1 //===--- amdgpu/impl/system.cpp ----------------------------------- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 #include <libelf.h> 9 10 #include <cassert> 11 #include <sstream> 12 #include <string> 13 14 #include "internal.h" 15 #include "rt.h" 16 17 #include "msgpack.h" 18 19 namespace hsa { 20 // Wrap HSA iterate API in a shim that allows passing general callables 21 template <typename C> 22 hsa_status_t executable_iterate_symbols(hsa_executable_t executable, C cb) { 23 auto L = [](hsa_executable_t executable, hsa_executable_symbol_t symbol, 24 void *data) -> hsa_status_t { 25 C *unwrapped = static_cast<C *>(data); 26 return (*unwrapped)(executable, symbol); 27 }; 28 return hsa_executable_iterate_symbols(executable, L, 29 static_cast<void *>(&cb)); 30 } 31 } // namespace hsa 32 33 typedef unsigned char *address; 34 /* 35 * Note descriptors. 36 */ 37 // FreeBSD already declares Elf_Note (indirectly via <libelf.h>) 38 #if !defined(__FreeBSD__) 39 typedef struct { 40 uint32_t n_namesz; /* Length of note's name. */ 41 uint32_t n_descsz; /* Length of note's value. */ 42 uint32_t n_type; /* Type of note. */ 43 // then name 44 // then padding, optional 45 // then desc, at 4 byte alignment (not 8, despite being elf64) 46 } Elf_Note; 47 #endif 48 49 // The following include file and following structs/enums 50 // have been replicated on a per-use basis below. For example, 51 // llvm::AMDGPU::HSAMD::Kernel::Metadata has several fields, 52 // but we may care only about kernargSegmentSize_ for now, so 53 // we just include that field in our KernelMD implementation. We 54 // chose this approach to replicate in order to avoid forcing 55 // a dependency on LLVM_INCLUDE_DIR just to compile the runtime. 56 // #include "llvm/Support/AMDGPUMetadata.h" 57 // typedef llvm::AMDGPU::HSAMD::Metadata CodeObjectMD; 58 // typedef llvm::AMDGPU::HSAMD::Kernel::Metadata KernelMD; 59 // typedef llvm::AMDGPU::HSAMD::Kernel::Arg::Metadata KernelArgMD; 60 // using llvm::AMDGPU::HSAMD::AccessQualifier; 61 // using llvm::AMDGPU::HSAMD::AddressSpaceQualifier; 62 // using llvm::AMDGPU::HSAMD::ValueKind; 63 // using llvm::AMDGPU::HSAMD::ValueType; 64 65 class KernelArgMD { 66 public: 67 enum class ValueKind { 68 HiddenGlobalOffsetX, 69 HiddenGlobalOffsetY, 70 HiddenGlobalOffsetZ, 71 HiddenNone, 72 HiddenPrintfBuffer, 73 HiddenDefaultQueue, 74 HiddenCompletionAction, 75 HiddenMultiGridSyncArg, 76 HiddenHostcallBuffer, 77 Unknown 78 }; 79 80 KernelArgMD() 81 : name_(std::string()), typeName_(std::string()), size_(0), offset_(0), 82 align_(0), valueKind_(ValueKind::Unknown) {} 83 84 // fields 85 std::string name_; 86 std::string typeName_; 87 uint32_t size_; 88 uint32_t offset_; 89 uint32_t align_; 90 ValueKind valueKind_; 91 }; 92 93 class KernelMD { 94 public: 95 KernelMD() : kernargSegmentSize_(0ull) {} 96 97 // fields 98 uint64_t kernargSegmentSize_; 99 }; 100 101 static const std::map<std::string, KernelArgMD::ValueKind> ArgValueKind = { 102 // Including only those fields that are relevant to the runtime. 