1 //===- DependenceInfo.cpp - Calculate dependency information for a Scop. --===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Calculate the data dependency relations for a Scop using ISL.
10 //
11 // The integer set library (ISL) from Sven, has a integrated dependency analysis
12 // to calculate data dependences. This pass takes advantage of this and
13 // calculate those dependences a Scop.
14 //
15 // The dependences in this pass are exact in terms that for a specific read
16 // statement instance only the last write statement instance is returned. In
17 // case of may writes a set of possible write instances is returned. This
18 // analysis will never produce redundant dependences.
19 //
20 //===----------------------------------------------------------------------===//
21 //
22 #include "polly/DependenceInfo.h"
23 #include "polly/LinkAllPasses.h"
24 #include "polly/Options.h"
25 #include "polly/ScopInfo.h"
26 #include "polly/Support/GICHelper.h"
27 #include "polly/Support/ISLTools.h"
28 #include "llvm/ADT/Sequence.h"
29 #include "llvm/Support/Debug.h"
30 #include "isl/aff.h"
31 #include "isl/ctx.h"
32 #include "isl/flow.h"
33 #include "isl/map.h"
34 #include "isl/schedule.h"
35 #include "isl/set.h"
36 #include "isl/union_map.h"
37 #include "isl/union_set.h"
38 
39 using namespace polly;
40 using namespace llvm;
41 
42 #define DEBUG_TYPE "polly-dependence"
43 
44 static cl::opt<int> OptComputeOut(
45     "polly-dependences-computeout",
46     cl::desc("Bound the dependence analysis by a maximal amount of "
47              "computational steps (0 means no bound)"),
48     cl::Hidden, cl::init(500000), cl::cat(PollyCategory));
49 
50 static cl::opt<bool>
51     LegalityCheckDisabled("disable-polly-legality",
52                           cl::desc("Disable polly legality check"), cl::Hidden,
53                           cl::cat(PollyCategory));
54 
55 static cl::opt<bool>
56     UseReductions("polly-dependences-use-reductions",
57                   cl::desc("Exploit reductions in dependence analysis"),
58                   cl::Hidden, cl::init(true), cl::cat(PollyCategory));
59 
60 enum AnalysisType { VALUE_BASED_ANALYSIS, MEMORY_BASED_ANALYSIS };
61 
62 static cl::opt<enum AnalysisType> OptAnalysisType(
63     "polly-dependences-analysis-type",
64     cl::desc("The kind of dependence analysis to use"),
65     cl::values(clEnumValN(VALUE_BASED_ANALYSIS, "value-based",
66                           "Exact dependences without transitive dependences"),
67                clEnumValN(MEMORY_BASED_ANALYSIS, "memory-based",
68                           "Overapproximation of dependences")),
69     cl::Hidden, cl::init(VALUE_BASED_ANALYSIS), cl::cat(PollyCategory));
70 
71 static cl::opt<Dependences::AnalysisLevel> OptAnalysisLevel(
72     "polly-dependences-analysis-level",
73     cl::desc("The level of dependence analysis"),
74     cl::values(clEnumValN(Dependences::AL_Statement, "statement-wise",
75                           "Statement-level analysis"),
76                clEnumValN(Dependences::AL_Reference, "reference-wise",
77                           "Memory reference level analysis that distinguish"
78                           " accessed references in the same statement"),
79                clEnumValN(Dependences::AL_Access, "access-wise",
80                           "Memory reference level analysis that distinguish"
81                           " access instructions in the same statement")),
82     cl::Hidden, cl::init(Dependences::AL_Statement), cl::cat(PollyCategory));
83 
84 //===----------------------------------------------------------------------===//
85 
86 /// Tag the @p Relation domain with @p TagId
tag(__isl_take isl_map * Relation,__isl_take isl_id * TagId)87 static __isl_give isl_map *tag(__isl_take isl_map *Relation,
88                                __isl_take isl_id *TagId) {
89   isl_space *Space = isl_map_get_space(Relation);
90   Space = isl_space_drop_dims(Space, isl_dim_out, 0,
91                               isl_map_dim(Relation, isl_dim_out));
92   Space = isl_space_set_tuple_id(Space, isl_dim_out, TagId);
93   isl_multi_aff *Tag = isl_multi_aff_domain_map(Space);
94   Relation = isl_map_preimage_domain_multi_aff(Relation, Tag);
95   return Relation;
96 }
97 
98 /// Tag the @p Relation domain with either MA->getArrayId() or
99 ///        MA->getId() based on @p TagLevel
tag(__isl_take isl_map * Relation,MemoryAccess * MA,Dependences::AnalysisLevel TagLevel)100 static __isl_give isl_map *tag(__isl_take isl_map *Relation, MemoryAccess *MA,
101                                Dependences::AnalysisLevel TagLevel) {
102   if (TagLevel == Dependences::AL_Reference)
103     return tag(Relation, MA->getArrayId().release());
104 
105   if (TagLevel == Dependences::AL_Access)
106     return tag(Relation, MA->getId().release());
107 
108   // No need to tag at the statement level.
109   return Relation;
110 }
111 
112 /// Collect information about the SCoP @p S.
collectInfo(Scop & S,isl_union_map * & Read,isl_union_map * & MustWrite,isl_union_map * & MayWrite,isl_union_map * & ReductionTagMap,isl_union_set * & TaggedStmtDomain,Dependences::AnalysisLevel Level)113 static void collectInfo(Scop &S, isl_union_map *&Read,
114                         isl_union_map *&MustWrite, isl_union_map *&MayWrite,
115                         isl_union_map *&ReductionTagMap,
116                         isl_union_set *&TaggedStmtDomain,
117                         Dependences::AnalysisLevel Level) {
118   isl_space *Space = S.getParamSpace().release();
119   Read = isl_union_map_empty(isl_space_copy(Space));
120   MustWrite = isl_union_map_empty(isl_space_copy(Space));
121   MayWrite = isl_union_map_empty(isl_space_copy(Space));
122   ReductionTagMap = isl_union_map_empty(isl_space_copy(Space));
123   isl_union_map *StmtSchedule = isl_union_map_empty(Space);
124 
125   SmallPtrSet<const ScopArrayInfo *, 8> ReductionArrays;
126   if (UseReductions)
127     for (ScopStmt &Stmt : S)
128       for (MemoryAccess *MA : Stmt)
129         if (MA->isReductionLike())
130           ReductionArrays.insert(MA->getScopArrayInfo());
131 
132   for (ScopStmt &Stmt : S) {
133     for (MemoryAccess *MA : Stmt) {
134       isl_set *domcp = Stmt.getDomain().release();
135       isl_map *accdom = MA->getAccessRelation().release();
136 
137       accdom = isl_map_intersect_domain(accdom, domcp);
138 
139       if (ReductionArrays.count(MA->getScopArrayInfo())) {
140         // Wrap the access domain and adjust the schedule accordingly.
