1 //===- DependenceInfo.cpp - Calculate dependency information for a Scop. --===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Calculate the data dependency relations for a Scop using ISL.
10 //
11 // The integer set library (ISL) from Sven, has a integrated dependency analysis
12 // to calculate data dependences. This pass takes advantage of this and
13 // calculate those dependences a Scop.
14 //
15 // The dependences in this pass are exact in terms that for a specific read
16 // statement instance only the last write statement instance is returned. In
17 // case of may writes a set of possible write instances is returned. This
18 // analysis will never produce redundant dependences.
19 //
20 //===----------------------------------------------------------------------===//
21 //
22 #include "polly/DependenceInfo.h"
23 #include "polly/LinkAllPasses.h"
24 #include "polly/Options.h"
25 #include "polly/ScopInfo.h"
26 #include "polly/Support/GICHelper.h"
27 #include "polly/Support/ISLTools.h"
28 #include "llvm/ADT/Sequence.h"
29 #include "llvm/Support/Debug.h"
30 #include "isl/aff.h"
31 #include "isl/ctx.h"
32 #include "isl/flow.h"
33 #include "isl/map.h"
34 #include "isl/schedule.h"
35 #include "isl/set.h"
36 #include "isl/union_map.h"
37 #include "isl/union_set.h"
38 
39 using namespace polly;
40 using namespace llvm;
41 
42 #define DEBUG_TYPE "polly-dependence"
43 
44 static cl::opt<int> OptComputeOut(
45     "polly-dependences-computeout",
46     cl::desc("Bound the dependence analysis by a maximal amount of "
47              "computational steps (0 means no bound)"),
48     cl::Hidden, cl::init(500000), cl::ZeroOrMore, cl::cat(PollyCategory));
49 
50 static cl::opt<bool> LegalityCheckDisabled(
51     "disable-polly-legality", cl::desc("Disable polly legality check"),
52     cl::Hidden, cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory));
53 
54 static cl::opt<bool>
55     UseReductions("polly-dependences-use-reductions",
56                   cl::desc("Exploit reductions in dependence analysis"),
57                   cl::Hidden, cl::init(true), cl::ZeroOrMore,
58                   cl::cat(PollyCategory));
59 
60 enum AnalysisType { VALUE_BASED_ANALYSIS, MEMORY_BASED_ANALYSIS };
61 
62 static cl::opt<enum AnalysisType> OptAnalysisType(
63     "polly-dependences-analysis-type",
64     cl::desc("The kind of dependence analysis to use"),
65     cl::values(clEnumValN(VALUE_BASED_ANALYSIS, "value-based",
66                           "Exact dependences without transitive dependences"),
67                clEnumValN(MEMORY_BASED_ANALYSIS, "memory-based",
68                           "Overapproximation of dependences")),
69     cl::Hidden, cl::init(VALUE_BASED_ANALYSIS), cl::ZeroOrMore,
70     cl::cat(PollyCategory));
71 
72 static cl::opt<Dependences::AnalysisLevel> OptAnalysisLevel(
73     "polly-dependences-analysis-level",
74     cl::desc("The level of dependence analysis"),
75     cl::values(clEnumValN(Dependences::AL_Statement, "statement-wise",
76                           "Statement-level analysis"),
77                clEnumValN(Dependences::AL_Reference, "reference-wise",
78                           "Memory reference level analysis that distinguish"
79                           " accessed references in the same statement"),
80                clEnumValN(Dependences::AL_Access, "access-wise",
81                           "Memory reference level analysis that distinguish"
82                           " access instructions in the same statement")),
83     cl::Hidden, cl::init(Dependences::AL_Statement), cl::ZeroOrMore,
84     cl::cat(PollyCategory));
85 
86 //===----------------------------------------------------------------------===//
87 
88 /// Tag the @p Relation domain with @p TagId
89 static __isl_give isl_map *tag(__isl_take isl_map *Relation,
90                                __isl_take isl_id *TagId) {
91   isl_space *Space = isl_map_get_space(Relation);
92   Space = isl_space_drop_dims(Space, isl_dim_out, 0,
93                               isl_map_dim(Relation, isl_dim_out));
94   Space = isl_space_set_tuple_id(Space, isl_dim_out, TagId);
95   isl_multi_aff *Tag = isl_multi_aff_domain_map(Space);
96   Relation = isl_map_preimage_domain_multi_aff(Relation, Tag);
97   return Relation;
98 }
99 
100 /// Tag the @p Relation domain with either MA->getArrayId() or
101 ///        MA->getId() based on @p TagLevel
102 static __isl_give isl_map *tag(__isl_take isl_map *Relation, MemoryAccess *MA,
103                                Dependences::AnalysisLevel TagLevel) {
104   if (TagLevel == Dependences::AL_Reference)
105     return tag(Relation, MA->getArrayId().release());
106 
107   if (TagLevel == Dependences::AL_Access)
108     return tag(Relation, MA->getId().release());
109 
110   // No need to tag at the statement level.
111   return Relation;
112 }
113 
114 /// Collect information about the SCoP @p S.