103 // {"ByValue", KernelArgMD::ValueKind::ByValue}, 104 // {"GlobalBuffer", KernelArgMD::ValueKind::GlobalBuffer}, 105 // {"DynamicSharedPointer", 106 // KernelArgMD::ValueKind::DynamicSharedPointer}, 107 // {"Sampler", KernelArgMD::ValueKind::Sampler}, 108 // {"Image", KernelArgMD::ValueKind::Image}, 109 // {"Pipe", KernelArgMD::ValueKind::Pipe}, 110 // {"Queue", KernelArgMD::ValueKind::Queue}, 111 {"HiddenGlobalOffsetX", KernelArgMD::ValueKind::HiddenGlobalOffsetX}, 112 {"HiddenGlobalOffsetY", KernelArgMD::ValueKind::HiddenGlobalOffsetY}, 113 {"HiddenGlobalOffsetZ", KernelArgMD::ValueKind::HiddenGlobalOffsetZ}, 114 {"HiddenNone", KernelArgMD::ValueKind::HiddenNone}, 115 {"HiddenPrintfBuffer", KernelArgMD::ValueKind::HiddenPrintfBuffer}, 116 {"HiddenDefaultQueue", KernelArgMD::ValueKind::HiddenDefaultQueue}, 117 {"HiddenCompletionAction", KernelArgMD::ValueKind::HiddenCompletionAction}, 118 {"HiddenMultiGridSyncArg", KernelArgMD::ValueKind::HiddenMultiGridSyncArg}, 119 {"HiddenHostcallBuffer", KernelArgMD::ValueKind::HiddenHostcallBuffer}, 120 // v3 121 // {"by_value", KernelArgMD::ValueKind::ByValue}, 122 // {"global_buffer", KernelArgMD::ValueKind::GlobalBuffer}, 123 // {"dynamic_shared_pointer", 124 // KernelArgMD::ValueKind::DynamicSharedPointer}, 125 // {"sampler", KernelArgMD::ValueKind::Sampler}, 126 // {"image", KernelArgMD::ValueKind::Image}, 127 // {"pipe", KernelArgMD::ValueKind::Pipe}, 128 // {"queue", KernelArgMD::ValueKind::Queue}, 129 {"hidden_global_offset_x", KernelArgMD::ValueKind::HiddenGlobalOffsetX}, 130 {"hidden_global_offset_y", KernelArgMD::ValueKind::HiddenGlobalOffsetY}, 131 {"hidden_global_offset_z", KernelArgMD::ValueKind::HiddenGlobalOffsetZ}, 132 {"hidden_none", KernelArgMD::ValueKind::HiddenNone}, 133 {"hidden_printf_buffer", KernelArgMD::ValueKind::HiddenPrintfBuffer}, 134 {"hidden_default_queue", KernelArgMD::ValueKind::HiddenDefaultQueue}, 135 {"hidden_completion_action", 136 KernelArgMD::ValueKind::HiddenCompletionAction}, 137 {"hidden_multigrid_sync_arg", 138 KernelArgMD::ValueKind::HiddenMultiGridSyncArg}, 139 {"hidden_hostcall_buffer", KernelArgMD::ValueKind::HiddenHostcallBuffer}, 140 }; 141 142 namespace core { 143 144 hsa_status_t callbackEvent(const hsa_amd_event_t *event, void *data) { 145 if (event->event_type == HSA_AMD_GPU_MEMORY_FAULT_EVENT) { 146 hsa_amd_gpu_memory_fault_info_t memory_fault = event->memory_fault; 147 // memory_fault.agent 148 // memory_fault.virtual_address 149 // memory_fault.fault_reason_mask 150 // fprintf("[GPU Error at %p: Reason is ", memory_fault.virtual_address); 151 std::stringstream stream; 152 stream << std::hex << (uintptr_t)memory_fault.virtual_address; 153 std::string addr("0x" + stream.str()); 154 155 std::string err_string = "[GPU Memory Error] Addr: " + addr; 156 err_string += " Reason: "; 157 if (!(memory_fault.fault_reason_mask & 0x00111111)) { 158 err_string += "No Idea! "; 159 } else { 160 if (memory_fault.fault_reason_mask & 0x00000001) 161 err_string += "Page not present or supervisor privilege. "; 162 if (memory_fault.fault_reason_mask & 0x00000010) 163 err_string += "Write access to a read-only page. "; 164 if (memory_fault.fault_reason_mask & 0x00000100) 165 err_string += "Execute access to a page marked NX. "; 166 if (memory_fault.fault_reason_mask & 0x00001000) 167 err_string += "Host access only. "; 168 if (memory_fault.fault_reason_mask & 0x00010000) 169 