1 /*===--------------------------------------------------------------------------
2  *              ATMI (Asynchronous Task and Memory Interface)
3  *
4  * This file is distributed under the MIT License. See LICENSE.txt for details.
5  *===------------------------------------------------------------------------*/
6 #include <gelf.h>
7 #include <libelf.h>
8 
9 #include <cassert>
10 #include <cstdarg>
11 #include <fstream>
12 #include <iomanip>
13 #include <iostream>
14 #include <set>
15 #include <string>
16 
17 #include "internal.h"
18 #include "machine.h"
19 #include "rt.h"
20 
21 #include "msgpack.h"
22 
23 namespace hsa {
24 // Wrap HSA iterate API in a shim that allows passing general callables
25 template <typename C>
26 hsa_status_t executable_iterate_symbols(hsa_executable_t executable, C cb) {
27   auto L = [](hsa_executable_t executable, hsa_executable_symbol_t symbol,
28               void *data) -> hsa_status_t {
29     C *unwrapped = static_cast<C *>(data);
30     return (*unwrapped)(executable, symbol);
31   };
32   return hsa_executable_iterate_symbols(executable, L,
33                                         static_cast<void *>(&cb));
34 }
35 } // namespace hsa
36 
37 typedef unsigned char *address;
38 /*
39  * Note descriptors.
40  */
41 typedef struct {
42   uint32_t n_namesz; /* Length of note's name. */
43   uint32_t n_descsz; /* Length of note's value. */
44   uint32_t n_type;   /* Type of note. */
45   // then name
46   // then padding, optional
47   // then desc, at 4 byte alignment (not 8, despite being elf64)
48 } Elf_Note;
49 
50 // The following include file and following structs/enums
51 // have been replicated on a per-use basis below. For example,
52 // llvm::AMDGPU::HSAMD::Kernel::Metadata has several fields,
53 // but we may care only about kernargSegmentSize_ for now, so
54 // we just include that field in our KernelMD implementation. We
55 // chose this approach to replicate in order to avoid forcing
56 // a dependency on LLVM_INCLUDE_DIR just to compile the runtime.
57 // #include "llvm/Support/AMDGPUMetadata.h"
58 // typedef llvm::AMDGPU::HSAMD::Metadata CodeObjectMD;
59 // typedef llvm::AMDGPU::HSAMD::Kernel::Metadata KernelMD;
60 // typedef llvm::AMDGPU::HSAMD::Kernel::Arg::Metadata KernelArgMD;
61 // using llvm::AMDGPU::HSAMD::AccessQualifier;
62 // using llvm::AMDGPU::HSAMD::AddressSpaceQualifier;
63 // using llvm::AMDGPU::HSAMD::ValueKind;
64 // using llvm::AMDGPU::HSAMD::ValueType;
65 
66 class KernelArgMD {
67 public:
68   enum class ValueKind {
69     HiddenGlobalOffsetX,
70     HiddenGlobalOffsetY,
71     HiddenGlobalOffsetZ,
72     HiddenNone,
73     HiddenPrintfBuffer,
74     HiddenDefaultQueue,
75     HiddenCompletionAction,
76     HiddenMultiGridSyncArg,
77     HiddenHostcallBuffer,
78     Unknown
79   };
80 
81   KernelArgMD()
82       : name_(std::string()), typeName_(std::string()), size_(0), offset_(0),
83         align_(0), valueKind_(ValueKind::Unknown) {}
84 
85   // fields
86   std::string name_;
87   std::string typeName_;
88   uint32_t size_;
89   uint32_t offset_;
90   uint32_t align_;
91   ValueKind valueKind_;
92 };
93 
94 class KernelMD {
95 public:
96   KernelMD() : kernargSegmentSize_(0ull) {}
97 
98   // fields
99   uint64_t kernargSegmentSize_;
100 };
101 
102 static const std::map<std::string, KernelArgMD::ValueKind> ArgValueKind = {
103     //    Including only those fields that are relevant to the runtime.
104     //    {"ByValue", KernelArgMD::ValueKind::ByValue},
105     //    {"GlobalBuffer", KernelArgMD::ValueKind::GlobalBuffer},
106     //    {"DynamicSharedPointer",
107     //    KernelArgMD::ValueKind::DynamicSharedPointer},
108     //    {"Sampler", KernelArgMD::ValueKind::Sampler},
109     //    {"Image", KernelArgMD::ValueKind::Image},
110     //    {"Pipe", KernelArgMD::ValueKind::Pipe},
111     //    {"Queue", KernelArgMD::ValueKind::Queue},
112     {"HiddenGlobalOffsetX", KernelArgMD::ValueKind::HiddenGlobalOffsetX},
113     {"HiddenGlobalOffsetY", KernelArgMD::ValueKind::HiddenGlobalOffsetY},
114     {"HiddenGlobalOffsetZ", KernelArgMD::ValueKind::HiddenGlobalOffsetZ},
115     {"HiddenNone", KernelArgMD::ValueKind::HiddenNone},
116     {"HiddenPrintfBuffer", KernelArgMD::ValueKind::HiddenPrintfBuffer},
117     {"HiddenDefaultQueue", KernelArgMD::ValueKind::HiddenDefaultQueue},
118     {"HiddenCompletionAction", KernelArgMD::ValueKind::HiddenCompletionAction},
119     {"HiddenMultiGridSyncArg", KernelArgMD::ValueKind::HiddenMultiGridSyncArg},
120     {"HiddenHostcallBuffer", KernelArgMD::ValueKind::HiddenHostcallBuffer},
121     // v3
122     //    {"by_value", KernelArgMD::ValueKind::ByValue},
123     //    {"global_buffer", KernelArgMD::ValueKind::GlobalBuffer},
124     //    {"dynamic_shared_pointer",
125     //    KernelArgMD::ValueKind::DynamicSharedPointer},
126     //    {"sampler", KernelArgMD::ValueKind::Sampler},
127     //    {"image", KernelArgMD::ValueKind::Image},
128     //    {"pipe", KernelArgMD::ValueKind::Pipe},
129     //    {"queue", KernelArgMD::ValueKind::Queue},
130     {"hidden_global_offset_x", KernelArgMD::ValueKind::HiddenGlobalOffsetX},
131     {"hidden_global_offset_y", KernelArgMD::ValueKind::HiddenGlobalOffsetY},
132     {"hidden_global_offset_z", KernelArgMD::ValueKind::HiddenGlobalOffsetZ},
133     {"hidden_none", KernelArgMD::ValueKind::HiddenNone},
134     {"hidden_printf_buffer", KernelArgMD::ValueKind::HiddenPrintfBuffer},
135     {"hidden_default_queue", KernelArgMD::ValueKind::HiddenDefaultQueue},
136     {"hidden_completion_action",
137      KernelArgMD::ValueKind::HiddenCompletionAction},
138     {"hidden_multigrid_sync_arg",
139      KernelArgMD::ValueKind::HiddenMultiGridSyncArg},
140     {"hidden_hostcall_buffer", KernelArgMD::ValueKind::HiddenHostcallBuffer},
141 };
142 
143 ATLMachine g_atl_machine;
144 
145 std::vector<hsa_amd_memory_pool_t> atl_gpu_kernarg_pools;
146 
147 /*
148    atlc is all internal global values.