115 static void collectInfo(Scop &S, isl_union_map *&Read,
116                         isl_union_map *&MustWrite, isl_union_map *&MayWrite,
117                         isl_union_map *&ReductionTagMap,
118                         isl_union_set *&TaggedStmtDomain,
119                         Dependences::AnalysisLevel Level) {
120   isl_space *Space = S.getParamSpace().release();
121   Read = isl_union_map_empty(isl_space_copy(Space));
122   MustWrite = isl_union_map_empty(isl_space_copy(Space));
123   MayWrite = isl_union_map_empty(isl_space_copy(Space));
124   ReductionTagMap = isl_union_map_empty(isl_space_copy(Space));
125   isl_union_map *StmtSchedule = isl_union_map_empty(Space);
126 
127   SmallPtrSet<const ScopArrayInfo *, 8> ReductionArrays;
128   if (UseReductions)
129     for (ScopStmt &Stmt : S)
130       for (MemoryAccess *MA : Stmt)
131         if (MA->isReductionLike())
132           ReductionArrays.insert(MA->getScopArrayInfo());
133 
134   for (ScopStmt &Stmt : S) {
135     for (MemoryAccess *MA : Stmt) {
136       isl_set *domcp = Stmt.getDomain().release();
137       isl_map *accdom = MA->getAccessRelation().release();
138 
139       accdom = isl_map_intersect_domain(accdom, domcp);
140 
141       if (ReductionArrays.count(MA->getScopArrayInfo())) {
142         // Wrap the access domain and adjust the schedule accordingly.
143         //
144         // An access domain like
145         //   Stmt[i0, i1] -> MemAcc_A[i0 + i1]
146         // will be transformed into
147         //   [Stmt[i0, i1] -> MemAcc_A[i0 + i1]] -> MemAcc_A[i0 + i1]
148         //
149         // We collect all the access domains in the ReductionTagMap.
150         // This is used in Dependences::calculateDependences to create
151         // a tagged Schedule tree.
152 
153         ReductionTagMap =
154             isl_union_map_add_map(ReductionTagMap, isl_map_copy(accdom));
155         accdom = isl_map_range_map(accdom);
156       } else {
157         accdom = tag(accdom, MA, Level);
158         if (Level > Dependences::AL_Statement) {
159           isl_map *StmtScheduleMap = Stmt.getSchedule().release();
160           assert(StmtScheduleMap &&
161                  "Schedules that contain extension nodes require special "
162                  "handling.");
163           isl_map *Schedule = tag(StmtScheduleMap, MA, Level);
164           StmtSchedule = isl_union_map_add_map(StmtSchedule, Schedule);
165         }
166       }
167 
168       if (MA->isRead())
169         Read = isl_union_map_add_map(Read, accdom);
170       else if (MA->isMayWrite())
171         MayWrite = isl_union_map_add_map(MayWrite, accdom);
172       else
173         MustWrite = isl_union_map_add_map(MustWrite, accdom);
174     }
175 
176     if (!ReductionArrays.empty() && Level == Dependences::AL_Statement)
177       StmtSchedule =
178           isl_union_map_add_map(StmtSchedule, Stmt.getSchedule().release());
179   }
180 
181   StmtSchedule = isl_union_map_intersect_params(
182       StmtSchedule, S.getAssumedContext().release());
183   TaggedStmtDomain = isl_union_map_domain(StmtSchedule);
184 
185   ReductionTagMap = isl_union_map_coalesce(ReductionTagMap);
186   Read = isl_union_map_coalesce(Read);
187   MustWrite = isl_union_map_coalesce(MustWrite);
188   MayWrite = isl_union_map_coalesce(MayWrite);
189 }
190 
191 /// Fix all dimension of @p Zero to 0 and add it to @p user
192 static void fixSetToZero(isl::set Zero, isl::union_set *User) {
193   for (auto i : rangeIslSize(0, Zero.tuple_dim()))
194     Zero = Zero.fix_si(isl::dim::set, i, 0);
195   *User = User->unite(Zero);
196 }
197 
198 /// Compute the privatization dependences for a given dependency @p Map
199 ///
200 /// Privatization dependences are widened original dependences which originate
201 /// or end in a reduction access. To compute them we apply the transitive close
202 /// of the reduction dependences (which maps each iteration of a reduction
203 /// statement to all following ones) on the RAW/WAR/WAW dependences. The
204 /// dependences which start or end at a reduction statement will be extended to
205 /// depend on all following reduction statement iterations as well.
206 /// Note: "Following" here means according to the reduction dependences.
207 ///
208 /// For the input:
209 ///
210 ///  S0:   *sum = 0;
211 ///        for (int i = 0; i < 1024; i++)
212 ///  S1:     *sum += i;
213 ///  S2:   *sum = *sum * 3;
214 ///
215 /// we have the following dependences before we add privatization dependences:
216 ///
217 ///   RAW:
218 ///     { S0[] -> S1[0]; S1[1023] -> S2[] }
219 ///   WAR:
220 ///     {  }
221 ///   WAW:
222 ///     { S0[] -> S1[0]; S1[1024] -> S2[] }
223 ///   RED:
224 ///     { S1[i0] -> S1[1 + i0] : i0 >= 0 and i0 <= 1022 }
225 ///
226 /// and afterwards:
227 ///
228 ///   RAW:
229 ///     { S0[] -> S1[i0] : i0 >= 0 and i0 <= 1023;
230 ///       S1[i0] -> S2[] : i0 >= 0 and i0 <= 1023}
231 ///   WAR:
232 ///     {  }
233 ///   WAW:
234 ///     { S0[] -> S1[i0] : i0 >= 0 and i0 <= 1023;
235 ///       S1[i0] -> S2[] : i0 >= 0 and i0 <= 1023}
236 ///   RED:
237 ///     { S1[i0] -> S1[1 + i0] : i0 >= 0 and i0 <= 1022 }
238 ///
239 /// Note: This function also computes the (reverse) transitive closure of the
240 ///       reduction dependences.
