1 //===--- amdgpu/impl/system.cpp ----------------------------------- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 #include <libelf.h> 9 10 #include <cassert> 11 #include <sstream> 12 #include <string> 13 14 #include "internal.h" 15 #include "machine.h" 16 #include "rt.h" 17 18 #include "msgpack.h" 19 20 namespace hsa { 21 // Wrap HSA iterate API in a shim that allows passing general callables 22 template <typename C> 23 hsa_status_t executable_iterate_symbols(hsa_executable_t executable, C cb) { 24 auto L = [](hsa_executable_t executable, hsa_executable_symbol_t symbol, 25 void *data) -> hsa_status_t { 26 C *unwrapped = static_cast<C *>(data); 27 return (*unwrapped)(executable, symbol); 28 }; 29 return hsa_executable_iterate_symbols(executable, L, 30 static_cast<void *>(&cb)); 31 } 32 } // namespace hsa 33 34 typedef unsigned char *address; 35 /* 36 * Note descriptors. 37 */ 38 typedef struct { 39 uint32_t n_namesz; /* Length of note's name. */ 40 uint32_t n_descsz; /* Length of note's value. */ 41 uint32_t n_type; /* Type of note. */ 42 // then name 43 // then padding, optional 44 // then desc, at 4 byte alignment (not 8, despite being elf64) 45 } Elf_Note; 46 47 // The following include file and following structs/enums 48 // have been replicated on a per-use basis below. For example, 49 // llvm::AMDGPU::HSAMD::Kernel::Metadata has several fields, 50 // but we may care only about kernargSegmentSize_ for now, so 51 // we just include that field in our KernelMD implementation. We 52 // chose this approach to replicate in order to avoid forcing 53 // a dependency on LLVM_INCLUDE_DIR just to compile the runtime. 54 // #include "llvm/Support/AMDGPUMetadata.h" 55 // typedef llvm::AMDGPU::HSAMD::Metadata CodeObjectMD; 56 // typedef llvm::AMDGPU::HSAMD::Kernel::Metadata KernelMD; 57 // typedef llvm::AMDGPU::HSAMD::Kernel::Arg::Metadata KernelArgMD; 58 // using llvm::AMDGPU::HSAMD::AccessQualifier; 59 // using llvm::AMDGPU::HSAMD::AddressSpaceQualifier; 60 // using llvm::AMDGPU::HSAMD::ValueKind; 61 // using llvm::AMDGPU::HSAMD::ValueType; 62 63 class KernelArgMD { 64 public: 65 enum class ValueKind { 66 HiddenGlobalOffsetX, 67 HiddenGlobalOffsetY, 68 HiddenGlobalOffsetZ, 69 HiddenNone, 70 HiddenPrintfBuffer, 71 HiddenDefaultQueue, 72 HiddenCompletionAction, 73 HiddenMultiGridSyncArg, 74 HiddenHostcallBuffer, 75 Unknown 76 }; 77 78 KernelArgMD() 79 : name_(std::string()), typeName_(std::string()), size_(0), offset_(0), 80 align_(0), valueKind_(ValueKind::Unknown) {} 81 82 // fields 83 std::string name_; 84 std::string typeName_; 85 uint32_t size_; 86 uint32_t offset_; 87 uint32_t align_; 88 ValueKind valueKind_; 89 }; 90 91 class KernelMD { 92 public: 93 KernelMD() : kernargSegmentSize_(0ull) {} 94 95 // fields 96 uint64_t kernargSegmentSize_; 97 }; 98 99 static const std::map<std::string, KernelArgMD::ValueKind> ArgValueKind = { 100 // Including only those fields that are relevant to the runtime. 101 // {"ByValue", KernelArgMD::ValueKind::ByValue}, 102 // {"GlobalBuffer", KernelArgMD::ValueKind::GlobalBuffer}, 103 // {"DynamicSharedPointer", 104 // KernelArgMD::ValueKind::DynamicSharedPointer}, 105 // {"Sampler", KernelArgMD::ValueKind::Sampler}, 106 // {"Image", KernelArgMD::ValueKind::Image}, 107 // {"Pipe", KernelArgMD::ValueKind::Pipe}, 108 // {"Queue", KernelArgMD::ValueKind::Queue}, 109 {"HiddenGlobalOffsetX", KernelArgMD::ValueKind::HiddenGlobalOffsetX}, 110 {"HiddenGlobalOffsetY", KernelArgMD::ValueKind::HiddenGlobalOffsetY}, 111 {"HiddenGlobalOffsetZ", KernelArgMD::ValueKind::HiddenGlobalOffsetZ}, 112 {"HiddenNone", KernelArgMD::ValueKind::HiddenNone}, 113 {"HiddenPrintfBuffer", KernelArgMD::ValueKind::HiddenPrintfBuffer}, 114 {"HiddenDefaultQueue", KernelArgMD::ValueKind::HiddenDefaultQueue}, 115 {"HiddenCompletionAction", KernelArgMD::ValueKind::HiddenCompletionAction}, 116 {"HiddenMultiGridSyncArg", KernelArgMD::ValueKind::HiddenMultiGridSyncArg}, 117 {"HiddenHostcallBuffer", KernelArgMD::ValueKind::HiddenHostcallBuffer}, 118 // v3 119 // {"by_value", KernelArgMD::ValueKind::ByValue}, 120 // {"global_buffer", KernelArgMD::ValueKind::GlobalBuffer}, 121 // {"dynamic_shared_pointer", 122 // KernelArgMD::ValueKind::DynamicSharedPointer}, 123 // {"sampler", KernelArgMD::ValueKind::Sampler}, 124 // {"image", KernelArgMD::ValueKind::Image}, 125 // {"pipe", KernelArgMD::ValueKind::Pipe}, 126 // {"queue", KernelArgMD::ValueKind::Queue}, 127 {"hidden_global_offset_x", KernelArgMD::ValueKind::HiddenGlobalOffsetX}, 128 {"hidden_global_offset_y", KernelArgMD::ValueKind::HiddenGlobalOffsetY}, 129 {"hidden_global_offset_z", KernelArgMD::ValueKind::HiddenGlobalOffsetZ}, 