149    The structure atl_context_t is defined in atl_internal.h
150    Most references will use the global structure prefix atlc.
151 */
152 atl_context_t atlc = {.struct_initialized = false};
153 
154 namespace core {
155 
156 hsa_status_t allow_access_to_all_gpu_agents(void *ptr) {
157   std::vector<ATLGPUProcessor> &gpu_procs =
158       g_atl_machine.processors<ATLGPUProcessor>();
159   std::vector<hsa_agent_t> agents;
160   for (uint32_t i = 0; i < gpu_procs.size(); i++) {
161     agents.push_back(gpu_procs[i].agent());
162   }
163   return hsa_amd_agents_allow_access(agents.size(), &agents[0], NULL, ptr);
164 }
165 
166 static void atmi_init_context_structs() {
167   atlc.struct_initialized = true; /* This only gets called one time */
168   atlc.g_hsa_initialized = false;
169   atlc.g_gpu_initialized = false;
170   atlc.g_tasks_initialized = false;
171 }
172 
173 // Implement memory_pool iteration function
174 static hsa_status_t get_memory_pool_info(hsa_amd_memory_pool_t memory_pool,
175                                          void *data) {
176   ATLProcessor *proc = reinterpret_cast<ATLProcessor *>(data);
177   hsa_status_t err = HSA_STATUS_SUCCESS;
178   // Check if the memory_pool is allowed to allocate, i.e. do not return group
179   // memory
180   bool alloc_allowed = false;
181   err = hsa_amd_memory_pool_get_info(
182       memory_pool, HSA_AMD_MEMORY_POOL_INFO_RUNTIME_ALLOC_ALLOWED,
183       &alloc_allowed);
184   if (err != HSA_STATUS_SUCCESS) {
185     printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
186            "Alloc allowed in memory pool check", get_error_string(err));
187     return err;
188   }
189   if (alloc_allowed) {
190     uint32_t global_flag = 0;
191     err = hsa_amd_memory_pool_get_info(
192         memory_pool, HSA_AMD_MEMORY_POOL_INFO_GLOBAL_FLAGS, &global_flag);
193     if (err != HSA_STATUS_SUCCESS) {
194       printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
195              "Get memory pool info", get_error_string(err));
196       return err;
197     }
198     if (HSA_AMD_MEMORY_POOL_GLOBAL_FLAG_FINE_GRAINED & global_flag) {
199       ATLMemory new_mem(memory_pool, *proc, ATMI_MEMTYPE_FINE_GRAINED);
200       proc->addMemory(new_mem);
201       if (HSA_AMD_MEMORY_POOL_GLOBAL_FLAG_KERNARG_INIT & global_flag) {
202         DEBUG_PRINT("GPU kernel args pool handle: %lu\n", memory_pool.handle);
203         atl_gpu_kernarg_pools.push_back(memory_pool);
204       }
205     } else {
206       ATLMemory new_mem(memory_pool, *proc, ATMI_MEMTYPE_COARSE_GRAINED);
207       proc->addMemory(new_mem);
208     }
209   }
210 
211   return err;
212 }
213 
214 static hsa_status_t get_agent_info(hsa_agent_t agent, void *data) {
215   hsa_status_t err = HSA_STATUS_SUCCESS;
216   hsa_device_type_t device_type;
217   err = hsa_agent_get_info(agent, HSA_AGENT_INFO_DEVICE, &device_type);
218   if (err != HSA_STATUS_SUCCESS) {
219     printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
220            "Get device type info", get_error_string(err));
221     return err;
222   }
223   switch (device_type) {
224   case HSA_DEVICE_TYPE_CPU: {
225     ATLCPUProcessor new_proc(agent);
226     err = hsa_amd_agent_iterate_memory_pools(agent, get_memory_pool_info,
227                                              &new_proc);
228     if (err != HSA_STATUS_SUCCESS) {
229       printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
230              "Iterate all memory pools", get_error_string(err));
231       return err;
232     }
233     g_atl_machine.addProcessor(new_proc);
234   } break;
235   case HSA_DEVICE_TYPE_GPU: {
236     hsa_profile_t profile;
237     err = hsa_agent_get_info(agent, HSA_AGENT_INFO_PROFILE, &profile);
238     if (err != HSA_STATUS_SUCCESS) {
239       printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
240              "Query the agent profile", get_error_string(err));
241       return err;
242     }
243     atmi_devtype_t gpu_type;
244     gpu_type =
245         (profile == HSA_PROFILE_FULL) ? ATMI_DEVTYPE_iGPU : ATMI_DEVTYPE_dGPU;
246     ATLGPUProcessor new_proc(agent, gpu_type);
247     err = hsa_amd_agent_iterate_memory_pools(agent, get_memory_pool_info,
248                                              &new_proc);
249     if (err != HSA_STATUS_SUCCESS) {
250       printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
251              "Iterate all memory pools", get_error_string(err));
252       return err;
253     }
254     g_atl_machine.addProcessor(new_proc);
255   } break;
256   case HSA_DEVICE_TYPE_DSP: {
257     err = HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
258   } break;
259   }
260 
261   return err;
262 }
263 
264 hsa_status_t get_fine_grained_region(hsa_region_t region, void *data) {
265   hsa_region_segment_t segment;
266   hsa_region_get_info(region, HSA_REGION_INFO_SEGMENT, &segment);
267   if (segment != HSA_REGION_SEGMENT_GLOBAL) {
268     return HSA_STATUS_SUCCESS;
269   }
270   hsa_region_global_flag_t flags;
271   hsa_region_get_info(region, HSA_REGION_INFO_GLOBAL_FLAGS, &flags);
272   if (flags & HSA_REGION_GLOBAL_FLAG_FINE_GRAINED) {
273     hsa_region_t *ret = reinterpret_cast<hsa_region_t *>(data);
274     *ret = region;
275     return HSA_STATUS_INFO_BREAK;
276   }
277   return HSA_STATUS_SUCCESS;
278 }
279 
280 /* Determines if a memory region can be used for kernarg allocations.  */
281 static hsa_status_t get_kernarg_memory_region(hsa_region_t region, void *data) {
282   hsa_region_segment_t segment;
283   hsa_region_get_info(region, HSA_REGION_INFO_SEGMENT, &segment);
284   if (HSA_REGION_SEGMENT_GLOBAL != segment) {
285     return HSA_STATUS_SUCCESS;
286   }
287 
288   hsa_region_global_flag_t flags;
289   hsa_region_get_info(region, HSA_REGION_INFO_GLOBAL_FLAGS, &flags);
290   if (flags & HSA_REGION_GLOBAL_FLAG_KERNARG) {
291     hsa_region_t *ret = reinterpret_cast<hsa_region_t *>(data);
292     *ret = region;
293     return HSA_STATUS_INFO_BREAK;
294   }
295 
296   return HSA_STATUS_SUCCESS;
297 }
298 
299 static hsa_status_t init_compute_and_memory() {
300   hsa_status_t err;
301 
302   /* Iterate over the agents and pick the gpu agent */