241 void Dependences::addPrivatizationDependences() {
242   isl_union_map *PrivRAW, *PrivWAW, *PrivWAR;
243 
244   // The transitive closure might be over approximated, thus could lead to
245   // dependency cycles in the privatization dependences. To make sure this
246   // will not happen we remove all negative dependences after we computed
247   // the transitive closure.
248   TC_RED = isl_union_map_transitive_closure(isl_union_map_copy(RED), nullptr);
249 
250   // FIXME: Apply the current schedule instead of assuming the identity schedule
251   //        here. The current approach is only valid as long as we compute the
252   //        dependences only with the initial (identity schedule). Any other
253   //        schedule could change "the direction of the backward dependences" we
254   //        want to eliminate here.
255   isl_union_set *UDeltas = isl_union_map_deltas(isl_union_map_copy(TC_RED));
256   isl_union_set *Universe = isl_union_set_universe(isl_union_set_copy(UDeltas));
257   isl::union_set Zero =
258       isl::manage(isl_union_set_empty(isl_union_set_get_space(Universe)));
259 
260   for (isl::set Set : isl::manage_copy(Universe).get_set_list())
261     fixSetToZero(Set, &Zero);
262 
263   isl_union_map *NonPositive =
264       isl_union_set_lex_le_union_set(UDeltas, Zero.release());
265 
266   TC_RED = isl_union_map_subtract(TC_RED, NonPositive);
267 
268   TC_RED = isl_union_map_union(
269       TC_RED, isl_union_map_reverse(isl_union_map_copy(TC_RED)));
270   TC_RED = isl_union_map_coalesce(TC_RED);
271 
272   isl_union_map **Maps[] = {&RAW, &WAW, &WAR};
273   isl_union_map **PrivMaps[] = {&PrivRAW, &PrivWAW, &PrivWAR};
274   for (unsigned u = 0; u < 3; u++) {
275     isl_union_map **Map = Maps[u], **PrivMap = PrivMaps[u];
276 
277     *PrivMap = isl_union_map_apply_range(isl_union_map_copy(*Map),
278                                          isl_union_map_copy(TC_RED));
279     *PrivMap = isl_union_map_union(
280         *PrivMap, isl_union_map_apply_range(isl_union_map_copy(TC_RED),
281                                             isl_union_map_copy(*Map)));
282 
283     *Map = isl_union_map_union(*Map, *PrivMap);
284   }
285 
286   isl_union_set_free(Universe);
287 }
288 
289 static __isl_give isl_union_flow *buildFlow(__isl_keep isl_union_map *Snk,
290                                             __isl_keep isl_union_map *Src,
291                                             __isl_keep isl_union_map *MaySrc,
292                                             __isl_keep isl_union_map *Kill,
293                                             __isl_keep isl_schedule *Schedule) {
294   isl_union_access_info *AI;
295 
296   AI = isl_union_access_info_from_sink(isl_union_map_copy(Snk));
297   if (MaySrc)
298     AI = isl_union_access_info_set_may_source(AI, isl_union_map_copy(MaySrc));
299   if (Src)
300     AI = isl_union_access_info_set_must_source(AI, isl_union_map_copy(Src));
301   if (Kill)
302     AI = isl_union_access_info_set_kill(AI, isl_union_map_copy(Kill));
303   AI = isl_union_access_info_set_schedule(AI, isl_schedule_copy(Schedule));
304   auto Flow = isl_union_access_info_compute_flow(AI);
305   LLVM_DEBUG(if (!Flow) dbgs()
306                  << "last error: "
307                  << isl_ctx_last_error(isl_schedule_get_ctx(Schedule))
308                  << '\n';);
309   return Flow;
310 }
311 
312 void Dependences::calculateDependences(Scop &S) {
313   isl_union_map *Read, *MustWrite, *MayWrite, *ReductionTagMap;
314   isl_schedule *Schedule;
315   isl_union_set *TaggedStmtDomain;
316 
317   LLVM_DEBUG(dbgs() << "Scop: \n" << S << "\n");
318 
319   collectInfo(S, Read, MustWrite, MayWrite, ReductionTagMap, TaggedStmtDomain,
320               Level);
321 
322   bool HasReductions = !isl_union_map_is_empty(ReductionTagMap);
323 
324   LLVM_DEBUG(dbgs() << "Read: " << Read << '\n';
325              dbgs() << "MustWrite: " << MustWrite << '\n';
326              dbgs() << "MayWrite: " << MayWrite << '\n';
327              dbgs() << "ReductionTagMap: " << ReductionTagMap << '\n';
328              dbgs() << "TaggedStmtDomain: " << TaggedStmtDomain << '\n';);
329 
330   Schedule = S.getScheduleTree().release();
331 
332   if (!HasReductions) {
333     isl_union_map_free(ReductionTagMap);
334     // Tag the schedule tree if we want fine-grain dependence info
335     if (Level > AL_Statement) {
336       auto TaggedMap =
337           isl_union_set_unwrap(isl_union_set_copy(TaggedStmtDomain));
338       auto Tags = isl_union_map_domain_map_union_pw_multi_aff(TaggedMap);
339       Schedule = isl_schedule_pullback_union_pw_multi_aff(Schedule, Tags);
340     }
341   } else {
342     isl_union_map *IdentityMap;
343     isl_union_pw_multi_aff *ReductionTags, *IdentityTags, *Tags;
344 
345     // Extract Reduction tags from the combined access domains in the given
346     // SCoP. The result is a map that maps each tagged element in the domain to
347     // the memory location it accesses. ReductionTags = {[Stmt[i] ->
348     // Array[f(i)]] -> Stmt[i] }
349     ReductionTags =
350         isl_union_map_domain_map_union_pw_multi_aff(ReductionTagMap);
351 
352     // Compute an identity map from each statement in domain to itself.
