1 //===--- BlockGenerators.cpp - Generate code for statements -----*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the BlockGenerator and VectorBlockGenerator classes,
11 // which generate sequential code and vectorized code for a polyhedral
12 // statement, respectively.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "polly/CodeGen/BlockGenerators.h"
17 #include "polly/CodeGen/CodeGeneration.h"
18 #include "polly/CodeGen/IslExprBuilder.h"
19 #include "polly/CodeGen/RuntimeDebugBuilder.h"
20 #include "polly/Options.h"
21 #include "polly/ScopInfo.h"
22 #include "polly/Support/GICHelper.h"
23 #include "polly/Support/SCEVValidator.h"
24 #include "polly/Support/ScopHelper.h"
25 #include "llvm/Analysis/LoopInfo.h"
26 #include "llvm/Analysis/RegionInfo.h"
27 #include "llvm/Analysis/ScalarEvolution.h"
28 #include "llvm/IR/IntrinsicInst.h"
29 #include "llvm/IR/Module.h"
30 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
31 #include "llvm/Transforms/Utils/Local.h"
32 #include "isl/aff.h"
33 #include "isl/ast.h"
34 #include "isl/ast_build.h"
35 #include "isl/set.h"
36 #include <deque>
37 
38 using namespace llvm;
39 using namespace polly;
40 
41 static cl::opt<bool> Aligned("enable-polly-aligned",
42                              cl::desc("Assumed aligned memory accesses."),
43                              cl::Hidden, cl::init(false), cl::ZeroOrMore,
44                              cl::cat(PollyCategory));
45 
46 static cl::opt<bool> DebugPrinting(
47     "polly-codegen-add-debug-printing",
48     cl::desc("Add printf calls that show the values loaded/stored."),
49     cl::Hidden, cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory));
50 
51 BlockGenerator::BlockGenerator(PollyIRBuilder &B, LoopInfo &LI,
52                                ScalarEvolution &SE, DominatorTree &DT,
53                                ScalarAllocaMapTy &ScalarMap,
54                                ScalarAllocaMapTy &PHIOpMap,
55                                EscapeUsersAllocaMapTy &EscapeMap,
56                                ValueMapT &GlobalMap,
57                                IslExprBuilder *ExprBuilder)
58     : Builder(B), LI(LI), SE(SE), ExprBuilder(ExprBuilder), DT(DT),
59       EntryBB(nullptr), PHIOpMap(PHIOpMap), ScalarMap(ScalarMap),
60       EscapeMap(EscapeMap), GlobalMap(GlobalMap) {}
61 
62 Value *BlockGenerator::trySynthesizeNewValue(ScopStmt &Stmt, Value *Old,
63                                              ValueMapT &BBMap,
64                                              LoopToScevMapT &LTS,
65                                              Loop *L) const {
66   if (!SE.isSCEVable(Old->getType()))
67     return nullptr;
68 
69   const SCEV *Scev = SE.getSCEVAtScope(Old, L);
70   if (!Scev)
71     return nullptr;
72 
73   if (isa<SCEVCouldNotCompute>(Scev))
74     return nullptr;
75 
76   const SCEV *NewScev = apply(Scev, LTS, SE);
77   ValueMapT VTV;
78   VTV.insert(BBMap.begin(), BBMap.end());
79   VTV.insert(GlobalMap.begin(), GlobalMap.end());
80 
81   Scop &S = *Stmt.getParent();
82   const DataLayout &DL =
83       S.getRegion().getEntry()->getParent()->getParent()->getDataLayout();
84   auto IP = Builder.GetInsertPoint();
85 
86   assert(IP != Builder.GetInsertBlock()->end() &&
87          "Only instructions can be insert points for SCEVExpander");
88   Value *Expanded =
89       expandCodeFor(S, SE, DL, "polly", NewScev, Old->getType(), &*IP, &VTV);
90 
91   BBMap[Old] = Expanded;
92   return Expanded;
93 }
94 
95 Value *BlockGenerator::getNewValue(ScopStmt &Stmt, Value *Old, ValueMapT &BBMap,
96                                    LoopToScevMapT &LTS, Loop *L) const {
97   // Constants that do not reference any named value can always remain
98   // unchanged. Handle them early to avoid expensive map lookups. We do not take
99   // the fast-path for external constants which are referenced through globals
100   // as these may need to be rewritten when distributing code accross different
101   // LLVM modules.
102   if (isa<Constant>(Old) && !isa<GlobalValue>(Old))
103     return Old;
104 
105   // Inline asm is like a constant to us.
106   if (isa<InlineAsm>(Old))
107     return Old;
108 
109   if (Value *New = GlobalMap.lookup(Old)) {
110     if (Value *NewRemapped = GlobalMap.lookup(New))
111       New = NewRemapped;
112     if (Old->getType()->getScalarSizeInBits() <
113         New->getType()->getScalarSizeInBits())
114       New = Builder.CreateTruncOrBitCast(New, Old->getType());
115 
116     return New;
117   }
118 
119   if (Value *New = BBMap.lookup(Old))
120     return New;
121 
122   if (Value *New = trySynthesizeNewValue(Stmt, Old, BBMap, LTS, L))
123     return New;
124 
125   // A scop-constant value defined by a global or a function parameter.
126   if (isa<GlobalValue>(Old) || isa<Argument>(Old))
127     return Old;
128 
129   // A scop-constant value defined by an instruction executed outside the scop.
130   if (const Instruction *Inst = dyn_cast<Instruction>(Old))
131     if (!Stmt.getParent()->getRegion().contains(Inst->getParent()))
132       return Old;
133 
134   // The scalar dependence is neither available nor SCEVCodegenable.
135   llvm_unreachable("Unexpected scalar dependence in region!");
136   return nullptr;
137 }
138 
139 void BlockGenerator::copyInstScalar(ScopStmt &Stmt, Instruction *Inst,
140                                     ValueMapT &BBMap, LoopToScevMapT &LTS) {
141   // We do not generate debug intrinsics as we did not investigate how to
142   // copy them correctly. At the current state, they just crash the code
143   // generation as the meta-data operands are not correctly copied.
144   if (isa<DbgInfoIntrinsic>(Inst))
145     return;
146 
147   Instruction *NewInst = Inst->clone();
148 
149   // Replace old operands with the new ones.
150   for (Value *OldOperand : Inst->operands()) {
151     Value *NewOperand =
152         getNewValue(Stmt, OldOperand, BBMap, LTS, getLoopForInst(Inst));
153 
154     if (!NewOperand) {
155       assert(!isa<StoreInst>(NewInst) &&
156              "Store instructions are always needed!");
157       delete NewInst;
158       return;
159     }
160 
161     NewInst->replaceUsesOfWith(OldOperand, NewOperand);
162   }
163 
164   Builder.Insert(NewInst);
165   BBMap[Inst] = NewInst;
166 
167   if (!NewInst->getType()->isVoidTy())
168     NewInst->setName("p_" + Inst->getName());
169 }
170 
171 Value *BlockGenerator::generateLocationAccessed(
172     ScopStmt &Stmt, const Instruction *Inst, Value *Pointer, ValueMapT &BBMap,
173     LoopToScevMapT &LTS, isl_id_to_ast_expr *NewAccesses) {
174   const MemoryAccess &MA = Stmt.getArrayAccessFor(Inst);
175 
176   isl_ast_expr *AccessExpr = isl_id_to_ast_expr_get(NewAccesses, MA.getId());
177 
178   if (AccessExpr) {
179     AccessExpr = isl_ast_expr_address_of(AccessExpr);
180     auto Address = ExprBuilder->create(AccessExpr);
181 
182     // Cast the address of this memory access to a pointer type that has the
183     // same element type as the original access, but uses the address space of
184     // the newly generated pointer.