err_string += "ECC failure (if supported by HW). "; 170 if (memory_fault.fault_reason_mask & 0x00100000) 171 err_string += "Can't determine the exact fault address. "; 172 } 173 fprintf(stderr, "%s\n", err_string.c_str()); 174 return HSA_STATUS_ERROR; 175 } 176 return HSA_STATUS_SUCCESS; 177 } 178 179 hsa_status_t atl_init_gpu_context() { 180 hsa_status_t err; 181 err = hsa_init(); 182 if (err != HSA_STATUS_SUCCESS) 183 return HSA_STATUS_ERROR; 184 185 err = hsa_amd_register_system_event_handler(callbackEvent, NULL); 186 if (err != HSA_STATUS_SUCCESS) { 187 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 188 "Registering the system for memory faults", get_error_string(err)); 189 return HSA_STATUS_ERROR; 190 } 191 192 return HSA_STATUS_SUCCESS; 193 } 194 195 static bool isImplicit(KernelArgMD::ValueKind value_kind) { 196 switch (value_kind) { 197 case KernelArgMD::ValueKind::HiddenGlobalOffsetX: 198 case KernelArgMD::ValueKind::HiddenGlobalOffsetY: 199 case KernelArgMD::ValueKind::HiddenGlobalOffsetZ: 200 case KernelArgMD::ValueKind::HiddenNone: 201 case KernelArgMD::ValueKind::HiddenPrintfBuffer: 202 case KernelArgMD::ValueKind::HiddenDefaultQueue: 203 case KernelArgMD::ValueKind::HiddenCompletionAction: 204 case KernelArgMD::ValueKind::HiddenMultiGridSyncArg: 205 case KernelArgMD::ValueKind::HiddenHostcallBuffer: 206 return true; 207 default: 208 return false; 209 } 210 } 211 212 static std::pair<unsigned char *, unsigned char *> 213 find_metadata(void *binary, size_t binSize) { 214 std::pair<unsigned char *, unsigned char *> failure = {nullptr, nullptr}; 215 216 Elf *e = elf_memory(static_cast<char *>(binary), binSize); 217 if (elf_kind(e) != ELF_K_ELF) { 218 return failure; 219 } 220 221 size_t numpHdrs; 222 if (elf_getphdrnum(e, &numpHdrs) != 0) { 223 return failure; 224 } 225 226 Elf64_Phdr *pHdrs = elf64_getphdr(e); 227 for (size_t i = 0; i < numpHdrs; ++i) { 228 Elf64_Phdr pHdr = pHdrs[i]; 229 230 // Look for the runtime metadata note 231 if (pHdr.p_type == PT_NOTE && pHdr.p_align >= sizeof(int)) { 232 // Iterate over the notes in this segment 233 address ptr = (address)binary + pHdr.p_offset; 234 address segmentEnd = ptr + pHdr.p_filesz; 235 236 while (ptr < segmentEnd) { 237 Elf_Note *note = reinterpret_cast<Elf_Note *>(ptr); 238 address name = (address)¬e[1]; 239 240 if (note->n_type == 7 || note->n_type == 8) { 241 return failure; 242 } else if (note->n_type == 10 /* NT_AMD_AMDGPU_HSA_METADATA */ && 243 note->n_namesz == sizeof "AMD" && 244 !memcmp(name, "AMD", note->n_namesz)) { 245 // code object v2 uses yaml metadata, no longer supported 246 return failure; 247 } else if (note->n_type == 32 /* NT_AMDGPU_METADATA */ && 248 note->n_namesz == sizeof "AMDGPU" && 249 !memcmp(name, "AMDGPU", note->n_namesz)) { 250 251 // n_descsz = 485 252 // value is padded to 4 byte alignment, may want to move end up to 253 // match 254 size_t offset = sizeof(uint32_t) * 3 /* fields */ 255 + sizeof("AMDGPU") /* name */ 256 + 1 /* padding to 4 byte alignment */; 257 258 // Including the trailing padding means both pointers are 4 bytes 259 // aligned, which may be useful later. 