141         //
142         // An access domain like
143         //   Stmt[i0, i1] -> MemAcc_A[i0 + i1]
144         // will be transformed into
145         //   [Stmt[i0, i1] -> MemAcc_A[i0 + i1]] -> MemAcc_A[i0 + i1]
146         //
147         // We collect all the access domains in the ReductionTagMap.
148         // This is used in Dependences::calculateDependences to create
149         // a tagged Schedule tree.
150 
151         ReductionTagMap =
152             isl_union_map_add_map(ReductionTagMap, isl_map_copy(accdom));
153         accdom = isl_map_range_map(accdom);
154       } else {
155         accdom = tag(accdom, MA, Level);
156         if (Level > Dependences::AL_Statement) {
157           isl_map *StmtScheduleMap = Stmt.getSchedule().release();
158           assert(StmtScheduleMap &&
159                  "Schedules that contain extension nodes require special "
160                  "handling.");
161           isl_map *Schedule = tag(StmtScheduleMap, MA, Level);
162           StmtSchedule = isl_union_map_add_map(StmtSchedule, Schedule);
163         }
164       }
165 
166       if (MA->isRead())
167         Read = isl_union_map_add_map(Read, accdom);
168       else if (MA->isMayWrite())
169         MayWrite = isl_union_map_add_map(MayWrite, accdom);
170       else
171         MustWrite = isl_union_map_add_map(MustWrite, accdom);
172     }
173 
174     if (!ReductionArrays.empty() && Level == Dependences::AL_Statement)
175       StmtSchedule =
176           isl_union_map_add_map(StmtSchedule, Stmt.getSchedule().release());
177   }
178 
179   StmtSchedule = isl_union_map_intersect_params(
180       StmtSchedule, S.getAssumedContext().release());
181   TaggedStmtDomain = isl_union_map_domain(StmtSchedule);
182 
183   ReductionTagMap = isl_union_map_coalesce(ReductionTagMap);
184   Read = isl_union_map_coalesce(Read);
185   MustWrite = isl_union_map_coalesce(MustWrite);
186   MayWrite = isl_union_map_coalesce(MayWrite);
187 }
188 
189 /// Fix all dimension of @p Zero to 0 and add it to @p user
fixSetToZero(isl::set Zero,isl::union_set * User)190 static void fixSetToZero(isl::set Zero, isl::union_set *User) {
191   for (auto i : rangeIslSize(0, Zero.tuple_dim()))
192     Zero = Zero.fix_si(isl::dim::set, i, 0);
193   *User = User->unite(Zero);
194 }
195 
196 /// Compute the privatization dependences for a given dependency @p Map
197 ///
198 /// Privatization dependences are widened original dependences which originate
199 /// or end in a reduction access. To compute them we apply the transitive close
200 /// of the reduction dependences (which maps each iteration of a reduction
201 /// statement to all following ones) on the RAW/WAR/WAW dependences. The
202 /// dependences which start or end at a reduction statement will be extended to
203 /// depend on all following reduction statement iterations as well.
204 /// Note: "Following" here means according to the reduction dependences.
205 ///
206 /// For the input:
207 ///
208 ///  S0:   *sum = 0;
209 ///        for (int i = 0; i < 1024; i++)
210 ///  S1:     *sum += i;
211 ///  S2:   *sum = *sum * 3;
212 ///
213 /// we have the following dependences before we add privatization dependences:
214 ///
215 ///   RAW:
216 ///     { S0[] -> S1[0]; S1[1023] -> S2[] }
217 ///   WAR:
218 ///     {  }
219 ///   WAW:
220 ///     { S0[] -> S1[0]; S1[1024] -> S2[] }
221 ///   RED:
222 ///     { S1[i0] -> S1[1 + i0] : i0 >= 0 and i0 <= 1022 }
223 ///
224 /// and afterwards:
225 ///
226 ///   RAW:
227 ///     { S0[] -> S1[i0] : i0 >= 0 and i0 <= 1023;
228 ///       S1[i0] -> S2[] : i0 >= 0 and i0 <= 1023}
229 ///   WAR:
230 ///     {  }
231 ///   WAW:
232 ///     { S0[] -> S1[i0] : i0 >= 0 and i0 <= 1023;
233 ///       S1[i0] -> S2[] : i0 >= 0 and i0 <= 1023}
234 ///   RED:
235 ///     { S1[i0] -> S1[1 + i0] : i0 >= 0 and i0 <= 1022 }
236 ///
237 /// Note: This function also computes the (reverse) transitive closure of the
238 ///       reduction dependences.
addPrivatizationDependences()239 void Dependences::addPrivatizationDependences() {
240   isl_union_map *PrivRAW, *PrivWAW, *PrivWAR;
241 
242   // The transitive closure might be over approximated, thus could lead to
243   // dependency cycles in the privatization dependences. To make sure this
244   // will not happen we remove all negative dependences after we computed
245   // the transitive closure.
246   TC_RED = isl_union_map_transitive_closure(isl_union_map_copy(RED), nullptr);
247 
248   // FIXME: Apply the current schedule instead of assuming the identity schedule
249   //        here. The current approach is only valid as long as we compute the
250   //        dependences only with the initial (identity schedule). Any other
251   //        schedule could change "the direction of the backward dependences" we
252   //        want to eliminate here.