185     auto OldPtrTy = MA.getAccessValue()->getType()->getPointerTo();
186     auto NewPtrTy = Address->getType();
187     OldPtrTy = PointerType::get(OldPtrTy->getElementType(),
188                                 NewPtrTy->getPointerAddressSpace());
189 
190     if (OldPtrTy != NewPtrTy) {
191       assert(OldPtrTy->getPointerElementType()->getPrimitiveSizeInBits() ==
192                  NewPtrTy->getPointerElementType()->getPrimitiveSizeInBits() &&
193              "Pointer types to elements with different size found");
194       Address = Builder.CreateBitOrPointerCast(Address, OldPtrTy);
195     }
196     return Address;
197   }
198 
199   return getNewValue(Stmt, Pointer, BBMap, LTS, getLoopForInst(Inst));
200 }
201 
202 Loop *BlockGenerator::getLoopForInst(const llvm::Instruction *Inst) {
203   return LI.getLoopFor(Inst->getParent());
204 }
205 
206 Value *BlockGenerator::generateScalarLoad(ScopStmt &Stmt, LoadInst *Load,
207                                           ValueMapT &BBMap, LoopToScevMapT &LTS,
208                                           isl_id_to_ast_expr *NewAccesses) {
209   if (Value *PreloadLoad = GlobalMap.lookup(Load))
210     return PreloadLoad;
211 
212   auto *Pointer = Load->getPointerOperand();
213   Value *NewPointer =
214       generateLocationAccessed(Stmt, Load, Pointer, BBMap, LTS, NewAccesses);
215   Value *ScalarLoad = Builder.CreateAlignedLoad(
216       NewPointer, Load->getAlignment(), Load->getName() + "_p_scalar_");
217 
218   if (DebugPrinting)
219     RuntimeDebugBuilder::createCPUPrinter(Builder, "Load from ", NewPointer,
220                                           ": ", ScalarLoad, "\n");
221 
222   return ScalarLoad;
223 }
224 
225 void BlockGenerator::generateScalarStore(ScopStmt &Stmt, StoreInst *Store,
226                                          ValueMapT &BBMap, LoopToScevMapT &LTS,
227                                          isl_id_to_ast_expr *NewAccesses) {
228   auto *Pointer = Store->getPointerOperand();
229   Value *NewPointer =
230       generateLocationAccessed(Stmt, Store, Pointer, BBMap, LTS, NewAccesses);
231   Value *ValueOperand = getNewValue(Stmt, Store->getValueOperand(), BBMap, LTS,
232                                     getLoopForInst(Store));
233 
234   if (DebugPrinting)
235     RuntimeDebugBuilder::createCPUPrinter(Builder, "Store to  ", NewPointer,
236                                           ": ", ValueOperand, "\n");
237 
238   Builder.CreateAlignedStore(ValueOperand, NewPointer, Store->getAlignment());
239 }
240 
241 bool BlockGenerator::canSyntheziseInStmt(ScopStmt &Stmt, Instruction *Inst) {
242   Loop *L = getLoopForInst(Inst);
243   return (Stmt.isBlockStmt() || !Stmt.getRegion()->contains(L)) &&
244          canSynthesize(Inst, &LI, &SE, &Stmt.getParent()->getRegion());
245 }
246 
247 void BlockGenerator::copyInstruction(ScopStmt &Stmt, Instruction *Inst,
248                                      ValueMapT &BBMap, LoopToScevMapT &LTS,
249                                      isl_id_to_ast_expr *NewAccesses) {
250   // Terminator instructions control the control flow. They are explicitly
251   // expressed in the clast and do not need to be copied.
252   if (Inst->isTerminator())
253     return;
254 
255   // Synthesizable statements will be generated on-demand.
256   if (canSyntheziseInStmt(Stmt, Inst))
257     return;
258 
259   if (auto *Load = dyn_cast<LoadInst>(Inst)) {
260     Value *NewLoad = generateScalarLoad(Stmt, Load, BBMap, LTS, NewAccesses);
261     // Compute NewLoad before its insertion in BBMap to make the insertion
262     // deterministic.
263     BBMap[Load] = NewLoad;
264     return;
265   }
266 
267   if (auto *Store = dyn_cast<StoreInst>(Inst)) {
268     generateScalarStore(Stmt, Store, BBMap, LTS, NewAccesses);
269     return;
270   }
271 
272   if (auto *PHI = dyn_cast<PHINode>(Inst)) {
273     copyPHIInstruction(Stmt, PHI, BBMap, LTS);
274     return;
275   }
276 
277   // Skip some special intrinsics for which we do not adjust the semantics to
278   // the new schedule. All others are handled like every other instruction.
279   if (isIgnoredIntrinsic(Inst))
280     return;
281 
282   copyInstScalar(Stmt, Inst, BBMap, LTS);
283 }
284 
285 void BlockGenerator::copyStmt(ScopStmt &Stmt, LoopToScevMapT &LTS,
286                               isl_id_to_ast_expr *NewAccesses) {
287   assert(Stmt.isBlockStmt() &&
288          "Only block statements can be copied by the block generator");
289 
290   ValueMapT BBMap;
291 
292   BasicBlock *BB = Stmt.getBasicBlock();
293   copyBB(Stmt, BB, BBMap, LTS, NewAccesses);
294 }
295 
296 BasicBlock *BlockGenerator::splitBB(BasicBlock *BB) {
297   BasicBlock *CopyBB = SplitBlock(Builder.GetInsertBlock(),
298                                   &*Builder.GetInsertPoint(), &DT, &LI);
299   CopyBB->setName("polly.stmt." + BB->getName());
300   return CopyBB;
301 }
302 
303 BasicBlock *BlockGenerator::copyBB(ScopStmt &Stmt, BasicBlock *BB,
304                                    ValueMapT &BBMap, LoopToScevMapT &LTS,
305                                    isl_id_to_ast_expr *NewAccesses) {
306   BasicBlock *CopyBB = splitBB(BB);
307   Builder.SetInsertPoint(&CopyBB->front());
308   generateScalarLoads(Stmt, BBMap);
309 
310   copyBB(Stmt, BB, CopyBB, BBMap, LTS, NewAccesses);
311 
312   // After a basic block was copied store all scalars that escape this block in
313   // their alloca.
314   generateScalarStores(Stmt, LTS, BBMap);
315   return CopyBB;
316 }
317 
318 void BlockGenerator::copyBB(ScopStmt &Stmt, BasicBlock *BB, BasicBlock *CopyBB,
319                             ValueMapT &BBMap, LoopToScevMapT &LTS,
320                             isl_id_to_ast_expr *NewAccesses) {
321   EntryBB = &CopyBB->getParent()->getEntryBlock();
322 
323   for (Instruction &Inst : *BB)
324     copyInstruction(Stmt, &Inst, BBMap, LTS, NewAccesses);
325 }
326 
327 Value *BlockGenerator::getOrCreateAlloca(Value *ScalarBase,
328                                          ScalarAllocaMapTy &Map,
329                                          const char *NameExt) {
330   // If no alloca was found create one and insert it in the entry block.