303   err = hsa_iterate_agents(get_agent_info, NULL);
304   if (err == HSA_STATUS_INFO_BREAK) {
305     err = HSA_STATUS_SUCCESS;
306   }
307   if (err != HSA_STATUS_SUCCESS) {
308     printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, "Getting a gpu agent",
309            get_error_string(err));
310     return err;
311   }
312 
313   /* Init all devices or individual device types? */
314   std::vector<ATLCPUProcessor> &cpu_procs =
315       g_atl_machine.processors<ATLCPUProcessor>();
316   std::vector<ATLGPUProcessor> &gpu_procs =
317       g_atl_machine.processors<ATLGPUProcessor>();
318   /* For CPU memory pools, add other devices that can access them directly
319    * or indirectly */
320   for (auto &cpu_proc : cpu_procs) {
321     for (auto &cpu_mem : cpu_proc.memories()) {
322       hsa_amd_memory_pool_t pool = cpu_mem.memory();
323       for (auto &gpu_proc : gpu_procs) {
324         hsa_agent_t agent = gpu_proc.agent();
325         hsa_amd_memory_pool_access_t access;
326         hsa_amd_agent_memory_pool_get_info(
327             agent, pool, HSA_AMD_AGENT_MEMORY_POOL_INFO_ACCESS, &access);
328         if (access != 0) {
329           // this means not NEVER, but could be YES or NO
330           // add this memory pool to the proc
331           gpu_proc.addMemory(cpu_mem);
332         }
333       }
334     }
335   }
336 
337   /* FIXME: are the below combinations of procs and memory pools needed?
338    * all to all compare procs with their memory pools and add those memory
339    * pools that are accessible by the target procs */
340   for (auto &gpu_proc : gpu_procs) {
341     for (auto &gpu_mem : gpu_proc.memories()) {
342       hsa_amd_memory_pool_t pool = gpu_mem.memory();
343       for (auto &cpu_proc : cpu_procs) {
344         hsa_agent_t agent = cpu_proc.agent();
345         hsa_amd_memory_pool_access_t access;
346         hsa_amd_agent_memory_pool_get_info(
347             agent, pool, HSA_AMD_AGENT_MEMORY_POOL_INFO_ACCESS, &access);
348         if (access != 0) {
349           // this means not NEVER, but could be YES or NO
350           // add this memory pool to the proc
351           cpu_proc.addMemory(gpu_mem);
352         }
353       }
354     }
355   }
356 
357   size_t num_procs = cpu_procs.size() + gpu_procs.size();
358   atmi_device_t *all_devices = reinterpret_cast<atmi_device_t *>(
359       malloc(num_procs * sizeof(atmi_device_t)));
360   int num_iGPUs = 0;
361   int num_dGPUs = 0;
362   for (uint32_t i = 0; i < gpu_procs.size(); i++) {
363     if (gpu_procs[i].type() == ATMI_DEVTYPE_iGPU)
364       num_iGPUs++;
365     else
366       num_dGPUs++;
367   }
368   assert(num_iGPUs + num_dGPUs == gpu_procs.size() &&
369          "Number of dGPUs and iGPUs do not add up");
370   DEBUG_PRINT("CPU Agents: %lu\n", cpu_procs.size());
371   DEBUG_PRINT("iGPU Agents: %d\n", num_iGPUs);
372   DEBUG_PRINT("dGPU Agents: %d\n", num_dGPUs);
373   DEBUG_PRINT("GPU Agents: %lu\n", gpu_procs.size());
374 
375   int cpus_begin = 0;
376   int cpus_end = cpu_procs.size();
377   int gpus_begin = cpu_procs.size();
378   int gpus_end = cpu_procs.size() + gpu_procs.size();
379   int proc_index = 0;
380   for (int i = cpus_begin; i < cpus_end; i++) {
381     all_devices[i].type = cpu_procs[proc_index].type();
382 
383     std::vector<ATLMemory> memories = cpu_procs[proc_index].memories();
384     int fine_memories_size = 0;
385     int coarse_memories_size = 0;
386     DEBUG_PRINT("CPU memory types:\t");
387     for (auto &memory : memories) {
388       atmi_memtype_t type = memory.type();
389       if (type == ATMI_MEMTYPE_FINE_GRAINED) {
390         fine_memories_size++;
391         DEBUG_PRINT("Fine\t");
392       } else {
393         coarse_memories_size++;
394         DEBUG_PRINT("Coarse\t");
395       }
396     }
397     DEBUG_PRINT("\nFine Memories : %d", fine_memories_size);
398     DEBUG_PRINT("\tCoarse Memories : %d\n", coarse_memories_size);
399     proc_index++;
400   }
401   proc_index = 0;
402   for (int i = gpus_begin; i < gpus_end; i++) {
403     all_devices[i].type = gpu_procs[proc_index].type();
404 
405     std::vector<ATLMemory> memories = gpu_procs[proc_index].memories();
406     int fine_memories_size = 0;
407     int coarse_memories_size = 0;
408     DEBUG_PRINT("GPU memory types:\t");
409     for (auto &memory : memories) {
410       atmi_memtype_t type = memory.type();
411       if (type == ATMI_MEMTYPE_FINE_GRAINED) {
412         fine_memories_size++;
413         DEBUG_PRINT("Fine\t");
414       } else {
415         coarse_memories_size++;
416         DEBUG_PRINT("Coarse\t");
417       }
418     }
419     DEBUG_PRINT("\nFine Memories : %d", fine_memories_size);
420     DEBUG_PRINT("\tCoarse Memories : %d\n", coarse_memories_size);
421     proc_index++;
422   }
423   proc_index = 0;
424   hsa_region_t atl_cpu_kernarg_region;
425   atl_cpu_kernarg_region.handle = (uint64_t)-1;
426   if (cpu_procs.size() > 0) {
427     err = hsa_agent_iterate_regions(
428         cpu_procs[0].agent(), get_fine_grained_region, &atl_cpu_kernarg_region);
429     if (err == HSA_STATUS_INFO_BREAK) {
430       err = HSA_STATUS_SUCCESS;
431     }
432     err = (atl_cpu_kernarg_region.handle == (uint64_t)-1) ? HSA_STATUS_ERROR
433                                                           : HSA_STATUS_SUCCESS;
434     if (err != HSA_STATUS_SUCCESS) {
435       printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
436              "Finding a CPU kernarg memory region handle",
437              get_error_string(err));
438       return err;
439     }
440   }
441   hsa_region_t atl_gpu_kernarg_region;
442   /* Find a memory region that supports kernel arguments.  */
443   atl_gpu_kernarg_region.handle = (uint64_t)-1;
444   if (gpu_procs.size() > 0) {
445     hsa_agent_iterate_regions(gpu_procs[0].agent(), get_kernarg_memory_region,
446                               &atl_gpu_kernarg_region);
447     err = (atl_gpu_kernarg_region.handle == (uint64_t)-1) ? HSA_STATUS_ERROR
448                                                           : HSA_STATUS_SUCCESS;
449     if (err != HSA_STATUS_SUCCESS) {
450       printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
