1 //===--- amdgpu/impl/system.cpp ----------------------------------- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 #include <libelf.h>
9
10 #include <cassert>
11 #include <sstream>
12 #include <string>
13
14 #include "internal.h"
15 #include "rt.h"
16
17 #include "msgpack.h"
18
19 namespace hsa {
20 // Wrap HSA iterate API in a shim that allows passing general callables
21 template <typename C>
executable_iterate_symbols(hsa_executable_t executable,C cb)22 hsa_status_t executable_iterate_symbols(hsa_executable_t executable, C cb) {
23 auto L = [](hsa_executable_t executable, hsa_executable_symbol_t symbol,
24 void *data) -> hsa_status_t {
25 C *unwrapped = static_cast<C *>(data);
26 return (*unwrapped)(executable, symbol);
27 };
28 return hsa_executable_iterate_symbols(executable, L,
29 static_cast<void *>(&cb));
30 }
31 } // namespace hsa
32
33 typedef unsigned char *address;
34 /*
35 * Note descriptors.
36 */
37 // FreeBSD already declares Elf_Note (indirectly via <libelf.h>)
38 #if !defined(__FreeBSD__)
39 typedef struct {
40 uint32_t n_namesz; /* Length of note's name. */
41 uint32_t n_descsz; /* Length of note's value. */
42 uint32_t n_type; /* Type of note. */
43 // then name
44 // then padding, optional
45 // then desc, at 4 byte alignment (not 8, despite being elf64)
46 } Elf_Note;
47 #endif
48
49 class KernelArgMD {
50 public:
51 enum class ValueKind {
52 HiddenGlobalOffsetX,
53 HiddenGlobalOffsetY,
54 HiddenGlobalOffsetZ,
55 HiddenNone,
56 HiddenPrintfBuffer,
57 HiddenDefaultQueue,
58 HiddenCompletionAction,
59 HiddenMultiGridSyncArg,
60 HiddenHostcallBuffer,
61 HiddenHeapV1,
62 Unknown
63 };
64
KernelArgMD()65 KernelArgMD()
66 : name_(std::string()), size_(0), offset_(0),
67 valueKind_(ValueKind::Unknown) {}
68
69 // fields
70 std::string name_;
71 uint32_t size_;
72 uint32_t offset_;
73 ValueKind valueKind_;
74 };
75
76 static const std::map<std::string, KernelArgMD::ValueKind> ArgValueKind = {
77 // v3
78 // {"by_value", KernelArgMD::ValueKind::ByValue},
79 // {"global_buffer", KernelArgMD::ValueKind::GlobalBuffer},
80 // {"dynamic_shared_pointer",
81 // KernelArgMD::ValueKind::DynamicSharedPointer},
82 // {"sampler", KernelArgMD::ValueKind::Sampler},
83 // {"image", KernelArgMD::ValueKind::Image},
84 // {"pipe", KernelArgMD::ValueKind::Pipe},
85 // {"queue", KernelArgMD::ValueKind::Queue},
86 {"hidden_global_offset_x", KernelArgMD::ValueKind::HiddenGlobalOffsetX},
87 {"hidden_global_offset_y", KernelArgMD::ValueKind::HiddenGlobalOffsetY},
88 {"hidden_global_offset_z", KernelArgMD::ValueKind::HiddenGlobalOffsetZ},
89 {"hidden_none", KernelArgMD::ValueKind::HiddenNone},
90 {"hidden_printf_buffer", KernelArgMD::ValueKind::HiddenPrintfBuffer},
91 {"hidden_default_queue", KernelArgMD::ValueKind::HiddenDefaultQueue},
92 {"hidden_completion_action",
93 KernelArgMD::ValueKind::HiddenCompletionAction},
94 {"hidden_multigrid_sync_arg",
95 KernelArgMD::ValueKind::HiddenMultiGridSyncArg},
96 {"hidden_hostcall_buffer", KernelArgMD::ValueKind::HiddenHostcallBuffer},
97 {"hidden_heap_v1", KernelArgMD::ValueKind::HiddenHeapV1}
98 };
99
100 namespace core {
101
callbackEvent(const hsa_amd_event_t * event,void * data)102 hsa_status_t callbackEvent(const hsa_amd_event_t *event, void *data) {