353     // IdentityTags = { [Stmt[i] -> Stmt[i] }
354     IdentityMap = isl_union_set_identity(isl_union_set_copy(TaggedStmtDomain));
355     IdentityTags = isl_union_pw_multi_aff_from_union_map(IdentityMap);
356 
357     Tags = isl_union_pw_multi_aff_union_add(ReductionTags, IdentityTags);
358 
359     // By pulling back Tags from Schedule, we have a schedule tree that can
360     // be used to compute normal dependences, as well as 'tagged' reduction
361     // dependences.
362     Schedule = isl_schedule_pullback_union_pw_multi_aff(Schedule, Tags);
363   }
364 
365   LLVM_DEBUG(dbgs() << "Read: " << Read << "\n";
366              dbgs() << "MustWrite: " << MustWrite << "\n";
367              dbgs() << "MayWrite: " << MayWrite << "\n";
368              dbgs() << "Schedule: " << Schedule << "\n");
369 
370   isl_union_map *StrictWAW = nullptr;
371   {
372     IslMaxOperationsGuard MaxOpGuard(IslCtx.get(), OptComputeOut);
373 
374     RAW = WAW = WAR = RED = nullptr;
375     isl_union_map *Write = isl_union_map_union(isl_union_map_copy(MustWrite),
376                                                isl_union_map_copy(MayWrite));
377 
378     // We are interested in detecting reductions that do not have intermediate
379     // computations that are captured by other statements.
380     //
381     // Example:
382     // void f(int *A, int *B) {
383     //     for(int i = 0; i <= 100; i++) {
384     //
385     //            *-WAR (S0[i] -> S0[i + 1] 0 <= i <= 100)------------*
386     //            |                                                   |
387     //            *-WAW (S0[i] -> S0[i + 1] 0 <= i <= 100)------------*
388     //            |                                                   |
389     //            v                                                   |
390     //     S0:    *A += i; >------------------*-----------------------*
391     //                                        |
392     //         if (i >= 98) {          WAR (S0[i] -> S1[i]) 98 <= i <= 100
393     //                                        |
394     //     S1:        *B = *A; <--------------*
395     //         }
396     //     }
397     // }
398     //
399     // S0[0 <= i <= 100] has a reduction. However, the values in
400     // S0[98 <= i <= 100] is captured in S1[98 <= i <= 100].
401     // Since we allow free reordering on our reduction dependences, we need to
402     // remove all instances of a reduction statement that have data dependences
403     // originating from them.
404     // In the case of the example, we need to remove S0[98 <= i <= 100] from
405     // our reduction dependences.
406     //
407     // When we build up the WAW dependences that are used to detect reductions,
408     // we consider only **Writes that have no intermediate Reads**.
409     //
410     // `isl_union_flow_get_must_dependence` gives us dependences of the form:
411     // (sink <- must_source).
412     //
413     // It *will not give* dependences of the form:
414     // 1. (sink <- ... <- may_source <- ... <- must_source)
415     // 2. (sink <- ... <- must_source <- ... <- must_source)
416     //
417     // For a detailed reference on ISL's flow analysis, see:
418     // "Presburger Formulas and Polyhedral Compilation" - Approximate Dataflow
419     //  Analysis.
420     //
421     // Since we set "Write" as a must-source, "Read" as a may-source, and ask
422     // for must dependences, we get all Writes to Writes that **do not flow
423     // through a Read**.
424     //
425     // ScopInfo::checkForReductions makes sure that if something captures
426     // the reduction variable in the same basic block, then it is rejected
427     // before it is even handed here. This makes sure that there is exactly
428     // one read and one write to a reduction variable in a Statement.
429     // Example:
430     //     void f(int *sum, int A[N], int B[N]) {
431     //       for (int i = 0; i < N; i++) {
432     //         *sum += A[i]; < the store and the load is not tagged as a
433     //         B[i] = *sum;  < reduction-like access due to the overlap.
434     //       }
435     //     }
436 
437     isl_union_flow *Flow = buildFlow(Write, Write, Read, nullptr, Schedule);
438     StrictWAW = isl_union_flow_get_must_dependence(Flow);
439     isl_union_flow_free(Flow);
440 
441     if (OptAnalysisType == VALUE_BASED_ANALYSIS) {
442       Flow = buildFlow(Read, MustWrite, MayWrite, nullptr, Schedule);
443       RAW = isl_union_flow_get_may_dependence(Flow);
444       isl_union_flow_free(Flow);
445 
446       Flow = buildFlow(Write, MustWrite, MayWrite, nullptr, Schedule);
447       WAW = isl_union_flow_get_may_dependence(Flow);
448       isl_union_flow_free(Flow);
449 
450       // ISL now supports "kills" in approximate dataflow analysis, we can
451       // specify the MustWrite as kills, Read as source and Write as sink.