253   isl_union_set *UDeltas = isl_union_map_deltas(isl_union_map_copy(TC_RED));
254   isl_union_set *Universe = isl_union_set_universe(isl_union_set_copy(UDeltas));
255   isl::union_set Zero =
256       isl::manage(isl_union_set_empty(isl_union_set_get_space(Universe)));
257 
258   for (isl::set Set : isl::manage_copy(Universe).get_set_list())
259     fixSetToZero(Set, &Zero);
260 
261   isl_union_map *NonPositive =
262       isl_union_set_lex_le_union_set(UDeltas, Zero.release());
263 
264   TC_RED = isl_union_map_subtract(TC_RED, NonPositive);
265 
266   TC_RED = isl_union_map_union(
267       TC_RED, isl_union_map_reverse(isl_union_map_copy(TC_RED)));
268   TC_RED = isl_union_map_coalesce(TC_RED);
269 
270   isl_union_map **Maps[] = {&RAW, &WAW, &WAR};
271   isl_union_map **PrivMaps[] = {&PrivRAW, &PrivWAW, &PrivWAR};
272   for (unsigned u = 0; u < 3; u++) {
273     isl_union_map **Map = Maps[u], **PrivMap = PrivMaps[u];
274 
275     *PrivMap = isl_union_map_apply_range(isl_union_map_copy(*Map),
276                                          isl_union_map_copy(TC_RED));
277     *PrivMap = isl_union_map_union(
278         *PrivMap, isl_union_map_apply_range(isl_union_map_copy(TC_RED),
279                                             isl_union_map_copy(*Map)));
280 
281     *Map = isl_union_map_union(*Map, *PrivMap);
282   }
283 
284   isl_union_set_free(Universe);
285 }
286 
buildFlow(__isl_keep isl_union_map * Snk,__isl_keep isl_union_map * Src,__isl_keep isl_union_map * MaySrc,__isl_keep isl_union_map * Kill,__isl_keep isl_schedule * Schedule)287 static __isl_give isl_union_flow *buildFlow(__isl_keep isl_union_map *Snk,
288                                             __isl_keep isl_union_map *Src,
289                                             __isl_keep isl_union_map *MaySrc,
290                                             __isl_keep isl_union_map *Kill,
291                                             __isl_keep isl_schedule *Schedule) {
292   isl_union_access_info *AI;
293 
294   AI = isl_union_access_info_from_sink(isl_union_map_copy(Snk));
295   if (MaySrc)
296     AI = isl_union_access_info_set_may_source(AI, isl_union_map_copy(MaySrc));
297   if (Src)
298     AI = isl_union_access_info_set_must_source(AI, isl_union_map_copy(Src));
299   if (Kill)
300     AI = isl_union_access_info_set_kill(AI, isl_union_map_copy(Kill));
301   AI = isl_union_access_info_set_schedule(AI, isl_schedule_copy(Schedule));
302   auto Flow = isl_union_access_info_compute_flow(AI);
303   LLVM_DEBUG(if (!Flow) dbgs()
304                  << "last error: "
305                  << isl_ctx_last_error(isl_schedule_get_ctx(Schedule))
306                  << '\n';);
307   return Flow;
308 }
309 
calculateDependences(Scop & S)310 void Dependences::calculateDependences(Scop &S) {
311   isl_union_map *Read, *MustWrite, *MayWrite, *ReductionTagMap;
312   isl_schedule *Schedule;
313   isl_union_set *TaggedStmtDomain;
314 
315   LLVM_DEBUG(dbgs() << "Scop: \n" << S << "\n");
316 
317   collectInfo(S, Read, MustWrite, MayWrite, ReductionTagMap, TaggedStmtDomain,
318               Level);
319 
320   bool HasReductions = !isl_union_map_is_empty(ReductionTagMap);
321 
322   LLVM_DEBUG(dbgs() << "Read: " << Read << '\n';
323              dbgs() << "MustWrite: " << MustWrite << '\n';
324              dbgs() << "MayWrite: " << MayWrite << '\n';
325              dbgs() << "ReductionTagMap: " << ReductionTagMap << '\n';
326              dbgs() << "TaggedStmtDomain: " << TaggedStmtDomain << '\n';);
327 
328   Schedule = S.getScheduleTree().release();
329 
330   if (!HasReductions) {
331     isl_union_map_free(ReductionTagMap);
332     // Tag the schedule tree if we want fine-grain dependence info
333     if (Level > AL_Statement) {
334       auto TaggedMap =
335           isl_union_set_unwrap(isl_union_set_copy(TaggedStmtDomain));
336       auto Tags = isl_union_map_domain_map_union_pw_multi_aff(TaggedMap);
337       Schedule = isl_schedule_pullback_union_pw_multi_aff(Schedule, Tags);
338     }
339   } else {
340     isl_union_map *IdentityMap;
341     isl_union_pw_multi_aff *ReductionTags, *IdentityTags, *Tags;
342 
343     // Extract Reduction tags from the combined access domains in the given
344     // SCoP. The result is a map that maps each tagged element in the domain to
345     // the memory location it accesses. ReductionTags = {[Stmt[i] ->
346     // Array[f(i)]] -> Stmt[i] }
347     ReductionTags =
348         isl_union_map_domain_map_union_pw_multi_aff(ReductionTagMap);
349 
350     // Compute an identity map from each statement in domain to itself.
351     // IdentityTags = { [Stmt[i] -> Stmt[i] }
352     IdentityMap = isl_union_set_identity(isl_union_set_copy(TaggedStmtDomain));
353     IdentityTags = isl_union_pw_multi_aff_from_union_map(IdentityMap);
354 
355     Tags = isl_union_pw_multi_aff_union_add(ReductionTags, IdentityTags);
356 
357     // By pulling back Tags from Schedule, we have a schedule tree that can
358     // be used to compute normal dependences, as well as 'tagged' reduction
359     // dependences.
360     Schedule = isl_schedule_pullback_union_pw_multi_aff(Schedule, Tags);
361   }
362 
363   LLVM_DEBUG(dbgs() << "Read: " << Read << "\n";
364              dbgs() << "MustWrite: " << MustWrite << "\n";
365              dbgs() << "MayWrite: " << MayWrite << "\n";
366              dbgs() << "Schedule: " << Schedule << "\n");
367 
368   isl_union_map *StrictWAW = nullptr;
369   {
370     IslMaxOperationsGuard MaxOpGuard(IslCtx.get(), OptComputeOut);
371 
372     RAW = WAW = WAR = RED = nullptr;
373     isl_union_map *Write = isl_union_map_union(isl_union_map_copy(MustWrite),
374                                                isl_union_map_copy(MayWrite));
375 
376     // We are interested in detecting reductions that do not have intermediate
377     // computations that are captured by other statements.
378     //
379     // Example:
380     // void f(int *A, int *B) {
381     //     for(int i = 0; i <= 100; i++) {
382     //
383     //            *-WAR (S0[i] -> S0[i + 1] 0 <= i <= 100)------------*
384     //            |                                                   |
385     //            *-WAW (S0[i] -> S0[i + 1] 0 <= i <= 100)------------*
386     //            |                                                   |
387     //            v                                                   |
388     //     S0:    *A += i; >------------------*-----------------------*
389     //                                        |
390     //         if (i >= 98) {          WAR (S0[i] -> S1[i]) 98 <= i <= 100
391     //                                        |
392     //     S1:        *B = *A; <--------------*
393     //         }
394     //     }
395     // }
396     //
397     // S0[0 <= i <= 100] has a reduction. However, the values in
398     // S0[98 <= i <= 100] is captured in S1[98 <= i <= 100].
