1 //===--- BlockGenerators.cpp - Generate code for statements -----*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the BlockGenerator and VectorBlockGenerator classes, 11 // which generate sequential code and vectorized code for a polyhedral 12 // statement, respectively. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "polly/CodeGen/BlockGenerators.h" 17 #include "polly/CodeGen/CodeGeneration.h" 18 #include "polly/CodeGen/IslExprBuilder.h" 19 #include "polly/CodeGen/RuntimeDebugBuilder.h" 20 #include "polly/Options.h" 21 #include "polly/ScopInfo.h" 22 #include "polly/Support/GICHelper.h" 23 #include "polly/Support/SCEVValidator.h" 24 #include "polly/Support/ScopHelper.h" 25 #include "llvm/Analysis/LoopInfo.h" 26 #include "llvm/Analysis/RegionInfo.h" 27 #include "llvm/Analysis/ScalarEvolution.h" 28 #include "llvm/IR/IntrinsicInst.h" 29 #include "llvm/IR/Module.h" 30 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 31 #include "llvm/Transforms/Utils/Local.h" 32 #include "isl/aff.h" 33 #include "isl/ast.h" 34 #include "isl/ast_build.h" 35 #include "isl/set.h" 36 #include <deque> 37 38 using namespace llvm; 39 using namespace polly; 40 41 static cl::opt<bool> Aligned("enable-polly-aligned", 42 cl::desc("Assumed aligned memory accesses."), 43 cl::Hidden, cl::init(false), cl::ZeroOrMore, 44 cl::cat(PollyCategory)); 45 46 static cl::opt<bool> DebugPrinting( 47 "polly-codegen-add-debug-printing", 48 cl::desc("Add printf calls that show the values loaded/stored."), 49 cl::Hidden, cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory)); 50 51 BlockGenerator::BlockGenerator(PollyIRBuilder &B, LoopInfo &LI, 52 ScalarEvolution &SE, DominatorTree &DT, 53 ScalarAllocaMapTy &ScalarMap, 54 ScalarAllocaMapTy &PHIOpMap, 55 EscapeUsersAllocaMapTy &EscapeMap, 56 ValueMapT &GlobalMap, 57 IslExprBuilder *ExprBuilder) 58 : Builder(B), LI(LI), SE(SE), ExprBuilder(ExprBuilder), DT(DT), 59 EntryBB(nullptr), PHIOpMap(PHIOpMap), ScalarMap(ScalarMap), 60 EscapeMap(EscapeMap), GlobalMap(GlobalMap) {} 61 62 Value *BlockGenerator::trySynthesizeNewValue(ScopStmt &Stmt, Value *Old, 63 ValueMapT &BBMap, 64 LoopToScevMapT <S, 65 Loop *L) const { 66 if (!SE.isSCEVable(Old->getType())) 67 return nullptr; 68 69 const SCEV *Scev = SE.getSCEVAtScope(Old, L); 70 if (!Scev) 71 return nullptr; 72 73 if (isa<SCEVCouldNotCompute>(Scev)) 74 return nullptr; 75 76 const SCEV *NewScev = apply(Scev, LTS, SE); 77 ValueMapT VTV; 78 VTV.insert(BBMap.begin(), BBMap.end()); 79 VTV.insert(GlobalMap.begin(), GlobalMap.end()); 80 81 Scop &S = *Stmt.getParent(); 82 const DataLayout &DL = 83 S.getRegion().getEntry()->getParent()->getParent()->getDataLayout(); 84 auto IP = Builder.GetInsertPoint(); 85 86 assert(IP != Builder.GetInsertBlock()->end() && 87 "Only instructions can be insert points for SCEVExpander"); 88 Value *Expanded = 89 expandCodeFor(S, SE, DL, "polly", NewScev, Old->getType(), &*IP, &VTV); 90 91 BBMap[Old] = Expanded; 92 return Expanded; 93 } 94 95 Value *BlockGenerator::getNewValue(ScopStmt &Stmt, Value *Old, ValueMapT &BBMap, 96 LoopToScevMapT <S, Loop *L) const { 97 // Constants that do not reference any named value can always remain 98 // unchanged. Handle them early to avoid expensive map lookups. We do not take 99 // the fast-path for external constants which are referenced through globals 100 // as these may need to be rewritten when distributing code accross different 101 // LLVM modules. 102 if (isa<Constant>(Old) && !isa<GlobalValue>(Old)) 103 return Old; 104 105 // Inline asm is like a constant to us. 106 if (isa<InlineAsm>(Old)) 107 return Old; 108 109 if (Value *New = GlobalMap.lookup(Old)) { 110 if (Value *NewRemapped = GlobalMap.lookup(New)) 111 New = NewRemapped; 112 if (Old->getType()->getScalarSizeInBits() < 113 New->getType()->getScalarSizeInBits()) 114 New = Builder.CreateTruncOrBitCast(New, Old->getType()); 115 116 return New; 117 } 118 119 if (Value *New = BBMap.lookup(Old)) 120 return New; 121 122 if (Value *New = trySynthesizeNewValue(Stmt, Old, BBMap, LTS, L)) 123 return New; 124 125 // A scop-constant value defined by a global or a function parameter. 126 if (isa<GlobalValue>(Old) || isa<Argument>(Old)) 127 return Old; 128 129 // A scop-constant value defined by an instruction executed outside the scop. 130 if (const Instruction *Inst = dyn_cast<Instruction>(Old)) 131 if (!Stmt.getParent()->getRegion().contains(Inst->getParent())) 132 return Old; 133 134 // The scalar dependence is neither available nor SCEVCodegenable. 135 llvm_unreachable("Unexpected scalar dependence in region!"); 136 return nullptr; 137 } 138 139 void BlockGenerator::copyInstScalar(ScopStmt &Stmt, Instruction *Inst, 140 ValueMapT &BBMap, LoopToScevMapT <S) { 141 // We do not generate debug intrinsics as we did not investigate how to 142 // copy them correctly. At the current state, they just crash the code 143 // generation as the meta-data operands are not correctly copied. 144 if (isa<DbgInfoIntrinsic>(Inst)) 145 return; 146 147 Instruction *NewInst = Inst->clone(); 148 149 // Replace old operands with the new ones. 150 for (Value *OldOperand : Inst->operands()) { 151 Value *NewOperand = 152 getNewValue(Stmt, OldOperand, BBMap, LTS, getLoopForInst(Inst)); 153 154 if (!NewOperand) { 155 assert(!isa<StoreInst>(NewInst) && 156 "Store instructions are always needed!"); 157 delete NewInst; 158 return; 159 } 160 161 NewInst->replaceUsesOfWith(OldOperand, NewOperand); 162 } 163 164 Builder.Insert(NewInst); 165 BBMap[Inst] = NewInst; 166 167 if (!NewInst->getType()->isVoidTy()) 168 NewInst->setName("p_" + Inst->getName()); 169 } 170 171 Value *BlockGenerator::generateLocationAccessed( 172 ScopStmt &Stmt, const Instruction *Inst, Value *Pointer, ValueMapT &BBMap, 173 LoopToScevMapT <S, isl_id_to_ast_expr *NewAccesses) { 174 const MemoryAccess &MA = Stmt.getArrayAccessFor(Inst); 175 176 isl_ast_expr *AccessExpr = isl_id_to_ast_expr_get(NewAccesses, MA.getId()); 177 178 if (AccessExpr) { 179 AccessExpr = isl_ast_expr_address_of(AccessExpr); 180 auto Address = ExprBuilder->create(AccessExpr); 181 182 // Cast the address of this memory access to a pointer type that has the 183 // same element type as the original access, but uses the address space of 184 // the newly generated pointer. 