260 unsigned char *metadata_start = (unsigned char *)ptr + offset; 261 unsigned char *metadata_end = 262 metadata_start + core::alignUp(note->n_descsz, 4); 263 return {metadata_start, metadata_end}; 264 } 265 ptr += sizeof(*note) + core::alignUp(note->n_namesz, sizeof(int)) + 266 core::alignUp(note->n_descsz, sizeof(int)); 267 } 268 } 269 } 270 271 return failure; 272 } 273 274 namespace { 275 int map_lookup_array(msgpack::byte_range message, const char *needle, 276 msgpack::byte_range *res, uint64_t *size) { 277 unsigned count = 0; 278 struct s : msgpack::functors_defaults<s> { 279 s(unsigned &count, uint64_t *size) : count(count), size(size) {} 280 unsigned &count; 281 uint64_t *size; 282 const unsigned char *handle_array(uint64_t N, msgpack::byte_range bytes) { 283 count++; 284 *size = N; 285 return bytes.end; 286 } 287 }; 288 289 msgpack::foreach_map(message, 290 [&](msgpack::byte_range key, msgpack::byte_range value) { 291 if (msgpack::message_is_string(key, needle)) { 292 // If the message is an array, record number of 293 // elements in *size 294 msgpack::handle_msgpack<s>(value, {count, size}); 295 // return the whole array 296 *res = value; 297 } 298 }); 299 // Only claim success if exactly one key/array pair matched 300 return count != 1; 301 } 302 303 int map_lookup_string(msgpack::byte_range message, const char *needle, 304 std::string *res) { 305 unsigned count = 0; 306 struct s : public msgpack::functors_defaults<s> { 307 s(unsigned &count, std::string *res) : count(count), res(res) {} 308 unsigned &count; 309 std::string *res; 310 void handle_string(size_t N, const unsigned char *str) { 311 count++; 312 *res = std::string(str, str + N); 313 } 314 }; 315 msgpack::foreach_map(message, 316 [&](msgpack::byte_range key, msgpack::byte_range value) { 317 if (msgpack::message_is_string(key, needle)) { 318 msgpack::handle_msgpack<s>(value, {count, res}); 319 } 320 }); 321 return count != 1; 322 } 323 324 int map_lookup_uint64_t(msgpack::byte_range message, const char *needle, 325 uint64_t *res) { 326 unsigned count = 0; 327 msgpack::foreach_map(message, 328 [&](msgpack::byte_range key, msgpack::byte_range value) { 329 if (msgpack::message_is_string(key, needle)) { 330 msgpack::foronly_unsigned(value, [&](uint64_t x) { 331 count++; 332 *res = x; 333 }); 334 } 335 }); 336 return count != 1; 337 } 338 339 int array_lookup_element(msgpack::byte_range message, uint64_t elt, 340 msgpack::byte_range *res) { 341 int rc = 1; 342 uint64_t i = 0; 343 msgpack::foreach_array(message, [&](msgpack::byte_range value) { 344 if (i == elt) { 345 *res = value; 346 rc = 0; 347 } 348 i++; 349 }); 350 return rc; 351 } 352 353 int populate_kernelArgMD(msgpack::byte_range args_element, 354 KernelArgMD *kernelarg) { 355 using namespace msgpack; 356 int error = 0; 357 foreach_map(args_element, [&](byte_range key, byte_range value) -> void { 358 if (message_is_string(key, ".name")) { 359 foronly_string(value, [&](size_t N, const unsigned char *str) { 360 kernelarg->name_ = std::string(str, str + N); 361 }); 362 } else if (message_is_string(key, ".type_name")) { 363 foronly_string(value, [&](size_t N, const unsigned char *str) { 364 kernelarg->typeName_ = std::string(str, str + N); 365 }); 366 } else if (message_is_string(key, ".size")) { 367 foronly_unsigned(value, [&](uint64_t