331   if (!Map.count(ScalarBase)) {
332     auto *Ty = ScalarBase->getType();
333     auto NewAddr = new AllocaInst(Ty, ScalarBase->getName() + NameExt);
334     EntryBB = &Builder.GetInsertBlock()->getParent()->getEntryBlock();
335     NewAddr->insertBefore(&*EntryBB->getFirstInsertionPt());
336     Map[ScalarBase] = NewAddr;
337   }
338 
339   auto Addr = Map[ScalarBase];
340 
341   if (auto NewAddr = GlobalMap.lookup(Addr))
342     return NewAddr;
343 
344   return Addr;
345 }
346 
347 Value *BlockGenerator::getOrCreateAlloca(MemoryAccess &Access) {
348   if (Access.isPHIKind())
349     return getOrCreatePHIAlloca(Access.getBaseAddr());
350   else
351     return getOrCreateScalarAlloca(Access.getBaseAddr());
352 }
353 
354 Value *BlockGenerator::getOrCreateAlloca(const ScopArrayInfo *Array) {
355   if (Array->isPHIKind())
356     return getOrCreatePHIAlloca(Array->getBasePtr());
357   else
358     return getOrCreateScalarAlloca(Array->getBasePtr());
359 }
360 
361 Value *BlockGenerator::getOrCreateScalarAlloca(Value *ScalarBase) {
362   return getOrCreateAlloca(ScalarBase, ScalarMap, ".s2a");
363 }
364 
365 Value *BlockGenerator::getOrCreatePHIAlloca(Value *ScalarBase) {
366   return getOrCreateAlloca(ScalarBase, PHIOpMap, ".phiops");
367 }
368 
369 void BlockGenerator::handleOutsideUsers(const Region &R, Instruction *Inst,
370                                         Value *Address) {
371   // If there are escape users we get the alloca for this instruction and put it
372   // in the EscapeMap for later finalization. Lastly, if the instruction was
373   // copied multiple times we already did this and can exit.
374   if (EscapeMap.count(Inst))
375     return;
376 
377   EscapeUserVectorTy EscapeUsers;
378   for (User *U : Inst->users()) {
379 
380     // Non-instruction user will never escape.
381     Instruction *UI = dyn_cast<Instruction>(U);
382     if (!UI)
383       continue;
384 
385     if (R.contains(UI))
386       continue;
387 
388     EscapeUsers.push_back(UI);
389   }
390 
391   // Exit if no escape uses were found.
392   if (EscapeUsers.empty())
393     return;
394 
395   // Get or create an escape alloca for this instruction.
396   auto *ScalarAddr = Address ? Address : getOrCreateScalarAlloca(Inst);
397 
398   // Remember that this instruction has escape uses and the escape alloca.
399   EscapeMap[Inst] = std::make_pair(ScalarAddr, std::move(EscapeUsers));
400 }
401 
402 void BlockGenerator::generateScalarLoads(ScopStmt &Stmt, ValueMapT &BBMap) {
403   for (MemoryAccess *MA : Stmt) {
404     if (MA->isArrayKind() || MA->isWrite())
405       continue;
406 
407     auto *Address = getOrCreateAlloca(*MA);
408     BBMap[MA->getBaseAddr()] =
409         Builder.CreateLoad(Address, Address->getName() + ".reload");
410   }
411 }
412 
413 Value *BlockGenerator::getNewScalarValue(Value *ScalarValue, const Region &R,
414                                          ScopStmt &Stmt, LoopToScevMapT &LTS,
415                                          ValueMapT &BBMap) {
416   // If the value we want to store is an instruction we might have demoted it
417   // in order to make it accessible here. In such a case a reload is
418   // necessary. If it is no instruction it will always be a value that
419   // dominates the current point and we can just use it. In total there are 4
420   // options:
421   //  (1) The value is no instruction ==> use the value.
422   //  (2) The value is an instruction that was split out of the region prior to
423   //      code generation  ==> use the instruction as it dominates the region.
424   //  (3) The value is an instruction:
425   //      (a) The value was defined in the current block, thus a copy is in
426   //          the BBMap ==> use the mapped value.
427   //      (b) The value was defined in a previous block, thus we demoted it
428   //          earlier ==> use the reloaded value.
429   Instruction *ScalarValueInst = dyn_cast<Instruction>(ScalarValue);
430   if (!ScalarValueInst)
431     return ScalarValue;
432 
433   if (!R.contains(ScalarValueInst)) {
434     if (Value *ScalarValueCopy = GlobalMap.lookup(ScalarValueInst))
435       return /* Case (3a) */ ScalarValueCopy;
436     else
437       return /* Case 2 */ ScalarValue;
438   }
439 
440   if (Value *ScalarValueCopy = BBMap.lookup(ScalarValueInst))
441     return /* Case (3a) */ ScalarValueCopy;
442 
443   if ((Stmt.isBlockStmt() &&
444        Stmt.getBasicBlock() == ScalarValueInst->getParent()) ||
445       (Stmt.isRegionStmt() && Stmt.getRegion()->contains(ScalarValueInst))) {
446     auto SynthesizedValue = trySynthesizeNewValue(
447         Stmt, ScalarValueInst, BBMap, LTS, getLoopForInst(ScalarValueInst));
448 
449     if (SynthesizedValue)
450       return SynthesizedValue;
451   }
452 
453   // Case (3b)
454   Value *Address = getOrCreateScalarAlloca(ScalarValueInst);
455   ScalarValue = Builder.CreateLoad(Address, Address->getName() + ".reload");
456 
457   return ScalarValue;
458 }
459 
460 void BlockGenerator::generateScalarStores(ScopStmt &Stmt, LoopToScevMapT &LTS,
461                                           ValueMapT &BBMap) {
462   const Region &R = Stmt.getParent()->getRegion();
463 
464   assert(Stmt.isBlockStmt() && "Region statements need to use the "
465                                "generateScalarStores() function in the "
466                                "RegionGenerator");
467 
468   for (MemoryAccess *MA : Stmt) {
469     if (MA->isArrayKind() || MA->isRead())
470       continue;
471 
472     Value *Val = MA->getAccessValue();
473     auto *Address = getOrCreateAlloca(*MA);
474 
475     Val = getNewScalarValue(Val, R, Stmt, LTS, BBMap);
476     Builder.CreateStore(Val, Address);
477   }
478 }
479 
480 void BlockGenerator::createScalarInitialization(Scop &S) {
481   Region &R = S.getRegion();
482   BasicBlock *ExitBB = R.getExit();
483 
484   // The split block __just before__ the region and optimized region.
485   BasicBlock *SplitBB = R.getEnteringBlock();
486   BranchInst *SplitBBTerm = cast<BranchInst>(SplitBB->getTerminator());
487   assert(SplitBBTerm->getNumSuccessors() == 2 && "Bad region entering block!");
488 
489   // Get the start block of the __optimized__ region.
490   BasicBlock *StartBB = SplitBBTerm->getSuccessor(0);
491   if (StartBB == R.getEntry())
492     StartBB = SplitBBTerm->getSuccessor(1);
493 
494   Builder.SetInsertPoint(StartBB->getTerminator());
495 
496   for (auto &Pair : S.arrays()) {
497     auto &Array = Pair.second;
498     if (Array->getNumberOfDimensions() != 0)
499       continue;
500     if (Array->isPHIKind()) {
501       // For PHI nodes, the only values we need to store are the ones that
502       // reach the PHI node from outside the region. In general there should
503       // only be one such incoming edge and this edge should enter through
504       // 'SplitBB'.
505       auto PHI = cast<PHINode>(Array->getBasePtr());
506 
507       for (auto BI = PHI->block_begin(), BE = PHI->block_end(); BI != BE; BI++)
508         if (!R.contains(*BI) && *BI != SplitBB)
509           llvm_unreachable("Incoming edges from outside the scop should always "
510                            "come from SplitBB");
511 
512       int Idx = PHI->getBasicBlockIndex(SplitBB);
513       if (Idx < 0)
514         continue;
515 
516       Value *ScalarValue = PHI->getIncomingValue(Idx);
517 
518       Builder.CreateStore(ScalarValue, getOrCreatePHIAlloca(PHI));
519       continue;
520     }
521 
522     auto *Inst = dyn_cast<Instruction>(Array->getBasePtr());
523 
524     if (Inst && R.contains(Inst))
525       continue;
526 
527     // PHI nodes that are not marked as such in their SAI object are either exit
528     // PHI nodes we model as common scalars but without initialization, or
529     // incoming phi nodes that need to be initialized. Check if the first is the
530     // case for Inst and do not create and initialize memory if so.