185 auto OldPtrTy = MA.getAccessValue()->getType()->getPointerTo(); 186 auto NewPtrTy = Address->getType(); 187 OldPtrTy = PointerType::get(OldPtrTy->getElementType(), 188 NewPtrTy->getPointerAddressSpace()); 189 190 if (OldPtrTy != NewPtrTy) { 191 assert(OldPtrTy->getPointerElementType()->getPrimitiveSizeInBits() == 192 NewPtrTy->getPointerElementType()->getPrimitiveSizeInBits() && 193 "Pointer types to elements with different size found"); 194 Address = Builder.CreateBitOrPointerCast(Address, OldPtrTy); 195 } 196 return Address; 197 } 198 199 return getNewValue(Stmt, Pointer, BBMap, LTS, getLoopForInst(Inst)); 200 } 201 202 Loop *BlockGenerator::getLoopForInst(const llvm::Instruction *Inst) { 203 return LI.getLoopFor(Inst->getParent()); 204 } 205 206 Value *BlockGenerator::generateScalarLoad(ScopStmt &Stmt, LoadInst *Load, 207 ValueMapT &BBMap, LoopToScevMapT <S, 208 isl_id_to_ast_expr *NewAccesses) { 209 if (Value *PreloadLoad = GlobalMap.lookup(Load)) 210 return PreloadLoad; 211 212 auto *Pointer = Load->getPointerOperand(); 213 Value *NewPointer = 214 generateLocationAccessed(Stmt, Load, Pointer, BBMap, LTS, NewAccesses); 215 Value *ScalarLoad = Builder.CreateAlignedLoad( 216 NewPointer, Load->getAlignment(), Load->getName() + "_p_scalar_"); 217 218 if (DebugPrinting) 219 RuntimeDebugBuilder::createCPUPrinter(Builder, "Load from ", NewPointer, 220 ": ", ScalarLoad, "\n"); 221 222 return ScalarLoad; 223 } 224 225 void BlockGenerator::generateScalarStore(ScopStmt &Stmt, StoreInst *Store, 226 ValueMapT &BBMap, LoopToScevMapT <S, 227 isl_id_to_ast_expr *NewAccesses) { 228 auto *Pointer = Store->getPointerOperand(); 229 Value *NewPointer = 230 generateLocationAccessed(Stmt, Store, Pointer, BBMap, LTS, NewAccesses); 231 Value *ValueOperand = getNewValue(Stmt, Store->getValueOperand(), BBMap, LTS, 232 getLoopForInst(Store)); 233 234 if (DebugPrinting) 235 RuntimeDebugBuilder::createCPUPrinter(Builder, "Store to ", NewPointer, 236 ": ", ValueOperand, "\n"); 237 238 Builder.CreateAlignedStore(ValueOperand, NewPointer, Store->getAlignment()); 239 } 240 241 bool BlockGenerator::canSyntheziseInStmt(ScopStmt &Stmt, Instruction *Inst) { 242 Loop *L = getLoopForInst(Inst); 243 return (Stmt.isBlockStmt() || !Stmt.getRegion()->contains(L)) && 244 canSynthesize(Inst, &LI, &SE, &Stmt.getParent()->getRegion()); 245 } 246 247 void BlockGenerator::copyInstruction(ScopStmt &Stmt, Instruction *Inst, 248 ValueMapT &BBMap, LoopToScevMapT <S, 249 isl_id_to_ast_expr *NewAccesses) { 250 // Terminator instructions control the control flow. They are explicitly 251 // expressed in the clast and do not need to be copied. 252 if (Inst->isTerminator()) 253 return; 254 255 // Synthesizable statements will be generated on-demand. 256 if (canSyntheziseInStmt(Stmt, Inst)) 257 return; 258 259 if (auto *Load = dyn_cast<LoadInst>(Inst)) { 260 Value *NewLoad = generateScalarLoad(Stmt, Load, BBMap, LTS, NewAccesses); 261 // Compute NewLoad before its insertion in BBMap to make the insertion 262 // deterministic. 263 BBMap[Load] = NewLoad; 264 return; 265 } 266 267 if (auto *Store = dyn_cast<StoreInst>(Inst)) { 268 generateScalarStore(Stmt, Store, BBMap, LTS, NewAccesses); 269 return; 270 } 271 272 if (auto *PHI = dyn_cast<PHINode>(Inst)) { 273 copyPHIInstruction(Stmt, PHI, BBMap, LTS); 274 return; 275 } 276 277 // Skip some special intrinsics for which we do not adjust the semantics to 278 // the new schedule. All others are handled like every other instruction. 279 if (isIgnoredIntrinsic(Inst)) 280 return; 281 282 copyInstScalar(Stmt, Inst, BBMap, LTS); 283 } 284 285 void BlockGenerator::copyStmt(ScopStmt &Stmt, LoopToScevMapT <S, 286 isl_id_to_ast_expr *NewAccesses) { 287 assert(Stmt.isBlockStmt() && 288 "Only block statements can be copied by the block generator"); 289 290 ValueMapT BBMap; 291 292 BasicBlock *BB = Stmt.getBasicBlock(); 293 copyBB(Stmt, BB, BBMap, LTS, NewAccesses); 294 } 295 296 BasicBlock *BlockGenerator::splitBB(BasicBlock *BB) { 297 BasicBlock *CopyBB = SplitBlock(Builder.GetInsertBlock(), 298 &*Builder.GetInsertPoint(), &DT, &LI); 299 CopyBB->setName("polly.stmt." + BB->getName()); 300 return CopyBB; 301 } 302 303 BasicBlock *BlockGenerator::copyBB(ScopStmt &Stmt, BasicBlock *BB, 304 ValueMapT &BBMap, LoopToScevMapT <S, 305 isl_id_to_ast_expr *NewAccesses) { 306 BasicBlock *CopyBB = splitBB(BB); 307 Builder.SetInsertPoint(&CopyBB->front()); 308 generateScalarLoads(Stmt, BBMap); 309 310 copyBB(Stmt, BB, CopyBB, BBMap, LTS, NewAccesses); 311 312 // After a basic block was copied store all scalars that escape this block in 313 // their alloca. 314 generateScalarStores(Stmt, LTS, BBMap); 315 return CopyBB; 316 } 317 318 void BlockGenerator::copyBB(ScopStmt &Stmt, BasicBlock *BB, BasicBlock *CopyBB, 319 ValueMapT &BBMap, LoopToScevMapT <S, 320 isl_id_to_ast_expr *NewAccesses) { 321 EntryBB = &CopyBB->getParent()->getEntryBlock(); 322 323 for (Instruction &Inst : *BB) 324 copyInstruction(Stmt, &Inst, BBMap, LTS, NewAccesses); 325 } 326 327 Value *BlockGenerator::getOrCreateAlloca(Value *ScalarBase, 328 ScalarAllocaMapTy &Map, 329 const char *NameExt) { 330 // If no alloca was found create one and insert it in the entry block. 