130 {"hidden_none", KernelArgMD::ValueKind::HiddenNone}, 131 {"hidden_printf_buffer", KernelArgMD::ValueKind::HiddenPrintfBuffer}, 132 {"hidden_default_queue", KernelArgMD::ValueKind::HiddenDefaultQueue}, 133 {"hidden_completion_action", 134 KernelArgMD::ValueKind::HiddenCompletionAction}, 135 {"hidden_multigrid_sync_arg", 136 KernelArgMD::ValueKind::HiddenMultiGridSyncArg}, 137 {"hidden_hostcall_buffer", KernelArgMD::ValueKind::HiddenHostcallBuffer}, 138 }; 139 140 ATLMachine g_atl_machine; 141 142 namespace core { 143 144 // Implement memory_pool iteration function 145 static hsa_status_t get_memory_pool_info(hsa_amd_memory_pool_t memory_pool, 146 void *data) { 147 ATLProcessor *proc = reinterpret_cast<ATLProcessor *>(data); 148 hsa_status_t err = HSA_STATUS_SUCCESS; 149 // Check if the memory_pool is allowed to allocate, i.e. do not return group 150 // memory 151 bool alloc_allowed = false; 152 err = hsa_amd_memory_pool_get_info( 153 memory_pool, HSA_AMD_MEMORY_POOL_INFO_RUNTIME_ALLOC_ALLOWED, 154 &alloc_allowed); 155 if (err != HSA_STATUS_SUCCESS) { 156 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 157 "Alloc allowed in memory pool check", get_error_string(err)); 158 return err; 159 } 160 if (alloc_allowed) { 161 uint32_t global_flag = 0; 162 err = hsa_amd_memory_pool_get_info( 163 memory_pool, HSA_AMD_MEMORY_POOL_INFO_GLOBAL_FLAGS, &global_flag); 164 if (err != HSA_STATUS_SUCCESS) { 165 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 166 "Get memory pool info", get_error_string(err)); 167 return err; 168 } 169 if (HSA_AMD_MEMORY_POOL_GLOBAL_FLAG_FINE_GRAINED & global_flag) { 170 ATLMemory new_mem(memory_pool, *proc, ATMI_MEMTYPE_FINE_GRAINED); 171 proc->addMemory(new_mem); 172 } else { 173 ATLMemory new_mem(memory_pool, *proc, ATMI_MEMTYPE_COARSE_GRAINED); 174 proc->addMemory(new_mem); 175 } 176 } 177 178 return err; 179 } 180 181 static hsa_status_t get_agent_info(hsa_agent_t agent, void *data) { 182 hsa_status_t err = HSA_STATUS_SUCCESS; 183 hsa_device_type_t device_type; 184 err = hsa_agent_get_info(agent, HSA_AGENT_INFO_DEVICE, &device_type); 185 if (err != HSA_STATUS_SUCCESS) { 186 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 187 "Get device type info", get_error_string(err)); 188 return err; 189 } 190 switch (device_type) { 191 case HSA_DEVICE_TYPE_CPU: { 192 ATLCPUProcessor new_proc(agent); 193 err = hsa_amd_agent_iterate_memory_pools(agent, get_memory_pool_info, 194 &new_proc); 195 if (err != HSA_STATUS_SUCCESS) { 196 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 197 "Iterate all memory pools", get_error_string(err)); 198 return err; 199 } 200 g_atl_machine.addProcessor(new_proc); 201 } break; 202 case HSA_DEVICE_TYPE_GPU: { 203 hsa_profile_t profile; 204 err = hsa_agent_get_info(agent, HSA_AGENT_INFO_PROFILE, &profile); 205 if (err != HSA_STATUS_SUCCESS) { 206 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 207 "Query the agent profile", get_error_string(err)); 208 return err; 209 } 210 atmi_devtype_t gpu_type; 211 gpu_type = 212 (profile == HSA_PROFILE_FULL) ? ATMI_DEVTYPE_iGPU : ATMI_DEVTYPE_dGPU; 213 ATLGPUProcessor new_proc(agent, gpu_type); 214 err = hsa_amd_agent_iterate_memory_pools(agent, get_memory_pool_info, 215 &new_proc); 216 if (err != HSA_STATUS_SUCCESS) { 217 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 218 "Iterate all memory pools", get_error_string(err)); 219 return err; 220 } 221 g_atl_machine.addProcessor(new_proc); 222 } break; 223 case HSA_DEVICE_TYPE_DSP: { 224 err = HSA_STATUS_ERROR_INVALID_CODE_OBJECT; 225 } break; 226 } 227 228 return err; 229 } 230 231 static hsa_status_t init_compute_and_memory() { 232 hsa_status_t err; 233 234 /* Iterate over the agents and pick the gpu agent */ 235 err = hsa_iterate_agents(get_agent_info, NULL); 236 if (err == HSA_STATUS_INFO_BREAK) { 237 err = HSA_STATUS_SUCCESS; 238 } 239 if (err != HSA_STATUS_SUCCESS) { 240 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, "Getting a gpu agent", 241 get_error_string(err)); 242 return err; 243 } 244 245 /* Init all devices or individual device types? */ 246 std::vector<ATLCPUProcessor> &cpu_procs = 247 g_atl_machine.processors<ATLCPUProcessor>(); 248 std::vector<ATLGPUProcessor> &gpu_procs = 249 g_atl_machine.processors<ATLGPUProcessor>(); 250 /* For CPU memory pools, add other devices that can access them directly 251 * or indirectly */ 252 for (auto &cpu_proc : cpu_procs) { 253 for (auto &cpu_mem : cpu_proc.memories()) { 254 hsa_amd_memory_pool_t pool = cpu_mem.memory(); 255 for (auto &gpu_proc : gpu_procs) { 256 hsa_agent_t agent = gpu_proc.agent(); 257 hsa_amd_memory_pool_access_t access; 258 hsa_amd_agent_memory_pool_get_info( 259 agent, pool, HSA_AMD_AGENT_MEMORY_POOL_INFO_ACCESS, &access); 260 if (access != 0) { 261 // this means not NEVER, but could be YES or NO 262 // add this memory pool to the proc 263 gpu_proc.addMemory(cpu_mem); 264 } 265 } 266 } 267 } 268 269 /* FIXME: are the below combinations of procs and memory pools needed? 