1 //===--- BlockGenerators.cpp - Generate code for statements -----*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the BlockGenerator and VectorBlockGenerator classes, 11 // which generate sequential code and vectorized code for a polyhedral 12 // statement, respectively. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "polly/CodeGen/BlockGenerators.h" 17 #include "polly/CodeGen/CodeGeneration.h" 18 #include "polly/CodeGen/IslExprBuilder.h" 19 #include "polly/CodeGen/RuntimeDebugBuilder.h" 20 #include "polly/Options.h" 21 #include "polly/ScopInfo.h" 22 #include "polly/Support/GICHelper.h" 23 #include "polly/Support/SCEVValidator.h" 24 #include "polly/Support/ScopHelper.h" 25 #include "polly/Support/VirtualInstruction.h" 26 #include "llvm/Analysis/LoopInfo.h" 27 #include "llvm/Analysis/RegionInfo.h" 28 #include "llvm/Analysis/ScalarEvolution.h" 29 #include "llvm/IR/IntrinsicInst.h" 30 #include "llvm/IR/Module.h" 31 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 32 #include "llvm/Transforms/Utils/Local.h" 33 #include "isl/aff.h" 34 #include "isl/ast.h" 35 #include "isl/ast_build.h" 36 #include "isl/set.h" 37 #include <deque> 38 39 using namespace llvm; 40 using namespace polly; 41 42 static cl::opt<bool> Aligned("enable-polly-aligned", 43 cl::desc("Assumed aligned memory accesses."), 44 cl::Hidden, cl::init(false), cl::ZeroOrMore, 45 cl::cat(PollyCategory)); 46 47 bool PollyDebugPrinting; 48 static cl::opt<bool, true> DebugPrintingX( 49 "polly-codegen-add-debug-printing", 50 cl::desc("Add printf calls that show the values loaded/stored."), 51 cl::location(PollyDebugPrinting), cl::Hidden, cl::init(false), 52 cl::ZeroOrMore, cl::cat(PollyCategory)); 53 54 BlockGenerator::BlockGenerator( 55 PollyIRBuilder &B, LoopInfo &LI, ScalarEvolution &SE, DominatorTree &DT, 56 AllocaMapTy &ScalarMap, EscapeUsersAllocaMapTy &EscapeMap, 57 ValueMapT &GlobalMap, IslExprBuilder *ExprBuilder, BasicBlock *StartBlock) 58 : Builder(B), LI(LI), SE(SE), ExprBuilder(ExprBuilder), DT(DT), 59 EntryBB(nullptr), ScalarMap(ScalarMap), EscapeMap(EscapeMap), 60 GlobalMap(GlobalMap), StartBlock(StartBlock) {} 61 62 Value *BlockGenerator::trySynthesizeNewValue(ScopStmt &Stmt, Value *Old, 63 ValueMapT &BBMap, 64 LoopToScevMapT <S, 65 Loop *L) const { 66 if (!SE.isSCEVable(Old->getType())) 67 return nullptr; 68 69 const SCEV *Scev = SE.getSCEVAtScope(Old, L); 70 if (!Scev) 71 return nullptr; 72 73 if (isa<SCEVCouldNotCompute>(Scev)) 74 return nullptr; 75 76 const SCEV *NewScev = SCEVLoopAddRecRewriter::rewrite(Scev, LTS, SE); 77 ValueMapT VTV; 78 VTV.insert(BBMap.begin(), BBMap.end()); 79 VTV.insert(GlobalMap.begin(), GlobalMap.end()); 80 81 Scop &S = *Stmt.getParent(); 82 const DataLayout &DL = S.getFunction().getParent()->getDataLayout(); 83 auto IP = Builder.GetInsertPoint(); 84 85 assert(IP != Builder.GetInsertBlock()->end() && 86 "Only instructions can be insert points for SCEVExpander"); 87 Value *Expanded = 88 expandCodeFor(S, SE, DL, "polly", NewScev, Old->getType(), &*IP, &VTV, 89 StartBlock->getSinglePredecessor()); 90 91 BBMap[Old] = Expanded; 92 return Expanded; 93 } 94 95 Value *BlockGenerator::getNewValue(ScopStmt &Stmt, Value *Old, ValueMapT &BBMap, 96 LoopToScevMapT <S, Loop *L) const { 97 98 auto lookupGlobally = [this](Value *Old) -> Value * { 99 Value *New = GlobalMap.lookup(Old); 100 if (!New) 101 return nullptr; 102 103 // Required by: 104 // * Isl/CodeGen/OpenMP/invariant_base_pointer_preloaded.ll 105 // * Isl/CodeGen/OpenMP/invariant_base_pointer_preloaded_different_bb.ll 106 // * Isl/CodeGen/OpenMP/invariant_base_pointer_preloaded_pass_only_needed.ll 107 // * Isl/CodeGen/OpenMP/invariant_base_pointers_preloaded.ll 108 // * Isl/CodeGen/OpenMP/loop-body-references-outer-values-3.ll 109 // * Isl/CodeGen/OpenMP/single_loop_with_loop_invariant_baseptr.ll 110 // GlobalMap should be a mapping from (value in original SCoP) to (copied 111 // value in generated SCoP), without intermediate mappings, which might 112 // easily require transitiveness as well. 113 if (Value *NewRemapped = GlobalMap.lookup(New)) 114 New = NewRemapped; 115 116 // No test case for this code. 117 if (Old->getType()->getScalarSizeInBits() < 118 New->getType()->getScalarSizeInBits()) 119 New = Builder.CreateTruncOrBitCast(New, Old->getType()); 120 121 return New; 122 }; 123 124 Value *New = nullptr; 125 auto VUse = VirtualUse::create(&Stmt, L, Old, true); 126 switch (VUse.getKind()) { 127 case VirtualUse::Block: 128 // BasicBlock are constants, but the BlockGenerator copies them. 129 New = BBMap.lookup(Old); 130 break; 131 132 case VirtualUse::Constant: 133 // Used by: 134 // * Isl/CodeGen/OpenMP/reference-argument-from-non-affine-region.ll 135 // Constants should not be redefined. In this case, the GlobalMap just 136 // contains a mapping to the same constant, which is unnecessary, but 137 // harmless. 138 if ((New = lookupGlobally(Old))) 139 break; 140 141 assert(!BBMap.count(Old)); 142 New = Old; 143 break; 144 145 case VirtualUse::ReadOnly: 146 assert(!GlobalMap.count(Old)); 147 148 // Required for: 149 // * Isl/CodeGen/MemAccess/create_arrays.ll 150 // * Isl/CodeGen/read-only-scalars.ll 151 // * ScheduleOptimizer/pattern-matching-based-opts_10.ll 152 // For some reason these reload a read-only value. The reloaded value ends 153 // up in BBMap, buts its value should be identical. 154 // 155 // Required for: 156 // * Isl/CodeGen/OpenMP/single_loop_with_param.ll 157 // The parallel subfunctions need to reference the read-only value from the 158 // parent function, this is done by reloading them locally. 159 if ((New = BBMap.lookup(Old))) 160 break; 161 162 New = Old; 163 break; 164 165 case VirtualUse::Synthesizable: 166 // Used by: 167 // * Isl/CodeGen/OpenMP/loop-body-references-outer-values-3.ll 168 // * Isl/CodeGen/OpenMP/recomputed-srem.ll 169 // * Isl/CodeGen/OpenMP/reference-other-bb.ll 170 // * Isl/CodeGen/OpenMP/two-parallel-loops-reference-outer-indvar.ll 171 // For some reason synthesizable values end up in GlobalMap. Their values 172 // are the same as trySynthesizeNewValue would return. The legacy 173 // implementation prioritized GlobalMap, so this is what we do here as well. 174 // Ideally, synthesizable values should not end up in GlobalMap. 175 if ((New = lookupGlobally(Old))) 176 break; 177 178 // Required for: 179 // * Isl/CodeGen/RuntimeDebugBuilder/combine_different_values.ll 180 // * Isl/CodeGen/getNumberOfIterations.ll 181 // * Isl/CodeGen/non_affine_float_compare.ll 182 // * ScheduleOptimizer/pattern-matching-based-opts_10.ll 183 // Ideally, synthesizable values are synthesized by trySynthesizeNewValue, 184 // not precomputed (SCEVExpander has its own caching mechanism). 185 // These tests fail without this, but I think trySynthesizeNewValue would 186 // just re-synthesize the same instructions. 187 if ((New = BBMap.lookup(Old))) 188 break; 189 190 New = trySynthesizeNewValue(Stmt, Old, BBMap, LTS, L); 191 break; 192 193 case VirtualUse::Hoisted: 194 // TODO: Hoisted invariant loads should be found in GlobalMap only, but not 195 // redefined locally (which will be ignored anyway). That is, the following 196 // assertion should apply: assert(!BBMap.count(Old)) 197 198 New = lookupGlobally(Old); 199 break; 200 201 case VirtualUse::Intra: 202 case VirtualUse::Inter: 203 assert(!GlobalMap.count(Old) && 204 "Intra and inter-stmt values are never global"); 205 New = BBMap.lookup(Old); 206 break; 207 } 208 assert(New && "Unexpected scalar dependence in region!"); 209 return New; 210 } 211 212 void BlockGenerator::copyInstScalar(ScopStmt &Stmt, Instruction *Inst, 213 ValueMapT &BBMap, LoopToScevMapT <S) { 214 // We do not generate debug intrinsics as we did not investigate how to 215 // copy them correctly. At the current state, they just crash the code 216 // generation as the meta-data operands are not correctly copied. 