331 if (!Map.count(ScalarBase)) { 332 auto *Ty = ScalarBase->getType(); 333 auto NewAddr = new AllocaInst(Ty, ScalarBase->getName() + NameExt); 334 EntryBB = &Builder.GetInsertBlock()->getParent()->getEntryBlock(); 335 NewAddr->insertBefore(&*EntryBB->getFirstInsertionPt()); 336 Map[ScalarBase] = NewAddr; 337 } 338 339 auto Addr = Map[ScalarBase]; 340 341 if (auto NewAddr = GlobalMap.lookup(Addr)) 342 return NewAddr; 343 344 return Addr; 345 } 346 347 Value *BlockGenerator::getOrCreateAlloca(MemoryAccess &Access) { 348 if (Access.isPHIKind()) 349 return getOrCreatePHIAlloca(Access.getBaseAddr()); 350 else 351 return getOrCreateScalarAlloca(Access.getBaseAddr()); 352 } 353 354 Value *BlockGenerator::getOrCreateAlloca(const ScopArrayInfo *Array) { 355 if (Array->isPHIKind()) 356 return getOrCreatePHIAlloca(Array->getBasePtr()); 357 else 358 return getOrCreateScalarAlloca(Array->getBasePtr()); 359 } 360 361 Value *BlockGenerator::getOrCreateScalarAlloca(Value *ScalarBase) { 362 return getOrCreateAlloca(ScalarBase, ScalarMap, ".s2a"); 363 } 364 365 Value *BlockGenerator::getOrCreatePHIAlloca(Value *ScalarBase) { 366 return getOrCreateAlloca(ScalarBase, PHIOpMap, ".phiops"); 367 } 368 369 void BlockGenerator::handleOutsideUsers(const Region &R, Instruction *Inst, 370 Value *Address) { 371 // If there are escape users we get the alloca for this instruction and put it 372 // in the EscapeMap for later finalization. Lastly, if the instruction was 373 // copied multiple times we already did this and can exit. 374 if (EscapeMap.count(Inst)) 375 return; 376 377 EscapeUserVectorTy EscapeUsers; 378 for (User *U : Inst->users()) { 379 380 // Non-instruction user will never escape. 381 Instruction *UI = dyn_cast<Instruction>(U); 382 if (!UI) 383 continue; 384 385 if (R.contains(UI)) 386 continue; 387 388 EscapeUsers.push_back(UI); 389 } 390 391 // Exit if no escape uses were found. 392 if (EscapeUsers.empty()) 393 return; 394 395 // Get or create an escape alloca for this instruction. 396 auto *ScalarAddr = Address ? Address : getOrCreateScalarAlloca(Inst); 397 398 // Remember that this instruction has escape uses and the escape alloca. 399 EscapeMap[Inst] = std::make_pair(ScalarAddr, std::move(EscapeUsers)); 400 } 401 402 void BlockGenerator::generateScalarLoads(ScopStmt &Stmt, ValueMapT &BBMap) { 403 for (MemoryAccess *MA : Stmt) { 404 if (MA->isArrayKind() || MA->isWrite()) 405 continue; 406 407 auto *Address = getOrCreateAlloca(*MA); 408 BBMap[MA->getBaseAddr()] = 409 Builder.CreateLoad(Address, Address->getName() + ".reload"); 410 } 411 } 412 413 Value *BlockGenerator::getNewScalarValue(Value *ScalarValue, const Region &R, 414 ScopStmt &Stmt, LoopToScevMapT <S, 415 ValueMapT &BBMap) { 416 // If the value we want to store is an instruction we might have demoted it 417 // in order to make it accessible here. In such a case a reload is 418 // necessary. If it is no instruction it will always be a value that 419 // dominates the current point and we can just use it. In total there are 4 420 // options: 421 // (1) The value is no instruction ==> use the value. 422 // (2) The value is an instruction that was split out of the region prior to 423 // code generation ==> use the instruction as it dominates the region. 424 // (3) The value is an instruction: 425 // (a) The value was defined in the current block, thus a copy is in 426 // the BBMap ==> use the mapped value. 427 // (b) The value was defined in a previous block, thus we demoted it 428 // earlier ==> use the reloaded value. 429 Instruction *ScalarValueInst = dyn_cast<Instruction>(ScalarValue); 430 if (!ScalarValueInst) 431 return ScalarValue; 432 433 if (!R.contains(ScalarValueInst)) { 434 if (Value *ScalarValueCopy = GlobalMap.lookup(ScalarValueInst)) 435 return /* Case (3a) */ ScalarValueCopy; 436 else 437 return /* Case 2 */ ScalarValue; 438 } 439 440 if (Value *ScalarValueCopy = BBMap.lookup(ScalarValueInst)) 441 return /* Case (3a) */ ScalarValueCopy; 442 443 if ((Stmt.isBlockStmt() && 444 Stmt.getBasicBlock() == ScalarValueInst->getParent()) || 445 (Stmt.isRegionStmt() && Stmt.getRegion()->contains(ScalarValueInst))) { 446 auto SynthesizedValue = trySynthesizeNewValue( 447 Stmt, ScalarValueInst, BBMap, LTS, getLoopForInst(ScalarValueInst)); 448 449 if (SynthesizedValue) 450 return SynthesizedValue; 451 } 452 453 // Case (3b) 454 Value *Address = getOrCreateScalarAlloca(ScalarValueInst); 455 ScalarValue = Builder.CreateLoad(Address, Address->getName() + ".reload"); 456 457 return ScalarValue; 458 } 459 460 void BlockGenerator::generateScalarStores(ScopStmt &Stmt, LoopToScevMapT <S, 461 ValueMapT &BBMap) { 462 const Region &R = Stmt.getParent()->getRegion(); 463 464 assert(Stmt.isBlockStmt() && "Region statements need to use the " 465 "generateScalarStores() function in the " 466 "RegionGenerator"); 467 468 for (MemoryAccess *MA : Stmt) { 469 if (MA->isArrayKind() || MA->isRead()) 470 continue; 471 472 Value *Val = MA->getAccessValue(); 473 auto *Address = getOrCreateAlloca(*MA); 474 475 Val = getNewScalarValue(Val, R, Stmt, LTS, BBMap); 476 Builder.CreateStore(Val, Address); 477 } 478 } 479 480 void BlockGenerator::createScalarInitialization(Scop &S) { 481 Region &R = S.getRegion(); 482 BasicBlock *ExitBB = R.getExit(); 483 484 // The split block __just before__ the region and optimized region. 485 BasicBlock *SplitBB = R.getEnteringBlock(); 486 BranchInst *SplitBBTerm = cast<BranchInst>(SplitBB->getTerminator()); 487 assert(SplitBBTerm->getNumSuccessors() == 2 && "Bad region entering block!"); 488 489 // Get the start block of the __optimized__ region. 490 BasicBlock *StartBB = SplitBBTerm->getSuccessor(0); 491 if (StartBB == R.getEntry()) 492 StartBB = SplitBBTerm->getSuccessor(1); 493 494 Builder.SetInsertPoint(StartBB->getTerminator()); 495 496 for (auto &Pair : S.arrays()) { 497 auto &Array = Pair.second; 498 if (Array->getNumberOfDimensions() != 0) 499 continue; 500 if (Array->isPHIKind()) { 501 // For PHI nodes, the only values we need to store are the ones that 502 // reach the PHI node from outside the region. In general there should 503 // only be one such incoming edge and this edge should enter through 504 // 'SplitBB'. 