270 * all to all compare procs with their memory pools and add those memory 271 * pools that are accessible by the target procs */ 272 for (auto &gpu_proc : gpu_procs) { 273 for (auto &gpu_mem : gpu_proc.memories()) { 274 hsa_amd_memory_pool_t pool = gpu_mem.memory(); 275 for (auto &cpu_proc : cpu_procs) { 276 hsa_agent_t agent = cpu_proc.agent(); 277 hsa_amd_memory_pool_access_t access; 278 hsa_amd_agent_memory_pool_get_info( 279 agent, pool, HSA_AMD_AGENT_MEMORY_POOL_INFO_ACCESS, &access); 280 if (access != 0) { 281 // this means not NEVER, but could be YES or NO 282 // add this memory pool to the proc 283 cpu_proc.addMemory(gpu_mem); 284 } 285 } 286 } 287 } 288 289 size_t num_procs = cpu_procs.size() + gpu_procs.size(); 290 int num_iGPUs = 0; 291 int num_dGPUs = 0; 292 for (uint32_t i = 0; i < gpu_procs.size(); i++) { 293 if (gpu_procs[i].type() == ATMI_DEVTYPE_iGPU) 294 num_iGPUs++; 295 else 296 num_dGPUs++; 297 } 298 assert(num_iGPUs + num_dGPUs == gpu_procs.size() && 299 "Number of dGPUs and iGPUs do not add up"); 300 DEBUG_PRINT("CPU Agents: %lu\n", cpu_procs.size()); 301 DEBUG_PRINT("iGPU Agents: %d\n", num_iGPUs); 302 DEBUG_PRINT("dGPU Agents: %d\n", num_dGPUs); 303 DEBUG_PRINT("GPU Agents: %lu\n", gpu_procs.size()); 304 305 int cpus_begin = 0; 306 int cpus_end = cpu_procs.size(); 307 int gpus_begin = cpu_procs.size(); 308 int gpus_end = cpu_procs.size() + gpu_procs.size(); 309 int proc_index = 0; 310 for (int i = cpus_begin; i < cpus_end; i++) { 311 std::vector<ATLMemory> memories = cpu_procs[proc_index].memories(); 312 int fine_memories_size = 0; 313 int coarse_memories_size = 0; 314 DEBUG_PRINT("CPU memory types:\t"); 315 for (auto &memory : memories) { 316 atmi_memtype_t type = memory.type(); 317 if (type == ATMI_MEMTYPE_FINE_GRAINED) { 318 fine_memories_size++; 319 DEBUG_PRINT("Fine\t"); 320 } else { 321 coarse_memories_size++; 322 DEBUG_PRINT("Coarse\t"); 323 } 324 } 325 DEBUG_PRINT("\nFine Memories : %d", fine_memories_size); 326 DEBUG_PRINT("\tCoarse Memories : %d\n", coarse_memories_size); 327 proc_index++; 328 } 329 proc_index = 0; 330 for (int i = gpus_begin; i < gpus_end; i++) { 331 std::vector<ATLMemory> memories = gpu_procs[proc_index].memories(); 332 int fine_memories_size = 0; 333 int coarse_memories_size = 0; 334 DEBUG_PRINT("GPU memory types:\t"); 335 for (auto &memory : memories) { 336 atmi_memtype_t type = memory.type(); 337 if (type == ATMI_MEMTYPE_FINE_GRAINED) { 338 fine_memories_size++; 339 DEBUG_PRINT("Fine\t"); 340 } else { 341 coarse_memories_size++; 342 DEBUG_PRINT("Coarse\t"); 343 } 344 } 345 DEBUG_PRINT("\nFine Memories : %d", fine_memories_size); 346 DEBUG_PRINT("\tCoarse Memories : %d\n", coarse_memories_size); 347 proc_index++; 348 } 349 if (num_procs > 0) 350 return HSA_STATUS_SUCCESS; 351 else 352 return HSA_STATUS_ERROR_NOT_INITIALIZED; 353 } 354 355 hsa_status_t init_hsa() { 356 DEBUG_PRINT("Initializing HSA..."); 357 hsa_status_t err = hsa_init(); 358 if (err != HSA_STATUS_SUCCESS) { 359 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 360 "Initializing the hsa runtime", get_error_string(err)); 361 return err; 362 } 363 if (err != HSA_STATUS_SUCCESS) 364 return err; 365 366 err = init_compute_and_memory(); 367 if (err != HSA_STATUS_SUCCESS) 368 return err; 369 if (err != HSA_STATUS_SUCCESS) { 370 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 371 "After initializing compute and memory", get_error_string(err)); 372 return err; 373 } 374 375 DEBUG_PRINT("done\n"); 376 return HSA_STATUS_SUCCESS; 377 } 378 379 hsa_status_t callbackEvent(const hsa_amd_event_t *event, void *data) { 380 #if (ROCM_VERSION_MAJOR >= 3) || \ 381 (ROCM_VERSION_MAJOR >= 2 && ROCM_VERSION_MINOR >= 3) 382 if (event->event_type == HSA_AMD_GPU_MEMORY_FAULT_EVENT) { 383 #else 384 if (event->event_type == GPU_MEMORY_FAULT_EVENT) { 385 #endif 386 hsa_amd_gpu_memory_fault_info_t memory_fault = event->memory_fault; 387 // memory_fault.agent 388 // memory_fault.virtual_address 389 // memory_fault.fault_reason_mask 390 // fprintf("[GPU Error at %p: Reason is ", memory_fault.virtual_address); 391 std::stringstream stream; 392 stream << std::hex << (uintptr_t)memory_fault.virtual_address; 393 std::string addr("0x" + stream.str()); 394 395 std::string err_string = "[GPU Memory Error] Addr: " + addr; 396 err_string += " Reason: "; 397 if (!