103 if (event->event_type == HSA_AMD_GPU_MEMORY_FAULT_EVENT) {
104 hsa_amd_gpu_memory_fault_info_t memory_fault = event->memory_fault;
105 // memory_fault.agent
106 // memory_fault.virtual_address
107 // memory_fault.fault_reason_mask
108 // fprintf("[GPU Error at %p: Reason is ", memory_fault.virtual_address);
109 std::stringstream stream;
110 stream << std::hex << (uintptr_t)memory_fault.virtual_address;
111 std::string addr("0x" + stream.str());
112
113 std::string err_string = "[GPU Memory Error] Addr: " + addr;
114 err_string += " Reason: ";
115 if (!(memory_fault.fault_reason_mask & 0x00111111)) {
116 err_string += "No Idea! ";
117 } else {
118 if (memory_fault.fault_reason_mask & 0x00000001)
119 err_string += "Page not present or supervisor privilege. ";
120 if (memory_fault.fault_reason_mask & 0x00000010)
121 err_string += "Write access to a read-only page. ";
122 if (memory_fault.fault_reason_mask & 0x00000100)
123 err_string += "Execute access to a page marked NX. ";
124 if (memory_fault.fault_reason_mask & 0x00001000)
125 err_string += "Host access only. ";
126 if (memory_fault.fault_reason_mask & 0x00010000)
127 err_string += "ECC failure (if supported by HW). ";
128 if (memory_fault.fault_reason_mask & 0x00100000)
129 err_string += "Can't determine the exact fault address. ";
130 }
131 fprintf(stderr, "%s\n", err_string.c_str());
132 return HSA_STATUS_ERROR;
133 }
134 return HSA_STATUS_SUCCESS;
135 }
136
atl_init_gpu_context()137 hsa_status_t atl_init_gpu_context() {
138 hsa_status_t err = hsa_amd_register_system_event_handler(callbackEvent, NULL);
139 if (err != HSA_STATUS_SUCCESS) {
140 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
141 "Registering the system for memory faults", get_error_string(err));
142 return HSA_STATUS_ERROR;
143 }
144
145 return HSA_STATUS_SUCCESS;
146 }
147
isImplicit(KernelArgMD::ValueKind value_kind)148 static bool isImplicit(KernelArgMD::ValueKind value_kind) {
149 switch (value_kind) {
150 case KernelArgMD::ValueKind::HiddenGlobalOffsetX:
151 case KernelArgMD::ValueKind::HiddenGlobalOffsetY:
152 case KernelArgMD::ValueKind::HiddenGlobalOffsetZ:
153 case KernelArgMD::ValueKind::HiddenNone:
154 case KernelArgMD::ValueKind::HiddenPrintfBuffer:
155 case KernelArgMD::ValueKind::HiddenDefaultQueue:
156 case KernelArgMD::ValueKind::HiddenCompletionAction:
157 case KernelArgMD::ValueKind::HiddenMultiGridSyncArg:
158 case KernelArgMD::ValueKind::HiddenHostcallBuffer:
159 case KernelArgMD::ValueKind::HiddenHeapV1:
160 return true;
161 default:
162 return false;
163 }
164 }
165
166 static std::pair<unsigned char *, unsigned char *>
find_metadata(void * binary,size_t binSize)167 find_metadata(void *binary, size_t binSize) {
168 std::pair<unsigned char *, unsigned char *> failure = {nullptr, nullptr};
169
170 Elf *e = elf_memory(static_cast<char *>(binary), binSize);
171 if (elf_kind(e) != ELF_K_ELF) {
172 return failure;
173 }
174
175 size_t numpHdrs;
176 if (elf_getphdrnum(e, &numpHdrs) != 0) {
177 return failure;
178 }
179
180 Elf64_Phdr *pHdrs = elf64_getphdr(e);
181 for (size_t i = 0; i < numpHdrs; ++i) {
182 Elf64_Phdr pHdr = pHdrs[i];
183
184 // Look for the runtime metadata note
185 if (pHdr.p_type == PT_NOTE && pHdr.p_align >= sizeof(int)) {