505 auto PHI = cast<PHINode>(Array->getBasePtr()); 506 507 for (auto BI = PHI->block_begin(), BE = PHI->block_end(); BI != BE; BI++) 508 if (!R.contains(*BI) && *BI != SplitBB) 509 llvm_unreachable("Incoming edges from outside the scop should always " 510 "come from SplitBB"); 511 512 int Idx = PHI->getBasicBlockIndex(SplitBB); 513 if (Idx < 0) 514 continue; 515 516 Value *ScalarValue = PHI->getIncomingValue(Idx); 517 518 Builder.CreateStore(ScalarValue, getOrCreatePHIAlloca(PHI)); 519 continue; 520 } 521 522 auto *Inst = dyn_cast<Instruction>(Array->getBasePtr()); 523 524 if (Inst && R.contains(Inst)) 525 continue; 526 527 // PHI nodes that are not marked as such in their SAI object are either exit 528 // PHI nodes we model as common scalars but without initialization, or 529 // incoming phi nodes that need to be initialized. Check if the first is the 530 // case for Inst and do not create and initialize memory if so. 531 if (auto *PHI = dyn_cast_or_null<PHINode>(Inst)) 532 if (!S.hasSingleExitEdge() && PHI->getBasicBlockIndex(ExitBB) >= 0) 533 continue; 534 535 Builder.CreateStore(Array->getBasePtr(), 536 getOrCreateScalarAlloca(Array->getBasePtr())); 537 } 538 } 539 540 void BlockGenerator::createScalarFinalization(Region &R) { 541 // The exit block of the __unoptimized__ region. 542 BasicBlock *ExitBB = R.getExitingBlock(); 543 // The merge block __just after__ the region and the optimized region. 544 BasicBlock *MergeBB = R.getExit(); 545 546 // The exit block of the __optimized__ region. 547 BasicBlock *OptExitBB = *(pred_begin(MergeBB)); 548 if (OptExitBB == ExitBB) 549 OptExitBB = *(++pred_begin(MergeBB)); 550 551 Builder.SetInsertPoint(OptExitBB->getTerminator()); 552 for (const auto &EscapeMapping : EscapeMap) { 553 // Extract the escaping instruction and the escaping users as well as the 554 // alloca the instruction was demoted to. 555 Instruction *EscapeInst = EscapeMapping.getFirst(); 556 const auto &EscapeMappingValue = EscapeMapping.getSecond(); 557 const EscapeUserVectorTy &EscapeUsers = EscapeMappingValue.second; 558 Value *ScalarAddr = EscapeMappingValue.first; 559 560 // Reload the demoted instruction in the optimized version of the SCoP. 561 Value *EscapeInstReload = 562 Builder.CreateLoad(ScalarAddr, EscapeInst->getName() + ".final_reload"); 563 EscapeInstReload = 564 Builder.CreateBitOrPointerCast(EscapeInstReload, EscapeInst->getType()); 565 566 // Create the merge PHI that merges the optimized and unoptimized version. 567 PHINode *MergePHI = PHINode::Create(EscapeInst->getType(), 2, 568 EscapeInst->getName() + ".merge"); 569 MergePHI->insertBefore(&*MergeBB->getFirstInsertionPt()); 570 571 // Add the respective values to the merge PHI. 572 MergePHI->addIncoming(EscapeInstReload, OptExitBB); 573 MergePHI->addIncoming(EscapeInst, ExitBB); 574 575 // The information of scalar evolution about the escaping instruction needs 576 // to be revoked so the new merged instruction will be used. 577 if (SE.isSCEVable(EscapeInst->getType())) 578 SE.forgetValue(EscapeInst); 579 580 // Replace all uses of the demoted instruction with the merge PHI. 581 for (Instruction *EUser : EscapeUsers) 582 EUser->replaceUsesOfWith(EscapeInst, MergePHI); 583 } 584 } 585 586 void BlockGenerator::findOutsideUsers(Scop &S) { 587 auto &R = S.getRegion(); 588 for (auto &Pair : S.arrays()) { 589 auto &Array = Pair.second; 590 591 if (Array->getNumberOfDimensions() != 0) 592 continue; 593 594 if (Array->isPHIKind()) 595 continue; 596 597 auto *Inst = dyn_cast<Instruction>(Array->getBasePtr()); 598 599 if (!Inst) 600 continue; 601 602 // Scop invariant hoisting moves some of the base pointers out of the scop. 603 // We can ignore these, as the invariant load hoisting already registers the 604 // relevant outside users. 605 if (!R.contains(Inst)) 606 continue; 607 608 handleOutsideUsers(R, Inst, nullptr); 609 } 610 } 611 612 void BlockGenerator::createExitPHINodeMerges(Scop &S) { 613 if (S.hasSingleExitEdge()) 614 return; 615 616 Region &R = S.getRegion(); 617 618 auto *ExitBB = R.getExitingBlock(); 619 auto *MergeBB = R.getExit(); 620 auto *AfterMergeBB = MergeBB->getSingleSuccessor(); 621 BasicBlock *OptExitBB = *(pred_begin(MergeBB)); 622 if (OptExitBB == ExitBB) 623 OptExitBB = *(++pred_begin(MergeBB)); 624 625 Builder.SetInsertPoint(OptExitBB->getTerminator()); 626 627 for (auto &Pair : S.arrays()) { 628 auto &SAI = Pair.second; 629 auto *Val = SAI->getBasePtr(); 630 631 PHINode *PHI = dyn_cast<PHINode>(Val); 632 if (!PHI) 633 continue; 634 635 if (PHI->getParent() != AfterMergeBB) 636 continue; 637 638 std::string Name = PHI->getName(); 639 Value *ScalarAddr = getOrCreateScalarAlloca(PHI); 640 Value *Reload = Builder.CreateLoad(ScalarAddr, Name + ".ph.final_reload"); 641 Reload = Builder.CreateBitOrPointerCast(Reload, PHI->getType()); 642 Value *OriginalValue = PHI->getIncomingValueForBlock(MergeBB); 643 auto *MergePHI = PHINode::Create(PHI->getType(), 2, Name + ".ph.merge"); 644 MergePHI->insertBefore(&*MergeBB->getFirstInsertionPt()); 645 MergePHI->addIncoming(Reload, OptExitBB); 646 MergePHI->addIncoming(OriginalValue, ExitBB); 647 int Idx = PHI->getBasicBlockIndex(MergeBB); 648 PHI->setIncomingValue(Idx, MergePHI); 649 } 650 } 651 652 void BlockGenerator::finalizeSCoP(Scop &S) { 653 findOutsideUsers(S); 654 createScalarInitialization(S); 655 createExitPHINodeMerges(S); 656 createScalarFinalization(S.getRegion()); 657 } 658 659 VectorBlockGenerator::VectorBlockGenerator(BlockGenerator &BlockGen, 660 std::vector<LoopToScevMapT> &VLTS, 661 isl_map *Schedule) 662 : BlockGenerator(BlockGen), VLTS(VLTS), Schedule(Schedule) { 663 assert(Schedule && "No statement domain provided"); 664 } 665 666 Value *VectorBlockGenerator::getVectorValue(ScopStmt &Stmt, Value *Old, 667 ValueMapT &VectorMap, 668 VectorValueMapT &ScalarMaps, 669 Loop *L) { 670 if (Value *NewValue = VectorMap.lookup(Old)) 671 return NewValue; 672 673 int Width = getVectorWidth(); 674 675 Value *Vector = UndefValue::get(VectorType::get(Old->getType(), Width)); 676 677 for (int Lane = 0; Lane < Width; Lane++) 678 Vector = Builder.CreateInsertElement( 679 Vector, getNewValue(Stmt, Old, ScalarMaps[Lane], VLTS[Lane], L), 680 Builder.getInt32(Lane)); 681 682 VectorMap[Old] = Vector; 683 684 return Vector; 685 } 686 687 Type *VectorBlockGenerator::getVectorPtrTy(const Value *Val, int Width) { 688 PointerType *PointerTy = dyn_cast<PointerType>(Val->getType()); 689 assert(PointerTy && "PointerType expected"); 690 691 Type *ScalarType = PointerTy->getElementType(); 692 VectorType *VectorType = VectorType::get(ScalarType, Width); 693 694 return PointerType::getUnqual(VectorType); 695 } 696 697 Value *VectorBlockGenerator::generateStrideOneLoad( 698 ScopStmt &Stmt, LoadInst *Load, VectorValueMapT &ScalarMaps, 699 __isl_keep isl_id_to_ast_expr *NewAccesses, bool NegativeStride = false) { 700 unsigned VectorWidth = getVectorWidth(); 701 auto *Pointer = Load->getPointerOperand(); 702 Type *VectorPtrType = getVectorPtrTy(Pointer, VectorWidth); 703 unsigned Offset = NegativeStride ? VectorWidth - 1 : 0; 704 705 Value *NewPointer = nullptr; 706 NewPointer = generateLocationAccessed(Stmt, Load, Pointer, ScalarMaps[Offset], 707 VLTS[Offset], NewAccesses); 708 Value *VectorPtr = 709 Builder.CreateBitCast(NewPointer, VectorPtrType, "vector_ptr"); 710 LoadInst *VecLoad = 711 Builder.CreateLoad(VectorPtr, Load->getName() + "_p_vec_full"); 712 if (!Aligned) 713 VecLoad->setAlignment(8); 714 715 if (NegativeStride) { 716 SmallVector<Constant *, 16> Indices; 717 for (int i = VectorWidth - 1; i >= 0; i--) 718 Indices.push_back(ConstantInt::get(Builder.getInt32Ty(), i)); 719 Constant *SV = llvm::ConstantVector::get(Indices); 720 Value *RevVecLoad = Builder.CreateShuffleVector( 721 VecLoad, VecLoad, SV, Load->getName() + "_reverse"); 722 return RevVecLoad; 723 } 724 725 return VecLoad; 726 } 727 728 Value *VectorBlockGenerator::generateStrideZeroLoad( 729 ScopStmt &Stmt, LoadInst *Load, ValueMapT &BBMap, 730 __isl_keep isl_id_to_ast_expr *NewAccesses) { 731 auto *Pointer = Load->getPointerOperand(); 732 Type *VectorPtrType = getVectorPtrTy(Pointer, 1); 733 Value *NewPointer = generateLocationAccessed(Stmt, Load, Pointer, BBMap, 734 VLTS[0], NewAccesses); 735 Value *VectorPtr = Builder.CreateBitCast(NewPointer, VectorPtrType, 736 Load->getName() + "_p_vec_p"); 737 LoadInst *ScalarLoad = 738 Builder.CreateLoad(VectorPtr, Load->getName() + "_p_splat_one"); 739 740 if (!Aligned) 741 ScalarLoad->setAlignment(8); 742 743 Constant *SplatVector = Constant::getNullValue( 744 VectorType::get(Builder.getInt32Ty(), getVectorWidth())); 745 746 Value *VectorLoad = Builder.CreateShuffleVector( 747 ScalarLoad, ScalarLoad, SplatVector, Load->getName() + "_p_splat"); 748 return VectorLoad; 749 } 750 751 Value *VectorBlockGenerator::generateUnknownStrideLoad( 752 ScopStmt &Stmt, LoadInst *Load, VectorValueMapT &ScalarMaps, 753 __isl_keep isl_id_to_ast_expr *NewAccesses) { 754 int VectorWidth = getVectorWidth(); 755 auto *Pointer = Load->getPointerOperand(); 756 VectorType *VectorType = VectorType::get( 757 dyn_cast<PointerType>(Pointer->getType())->getElementType(), VectorWidth); 758 759 Value *Vector = UndefValue::get(VectorType); 760 761 for (int i = 0; i < VectorWidth; i++) { 762 Value *NewPointer = generateLocationAccessed( 763 Stmt, Load, Pointer, ScalarMaps[i], VLTS[i], NewAccesses); 764 Value *ScalarLoad = 765 Builder.CreateLoad(NewPointer, Load->getName() + "_p_scalar_"); 766 Vector = Builder.CreateInsertElement( 767 Vector, ScalarLoad, Builder.getInt32(i), Load->getName() + "_p_vec_"); 768 } 769 770 return Vector; 771 } 772 773 void VectorBlockGenerator::generateLoad( 774 ScopStmt &Stmt, LoadInst *Load, ValueMapT &VectorMap, 775 VectorValueMapT &ScalarMaps, __isl_keep isl_id_to_ast_expr *NewAccesses) { 776 if (Value *PreloadLoad = GlobalMap.lookup(Load)) { 777 VectorMap[Load] = Builder.CreateVectorSplat(getVectorWidth(), PreloadLoad, 778 Load->getName() + "_p"); 779 return; 780 } 781 782 if (!VectorType::isValidElementType(Load->getType())) { 783 for (int i = 0; i < getVectorWidth(); i++) 784 ScalarMaps[i][Load] = 785 generateScalarLoad(Stmt, Load, ScalarMaps[i], VLTS[i], NewAccesses); 786 return; 787 } 788 789 const MemoryAccess &Access = Stmt.getArrayAccessFor(Load); 790 791 // Make sure we have scalar values available to access the pointer to 792 // the data location. 793 extractScalarValues(Load, VectorMap, ScalarMaps); 794 795 Value *NewLoad; 796 if (Access.isStrideZero(isl_map_copy(Schedule))) 797 NewLoad = generateStrideZeroLoad(Stmt, Load, ScalarMaps[0], NewAccesses); 798 else if (Access.isStrideOne(isl_map_copy(Schedule))) 799 NewLoad = generateStrideOneLoad(Stmt, Load, ScalarMaps, NewAccesses); 800 else if (Access.isStrideX(isl_map_copy(Schedule), -1)) 801 NewLoad = generateStrideOneLoad(Stmt, Load, ScalarMaps, NewAccesses, true); 802 else 803 NewLoad = generateUnknownStrideLoad(Stmt, Load, ScalarMaps, NewAccesses); 804 805 VectorMap[Load] = NewLoad; 806 } 807 808 void VectorBlockGenerator::copyUnaryInst(ScopStmt &Stmt, UnaryInstruction *Inst, 809 ValueMapT &VectorMap, 810 VectorValueMapT &ScalarMaps) { 811 int VectorWidth = getVectorWidth(); 812 Value *NewOperand = getVectorValue(Stmt, Inst->getOperand(0), VectorMap, 813 ScalarMaps, getLoopForInst(Inst)); 814 815 assert(isa<CastInst>(Inst) && "Can not generate vector code for instruction"); 816 817 const CastInst *Cast = dyn_cast<CastInst>(Inst); 818 VectorType *DestType = VectorType::get(Inst->getType(), VectorWidth); 819 VectorMap[Inst] = Builder.CreateCast(Cast->getOpcode(), NewOperand, DestType); 820 } 821 822 void VectorBlockGenerator::copyBinaryInst(ScopStmt &Stmt, BinaryOperator *Inst, 823 ValueMapT &VectorMap, 824 VectorValueMapT &ScalarMaps) { 825 Loop *L = getLoopForInst(Inst); 826 Value *OpZero = Inst->getOperand(0); 827 Value *OpOne = Inst->getOperand(1); 828 829 Value *NewOpZero, *NewOpOne; 830 NewOpZero = getVectorValue(Stmt, OpZero, VectorMap, ScalarMaps, L); 831 NewOpOne = getVectorValue(Stmt, OpOne, VectorMap, ScalarMaps, L); 832 833 Value *NewInst = Builder.CreateBinOp(Inst->getOpcode(), NewOpZero, NewOpOne, 834 Inst->getName() + "p_vec"); 835 VectorMap[Inst] = NewInst; 836 } 837 838 void VectorBlockGenerator::copyStore( 839 ScopStmt &Stmt, StoreInst *Store, ValueMapT &VectorMap, 840 VectorValueMapT &ScalarMaps, __isl_keep isl_id_to_ast_expr *NewAccesses) { 841 const MemoryAccess &Access = Stmt.getArrayAccessFor(Store); 842 843 auto *Pointer = Store->getPointerOperand(); 844 Value *Vector = getVectorValue(Stmt, Store->getValueOperand(), VectorMap, 845 ScalarMaps, getLoopForInst(Store)); 846 847 // Make sure we have scalar values available to access the pointer to 848 // the data location. 