x) { kernelarg->size_ = x; }); 368 } else if (message_is_string(key, ".offset")) { 369 foronly_unsigned(value, [&](uint64_t x) { kernelarg->offset_ = x; }); 370 } else if (message_is_string(key, ".value_kind")) { 371 foronly_string(value, [&](size_t N, const unsigned char *str) { 372 std::string s = std::string(str, str + N); 373 auto itValueKind = ArgValueKind.find(s); 374 if (itValueKind != ArgValueKind.end()) { 375 kernelarg->valueKind_ = itValueKind->second; 376 } 377 }); 378 } 379 }); 380 return error; 381 } 382 } // namespace 383 384 static hsa_status_t get_code_object_custom_metadata( 385 void *binary, size_t binSize, 386 std::map<std::string, atl_kernel_info_t> &KernelInfoTable) { 387 // parse code object with different keys from v2 388 // also, the kernel name is not the same as the symbol name -- so a 389 // symbol->name map is needed 390 391 std::pair<unsigned char *, unsigned char *> metadata = 392 find_metadata(binary, binSize); 393 if (!metadata.first) { 394 return HSA_STATUS_ERROR_INVALID_CODE_OBJECT; 395 } 396 397 uint64_t kernelsSize = 0; 398 int msgpack_errors = 0; 399 msgpack::byte_range kernel_array; 400 msgpack_errors = 401 map_lookup_array({metadata.first, metadata.second}, "amdhsa.kernels", 402 &kernel_array, &kernelsSize); 403 if (msgpack_errors != 0) { 404 printf("[%s:%d] %s failed\n", __FILE__, __LINE__, 405 "kernels lookup in program metadata"); 406 return HSA_STATUS_ERROR_INVALID_CODE_OBJECT; 407 } 408 409 for (size_t i = 0; i < kernelsSize; i++) { 410 assert(msgpack_errors == 0); 411 std::string kernelName; 412 std::string symbolName; 413 414 msgpack::byte_range element; 415 msgpack_errors += array_lookup_element(kernel_array, i, &element); 416 if (msgpack_errors != 0) { 417 printf("[%s:%d] %s failed\n", __FILE__, __LINE__, 418 "element lookup in kernel metadata"); 419 return HSA_STATUS_ERROR_INVALID_CODE_OBJECT; 420 } 421 422 msgpack_errors += map_lookup_string(element, ".name", &kernelName); 423 msgpack_errors += map_lookup_string(element, ".symbol", &symbolName); 424 if (msgpack_errors != 0) { 425 printf("[%s:%d] %s failed\n", __FILE__, __LINE__, 426 "strings lookup in kernel metadata"); 427 return HSA_STATUS_ERROR_INVALID_CODE_OBJECT; 428 } 429 430 // Make sure that kernelName + ".kd" == symbolName 431 if ((kernelName + ".kd") != symbolName) { 432 printf("[%s:%d] Kernel name mismatching symbol: %s != %s + .kd\n", 433 __FILE__, __LINE__, symbolName.c_str(), kernelName.c_str()); 434 return HSA_STATUS_ERROR_INVALID_CODE_OBJECT; 435 } 436 437 atl_kernel_info_t info = {0, 0, 0, 0, 0, 0, 0, 0, 0, {}, {}, {}}; 438 439 uint64_t sgpr_count, vgpr_count, sgpr_spill_count, vgpr_spill_count; 440 msgpack_errors += map_lookup_uint64_t(element, ".sgpr_count", &sgpr_count); 441 if (msgpack_errors != 0) { 442 printf("[%s:%d] %s failed\n", __FILE__, __LINE__, 443 "sgpr count metadata lookup in kernel metadata"); 444 return HSA_STATUS_ERROR_INVALID_CODE_OBJECT; 445 } 446 447 info.sgpr_count = sgpr_count; 448 449 msgpack_errors += map_lookup_uint64_t(element, ".vgpr_count", &vgpr_count); 450 if (msgpack_errors != 0) { 451 printf("[%s:%d] %s failed\n", __FILE__, __LINE__, 452 "vgpr count metadata lookup in kernel metadata"); 453 return