452       Flow = buildFlow(Write, nullptr, Read, MustWrite, Schedule);
453       WAR = isl_union_flow_get_may_dependence(Flow);
454       isl_union_flow_free(Flow);
455     } else {
456       Flow = buildFlow(Read, nullptr, Write, nullptr, Schedule);
457       RAW = isl_union_flow_get_may_dependence(Flow);
458       isl_union_flow_free(Flow);
459 
460       Flow = buildFlow(Write, nullptr, Read, nullptr, Schedule);
461       WAR = isl_union_flow_get_may_dependence(Flow);
462       isl_union_flow_free(Flow);
463 
464       Flow = buildFlow(Write, nullptr, Write, nullptr, Schedule);
465       WAW = isl_union_flow_get_may_dependence(Flow);
466       isl_union_flow_free(Flow);
467     }
468 
469     isl_union_map_free(Write);
470     isl_union_map_free(MustWrite);
471     isl_union_map_free(MayWrite);
472     isl_union_map_free(Read);
473     isl_schedule_free(Schedule);
474 
475     RAW = isl_union_map_coalesce(RAW);
476     WAW = isl_union_map_coalesce(WAW);
477     WAR = isl_union_map_coalesce(WAR);
478 
479     // End of max_operations scope.
480   }
481 
482   if (isl_ctx_last_error(IslCtx.get()) == isl_error_quota) {
483     isl_union_map_free(RAW);
484     isl_union_map_free(WAW);
485     isl_union_map_free(WAR);
486     isl_union_map_free(StrictWAW);
487     RAW = WAW = WAR = StrictWAW = nullptr;
488     isl_ctx_reset_error(IslCtx.get());
489   }
490 
491   // Drop out early, as the remaining computations are only needed for
492   // reduction dependences or dependences that are finer than statement
493   // level dependences.
494   if (!HasReductions && Level == AL_Statement) {
495     RED = isl_union_map_empty(isl_union_map_get_space(RAW));
496     TC_RED = isl_union_map_empty(isl_union_set_get_space(TaggedStmtDomain));
497     isl_union_set_free(TaggedStmtDomain);
498     isl_union_map_free(StrictWAW);
499     return;
500   }
501 
502   isl_union_map *STMT_RAW, *STMT_WAW, *STMT_WAR;
503   STMT_RAW = isl_union_map_intersect_domain(
504       isl_union_map_copy(RAW), isl_union_set_copy(TaggedStmtDomain));
505   STMT_WAW = isl_union_map_intersect_domain(
506       isl_union_map_copy(WAW), isl_union_set_copy(TaggedStmtDomain));
507   STMT_WAR =
508       isl_union_map_intersect_domain(isl_union_map_copy(WAR), TaggedStmtDomain);
509   LLVM_DEBUG({
510     dbgs() << "Wrapped Dependences:\n";
511     dump();
512     dbgs() << "\n";
513   });
514 
515   // To handle reduction dependences we proceed as follows:
516   // 1) Aggregate all possible reduction dependences, namely all self
517   //    dependences on reduction like statements.
518   // 2) Intersect them with the actual RAW & WAW dependences to the get the
519   //    actual reduction dependences. This will ensure the load/store memory
520   //    addresses were __identical__ in the two iterations of the statement.
521   // 3) Relax the original RAW, WAW and WAR dependences by subtracting the
522   //    actual reduction dependences. Binary reductions (sum += A[i]) cause
523   //    the same, RAW, WAW and WAR dependences.
524   // 4) Add the privatization dependences which are widened versions of
525   //    already present dependences. They model the effect of manual
526   //    privatization at the outermost possible place (namely after the last
527   //    write and before the first access to a reduction location).
528 
529   // Step 1)
530   RED = isl_union_map_empty(isl_union_map_get_space(RAW));
531   for (ScopStmt &Stmt : S) {
532     for (MemoryAccess *MA : Stmt) {
533       if (!MA->isReductionLike())
534         continue;
535       isl_set *AccDomW = isl_map_wrap(MA->getAccessRelation().release());
536       isl_map *Identity =
537           isl_map_from_domain_and_range(isl_set_copy(AccDomW), AccDomW);
538       RED = isl_union_map_add_map(RED, Identity);
539     }
540   }
541 
542   // Step 2)
543   RED = isl_union_map_intersect(RED, isl_union_map_copy(RAW));
544   RED = isl_union_map_intersect(RED, StrictWAW);
545 
546   if (!isl_union_map_is_empty(RED)) {
547 
548     // Step 3)
549     RAW = isl_union_map_subtract(RAW, isl_union_map_copy(RED));
550     WAW = isl_union_map_subtract(WAW, isl_union_map_copy(RED));
551     WAR = isl_union_map_subtract(WAR, isl_union_map_copy(RED));
552 
553     // Step 4)
554     addPrivatizationDependences();
555   } else
556     TC_RED = isl_union_map_empty(isl_union_map_get_space(RED));
557 
558   LLVM_DEBUG({
559     dbgs() << "Final Wrapped Dependences:\n";
560     dump();
561     dbgs() << "\n";
562   });
563 
564   // RED_SIN is used to collect all reduction dependences again after we
565   // split them according to the causing memory accesses. The current assumption
566   // is that our method of splitting will not have any leftovers. In the end
567   // we validate this assumption until we have more confidence in this method.
568   isl_union_map *RED_SIN = isl_union_map_empty(isl_union_map_get_space(RAW));
569 
570   // For each reduction like memory access, check if there are reduction
571   // dependences with the access relation of the memory access as a domain
572   // (wrapped space!). If so these dependences are caused by this memory access.
573   // We then move this portion of reduction dependences back to the statement ->
574   // statement space and add a mapping from the memory access to these
575   // dependences.