(memory_fault.fault_reason_mask & 0x00111111)) { 398 err_string += "No Idea! "; 399 } else { 400 if (memory_fault.fault_reason_mask & 0x00000001) 401 err_string += "Page not present or supervisor privilege. "; 402 if (memory_fault.fault_reason_mask & 0x00000010) 403 err_string += "Write access to a read-only page. "; 404 if (memory_fault.fault_reason_mask & 0x00000100) 405 err_string += "Execute access to a page marked NX. "; 406 if (memory_fault.fault_reason_mask & 0x00001000) 407 err_string += "Host access only. "; 408 if (memory_fault.fault_reason_mask & 0x00010000) 409 err_string += "ECC failure (if supported by HW). "; 410 if (memory_fault.fault_reason_mask & 0x00100000) 411 err_string += "Can't determine the exact fault address. "; 412 } 413 fprintf(stderr, "%s\n", err_string.c_str()); 414 return HSA_STATUS_ERROR; 415 } 416 return HSA_STATUS_SUCCESS; 417 } 418 419 hsa_status_t atl_init_gpu_context() { 420 hsa_status_t err; 421 err = init_hsa(); 422 if (err != HSA_STATUS_SUCCESS) 423 return HSA_STATUS_ERROR; 424 425 err = hsa_amd_register_system_event_handler(callbackEvent, NULL); 426 if (err != HSA_STATUS_SUCCESS) { 427 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 428 "Registering the system for memory faults", get_error_string(err)); 429 return HSA_STATUS_ERROR; 430 } 431 432 return HSA_STATUS_SUCCESS; 433 } 434 435 static bool isImplicit(KernelArgMD::ValueKind value_kind) { 436 switch (value_kind) { 437 case KernelArgMD::ValueKind::HiddenGlobalOffsetX: 438 case KernelArgMD::ValueKind::HiddenGlobalOffsetY: 439 case KernelArgMD::ValueKind::HiddenGlobalOffsetZ: 440 case KernelArgMD::ValueKind::HiddenNone: 441 case KernelArgMD::ValueKind::HiddenPrintfBuffer: 442 case KernelArgMD::ValueKind::HiddenDefaultQueue: 443 case KernelArgMD::ValueKind::HiddenCompletionAction: 444 case KernelArgMD::ValueKind::HiddenMultiGridSyncArg: 445 case KernelArgMD::ValueKind::HiddenHostcallBuffer: 446 return true; 447 default: 448 return false; 449 } 450 } 451 452 static std::pair<unsigned char *, unsigned char *> 453 find_metadata(void *binary, size_t binSize) { 454 std::pair<unsigned char *, unsigned char *> failure = {nullptr, nullptr}; 455 456 Elf *e = elf_memory(static_cast<char *>(binary), binSize); 457 if (elf_kind(e) != ELF_K_ELF) { 458 return failure; 459 } 460 461 size_t numpHdrs; 462 if (elf_getphdrnum(e, &numpHdrs) != 0) { 463 return failure; 464 } 465 466 Elf64_Phdr *pHdrs = elf64_getphdr(e); 467 for (size_t i = 0; i < numpHdrs; ++i) { 468 Elf64_Phdr pHdr = pHdrs[i]; 469 470 // Look for the runtime metadata note 471 if (pHdr.p_type == PT_NOTE && pHdr.p_align >= sizeof(int)) { 472 // Iterate over the notes in this segment 473 address ptr = (address)binary + pHdr.p_offset; 474 address segmentEnd = ptr + pHdr.p_filesz; 475 476 while (ptr < segmentEnd) { 477 Elf_Note *note = reinterpret_cast<Elf_Note *>(ptr); 478 address name = (address)¬e[1]; 479 480 if (note->n_type == 7 || note->n_type == 8) { 481 return failure; 482 } else if (note->n_type == 10 /* NT_AMD_AMDGPU_HSA_METADATA */ && 483 note->n_namesz == sizeof "AMD" && 484 !memcmp(name, "AMD", note->n_namesz)) { 485 // code object v2 uses yaml metadata, no longer supported 486 return failure; 487 } else if (note->n_type == 32 /* NT_AMDGPU_METADATA */ && 488 note->n_namesz == sizeof "AMDGPU" && 489 !memcmp(name, "AMDGPU", note->n_namesz)) { 490 491 // n_descsz = 485 492 // value is padded to 4 byte alignment, may want to move end up to 493 // match 494 size_t offset = sizeof(uint32_t) * 3 /* fields */ 495 + sizeof("AMDGPU") /* name */ 496 + 1 /* padding to 4 byte alignment */; 497 498 // Including the trailing padding means both pointers are 4 bytes 499 // aligned, which may be useful later. 500 unsigned char *metadata_start = (unsigned char *)ptr + offset; 501 unsigned char *metadata_end = 502 metadata_start + core::alignUp(note->n_descsz, 4); 503 return {metadata_start, metadata_end}; 504 } 505 ptr += sizeof(*note) + core::alignUp(note->n_namesz, sizeof(int)) + 506 core::alignUp(note->n_descsz, sizeof(int)); 507 } 508 } 509 } 510 511 return failure; 512 } 513 514 namespace { 515 int map_lookup_array(msgpack::byte_range message, const char *needle, 516 msgpack::byte_range *res, uint64_t *size) { 517 unsigned count = 0; 518 struct s : msgpack::functors_defaults<s> { 519 s(unsigned &count, uint64_t *size) : count(count), size(size) {} 520 unsigned &count; 521 uint64_t *size; 522 const unsigned char *handle_array(uint64_t N, msgpack::byte_range bytes) { 523 count++; 524 *size = N; 525 