849 extractScalarValues(Store, VectorMap, ScalarMaps); 850 851 if (Access.isStrideOne(isl_map_copy(Schedule))) { 852 Type *VectorPtrType = getVectorPtrTy(Pointer, getVectorWidth()); 853 Value *NewPointer = generateLocationAccessed( 854 Stmt, Store, Pointer, ScalarMaps[0], VLTS[0], NewAccesses); 855 856 Value *VectorPtr = 857 Builder.CreateBitCast(NewPointer, VectorPtrType, "vector_ptr"); 858 StoreInst *Store = Builder.CreateStore(Vector, VectorPtr); 859 860 if (!Aligned) 861 Store->setAlignment(8); 862 } else { 863 for (unsigned i = 0; i < ScalarMaps.size(); i++) { 864 Value *Scalar = Builder.CreateExtractElement(Vector, Builder.getInt32(i)); 865 Value *NewPointer = generateLocationAccessed( 866 Stmt, Store, Pointer, ScalarMaps[i], VLTS[i], NewAccesses); 867 Builder.CreateStore(Scalar, NewPointer); 868 } 869 } 870 } 871 872 bool VectorBlockGenerator::hasVectorOperands(const Instruction *Inst, 873 ValueMapT &VectorMap) { 874 for (Value *Operand : Inst->operands()) 875 if (VectorMap.count(Operand)) 876 return true; 877 return false; 878 } 879 880 bool VectorBlockGenerator::extractScalarValues(const Instruction *Inst, 881 ValueMapT &VectorMap, 882 VectorValueMapT &ScalarMaps) { 883 bool HasVectorOperand = false; 884 int VectorWidth = getVectorWidth(); 885 886 for (Value *Operand : Inst->operands()) { 887 ValueMapT::iterator VecOp = VectorMap.find(Operand); 888 889 if (VecOp == VectorMap.end()) 890 continue; 891 892 HasVectorOperand = true; 893 Value *NewVector = VecOp->second; 894 895 for (int i = 0; i < VectorWidth; ++i) { 896 ValueMapT &SM = ScalarMaps[i]; 897 898 // If there is one scalar extracted, all scalar elements should have 899 // already been extracted by the code here. So no need to check for the 900 // existance of all of them. 901 if (SM.count(Operand)) 902 break; 903 904 SM[Operand] = 905 Builder.CreateExtractElement(NewVector, Builder.getInt32(i)); 906 } 907 } 908 909 return HasVectorOperand; 910 } 911 912 void VectorBlockGenerator::copyInstScalarized( 913 ScopStmt &Stmt, Instruction *Inst, ValueMapT &VectorMap, 914 VectorValueMapT &ScalarMaps, __isl_keep isl_id_to_ast_expr *NewAccesses) { 915 bool HasVectorOperand; 916 int VectorWidth = getVectorWidth(); 917 918 HasVectorOperand = extractScalarValues(Inst, VectorMap, ScalarMaps); 919 920 for (int VectorLane = 0; VectorLane < getVectorWidth(); VectorLane++) 921 BlockGenerator::copyInstruction(Stmt, Inst, ScalarMaps[VectorLane], 922 VLTS[VectorLane], NewAccesses); 923 924 if (!VectorType::isValidElementType(Inst->getType()) || !HasVectorOperand) 925 return; 926 927 // Make the result available as vector value. 928 VectorType *VectorType = VectorType::get(Inst->getType(), VectorWidth); 929 Value *Vector = UndefValue::get(VectorType); 930 931 for (int i = 0; i < VectorWidth; i++) 932 Vector = Builder.CreateInsertElement(Vector, ScalarMaps[i][Inst], 933 Builder.getInt32(i)); 934 935 VectorMap[Inst] = Vector; 936 } 937 938 int VectorBlockGenerator::getVectorWidth() { return VLTS.size(); } 939 940 void VectorBlockGenerator::copyInstruction( 941 ScopStmt &Stmt, Instruction *Inst, ValueMapT &VectorMap, 942 VectorValueMapT &ScalarMaps, __isl_keep isl_id_to_ast_expr *NewAccesses) { 943 // Terminator instructions control the control flow. They are explicitly 944 // expressed in the clast and do not need to be copied. 945 if (Inst->isTerminator()) 946 return; 947 948 if (canSyntheziseInStmt(Stmt, Inst)) 949 return; 950 951 if (auto *Load = dyn_cast<LoadInst>(Inst)) { 952 generateLoad(Stmt, Load, VectorMap, ScalarMaps, NewAccesses); 953 return; 954 } 955 956 if (hasVectorOperands(Inst, VectorMap)) { 957 if (auto *Store = dyn_cast<StoreInst>(Inst)) { 958 copyStore(Stmt, Store, VectorMap, ScalarMaps, NewAccesses); 959 return; 960 } 961 962 if (auto *Unary = dyn_cast<UnaryInstruction>(Inst)) { 963 copyUnaryInst(Stmt, Unary, VectorMap, ScalarMaps); 964 return; 965 } 966 967 if (auto *Binary = dyn_cast<BinaryOperator>(Inst)) { 968 copyBinaryInst(Stmt, Binary, VectorMap, ScalarMaps); 969 return; 970 } 971 972 // Falltrough: We generate scalar instructions, if we don't know how to 973 // generate vector code. 974 } 975 976 copyInstScalarized(Stmt, Inst, VectorMap, ScalarMaps, NewAccesses); 977 } 978 979 void VectorBlockGenerator::generateScalarVectorLoads( 980 ScopStmt &Stmt, ValueMapT &VectorBlockMap) { 981 for (MemoryAccess *MA : Stmt) { 982 if (MA->isArrayKind() || MA->isWrite()) 983 continue; 984 985 auto *Address = getOrCreateAlloca(*MA); 986 Type *VectorPtrType = getVectorPtrTy(Address, 1); 987 Value *VectorPtr = Builder.CreateBitCast(Address, VectorPtrType, 988 Address->getName() + "_p_vec_p"); 989 auto *Val = Builder.CreateLoad(VectorPtr, Address->getName() + ".reload"); 990 Constant *SplatVector = Constant::getNullValue( 991 VectorType::get(Builder.getInt32Ty(), getVectorWidth())); 992 993 Value *VectorVal = Builder.CreateShuffleVector( 994 Val, Val, SplatVector, Address->getName() + "_p_splat"); 995 VectorBlockMap[MA->getBaseAddr()] = VectorVal; 996 VectorVal->dump(); 997 } 998 } 999 1000 void VectorBlockGenerator::verifyNoScalarStores(ScopStmt &Stmt) { 1001 for (MemoryAccess *MA : Stmt) { 1002 if (MA->isArrayKind() || MA->isRead()) 1003 continue; 1004 1005 llvm_unreachable("Scalar stores not expected in vector loop"); 1006 } 1007 } 1008 1009 void VectorBlockGenerator::copyStmt( 1010 ScopStmt &Stmt, __isl_keep isl_id_to_ast_expr *NewAccesses) { 1011 assert(Stmt.isBlockStmt() && "TODO: Only block statements can be copied by " 1012 "the vector block generator"); 1013 1014 BasicBlock *BB = Stmt.getBasicBlock(); 1015 BasicBlock *CopyBB = SplitBlock(Builder.GetInsertBlock(), 1016 &*Builder.GetInsertPoint(), &DT, &LI); 1017 CopyBB->setName("polly.stmt." + BB->getName()); 1018 Builder.SetInsertPoint(&CopyBB->front()); 1019 1020 // Create two maps that store the mapping from the original instructions of 1021 // the old basic block to their copies in the new basic block. Those maps 1022 // are basic block local. 