186 // Iterate over the notes in this segment
187 address ptr = (address)binary + pHdr.p_offset;
188 address segmentEnd = ptr + pHdr.p_filesz;
189
190 while (ptr < segmentEnd) {
191 Elf_Note *note = reinterpret_cast<Elf_Note *>(ptr);
192 address name = (address)¬e[1];
193
194 if (note->n_type == 7 || note->n_type == 8) {
195 return failure;
196 } else if (note->n_type == 10 /* NT_AMD_AMDGPU_HSA_METADATA */ &&
197 note->n_namesz == sizeof "AMD" &&
198 !memcmp(name, "AMD", note->n_namesz)) {
199 // code object v2 uses yaml metadata, no longer supported
200 return failure;
201 } else if (note->n_type == 32 /* NT_AMDGPU_METADATA */ &&
202 note->n_namesz == sizeof "AMDGPU" &&
203 !memcmp(name, "AMDGPU", note->n_namesz)) {
204
205 // n_descsz = 485
206 // value is padded to 4 byte alignment, may want to move end up to
207 // match
208 size_t offset = sizeof(uint32_t) * 3 /* fields */
209 + sizeof("AMDGPU") /* name */
210 + 1 /* padding to 4 byte alignment */;
211
212 // Including the trailing padding means both pointers are 4 bytes
213 // aligned, which may be useful later.
214 unsigned char *metadata_start = (unsigned char *)ptr + offset;
215 unsigned char *metadata_end =
216 metadata_start + core::alignUp(note->n_descsz, 4);
217 return {metadata_start, metadata_end};
218 }
219 ptr += sizeof(*note) + core::alignUp(note->n_namesz, sizeof(int)) +
220 core::alignUp(note->n_descsz, sizeof(int));
221 }
222 }
223 }
224
225 return failure;
226 }
227
228 namespace {
map_lookup_array(msgpack::byte_range message,const char * needle,msgpack::byte_range * res,uint64_t * size)229 int map_lookup_array(msgpack::byte_range message, const char *needle,
230 msgpack::byte_range *res, uint64_t *size) {
231 unsigned count = 0;
232 struct s : msgpack::functors_defaults<s> {
233 s(unsigned &count, uint64_t *size) : count(count), size(size) {}
234 unsigned &count;
235 uint64_t *size;
236 const unsigned char *handle_array(uint64_t N, msgpack::byte_range bytes) {
237 count++;
238 *size = N;
239 return bytes.end;
240 }
241 };
242
243 msgpack::foreach_map(message,
244 [&](msgpack::byte_range key, msgpack::byte_range value) {
245 if (msgpack::message_is_string(key, needle)) {
246 // If the message is an array, record number of
247 // elements in *size
248 msgpack::handle_msgpack<s>(value, {count, size});
249 // return the whole array
250 *res = value;
251 }
252 });
253 // Only claim success if exactly one key/array pair matched
254 return count != 1;
255 }
256
map_lookup_string(msgpack::byte_range message,const char * needle,std::string * res)257 int map_lookup_string(msgpack::byte_range message, const char *needle,
258 std::string *res) {
259 unsigned count = 0;
260 struct s : public msgpack::functors_defaults<s> {
261 s(unsigned &count, std::string *res) : count(count), res(res) {}
262 unsigned &count;
263 std::string *res;
264 void handle_string(size_t N, const unsigned char *str) {
265 count++;
266 *res = std::string(str, str + N);
267 }
268 };
269 msgpack::foreach_map(message,
270 [&](msgpack::byte_range key, msgpack::byte_range value) {
271 if (msgpack::message_is_string(key, needle)) {
272 msgpack::handle_msgpack<s>(value, {count, res});
273 }
274 });
275 return count != 1;
276 }
277