451              "Finding a kernarg memory region", get_error_string(err));
452       return err;
453     }
454   }
455   if (num_procs > 0)
456     return HSA_STATUS_SUCCESS;
457   else
458     return HSA_STATUS_ERROR_NOT_INITIALIZED;
459 }
460 
461 hsa_status_t init_hsa() {
462   if (atlc.g_hsa_initialized == false) {
463     DEBUG_PRINT("Initializing HSA...");
464     hsa_status_t err = hsa_init();
465     if (err != HSA_STATUS_SUCCESS) {
466       printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
467              "Initializing the hsa runtime", get_error_string(err));
468       return err;
469     }
470     if (err != HSA_STATUS_SUCCESS)
471       return err;
472 
473     err = init_compute_and_memory();
474     if (err != HSA_STATUS_SUCCESS)
475       return err;
476     if (err != HSA_STATUS_SUCCESS) {
477       printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
478              "After initializing compute and memory", get_error_string(err));
479       return err;
480     }
481 
482     atlc.g_hsa_initialized = true;
483     DEBUG_PRINT("done\n");
484   }
485   return HSA_STATUS_SUCCESS;
486 }
487 
488 void init_tasks() {
489   if (atlc.g_tasks_initialized != false)
490     return;
491   std::vector<hsa_agent_t> gpu_agents;
492   int gpu_count = g_atl_machine.processorCount<ATLGPUProcessor>();
493   for (int gpu = 0; gpu < gpu_count; gpu++) {
494     atmi_place_t place = ATMI_PLACE_GPU(0, gpu);
495     ATLGPUProcessor &proc = get_processor<ATLGPUProcessor>(place);
496     gpu_agents.push_back(proc.agent());
497   }
498   atlc.g_tasks_initialized = true;
499 }
500 
501 hsa_status_t callbackEvent(const hsa_amd_event_t *event, void *data) {
502 #if (ROCM_VERSION_MAJOR >= 3) ||                                               \
503     (ROCM_VERSION_MAJOR >= 2 && ROCM_VERSION_MINOR >= 3)
504   if (event->event_type == HSA_AMD_GPU_MEMORY_FAULT_EVENT) {
505 #else
506   if (event->event_type == GPU_MEMORY_FAULT_EVENT) {
507 #endif
508     hsa_amd_gpu_memory_fault_info_t memory_fault = event->memory_fault;
509     // memory_fault.agent
510     // memory_fault.virtual_address
511     // memory_fault.fault_reason_mask
512     // fprintf("[GPU Error at %p: Reason is ", memory_fault.virtual_address);
513     std::stringstream stream;
514     stream << std::hex << (uintptr_t)memory_fault.virtual_address;
515     std::string addr("0x" + stream.str());
516 
517     std::string err_string = "[GPU Memory Error] Addr: " + addr;
518     err_string += " Reason: ";
519     if (!(memory_fault.fault_reason_mask & 0x00111111)) {
520       err_string += "No Idea! ";
521     } else {
522       if (memory_fault.fault_reason_mask & 0x00000001)
523         err_string += "Page not present or supervisor privilege. ";
524       if (memory_fault.fault_reason_mask & 0x00000010)
525         err_string += "Write access to a read-only page. ";
526       if (memory_fault.fault_reason_mask & 0x00000100)
527         err_string += "Execute access to a page marked NX. ";
528       if (memory_fault.fault_reason_mask & 0x00001000)
529         err_string += "Host access only. ";
530       if (memory_fault.fault_reason_mask & 0x00010000)
531         err_string += "ECC failure (if supported by HW). ";
532       if (memory_fault.fault_reason_mask & 0x00100000)
533         err_string += "Can't determine the exact fault address. ";
534     }
535     fprintf(stderr, "%s\n", err_string.c_str());
536     return HSA_STATUS_ERROR;
537   }
538   return HSA_STATUS_SUCCESS;
539 }
540 
541 hsa_status_t atl_init_gpu_context() {
542   if (atlc.struct_initialized == false)
543     atmi_init_context_structs();
544   if (atlc.g_gpu_initialized != false)
545     return HSA_STATUS_SUCCESS;
546 
547   hsa_status_t err;
548   err = init_hsa();
549   if (err != HSA_STATUS_SUCCESS)
550     return HSA_STATUS_ERROR;
551 
552   err = hsa_amd_register_system_event_handler(callbackEvent, NULL);
553   if (err != HSA_STATUS_SUCCESS) {
554     printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
555            "Registering the system for memory faults", get_error_string(err));
556     return HSA_STATUS_ERROR;
557   }
558 
559   init_tasks();
560   atlc.g_gpu_initialized = true;
561   return HSA_STATUS_SUCCESS;
562 }
563 
564 static bool isImplicit(KernelArgMD::ValueKind value_kind) {
565   switch (value_kind) {
566   case KernelArgMD::ValueKind::HiddenGlobalOffsetX:
567   case KernelArgMD::ValueKind::HiddenGlobalOffsetY:
568   case KernelArgMD::ValueKind::HiddenGlobalOffsetZ:
569   case KernelArgMD::ValueKind::HiddenNone:
570   case KernelArgMD::ValueKind::HiddenPrintfBuffer:
571   case KernelArgMD::ValueKind::HiddenDefaultQueue:
572   case KernelArgMD::ValueKind::HiddenCompletionAction:
573   case KernelArgMD::ValueKind::HiddenMultiGridSyncArg:
574   case KernelArgMD::ValueKind::HiddenHostcallBuffer:
575     return true;
576   default:
577     return false;
578   }
579 }
580 
581 static std::pair<unsigned char *, unsigned char *>
582 find_metadata(void *binary, size_t binSize) {
583   std::pair<unsigned char *, unsigned char *> failure = {nullptr, nullptr};
584 
585   Elf *e = elf_memory(static_cast<char *>(binary), binSize);
586   if (elf_kind(e) != ELF_K_ELF) {
587     return failure;
588   }
589 
590   size_t numpHdrs;
591   if (elf_getphdrnum(e, &numpHdrs) != 0) {
592     return failure;
593   }
594 
595   for (size_t i = 0; i < numpHdrs; ++i) {
596     GElf_Phdr pHdr;
597     if (gelf_getphdr(e, i, &pHdr) != &pHdr) {
598       continue;
599     }
600     // Look for the runtime metadata note
601     if (pHdr.p_type == PT_NOTE && pHdr.p_align >= sizeof(int)) {
602       // Iterate over the notes in this segment
603       address ptr = (address)binary + pHdr.p_offset;
604       address segmentEnd = ptr + pHdr.p_filesz;
605 
606       while (ptr < segmentEnd) {
607         Elf_Note *note = reinterpret_cast<Elf_Note *>(ptr);
608         address name = (address)&note[1];
609 
610         if (note->n_type == 7 || note->n_type == 8) {
611           return failure;
612         } else if (note->n_type == 10 /* NT_AMD_AMDGPU_HSA_METADATA */ &&
613                    note->n_namesz == sizeof "AMD" &&