return bytes.end; 526 } 527 }; 528 529 msgpack::foreach_map(message, 530 [&](msgpack::byte_range key, msgpack::byte_range value) { 531 if (msgpack::message_is_string(key, needle)) { 532 // If the message is an array, record number of 533 // elements in *size 534 msgpack::handle_msgpack<s>(value, {count, size}); 535 // return the whole array 536 *res = value; 537 } 538 }); 539 // Only claim success if exactly one key/array pair matched 540 return count != 1; 541 } 542 543 int map_lookup_string(msgpack::byte_range message, const char *needle, 544 std::string *res) { 545 unsigned count = 0; 546 struct s : public msgpack::functors_defaults<s> { 547 s(unsigned &count, std::string *res) : count(count), res(res) {} 548 unsigned &count; 549 std::string *res; 550 void handle_string(size_t N, const unsigned char *str) { 551 count++; 552 *res = std::string(str, str + N); 553 } 554 }; 555 msgpack::foreach_map(message, 556 [&](msgpack::byte_range key, msgpack::byte_range value) { 557 if (msgpack::message_is_string(key, needle)) { 558 msgpack::handle_msgpack<s>(value, {count, res}); 559 } 560 }); 561 return count != 1; 562 } 563 564 int map_lookup_uint64_t(msgpack::byte_range message, const char *needle, 565 uint64_t *res) { 566 unsigned count = 0; 567 msgpack::foreach_map(message, 568 [&](msgpack::byte_range key, msgpack::byte_range value) { 569 if (msgpack::message_is_string(key, needle)) { 570 msgpack::foronly_unsigned(value, [&](uint64_t x) { 571 count++; 572 *res = x; 573 }); 574 } 575 }); 576 return count != 1; 577 } 578 579 int array_lookup_element(msgpack::byte_range message, uint64_t elt, 580 msgpack::byte_range *res) { 581 int rc = 1; 582 uint64_t i = 0; 583 msgpack::foreach_array(message, [&](msgpack::byte_range value) { 584 if (i == elt) { 585 *res = value; 586 rc = 0; 587 } 588 i++; 589 }); 590 return rc; 591 } 592 593 int populate_kernelArgMD(msgpack::byte_range args_element, 594 KernelArgMD *kernelarg) { 595 using namespace msgpack; 596 int error = 0; 597 foreach_map(args_element, [&](byte_range key, byte_range value) -> void { 598 if (message_is_string(key, ".name")) { 599 foronly_string(value, [&](size_t N, const unsigned char *str) { 600 kernelarg->name_ = std::string(str, str + N); 601 }); 602 } else if (message_is_string(key, ".type_name")) { 603 foronly_string(value, [&](size_t N, const unsigned char *str) { 604 kernelarg->typeName_ = std::string(str, str + N); 605 }); 606 } else if (message_is_string(key, ".size")) { 607 foronly_unsigned(value, [&](uint64_t x) { kernelarg->size_ = x; }); 608 } else if (message_is_string(key, ".offset")) { 609 foronly_unsigned(value, [&](uint64_t x) { kernelarg->offset_ = x; }); 610 } else if (message_is_string(key, ".value_kind")) { 611 foronly_string(value, [&](size_t N, const unsigned char *str) { 612 std::string s = std::string(str, str + N); 613 auto itValueKind = ArgValueKind.find(s); 614 if (itValueKind != ArgValueKind.end()) { 615 kernelarg->valueKind_ = itValueKind->second; 616 } 617 }); 618 } 619 }); 620 return error; 621 } 622 } // namespace 623 624 static hsa_status_t get_code_object_custom_metadata( 625 void *binary, size_t binSize, 626 std::map<std::string, atl_kernel_info_t> &KernelInfoTable) { 627 // parse code object with different keys from v2 628 // also, the kernel name is not the same as the symbol name -- so a 629 // symbol->name map is needed 630 631 std::pair<unsigned char *, unsigned char *> metadata = 632 find_metadata(binary, binSize); 633 if (!metadata.first) { 634 return HSA_STATUS_ERROR_INVALID_CODE_OBJECT; 635 } 636 637 uint64_t kernelsSize = 0; 638 int msgpack_errors = 0; 639 msgpack::byte_range kernel_array; 640 msgpack_errors = 641 map_lookup_array({metadata.first, metadata.second}, "amdhsa.kernels", 642 &kernel_array, &kernelsSize); 643 if (msgpack_errors != 0) { 644 printf("[%s:%d] %s failed\n", __FILE__, __LINE__, 645 "kernels lookup in program metadata"); 646 return HSA_STATUS_ERROR_INVALID_CODE_OBJECT; 647 } 648 649 for (size_t i = 0; i < kernelsSize; i++) { 650 assert(msgpack_errors == 0); 651 std::string kernelName; 652 std::string symbolName; 653 654 msgpack::byte_range element; 655 msgpack_errors += array_lookup_element(kernel_array, i, &element); 656 if (msgpack_errors != 0) { 657 printf("[%s:%d] %s failed\n", __FILE__, __LINE__, 658 "element lookup in kernel metadata"); 659 return HSA_STATUS_ERROR_INVALID_CODE_OBJECT; 660 } 661 662 msgpack_errors += map_lookup_string(element, ".name", &kernelName); 663 msgpack_errors += map_lookup_string(element, ".symbol", &symbolName); 664 if (msgpack_errors != 0) { 665 printf("[%s:%d] %s failed\n", __FILE__, __LINE__, 666 "strings lookup in kernel metadata"); 667 return HSA_STATUS_ERROR_INVALID_CODE_OBJECT; 668 } 669 670 // Make sure that kernelName + ".kd" == symbolName 671 if ((kernelName + ".kd") != symbolName) { 672 printf("[%s:%d] Kernel name mismatching symbol: %s != %s + .kd\n", 673 __FILE__, __LINE__, symbolName.c_str(), kernelName.c_str()); 674 return HSA_STATUS_ERROR_INVALID_CODE_OBJECT; 675 } 676 677 atl_kernel_info_t info = {0, 0, 0, 0, 0, 0, 0, 0, 0, {}, {}, {}}; 678 679 uint64_t sgpr_count, vgpr_count, sgpr_spill_count, vgpr_spill_count; 680 msgpack_errors += map_lookup_uint64_t(element, ".sgpr_count", &sgpr_count); 681 if (msgpack_errors != 0) { 682 printf("[%s:%d] %s failed\n", __FILE__, __LINE__, 683 "sgpr count metadata lookup in kernel metadata"); 684 return HSA_STATUS_ERROR_INVALID_CODE_OBJECT; 685 } 686 687 info.sgpr_count = sgpr_count; 688 689 msgpack_errors += map_lookup_uint64_t(element, ".vgpr_count", &vgpr_count); 690 if (msgpack_errors != 0) { 691 printf("[%s:%d] %s failed\n", __FILE__, __LINE__, 692 "vgpr count metadata lookup in kernel metadata"); 693 return HSA_STATUS_ERROR_INVALID_CODE_OBJECT; 694 } 695 696 info.vgpr_count = vgpr_count; 697 698 msgpack_errors += 699 map_lookup_uint64_t(element, ".sgpr_spill_count", &sgpr_spill_count); 700 if (msgpack_errors != 0) { 701 printf("[%s:%d] %s failed\n", __FILE__, __LINE__, 702 "sgpr spill count metadata lookup in kernel metadata"); 703 return HSA_STATUS_ERROR_INVALID_CODE_OBJECT; 704 } 705 706 info.sgpr_spill_count = sgpr_spill_count; 707 708 msgpack_errors += 709 map_lookup_uint64_t(element, ".vgpr_spill_count", &vgpr_spill_count); 710 if (msgpack_errors != 0) { 711 printf("[%s:%d] %s failed\n", __FILE__, __LINE__, 712 "vgpr spill count metadata lookup in kernel metadata"); 713 return HSA_STATUS_ERROR_INVALID_CODE_OBJECT; 714 } 715 716 info.vgpr_spill_count = vgpr_spill_count; 717 718 size_t kernel_explicit_args_size = 0; 719 uint64_t kernel_segment_size; 720 msgpack_errors += map_lookup_uint64_t(element, ".kernarg_segment_size", 721 &kernel_segment_size); 722 if (msgpack_errors != 0) { 723 printf("[%s:%d] %s failed\n", __FILE__, __LINE__, 724 "kernarg segment size metadata lookup in kernel metadata"); 725 return HSA_STATUS_ERROR_INVALID_CODE_OBJECT; 726 } 727 728 bool hasHiddenArgs = false; 729 if (kernel_segment_size > 0) { 730 uint64_t argsSize; 731 size_t offset = 0; 732 733 msgpack::byte_range args_array; 734 msgpack_errors += 735 map_lookup_array(element, ".args", &args_array, &argsSize); 736 if (msgpack_errors != 0) { 737 printf("[%s:%d] %s failed\n", __FILE__, __LINE__, 738 "kernel args metadata lookup in kernel metadata"); 739 return HSA_STATUS_ERROR_INVALID_CODE_OBJECT; 740 } 741 742 info.num_args = argsSize; 743 744 for (size_t i = 0; i < argsSize; ++i) { 745 KernelArgMD lcArg; 746 747 msgpack::byte_range args_element; 748 msgpack_errors += array_lookup_element(args_array, i, &args_element); 749 if (msgpack_errors != 0) { 750 printf("[%s:%d] %s failed\n", __FILE__, __LINE__, 751 "iterate args map in kernel args metadata"); 752 return HSA_STATUS_ERROR_INVALID_CODE_OBJECT; 753 } 754 755 msgpack_errors += populate_kernelArgMD(args_element, &lcArg); 756 if (msgpack_errors != 0) { 757 printf("[%s:%d] %s failed\n", __FILE__, __LINE__, 758 "iterate args map in kernel args metadata"); 759 return HSA_STATUS_ERROR_INVALID_CODE_OBJECT; 760 } 761 // populate info with sizes and offsets 762 info.arg_sizes.push_back(lcArg.size_); 763 // v3 has offset field and not align field 764 size_t new_offset = lcArg.offset_; 765 size_t padding = new_offset - offset; 766 offset = new_offset; 767 info.arg_offsets.push_back(lcArg.offset_); 768 DEBUG_PRINT("Arg[%lu] \"%s\" (%u, %u)\n", i, lcArg.name_.c_str(), 769 lcArg.size_, lcArg.offset_); 770 offset += lcArg.size_; 771 772 // check if the arg is a hidden/implicit arg 773 // this logic assumes that all hidden args are 8-byte aligned 774 if (!isImplicit(lcArg.valueKind_)) { 775 kernel_explicit_args_size += lcArg.size_; 776 } else { 777 hasHiddenArgs = true; 778 } 779 kernel_explicit_args_size += padding; 780 } 781 } 782 783 // add size of implicit args, e.g.: offset x, y and z and pipe pointer, but 784 // in ATMI, do not count the compiler set implicit args, but set your own 785 // implicit args by discounting the compiler set implicit args 786 info.kernel_segment_size = 787 (hasHiddenArgs ? kernel_explicit_args_size : kernel_segment_size) + 788 sizeof(atmi_implicit_args_t); 789 DEBUG_PRINT("[%s: kernarg seg size] (%lu --> %u)\n", kernelName.c_str(), 790 kernel_segment_size, info.kernel_segment_size); 791 792 // kernel received, now add it to the