399     // Since we allow free reordering on our reduction dependences, we need to
400     // remove all instances of a reduction statement that have data dependences
401     // originating from them.
402     // In the case of the example, we need to remove S0[98 <= i <= 100] from
403     // our reduction dependences.
404     //
405     // When we build up the WAW dependences that are used to detect reductions,
406     // we consider only **Writes that have no intermediate Reads**.
407     //
408     // `isl_union_flow_get_must_dependence` gives us dependences of the form:
409     // (sink <- must_source).
410     //
411     // It *will not give* dependences of the form:
412     // 1. (sink <- ... <- may_source <- ... <- must_source)
413     // 2. (sink <- ... <- must_source <- ... <- must_source)
414     //
415     // For a detailed reference on ISL's flow analysis, see:
416     // "Presburger Formulas and Polyhedral Compilation" - Approximate Dataflow
417     //  Analysis.
418     //
419     // Since we set "Write" as a must-source, "Read" as a may-source, and ask
420     // for must dependences, we get all Writes to Writes that **do not flow
421     // through a Read**.
422     //
423     // ScopInfo::checkForReductions makes sure that if something captures
424     // the reduction variable in the same basic block, then it is rejected
425     // before it is even handed here. This makes sure that there is exactly
426     // one read and one write to a reduction variable in a Statement.
427     // Example:
428     //     void f(int *sum, int A[N], int B[N]) {
429     //       for (int i = 0; i < N; i++) {
430     //         *sum += A[i]; < the store and the load is not tagged as a
431     //         B[i] = *sum;  < reduction-like access due to the overlap.
432     //       }
433     //     }
434 
435     isl_union_flow *Flow = buildFlow(Write, Write, Read, nullptr, Schedule);
436     StrictWAW = isl_union_flow_get_must_dependence(Flow);
437     isl_union_flow_free(Flow);
438 
439     if (OptAnalysisType == VALUE_BASED_ANALYSIS) {
440       Flow = buildFlow(Read, MustWrite, MayWrite, nullptr, Schedule);
441       RAW = isl_union_flow_get_may_dependence(Flow);
442       isl_union_flow_free(Flow);
443 
444       Flow = buildFlow(Write, MustWrite, MayWrite, nullptr, Schedule);
445       WAW = isl_union_flow_get_may_dependence(Flow);
446       isl_union_flow_free(Flow);
447 
448       // ISL now supports "kills" in approximate dataflow analysis, we can
449       // specify the MustWrite as kills, Read as source and Write as sink.
450       Flow = buildFlow(Write, nullptr, Read, MustWrite, Schedule);
451       WAR = isl_union_flow_get_may_dependence(Flow);
452       isl_union_flow_free(Flow);
453     } else {
454       Flow = buildFlow(Read, nullptr, Write, nullptr, Schedule);
455       RAW = isl_union_flow_get_may_dependence(Flow);
456       isl_union_flow_free(Flow);
457 
458       Flow = buildFlow(Write, nullptr, Read, nullptr, Schedule);
459       WAR = isl_union_flow_get_may_dependence(Flow);
460       isl_union_flow_free(Flow);
461 
462       Flow = buildFlow(Write, nullptr, Write, nullptr, Schedule);
463       WAW = isl_union_flow_get_may_dependence(Flow);
464       isl_union_flow_free(Flow);
465     }
466 
467     isl_union_map_free(Write);
468     isl_union_map_free(MustWrite);
469     isl_union_map_free(MayWrite);
470     isl_union_map_free(Read);
471     isl_schedule_free(Schedule);
472 
473     RAW = isl_union_map_coalesce(RAW);
474     WAW = isl_union_map_coalesce(WAW);
475     WAR = isl_union_map_coalesce(WAR);
476 
477     // End of max_operations scope.
478   }
479 
480   if (isl_ctx_last_error(IslCtx.get()) == isl_error_quota) {
481     isl_union_map_free(RAW);
482     isl_union_map_free(WAW);
483     isl_union_map_free(WAR);
484     isl_union_map_free(StrictWAW);
485     RAW = WAW = WAR = StrictWAW = nullptr;
486     isl_ctx_reset_error(IslCtx.get());
487   }
488 
489   // Drop out early, as the remaining computations are only needed for
490   // reduction dependences or dependences that are finer than statement
491   // level dependences.
492   if (!HasReductions && Level == AL_Statement) {
493     RED = isl_union_map_empty(isl_union_map_get_space(RAW));
494     TC_RED = isl_union_map_empty(isl_union_set_get_space(TaggedStmtDomain));
495     isl_union_set_free(TaggedStmtDomain);
496     isl_union_map_free(StrictWAW);
497     return;
498   }
499 
500   isl_union_map *STMT_RAW, *STMT_WAW, *STMT_WAR;
501   STMT_RAW = isl_union_map_intersect_domain(
502       isl_union_map_copy(RAW), isl_union_set_copy(TaggedStmtDomain));
503   STMT_WAW = isl_union_map_intersect_domain(
504       isl_union_map_copy(WAW), isl_union_set_copy(TaggedStmtDomain));
505   STMT_WAR =
506       isl_union_map_intersect_domain(isl_union_map_copy(WAR), TaggedStmtDomain);
507   LLVM_DEBUG({
508     dbgs() << "Wrapped Dependences:\n";
509     dump();
510     dbgs() << "\n";
511   });
512 
513   // To handle reduction dependences we proceed as follows:
514   // 1) Aggregate all possible reduction dependences, namely all self
515   //    dependences on reduction like statements.
516   // 2) Intersect them with the actual RAW & WAW dependences to the get the
517   //    actual reduction dependences. This will ensure the load/store memory
518   //    addresses were __identical__ in the two iterations of the statement.
519   // 3) Relax the original RAW, WAW and WAR dependences by subtracting the
520   //    actual reduction dependences. Binary reductions (sum += A[i]) cause
521   //    the same, RAW, WAW and WAR dependences.
522   // 4) Add the privatization dependences which are widened versions of
523   //    already present dependences. They model the effect of manual
524   //    privatization at the outermost possible place (namely after the last
525   //    write and before the first access to a reduction location).