614                    !memcmp(name, "AMD", note->n_namesz)) {
615           // code object v2 uses yaml metadata, no longer supported
616           return failure;
617         } else if (note->n_type == 32 /* NT_AMDGPU_METADATA */ &&
618                    note->n_namesz == sizeof "AMDGPU" &&
619                    !memcmp(name, "AMDGPU", note->n_namesz)) {
620 
621           // n_descsz = 485
622           // value is padded to 4 byte alignment, may want to move end up to
623           // match
624           size_t offset = sizeof(uint32_t) * 3 /* fields */
625                           + sizeof("AMDGPU")   /* name */
626                           + 1 /* padding to 4 byte alignment */;
627 
628           // Including the trailing padding means both pointers are 4 bytes
629           // aligned, which may be useful later.
630           unsigned char *metadata_start = (unsigned char *)ptr + offset;
631           unsigned char *metadata_end =
632               metadata_start + core::alignUp(note->n_descsz, 4);
633           return {metadata_start, metadata_end};
634         }
635         ptr += sizeof(*note) + core::alignUp(note->n_namesz, sizeof(int)) +
636                core::alignUp(note->n_descsz, sizeof(int));
637       }
638     }
639   }
640 
641   return failure;
642 }
643 
644 namespace {
645 int map_lookup_array(msgpack::byte_range message, const char *needle,
646                      msgpack::byte_range *res, uint64_t *size) {
647   unsigned count = 0;
648   struct s : msgpack::functors_defaults<s> {
649     s(unsigned &count, uint64_t *size) : count(count), size(size) {}
650     unsigned &count;
651     uint64_t *size;
652     const unsigned char *handle_array(uint64_t N, msgpack::byte_range bytes) {
653       count++;
654       *size = N;
655       return bytes.end;
656     }
657   };
658 
659   msgpack::foreach_map(message,
660                        [&](msgpack::byte_range key, msgpack::byte_range value) {
661                          if (msgpack::message_is_string(key, needle)) {
662                            // If the message is an array, record number of
663                            // elements in *size
664                            msgpack::handle_msgpack<s>(value, {count, size});
665                            // return the whole array
666                            *res = value;
667                          }
668                        });
669   // Only claim success if exactly one key/array pair matched
670   return count != 1;
671 }
672 
673 int map_lookup_string(msgpack::byte_range message, const char *needle,
674                       std::string *res) {
675   unsigned count = 0;
676   struct s : public msgpack::functors_defaults<s> {
677     s(unsigned &count, std::string *res) : count(count), res(res) {}
678     unsigned &count;
679     std::string *res;
680     void handle_string(size_t N, const unsigned char *str) {
681       count++;
682       *res = std::string(str, str + N);
683     }
684   };
685   msgpack::foreach_map(message,
686                        [&](msgpack::byte_range key, msgpack::byte_range value) {
687                          if (msgpack::message_is_string(key, needle)) {
688                            msgpack::handle_msgpack<s>(value, {count, res});
689                          }
690                        });
691   return count != 1;
692 }
693 
694 int map_lookup_uint64_t(msgpack::byte_range message, const char *needle,
695                         uint64_t *res) {
696   unsigned count = 0;
697   msgpack::foreach_map(message,
698                        [&](msgpack::byte_range key, msgpack::byte_range value) {
699                          if (msgpack::message_is_string(key, needle)) {
700                            msgpack::foronly_unsigned(value, [&](uint64_t x) {
701                              count++;
702                              *res = x;
703                            });
704                          }
705                        });
706   return count != 1;
707 }
708 
709 int array_lookup_element(msgpack::byte_range message, uint64_t elt,
710                          msgpack::byte_range *res) {
711   int rc = 1;
712   uint64_t i = 0;
713   msgpack::foreach_array(message, [&](msgpack::byte_range value) {
714     if (i == elt) {
715       *res = value;
716       rc = 0;
717     }
718     i++;
719   });
720   return rc;
721 }
722 
723 int populate_kernelArgMD(msgpack::byte_range args_element,
724                          KernelArgMD *kernelarg) {
725   using namespace msgpack;
726   int error = 0;
727   foreach_map(args_element, [&](byte_range key, byte_range value) -> void {
728     if (message_is_string(key, ".name")) {
729       foronly_string(value, [&](size_t N, const unsigned char *str) {
730         kernelarg->name_ = std::string(str, str + N);
731       });
732     } else if (message_is_string(key, ".type_name")) {
733       foronly_string(value, [&](size_t N, const unsigned char *str) {
734         kernelarg->typeName_ = std::string(str, str + N);
735       });
736     } else if (message_is_string(key, ".size")) {
737       foronly_unsigned(value, [&](uint64_t x) { kernelarg->size_ = x; });
738     } else if (message_is_string(key, ".offset")) {
739       foronly_unsigned(value, [&](uint64_t x) { kernelarg->offset_ = x; });
740     } else if (message_is_string(key, ".value_kind")) {
741       foronly_string(value, [&](size_t N, const unsigned char *str) {
742         std::string s = std::string(str, str + N);
743         auto itValueKind = ArgValueKind.find(s);
744         if (itValueKind != ArgValueKind.end()) {
745           kernelarg->valueKind_ = itValueKind->second;
746         }
747       });
748     }
749   });
750   return error;
751 }
752 } // namespace
753 
754 static hsa_status_t get_code_object_custom_metadata(
755     void *binary, size_t binSize, int gpu,
756     std::map<std::string, atl_kernel_info_t> &KernelInfoTable) {
757   // parse code object with different keys from v2
758   // also, the kernel name is not the same as the symbol name -- so a
759   // symbol->name map is needed
760 
761   std::pair<unsigned char *, unsigned char *> metadata =
762       find_metadata(binary, binSize);