531     if (auto *PHI = dyn_cast_or_null<PHINode>(Inst))
532       if (!S.hasSingleExitEdge() && PHI->getBasicBlockIndex(ExitBB) >= 0)
533         continue;
534 
535     Builder.CreateStore(Array->getBasePtr(),
536                         getOrCreateScalarAlloca(Array->getBasePtr()));
537   }
538 }
539 
540 void BlockGenerator::createScalarFinalization(Region &R) {
541   // The exit block of the __unoptimized__ region.
542   BasicBlock *ExitBB = R.getExitingBlock();
543   // The merge block __just after__ the region and the optimized region.
544   BasicBlock *MergeBB = R.getExit();
545 
546   // The exit block of the __optimized__ region.
547   BasicBlock *OptExitBB = *(pred_begin(MergeBB));
548   if (OptExitBB == ExitBB)
549     OptExitBB = *(++pred_begin(MergeBB));
550 
551   Builder.SetInsertPoint(OptExitBB->getTerminator());
552   for (const auto &EscapeMapping : EscapeMap) {
553     // Extract the escaping instruction and the escaping users as well as the
554     // alloca the instruction was demoted to.
555     Instruction *EscapeInst = EscapeMapping.getFirst();
556     const auto &EscapeMappingValue = EscapeMapping.getSecond();
557     const EscapeUserVectorTy &EscapeUsers = EscapeMappingValue.second;
558     Value *ScalarAddr = EscapeMappingValue.first;
559 
560     // Reload the demoted instruction in the optimized version of the SCoP.
561     Value *EscapeInstReload =
562         Builder.CreateLoad(ScalarAddr, EscapeInst->getName() + ".final_reload");
563     EscapeInstReload =
564         Builder.CreateBitOrPointerCast(EscapeInstReload, EscapeInst->getType());
565 
566     // Create the merge PHI that merges the optimized and unoptimized version.
567     PHINode *MergePHI = PHINode::Create(EscapeInst->getType(), 2,
568                                         EscapeInst->getName() + ".merge");
569     MergePHI->insertBefore(&*MergeBB->getFirstInsertionPt());
570 
571     // Add the respective values to the merge PHI.
572     MergePHI->addIncoming(EscapeInstReload, OptExitBB);
573     MergePHI->addIncoming(EscapeInst, ExitBB);
574 
575     // The information of scalar evolution about the escaping instruction needs
576     // to be revoked so the new merged instruction will be used.
577     if (SE.isSCEVable(EscapeInst->getType()))
578       SE.forgetValue(EscapeInst);
579 
580     // Replace all uses of the demoted instruction with the merge PHI.
581     for (Instruction *EUser : EscapeUsers)
582       EUser->replaceUsesOfWith(EscapeInst, MergePHI);
583   }
584 }
585 
586 void BlockGenerator::findOutsideUsers(Scop &S) {
587   auto &R = S.getRegion();
588   for (auto &Pair : S.arrays()) {
589     auto &Array = Pair.second;
590 
591     if (Array->getNumberOfDimensions() != 0)
592       continue;
593 
594     if (Array->isPHIKind())
595       continue;
596 
597     auto *Inst = dyn_cast<Instruction>(Array->getBasePtr());
598 
599     if (!Inst)
600       continue;
601 
602     // Scop invariant hoisting moves some of the base pointers out of the scop.
603     // We can ignore these, as the invariant load hoisting already registers the
604     // relevant outside users.
605     if (!R.contains(Inst))
606       continue;
607 
608     handleOutsideUsers(R, Inst, nullptr);
609   }
610 }
611 
612 void BlockGenerator::createExitPHINodeMerges(Scop &S) {
613   if (S.hasSingleExitEdge())
614     return;
615 
616   Region &R = S.getRegion();
617 
618   auto *ExitBB = R.getExitingBlock();
619   auto *MergeBB = R.getExit();
620   auto *AfterMergeBB = MergeBB->getSingleSuccessor();
621   BasicBlock *OptExitBB = *(pred_begin(MergeBB));
622   if (OptExitBB == ExitBB)
623     OptExitBB = *(++pred_begin(MergeBB));
624 
625   Builder.SetInsertPoint(OptExitBB->getTerminator());
626 
627   for (auto &Pair : S.arrays()) {
628     auto &SAI = Pair.second;
629     auto *Val = SAI->getBasePtr();
630 
631     PHINode *PHI = dyn_cast<PHINode>(Val);
632     if (!PHI)
633       continue;
634 
635     if (PHI->getParent() != AfterMergeBB)
636       continue;
637 
638     std::string Name = PHI->getName();
639     Value *ScalarAddr = getOrCreateScalarAlloca(PHI);
640     Value *Reload = Builder.CreateLoad(ScalarAddr, Name + ".ph.final_reload");
641     Reload = Builder.CreateBitOrPointerCast(Reload, PHI->getType());
642     Value *OriginalValue = PHI->getIncomingValueForBlock(MergeBB);
643     auto *MergePHI = PHINode::Create(PHI->getType(), 2, Name + ".ph.merge");
644     MergePHI->insertBefore(&*MergeBB->getFirstInsertionPt());
645     MergePHI->addIncoming(Reload, OptExitBB);
646     MergePHI->addIncoming(OriginalValue, ExitBB);
647     int Idx = PHI->getBasicBlockIndex(MergeBB);
648     PHI->setIncomingValue(Idx, MergePHI);
649   }
650 }
651 
652 void BlockGenerator::finalizeSCoP(Scop &S) {
653   findOutsideUsers(S);
654   createScalarInitialization(S);
655   createExitPHINodeMerges(S);
656   createScalarFinalization(S.getRegion());
657 }
658 
659 VectorBlockGenerator::VectorBlockGenerator(BlockGenerator &BlockGen,
660                                            std::vector<LoopToScevMapT> &VLTS,
661                                            isl_map *Schedule)
662     : BlockGenerator(BlockGen), VLTS(VLTS), Schedule(Schedule) {
663   assert(Schedule && "No statement domain provided");
664 }
665 
666 Value *VectorBlockGenerator::getVectorValue(ScopStmt &Stmt, Value *Old,
667                                             ValueMapT &VectorMap,
668                                             VectorValueMapT &ScalarMaps,
669                                             Loop *L) {
670   if (Value *NewValue = VectorMap.lookup(Old))
671     return NewValue;
672 
673   int Width = getVectorWidth();
674 
675   Value *Vector = UndefValue::get(VectorType::get(Old->getType(), Width));
676 
677   for (int Lane = 0; Lane < Width; Lane++)
678     Vector = Builder.CreateInsertElement(
679         Vector, getNewValue(Stmt, Old, ScalarMaps[Lane], VLTS[Lane], L),
680         Builder.getInt32(Lane));
681 
682   VectorMap[Old] = Vector;
683 
684   return Vector;
685 }
686 
687 Type *VectorBlockGenerator::getVectorPtrTy(const Value *Val, int Width) {
688   PointerType *PointerTy = dyn_cast<PointerType>(Val->getType());
689   assert(PointerTy && "PointerType expected");
690 
691   Type *ScalarType = PointerTy->getElementType();
692   VectorType *VectorType = VectorType::get(ScalarType, Width);
693 
694   return PointerType::getUnqual(VectorType);
695 }
696 
697 Value *VectorBlockGenerator::generateStrideOneLoad(
698     ScopStmt &Stmt, LoadInst *Load, VectorValueMapT &ScalarMaps,
699     __isl_keep isl_id_to_ast_expr *NewAccesses, bool NegativeStride = false) {