217 if (isa<DbgInfoIntrinsic>(Inst)) 218 return; 219 220 Instruction *NewInst = Inst->clone(); 221 222 // Replace old operands with the new ones. 223 for (Value *OldOperand : Inst->operands()) { 224 Value *NewOperand = 225 getNewValue(Stmt, OldOperand, BBMap, LTS, getLoopForStmt(Stmt)); 226 227 if (!NewOperand) { 228 assert(!isa<StoreInst>(NewInst) && 229 "Store instructions are always needed!"); 230 NewInst->deleteValue(); 231 return; 232 } 233 234 NewInst->replaceUsesOfWith(OldOperand, NewOperand); 235 } 236 237 Builder.Insert(NewInst); 238 BBMap[Inst] = NewInst; 239 240 // When copying the instruction onto the Module meant for the GPU, 241 // debug metadata attached to an instruction causes all related 242 // metadata to be pulled into the Module. This includes the DICompileUnit, 243 // which will not be listed in llvm.dbg.cu of the Module since the Module 244 // doesn't contain one. This fails the verification of the Module and the 245 // subsequent generation of the ASM string. 246 if (NewInst->getModule() != Inst->getModule()) 247 NewInst->setDebugLoc(llvm::DebugLoc()); 248 249 if (!NewInst->getType()->isVoidTy()) 250 NewInst->setName("p_" + Inst->getName()); 251 } 252 253 Value * 254 BlockGenerator::generateLocationAccessed(ScopStmt &Stmt, MemAccInst Inst, 255 ValueMapT &BBMap, LoopToScevMapT <S, 256 isl_id_to_ast_expr *NewAccesses) { 257 const MemoryAccess &MA = Stmt.getArrayAccessFor(Inst); 258 return generateLocationAccessed( 259 Stmt, getLoopForStmt(Stmt), 260 Inst.isNull() ? nullptr : Inst.getPointerOperand(), BBMap, LTS, 261 NewAccesses, MA.getId().release(), MA.getAccessValue()->getType()); 262 } 263 264 Value *BlockGenerator::generateLocationAccessed( 265 ScopStmt &Stmt, Loop *L, Value *Pointer, ValueMapT &BBMap, 266 LoopToScevMapT <S, isl_id_to_ast_expr *NewAccesses, __isl_take isl_id *Id, 267 Type *ExpectedType) { 268 isl_ast_expr *AccessExpr = isl_id_to_ast_expr_get(NewAccesses, Id); 269 270 if (AccessExpr) { 271 AccessExpr = isl_ast_expr_address_of(AccessExpr); 272 auto Address = ExprBuilder->create(AccessExpr); 273 274 // Cast the address of this memory access to a pointer type that has the 275 // same element type as the original access, but uses the address space of 276 // the newly generated pointer. 277 auto OldPtrTy = ExpectedType->getPointerTo(); 278 auto NewPtrTy = Address->getType(); 279 OldPtrTy = PointerType::get(OldPtrTy->getElementType(), 280 NewPtrTy->getPointerAddressSpace()); 281 282 if (OldPtrTy != NewPtrTy) 283 Address = Builder.CreateBitOrPointerCast(Address, OldPtrTy); 284 return Address; 285 } 286 assert( 287 Pointer && 288 "If expression was not generated, must use the original pointer value"); 289 return getNewValue(Stmt, Pointer, BBMap, LTS, L); 290 } 291 292 Value * 293 BlockGenerator::getImplicitAddress(MemoryAccess &Access, Loop *L, 294 LoopToScevMapT <S, ValueMapT &BBMap, 295 __isl_keep isl_id_to_ast_expr *NewAccesses) { 296 if (Access.isLatestArrayKind()) 297 return generateLocationAccessed(*Access.getStatement(), L, nullptr, BBMap, 298 LTS, NewAccesses, Access.getId().release(), 299 Access.getAccessValue()->getType()); 300 301 return getOrCreateAlloca(Access); 302 } 303 304 Loop *BlockGenerator::getLoopForStmt(const ScopStmt &Stmt) const { 305 auto *StmtBB = Stmt.getEntryBlock(); 306 return LI.getLoopFor(StmtBB); 307 } 308 309 Value *BlockGenerator::generateArrayLoad(ScopStmt &Stmt, LoadInst *Load, 310 ValueMapT &BBMap, LoopToScevMapT <S, 311 isl_id_to_ast_expr *NewAccesses) { 312 if (Value *PreloadLoad = GlobalMap.lookup(Load)) 313 return PreloadLoad; 314 315 Value *NewPointer = 316 generateLocationAccessed(Stmt, Load, BBMap, LTS, NewAccesses); 317 Value *ScalarLoad = Builder.CreateAlignedLoad( 318 NewPointer, Load->getAlignment(), Load->getName() + "_p_scalar_"); 319 320 if (PollyDebugPrinting) 321 RuntimeDebugBuilder::createCPUPrinter(Builder, "Load from ", NewPointer, 322 ": ", ScalarLoad, "\n"); 323 324 return ScalarLoad; 325 } 326 327 void BlockGenerator::generateArrayStore(ScopStmt &Stmt, StoreInst *Store, 328 ValueMapT &BBMap, LoopToScevMapT <S, 329 isl_id_to_ast_expr *NewAccesses) { 330 MemoryAccess &MA = Stmt.getArrayAccessFor(Store); 331 isl::set AccDom = MA.getAccessRelation().domain(); 332 std::string Subject = MA.getId().get_name(); 333 334 generateConditionalExecution(Stmt, AccDom, Subject.c_str(), [&, this]() { 335 Value *NewPointer = 336 generateLocationAccessed(Stmt, Store, BBMap, LTS, NewAccesses); 337 Value *ValueOperand = getNewValue(Stmt, Store->getValueOperand(), BBMap, 338 LTS, getLoopForStmt(Stmt)); 339 340 if (PollyDebugPrinting) 341 RuntimeDebugBuilder::createCPUPrinter(Builder, "Store to ", NewPointer, 342 ": ", ValueOperand, "\n"); 343 344 Builder.CreateAlignedStore(ValueOperand, NewPointer, Store->getAlignment()); 345 }); 346 } 347 348 bool BlockGenerator::canSyntheziseInStmt(ScopStmt &Stmt, Instruction *Inst) { 349 Loop *L = getLoopForStmt(Stmt); 350 return (Stmt.isBlockStmt() || !Stmt.getRegion()->contains(L)) && 351 canSynthesize(Inst, *Stmt.getParent(), &SE, L); 352 } 353 354 void BlockGenerator::copyInstruction(ScopStmt &Stmt, Instruction *Inst, 355 ValueMapT &BBMap, LoopToScevMapT <S, 356 isl_id_to_ast_expr *NewAccesses) { 357 // Terminator instructions control the control flow. They are explicitly 358 // expressed in the clast and do not need to be copied. 359 if (Inst->isTerminator()) 360 return; 361 362 // Synthesizable statements will be generated on-demand. 363 if (canSyntheziseInStmt(Stmt, Inst)) 364 return; 365 366 if (auto *Load = dyn_cast<LoadInst>(Inst)) { 367 Value *NewLoad = generateArrayLoad(Stmt, Load, BBMap, LTS, NewAccesses); 368 // Compute NewLoad before its insertion in BBMap to make the insertion 369 // deterministic. 370 BBMap[Load] = NewLoad; 371 return; 372 } 373 374 if (auto *Store = dyn_cast<StoreInst>(Inst)) { 375 // Identified as redundant by -polly-simplify. 376 if (!Stmt.getArrayAccessOrNULLFor(Store)) 377 return; 378 379 generateArrayStore(Stmt, Store, BBMap, LTS, NewAccesses); 380 return; 381 } 382 383 if (auto *PHI = dyn_cast<PHINode>(Inst)) { 384 copyPHIInstruction(Stmt, PHI, BBMap, LTS); 385 return; 386 } 387 388 // Skip some special intrinsics for which we do not adjust the semantics to 389 // the new schedule. All others are handled like every other instruction. 390 if (isIgnoredIntrinsic(Inst)) 391 return; 392 393 copyInstScalar(Stmt, Inst, BBMap, LTS); 394 } 395 396 void BlockGenerator::removeDeadInstructions(BasicBlock *BB, ValueMapT &BBMap) { 397 auto NewBB = Builder.GetInsertBlock(); 398 for (auto I = NewBB->rbegin(); I != NewBB->rend(); I++) { 399 Instruction *NewInst = &*I; 400 401 if (!isInstructionTriviallyDead(NewInst)) 402 continue; 403 404 for (auto Pair : BBMap) 405 if (Pair.second == NewInst) { 406 BBMap.erase(Pair.first); 407 } 408 409 NewInst->eraseFromParent(); 410 I = NewBB->rbegin(); 411 } 412 } 413 414 void BlockGenerator::copyStmt(ScopStmt &Stmt, LoopToScevMapT <S, 415 isl_id_to_ast_expr *NewAccesses) { 416 assert(Stmt.isBlockStmt() && 417 "Only block statements can be copied by the block generator"); 418 419 ValueMapT BBMap; 420 421 BasicBlock *BB = Stmt.getBasicBlock(); 422 copyBB(Stmt, BB, BBMap, LTS, NewAccesses); 423 removeDeadInstructions(BB, BBMap); 424 } 425 426 BasicBlock *BlockGenerator::splitBB(BasicBlock *BB) { 427 BasicBlock *CopyBB = SplitBlock(Builder.GetInsertBlock(), 428 &*Builder.GetInsertPoint(), &DT, &LI); 429 CopyBB->setName("polly.stmt." + BB->getName()); 430 return CopyBB; 431 } 432 433 BasicBlock *BlockGenerator::copyBB(ScopStmt &Stmt, BasicBlock *BB, 434 ValueMapT &BBMap, LoopToScevMapT <S, 435 isl_id_to_ast_expr *NewAccesses) { 436 BasicBlock *CopyBB = splitBB(BB); 437 Builder.SetInsertPoint(&CopyBB->front()); 438 generateScalarLoads(Stmt, LTS, BBMap, NewAccesses); 439 440 copyBB(Stmt, BB, CopyBB, BBMap, LTS, NewAccesses); 441 442 // After a basic block was copied store all scalars that escape this block in 443 // their alloca. 