HSA_STATUS_ERROR_INVALID_CODE_OBJECT; 454 } 455 456 info.vgpr_count = vgpr_count; 457 458 msgpack_errors += 459 map_lookup_uint64_t(element, ".sgpr_spill_count", &sgpr_spill_count); 460 if (msgpack_errors != 0) { 461 printf("[%s:%d] %s failed\n", __FILE__, __LINE__, 462 "sgpr spill count metadata lookup in kernel metadata"); 463 return HSA_STATUS_ERROR_INVALID_CODE_OBJECT; 464 } 465 466 info.sgpr_spill_count = sgpr_spill_count; 467 468 msgpack_errors += 469 map_lookup_uint64_t(element, ".vgpr_spill_count", &vgpr_spill_count); 470 if (msgpack_errors != 0) { 471 printf("[%s:%d] %s failed\n", __FILE__, __LINE__, 472 "vgpr spill count metadata lookup in kernel metadata"); 473 return HSA_STATUS_ERROR_INVALID_CODE_OBJECT; 474 } 475 476 info.vgpr_spill_count = vgpr_spill_count; 477 478 size_t kernel_explicit_args_size = 0; 479 uint64_t kernel_segment_size; 480 msgpack_errors += map_lookup_uint64_t(element, ".kernarg_segment_size", 481 &kernel_segment_size); 482 if (msgpack_errors != 0) { 483 printf("[%s:%d] %s failed\n", __FILE__, __LINE__, 484 "kernarg segment size metadata lookup in kernel metadata"); 485 return HSA_STATUS_ERROR_INVALID_CODE_OBJECT; 486 } 487 488 bool hasHiddenArgs = false; 489 if (kernel_segment_size > 0) { 490 uint64_t argsSize; 491 size_t offset = 0; 492 493 msgpack::byte_range args_array; 494 msgpack_errors += 495 map_lookup_array(element, ".args", &args_array, &argsSize); 496 if (msgpack_errors != 0) { 497 printf("[%s:%d] %s failed\n", __FILE__, __LINE__, 498 "kernel args metadata lookup in kernel metadata"); 499 return HSA_STATUS_ERROR_INVALID_CODE_OBJECT; 500 } 501 502 info.num_args = argsSize; 503 504 for (size_t i = 0; i < argsSize; ++i) { 505 KernelArgMD lcArg; 506 507 msgpack::byte_range args_element; 508 msgpack_errors += array_lookup_element(args_array, i, &args_element); 509 if (msgpack_errors != 0) { 510 printf("[%s:%d] %s failed\n", __FILE__, __LINE__, 511 "iterate args map in kernel args metadata"); 512 return HSA_STATUS_ERROR_INVALID_CODE_OBJECT; 513 } 514 515 msgpack_errors += populate_kernelArgMD(args_element, &lcArg); 516 if (msgpack_errors != 0) { 517 printf("[%s:%d] %s failed\n", __FILE__, __LINE__, 518 "iterate args map in kernel args metadata"); 519 return HSA_STATUS_ERROR_INVALID_CODE_OBJECT; 520 } 521 // populate info with sizes and offsets 522 info.arg_sizes.push_back(lcArg.size_); 523 // v3 has offset field and not align field 524 size_t new_offset = lcArg.offset_; 525 size_t padding = new_offset - offset; 526 offset = new_offset; 527 info.arg_offsets.push_back(lcArg.offset_); 528 DP("Arg[%lu] \"%s\" (%u, %u)\n", i, lcArg.name_.c_str(), lcArg.size_, 529 lcArg.offset_); 530 offset += lcArg.size_; 531 532 // check if the arg is a hidden/implicit arg 533 // this logic assumes that all hidden args are 8-byte aligned 534 if (!isImplicit(lcArg.valueKind_)) { 535 kernel_explicit_args_size += lcArg.size_; 536 } else { 537 hasHiddenArgs = true; 538 } 539 kernel_explicit_args_size += padding; 540 } 541 } 542 543 // add size of implicit args, e.g.: offset x, y and z and pipe pointer, but 544 // do not count the compiler set implicit args, but set your own implicit 545 // args by discounting the compiler set implicit args 546 info.kernel_segment_size = 