700   unsigned VectorWidth = getVectorWidth();
701   auto *Pointer = Load->getPointerOperand();
702   Type *VectorPtrType = getVectorPtrTy(Pointer, VectorWidth);
703   unsigned Offset = NegativeStride ? VectorWidth - 1 : 0;
704 
705   Value *NewPointer = nullptr;
706   NewPointer = generateLocationAccessed(Stmt, Load, Pointer, ScalarMaps[Offset],
707                                         VLTS[Offset], NewAccesses);
708   Value *VectorPtr =
709       Builder.CreateBitCast(NewPointer, VectorPtrType, "vector_ptr");
710   LoadInst *VecLoad =
711       Builder.CreateLoad(VectorPtr, Load->getName() + "_p_vec_full");
712   if (!Aligned)
713     VecLoad->setAlignment(8);
714 
715   if (NegativeStride) {
716     SmallVector<Constant *, 16> Indices;
717     for (int i = VectorWidth - 1; i >= 0; i--)
718       Indices.push_back(ConstantInt::get(Builder.getInt32Ty(), i));
719     Constant *SV = llvm::ConstantVector::get(Indices);
720     Value *RevVecLoad = Builder.CreateShuffleVector(
721         VecLoad, VecLoad, SV, Load->getName() + "_reverse");
722     return RevVecLoad;
723   }
724 
725   return VecLoad;
726 }
727 
728 Value *VectorBlockGenerator::generateStrideZeroLoad(
729     ScopStmt &Stmt, LoadInst *Load, ValueMapT &BBMap,
730     __isl_keep isl_id_to_ast_expr *NewAccesses) {
731   auto *Pointer = Load->getPointerOperand();
732   Type *VectorPtrType = getVectorPtrTy(Pointer, 1);
733   Value *NewPointer = generateLocationAccessed(Stmt, Load, Pointer, BBMap,
734                                                VLTS[0], NewAccesses);
735   Value *VectorPtr = Builder.CreateBitCast(NewPointer, VectorPtrType,
736                                            Load->getName() + "_p_vec_p");
737   LoadInst *ScalarLoad =
738       Builder.CreateLoad(VectorPtr, Load->getName() + "_p_splat_one");
739 
740   if (!Aligned)
741     ScalarLoad->setAlignment(8);
742 
743   Constant *SplatVector = Constant::getNullValue(
744       VectorType::get(Builder.getInt32Ty(), getVectorWidth()));
745 
746   Value *VectorLoad = Builder.CreateShuffleVector(
747       ScalarLoad, ScalarLoad, SplatVector, Load->getName() + "_p_splat");
748   return VectorLoad;
749 }
750 
751 Value *VectorBlockGenerator::generateUnknownStrideLoad(
752     ScopStmt &Stmt, LoadInst *Load, VectorValueMapT &ScalarMaps,
753     __isl_keep isl_id_to_ast_expr *NewAccesses) {
754   int VectorWidth = getVectorWidth();
755   auto *Pointer = Load->getPointerOperand();
756   VectorType *VectorType = VectorType::get(
757       dyn_cast<PointerType>(Pointer->getType())->getElementType(), VectorWidth);
758 
759   Value *Vector = UndefValue::get(VectorType);
760 
761   for (int i = 0; i < VectorWidth; i++) {
762     Value *NewPointer = generateLocationAccessed(
763         Stmt, Load, Pointer, ScalarMaps[i], VLTS[i], NewAccesses);
764     Value *ScalarLoad =
765         Builder.CreateLoad(NewPointer, Load->getName() + "_p_scalar_");
766     Vector = Builder.CreateInsertElement(
767         Vector, ScalarLoad, Builder.getInt32(i), Load->getName() + "_p_vec_");
768   }
769 
770   return Vector;
771 }
772 
773 void VectorBlockGenerator::generateLoad(
774     ScopStmt &Stmt, LoadInst *Load, ValueMapT &VectorMap,
775     VectorValueMapT &ScalarMaps, __isl_keep isl_id_to_ast_expr *NewAccesses) {
776   if (Value *PreloadLoad = GlobalMap.lookup(Load)) {
777     VectorMap[Load] = Builder.CreateVectorSplat(getVectorWidth(), PreloadLoad,
778                                                 Load->getName() + "_p");
779     return;
780   }
781 
782   if (!VectorType::isValidElementType(Load->getType())) {
783     for (int i = 0; i < getVectorWidth(); i++)
784       ScalarMaps[i][Load] =
785           generateScalarLoad(Stmt, Load, ScalarMaps[i], VLTS[i], NewAccesses);
786     return;
787   }
788 
789   const MemoryAccess &Access = Stmt.getArrayAccessFor(Load);
790 
791   // Make sure we have scalar values available to access the pointer to
792   // the data location.
793   extractScalarValues(Load, VectorMap, ScalarMaps);
794 
795   Value *NewLoad;
796   if (Access.isStrideZero(isl_map_copy(Schedule)))
797     NewLoad = generateStrideZeroLoad(Stmt, Load, ScalarMaps[0], NewAccesses);
798   else if (Access.isStrideOne(isl_map_copy(Schedule)))
799     NewLoad = generateStrideOneLoad(Stmt, Load, ScalarMaps, NewAccesses);
800   else if (Access.isStrideX(isl_map_copy(Schedule), -1))
801     NewLoad = generateStrideOneLoad(Stmt, Load, ScalarMaps, NewAccesses, true);
802   else
803     NewLoad = generateUnknownStrideLoad(Stmt, Load, ScalarMaps, NewAccesses);
804 
805   VectorMap[Load] = NewLoad;
806 }
807 
808 void VectorBlockGenerator::copyUnaryInst(ScopStmt &Stmt, UnaryInstruction *Inst,
809                                          ValueMapT &VectorMap,
810                                          VectorValueMapT &ScalarMaps) {
811   int VectorWidth = getVectorWidth();
812   Value *NewOperand = getVectorValue(Stmt, Inst->getOperand(0), VectorMap,
813                                      ScalarMaps, getLoopForInst(Inst));
814 
815   assert(isa<CastInst>(Inst) && "Can not generate vector code for instruction");
816 
817   const CastInst *Cast = dyn_cast<CastInst>(Inst);
818   VectorType *DestType = VectorType::get(Inst->getType(), VectorWidth);
819   VectorMap[Inst] = Builder.CreateCast(Cast->getOpcode(), NewOperand, DestType);
820 }
821 
822 void VectorBlockGenerator::copyBinaryInst(ScopStmt &Stmt, BinaryOperator *Inst,
823                                           ValueMapT &VectorMap,
824                                           VectorValueMapT &ScalarMaps) {
825   Loop *L = getLoopForInst(Inst);
826   Value *OpZero = Inst->getOperand(0);
827   Value *OpOne = Inst->getOperand(1);
828 
829   Value *NewOpZero, *NewOpOne;
830   NewOpZero = getVectorValue(Stmt, OpZero, VectorMap, ScalarMaps, L);
831   NewOpOne = getVectorValue(Stmt, OpOne, VectorMap, ScalarMaps, L);
832 
833   Value *NewInst = Builder.CreateBinOp(Inst->getOpcode(), NewOpZero, NewOpOne,
834                                        Inst->getName() + "p_vec");
835   VectorMap[Inst] = NewInst;
836 }
837 
838 void VectorBlockGenerator::copyStore(
839     ScopStmt &Stmt, StoreInst *Store, ValueMapT &VectorMap,
840     VectorValueMapT &ScalarMaps, __isl_keep isl_id_to_ast_expr *NewAccesses) {
841   const MemoryAccess &Access = Stmt.getArrayAccessFor(Store);
842 
843   auto *Pointer = Store->getPointerOperand();
844   Value *Vector = getVectorValue(Stmt, Store->getValueOperand(), VectorMap,
845                                  ScalarMaps, getLoopForInst(Store));
846 
847   // Make sure we have scalar values available to access the pointer to
848   // the data location.