kernel info table 793 KernelInfoTable[kernelName] = info; 794 } 795 796 return HSA_STATUS_SUCCESS; 797 } 798 799 static hsa_status_t 800 populate_InfoTables(hsa_executable_symbol_t symbol, 801 std::map<std::string, atl_kernel_info_t> &KernelInfoTable, 802 std::map<std::string, atl_symbol_info_t> &SymbolInfoTable) { 803 hsa_symbol_kind_t type; 804 805 uint32_t name_length; 806 hsa_status_t err; 807 err = hsa_executable_symbol_get_info(symbol, HSA_EXECUTABLE_SYMBOL_INFO_TYPE, 808 &type); 809 if (err != HSA_STATUS_SUCCESS) { 810 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 811 "Symbol info extraction", get_error_string(err)); 812 return err; 813 } 814 DEBUG_PRINT("Exec Symbol type: %d\n", type); 815 if (type == HSA_SYMBOL_KIND_KERNEL) { 816 err = hsa_executable_symbol_get_info( 817 symbol, HSA_EXECUTABLE_SYMBOL_INFO_NAME_LENGTH, &name_length); 818 if (err != HSA_STATUS_SUCCESS) { 819 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 820 "Symbol info extraction", get_error_string(err)); 821 return err; 822 } 823 char *name = reinterpret_cast<char *>(malloc(name_length + 1)); 824 err = hsa_executable_symbol_get_info(symbol, 825 HSA_EXECUTABLE_SYMBOL_INFO_NAME, name); 826 if (err != HSA_STATUS_SUCCESS) { 827 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 828 "Symbol info extraction", get_error_string(err)); 829 return err; 830 } 831 // remove the suffix .kd from symbol name. 832 name[name_length - 3] = 0; 833 834 atl_kernel_info_t info; 835 std::string kernelName(name); 836 // by now, the kernel info table should already have an entry 837 // because the non-ROCr custom code object parsing is called before 838 // iterating over the code object symbols using ROCr 839 if (KernelInfoTable.find(kernelName) == KernelInfoTable.end()) { 840 if (HSA_STATUS_ERROR_INVALID_CODE_OBJECT != HSA_STATUS_SUCCESS) { 841 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 842 "Finding the entry kernel info table", 843 get_error_string(HSA_STATUS_ERROR_INVALID_CODE_OBJECT)); 844 exit(1); 845 } 846 } 847 // found, so assign and update 848 info = KernelInfoTable[kernelName]; 849 850 /* Extract dispatch information from the symbol */ 851 err = hsa_executable_symbol_get_info( 852 symbol, HSA_EXECUTABLE_SYMBOL_INFO_KERNEL_OBJECT, 853 &(info.kernel_object)); 854 if (err != HSA_STATUS_SUCCESS) { 855 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 856 "Extracting the symbol from the executable", 857 get_error_string(err)); 858 return err; 859 } 860 err = hsa_executable_symbol_get_info( 861 symbol, HSA_EXECUTABLE_SYMBOL_INFO_KERNEL_GROUP_SEGMENT_SIZE, 862 &(info.group_segment_size)); 863 if (err != HSA_STATUS_SUCCESS) { 864 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 865 "Extracting the group segment size from the executable", 866 get_error_string(err)); 867 return err; 868 } 869 err = hsa_executable_symbol_get_info( 870 symbol, HSA_EXECUTABLE_SYMBOL_INFO_KERNEL_PRIVATE_SEGMENT_SIZE, 871 &(info.private_segment_size)); 872 if (err != HSA_STATUS_SUCCESS) { 873 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 874 "Extracting the private segment from the executable", 875 get_error_string(err)); 876 return err; 877 } 878 879 DEBUG_PRINT( 880 "Kernel %s --> %lx symbol %u group segsize %u pvt segsize %u bytes " 881 "kernarg\n", 882 kernelName.c_str(), info.kernel_object, info.group_segment_size, 883 info.private_segment_size, info.kernel_segment_size); 884 885 // assign it back to the kernel info table 886 KernelInfoTable[kernelName] = info; 887 free(name); 888 } else if (type == HSA_SYMBOL_KIND_VARIABLE) { 889 err = hsa_executable_symbol_get_info( 890 symbol, HSA_EXECUTABLE_SYMBOL_INFO_NAME_LENGTH, &name_length); 891 if (err != HSA_STATUS_SUCCESS) { 892 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 893 "Symbol info extraction", get_error_string(err)); 894 return err; 895 } 896 char *name = reinterpret_cast<char *>(malloc(name_length + 1)); 897 err = hsa_executable_symbol_get_info(symbol, 898 HSA_EXECUTABLE_SYMBOL_INFO_NAME, name); 899 if (err != HSA_STATUS_SUCCESS) { 900 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 901 "Symbol info extraction", get_error_string(err)); 902 return err; 903 } 904 name[name_length] = 0; 905 906 atl_symbol_info_t info; 907 908 err = hsa_executable_symbol_get_info( 909 symbol, HSA_EXECUTABLE_SYMBOL_INFO_VARIABLE_ADDRESS, &(info.addr)); 910 if (err != HSA_STATUS_SUCCESS) { 911 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 912 "Symbol info address extraction", get_error_string(err)); 913 return err; 914 } 915 916 err = hsa_executable_symbol_get_info( 917 symbol, HSA_EXECUTABLE_SYMBOL_INFO_VARIABLE_SIZE, &(info.size)); 