1023 // 1024 // As vector code generation is supported there is one map for scalar values 1025 // and one for vector values. 1026 // 1027 // In case we just do scalar code generation, the vectorMap is not used and 1028 // the scalarMap has just one dimension, which contains the mapping. 1029 // 1030 // In case vector code generation is done, an instruction may either appear 1031 // in the vector map once (as it is calculating >vectorwidth< values at a 1032 // time. Or (if the values are calculated using scalar operations), it 1033 // appears once in every dimension of the scalarMap. 1034 VectorValueMapT ScalarBlockMap(getVectorWidth()); 1035 ValueMapT VectorBlockMap; 1036 1037 generateScalarVectorLoads(Stmt, VectorBlockMap); 1038 1039 for (Instruction &Inst : *BB) 1040 copyInstruction(Stmt, &Inst, VectorBlockMap, ScalarBlockMap, NewAccesses); 1041 1042 verifyNoScalarStores(Stmt); 1043 } 1044 1045 BasicBlock *RegionGenerator::repairDominance(BasicBlock *BB, 1046 BasicBlock *BBCopy) { 1047 1048 BasicBlock *BBIDom = DT.getNode(BB)->getIDom()->getBlock(); 1049 BasicBlock *BBCopyIDom = BlockMap.lookup(BBIDom); 1050 1051 if (BBCopyIDom) 1052 DT.changeImmediateDominator(BBCopy, BBCopyIDom); 1053 1054 return BBCopyIDom; 1055 } 1056 1057 void RegionGenerator::copyStmt(ScopStmt &Stmt, LoopToScevMapT <S, 1058 isl_id_to_ast_expr *IdToAstExp) { 1059 assert(Stmt.isRegionStmt() && 1060 "Only region statements can be copied by the region generator"); 1061 1062 Scop *S = Stmt.getParent(); 1063 1064 // Forget all old mappings. 1065 BlockMap.clear(); 1066 RegionMaps.clear(); 1067 IncompletePHINodeMap.clear(); 1068 1069 // Collection of all values related to this subregion. 1070 ValueMapT ValueMap; 1071 1072 // The region represented by the statement. 1073 Region *R = Stmt.getRegion(); 1074 1075 // Create a dedicated entry for the region where we can reload all demoted 1076 // inputs. 1077 BasicBlock *EntryBB = R->getEntry(); 1078 BasicBlock *EntryBBCopy = SplitBlock(Builder.GetInsertBlock(), 1079 &*Builder.GetInsertPoint(), &DT, &LI); 1080 EntryBBCopy->setName("polly.stmt." + EntryBB->getName() + ".entry"); 1081 Builder.SetInsertPoint(&EntryBBCopy->front()); 1082 1083 ValueMapT &EntryBBMap = RegionMaps[EntryBBCopy]; 1084 generateScalarLoads(Stmt, EntryBBMap); 1085 1086 for (auto PI = pred_begin(EntryBB), PE = pred_end(EntryBB); PI != PE; ++PI) 1087 if (!R->contains(*PI)) 1088 BlockMap[*PI] = EntryBBCopy; 1089 1090 // Determine the original exit block of this subregion. If it the exit block 1091 // is also the scop's exit, it it has been changed to polly.merge_new_and_old. 1092 // We move one block back to find the original block. This only happens if the 1093 // scop required simplification. 1094 // If the whole scop consists of only this non-affine region, then they share 1095 // the same Region object, such that we cannot change the exit of one and not 1096 // the other. 1097 BasicBlock *ExitBB = R->getExit(); 1098 if (!S->hasSingleExitEdge() && ExitBB == S->getRegion().getExit()) 1099 ExitBB = *(++pred_begin(ExitBB)); 1100 1101 // Iterate over all blocks in the region in a breadth-first search. 1102 std::deque<BasicBlock *> Blocks; 1103 SmallPtrSet<BasicBlock *, 8> SeenBlocks; 1104 Blocks.push_back(EntryBB); 1105 SeenBlocks.insert(EntryBB); 1106 1107 while (!Blocks.empty()) { 1108 BasicBlock *BB = Blocks.front(); 1109 Blocks.pop_front(); 1110 1111 // First split the block and update dominance information. 1112 BasicBlock *BBCopy = splitBB(BB); 1113 BasicBlock *BBCopyIDom = repairDominance(BB, BBCopy); 1114 1115 // In order to remap PHI nodes we store also basic block mappings. 1116 BlockMap[BB] = BBCopy; 1117 1118 // Get the mapping for this block and initialize it with either the scalar 1119 // loads from the generated entering block (which dominates all blocks of 1120 // this subregion) or the maps of the immediate dominator, if part of the 1121 // subregion. The latter necessarily includes the former. 1122 ValueMapT *InitBBMap; 1123 if (BBCopyIDom) { 1124 assert(RegionMaps.count(BBCopyIDom)); 1125 InitBBMap = &RegionMaps[BBCopyIDom]; 1126 } else 1127 InitBBMap = &EntryBBMap; 1128 auto Inserted = RegionMaps.insert(std::make_pair(BBCopy, *InitBBMap)); 1129 ValueMapT &RegionMap = Inserted.first->second; 1130 1131 // Copy the block with the BlockGenerator. 1132 Builder.SetInsertPoint(&BBCopy->front()); 1133 copyBB(Stmt, BB, BBCopy, RegionMap, LTS, IdToAstExp); 1134 1135 // In order to remap PHI nodes we store also basic block mappings. 1136 BlockMap[BB] = BBCopy; 1137 1138 // Add values to incomplete PHI nodes waiting for this block to be copied. 1139 for (const PHINodePairTy &PHINodePair : IncompletePHINodeMap[BB]) 1140 addOperandToPHI(Stmt, PHINodePair.first, PHINodePair.second, BB, LTS); 1141 IncompletePHINodeMap[BB].clear(); 1142 1143 // And continue with new successors inside the region. 1144 for (auto SI = succ_begin(BB), SE = succ_end(BB); SI != SE; SI++) 1145 if (R->contains(*SI) && SeenBlocks.insert(*SI).second) 1146 Blocks.push_back(*SI); 1147 1148 // Remember value in case it is visible after this subregion. 1149 if (DT.dominates(BB, ExitBB)) 1150 ValueMap.insert(RegionMap.begin(), RegionMap.end()); 1151 } 1152 1153 // Now create a new dedicated region exit block and add it to the region map. 1154 BasicBlock *ExitBBCopy = SplitBlock(Builder.GetInsertBlock(), 1155 &*Builder.GetInsertPoint(), &DT, &LI); 1156 ExitBBCopy->setName("polly.stmt." + R->getExit()->getName() + ".exit"); 1157 BlockMap[R->getExit()] = ExitBBCopy; 1158 1159 if (ExitBB == R->getExit()) 1160 repairDominance(ExitBB, ExitBBCopy); 1161 else 1162 DT.changeImmediateDominator(ExitBBCopy, BlockMap.lookup(ExitBB)); 1163 1164 // As the block generator doesn't handle control flow we need to add the 1165 // region control flow by hand after all blocks have been copied. 