444 generateScalarStores(Stmt, LTS, BBMap, NewAccesses); 445 return CopyBB; 446 } 447 448 void BlockGenerator::copyBB(ScopStmt &Stmt, BasicBlock *BB, BasicBlock *CopyBB, 449 ValueMapT &BBMap, LoopToScevMapT <S, 450 isl_id_to_ast_expr *NewAccesses) { 451 EntryBB = &CopyBB->getParent()->getEntryBlock(); 452 453 // Block statements and the entry blocks of region statement are code 454 // generated from instruction lists. This allow us to optimize the 455 // instructions that belong to a certain scop statement. As the code 456 // structure of region statements might be arbitrary complex, optimizing the 457 // instruction list is not yet supported. 458 if (Stmt.isBlockStmt() || (Stmt.isRegionStmt() && Stmt.getEntryBlock() == BB)) 459 for (Instruction *Inst : Stmt.getInstructions()) 460 copyInstruction(Stmt, Inst, BBMap, LTS, NewAccesses); 461 else 462 for (Instruction &Inst : *BB) 463 copyInstruction(Stmt, &Inst, BBMap, LTS, NewAccesses); 464 } 465 466 Value *BlockGenerator::getOrCreateAlloca(const MemoryAccess &Access) { 467 assert(!Access.isLatestArrayKind() && "Trying to get alloca for array kind"); 468 469 return getOrCreateAlloca(Access.getLatestScopArrayInfo()); 470 } 471 472 Value *BlockGenerator::getOrCreateAlloca(const ScopArrayInfo *Array) { 473 assert(!Array->isArrayKind() && "Trying to get alloca for array kind"); 474 475 auto &Addr = ScalarMap[Array]; 476 477 if (Addr) { 478 // Allow allocas to be (temporarily) redirected once by adding a new 479 // old-alloca-addr to new-addr mapping to GlobalMap. This functionality 480 // is used for example by the OpenMP code generation where a first use 481 // of a scalar while still in the host code allocates a normal alloca with 482 // getOrCreateAlloca. When the values of this scalar are accessed during 483 // the generation of the parallel subfunction, these values are copied over 484 // to the parallel subfunction and each request for a scalar alloca slot 485 // must be forwarded to the temporary in-subfunction slot. This mapping is 486 // removed when the subfunction has been generated and again normal host 487 // code is generated. Due to the following reasons it is not possible to 488 // perform the GlobalMap lookup right after creating the alloca below, but 489 // instead we need to check GlobalMap at each call to getOrCreateAlloca: 490 // 491 // 1) GlobalMap may be changed multiple times (for each parallel loop), 492 // 2) The temporary mapping is commonly only known after the initial 493 // alloca has already been generated, and 494 // 3) The original alloca value must be restored after leaving the 495 // sub-function. 496 if (Value *NewAddr = GlobalMap.lookup(&*Addr)) 497 return NewAddr; 498 return Addr; 499 } 500 501 Type *Ty = Array->getElementType(); 502 Value *ScalarBase = Array->getBasePtr(); 503 std::string NameExt; 504 if (Array->isPHIKind()) 505 NameExt = ".phiops"; 506 else 507 NameExt = ".s2a"; 508 509 const DataLayout &DL = Builder.GetInsertBlock()->getModule()->getDataLayout(); 510 511 Addr = new AllocaInst(Ty, DL.getAllocaAddrSpace(), 512 ScalarBase->getName() + NameExt); 513 EntryBB = &Builder.GetInsertBlock()->getParent()->getEntryBlock(); 514 Addr->insertBefore(&*EntryBB->getFirstInsertionPt()); 515 516 return Addr; 517 } 518 519 void BlockGenerator::handleOutsideUsers(const Scop &S, ScopArrayInfo *Array) { 520 Instruction *Inst = cast<Instruction>(Array->getBasePtr()); 521 522 // If there are escape users we get the alloca for this instruction and put it 523 // in the EscapeMap for later finalization. Lastly, if the instruction was 524 // copied multiple times we already did this and can exit. 525 if (EscapeMap.count(Inst)) 526 return; 527 528 EscapeUserVectorTy EscapeUsers; 529 for (User *U : Inst->users()) { 530 531 // Non-instruction user will never escape. 532 Instruction *UI = dyn_cast<Instruction>(U); 533 if (!UI) 534 continue; 535 536 if (S.contains(UI)) 537 continue; 538 539 EscapeUsers.push_back(UI); 540 } 541 542 // Exit if no escape uses were found. 543 if (EscapeUsers.empty()) 544 return; 545 546 // Get or create an escape alloca for this instruction. 547 auto *ScalarAddr = getOrCreateAlloca(Array); 548 549 // Remember that this instruction has escape uses and the escape alloca. 550 EscapeMap[Inst] = std::make_pair(ScalarAddr, std::move(EscapeUsers)); 551 } 552 553 void BlockGenerator::generateScalarLoads( 554 ScopStmt &Stmt, LoopToScevMapT <S, ValueMapT &BBMap, 555 __isl_keep isl_id_to_ast_expr *NewAccesses) { 556 for (MemoryAccess *MA : Stmt) { 557 if (MA->isOriginalArrayKind() || MA->isWrite()) 558 continue; 559 560 #ifndef NDEBUG 561 auto *StmtDom = Stmt.getDomain().release(); 562 auto *AccDom = isl_map_domain(MA->getAccessRelation().release()); 563 assert(isl_set_is_subset(StmtDom, AccDom) && 564 "Scalar must be loaded in all statement instances"); 565 isl_set_free(StmtDom); 566 isl_set_free(AccDom); 567 #endif 568 569 auto *Address = 570 getImplicitAddress(*MA, getLoopForStmt(Stmt), LTS, BBMap, NewAccesses); 571 assert((!isa<Instruction>(Address) || 572 DT.dominates(cast<Instruction>(Address)->getParent(), 573 Builder.GetInsertBlock())) && 574 "Domination violation"); 575 BBMap[MA->getAccessValue()] = 576 Builder.CreateLoad(Address, Address->getName() + ".reload"); 577 } 578 } 579 580 Value *BlockGenerator::buildContainsCondition(ScopStmt &Stmt, 581 const isl::set &Subdomain) { 582 isl::ast_build AstBuild = Stmt.getAstBuild(); 583 isl::set Domain = Stmt.getDomain(); 584 585 isl::union_map USchedule = AstBuild.get_schedule(); 586 USchedule = USchedule.intersect_domain(Domain); 587 588 assert(!USchedule.is_empty()); 589 isl::map Schedule = isl::map::from_union_map(USchedule); 590 591 isl::set ScheduledDomain = Schedule.range(); 592 isl::set ScheduledSet = Subdomain.apply(Schedule); 593 594 isl::ast_build RestrictedBuild = AstBuild.restrict(ScheduledDomain); 595 596 isl::ast_expr IsInSet = RestrictedBuild.expr_from(ScheduledSet); 597 Value *IsInSetExpr = ExprBuilder->create(IsInSet.copy()); 598 IsInSetExpr = Builder.CreateICmpNE( 599 IsInSetExpr, ConstantInt::get(IsInSetExpr->getType(), 0)); 600 601 return IsInSetExpr; 602 } 603 604 void BlockGenerator::generateConditionalExecution( 605 ScopStmt &Stmt, const isl::set &Subdomain, StringRef Subject, 606 const std::function<void()> &GenThenFunc) { 607 isl::set StmtDom = Stmt.getDomain(); 608 609 // If the condition is a tautology, don't generate a condition around the 610 // code. 611 bool IsPartialWrite = 612 !StmtDom.intersect_params(Stmt.getParent()->getContext()) 613 .is_subset(Subdomain); 614 if (!IsPartialWrite) { 615 GenThenFunc(); 616 return; 617 } 618 619 // Generate the condition. 620 Value *Cond = buildContainsCondition(Stmt, Subdomain); 621 622 // Don't call GenThenFunc if it is never executed. An ast index expression 623 // might not be defined in this case. 624 if (auto *Const = dyn_cast<ConstantInt>(Cond)) 625 if (Const->isZero()) 626 return; 627 628 BasicBlock *HeadBlock = Builder.GetInsertBlock(); 629 StringRef BlockName = HeadBlock->getName(); 630 631 // Generate the conditional block. 632 SplitBlockAndInsertIfThen(Cond, &*Builder.GetInsertPoint(), false, nullptr, 633 &DT, &LI); 634 BranchInst *Branch = cast<BranchInst>(HeadBlock->getTerminator()); 635 BasicBlock *ThenBlock = Branch->getSuccessor(0); 636 BasicBlock *TailBlock = Branch->getSuccessor(1); 637 638 // Assign descriptive names. 