918 if (err != HSA_STATUS_SUCCESS) { 919 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 920 "Symbol info size extraction", get_error_string(err)); 921 return err; 922 } 923 924 DEBUG_PRINT("Symbol %s = %p (%u bytes)\n", name, (void *)info.addr, 925 info.size); 926 SymbolInfoTable[std::string(name)] = info; 927 free(name); 928 } else { 929 DEBUG_PRINT("Symbol is an indirect function\n"); 930 } 931 return HSA_STATUS_SUCCESS; 932 } 933 934 hsa_status_t RegisterModuleFromMemory( 935 std::map<std::string, atl_kernel_info_t> &KernelInfoTable, 936 std::map<std::string, atl_symbol_info_t> &SymbolInfoTable, 937 void *module_bytes, size_t module_size, hsa_agent_t agent, 938 hsa_status_t (*on_deserialized_data)(void *data, size_t size, 939 void *cb_state), 940 void *cb_state, std::vector<hsa_executable_t> &HSAExecutables) { 941 hsa_status_t err; 942 hsa_executable_t executable = {0}; 943 hsa_profile_t agent_profile; 944 945 err = hsa_agent_get_info(agent, HSA_AGENT_INFO_PROFILE, &agent_profile); 946 if (err != HSA_STATUS_SUCCESS) { 947 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 948 "Query the agent profile", get_error_string(err)); 949 return HSA_STATUS_ERROR; 950 } 951 // FIXME: Assume that every profile is FULL until we understand how to build 952 // GCN with base profile 953 agent_profile = HSA_PROFILE_FULL; 954 /* Create the empty executable. */ 955 err = hsa_executable_create(agent_profile, HSA_EXECUTABLE_STATE_UNFROZEN, "", 956 &executable); 957 if (err != HSA_STATUS_SUCCESS) { 958 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 959 "Create the executable", get_error_string(err)); 960 return HSA_STATUS_ERROR; 961 } 962 963 bool module_load_success = false; 964 do // Existing control flow used continue, preserve that for this patch 965 { 966 { 967 // Some metadata info is not available through ROCr API, so use custom 968 // code object metadata parsing to collect such metadata info 969 970 err = get_code_object_custom_metadata(module_bytes, module_size, 971 KernelInfoTable); 972 if (err != HSA_STATUS_SUCCESS) { 973 DEBUG_PRINT("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 974 "Getting custom code object metadata", 975 get_error_string(err)); 976 continue; 977 } 978 979 // Deserialize code object. 980 hsa_code_object_t code_object = {0}; 981 err = hsa_code_object_deserialize(module_bytes, module_size, NULL, 982 &code_object); 983 if (err != HSA_STATUS_SUCCESS) { 984 DEBUG_PRINT("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 985 "Code Object Deserialization", get_error_string(err)); 986 continue; 987 } 988 assert(0 != code_object.handle); 989 990 // Mutating the device image here avoids another allocation & memcpy 991 void *code_object_alloc_data = 992 reinterpret_cast<void *>(code_object.handle); 993 hsa_status_t atmi_err = 994 on_deserialized_data(code_object_alloc_data, module_size, cb_state); 995 if (atmi_err != HSA_STATUS_SUCCESS) { 996 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 997 "Error in deserialized_data callback", 998 get_error_string(atmi_err)); 999 return atmi_err; 1000 } 1001 1002 /* Load the code object. */ 1003 err = 1004 hsa_executable_load_code_object(executable, agent, code_object, NULL); 1005 if (err != HSA_STATUS_SUCCESS) { 1006 DEBUG_PRINT("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 1007 "Loading the code object", get_error_string(err)); 1008 continue; 1009 } 1010 1011 // cannot iterate over symbols until executable is frozen 1012 } 1013 module_load_success = true; 1014 } while (0); 1015 DEBUG_PRINT("Modules loaded successful? %d\n", module_load_success); 1016 if (module_load_success) { 1017 /* Freeze the executable; it can now be queried for symbols. */ 1018 err = hsa_executable_freeze(executable, ""); 1019 if (err != HSA_STATUS_SUCCESS) { 1020 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 1021 "Freeze the executable", get_error_string(err)); 1022 return HSA_STATUS_ERROR; 1023 } 1024 1025 err = hsa::executable_iterate_symbols( 1026 executable, 1027 [&](hsa_executable_t, hsa_executable_symbol_t symbol) -> hsa_status_t { 1028 return populate_InfoTables(symbol, KernelInfoTable, SymbolInfoTable); 1029 }); 1030 if (err != HSA_STATUS_SUCCESS) { 1031 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 1032 "Iterating over symbols for execuatable", get_error_string(err)); 1033 return HSA_STATUS_ERROR; 1034 } 1035 1036 // save the executable and destroy during finalize 1037 HSAExecutables.push_back(executable); 1038 return HSA_STATUS_SUCCESS; 1039 } else { 1040 return HSA_STATUS_ERROR; 1041 } 1042 } 1043 1044 } // namespace core 1045