849   extractScalarValues(Store, VectorMap, ScalarMaps);
850 
851   if (Access.isStrideOne(isl_map_copy(Schedule))) {
852     Type *VectorPtrType = getVectorPtrTy(Pointer, getVectorWidth());
853     Value *NewPointer = generateLocationAccessed(
854         Stmt, Store, Pointer, ScalarMaps[0], VLTS[0], NewAccesses);
855 
856     Value *VectorPtr =
857         Builder.CreateBitCast(NewPointer, VectorPtrType, "vector_ptr");
858     StoreInst *Store = Builder.CreateStore(Vector, VectorPtr);
859 
860     if (!Aligned)
861       Store->setAlignment(8);
862   } else {
863     for (unsigned i = 0; i < ScalarMaps.size(); i++) {
864       Value *Scalar = Builder.CreateExtractElement(Vector, Builder.getInt32(i));
865       Value *NewPointer = generateLocationAccessed(
866           Stmt, Store, Pointer, ScalarMaps[i], VLTS[i], NewAccesses);
867       Builder.CreateStore(Scalar, NewPointer);
868     }
869   }
870 }
871 
872 bool VectorBlockGenerator::hasVectorOperands(const Instruction *Inst,
873                                              ValueMapT &VectorMap) {
874   for (Value *Operand : Inst->operands())
875     if (VectorMap.count(Operand))
876       return true;
877   return false;
878 }
879 
880 bool VectorBlockGenerator::extractScalarValues(const Instruction *Inst,
881                                                ValueMapT &VectorMap,
882                                                VectorValueMapT &ScalarMaps) {
883   bool HasVectorOperand = false;
884   int VectorWidth = getVectorWidth();
885 
886   for (Value *Operand : Inst->operands()) {
887     ValueMapT::iterator VecOp = VectorMap.find(Operand);
888 
889     if (VecOp == VectorMap.end())
890       continue;
891 
892     HasVectorOperand = true;
893     Value *NewVector = VecOp->second;
894 
895     for (int i = 0; i < VectorWidth; ++i) {
896       ValueMapT &SM = ScalarMaps[i];
897 
898       // If there is one scalar extracted, all scalar elements should have
899       // already been extracted by the code here. So no need to check for the
900       // existance of all of them.
901       if (SM.count(Operand))
902         break;
903 
904       SM[Operand] =
905           Builder.CreateExtractElement(NewVector, Builder.getInt32(i));
906     }
907   }
908 
909   return HasVectorOperand;
910 }
911 
912 void VectorBlockGenerator::copyInstScalarized(
913     ScopStmt &Stmt, Instruction *Inst, ValueMapT &VectorMap,
914     VectorValueMapT &ScalarMaps, __isl_keep isl_id_to_ast_expr *NewAccesses) {
915   bool HasVectorOperand;
916   int VectorWidth = getVectorWidth();
917 
918   HasVectorOperand = extractScalarValues(Inst, VectorMap, ScalarMaps);
919 
920   for (int VectorLane = 0; VectorLane < getVectorWidth(); VectorLane++)
921     BlockGenerator::copyInstruction(Stmt, Inst, ScalarMaps[VectorLane],
922                                     VLTS[VectorLane], NewAccesses);
923 
924   if (!VectorType::isValidElementType(Inst->getType()) || !HasVectorOperand)
925     return;
926 
927   // Make the result available as vector value.
928   VectorType *VectorType = VectorType::get(Inst->getType(), VectorWidth);
929   Value *Vector = UndefValue::get(VectorType);
930 
931   for (int i = 0; i < VectorWidth; i++)
932     Vector = Builder.CreateInsertElement(Vector, ScalarMaps[i][Inst],
933                                          Builder.getInt32(i));
934 
935   VectorMap[Inst] = Vector;
936 }
937 
938 int VectorBlockGenerator::getVectorWidth() { return VLTS.size(); }
939 
940 void VectorBlockGenerator::copyInstruction(
941     ScopStmt &Stmt, Instruction *Inst, ValueMapT &VectorMap,
942     VectorValueMapT &ScalarMaps, __isl_keep isl_id_to_ast_expr *NewAccesses) {
943   // Terminator instructions control the control flow. They are explicitly
944   // expressed in the clast and do not need to be copied.
945   if (Inst->isTerminator())
946     return;
947 
948   if (canSyntheziseInStmt(Stmt, Inst))
949     return;
950 
951   if (auto *Load = dyn_cast<LoadInst>(Inst)) {
952     generateLoad(Stmt, Load, VectorMap, ScalarMaps, NewAccesses);
953     return;
954   }
955 
956   if (hasVectorOperands(Inst, VectorMap)) {
957     if (auto *Store = dyn_cast<StoreInst>(Inst)) {
958       copyStore(Stmt, Store, VectorMap, ScalarMaps, NewAccesses);
959       return;
960     }
961 
962     if (auto *Unary = dyn_cast<UnaryInstruction>(Inst)) {
963       copyUnaryInst(Stmt, Unary, VectorMap, ScalarMaps);
964       return;
965     }
966 
967     if (auto *Binary = dyn_cast<BinaryOperator>(Inst)) {
968       copyBinaryInst(Stmt, Binary, VectorMap, ScalarMaps);
969       return;
970     }
971 
972     // Falltrough: We generate scalar instructions, if we don't know how to
973     // generate vector code.
974   }
975 
976   copyInstScalarized(Stmt, Inst, VectorMap, ScalarMaps, NewAccesses);
977 }
978 
979 void VectorBlockGenerator::generateScalarVectorLoads(
980     ScopStmt &Stmt, ValueMapT &VectorBlockMap) {
981   for (MemoryAccess *MA : Stmt) {
982     if (MA->isArrayKind() || MA->isWrite())
983       continue;
984 
985     auto *Address = getOrCreateAlloca(*MA);
986     Type *VectorPtrType = getVectorPtrTy(Address, 1);
987     Value *VectorPtr = Builder.CreateBitCast(Address, VectorPtrType,
988                                              Address->getName() + "_p_vec_p");
989     auto *Val = Builder.CreateLoad(VectorPtr, Address->getName() + ".reload");
990     Constant *SplatVector = Constant::getNullValue(
991         VectorType::get(Builder.getInt32Ty(), getVectorWidth()));
992 
993     Value *VectorVal = Builder.CreateShuffleVector(
994         Val, Val, SplatVector, Address->getName() + "_p_splat");
995     VectorBlockMap[MA->getBaseAddr()] = VectorVal;
996     VectorVal->dump();
997   }
998 }
999 
1000 void VectorBlockGenerator::verifyNoScalarStores(ScopStmt &Stmt) {
1001   for (MemoryAccess *MA : Stmt) {
1002     if (MA->isArrayKind() || MA->isRead())
1003       continue;
1004 
1005     llvm_unreachable("Scalar stores not expected in vector loop");
1006   }
1007 }
1008 
1009 void VectorBlockGenerator::copyStmt(
1010     ScopStmt &Stmt, __isl_keep isl_id_to_ast_expr *NewAccesses) {
1011   assert(Stmt.isBlockStmt() && "TODO: Only block statements can be copied by "
1012                                "the vector block generator");
1013 
1014   BasicBlock *BB = Stmt.getBasicBlock();
1015   BasicBlock *CopyBB = SplitBlock(Builder.GetInsertBlock(),
1016                                   &*Builder.GetInsertPoint(), &DT, &LI);
1017   CopyBB->setName("polly.stmt." + BB->getName());
1018   Builder.SetInsertPoint(&CopyBB->front());
1019 
1020   // Create two maps that store the mapping from the original instructions of
1021   // the old basic block to their copies in the new basic block. Those maps
1022   // are basic block local.