map_lookup_uint64_t(msgpack::byte_range message,const char * needle,uint64_t * res)278 int map_lookup_uint64_t(msgpack::byte_range message, const char *needle,
279 uint64_t *res) {
280 unsigned count = 0;
281 msgpack::foreach_map(message,
282 [&](msgpack::byte_range key, msgpack::byte_range value) {
283 if (msgpack::message_is_string(key, needle)) {
284 msgpack::foronly_unsigned(value, [&](uint64_t x) {
285 count++;
286 *res = x;
287 });
288 }
289 });
290 return count != 1;
291 }
292
array_lookup_element(msgpack::byte_range message,uint64_t elt,msgpack::byte_range * res)293 int array_lookup_element(msgpack::byte_range message, uint64_t elt,
294 msgpack::byte_range *res) {
295 int rc = 1;
296 uint64_t i = 0;
297 msgpack::foreach_array(message, [&](msgpack::byte_range value) {
298 if (i == elt) {
299 *res = value;
300 rc = 0;
301 }
302 i++;
303 });
304 return rc;
305 }
306
populate_kernelArgMD(msgpack::byte_range args_element,KernelArgMD * kernelarg)307 int populate_kernelArgMD(msgpack::byte_range args_element,
308 KernelArgMD *kernelarg) {
309 using namespace msgpack;
310 int error = 0;
311 foreach_map(args_element, [&](byte_range key, byte_range value) -> void {
312 if (message_is_string(key, ".name")) {
313 foronly_string(value, [&](size_t N, const unsigned char *str) {
314 kernelarg->name_ = std::string(str, str + N);
315 });
316 } else if (message_is_string(key, ".size")) {
317 foronly_unsigned(value, [&](uint64_t x) { kernelarg->size_ = x; });
318 } else if (message_is_string(key, ".offset")) {
319 foronly_unsigned(value, [&](uint64_t x) { kernelarg->offset_ = x; });
320 } else if (message_is_string(key, ".value_kind")) {
321 foronly_string(value, [&](size_t N, const unsigned char *str) {
322 std::string s = std::string(str, str + N);
323 auto itValueKind = ArgValueKind.find(s);
324 if (itValueKind != ArgValueKind.end()) {
325 kernelarg->valueKind_ = itValueKind->second;
326 }
327 });
328 }
329 });
330 return error;
331 }
332 } // namespace
333
get_code_object_custom_metadata(void * binary,size_t binSize,std::map<std::string,atl_kernel_info_t> & KernelInfoTable)334 static hsa_status_t get_code_object_custom_metadata(
335 void *binary, size_t binSize,
336 std::map<std::string, atl_kernel_info_t> &KernelInfoTable) {
337 // parse code object with different keys from v2
338 // also, the kernel name is not the same as the symbol name -- so a
339 // symbol->name map is needed
340
341 std::pair<unsigned char *, unsigned char *> metadata =
342 find_metadata(binary, binSize);
343 if (!metadata.first) {
344 return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
345 }
346
347 uint64_t kernelsSize = 0;
348 int msgpack_errors = 0;
349 msgpack::byte_range kernel_array;
350 msgpack_errors =
351 map_lookup_array({metadata.first, metadata.second}, "amdhsa.kernels",
352 &kernel_array, &kernelsSize);
353 if (msgpack_errors != 0) {
354 printf("[%s:%d] %s failed\n", __FILE__, __LINE__,
355 "kernels lookup in program metadata");
356 return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
357 }
358
359 for (size_t i = 0; i < kernelsSize; i++) {
360 assert(msgpack_errors == 0);
361 std::string kernelName;
362 std::string symbolName;
363
364 msgpack::byte_range element;
365 msgpack_errors += array_lookup_element(kernel_array, i, &element);
