy, BBCopyEnd); 1660 } 1661 1662 void RegionGenerator::copyPHIInstruction(ScopStmt &Stmt, PHINode *PHI, 1663 ValueMapT &BBMap, 1664 LoopToScevMapT <S) { 1665 unsigned NumIncoming = PHI->getNumIncomingValues(); 1666 PHINode *PHICopy = 1667 Builder.CreatePHI(PHI->getType(), NumIncoming, "polly." + PHI->getName()); 1668 PHICopy->moveBefore(PHICopy->getParent()->getFirstNonPHI()); 1669 BBMap[PHI] = PHICopy; 1670 1671 for (BasicBlock *IncomingBB : PHI->blocks()) 1672 addOperandToPHI(Stmt, PHI, PHICopy, IncomingBB, LTS); 1673 } 1674