576   for (ScopStmt &Stmt : S) {
577     for (MemoryAccess *MA : Stmt) {
578       if (!MA->isReductionLike())
579         continue;
580 
581       isl_set *AccDomW = isl_map_wrap(MA->getAccessRelation().release());
582       isl_union_map *AccRedDepU = isl_union_map_intersect_domain(
583           isl_union_map_copy(TC_RED), isl_union_set_from_set(AccDomW));
584       if (isl_union_map_is_empty(AccRedDepU)) {
585         isl_union_map_free(AccRedDepU);
586         continue;
587       }
588 
589       isl_map *AccRedDep = isl_map_from_union_map(AccRedDepU);
590       RED_SIN = isl_union_map_add_map(RED_SIN, isl_map_copy(AccRedDep));
591       AccRedDep = isl_map_zip(AccRedDep);
592       AccRedDep = isl_set_unwrap(isl_map_domain(AccRedDep));
593       setReductionDependences(MA, AccRedDep);
594     }
595   }
596 
597   assert(isl_union_map_is_equal(RED_SIN, TC_RED) &&
598          "Intersecting the reduction dependence domain with the wrapped access "
599          "relation is not enough, we need to loosen the access relation also");
600   isl_union_map_free(RED_SIN);
601 
602   RAW = isl_union_map_zip(RAW);
603   WAW = isl_union_map_zip(WAW);
604   WAR = isl_union_map_zip(WAR);
605   RED = isl_union_map_zip(RED);
606   TC_RED = isl_union_map_zip(TC_RED);
607 
608   LLVM_DEBUG({
609     dbgs() << "Zipped Dependences:\n";
610     dump();
611     dbgs() << "\n";
612   });
613 
614   RAW = isl_union_set_unwrap(isl_union_map_domain(RAW));
615   WAW = isl_union_set_unwrap(isl_union_map_domain(WAW));
616   WAR = isl_union_set_unwrap(isl_union_map_domain(WAR));
617   RED = isl_union_set_unwrap(isl_union_map_domain(RED));
618   TC_RED = isl_union_set_unwrap(isl_union_map_domain(TC_RED));
619 
620   LLVM_DEBUG({
621     dbgs() << "Unwrapped Dependences:\n";
622     dump();
623     dbgs() << "\n";
624   });
625 
626   RAW = isl_union_map_union(RAW, STMT_RAW);
627   WAW = isl_union_map_union(WAW, STMT_WAW);
628   WAR = isl_union_map_union(WAR, STMT_WAR);
629 
630   RAW = isl_union_map_coalesce(RAW);
631   WAW = isl_union_map_coalesce(WAW);
632   WAR = isl_union_map_coalesce(WAR);
633   RED = isl_union_map_coalesce(RED);
634   TC_RED = isl_union_map_coalesce(TC_RED);
635 
636   LLVM_DEBUG(dump());
637 }
638 
639 bool Dependences::isValidSchedule(Scop &S, isl::schedule NewSched) const {
640   // TODO: Also check permutable/coincident flags as well.
641 
642   StatementToIslMapTy NewSchedules;
643   for (auto NewMap : NewSched.get_map().get_map_list()) {
644     auto Stmt = reinterpret_cast<ScopStmt *>(
645         NewMap.get_tuple_id(isl::dim::in).get_user());
646     NewSchedules[Stmt] = NewMap;
647   }
648 
649   return isValidSchedule(S, NewSchedules);
650 }
651 
652 bool Dependences::isValidSchedule(
653     Scop &S, const StatementToIslMapTy &NewSchedule) const {
654   if (LegalityCheckDisabled)
655     return true;
656 
657   isl::union_map Dependences = getDependences(TYPE_RAW | TYPE_WAW | TYPE_WAR);
658   isl::union_map Schedule = isl::union_map::empty(S.getIslCtx());
659 
660   isl::space ScheduleSpace;
661 
662   for (ScopStmt &Stmt : S) {
663     isl::map StmtScat;
664 
665     auto Lookup = NewSchedule.find(&Stmt);
666     if (Lookup == NewSchedule.end())
667       StmtScat = Stmt.getSchedule();
668     else
669       StmtScat = Lookup->second;
670     assert(!StmtScat.is_null() &&
671            "Schedules that contain extension nodes require special handling.");
672 
673     if (ScheduleSpace.is_null())
674       ScheduleSpace = StmtScat.get_space().range();
675 
676     Schedule = Schedule.unite(StmtScat);
677   }
678 
679   Dependences = Dependences.apply_domain(Schedule);
680   Dependences = Dependences.apply_range(Schedule);
681 
682   isl::set Zero = isl::set::universe(ScheduleSpace);
683   for (auto i : rangeIslSize(0, Zero.tuple_dim()))
684     Zero = Zero.fix_si(isl::dim::set, i, 0);
685 
686   isl::union_set UDeltas = Dependences.deltas();
687   isl::set Deltas = singleton(UDeltas, ScheduleSpace);
688 
689   isl::space Space = Deltas.get_space();
690   isl::map NonPositive = isl::map::universe(Space.map_from_set());
691   NonPositive =
692       NonPositive.lex_le_at(isl::multi_pw_aff::identity_on_domain(Space));
693   NonPositive = NonPositive.intersect_domain(Deltas);
694   NonPositive = NonPositive.intersect_range(Zero);
695 
696   return NonPositive.is_empty();
697 }
698 
699 // Check if the current scheduling dimension is parallel.
700 //
701 // We check for parallelism by verifying that the loop does not carry any
702 // dependences.
703 //
704 // Parallelism test: if the distance is zero in all outer dimensions, then it
705 // has to be zero in the current dimension as well.
706 //
707 // Implementation: first, translate dependences into time space, then force
708 // outer dimensions to be equal. If the distance is zero in the current
709 // dimension, then the loop is parallel. The distance is zero in the current
710 // dimension if it is a subset of a map with equal values for the current
711 // dimension.