366 if (msgpack_errors != 0) {
367 printf("[%s:%d] %s failed\n", __FILE__, __LINE__,
368 "element lookup in kernel metadata");
369 return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
370 }
371
372 msgpack_errors += map_lookup_string(element, ".name", &kernelName);
373 msgpack_errors += map_lookup_string(element, ".symbol", &symbolName);
374 if (msgpack_errors != 0) {
375 printf("[%s:%d] %s failed\n", __FILE__, __LINE__,
376 "strings lookup in kernel metadata");
377 return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
378 }
379
380 // Make sure that kernelName + ".kd" == symbolName
381 if ((kernelName + ".kd") != symbolName) {
382 printf("[%s:%d] Kernel name mismatching symbol: %s != %s + .kd\n",
383 __FILE__, __LINE__, symbolName.c_str(), kernelName.c_str());
384 return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
385 }
386
387 atl_kernel_info_t info = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
388
389 uint64_t sgpr_count, vgpr_count, sgpr_spill_count, vgpr_spill_count;
390 msgpack_errors += map_lookup_uint64_t(element, ".sgpr_count", &sgpr_count);
391 if (msgpack_errors != 0) {
392 printf("[%s:%d] %s failed\n", __FILE__, __LINE__,
393 "sgpr count metadata lookup in kernel metadata");
394 return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
395 }
396
397 info.sgpr_count = sgpr_count;
398
399 msgpack_errors += map_lookup_uint64_t(element, ".vgpr_count", &vgpr_count);
400 if (msgpack_errors != 0) {
401 printf("[%s:%d] %s failed\n", __FILE__, __LINE__,
402 "vgpr count metadata lookup in kernel metadata");
403 return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
404 }
405
406 info.vgpr_count = vgpr_count;
407
408 msgpack_errors +=
409 map_lookup_uint64_t(element, ".sgpr_spill_count", &sgpr_spill_count);
410 if (msgpack_errors != 0) {
411 printf("[%s:%d] %s failed\n", __FILE__, __LINE__,
412 "sgpr spill count metadata lookup in kernel metadata");
413 return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
414 }
415
416 info.sgpr_spill_count = sgpr_spill_count;
417
418 msgpack_errors +=
419 map_lookup_uint64_t(element, ".vgpr_spill_count", &vgpr_spill_count);
420 if (msgpack_errors != 0) {
421 printf("[%s:%d] %s failed\n", __FILE__, __LINE__,
422 "vgpr spill count metadata lookup in kernel metadata");
423 return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
424 }
425
426 info.vgpr_spill_count = vgpr_spill_count;
427
428 size_t kernel_explicit_args_size = 0;
429 uint64_t kernel_segment_size;
430 msgpack_errors += map_lookup_uint64_t(element, ".kernarg_segment_size",
431 &kernel_segment_size);
432 if (msgpack_errors != 0) {
433 printf("[%s:%d] %s failed\n", __FILE__, __LINE__,
434 "kernarg segment size metadata lookup in kernel metadata");
435 return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
436 }
437
438 bool hasHiddenArgs = false;
439 if (kernel_segment_size > 0) {
440 uint64_t argsSize;
441 size_t offset = 0;
442
443 msgpack::byte_range args_array;
444 msgpack_errors +=
445 map_lookup_array(element, ".args", &args_array, &argsSize);
446 if (msgpack_errors != 0) {
447 printf("[%s:%d] %s failed\n", __FILE__, __LINE__,
448 "kernel args metadata lookup in kernel metadata");