639 if (auto *CondInst = dyn_cast<Instruction>(Cond)) 640 CondInst->setName("polly." + Subject + ".cond"); 641 ThenBlock->setName(BlockName + "." + Subject + ".partial"); 642 TailBlock->setName(BlockName + ".cont"); 643 644 // Put the client code into the conditional block and continue in the merge 645 // block afterwards. 646 Builder.SetInsertPoint(ThenBlock, ThenBlock->getFirstInsertionPt()); 647 GenThenFunc(); 648 Builder.SetInsertPoint(TailBlock, TailBlock->getFirstInsertionPt()); 649 } 650 651 void BlockGenerator::generateScalarStores( 652 ScopStmt &Stmt, LoopToScevMapT <S, ValueMapT &BBMap, 653 __isl_keep isl_id_to_ast_expr *NewAccesses) { 654 Loop *L = LI.getLoopFor(Stmt.getBasicBlock()); 655 656 assert(Stmt.isBlockStmt() && 657 "Region statements need to use the generateScalarStores() function in " 658 "the RegionGenerator"); 659 660 for (MemoryAccess *MA : Stmt) { 661 if (MA->isOriginalArrayKind() || MA->isRead()) 662 continue; 663 664 isl::set AccDom = MA->getAccessRelation().domain(); 665 std::string Subject = MA->getId().get_name(); 666 667 generateConditionalExecution( 668 Stmt, AccDom, Subject.c_str(), [&, this, MA]() { 669 Value *Val = MA->getAccessValue(); 670 if (MA->isAnyPHIKind()) { 671 assert(MA->getIncoming().size() >= 1 && 672 "Block statements have exactly one exiting block, or " 673 "multiple but " 674 "with same incoming block and value"); 675 assert(std::all_of(MA->getIncoming().begin(), 676 MA->getIncoming().end(), 677 [&](std::pair<BasicBlock *, Value *> p) -> bool { 678 return p.first == Stmt.getBasicBlock(); 679 }) && 680 "Incoming block must be statement's block"); 681 Val = MA->getIncoming()[0].second; 682 } 683 auto Address = getImplicitAddress(*MA, getLoopForStmt(Stmt), LTS, 684 BBMap, NewAccesses); 685 686 Val = getNewValue(Stmt, Val, BBMap, LTS, L); 687 assert((!isa<Instruction>(Val) || 688 DT.dominates(cast<Instruction>(Val)->getParent(), 689 Builder.GetInsertBlock())) && 690 "Domination violation"); 691 assert((!isa<Instruction>(Address) || 692 DT.dominates(cast<Instruction>(Address)->getParent(), 693 Builder.GetInsertBlock())) && 694 "Domination violation"); 695 Builder.CreateStore(Val, Address); 696 697 }); 698 } 699 } 700 701 void BlockGenerator::createScalarInitialization(Scop &S) { 702 BasicBlock *ExitBB = S.getExit(); 703 BasicBlock *PreEntryBB = S.getEnteringBlock(); 704 705 Builder.SetInsertPoint(&*StartBlock->begin()); 706 707 for (auto &Array : S.arrays()) { 708 if (Array->getNumberOfDimensions() != 0) 709 continue; 710 if (Array->isPHIKind()) { 711 // For PHI nodes, the only values we need to store are the ones that 712 // reach the PHI node from outside the region. In general there should 713 // only be one such incoming edge and this edge should enter through 714 // 'PreEntryBB'. 715 auto PHI = cast<PHINode>(Array->getBasePtr()); 716 717 for (auto BI = PHI->block_begin(), BE = PHI->block_end(); BI != BE; BI++) 718 if (!S.contains(*BI) && *BI != PreEntryBB) 719 llvm_unreachable("Incoming edges from outside the scop should always " 720 "come from PreEntryBB"); 721 722 int Idx = PHI->getBasicBlockIndex(PreEntryBB); 723 if (Idx < 0) 724 continue; 725 726 Value *ScalarValue = PHI->getIncomingValue(Idx); 727 728 Builder.CreateStore(ScalarValue, getOrCreateAlloca(Array)); 729 continue; 730 } 731 732 auto *Inst = dyn_cast<Instruction>(Array->getBasePtr()); 733 734 if (Inst && S.contains(Inst)) 735 continue; 736 737 // PHI nodes that are not marked as such in their SAI object are either exit 738 // PHI nodes we model as common scalars but without initialization, or 739 // incoming phi nodes that need to be initialized. Check if the first is the 740 // case for Inst and do not create and initialize memory if so. 741 if (auto *PHI = dyn_cast_or_null<PHINode>(Inst)) 742 if (!S.hasSingleExitEdge() && PHI->getBasicBlockIndex(ExitBB) >= 0) 743 continue; 744 745 Builder.CreateStore(Array->getBasePtr(), getOrCreateAlloca(Array)); 746 } 747 } 748 749 void BlockGenerator::createScalarFinalization(Scop &S) { 750 // The exit block of the __unoptimized__ region. 751 BasicBlock *ExitBB = S.getExitingBlock(); 752 // The merge block __just after__ the region and the optimized region. 753 BasicBlock *MergeBB = S.getExit(); 754 755 // The exit block of the __optimized__ region. 756 BasicBlock *OptExitBB = *(pred_begin(MergeBB)); 757 if (OptExitBB == ExitBB) 758 OptExitBB = *(++pred_begin(MergeBB)); 759 760 Builder.SetInsertPoint(OptExitBB->getTerminator()); 761 for (const auto &EscapeMapping : EscapeMap) { 762 // Extract the escaping instruction and the escaping users as well as the 763 // alloca the instruction was demoted to. 764 Instruction *EscapeInst = EscapeMapping.first; 765 const auto &EscapeMappingValue = EscapeMapping.second; 766 const EscapeUserVectorTy &EscapeUsers = EscapeMappingValue.second; 767 Value *ScalarAddr = EscapeMappingValue.first; 768 769 // Reload the demoted instruction in the optimized version of the SCoP. 770 Value *EscapeInstReload = 771 Builder.CreateLoad(ScalarAddr, EscapeInst->getName() + ".final_reload"); 772 EscapeInstReload = 773 Builder.CreateBitOrPointerCast(EscapeInstReload, EscapeInst->getType()); 774 775 // Create the merge PHI that merges the optimized and unoptimized version. 776 PHINode *MergePHI = PHINode::Create(EscapeInst->getType(), 2, 777 EscapeInst->getName() + ".merge"); 778 MergePHI->insertBefore(&*MergeBB->getFirstInsertionPt()); 779 780 // Add the respective values to the merge PHI. 781 MergePHI->addIncoming(EscapeInstReload, OptExitBB); 782 MergePHI->addIncoming(EscapeInst, ExitBB); 783 784 // The information of scalar evolution about the escaping instruction needs 785 // to be revoked so the new merged instruction will be used. 786 if (SE.isSCEVable(EscapeInst->getType())) 787 SE.forgetValue(EscapeInst); 788 789 // Replace all uses of the demoted instruction with the merge PHI. 790 for (Instruction *EUser : EscapeUsers) 791 EUser->replaceUsesOfWith(EscapeInst, MergePHI); 792 } 793 } 794 795 void BlockGenerator::findOutsideUsers(Scop &S) { 796 for (auto &Array : S.arrays()) { 797 798 if (Array->getNumberOfDimensions() != 0) 799 continue; 800 801 if (Array->isPHIKind()) 802 continue; 803 804 auto *Inst = dyn_cast<Instruction>(Array->getBasePtr()); 805 806 if (!Inst) 807 continue; 808 809 // Scop invariant hoisting moves some of the base pointers out of the scop. 810 // We can ignore these, as the invariant load hoisting already registers the 811 // relevant outside users. 812 if (!S.contains(Inst)) 813 continue; 814 815 handleOutsideUsers(S, Array); 816 } 817 } 818 819 void BlockGenerator::createExitPHINodeMerges(Scop &S) { 820 if (S.hasSingleExitEdge()) 821 return; 822 823 auto *ExitBB = S.getExitingBlock(); 824 auto *MergeBB = S.getExit(); 825 auto *AfterMergeBB = MergeBB->getSingleSuccessor(); 826 BasicBlock *OptExitBB = *(pred_begin(MergeBB)); 827 if (OptExitBB == ExitBB) 828 OptExitBB = *(++pred_begin(MergeBB)); 829 830 Builder.SetInsertPoint(OptExitBB->getTerminator()); 831 832 for (auto &SAI : S.arrays()) { 833 auto *Val = SAI->getBasePtr(); 834 835 // Only Value-like scalars need a merge PHI. Exit block PHIs receive either 836 // the original PHI's value or the reloaded incoming values from the 837 // generated code. An llvm::Value is merged between the original code's 838 // value or the generated one. 839 if (!SAI->isExitPHIKind()) 840 continue; 841 842 PHINode *PHI = dyn_cast<PHINode>(Val); 843 if (!PHI) 844 continue; 845 846 if (PHI->getParent() != AfterMergeBB) 847 continue; 848 849 std::string Name = PHI->getName(); 850 Value *ScalarAddr = getOrCreateAlloca(SAI); 851 Value *Reload = Builder.CreateLoad(ScalarAddr, Name + ".ph.final_reload"); 852 Reload = Builder.CreateBitOrPointerCast(Reload, PHI->getType()); 853 Value *OriginalValue = PHI->getIncomingValueForBlock(MergeBB); 854 assert((!isa<Instruction>(OriginalValue) || 855 cast<Instruction>(OriginalValue)->getParent() != MergeBB) && 856 "Original value must no be one we just generated."); 857 auto *MergePHI = PHINode::Create(PHI->getType(), 2, Name + ".ph.merge"); 858 MergePHI->insertBefore(&*MergeBB->getFirstInsertionPt()); 859 MergePHI->addIncoming(Reload, OptExitBB); 860 MergePHI->addIncoming(OriginalValue, ExitBB); 861 int Idx = PHI->getBasicBlockIndex(MergeBB); 862 PHI->setIncomingValue(Idx, MergePHI); 863 } 864 } 865 866 void BlockGenerator::invalidateScalarEvolution(Scop &S) { 867 for (auto &Stmt : S) 868 if (Stmt.isCopyStmt()) 869 continue; 870 else if (Stmt.isBlockStmt()) 871 for (auto &Inst : *Stmt.getBasicBlock()) 872 SE.forgetValue(&Inst); 873 else if (Stmt.isRegionStmt()) 874 for (auto *BB : Stmt.getRegion()->blocks()) 875 for (auto &Inst : *BB) 876 SE.forgetValue(&Inst); 877 else 878 llvm_unreachable("Unexpected statement type found"); 879 880 // Invalidate SCEV of loops surrounding the EscapeUsers. 