712 bool Dependences::isParallel(isl_union_map *Schedule, isl_union_map *Deps,
713                              isl_pw_aff **MinDistancePtr) const {
714   isl_set *Deltas, *Distance;
715   isl_map *ScheduleDeps;
716   unsigned Dimension;
717   bool IsParallel;
718 
719   Deps = isl_union_map_apply_range(Deps, isl_union_map_copy(Schedule));
720   Deps = isl_union_map_apply_domain(Deps, isl_union_map_copy(Schedule));
721 
722   if (isl_union_map_is_empty(Deps)) {
723     isl_union_map_free(Deps);
724     return true;
725   }
726 
727   ScheduleDeps = isl_map_from_union_map(Deps);
728   Dimension = isl_map_dim(ScheduleDeps, isl_dim_out) - 1;
729 
730   for (unsigned i = 0; i < Dimension; i++)
731     ScheduleDeps = isl_map_equate(ScheduleDeps, isl_dim_out, i, isl_dim_in, i);
732 
733   Deltas = isl_map_deltas(ScheduleDeps);
734   Distance = isl_set_universe(isl_set_get_space(Deltas));
735 
736   // [0, ..., 0, +] - All zeros and last dimension larger than zero
737   for (unsigned i = 0; i < Dimension; i++)
738     Distance = isl_set_fix_si(Distance, isl_dim_set, i, 0);
739 
740   Distance = isl_set_lower_bound_si(Distance, isl_dim_set, Dimension, 1);
741   Distance = isl_set_intersect(Distance, Deltas);
742 
743   IsParallel = isl_set_is_empty(Distance);
744   if (IsParallel || !MinDistancePtr) {
745     isl_set_free(Distance);
746     return IsParallel;
747   }
748 
749   Distance = isl_set_project_out(Distance, isl_dim_set, 0, Dimension);
750   Distance = isl_set_coalesce(Distance);
751 
752   // This last step will compute a expression for the minimal value in the
753   // distance polyhedron Distance with regards to the first (outer most)
754   // dimension.
755   *MinDistancePtr = isl_pw_aff_coalesce(isl_set_dim_min(Distance, 0));
756 
757   return false;
758 }
759 
760 static void printDependencyMap(raw_ostream &OS, __isl_keep isl_union_map *DM) {
761   if (DM)
762     OS << DM << "\n";
763   else
764     OS << "n/a\n";
765 }
766 
767 void Dependences::print(raw_ostream &OS) const {
768   OS << "\tRAW dependences:\n\t\t";
769   printDependencyMap(OS, RAW);
770   OS << "\tWAR dependences:\n\t\t";
771   printDependencyMap(OS, WAR);
772   OS << "\tWAW dependences:\n\t\t";
773   printDependencyMap(OS, WAW);
774   OS << "\tReduction dependences:\n\t\t";
775   printDependencyMap(OS, RED);
776   OS << "\tTransitive closure of reduction dependences:\n\t\t";
777   printDependencyMap(OS, TC_RED);
778 }
779 
780 void Dependences::dump() const { print(dbgs()); }
781 
782 void Dependences::releaseMemory() {
783   isl_union_map_free(RAW);
784   isl_union_map_free(WAR);
785   isl_union_map_free(WAW);
786   isl_union_map_free(RED);
787   isl_union_map_free(TC_RED);
788 
789   RED = RAW = WAR = WAW = TC_RED = nullptr;
790 
791   for (auto &ReductionDeps : ReductionDependences)
792     isl_map_free(ReductionDeps.second);
793   ReductionDependences.clear();
794 }
795 
796 isl::union_map Dependences::getDependences(int Kinds) const {
797   assert(hasValidDependences() && "No valid dependences available");
798   isl::space Space = isl::manage_copy(RAW).get_space();
799   isl::union_map Deps = Deps.empty(Space.ctx());
800 
801   if (Kinds & TYPE_RAW)
802     Deps = Deps.unite(isl::manage_copy(RAW));
803 
804   if (Kinds & TYPE_WAR)
805     Deps = Deps.unite(isl::manage_copy(WAR));
806 
807   if (Kinds & TYPE_WAW)
808     Deps = Deps.unite(isl::manage_copy(WAW));
809 
810   if (Kinds & TYPE_RED)
811     Deps = Deps.unite(isl::manage_copy(RED));
812 
813   if (Kinds & TYPE_TC_RED)
814     Deps = Deps.unite(isl::manage_copy(TC_RED));
815 
816   Deps = Deps.coalesce();
817   Deps = Deps.detect_equalities();
818   return Deps;
819 }
820 
821 bool Dependences::hasValidDependences() const {
822   return (RAW != nullptr) && (WAR != nullptr) && (WAW != nullptr);
823 }
824 
825 __isl_give isl_map *
826 Dependences::getReductionDependences(MemoryAccess *MA) const {
827   return isl_map_copy(ReductionDependences.lookup(MA));
828 }
829 
830 void Dependences::setReductionDependences(MemoryAccess *MA, isl_map *D) {
831   assert(ReductionDependences.count(MA) == 0 &&
832          "Reduction dependences set twice!");
833   ReductionDependences[MA] = D;
834 }
835 
836 const Dependences &
837 DependenceAnalysis::Result::getDependences(Dependences::AnalysisLevel Level) {
838   if (Dependences *d = D[Level].get())
839     return *d;
840 
841   return recomputeDependences(Level);
842 }
843 
844 const Dependences &DependenceAnalysis::Result::recomputeDependences(
845     Dependences::AnalysisLevel Level) {
846   D[Level].reset(new Dependences(S.getSharedIslCtx(), Level));
847   D[Level]->calculateDependences(S);
848   return *D[Level];
849 }
850 