1023   //
1024   // As vector code generation is supported there is one map for scalar values
1025   // and one for vector values.
1026   //
1027   // In case we just do scalar code generation, the vectorMap is not used and
1028   // the scalarMap has just one dimension, which contains the mapping.
1029   //
1030   // In case vector code generation is done, an instruction may either appear
1031   // in the vector map once (as it is calculating >vectorwidth< values at a
1032   // time. Or (if the values are calculated using scalar operations), it
1033   // appears once in every dimension of the scalarMap.
1034   VectorValueMapT ScalarBlockMap(getVectorWidth());
1035   ValueMapT VectorBlockMap;
1036 
1037   generateScalarVectorLoads(Stmt, VectorBlockMap);
1038 
1039   for (Instruction &Inst : *BB)
1040     copyInstruction(Stmt, &Inst, VectorBlockMap, ScalarBlockMap, NewAccesses);
1041 
1042   verifyNoScalarStores(Stmt);
1043 }
1044 
1045 BasicBlock *RegionGenerator::repairDominance(BasicBlock *BB,
1046                                              BasicBlock *BBCopy) {
1047 
1048   BasicBlock *BBIDom = DT.getNode(BB)->getIDom()->getBlock();
1049   BasicBlock *BBCopyIDom = BlockMap.lookup(BBIDom);
1050 
1051   if (BBCopyIDom)
1052     DT.changeImmediateDominator(BBCopy, BBCopyIDom);
1053 
1054   return BBCopyIDom;
1055 }
1056 
1057 void RegionGenerator::copyStmt(ScopStmt &Stmt, LoopToScevMapT &LTS,
1058                                isl_id_to_ast_expr *IdToAstExp) {
1059   assert(Stmt.isRegionStmt() &&
1060          "Only region statements can be copied by the region generator");
1061 
1062   Scop *S = Stmt.getParent();
1063 
1064   // Forget all old mappings.
1065   BlockMap.clear();
1066   RegionMaps.clear();
1067   IncompletePHINodeMap.clear();
1068 
1069   // Collection of all values related to this subregion.
1070   ValueMapT ValueMap;
1071 
1072   // The region represented by the statement.
1073   Region *R = Stmt.getRegion();
1074 
1075   // Create a dedicated entry for the region where we can reload all demoted
1076   // inputs.
1077   BasicBlock *EntryBB = R->getEntry();
1078   BasicBlock *EntryBBCopy = SplitBlock(Builder.GetInsertBlock(),
1079                                        &*Builder.GetInsertPoint(), &DT, &LI);
1080   EntryBBCopy->setName("polly.stmt." + EntryBB->getName() + ".entry");
1081   Builder.SetInsertPoint(&EntryBBCopy->front());
1082 
1083   ValueMapT &EntryBBMap = RegionMaps[EntryBBCopy];
1084   generateScalarLoads(Stmt, EntryBBMap);
1085 
1086   for (auto PI = pred_begin(EntryBB), PE = pred_end(EntryBB); PI != PE; ++PI)
1087     if (!R->contains(*PI))
1088       BlockMap[*PI] = EntryBBCopy;
1089 
1090   // Determine the original exit block of this subregion. If it the exit block
1091   // is also the scop's exit, it it has been changed to polly.merge_new_and_old.
1092   // We move one block back to find the original block. This only happens if the
1093   // scop required simplification.
1094   // If the whole scop consists of only this non-affine region, then they share
1095   // the same Region object, such that we cannot change the exit of one and not
1096   // the other.
1097   BasicBlock *ExitBB = R->getExit();
1098   if (!S->hasSingleExitEdge() && ExitBB == S->getRegion().getExit())
1099     ExitBB = *(++pred_begin(ExitBB));
1100 
1101   // Iterate over all blocks in the region in a breadth-first search.
1102   std::deque<BasicBlock *> Blocks;
1103   SmallPtrSet<BasicBlock *, 8> SeenBlocks;
1104   Blocks.push_back(EntryBB);
1105   SeenBlocks.insert(EntryBB);
1106 
1107   while (!Blocks.empty()) {
1108     BasicBlock *BB = Blocks.front();
1109     Blocks.pop_front();
1110 
1111     // First split the block and update dominance information.
1112     BasicBlock *BBCopy = splitBB(BB);
1113     BasicBlock *BBCopyIDom = repairDominance(BB, BBCopy);
1114 
1115     // In order to remap PHI nodes we store also basic block mappings.
1116     BlockMap[BB] = BBCopy;
1117 
1118     // Get the mapping for this block and initialize it with either the scalar
1119     // loads from the generated entering block (which dominates all blocks of
1120     // this subregion) or the maps of the immediate dominator, if part of the
1121     // subregion. The latter necessarily includes the former.
1122     ValueMapT *InitBBMap;
1123     if (BBCopyIDom) {
1124       assert(RegionMaps.count(BBCopyIDom));
1125       InitBBMap = &RegionMaps[BBCopyIDom];
1126     } else
1127       InitBBMap = &EntryBBMap;
1128     auto Inserted = RegionMaps.insert(std::make_pair(BBCopy, *InitBBMap));
1129     ValueMapT &RegionMap = Inserted.first->second;
1130 
1131     // Copy the block with the BlockGenerator.
1132     Builder.SetInsertPoint(&BBCopy->front());
1133     copyBB(Stmt, BB, BBCopy, RegionMap, LTS, IdToAstExp);
1134 
1135     // In order to remap PHI nodes we store also basic block mappings.
1136     BlockMap[BB] = BBCopy;
1137 
1138     // Add values to incomplete PHI nodes waiting for this block to be copied.
1139     for (const PHINodePairTy &PHINodePair : IncompletePHINodeMap[BB])
1140       addOperandToPHI(Stmt, PHINodePair.first, PHINodePair.second, BB, LTS);
1141     IncompletePHINodeMap[BB].clear();
1142 
1143     // And continue with new successors inside the region.
1144     for (auto SI = succ_begin(BB), SE = succ_end(BB); SI != SE; SI++)
1145       if (R->contains(*SI) && SeenBlocks.insert(*SI).second)
1146         Blocks.push_back(*SI);
1147 
1148     // Remember value in case it is visible after this subregion.
1149     if (DT.dominates(BB, ExitBB))
1150       ValueMap.insert(RegionMap.begin(), RegionMap.end());
1151   }
1152 
1153   // Now create a new dedicated region exit block and add it to the region map.
1154   BasicBlock *ExitBBCopy = SplitBlock(Builder.GetInsertBlock(),
1155                                       &*Builder.GetInsertPoint(), &DT, &LI);
1156   ExitBBCopy->setName("polly.stmt." + R->getExit()->getName() + ".exit");
1157   BlockMap[R->getExit()] = ExitBBCopy;
1158 
1159   if (ExitBB == R->getExit())
1160     repairDominance(ExitBB, ExitBBCopy);
1161   else
1162     DT.changeImmediateDominator(ExitBBCopy, BlockMap.lookup(ExitBB));
1163 
1164   // As the block generator doesn't handle control flow we need to add the
1165   // region control flow by hand after all blocks have been copied.