881 for (const auto &EscapeMapping : EscapeMap) { 882 const EscapeUserVectorTy &EscapeUsers = EscapeMapping.second.second; 883 for (Instruction *EUser : EscapeUsers) { 884 if (Loop *L = LI.getLoopFor(EUser->getParent())) 885 while (L) { 886 SE.forgetLoop(L); 887 L = L->getParentLoop(); 888 } 889 } 890 } 891 } 892 893 void BlockGenerator::finalizeSCoP(Scop &S) { 894 findOutsideUsers(S); 895 createScalarInitialization(S); 896 createExitPHINodeMerges(S); 897 createScalarFinalization(S); 898 invalidateScalarEvolution(S); 899 } 900 901 VectorBlockGenerator::VectorBlockGenerator(BlockGenerator &BlockGen, 902 std::vector<LoopToScevMapT> &VLTS, 903 isl_map *Schedule) 904 : BlockGenerator(BlockGen), VLTS(VLTS), Schedule(Schedule) { 905 assert(Schedule && "No statement domain provided"); 906 } 907 908 Value *VectorBlockGenerator::getVectorValue(ScopStmt &Stmt, Value *Old, 909 ValueMapT &VectorMap, 910 VectorValueMapT &ScalarMaps, 911 Loop *L) { 912 if (Value *NewValue = VectorMap.lookup(Old)) 913 return NewValue; 914 915 int Width = getVectorWidth(); 916 917 Value *Vector = UndefValue::get(VectorType::get(Old->getType(), Width)); 918 919 for (int Lane = 0; Lane < Width; Lane++) 920 Vector = Builder.CreateInsertElement( 921 Vector, getNewValue(Stmt, Old, ScalarMaps[Lane], VLTS[Lane], L), 922 Builder.getInt32(Lane)); 923 924 VectorMap[Old] = Vector; 925 926 return Vector; 927 } 928 929 Type *VectorBlockGenerator::getVectorPtrTy(const Value *Val, int Width) { 930 PointerType *PointerTy = dyn_cast<PointerType>(Val->getType()); 931 assert(PointerTy && "PointerType expected"); 932 933 Type *ScalarType = PointerTy->getElementType(); 934 VectorType *VectorType = VectorType::get(ScalarType, Width); 935 936 return PointerType::getUnqual(VectorType); 937 } 938 939 Value *VectorBlockGenerator::generateStrideOneLoad( 940 ScopStmt &Stmt, LoadInst *Load, VectorValueMapT &ScalarMaps, 941 __isl_keep isl_id_to_ast_expr *NewAccesses, bool NegativeStride = false) { 942 unsigned VectorWidth = getVectorWidth(); 943 auto *Pointer = Load->getPointerOperand(); 944 Type *VectorPtrType = getVectorPtrTy(Pointer, VectorWidth); 945 unsigned Offset = NegativeStride ? VectorWidth - 1 : 0; 946 947 Value *NewPointer = generateLocationAccessed(Stmt, Load, ScalarMaps[Offset], 948 VLTS[Offset], NewAccesses); 949 Value *VectorPtr = 950 Builder.CreateBitCast(NewPointer, VectorPtrType, "vector_ptr"); 951 LoadInst *VecLoad = 952 Builder.CreateLoad(VectorPtr, Load->getName() + "_p_vec_full"); 953 if (!Aligned) 954 VecLoad->setAlignment(8); 955 956 if (NegativeStride) { 957 SmallVector<Constant *, 16> Indices; 958 for (int i = VectorWidth - 1; i >= 0; i--) 959 Indices.push_back(ConstantInt::get(Builder.getInt32Ty(), i)); 960 Constant *SV = llvm::ConstantVector::get(Indices); 961 Value *RevVecLoad = Builder.CreateShuffleVector( 962 VecLoad, VecLoad, SV, Load->getName() + "_reverse"); 963 return RevVecLoad; 964 } 965 966 return VecLoad; 967 } 968 969 Value *VectorBlockGenerator::generateStrideZeroLoad( 970 ScopStmt &Stmt, LoadInst *Load, ValueMapT &BBMap, 971 __isl_keep isl_id_to_ast_expr *NewAccesses) { 972 auto *Pointer = Load->getPointerOperand(); 973 Type *VectorPtrType = getVectorPtrTy(Pointer, 1); 974 Value *NewPointer = 975 generateLocationAccessed(Stmt, Load, BBMap, VLTS[0], NewAccesses); 976 Value *VectorPtr = Builder.CreateBitCast(NewPointer, VectorPtrType, 977 Load->getName() + "_p_vec_p"); 978 LoadInst *ScalarLoad = 979 Builder.CreateLoad(VectorPtr, Load->getName() + "_p_splat_one"); 980 981 if (!Aligned) 982 ScalarLoad->setAlignment(8); 983 984 Constant *SplatVector = Constant::getNullValue( 985 VectorType::get(Builder.getInt32Ty(), getVectorWidth())); 986 987 Value *VectorLoad = Builder.CreateShuffleVector( 988 ScalarLoad, ScalarLoad, SplatVector, Load->getName() + "_p_splat"); 989 return VectorLoad; 990 } 991 992 Value *VectorBlockGenerator::generateUnknownStrideLoad( 993 ScopStmt &Stmt, LoadInst *Load, VectorValueMapT &ScalarMaps, 994 __isl_keep isl_id_to_ast_expr *NewAccesses) { 995 int VectorWidth = getVectorWidth(); 996 auto *Pointer = Load->getPointerOperand(); 997 VectorType *VectorType = VectorType::get( 998 dyn_cast<PointerType>(Pointer->getType())->getElementType(), VectorWidth); 999 1000 Value *Vector = UndefValue::get(VectorType); 1001 1002 for (int i = 0; i < VectorWidth; i++) { 1003 Value *NewPointer = generateLocationAccessed(Stmt, Load, ScalarMaps[i], 1004 VLTS[i], NewAccesses); 1005 Value *ScalarLoad = 1006 Builder.CreateLoad(NewPointer, Load->getName() + "_p_scalar_"); 1007 Vector = Builder.CreateInsertElement( 1008 Vector, ScalarLoad, Builder.getInt32(i), Load->getName() + "_p_vec_"); 1009 } 1010 1011 return Vector; 1012 } 1013 1014 void VectorBlockGenerator::generateLoad( 1015 ScopStmt &Stmt, LoadInst *Load, ValueMapT &VectorMap, 1016 VectorValueMapT &ScalarMaps, __isl_keep isl_id_to_ast_expr *NewAccesses) { 1017 if (Value *PreloadLoad = GlobalMap.lookup(Load)) { 1018 VectorMap[Load] = Builder.CreateVectorSplat(getVectorWidth(), PreloadLoad, 1019 Load->getName() + "_p"); 1020 return; 1021 } 1022 1023 if (!VectorType::isValidElementType(Load->getType())) { 1024 for (int i = 0; i < getVectorWidth(); i++) 1025 ScalarMaps[i][Load] = 1026 generateArrayLoad(Stmt, Load, ScalarMaps[i], VLTS[i], NewAccesses); 1027 return; 1028 } 1029 1030 const MemoryAccess &Access = Stmt.getArrayAccessFor(Load); 1031 1032 // Make sure we have scalar values available to access the pointer to 1033 // the data location. 