526 
527   // Step 1)
528   RED = isl_union_map_empty(isl_union_map_get_space(RAW));
529   for (ScopStmt &Stmt : S) {
530     for (MemoryAccess *MA : Stmt) {
531       if (!MA->isReductionLike())
532         continue;
533       isl_set *AccDomW = isl_map_wrap(MA->getAccessRelation().release());
534       isl_map *Identity =
535           isl_map_from_domain_and_range(isl_set_copy(AccDomW), AccDomW);
536       RED = isl_union_map_add_map(RED, Identity);
537     }
538   }
539 
540   // Step 2)
541   RED = isl_union_map_intersect(RED, isl_union_map_copy(RAW));
542   RED = isl_union_map_intersect(RED, StrictWAW);
543 
544   if (!isl_union_map_is_empty(RED)) {
545 
546     // Step 3)
547     RAW = isl_union_map_subtract(RAW, isl_union_map_copy(RED));
548     WAW = isl_union_map_subtract(WAW, isl_union_map_copy(RED));
549     WAR = isl_union_map_subtract(WAR, isl_union_map_copy(RED));
550 
551     // Step 4)
552     addPrivatizationDependences();
553   } else
554     TC_RED = isl_union_map_empty(isl_union_map_get_space(RED));
555 
556   LLVM_DEBUG({
557     dbgs() << "Final Wrapped Dependences:\n";
558     dump();
559     dbgs() << "\n";
560   });
561 
562   // RED_SIN is used to collect all reduction dependences again after we
563   // split them according to the causing memory accesses. The current assumption
564   // is that our method of splitting will not have any leftovers. In the end
565   // we validate this assumption until we have more confidence in this method.
566   isl_union_map *RED_SIN = isl_union_map_empty(isl_union_map_get_space(RAW));
567 
568   // For each reduction like memory access, check if there are reduction
569   // dependences with the access relation of the memory access as a domain
570   // (wrapped space!). If so these dependences are caused by this memory access.
571   // We then move this portion of reduction dependences back to the statement ->
572   // statement space and add a mapping from the memory access to these
573   // dependences.
574   for (ScopStmt &Stmt : S) {
575     for (MemoryAccess *MA : Stmt) {
576       if (!MA->isReductionLike())
577         continue;
578 
579       isl_set *AccDomW = isl_map_wrap(MA->getAccessRelation().release());
580       isl_union_map *AccRedDepU = isl_union_map_intersect_domain(
581           isl_union_map_copy(TC_RED), isl_union_set_from_set(AccDomW));
582       if (isl_union_map_is_empty(AccRedDepU)) {
583         isl_union_map_free(AccRedDepU);
584         continue;
585       }
586 
587       isl_map *AccRedDep = isl_map_from_union_map(AccRedDepU);
588       RED_SIN = isl_union_map_add_map(RED_SIN, isl_map_copy(AccRedDep));
589       AccRedDep = isl_map_zip(AccRedDep);
590       AccRedDep = isl_set_unwrap(isl_map_domain(AccRedDep));
591       setReductionDependences(MA, AccRedDep);
592     }
593   }
594 
595   assert(isl_union_map_is_equal(RED_SIN, TC_RED) &&
596          "Intersecting the reduction dependence domain with the wrapped access "
597          "relation is not enough, we need to loosen the access relation also");
598   isl_union_map_free(RED_SIN);
599 
600   RAW = isl_union_map_zip(RAW);
601   WAW = isl_union_map_zip(WAW);
602   WAR = isl_union_map_zip(WAR);
603   RED = isl_union_map_zip(RED);
604   TC_RED = isl_union_map_zip(TC_RED);
605 
606   LLVM_DEBUG({
607     dbgs() << "Zipped Dependences:\n";
608     dump();
609     dbgs() << "\n";
610   });
611 
612   RAW = isl_union_set_unwrap(isl_union_map_domain(RAW));
613   WAW = isl_union_set_unwrap(isl_union_map_domain(WAW));
614   WAR = isl_union_set_unwrap(isl_union_map_domain(WAR));
615   RED = isl_union_set_unwrap(isl_union_map_domain(RED));
616   TC_RED = isl_union_set_unwrap(isl_union_map_domain(TC_RED));
617 
618   LLVM_DEBUG({
619     dbgs() << "Unwrapped Dependences:\n";
620     dump();
621     dbgs() << "\n";
622   });
623 
624   RAW = isl_union_map_union(RAW, STMT_RAW);
625   WAW = isl_union_map_union(WAW, STMT_WAW);
626   WAR = isl_union_map_union(WAR, STMT_WAR);
627 
628   RAW = isl_union_map_coalesce(RAW);
629   WAW = isl_union_map_coalesce(WAW);
630   WAR = isl_union_map_coalesce(WAR);
631   RED = isl_union_map_coalesce(RED);
632   TC_RED = isl_union_map_coalesce(TC_RED);
633 
634   LLVM_DEBUG(dump());
635 }
636 
isValidSchedule(Scop & S,isl::schedule NewSched) const637 bool Dependences::isValidSchedule(Scop &S, isl::schedule NewSched) const {
638   // TODO: Also check permutable/coincident flags as well.
639 
640   StatementToIslMapTy NewSchedules;
641   for (auto NewMap : NewSched.get_map().get_map_list()) {
642     auto Stmt = reinterpret_cast<ScopStmt *>(
643         NewMap.get_tuple_id(isl::dim::in).get_user());
644     NewSchedules[Stmt] = NewMap;
645   }
646 
647   return isValidSchedule(S, NewSchedules);
648 }
649 
isValidSchedule(Scop & S,const StatementToIslMapTy & NewSchedule) const650 bool Dependences::isValidSchedule(
651     Scop &S, const StatementToIslMapTy &NewSchedule) const {
652   if (LegalityCheckDisabled)
653     return true;
654 
655   isl::union_map Dependences = getDependences(TYPE_RAW | TYPE_WAW | TYPE_WAR);
656   isl::union_map Schedule = isl::union_map::empty(S.getIslCtx());
657 
658   isl::space ScheduleSpace;
659 
660   for (ScopStmt &Stmt : S) {
661     isl::map StmtScat;
662 
663     auto Lookup = NewSchedule.find(&Stmt);
664     if (Lookup == NewSchedule.end())
665       StmtScat = Stmt.getSchedule();
666     else
667       StmtScat = Lookup->second;
668     assert(!StmtScat.is_null() &&
669            "Schedules that contain extension nodes require special handling.");
670 
671     if (ScheduleSpace.is_null())
672       ScheduleSpace = StmtScat.get_space().range();
673 
674     Schedule = Schedule.unite(StmtScat);
675   }
676 
677   Dependences = Dependences.apply_domain(Schedule);
678   Dependences = Dependences.apply_range(Schedule);
679 
680   isl::set Zero = isl::set::universe(ScheduleSpace);
681   for (auto i : rangeIslSize(0, Zero.tuple_dim()))
682     Zero = Zero.fix_si(isl::dim::set, i, 0);
683 
684   isl::union_set UDeltas = Dependences.deltas();
685   isl::set Deltas = singleton(UDeltas, ScheduleSpace);
686 
687   isl::space Space = Deltas.get_space();
688   isl::map NonPositive = isl::map::universe(Space.map_from_set());
689   NonPositive =
690       NonPositive.lex_le_at(isl::multi_pw_aff::identity_on_domain(Space));
691   NonPositive = NonPositive.intersect_domain(Deltas);
692   NonPositive = NonPositive.intersect_range(Zero);
693 
694   return NonPositive.is_empty();
695 }
696 
697 // Check if the current scheduling dimension is parallel.