449 return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
450 }
451
452 for (size_t i = 0; i < argsSize; ++i) {
453 KernelArgMD lcArg;
454
455 msgpack::byte_range args_element;
456 msgpack_errors += array_lookup_element(args_array, i, &args_element);
457 if (msgpack_errors != 0) {
458 printf("[%s:%d] %s failed\n", __FILE__, __LINE__,
459 "iterate args map in kernel args metadata");
460 return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
461 }
462
463 msgpack_errors += populate_kernelArgMD(args_element, &lcArg);
464 if (msgpack_errors != 0) {
465 printf("[%s:%d] %s failed\n", __FILE__, __LINE__,
466 "iterate args map in kernel args metadata");
467 return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
468 }
469 // v3 has offset field and not align field
470 size_t new_offset = lcArg.offset_;
471 size_t padding = new_offset - offset;
472 offset = new_offset;
473 DP("Arg[%lu] \"%s\" (%u, %u)\n", i, lcArg.name_.c_str(), lcArg.size_,
474 lcArg.offset_);
475 offset += lcArg.size_;
476
477 // check if the arg is a hidden/implicit arg
478 // this logic assumes that all hidden args are 8-byte aligned
479 if (!isImplicit(lcArg.valueKind_)) {
480 info.explicit_argument_count++;
481 kernel_explicit_args_size += lcArg.size_;
482 } else {
483 info.implicit_argument_count++;
484 hasHiddenArgs = true;
485 }
486 kernel_explicit_args_size += padding;
487 }
488 }
489
490 // TODO: Probably don't want this arithmetic
491 info.kernel_segment_size =
492 (hasHiddenArgs ? kernel_explicit_args_size : kernel_segment_size);
493 DP("[%s: kernarg seg size] (%lu --> %u)\n", kernelName.c_str(),
494 kernel_segment_size, info.kernel_segment_size);
495
496 // kernel received, now add it to the kernel info table
497 KernelInfoTable[kernelName] = info;
498 }
499
500 return HSA_STATUS_SUCCESS;
501 }
502
503 static hsa_status_t
populate_InfoTables(hsa_executable_symbol_t symbol,std::map<std::string,atl_kernel_info_t> & KernelInfoTable,std::map<std::string,atl_symbol_info_t> & SymbolInfoTable)504 populate_InfoTables(hsa_executable_symbol_t symbol,
505 std::map<std::string, atl_kernel_info_t> &KernelInfoTable,
506 std::map<std::string, atl_symbol_info_t> &SymbolInfoTable) {
507 hsa_symbol_kind_t type;
508
509 uint32_t name_length;
510 hsa_status_t err;
511 err = hsa_executable_symbol_get_info(symbol, HSA_EXECUTABLE_SYMBOL_INFO_TYPE,
512 &type);
513 if (err != HSA_STATUS_SUCCESS) {
514 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
515 "Symbol info extraction", get_error_string(err));
516 return err;
517 }
518 DP("Exec Symbol type: %d\n", type);
519 if (type == HSA_SYMBOL_KIND_KERNEL) {
520 err = hsa_executable_symbol_get_info(
521 symbol, HSA_EXECUTABLE_SYMBOL_INFO_NAME_LENGTH, &name_length);
522 if (err != HSA_STATUS_SUCCESS) {
523 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
524 "Symbol info extraction", get_error_string(err));
525 return err;
526 }
527 char *name = reinterpret_cast<char *>(malloc(name_length + 1));
528 err = hsa_executable_symbol_get_info(symbol,
529 HSA_EXECUTABLE_SYMBOL_INFO_NAME, name);
530 if (err != HSA_STATUS_SUCCESS) {
531 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
532 "Symbol info extraction", get_error_string(err));
533 return err;
534 }
535 // remove the suffix .kd from symbol name.