1166 for (BasicBlock *BB : SeenBlocks) { 1167 1168 BasicBlock *BBCopy = BlockMap[BB]; 1169 TerminatorInst *TI = BB->getTerminator(); 1170 if (isa<UnreachableInst>(TI)) { 1171 while (!BBCopy->empty()) 1172 BBCopy->begin()->eraseFromParent(); 1173 new UnreachableInst(BBCopy->getContext(), BBCopy); 1174 continue; 1175 } 1176 1177 Instruction *BICopy = BBCopy->getTerminator(); 1178 1179 ValueMapT &RegionMap = RegionMaps[BBCopy]; 1180 RegionMap.insert(BlockMap.begin(), BlockMap.end()); 1181 1182 Builder.SetInsertPoint(BICopy); 1183 copyInstScalar(Stmt, TI, RegionMap, LTS); 1184 BICopy->eraseFromParent(); 1185 } 1186 1187 // Add counting PHI nodes to all loops in the region that can be used as 1188 // replacement for SCEVs refering to the old loop. 1189 for (BasicBlock *BB : SeenBlocks) { 1190 Loop *L = LI.getLoopFor(BB); 1191 if (L == nullptr || L->getHeader() != BB || !R->contains(L)) 1192 continue; 1193 1194 BasicBlock *BBCopy = BlockMap[BB]; 1195 Value *NullVal = Builder.getInt32(0); 1196 PHINode *LoopPHI = 1197 PHINode::Create(Builder.getInt32Ty(), 2, "polly.subregion.iv"); 1198 Instruction *LoopPHIInc = BinaryOperator::CreateAdd( 1199 LoopPHI, Builder.getInt32(1), "polly.subregion.iv.inc"); 1200 LoopPHI->insertBefore(&BBCopy->front()); 1201 LoopPHIInc->insertBefore(BBCopy->getTerminator()); 1202 1203 for (auto *PredBB : make_range(pred_begin(BB), pred_end(BB))) { 1204 if (!R->contains(PredBB)) 1205 continue; 1206 if (L->contains(PredBB)) 1207 LoopPHI->addIncoming(LoopPHIInc, BlockMap[PredBB]); 1208 else 1209 LoopPHI->addIncoming(NullVal, BlockMap[PredBB]); 1210 } 1211 1212 for (auto *PredBBCopy : make_range(pred_begin(BBCopy), pred_end(BBCopy))) 1213 if (LoopPHI->getBasicBlockIndex(PredBBCopy) < 0) 1214 LoopPHI->addIncoming(NullVal, PredBBCopy); 1215 1216 LTS[L] = SE.getUnknown(LoopPHI); 1217 } 1218 1219 // Continue generating code in the exit block. 1220 Builder.SetInsertPoint(&*ExitBBCopy->getFirstInsertionPt()); 1221 1222 // Write values visible to other statements. 1223 generateScalarStores(Stmt, LTS, ValueMap); 1224 BlockMap.clear(); 1225 RegionMaps.clear(); 1226 IncompletePHINodeMap.clear(); 1227 } 1228 1229 void RegionGenerator::generateScalarStores(ScopStmt &Stmt, LoopToScevMapT <S, 1230 ValueMapT &BBMap) { 1231 const Region &R = Stmt.getParent()->getRegion(); 1232 1233 assert(Stmt.getRegion() && 1234 "Block statements need to use the generateScalarStores() " 1235 "function in the BlockGenerator"); 1236 1237 for (MemoryAccess *MA : Stmt) { 1238 if (MA->isArrayKind() || MA->isRead()) 1239 continue; 1240 1241 Instruction *ScalarInst = MA->getAccessInstruction(); 1242 Value *Val = MA->getAccessValue(); 1243 1244 // In case we add the store into an exiting block, we need to restore the 1245 // position for stores in the exit node. 1246 BasicBlock *SavedInsertBB = Builder.GetInsertBlock(); 1247 auto SavedInsertionPoint = Builder.GetInsertPoint(); 1248 ValueMapT *LocalBBMap = &BBMap; 1249 1250 // Scalar writes induced by PHIs must be written in the incoming blocks. 1251 if (MA->isPHIKind() || MA->isExitPHIKind()) { 1252 BasicBlock *ExitingBB = ScalarInst->getParent(); 1253 BasicBlock *ExitingBBCopy = BlockMap[ExitingBB]; 1254 Builder.SetInsertPoint(ExitingBBCopy->getTerminator()); 1255 1256 // For the incoming blocks, use the block's BBMap instead of the one for 1257 // the entire region. 1258 LocalBBMap = &RegionMaps[ExitingBBCopy]; 1259 } 1260 1261 auto Address = getOrCreateAlloca(*MA); 1262 1263 Val = getNewScalarValue(Val, R, Stmt, LTS, *LocalBBMap); 1264 Builder.CreateStore(Val, Address); 1265 1266 // Restore the insertion point if necessary. 1267 if (MA->isPHIKind() || MA->isExitPHIKind()) 1268 Builder.SetInsertPoint(SavedInsertBB, SavedInsertionPoint); 1269 } 1270 } 1271 1272 void RegionGenerator::addOperandToPHI(ScopStmt &Stmt, const PHINode *PHI, 1273 PHINode *PHICopy, BasicBlock *IncomingBB, 1274 LoopToScevMapT <S) { 1275 Region *StmtR = Stmt.getRegion(); 1276 1277 // If the incoming block was not yet copied mark this PHI as incomplete. 1278 // Once the block will be copied the incoming value will be added. 1279 BasicBlock *BBCopy = BlockMap[IncomingBB]; 1280 if (!BBCopy) { 1281 assert(StmtR->contains(IncomingBB) && 1282 "Bad incoming block for PHI in non-affine region"); 1283 IncompletePHINodeMap[IncomingBB].push_back(std::make_pair(PHI, PHICopy)); 1284 return; 1285 } 1286 1287 Value *OpCopy = nullptr; 1288 if (StmtR->contains(IncomingBB)) { 1289 assert(RegionMaps.count(BBCopy) && 1290 "Incoming PHI block did not have a BBMap"); 1291 ValueMapT &BBCopyMap = RegionMaps[BBCopy]; 1292 1293 Value *Op = PHI->getIncomingValueForBlock(IncomingBB); 1294 1295 BasicBlock *OldBlock = Builder.GetInsertBlock(); 1296 auto OldIP = Builder.GetInsertPoint(); 1297 Builder.SetInsertPoint(BBCopy->getTerminator()); 1298 OpCopy = getNewValue(Stmt, Op, BBCopyMap, LTS, getLoopForInst(PHI)); 1299 Builder.SetInsertPoint(OldBlock, OldIP); 1300 } else { 1301 1302 if (PHICopy->getBasicBlockIndex(BBCopy) >= 0) 1303 return; 1304 1305 Value *PHIOpAddr = getOrCreatePHIAlloca(const_cast<PHINode *>(PHI)); 1306 OpCopy = new LoadInst(PHIOpAddr, PHIOpAddr->getName() + ".reload", 1307 BlockMap[IncomingBB]->getTerminator()); 1308 } 1309 1310 assert(OpCopy && "Incoming PHI value was not copied properly"); 1311 assert(BBCopy && "Incoming PHI block was not copied properly"); 1312 PHICopy->addIncoming(OpCopy, BBCopy); 1313 } 1314 1315 Value *RegionGenerator::copyPHIInstruction(ScopStmt &Stmt, PHINode *PHI, 1316 ValueMapT &BBMap, 1317 LoopToScevMapT <S) { 1318 unsigned NumIncoming = PHI->getNumIncomingValues(); 1319 PHINode *PHICopy = 1320 Builder.CreatePHI(PHI->getType(), NumIncoming, "polly." + PHI->getName()); 1321 PHICopy->moveBefore(PHICopy->getParent()->getFirstNonPHI()); 1322 BBMap[PHI] = PHICopy; 1323 1324 for (unsigned u = 0; u < NumIncoming; u++) 1325 addOperandToPHI(Stmt, PHI, PHICopy, PHI->getIncomingBlock(u), LTS); 1326 return PHICopy; 1327 } 1328