698 //
699 // We check for parallelism by verifying that the loop does not carry any
700 // dependences.
701 //
702 // Parallelism test: if the distance is zero in all outer dimensions, then it
703 // has to be zero in the current dimension as well.
704 //
705 // Implementation: first, translate dependences into time space, then force
706 // outer dimensions to be equal. If the distance is zero in the current
707 // dimension, then the loop is parallel. The distance is zero in the current
708 // dimension if it is a subset of a map with equal values for the current
709 // dimension.
isParallel(__isl_keep isl_union_map * Schedule,__isl_take isl_union_map * Deps,__isl_give isl_pw_aff ** MinDistancePtr) const710 bool Dependences::isParallel(__isl_keep isl_union_map *Schedule,
711                              __isl_take isl_union_map *Deps,
712                              __isl_give isl_pw_aff **MinDistancePtr) const {
713   isl_set *Deltas, *Distance;
714   isl_map *ScheduleDeps;
715   unsigned Dimension;
716   bool IsParallel;
717 
718   Deps = isl_union_map_apply_range(Deps, isl_union_map_copy(Schedule));
719   Deps = isl_union_map_apply_domain(Deps, isl_union_map_copy(Schedule));
720 
721   if (isl_union_map_is_empty(Deps)) {
722     isl_union_map_free(Deps);
723     return true;
724   }
725 
726   ScheduleDeps = isl_map_from_union_map(Deps);
727   Dimension = isl_map_dim(ScheduleDeps, isl_dim_out) - 1;
728 
729   for (unsigned i = 0; i < Dimension; i++)
730     ScheduleDeps = isl_map_equate(ScheduleDeps, isl_dim_out, i, isl_dim_in, i);
731 
732   Deltas = isl_map_deltas(ScheduleDeps);
733   Distance = isl_set_universe(isl_set_get_space(Deltas));
734 
735   // [0, ..., 0, +] - All zeros and last dimension larger than zero
736   for (unsigned i = 0; i < Dimension; i++)
737     Distance = isl_set_fix_si(Distance, isl_dim_set, i, 0);
738 
739   Distance = isl_set_lower_bound_si(Distance, isl_dim_set, Dimension, 1);
740   Distance = isl_set_intersect(Distance, Deltas);
741 
742   IsParallel = isl_set_is_empty(Distance);
743   if (IsParallel || !MinDistancePtr) {
744     isl_set_free(Distance);
745     return IsParallel;
746   }
747 
748   Distance = isl_set_project_out(Distance, isl_dim_set, 0, Dimension);
749   Distance = isl_set_coalesce(Distance);
750 
751   // This last step will compute a expression for the minimal value in the
752   // distance polyhedron Distance with regards to the first (outer most)
753   // dimension.
754   *MinDistancePtr = isl_pw_aff_coalesce(isl_set_dim_min(Distance, 0));
755 
756   return false;
757 }
758 
printDependencyMap(raw_ostream & OS,__isl_keep isl_union_map * DM)759 static void printDependencyMap(raw_ostream &OS, __isl_keep isl_union_map *DM) {
760   if (DM)
761     OS << DM << "\n";
762   else
763     OS << "n/a\n";
764 }
765 
print(raw_ostream & OS) const766 void Dependences::print(raw_ostream &OS) const {
767   OS << "\tRAW dependences:\n\t\t";
768   printDependencyMap(OS, RAW);
769   OS << "\tWAR dependences:\n\t\t";
770   printDependencyMap(OS, WAR);
771   OS << "\tWAW dependences:\n\t\t";
772   printDependencyMap(OS, WAW);
773   OS << "\tReduction dependences:\n\t\t";
774   printDependencyMap(OS, RED);
775   OS << "\tTransitive closure of reduction dependences:\n\t\t";
776   printDependencyMap(OS, TC_RED);
777 }
778 
dump() const779 void Dependences::dump() const { print(dbgs()); }
780 
releaseMemory()781 void Dependences::releaseMemory() {
782   isl_union_map_free(RAW);
783   isl_union_map_free(WAR);
784   isl_union_map_free(WAW);
785   isl_union_map_free(RED);
786   isl_union_map_free(TC_RED);
787 
788   RED = RAW = WAR = WAW = TC_RED = nullptr;
789 
790   for (auto &ReductionDeps : ReductionDependences)
791     isl_map_free(ReductionDeps.second);
792   ReductionDependences.clear();
793 }
794 
getDependences(int Kinds) const795 isl::union_map Dependences::getDependences(int Kinds) const {
796   assert(hasValidDependences() && "No valid dependences available");
797   isl::space Space = isl::manage_copy(RAW).get_space();
798   isl::union_map Deps = Deps.empty(Space.ctx());
799 
800   if (Kinds & TYPE_RAW)
801     Deps = Deps.unite(isl::manage_copy(RAW));
802 
803   if (Kinds & TYPE_WAR)
804     Deps = Deps.unite(isl::manage_copy(WAR));
805 
806   if (Kinds & TYPE_WAW)
807     Deps = Deps.unite(isl::manage_copy(WAW));
808 
809   if (Kinds & TYPE_RED)
810     Deps = Deps.unite(isl::manage_copy(RED));
811 
812   if (Kinds & TYPE_TC_RED)
813     Deps = Deps.unite(isl::manage_copy(TC_RED));
814 
815   Deps = Deps.coalesce();
816   Deps = Deps.detect_equalities();
817   return Deps;
818 }
819 