536 name[name_length - 3] = 0;
537
538 atl_kernel_info_t info;
539 std::string kernelName(name);
540 // by now, the kernel info table should already have an entry
541 // because the non-ROCr custom code object parsing is called before
542 // iterating over the code object symbols using ROCr
543 if (KernelInfoTable.find(kernelName) == KernelInfoTable.end()) {
544 DP("amdgpu internal consistency error\n");
545 return HSA_STATUS_ERROR;
546 }
547 // found, so assign and update
548 info = KernelInfoTable[kernelName];
549
550 /* Extract dispatch information from the symbol */
551 err = hsa_executable_symbol_get_info(
552 symbol, HSA_EXECUTABLE_SYMBOL_INFO_KERNEL_OBJECT,
553 &(info.kernel_object));
554 if (err != HSA_STATUS_SUCCESS) {
555 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
556 "Extracting the symbol from the executable",
557 get_error_string(err));
558 return err;
559 }
560 err = hsa_executable_symbol_get_info(
561 symbol, HSA_EXECUTABLE_SYMBOL_INFO_KERNEL_GROUP_SEGMENT_SIZE,
562 &(info.group_segment_size));
563 if (err != HSA_STATUS_SUCCESS) {
564 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
565 "Extracting the group segment size from the executable",
566 get_error_string(err));
567 return err;
568 }
569 err = hsa_executable_symbol_get_info(
570 symbol, HSA_EXECUTABLE_SYMBOL_INFO_KERNEL_PRIVATE_SEGMENT_SIZE,
571 &(info.private_segment_size));
572 if (err != HSA_STATUS_SUCCESS) {
573 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
574 "Extracting the private segment from the executable",
575 get_error_string(err));
576 return err;
577 }
578
579 DP("Kernel %s --> %lx symbol %u group segsize %u pvt segsize %u bytes "
580 "kernarg\n",
581 kernelName.c_str(), info.kernel_object, info.group_segment_size,
582 info.private_segment_size, info.kernel_segment_size);
583
584 // assign it back to the kernel info table
585 KernelInfoTable[kernelName] = info;
586 free(name);
587 } else if (type == HSA_SYMBOL_KIND_VARIABLE) {
588 err = hsa_executable_symbol_get_info(
589 symbol, HSA_EXECUTABLE_SYMBOL_INFO_NAME_LENGTH, &name_length);
590 if (err != HSA_STATUS_SUCCESS) {
591 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
592 "Symbol info extraction", get_error_string(err));
593 return err;
594 }
595 char *name = reinterpret_cast<char *>(malloc(name_length + 1));
596 err = hsa_executable_symbol_get_info(symbol,
597 HSA_EXECUTABLE_SYMBOL_INFO_NAME, name);
598 if (err != HSA_STATUS_SUCCESS) {
599 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
600 "Symbol info extraction", get_error_string(err));
601 return err;
602 }
603 name[name_length] = 0;
604
605 atl_symbol_info_t info;
606
607 err = hsa_executable_symbol_get_info(
608 symbol, HSA_EXECUTABLE_SYMBOL_INFO_VARIABLE_ADDRESS, &(info.addr));
609 if (err != HSA_STATUS_SUCCESS) {
610 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
611 "Symbol info address extraction", get_error_string(err));
612 return err;
613 }
614
615 err = hsa_executable_symbol_get_info(
616 symbol, HSA_EXECUTABLE_SYMBOL_INFO_VARIABLE_SIZE, &(info.size));
617 if (err != HSA_STATUS_SUCCESS) {
618 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
619 "Symbol info size extraction", get_error_string(err));
620 return err;
621 }
622
623 DP("Symbol %s = %p (%u bytes)\n", name, (void *)info.addr, info.size);
624 SymbolInfoTable[std::string(name)] = info;
625 free(name);
626 } else {
627 DP("Symbol is an indirect function\n");
628 }
629 return HSA_STATUS_SUCCESS;
630 }
631
RegisterModuleFromMemory(std::map<std::string,atl_kernel_info_t> & KernelInfoTable,std::map<std::string,atl_symbol_info_t> & SymbolInfoTable,void * module_bytes,size_t module_size,hsa_agent_t agent,hsa_status_t (* on_deserialized_data)(void * data,size_t size,void * cb_state),void * cb_state,std::vector<hsa_executable_t> & HSAExecutables)632 hsa_status_t RegisterModuleFromMemory(
633 std::map<std::string, atl_kernel_info_t> &KernelInfoTable,