1034 extractScalarValues(Load, VectorMap, ScalarMaps); 1035 1036 Value *NewLoad; 1037 if (Access.isStrideZero(isl::manage(isl_map_copy(Schedule)))) 1038 NewLoad = generateStrideZeroLoad(Stmt, Load, ScalarMaps[0], NewAccesses); 1039 else if (Access.isStrideOne(isl::manage(isl_map_copy(Schedule)))) 1040 NewLoad = generateStrideOneLoad(Stmt, Load, ScalarMaps, NewAccesses); 1041 else if (Access.isStrideX(isl::manage(isl_map_copy(Schedule)), -1)) 1042 NewLoad = generateStrideOneLoad(Stmt, Load, ScalarMaps, NewAccesses, true); 1043 else 1044 NewLoad = generateUnknownStrideLoad(Stmt, Load, ScalarMaps, NewAccesses); 1045 1046 VectorMap[Load] = NewLoad; 1047 } 1048 1049 void VectorBlockGenerator::copyUnaryInst(ScopStmt &Stmt, UnaryInstruction *Inst, 1050 ValueMapT &VectorMap, 1051 VectorValueMapT &ScalarMaps) { 1052 int VectorWidth = getVectorWidth(); 1053 Value *NewOperand = getVectorValue(Stmt, Inst->getOperand(0), VectorMap, 1054 ScalarMaps, getLoopForStmt(Stmt)); 1055 1056 assert(isa<CastInst>(Inst) && "Can not generate vector code for instruction"); 1057 1058 const CastInst *Cast = dyn_cast<CastInst>(Inst); 1059 VectorType *DestType = VectorType::get(Inst->getType(), VectorWidth); 1060 VectorMap[Inst] = Builder.CreateCast(Cast->getOpcode(), NewOperand, DestType); 1061 } 1062 1063 void VectorBlockGenerator::copyBinaryInst(ScopStmt &Stmt, BinaryOperator *Inst, 1064 ValueMapT &VectorMap, 1065 VectorValueMapT &ScalarMaps) { 1066 Loop *L = getLoopForStmt(Stmt); 1067 Value *OpZero = Inst->getOperand(0); 1068 Value *OpOne = Inst->getOperand(1); 1069 1070 Value *NewOpZero, *NewOpOne; 1071 NewOpZero = getVectorValue(Stmt, OpZero, VectorMap, ScalarMaps, L); 1072 NewOpOne = getVectorValue(Stmt, OpOne, VectorMap, ScalarMaps, L); 1073 1074 Value *NewInst = Builder.CreateBinOp(Inst->getOpcode(), NewOpZero, NewOpOne, 1075 Inst->getName() + "p_vec"); 1076 VectorMap[Inst] = NewInst; 1077 } 1078 1079 void VectorBlockGenerator::copyStore( 1080 ScopStmt &Stmt, StoreInst *Store, ValueMapT &VectorMap, 1081 VectorValueMapT &ScalarMaps, __isl_keep isl_id_to_ast_expr *NewAccesses) { 1082 const MemoryAccess &Access = Stmt.getArrayAccessFor(Store); 1083 1084 auto *Pointer = Store->getPointerOperand(); 1085 Value *Vector = getVectorValue(Stmt, Store->getValueOperand(), VectorMap, 1086 ScalarMaps, getLoopForStmt(Stmt)); 1087 1088 // Make sure we have scalar values available to access the pointer to 1089 // the data location. 1090 extractScalarValues(Store, VectorMap, ScalarMaps); 1091 1092 if (Access.isStrideOne(isl::manage(isl_map_copy(Schedule)))) { 1093 Type *VectorPtrType = getVectorPtrTy(Pointer, getVectorWidth()); 1094 Value *NewPointer = generateLocationAccessed(Stmt, Store, ScalarMaps[0], 1095 VLTS[0], NewAccesses); 1096 1097 Value *VectorPtr = 1098 Builder.CreateBitCast(NewPointer, VectorPtrType, "vector_ptr"); 1099 StoreInst *Store = Builder.CreateStore(Vector, VectorPtr); 1100 1101 if (!Aligned) 1102 Store->setAlignment(8); 1103 } else { 1104 for (unsigned i = 0; i < ScalarMaps.size(); i++) { 1105 Value *Scalar = Builder.CreateExtractElement(Vector, Builder.getInt32(i)); 1106 Value *NewPointer = generateLocationAccessed(Stmt, Store, ScalarMaps[i], 1107 VLTS[i], NewAccesses); 1108 Builder.CreateStore(Scalar, NewPointer); 1109 } 1110 } 1111 } 1112 1113 bool VectorBlockGenerator::hasVectorOperands(const Instruction *Inst, 1114 ValueMapT &VectorMap) { 1115 for (Value *Operand : Inst->operands()) 1116 if (VectorMap.count(Operand)) 1117 return true; 1118 return false; 1119 } 1120 1121 bool VectorBlockGenerator::extractScalarValues(const Instruction *Inst, 1122 ValueMapT &VectorMap, 1123 VectorValueMapT &ScalarMaps) { 1124 bool HasVectorOperand = false; 1125 int VectorWidth = getVectorWidth(); 1126 1127 for (Value *Operand : Inst->operands()) { 1128 ValueMapT::iterator VecOp = VectorMap.find(Operand); 1129 1130 if (VecOp == VectorMap.end()) 1131 continue; 1132 1133 HasVectorOperand = true; 1134 Value *NewVector = VecOp->second; 1135 1136 for (int i = 0; i < VectorWidth; ++i) { 1137 ValueMapT &SM = ScalarMaps[i]; 1138 1139 // If there is one scalar extracted, all scalar elements should have 1140 // already been extracted by the code here. So no need to check for the 1141 // existence of all of them. 1142 if (SM.count(Operand)) 1143 break; 1144 1145 SM[Operand] = 1146 Builder.CreateExtractElement(NewVector, Builder.getInt32(i)); 1147 } 1148 } 1149 1150 return HasVectorOperand; 1151 } 1152 1153 void VectorBlockGenerator::copyInstScalarized( 1154 ScopStmt &Stmt, Instruction *Inst, ValueMapT &VectorMap, 1155 VectorValueMapT &ScalarMaps, __isl_keep isl_id_to_ast_expr *NewAccesses) { 1156 bool HasVectorOperand; 1157 int VectorWidth = getVectorWidth(); 1158 1159 HasVectorOperand = extractScalarValues(Inst, VectorMap, ScalarMaps); 1160 1161 for (int VectorLane = 0; VectorLane < getVectorWidth(); VectorLane++) 1162 BlockGenerator::copyInstruction(Stmt, Inst, ScalarMaps[VectorLane], 1163 VLTS[VectorLane], NewAccesses); 1164 1165 if (!VectorType::isValidElementType(Inst->getType()) || !HasVectorOperand) 1166 return; 1167 1168 // Make the result available as vector value. 1169 VectorType *VectorType = VectorType::get(Inst->getType(), VectorWidth); 1170 Value *Vector = UndefValue::get(VectorType); 1171 1172 for (int i = 0; i < VectorWidth; i++) 1173 Vector = Builder.CreateInsertElement(Vector, ScalarMaps[i][Inst], 1174 Builder.getInt32(i)); 1175 1176 VectorMap[Inst] = Vector; 1177 } 1178 1179 int VectorBlockGenerator::getVectorWidth() { return VLTS.size(); } 1180 1181 void VectorBlockGenerator::copyInstruction( 1182 ScopStmt &Stmt, Instruction *Inst, ValueMapT &VectorMap, 1183 VectorValueMapT &ScalarMaps, __isl_keep isl_id_to_ast_expr *NewAccesses) { 1184 // Terminator instructions control the control flow. They are explicitly 1185 // expressed in the clast and do not need to be copied. 1186 if (Inst->isTerminator()) 1187 return; 1188 1189 if (canSyntheziseInStmt(Stmt, Inst)) 1190 return; 1191 1192 if (auto *Load = dyn_cast<LoadInst>(Inst)) { 1193 generateLoad(Stmt, Load, VectorMap, ScalarMaps, NewAccesses); 1194 return; 1195 } 1196 1197 if (hasVectorOperands(Inst, VectorMap)) { 1198 if (auto *Store = dyn_cast<StoreInst>(Inst)) { 1199 // Identified as redundant by -polly-simplify. 1200 if (!Stmt.getArrayAccessOrNULLFor(Store)) 1201 return; 1202 1203 copyStore(Stmt, Store, VectorMap, ScalarMaps, NewAccesses); 1204 return; 1205 } 1206 1207 if (auto *Unary = dyn_cast<UnaryInstruction>(Inst)) { 1208 copyUnaryInst(Stmt, Unary, VectorMap, ScalarMaps); 1209 return; 1210 } 1211 1212 if (auto *Binary = dyn_cast<BinaryOperator>(Inst)) { 1213 copyBinaryInst(Stmt, Binary, VectorMap, ScalarMaps); 1214 return; 1215 } 1216 1217 // Fallthrough: We generate scalar instructions, if we don't know how to 1218 // generate vector code. 1219 } 1220 1221 copyInstScalarized(Stmt, Inst, VectorMap, ScalarMaps, NewAccesses); 1222 } 1223 1224 void VectorBlockGenerator::generateScalarVectorLoads( 1225 ScopStmt &Stmt, ValueMapT &VectorBlockMap) { 1226 for (MemoryAccess *MA : Stmt) { 1227 if (MA->isArrayKind() || MA->isWrite()) 1228 continue; 1229 1230 auto *Address = getOrCreateAlloca(*MA); 1231 Type *VectorPtrType = getVectorPtrTy(Address, 1); 1232 Value *VectorPtr = Builder.CreateBitCast(Address, VectorPtrType, 1233 Address->getName() + "_p_vec_p"); 1234 auto *Val = Builder.CreateLoad(VectorPtr, Address->getName() + ".reload"); 1235 Constant *SplatVector = Constant::getNullValue( 1236 VectorType::get(Builder.getInt32Ty(), getVectorWidth())); 1237 1238 Value *VectorVal = Builder.CreateShuffleVector( 1239 Val, Val, SplatVector, Address->getName() + "_p_splat"); 1240 VectorBlockMap[MA->getAccessValue()] = VectorVal; 1241 } 1242 } 1243 1244 void VectorBlockGenerator::verifyNoScalarStores(ScopStmt &Stmt) { 1245 for (MemoryAccess *MA : Stmt) { 1246 if (MA->isArrayKind() || MA->isRead()) 1247 continue; 1248 1249 llvm_unreachable("Scalar stores not expected in vector loop"); 1250 } 1251 } 1252 1253 void VectorBlockGenerator::copyStmt( 1254 ScopStmt &Stmt, __isl_keep isl_id_to_ast_expr *NewAccesses) { 1255 assert(Stmt.isBlockStmt() && 1256 "TODO: Only block statements can be copied by the vector block " 1257 "generator"); 1258 1259 BasicBlock *BB = Stmt.getBasicBlock(); 1260 BasicBlock *CopyBB = SplitBlock(Builder.GetInsertBlock(), 1261 &*Builder.GetInsertPoint(), &DT, &LI); 1262 CopyBB->setName("polly.stmt." + BB->getName()); 1263 Builder.SetInsertPoint(&CopyBB->front()); 1264 1265 // Create two maps that store the mapping from the original instructions of 1266 // the old basic block to their copies in the new basic block. Those maps 1267 // are basic block local. 1268 // 1269 // As vector code generation is supported there is one map for scalar values 1270 // and one for vector values. 