hasValidDependences() const820 bool Dependences::hasValidDependences() const {
821   return (RAW != nullptr) && (WAR != nullptr) && (WAW != nullptr);
822 }
823 
824 __isl_give isl_map *
getReductionDependences(MemoryAccess * MA) const825 Dependences::getReductionDependences(MemoryAccess *MA) const {
826   return isl_map_copy(ReductionDependences.lookup(MA));
827 }
828 
setReductionDependences(MemoryAccess * MA,__isl_take isl_map * D)829 void Dependences::setReductionDependences(MemoryAccess *MA,
830                                           __isl_take isl_map *D) {
831   assert(ReductionDependences.count(MA) == 0 &&
832          "Reduction dependences set twice!");
833   ReductionDependences[MA] = D;
834 }
835 
836 const Dependences &
getDependences(Dependences::AnalysisLevel Level)837 DependenceAnalysis::Result::getDependences(Dependences::AnalysisLevel Level) {
838   if (Dependences *d = D[Level].get())
839     return *d;
840 
841   return recomputeDependences(Level);
842 }
843 
recomputeDependences(Dependences::AnalysisLevel Level)844 const Dependences &DependenceAnalysis::Result::recomputeDependences(
845     Dependences::AnalysisLevel Level) {
846   D[Level].reset(new Dependences(S.getSharedIslCtx(), Level));
847   D[Level]->calculateDependences(S);
848   return *D[Level];
849 }
850 
abandonDependences()851 void DependenceAnalysis::Result::abandonDependences() {
852   for (std::unique_ptr<Dependences> &Deps : D)
853     Deps.release();
854 }
855 
856 DependenceAnalysis::Result
run(Scop & S,ScopAnalysisManager & SAM,ScopStandardAnalysisResults & SAR)857 DependenceAnalysis::run(Scop &S, ScopAnalysisManager &SAM,
858                         ScopStandardAnalysisResults &SAR) {
859   return {S, {}};
860 }
861 
862 AnalysisKey DependenceAnalysis::Key;
863 
864 PreservedAnalyses
run(Scop & S,ScopAnalysisManager & SAM,ScopStandardAnalysisResults & SAR,SPMUpdater & U)865 DependenceInfoPrinterPass::run(Scop &S, ScopAnalysisManager &SAM,
866                                ScopStandardAnalysisResults &SAR,
867                                SPMUpdater &U) {
868   auto &DI = SAM.getResult<DependenceAnalysis>(S, SAR);
869 
870   if (auto d = DI.D[OptAnalysisLevel].get()) {
871     d->print(OS);
872     return PreservedAnalyses::all();
873   }
874 
875   // Otherwise create the dependences on-the-fly and print them
876   Dependences D(S.getSharedIslCtx(), OptAnalysisLevel);
877   D.calculateDependences(S);
878   D.print(OS);
879 
880   return PreservedAnalyses::all();
881 }
882 
883 const Dependences &
getDependences(Dependences::AnalysisLevel Level)884 DependenceInfo::getDependences(Dependences::AnalysisLevel Level) {
885   if (Dependences *d = D[Level].get())
886     return *d;
887 
888   return recomputeDependences(Level);
889 }
890 
891 const Dependences &
recomputeDependences(Dependences::AnalysisLevel Level)892 DependenceInfo::recomputeDependences(Dependences::AnalysisLevel Level) {
893   D[Level].reset(new Dependences(S->getSharedIslCtx(), Level));
894   D[Level]->calculateDependences(*S);
895   return *D[Level];
896 }
897 
abandonDependences()898 void DependenceInfo::abandonDependences() {
899   for (std::unique_ptr<Dependences> &Deps : D)
900     Deps.release();
901 }
902 
runOnScop(Scop & ScopVar)903 bool DependenceInfo::runOnScop(Scop &ScopVar) {
904   S = &ScopVar;
905   return false;
906 }
907 
908 /// Print the dependences for the given SCoP to @p OS.
909 
printScop(raw_ostream & OS,Scop & S) const910 void polly::DependenceInfo::printScop(raw_ostream &OS, Scop &S) const {
911   if (auto d = D[OptAnalysisLevel].get()) {
912     d->print(OS);
913     return;
914   }
915 
916   // Otherwise create the dependences on-the-fly and print it
917   Dependences D(S.getSharedIslCtx(), OptAnalysisLevel);
918   D.calculateDependences(S);
919   D.print(OS);
920 }
921 
getAnalysisUsage(AnalysisUsage & AU) const922 void DependenceInfo::getAnalysisUsage(AnalysisUsage &AU) const {
923   AU.addRequiredTransitive<ScopInfoRegionPass>();
924   AU.setPreservesAll();
925 }
926 
927 char DependenceInfo::ID = 0;
928 
createDependenceInfoPass()929 Pass *polly::createDependenceInfoPass() { return new DependenceInfo(); }
930 
931 INITIALIZE_PASS_BEGIN(DependenceInfo, "polly-dependences",
932                       "Polly - Calculate dependences", false, false);
933 INITIALIZE_PASS_DEPENDENCY(ScopInfoRegionPass);
934 INITIALIZE_PASS_END(DependenceInfo, "polly-dependences",
935                     "Polly - Calculate dependences", false, false)
936 
937 //===----------------------------------------------------------------------===//
938 
939 namespace {
940 /// Print result from DependenceAnalysis.