634 std::map<std::string, atl_symbol_info_t> &SymbolInfoTable,
635 void *module_bytes, size_t module_size, hsa_agent_t agent,
636 hsa_status_t (*on_deserialized_data)(void *data, size_t size,
637 void *cb_state),
638 void *cb_state, std::vector<hsa_executable_t> &HSAExecutables) {
639 hsa_status_t err;
640 hsa_executable_t executable = {0};
641 hsa_profile_t agent_profile;
642
643 err = hsa_agent_get_info(agent, HSA_AGENT_INFO_PROFILE, &agent_profile);
644 if (err != HSA_STATUS_SUCCESS) {
645 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
646 "Query the agent profile", get_error_string(err));
647 return HSA_STATUS_ERROR;
648 }
649 // FIXME: Assume that every profile is FULL until we understand how to build
650 // GCN with base profile
651 agent_profile = HSA_PROFILE_FULL;
652 /* Create the empty executable. */
653 err = hsa_executable_create(agent_profile, HSA_EXECUTABLE_STATE_UNFROZEN, "",
654 &executable);
655 if (err != HSA_STATUS_SUCCESS) {
656 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
657 "Create the executable", get_error_string(err));
658 return HSA_STATUS_ERROR;
659 }
660
661 bool module_load_success = false;
662 do // Existing control flow used continue, preserve that for this patch
663 {
664 {
665 // Some metadata info is not available through ROCr API, so use custom
666 // code object metadata parsing to collect such metadata info
667
668 err = get_code_object_custom_metadata(module_bytes, module_size,
669 KernelInfoTable);
670 if (err != HSA_STATUS_SUCCESS) {
671 DP("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
672 "Getting custom code object metadata", get_error_string(err));
673 continue;
674 }
675
676 // Deserialize code object.
677 hsa_code_object_t code_object = {0};
678 err = hsa_code_object_deserialize(module_bytes, module_size, NULL,
679 &code_object);
680 if (err != HSA_STATUS_SUCCESS) {
681 DP("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
682 "Code Object Deserialization", get_error_string(err));
683 continue;
684 }
685 assert(0 != code_object.handle);
686
687 // Mutating the device image here avoids another allocation & memcpy
688 void *code_object_alloc_data =
689 reinterpret_cast<void *>(code_object.handle);
690 hsa_status_t impl_err =
691 on_deserialized_data(code_object_alloc_data, module_size, cb_state);
692 if (impl_err != HSA_STATUS_SUCCESS) {
693 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
694 "Error in deserialized_data callback",
695 get_error_string(impl_err));
696 return impl_err;
697 }
698
699 /* Load the code object. */
700 err =
701 hsa_executable_load_code_object(executable, agent, code_object, NULL);
702 if (err != HSA_STATUS_SUCCESS) {
703 DP("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
704 "Loading the code object", get_error_string(err));
705 continue;
706 }
707
708 // cannot iterate over symbols until executable is frozen
709 }
710 module_load_success = true;
711 } while (0);
712 DP("Modules loaded successful? %d\n", module_load_success);
713 if (module_load_success) {
714 /* Freeze the executable; it can now be queried for symbols. */
715 err = hsa_executable_freeze(executable, "");
716 if (err != HSA_STATUS_SUCCESS) {
717 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
718 "Freeze the executable", get_error_string(err));
719 return HSA_STATUS_ERROR;
720 }
721
722 err = hsa::executable_iterate_symbols(
723 executable,
724 [&](hsa_executable_t, hsa_executable_symbol_t symbol) -> hsa_status_t {
725 return populate_InfoTables(symbol, KernelInfoTable, SymbolInfoTable);
726 });
727 if (err != HSA_STATUS_SUCCESS) {
728 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
729 "Iterating over symbols for execuatable", get_error_string(err));
730 return HSA_STATUS_ERROR;
731 }
732
733 // save the executable and destroy during finalize
734 HSAExecutables.push_back(executable);
735 return HSA_STATUS_SUCCESS;
736 } else {
737 return HSA_STATUS_ERROR;
738 }
739 }
740
741 } // namespace core
742