763   if (!metadata.first) {
764     return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
765   }
766 
767   uint64_t kernelsSize = 0;
768   int msgpack_errors = 0;
769   msgpack::byte_range kernel_array;
770   msgpack_errors =
771       map_lookup_array({metadata.first, metadata.second}, "amdhsa.kernels",
772                        &kernel_array, &kernelsSize);
773   if (msgpack_errors != 0) {
774     printf("[%s:%d] %s failed\n", __FILE__, __LINE__,
775            "kernels lookup in program metadata");
776     return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
777   }
778 
779   for (size_t i = 0; i < kernelsSize; i++) {
780     assert(msgpack_errors == 0);
781     std::string kernelName;
782     std::string symbolName;
783 
784     msgpack::byte_range element;
785     msgpack_errors += array_lookup_element(kernel_array, i, &element);
786     if (msgpack_errors != 0) {
787       printf("[%s:%d] %s failed\n", __FILE__, __LINE__,
788              "element lookup in kernel metadata");
789       return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
790     }
791 
792     msgpack_errors += map_lookup_string(element, ".name", &kernelName);
793     msgpack_errors += map_lookup_string(element, ".symbol", &symbolName);
794     if (msgpack_errors != 0) {
795       printf("[%s:%d] %s failed\n", __FILE__, __LINE__,
796              "strings lookup in kernel metadata");
797       return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
798     }
799 
800     // Make sure that kernelName + ".kd" == symbolName
801     if ((kernelName + ".kd") != symbolName) {
802       printf("[%s:%d] Kernel name mismatching symbol: %s != %s + .kd\n",
803              __FILE__, __LINE__, symbolName.c_str(), kernelName.c_str());
804       return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
805     }
806 
807     atl_kernel_info_t info = {0, 0, 0, 0, 0, 0, 0, 0, 0, {}, {}, {}};
808 
809     uint64_t sgpr_count, vgpr_count, sgpr_spill_count, vgpr_spill_count;
810     msgpack_errors += map_lookup_uint64_t(element, ".sgpr_count", &sgpr_count);
811     if (msgpack_errors != 0) {
812       printf("[%s:%d] %s failed\n", __FILE__, __LINE__,
813              "sgpr count metadata lookup in kernel metadata");
814       return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
815     }
816 
817     info.sgpr_count = sgpr_count;
818 
819     msgpack_errors += map_lookup_uint64_t(element, ".vgpr_count", &vgpr_count);
820     if (msgpack_errors != 0) {
821       printf("[%s:%d] %s failed\n", __FILE__, __LINE__,
822              "vgpr count metadata lookup in kernel metadata");
823       return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
824     }
825 
826     info.vgpr_count = vgpr_count;
827 
828     msgpack_errors +=
829         map_lookup_uint64_t(element, ".sgpr_spill_count", &sgpr_spill_count);
830     if (msgpack_errors != 0) {
831       printf("[%s:%d] %s failed\n", __FILE__, __LINE__,
832              "sgpr spill count metadata lookup in kernel metadata");
833       return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
834     }
835 
836     info.sgpr_spill_count = sgpr_spill_count;
837 
838     msgpack_errors +=
839         map_lookup_uint64_t(element, ".vgpr_spill_count", &vgpr_spill_count);
840     if (msgpack_errors != 0) {
841       printf("[%s:%d] %s failed\n", __FILE__, __LINE__,
842              "vgpr spill count metadata lookup in kernel metadata");
843       return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
844     }
845 
846     info.vgpr_spill_count = vgpr_spill_count;
847 
848     size_t kernel_explicit_args_size = 0;
849     uint64_t kernel_segment_size;
850     msgpack_errors += map_lookup_uint64_t(element, ".kernarg_segment_size",
851                                           &kernel_segment_size);
852     if (msgpack_errors != 0) {
853       printf("[%s:%d] %s failed\n", __FILE__, __LINE__,
854              "kernarg segment size metadata lookup in kernel metadata");
855       return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
856     }
857 
858     bool hasHiddenArgs = false;
859     if (kernel_segment_size > 0) {
860       uint64_t argsSize;
861       size_t offset = 0;
862 
863       msgpack::byte_range args_array;
864       msgpack_errors +=
865           map_lookup_array(element, ".args", &args_array, &argsSize);
866       if (msgpack_errors != 0) {
867         printf("[%s:%d] %s failed\n", __FILE__, __LINE__,
868                "kernel args metadata lookup in kernel metadata");
869         return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
870       }
871 
872       info.num_args = argsSize;
873 
874       for (size_t i = 0; i < argsSize; ++i) {
875         KernelArgMD lcArg;
876 
877         msgpack::byte_range args_element;
878         msgpack_errors += array_lookup_element(args_array, i, &args_element);
879         if (msgpack_errors != 0) {
880           printf("[%s:%d] %s failed\n", __FILE__, __LINE__,
881                  "iterate args map in kernel args metadata");
882           return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
883         }
884 
885         msgpack_errors += populate_kernelArgMD(args_element, &lcArg);
886         if (msgpack_errors != 0) {
887           printf("[%s:%d] %s failed\n", __FILE__, __LINE__,
888                  "iterate args map in kernel args metadata");
889           return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
890         }
891         // populate info with sizes and offsets
892         info.arg_sizes.push_back(lcArg.size_);
893         // v3 has offset field and not align field
894         size_t new_offset = lcArg.offset_;
895         size_t padding = new_offset - offset;
896         offset = new_offset;
897         info.arg_offsets.push_back(lcArg.offset_);
898         DEBUG_PRINT("Arg[%lu] \"%s\" (%u, %u)\n", i, lcArg.name_.c_str(),
899                     lcArg.size_, lcArg.offset_);
900         offset += lcArg.size_;
901 
902         // check if the arg is a hidden/implicit arg
903         // this logic assumes that all hidden args are 8-byte aligned
904         if (!isImplicit(lcArg.valueKind_)) {
905           kernel_explicit_args_size += lcArg.size_;