1271 // 1272 // In case we just do scalar code generation, the vectorMap is not used and 1273 // the scalarMap has just one dimension, which contains the mapping. 1274 // 1275 // In case vector code generation is done, an instruction may either appear 1276 // in the vector map once (as it is calculating >vectorwidth< values at a 1277 // time. Or (if the values are calculated using scalar operations), it 1278 // appears once in every dimension of the scalarMap. 1279 VectorValueMapT ScalarBlockMap(getVectorWidth()); 1280 ValueMapT VectorBlockMap; 1281 1282 generateScalarVectorLoads(Stmt, VectorBlockMap); 1283 1284 for (Instruction &Inst : *BB) 1285 copyInstruction(Stmt, &Inst, VectorBlockMap, ScalarBlockMap, NewAccesses); 1286 1287 verifyNoScalarStores(Stmt); 1288 } 1289 1290 BasicBlock *RegionGenerator::repairDominance(BasicBlock *BB, 1291 BasicBlock *BBCopy) { 1292 1293 BasicBlock *BBIDom = DT.getNode(BB)->getIDom()->getBlock(); 1294 BasicBlock *BBCopyIDom = EndBlockMap.lookup(BBIDom); 1295 1296 if (BBCopyIDom) 1297 DT.changeImmediateDominator(BBCopy, BBCopyIDom); 1298 1299 return StartBlockMap.lookup(BBIDom); 1300 } 1301 1302 // This is to determine whether an llvm::Value (defined in @p BB) is usable when 1303 // leaving a subregion. The straight-forward DT.dominates(BB, R->getExitBlock()) 1304 // does not work in cases where the exit block has edges from outside the 1305 // region. In that case the llvm::Value would never be usable in in the exit 1306 // block. The RegionGenerator however creates an new exit block ('ExitBBCopy') 1307 // for the subregion's exiting edges only. We need to determine whether an 1308 // llvm::Value is usable in there. We do this by checking whether it dominates 1309 // all exiting blocks individually. 1310 static bool isDominatingSubregionExit(const DominatorTree &DT, Region *R, 1311 BasicBlock *BB) { 1312 for (auto ExitingBB : predecessors(R->getExit())) { 1313 // Check for non-subregion incoming edges. 1314 if (!R->contains(ExitingBB)) 1315 continue; 1316 1317 if (!DT.dominates(BB, ExitingBB)) 1318 return false; 1319 } 1320 1321 return true; 1322 } 1323 1324 // Find the direct dominator of the subregion's exit block if the subregion was 1325 // simplified. 1326 static BasicBlock *findExitDominator(DominatorTree &DT, Region *R) { 1327 BasicBlock *Common = nullptr; 1328 for (auto ExitingBB : predecessors(R->getExit())) { 1329 // Check for non-subregion incoming edges. 1330 if (!R->contains(ExitingBB)) 1331 continue; 1332 1333 // First exiting edge. 1334 if (!Common) { 1335 Common = ExitingBB; 1336 continue; 1337 } 1338 1339 Common = DT.findNearestCommonDominator(Common, ExitingBB); 1340 } 1341 1342 assert(Common && R->contains(Common)); 1343 return Common; 1344 } 1345 1346 void RegionGenerator::copyStmt(ScopStmt &Stmt, LoopToScevMapT <S, 1347 isl_id_to_ast_expr *IdToAstExp) { 1348 assert(Stmt.isRegionStmt() && 1349 "Only region statements can be copied by the region generator"); 1350 1351 // Forget all old mappings. 1352 StartBlockMap.clear(); 1353 EndBlockMap.clear(); 1354 RegionMaps.clear(); 1355 IncompletePHINodeMap.clear(); 1356 1357 // Collection of all values related to this subregion. 1358 ValueMapT ValueMap; 1359 1360 // The region represented by the statement. 1361 Region *R = Stmt.getRegion(); 1362 1363 // Create a dedicated entry for the region where we can reload all demoted 1364 // inputs. 1365 BasicBlock *EntryBB = R->getEntry(); 1366 BasicBlock *EntryBBCopy = SplitBlock(Builder.GetInsertBlock(), 1367 &*Builder.GetInsertPoint(), &DT, &LI); 1368 EntryBBCopy->setName("polly.stmt." + EntryBB->getName() + ".entry"); 1369 Builder.SetInsertPoint(&EntryBBCopy->front()); 1370 1371 ValueMapT &EntryBBMap = RegionMaps[EntryBBCopy]; 1372 generateScalarLoads(Stmt, LTS, EntryBBMap, IdToAstExp); 1373 1374 for (auto PI = pred_begin(EntryBB), PE = pred_end(EntryBB); PI != PE; ++PI) 1375 if (!R->contains(*PI)) { 1376 StartBlockMap[*PI] = EntryBBCopy; 1377 EndBlockMap[*PI] = EntryBBCopy; 1378 } 1379 1380 // Iterate over all blocks in the region in a breadth-first search. 1381 std::deque<BasicBlock *> Blocks; 1382 SmallSetVector<BasicBlock *, 8> SeenBlocks; 1383 Blocks.push_back(EntryBB); 1384 SeenBlocks.insert(EntryBB); 1385 1386 while (!Blocks.empty()) { 1387 BasicBlock *BB = Blocks.front(); 1388 Blocks.pop_front(); 1389 1390 // First split the block and update dominance information. 1391 BasicBlock *BBCopy = splitBB(BB); 1392 BasicBlock *BBCopyIDom = repairDominance(BB, BBCopy); 1393 1394 // Get the mapping for this block and initialize it with either the scalar 1395 // loads from the generated entering block (which dominates all blocks of 1396 // this subregion) or the maps of the immediate dominator, if part of the 1397 // subregion. The latter necessarily includes the former. 1398 ValueMapT *InitBBMap; 1399 if (BBCopyIDom) { 1400 assert(RegionMaps.count(BBCopyIDom)); 1401 InitBBMap = &RegionMaps[BBCopyIDom]; 1402 } else 1403 InitBBMap = &EntryBBMap; 1404 auto Inserted = RegionMaps.insert(std::make_pair(BBCopy, *InitBBMap)); 1405 ValueMapT &RegionMap = Inserted.first->second; 1406 1407 // Copy the block with the BlockGenerator. 1408 Builder.SetInsertPoint(&BBCopy->front()); 1409 copyBB(Stmt, BB, BBCopy, RegionMap, LTS, IdToAstExp); 1410 1411 // In order to remap PHI nodes we store also basic block mappings. 1412 StartBlockMap[BB] = BBCopy; 1413 EndBlockMap[BB] = Builder.GetInsertBlock(); 1414 1415 // Add values to incomplete PHI nodes waiting for this block to be copied. 1416 for (const PHINodePairTy &PHINodePair : IncompletePHINodeMap[BB]) 1417 addOperandToPHI(Stmt, PHINodePair.first, PHINodePair.second, BB, LTS); 1418 IncompletePHINodeMap[BB].clear(); 1419 1420 // And continue with new successors inside the region. 1421 for (auto SI = succ_begin(BB), SE = succ_end(BB); SI != SE; SI++) 1422 if (R->contains(*SI) && SeenBlocks.insert(*SI)) 1423 Blocks.push_back(*SI); 1424 1425 // Remember value in case it is visible after this subregion. 1426 if (isDominatingSubregionExit(DT, R, BB)) 1427 ValueMap.insert(RegionMap.begin(), RegionMap.end()); 1428 } 1429 1430 // Now create a new dedicated region exit block and add it to the region map. 1431 BasicBlock *ExitBBCopy = SplitBlock(Builder.GetInsertBlock(), 1432 &*Builder.GetInsertPoint(), &DT, &LI); 1433 ExitBBCopy->setName("polly.stmt." + R->getExit()->getName() + ".exit"); 1434 StartBlockMap[R->getExit()] = ExitBBCopy; 1435 EndBlockMap[R->getExit()] = ExitBBCopy; 1436 1437 BasicBlock *ExitDomBBCopy = EndBlockMap.lookup(findExitDominator(DT, R)); 1438 assert(ExitDomBBCopy && 1439 "Common exit dominator must be within region; at least the entry node " 1440 "must match"); 1441 DT.changeImmediateDominator(ExitBBCopy, ExitDomBBCopy); 1442 1443 // As the block generator doesn't handle control flow we need to add the 1444 // region control flow by hand after all blocks have been copied. 