851 DependenceAnalysis::Result
852 DependenceAnalysis::run(Scop &S, ScopAnalysisManager &SAM,
853                         ScopStandardAnalysisResults &SAR) {
854   return {S, {}};
855 }
856 
857 AnalysisKey DependenceAnalysis::Key;
858 
859 PreservedAnalyses
860 DependenceInfoPrinterPass::run(Scop &S, ScopAnalysisManager &SAM,
861                                ScopStandardAnalysisResults &SAR,
862                                SPMUpdater &U) {
863   auto &DI = SAM.getResult<DependenceAnalysis>(S, SAR);
864 
865   if (auto d = DI.D[OptAnalysisLevel].get()) {
866     d->print(OS);
867     return PreservedAnalyses::all();
868   }
869 
870   // Otherwise create the dependences on-the-fly and print them
871   Dependences D(S.getSharedIslCtx(), OptAnalysisLevel);
872   D.calculateDependences(S);
873   D.print(OS);
874 
875   return PreservedAnalyses::all();
876 }
877 
878 const Dependences &
879 DependenceInfo::getDependences(Dependences::AnalysisLevel Level) {
880   if (Dependences *d = D[Level].get())
881     return *d;
882 
883   return recomputeDependences(Level);
884 }
885 
886 const Dependences &
887 DependenceInfo::recomputeDependences(Dependences::AnalysisLevel Level) {
888   D[Level].reset(new Dependences(S->getSharedIslCtx(), Level));
889   D[Level]->calculateDependences(*S);
890   return *D[Level];
891 }
892 
893 bool DependenceInfo::runOnScop(Scop &ScopVar) {
894   S = &ScopVar;
895   return false;
896 }
897 
898 /// Print the dependences for the given SCoP to @p OS.
899 
900 void polly::DependenceInfo::printScop(raw_ostream &OS, Scop &S) const {
901   if (auto d = D[OptAnalysisLevel].get()) {
902     d->print(OS);
903     return;
904   }
905 
906   // Otherwise create the dependences on-the-fly and print it
907   Dependences D(S.getSharedIslCtx(), OptAnalysisLevel);
908   D.calculateDependences(S);
909   D.print(OS);
910 }
911 
912 void DependenceInfo::getAnalysisUsage(AnalysisUsage &AU) const {
913   AU.addRequiredTransitive<ScopInfoRegionPass>();
914   AU.setPreservesAll();
915 }
916 
917 char DependenceInfo::ID = 0;
918 
919 Pass *polly::createDependenceInfoPass() { return new DependenceInfo(); }
920 
921 INITIALIZE_PASS_BEGIN(DependenceInfo, "polly-dependences",
922                       "Polly - Calculate dependences", false, false);
923 INITIALIZE_PASS_DEPENDENCY(ScopInfoRegionPass);
924 INITIALIZE_PASS_END(DependenceInfo, "polly-dependences",
925                     "Polly - Calculate dependences", false, false)
926 
927 //===----------------------------------------------------------------------===//
928 const Dependences &
929 DependenceInfoWrapperPass::getDependences(Scop *S,
930                                           Dependences::AnalysisLevel Level) {
931   auto It = ScopToDepsMap.find(S);
932   if (It != ScopToDepsMap.end())
933     if (It->second) {
934       if (It->second->getDependenceLevel() == Level)
935         return *It->second.get();
936     }
937   return recomputeDependences(S, Level);
938 }
939 
940 const Dependences &DependenceInfoWrapperPass::recomputeDependences(
941     Scop *S, Dependences::AnalysisLevel Level) {
942   std::unique_ptr<Dependences> D(new Dependences(S->getSharedIslCtx(), Level));
943   D->calculateDependences(*S);
944   auto Inserted = ScopToDepsMap.insert(std::make_pair(S, std::move(D)));
945   return *Inserted.first->second;
946 }
947 
948 bool DependenceInfoWrapperPass::runOnFunction(Function &F) {
949   auto &SI = *getAnalysis<ScopInfoWrapperPass>().getSI();
950   for (auto &It : SI) {
951     assert(It.second && "Invalid SCoP object!");
952     recomputeDependences(It.second.get(), Dependences::AL_Access);
953   }
954   return false;
955 }
956 
957 void DependenceInfoWrapperPass::print(raw_ostream &OS, const Module *M) const {
958   for (auto &It : ScopToDepsMap) {
959     assert((It.first && It.second) && "Invalid Scop or Dependence object!\n");
960     It.second->print(OS);
961   }
962 }
963 
964 void DependenceInfoWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
965   AU.addRequiredTransitive<ScopInfoWrapperPass>();
966   AU.setPreservesAll();
967 }
968 
969 char DependenceInfoWrapperPass::ID = 0;
970 
971 Pass *polly::createDependenceInfoWrapperPassPass() {
972   return new DependenceInfoWrapperPass();
973 }
974 
975 INITIALIZE_PASS_BEGIN(
976     DependenceInfoWrapperPass, "polly-function-dependences",
977     "Polly - Calculate dependences for all the SCoPs of a function", false,
978     false)
979 INITIALIZE_PASS_DEPENDENCY(ScopInfoWrapperPass);
980 INITIALIZE_PASS_END(
981     DependenceInfoWrapperPass, "polly-function-dependences",
982     "Polly - Calculate dependences for all the SCoPs of a function", false,
983     false)
984