906         } else {
907           hasHiddenArgs = true;
908         }
909         kernel_explicit_args_size += padding;
910       }
911     }
912 
913     // add size of implicit args, e.g.: offset x, y and z and pipe pointer, but
914     // in ATMI, do not count the compiler set implicit args, but set your own
915     // implicit args by discounting the compiler set implicit args
916     info.kernel_segment_size =
917         (hasHiddenArgs ? kernel_explicit_args_size : kernel_segment_size) +
918         sizeof(atmi_implicit_args_t);
919     DEBUG_PRINT("[%s: kernarg seg size] (%lu --> %u)\n", kernelName.c_str(),
920                 kernel_segment_size, info.kernel_segment_size);
921 
922     // kernel received, now add it to the kernel info table
923     KernelInfoTable[kernelName] = info;
924   }
925 
926   return HSA_STATUS_SUCCESS;
927 }
928 
929 static hsa_status_t
930 populate_InfoTables(hsa_executable_symbol_t symbol, int gpu,
931                     std::map<std::string, atl_kernel_info_t> &KernelInfoTable,
932                     std::map<std::string, atl_symbol_info_t> &SymbolInfoTable) {
933   hsa_symbol_kind_t type;
934 
935   uint32_t name_length;
936   hsa_status_t err;
937   err = hsa_executable_symbol_get_info(symbol, HSA_EXECUTABLE_SYMBOL_INFO_TYPE,
938                                        &type);
939   if (err != HSA_STATUS_SUCCESS) {
940     printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
941            "Symbol info extraction", get_error_string(err));
942     return err;
943   }
944   DEBUG_PRINT("Exec Symbol type: %d\n", type);
945   if (type == HSA_SYMBOL_KIND_KERNEL) {
946     err = hsa_executable_symbol_get_info(
947         symbol, HSA_EXECUTABLE_SYMBOL_INFO_NAME_LENGTH, &name_length);
948     if (err != HSA_STATUS_SUCCESS) {
949       printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
950              "Symbol info extraction", get_error_string(err));
951       return err;
952     }
953     char *name = reinterpret_cast<char *>(malloc(name_length + 1));
954     err = hsa_executable_symbol_get_info(symbol,
955                                          HSA_EXECUTABLE_SYMBOL_INFO_NAME, name);
956     if (err != HSA_STATUS_SUCCESS) {
957       printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
958              "Symbol info extraction", get_error_string(err));
959       return err;
960     }
961     // remove the suffix .kd from symbol name.
962     name[name_length - 3] = 0;
963 
964     atl_kernel_info_t info;
965     std::string kernelName(name);
966     // by now, the kernel info table should already have an entry
967     // because the non-ROCr custom code object parsing is called before
968     // iterating over the code object symbols using ROCr
969     if (KernelInfoTable.find(kernelName) == KernelInfoTable.end()) {
970       if (HSA_STATUS_ERROR_INVALID_CODE_OBJECT != HSA_STATUS_SUCCESS) {
971         printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
972                "Finding the entry kernel info table",
973                get_error_string(HSA_STATUS_ERROR_INVALID_CODE_OBJECT));
974         exit(1);
975       }
976     }
977     // found, so assign and update
978     info = KernelInfoTable[kernelName];
979 
980     /* Extract dispatch information from the symbol */
981     err = hsa_executable_symbol_get_info(
982         symbol, HSA_EXECUTABLE_SYMBOL_INFO_KERNEL_OBJECT,
983         &(info.kernel_object));
984     if (err != HSA_STATUS_SUCCESS) {
985       printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
986              "Extracting the symbol from the executable",
987              get_error_string(err));
988       return err;
989     }
990     err = hsa_executable_symbol_get_info(
991         symbol, HSA_EXECUTABLE_SYMBOL_INFO_KERNEL_GROUP_SEGMENT_SIZE,
992         &(info.group_segment_size));
993     if (err != HSA_STATUS_SUCCESS) {
994       printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
995              "Extracting the group segment size from the executable",
996              get_error_string(err));
997       return err;
998     }
999     err = hsa_executable_symbol_get_info(
1000         symbol, HSA_EXECUTABLE_SYMBOL_INFO_KERNEL_PRIVATE_SEGMENT_SIZE,
1001         &(info.private_segment_size));
1002     if (err != HSA_STATUS_SUCCESS) {
1003       printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
1004              "Extracting the private segment from the executable",
1005              get_error_string(err));
1006       return err;
1007     }
1008 
1009     DEBUG_PRINT(
1010         "Kernel %s --> %lx symbol %u group segsize %u pvt segsize %u bytes "
1011         "kernarg\n",
1012         kernelName.c_str(), info.kernel_object, info.group_segment_size,
1013         info.private_segment_size, info.kernel_segment_size);
1014 
1015     // assign it back to the kernel info table
1016     KernelInfoTable[kernelName] = info;
1017     free(name);
1018   } else if (type == HSA_SYMBOL_KIND_VARIABLE) {
1019     err = hsa_executable_symbol_get_info(
1020         symbol, HSA_EXECUTABLE_SYMBOL_INFO_NAME_LENGTH, &name_length);
1021     if (err != HSA_STATUS_SUCCESS) {
1022       printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
1023              "Symbol info extraction", get_error_string(err));
1024       return err;
1025     }
1026     char *name = reinterpret_cast<char *>(malloc(name_length + 1));
1027     err = hsa_executable_symbol_get_info(symbol,
1028                                          HSA_EXECUTABLE_SYMBOL_INFO_NAME, name);
1029     if (err != HSA_STATUS_SUCCESS) {
1030       printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
1031              "Symbol info extraction", get_error_string(err));
1032       return err;
1033     }
1034     name[name_length] = 0;
1035 
1036     atl_symbol_info_t info;
1037 
1038     err = hsa_executable_symbol_get_info(
1039         symbol, HSA_EXECUTABLE_SYMBOL_INFO_VARIABLE_ADDRESS, &(info.addr));
1040     if (err != HSA_STATUS_SUCCESS) {
1041       printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
1042              "Symbol info address extraction", get_error_string(err));
1043       return err;