1445 for (BasicBlock *BB : SeenBlocks) { 1446 1447 BasicBlock *BBCopyStart = StartBlockMap[BB]; 1448 BasicBlock *BBCopyEnd = EndBlockMap[BB]; 1449 TerminatorInst *TI = BB->getTerminator(); 1450 if (isa<UnreachableInst>(TI)) { 1451 while (!BBCopyEnd->empty()) 1452 BBCopyEnd->begin()->eraseFromParent(); 1453 new UnreachableInst(BBCopyEnd->getContext(), BBCopyEnd); 1454 continue; 1455 } 1456 1457 Instruction *BICopy = BBCopyEnd->getTerminator(); 1458 1459 ValueMapT &RegionMap = RegionMaps[BBCopyStart]; 1460 RegionMap.insert(StartBlockMap.begin(), StartBlockMap.end()); 1461 1462 Builder.SetInsertPoint(BICopy); 1463 copyInstScalar(Stmt, TI, RegionMap, LTS); 1464 BICopy->eraseFromParent(); 1465 } 1466 1467 // Add counting PHI nodes to all loops in the region that can be used as 1468 // replacement for SCEVs referring to the old loop. 1469 for (BasicBlock *BB : SeenBlocks) { 1470 Loop *L = LI.getLoopFor(BB); 1471 if (L == nullptr || L->getHeader() != BB || !R->contains(L)) 1472 continue; 1473 1474 BasicBlock *BBCopy = StartBlockMap[BB]; 1475 Value *NullVal = Builder.getInt32(0); 1476 PHINode *LoopPHI = 1477 PHINode::Create(Builder.getInt32Ty(), 2, "polly.subregion.iv"); 1478 Instruction *LoopPHIInc = BinaryOperator::CreateAdd( 1479 LoopPHI, Builder.getInt32(1), "polly.subregion.iv.inc"); 1480 LoopPHI->insertBefore(&BBCopy->front()); 1481 LoopPHIInc->insertBefore(BBCopy->getTerminator()); 1482 1483 for (auto *PredBB : make_range(pred_begin(BB), pred_end(BB))) { 1484 if (!R->contains(PredBB)) 1485 continue; 1486 if (L->contains(PredBB)) 1487 LoopPHI->addIncoming(LoopPHIInc, EndBlockMap[PredBB]); 1488 else 1489 LoopPHI->addIncoming(NullVal, EndBlockMap[PredBB]); 1490 } 1491 1492 for (auto *PredBBCopy : make_range(pred_begin(BBCopy), pred_end(BBCopy))) 1493 if (LoopPHI->getBasicBlockIndex(PredBBCopy) < 0) 1494 LoopPHI->addIncoming(NullVal, PredBBCopy); 1495 1496 LTS[L] = SE.getUnknown(LoopPHI); 1497 } 1498 1499 // Continue generating code in the exit block. 1500 Builder.SetInsertPoint(&*ExitBBCopy->getFirstInsertionPt()); 1501 1502 // Write values visible to other statements. 1503 generateScalarStores(Stmt, LTS, ValueMap, IdToAstExp); 1504 StartBlockMap.clear(); 1505 EndBlockMap.clear(); 1506 RegionMaps.clear(); 1507 IncompletePHINodeMap.clear(); 1508 } 1509 1510 PHINode *RegionGenerator::buildExitPHI(MemoryAccess *MA, LoopToScevMapT <S, 1511 ValueMapT &BBMap, Loop *L) { 1512 ScopStmt *Stmt = MA->getStatement(); 1513 Region *SubR = Stmt->getRegion(); 1514 auto Incoming = MA->getIncoming(); 1515 1516 PollyIRBuilder::InsertPointGuard IPGuard(Builder); 1517 PHINode *OrigPHI = cast<PHINode>(MA->getAccessInstruction()); 1518 BasicBlock *NewSubregionExit = Builder.GetInsertBlock(); 1519 1520 // This can happen if the subregion is simplified after the ScopStmts 1521 // have been created; simplification happens as part of CodeGeneration. 1522 if (OrigPHI->getParent() != SubR->getExit()) { 1523 BasicBlock *FormerExit = SubR->getExitingBlock(); 1524 if (FormerExit) 1525 NewSubregionExit = StartBlockMap.lookup(FormerExit); 1526 } 1527 1528 PHINode *NewPHI = PHINode::Create(OrigPHI->getType(), Incoming.size(), 1529 "polly." + OrigPHI->getName(), 1530 NewSubregionExit->getFirstNonPHI()); 1531 1532 // Add the incoming values to the PHI. 1533 for (auto &Pair : Incoming) { 1534 BasicBlock *OrigIncomingBlock = Pair.first; 1535 BasicBlock *NewIncomingBlockStart = StartBlockMap.lookup(OrigIncomingBlock); 1536 BasicBlock *NewIncomingBlockEnd = EndBlockMap.lookup(OrigIncomingBlock); 1537 Builder.SetInsertPoint(NewIncomingBlockEnd->getTerminator()); 1538 assert(RegionMaps.count(NewIncomingBlockStart)); 1539 assert(RegionMaps.count(NewIncomingBlockEnd)); 1540 ValueMapT *LocalBBMap = &RegionMaps[NewIncomingBlockStart]; 1541 1542 Value *OrigIncomingValue = Pair.second; 1543 Value *NewIncomingValue = 1544 getNewValue(*Stmt, OrigIncomingValue, *LocalBBMap, LTS, L); 1545 NewPHI->addIncoming(NewIncomingValue, NewIncomingBlockEnd); 1546 } 1547 1548 return NewPHI; 1549 } 1550 1551 Value *RegionGenerator::getExitScalar(MemoryAccess *MA, LoopToScevMapT <S, 1552 ValueMapT &BBMap) { 1553 ScopStmt *Stmt = MA->getStatement(); 1554 1555 // TODO: Add some test cases that ensure this is really the right choice. 1556 Loop *L = LI.getLoopFor(Stmt->getRegion()->getExit()); 1557 1558 if (MA->isAnyPHIKind()) { 1559 auto Incoming = MA->getIncoming(); 1560 assert(!Incoming.empty() && 1561 "PHI WRITEs must have originate from at least one incoming block"); 1562 1563 // If there is only one incoming value, we do not need to create a PHI. 1564 if (Incoming.size() == 1) { 1565 Value *OldVal = Incoming[0].second; 1566 return getNewValue(*Stmt, OldVal, BBMap, LTS, L); 1567 } 1568 1569 return buildExitPHI(MA, LTS, BBMap, L); 1570 } 1571 1572 // MemoryKind::Value accesses leaving the subregion must dominate the exit 1573 // block; just pass the copied value. 1574 Value *OldVal = MA->getAccessValue(); 1575 return getNewValue(*Stmt, OldVal, BBMap, LTS, L); 1576 } 1577 1578 void RegionGenerator::generateScalarStores( 1579 ScopStmt &Stmt, LoopToScevMapT <S, ValueMapT &BBMap, 1580 __isl_keep isl_id_to_ast_expr *NewAccesses) { 1581 assert(Stmt.getRegion() && 1582 "Block statements need to use the generateScalarStores() " 1583 "function in the BlockGenerator"); 1584 1585 for (MemoryAccess *MA : Stmt) { 1586 if (MA->isOriginalArrayKind() || MA->isRead()) 1587 continue; 1588 1589 isl::set AccDom = MA->getAccessRelation().domain(); 1590 std::string Subject = MA->getId().get_name(); 1591 generateConditionalExecution( 1592 Stmt, AccDom, Subject.c_str(), [&, this, MA]() { 1593 1594 Value *NewVal = getExitScalar(MA, LTS, BBMap); 1595 Value *Address = getImplicitAddress(*MA, getLoopForStmt(Stmt), LTS, 1596 BBMap, NewAccesses); 1597 assert((!isa<Instruction>(NewVal) || 1598 DT.dominates(cast<Instruction>(NewVal)->getParent(), 1599 Builder.GetInsertBlock())) && 1600 "Domination violation"); 1601 assert((!isa<Instruction>(Address) || 1602 DT.dominates(cast<Instruction>(Address)->getParent(), 1603 Builder.GetInsertBlock())) && 1604 "Domination violation"); 1605 Builder.CreateStore(NewVal, Address); 1606 }); 1607 } 1608 } 1609 1610 void RegionGenerator::addOperandToPHI(ScopStmt &Stmt, PHINode *PHI, 1611 PHINode *PHICopy, BasicBlock *IncomingBB, 1612 LoopToScevMapT <S) { 1613 // If the incoming block was not yet copied mark this PHI as incomplete. 1614 // Once the block will be copied the incoming value will be added. 1615 BasicBlock *BBCopyStart = StartBlockMap[IncomingBB]; 1616 BasicBlock *BBCopyEnd = EndBlockMap[IncomingBB]; 1617 if (!BBCopyStart) { 1618 assert(!BBCopyEnd); 1619 assert(Stmt.represents(IncomingBB) && 1620 "Bad incoming block for PHI in non-affine region"); 1621 IncompletePHINodeMap[IncomingBB].push_back(std::make_pair(PHI, PHICopy)); 1622 return; 1623 } 1624 1625 assert(RegionMaps.count(BBCopyStart) && 1626 "Incoming PHI block did not have a BBMap"); 1627 ValueMapT &BBCopyMap = RegionMaps[BBCopyStart]; 1628 1629 Value *OpCopy = nullptr; 1630 1631 if (Stmt.represents(IncomingBB)) { 1632 Value *Op = PHI->getIncomingValueForBlock(IncomingBB); 1633 1634 // If the current insert block is different from the PHIs incoming block 1635 // change it, otherwise do not. 1636 auto IP = Builder.GetInsertPoint(); 1637 if (IP->getParent() != BBCopyEnd) 1638 Builder.SetInsertPoint(BBCopyEnd->getTerminator()); 1639 OpCopy = getNewValue(Stmt, Op, BBCopyMap, LTS, getLoopForStmt(Stmt)); 1640 if (IP->getParent() != BBCopyEnd) 1641 Builder.SetInsertPoint(&*IP); 1642 } else { 1643 // All edges from outside the non-affine region become a single edge 1644 // in the new copy of the non-affine region. Make sure to only add the 1645 // corresponding edge the first time we encounter a basic block from 1646 // outside the non-affine region. 1647 if (PHICopy->getBasicBlockIndex(BBCopyEnd) >= 0) 1648 return; 1649 1650 // Get the reloaded value. 1651 OpCopy = getNewValue(Stmt, PHI, BBCopyMap, LTS, getLoopForStmt(Stmt)); 1652 } 1653 1654 assert(OpCopy && "Incoming PHI value was not copied properly"); 1655 PHICopy->addIncoming(OpCopy, BBCopyEnd); 1656 } 1657 1658 void RegionGenerator::copyPHIInstruction(ScopStmt &Stmt, PHINode *PHI, 1659 ValueMapT &BBMap, 1660 LoopToScevMapT <S) { 1661 unsigned NumIncoming = PHI->getNumIncomingValues(); 1662 PHINode *PHICopy = 1663 Builder.CreatePHI(PHI->getType(), NumIncoming, "polly." + PHI->getName()); 1664 PHICopy->moveBefore(PHICopy->getParent()->getFirstNonPHI()); 1665 BBMap[PHI] = PHICopy; 1666 1667 for (BasicBlock *IncomingBB : PHI->blocks()) 1668 addOperandToPHI(Stmt, PHI, PHICopy, IncomingBB, LTS); 1669 } 1670