1166   for (BasicBlock *BB : SeenBlocks) {
1167 
1168     BasicBlock *BBCopy = BlockMap[BB];
1169     TerminatorInst *TI = BB->getTerminator();
1170     if (isa<UnreachableInst>(TI)) {
1171       while (!BBCopy->empty())
1172         BBCopy->begin()->eraseFromParent();
1173       new UnreachableInst(BBCopy->getContext(), BBCopy);
1174       continue;
1175     }
1176 
1177     Instruction *BICopy = BBCopy->getTerminator();
1178 
1179     ValueMapT &RegionMap = RegionMaps[BBCopy];
1180     RegionMap.insert(BlockMap.begin(), BlockMap.end());
1181 
1182     Builder.SetInsertPoint(BICopy);
1183     copyInstScalar(Stmt, TI, RegionMap, LTS);
1184     BICopy->eraseFromParent();
1185   }
1186 
1187   // Add counting PHI nodes to all loops in the region that can be used as
1188   // replacement for SCEVs refering to the old loop.
1189   for (BasicBlock *BB : SeenBlocks) {
1190     Loop *L = LI.getLoopFor(BB);
1191     if (L == nullptr || L->getHeader() != BB || !R->contains(L))
1192       continue;
1193 
1194     BasicBlock *BBCopy = BlockMap[BB];
1195     Value *NullVal = Builder.getInt32(0);
1196     PHINode *LoopPHI =
1197         PHINode::Create(Builder.getInt32Ty(), 2, "polly.subregion.iv");
1198     Instruction *LoopPHIInc = BinaryOperator::CreateAdd(
1199         LoopPHI, Builder.getInt32(1), "polly.subregion.iv.inc");
1200     LoopPHI->insertBefore(&BBCopy->front());
1201     LoopPHIInc->insertBefore(BBCopy->getTerminator());
1202 
1203     for (auto *PredBB : make_range(pred_begin(BB), pred_end(BB))) {
1204       if (!R->contains(PredBB))
1205         continue;
1206       if (L->contains(PredBB))
1207         LoopPHI->addIncoming(LoopPHIInc, BlockMap[PredBB]);
1208       else
1209         LoopPHI->addIncoming(NullVal, BlockMap[PredBB]);
1210     }
1211 
1212     for (auto *PredBBCopy : make_range(pred_begin(BBCopy), pred_end(BBCopy)))
1213       if (LoopPHI->getBasicBlockIndex(PredBBCopy) < 0)
1214         LoopPHI->addIncoming(NullVal, PredBBCopy);
1215 
1216     LTS[L] = SE.getUnknown(LoopPHI);
1217   }
1218 
1219   // Continue generating code in the exit block.
1220   Builder.SetInsertPoint(&*ExitBBCopy->getFirstInsertionPt());
1221 
1222   // Write values visible to other statements.
1223   generateScalarStores(Stmt, LTS, ValueMap);
1224   BlockMap.clear();
1225   RegionMaps.clear();
1226   IncompletePHINodeMap.clear();
1227 }
1228 
1229 void RegionGenerator::generateScalarStores(ScopStmt &Stmt, LoopToScevMapT &LTS,
1230                                            ValueMapT &BBMap) {
1231   const Region &R = Stmt.getParent()->getRegion();
1232 
1233   assert(Stmt.getRegion() &&
1234          "Block statements need to use the generateScalarStores() "
1235          "function in the BlockGenerator");
1236 
1237   for (MemoryAccess *MA : Stmt) {
1238     if (MA->isArrayKind() || MA->isRead())
1239       continue;
1240 
1241     Instruction *ScalarInst = MA->getAccessInstruction();
1242     Value *Val = MA->getAccessValue();
1243 
1244     // In case we add the store into an exiting block, we need to restore the
1245     // position for stores in the exit node.
1246     BasicBlock *SavedInsertBB = Builder.GetInsertBlock();
1247     auto SavedInsertionPoint = Builder.GetInsertPoint();
1248     ValueMapT *LocalBBMap = &BBMap;
1249 
1250     // Scalar writes induced by PHIs must be written in the incoming blocks.
1251     if (MA->isPHIKind() || MA->isExitPHIKind()) {
1252       BasicBlock *ExitingBB = ScalarInst->getParent();
1253       BasicBlock *ExitingBBCopy = BlockMap[ExitingBB];
1254       Builder.SetInsertPoint(ExitingBBCopy->getTerminator());
1255 
1256       // For the incoming blocks, use the block's BBMap instead of the one for
1257       // the entire region.
1258       LocalBBMap = &RegionMaps[ExitingBBCopy];
1259     }
1260 
1261     auto Address = getOrCreateAlloca(*MA);
1262 
1263     Val = getNewScalarValue(Val, R, Stmt, LTS, *LocalBBMap);
1264     Builder.CreateStore(Val, Address);
1265 
1266     // Restore the insertion point if necessary.
1267     if (MA->isPHIKind() || MA->isExitPHIKind())
1268       Builder.SetInsertPoint(SavedInsertBB, SavedInsertionPoint);
1269   }
1270 }
1271 
1272 void RegionGenerator::addOperandToPHI(ScopStmt &Stmt, const PHINode *PHI,
1273                                       PHINode *PHICopy, BasicBlock *IncomingBB,
1274                                       LoopToScevMapT &LTS) {
1275   Region *StmtR = Stmt.getRegion();
1276 
1277   // If the incoming block was not yet copied mark this PHI as incomplete.
1278   // Once the block will be copied the incoming value will be added.
1279   BasicBlock *BBCopy = BlockMap[IncomingBB];
1280   if (!BBCopy) {
1281     assert(StmtR->contains(IncomingBB) &&
1282            "Bad incoming block for PHI in non-affine region");
1283     IncompletePHINodeMap[IncomingBB].push_back(std::make_pair(PHI, PHICopy));
1284     return;
1285   }
1286 
1287   Value *OpCopy = nullptr;
1288   if (StmtR->contains(IncomingBB)) {
1289     assert(RegionMaps.count(BBCopy) &&
1290            "Incoming PHI block did not have a BBMap");
1291     ValueMapT &BBCopyMap = RegionMaps[BBCopy];
1292 
1293     Value *Op = PHI->getIncomingValueForBlock(IncomingBB);
1294 
1295     BasicBlock *OldBlock = Builder.GetInsertBlock();
1296     auto OldIP = Builder.GetInsertPoint();
1297     Builder.SetInsertPoint(BBCopy->getTerminator());
1298     OpCopy = getNewValue(Stmt, Op, BBCopyMap, LTS, getLoopForInst(PHI));
1299     Builder.SetInsertPoint(OldBlock, OldIP);
1300   } else {
1301 
1302     if (PHICopy->getBasicBlockIndex(BBCopy) >= 0)
1303       return;
1304 
1305     Value *PHIOpAddr = getOrCreatePHIAlloca(const_cast<PHINode *>(PHI));
1306     OpCopy = new LoadInst(PHIOpAddr, PHIOpAddr->getName() + ".reload",
1307                           BlockMap[IncomingBB]->getTerminator());
1308   }
1309 
1310   assert(OpCopy && "Incoming PHI value was not copied properly");
1311   assert(BBCopy && "Incoming PHI block was not copied properly");
1312   PHICopy->addIncoming(OpCopy, BBCopy);
1313 }
1314 
1315 Value *RegionGenerator::copyPHIInstruction(ScopStmt &Stmt, PHINode *PHI,
1316                                            ValueMapT &BBMap,
1317                                            LoopToScevMapT &LTS) {
1318   unsigned NumIncoming = PHI->getNumIncomingValues();
1319   PHINode *PHICopy =
1320       Builder.CreatePHI(PHI->getType(), NumIncoming, "polly." + PHI->getName());
1321   PHICopy->moveBefore(PHICopy->getParent()->getFirstNonPHI());
1322   BBMap[PHI] = PHICopy;
1323 
1324   for (unsigned u = 0; u < NumIncoming; u++)
1325     addOperandToPHI(Stmt, PHI, PHICopy, PHI->getIncomingBlock(u), LTS);
1326   return PHICopy;
1327 }
1328