1044     }
1045 
1046     err = hsa_executable_symbol_get_info(
1047         symbol, HSA_EXECUTABLE_SYMBOL_INFO_VARIABLE_SIZE, &(info.size));
1048     if (err != HSA_STATUS_SUCCESS) {
1049       printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
1050              "Symbol info size extraction", get_error_string(err));
1051       return err;
1052     }
1053 
1054     DEBUG_PRINT("Symbol %s = %p (%u bytes)\n", name, (void *)info.addr,
1055                 info.size);
1056     err = register_allocation(reinterpret_cast<void *>(info.addr),
1057                               (size_t)info.size, ATMI_DEVTYPE_GPU);
1058     if (err != HSA_STATUS_SUCCESS) {
1059       return err;
1060     }
1061     SymbolInfoTable[std::string(name)] = info;
1062     free(name);
1063   } else {
1064     DEBUG_PRINT("Symbol is an indirect function\n");
1065   }
1066   return HSA_STATUS_SUCCESS;
1067 }
1068 
1069 hsa_status_t RegisterModuleFromMemory(
1070     std::map<std::string, atl_kernel_info_t> &KernelInfoTable,
1071     std::map<std::string, atl_symbol_info_t> &SymbolInfoTable,
1072     void *module_bytes, size_t module_size, atmi_place_t place,
1073     hsa_status_t (*on_deserialized_data)(void *data, size_t size,
1074                                          void *cb_state),
1075     void *cb_state, std::vector<hsa_executable_t> &HSAExecutables) {
1076   hsa_status_t err;
1077   int gpu = place.device_id;
1078   assert(gpu >= 0);
1079 
1080   DEBUG_PRINT("Trying to load module to GPU-%d\n", gpu);
1081   ATLGPUProcessor &proc = get_processor<ATLGPUProcessor>(place);
1082   hsa_agent_t agent = proc.agent();
1083   hsa_executable_t executable = {0};
1084   hsa_profile_t agent_profile;
1085 
1086   err = hsa_agent_get_info(agent, HSA_AGENT_INFO_PROFILE, &agent_profile);
1087   if (err != HSA_STATUS_SUCCESS) {
1088     printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
1089            "Query the agent profile", get_error_string(err));
1090     return HSA_STATUS_ERROR;
1091   }
1092   // FIXME: Assume that every profile is FULL until we understand how to build
1093   // GCN with base profile
1094   agent_profile = HSA_PROFILE_FULL;
1095   /* Create the empty executable.  */
1096   err = hsa_executable_create(agent_profile, HSA_EXECUTABLE_STATE_UNFROZEN, "",
1097                               &executable);
1098   if (err != HSA_STATUS_SUCCESS) {
1099     printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
1100            "Create the executable", get_error_string(err));
1101     return HSA_STATUS_ERROR;
1102   }
1103 
1104   bool module_load_success = false;
1105   do // Existing control flow used continue, preserve that for this patch
1106   {
1107     {
1108       // Some metadata info is not available through ROCr API, so use custom
1109       // code object metadata parsing to collect such metadata info
1110 
1111       err = get_code_object_custom_metadata(module_bytes, module_size, gpu,
1112                                             KernelInfoTable);
1113       if (err != HSA_STATUS_SUCCESS) {
1114         DEBUG_PRINT("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
1115                     "Getting custom code object metadata",
1116                     get_error_string(err));
1117         continue;
1118       }
1119 
1120       // Deserialize code object.
1121       hsa_code_object_t code_object = {0};
1122       err = hsa_code_object_deserialize(module_bytes, module_size, NULL,
1123                                         &code_object);
1124       if (err != HSA_STATUS_SUCCESS) {
1125         DEBUG_PRINT("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
1126                     "Code Object Deserialization", get_error_string(err));
1127         continue;
1128       }
1129       assert(0 != code_object.handle);
1130 
1131       // Mutating the device image here avoids another allocation & memcpy
1132       void *code_object_alloc_data =
1133           reinterpret_cast<void *>(code_object.handle);
1134       hsa_status_t atmi_err =
1135           on_deserialized_data(code_object_alloc_data, module_size, cb_state);
1136       if (atmi_err != HSA_STATUS_SUCCESS) {
1137         printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
1138                "Error in deserialized_data callback",
1139                get_atmi_error_string(atmi_err));
1140         return atmi_err;
1141       }
1142 
1143       /* Load the code object.  */
1144       err =
1145           hsa_executable_load_code_object(executable, agent, code_object, NULL);
1146       if (err != HSA_STATUS_SUCCESS) {
1147         DEBUG_PRINT("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
1148                     "Loading the code object", get_error_string(err));
1149         continue;
1150       }
1151 
1152       // cannot iterate over symbols until executable is frozen
1153     }
1154     module_load_success = true;
1155   } while (0);
1156   DEBUG_PRINT("Modules loaded successful? %d\n", module_load_success);
1157   if (module_load_success) {
1158     /* Freeze the executable; it can now be queried for symbols.  */
1159     err = hsa_executable_freeze(executable, "");
1160     if (err != HSA_STATUS_SUCCESS) {
1161       printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
1162              "Freeze the executable", get_error_string(err));
1163       return HSA_STATUS_ERROR;
1164     }
1165 
1166     err = hsa::executable_iterate_symbols(
1167         executable,
1168         [&](hsa_executable_t, hsa_executable_symbol_t symbol) -> hsa_status_t {
1169           return populate_InfoTables(symbol, gpu, KernelInfoTable,
1170                                      SymbolInfoTable);
1171         });
1172     if (err != HSA_STATUS_SUCCESS) {
1173       printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
1174              "Iterating over symbols for execuatable", get_error_string(err));
1175       return HSA_STATUS_ERROR;
1176     }
1177 
1178     // save the executable and destroy during finalize
1179     HSAExecutables.push_back(executable);
1180     return HSA_STATUS_SUCCESS;
1181   } else {
1182     return HSA_STATUS_ERROR;
1183   }
1184 }
1185 
1186 } // namespace core
1187