941 class DependenceInfoPrinterLegacyPass final : public ScopPass {
942 public:
943   static char ID;
944 
DependenceInfoPrinterLegacyPass()945   DependenceInfoPrinterLegacyPass() : DependenceInfoPrinterLegacyPass(outs()) {}
946 
DependenceInfoPrinterLegacyPass(llvm::raw_ostream & OS)947   explicit DependenceInfoPrinterLegacyPass(llvm::raw_ostream &OS)
948       : ScopPass(ID), OS(OS) {}
949 
runOnScop(Scop & S)950   bool runOnScop(Scop &S) override {
951     DependenceInfo &P = getAnalysis<DependenceInfo>();
952 
953     OS << "Printing analysis '" << P.getPassName() << "' for "
954        << "region: '" << S.getRegion().getNameStr() << "' in function '"
955        << S.getFunction().getName() << "':\n";
956     P.printScop(OS, S);
957 
958     return false;
959   }
960 
getAnalysisUsage(AnalysisUsage & AU) const961   void getAnalysisUsage(AnalysisUsage &AU) const override {
962     ScopPass::getAnalysisUsage(AU);
963     AU.addRequired<DependenceInfo>();
964     AU.setPreservesAll();
965   }
966 
967 private:
968   llvm::raw_ostream &OS;
969 };
970 
971 char DependenceInfoPrinterLegacyPass::ID = 0;
972 } // namespace
973 
createDependenceInfoPrinterLegacyPass(raw_ostream & OS)974 Pass *polly::createDependenceInfoPrinterLegacyPass(raw_ostream &OS) {
975   return new DependenceInfoPrinterLegacyPass(OS);
976 }
977 
978 INITIALIZE_PASS_BEGIN(DependenceInfoPrinterLegacyPass,
979                       "polly-print-dependences", "Polly - Print dependences",
980                       false, false);
981 INITIALIZE_PASS_DEPENDENCY(DependenceInfo);
982 INITIALIZE_PASS_END(DependenceInfoPrinterLegacyPass, "polly-print-dependences",
983                     "Polly - Print dependences", false, false)
984 
985 //===----------------------------------------------------------------------===//
986 
987 const Dependences &
getDependences(Scop * S,Dependences::AnalysisLevel Level)988 DependenceInfoWrapperPass::getDependences(Scop *S,
989                                           Dependences::AnalysisLevel Level) {
990   auto It = ScopToDepsMap.find(S);
991   if (It != ScopToDepsMap.end())
992     if (It->second) {
993       if (It->second->getDependenceLevel() == Level)
994         return *It->second.get();
995     }
996   return recomputeDependences(S, Level);
997 }
998 
recomputeDependences(Scop * S,Dependences::AnalysisLevel Level)999 const Dependences &DependenceInfoWrapperPass::recomputeDependences(
1000     Scop *S, Dependences::AnalysisLevel Level) {
1001   std::unique_ptr<Dependences> D(new Dependences(S->getSharedIslCtx(), Level));
1002   D->calculateDependences(*S);
1003   auto Inserted = ScopToDepsMap.insert(std::make_pair(S, std::move(D)));
1004   return *Inserted.first->second;
1005 }
1006 
runOnFunction(Function & F)1007 bool DependenceInfoWrapperPass::runOnFunction(Function &F) {
1008   auto &SI = *getAnalysis<ScopInfoWrapperPass>().getSI();
1009   for (auto &It : SI) {
1010     assert(It.second && "Invalid SCoP object!");
1011     recomputeDependences(It.second.get(), Dependences::AL_Access);
1012   }
1013   return false;
1014 }
1015 
print(raw_ostream & OS,const Module * M) const1016 void DependenceInfoWrapperPass::print(raw_ostream &OS, const Module *M) const {
1017   for (auto &It : ScopToDepsMap) {
1018     assert((It.first && It.second) && "Invalid Scop or Dependence object!\n");
1019     It.second->print(OS);
1020   }
1021 }
1022 
getAnalysisUsage(AnalysisUsage & AU) const1023 void DependenceInfoWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
1024   AU.addRequiredTransitive<ScopInfoWrapperPass>();
1025   AU.setPreservesAll();
1026 }
1027 
1028 char DependenceInfoWrapperPass::ID = 0;
1029 
createDependenceInfoWrapperPassPass()1030 Pass *polly::createDependenceInfoWrapperPassPass() {
1031   return new DependenceInfoWrapperPass();
1032 }
1033 
1034 INITIALIZE_PASS_BEGIN(
1035     DependenceInfoWrapperPass, "polly-function-dependences",
1036     "Polly - Calculate dependences for all the SCoPs of a function", false,
1037     false)
1038 INITIALIZE_PASS_DEPENDENCY(ScopInfoWrapperPass);
1039 INITIALIZE_PASS_END(
1040     DependenceInfoWrapperPass, "polly-function-dependences",
1041     "Polly - Calculate dependences for all the SCoPs of a function", false,
1042     false)
1043 
1044 //===----------------------------------------------------------------------===//
1045 
1046 namespace {
1047 /// Print result from DependenceInfoWrapperPass.
1048 class DependenceInfoPrinterLegacyFunctionPass final : public FunctionPass {
1049 public:
1050   static char ID;
1051 
DependenceInfoPrinterLegacyFunctionPass()1052   DependenceInfoPrinterLegacyFunctionPass()
1053       : DependenceInfoPrinterLegacyFunctionPass(outs()) {}
1054 
DependenceInfoPrinterLegacyFunctionPass(llvm::raw_ostream & OS)1055   explicit DependenceInfoPrinterLegacyFunctionPass(llvm::raw_ostream &OS)
1056       : FunctionPass(ID), OS(OS) {}
1057 
runOnFunction(Function & F)1058   bool runOnFunction(Function &F) override {
1059     DependenceInfoWrapperPass &P = getAnalysis<DependenceInfoWrapperPass>();
1060 
1061     OS << "Printing analysis '" << P.getPassName() << "' for function '"
1062        << F.getName() << "':\n";
1063     P.print(OS);
1064 
1065     return false;
1066   }
1067 
getAnalysisUsage(AnalysisUsage & AU) const1068   void getAnalysisUsage(AnalysisUsage &AU) const override {
1069     FunctionPass::getAnalysisUsage(AU);
1070     AU.addRequired<DependenceInfoWrapperPass>();
1071     AU.setPreservesAll();
1072   }
1073 
1074 private:
1075   llvm::raw_ostream &OS;
1076 };
1077 
1078 char DependenceInfoPrinterLegacyFunctionPass::ID = 0;
1079 } // namespace
1080 
createDependenceInfoPrinterLegacyFunctionPass(raw_ostream & OS)1081 Pass *polly::createDependenceInfoPrinterLegacyFunctionPass(raw_ostream &OS) {
1082   return new DependenceInfoPrinterLegacyFunctionPass(OS);
1083 }
1084 
1085 INITIALIZE_PASS_BEGIN(
1086     DependenceInfoPrinterLegacyFunctionPass, "polly-print-function-dependences",
1087     "Polly - Print dependences for all the SCoPs of a function", false, false);
1088 INITIALIZE_PASS_DEPENDENCY(DependenceInfoWrapperPass);
1089 INITIALIZE_PASS_END(DependenceInfoPrinterLegacyFunctionPass,
1090                     "polly-print-function-dependences",
1091                     "Polly - Print dependences for all the SCoPs of a function",
1092                     false, false)
1093