547 (hasHiddenArgs ? kernel_explicit_args_size : kernel_segment_size) + 548 sizeof(impl_implicit_args_t); 549 DP("[%s: kernarg seg size] (%lu --> %u)\n", kernelName.c_str(), 550 kernel_segment_size, info.kernel_segment_size); 551 552 // kernel received, now add it to the kernel info table 553 KernelInfoTable[kernelName] = info; 554 } 555 556 return HSA_STATUS_SUCCESS; 557 } 558 559 static hsa_status_t 560 populate_InfoTables(hsa_executable_symbol_t symbol, 561 std::map<std::string, atl_kernel_info_t> &KernelInfoTable, 562 std::map<std::string, atl_symbol_info_t> &SymbolInfoTable) { 563 hsa_symbol_kind_t type; 564 565 uint32_t name_length; 566 hsa_status_t err; 567 err = hsa_executable_symbol_get_info(symbol, HSA_EXECUTABLE_SYMBOL_INFO_TYPE, 568 &type); 569 if (err != HSA_STATUS_SUCCESS) { 570 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 571 "Symbol info extraction", get_error_string(err)); 572 return err; 573 } 574 DP("Exec Symbol type: %d\n", type); 575 if (type == HSA_SYMBOL_KIND_KERNEL) { 576 err = hsa_executable_symbol_get_info( 577 symbol, HSA_EXECUTABLE_SYMBOL_INFO_NAME_LENGTH, &name_length); 578 if (err != HSA_STATUS_SUCCESS) { 579 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 580 "Symbol info extraction", get_error_string(err)); 581 return err; 582 } 583 char *name = reinterpret_cast<char *>(malloc(name_length + 1)); 584 err = hsa_executable_symbol_get_info(symbol, 585 HSA_EXECUTABLE_SYMBOL_INFO_NAME, name); 586 if (err != HSA_STATUS_SUCCESS) { 587 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 588 "Symbol info extraction", get_error_string(err)); 589 return err; 590 } 591 // remove the suffix .kd from symbol name. 592 name[name_length - 3] = 0; 593 594 atl_kernel_info_t info; 595 std::string kernelName(name); 596 // by now, the kernel info table should already have an entry 597 // because the non-ROCr custom code object parsing is called before 598 // iterating over the code object symbols using ROCr 599 if (KernelInfoTable.find(kernelName) == KernelInfoTable.end()) { 600 if (HSA_STATUS_ERROR_INVALID_CODE_OBJECT != HSA_STATUS_SUCCESS) { 601 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 602 "Finding the entry kernel info table", 603 get_error_string(HSA_STATUS_ERROR_INVALID_CODE_OBJECT)); 604 exit(1); 605 } 606 } 607 // found, so assign and update 608 info = KernelInfoTable[kernelName]; 609 610 /* Extract dispatch information from the symbol */ 611 err = hsa_executable_symbol_get_info( 612 symbol, HSA_EXECUTABLE_SYMBOL_INFO_KERNEL_OBJECT, 613 &(info.kernel_object)); 614 if (err != HSA_STATUS_SUCCESS) { 615 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 616 "Extracting the symbol from the executable", 617 get_error_string(err)); 618 return err; 619 } 620 err = hsa_executable_symbol_get_info( 621 symbol, HSA_EXECUTABLE_SYMBOL_INFO_KERNEL_GROUP_SEGMENT_SIZE, 622 &(info.group_segment_size)); 623 if (err != HSA_STATUS_SUCCESS) { 624 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 625 "Extracting the group segment size from the executable", 626 get_error_string(err)); 627 return err; 628 } 629 err = hsa_executable_symbol_get_info( 630 symbol, HSA_EXECUTABLE_SYMBOL_INFO_KERNEL_PRIVATE_SEGMENT_SIZE, 631 &(info.private_segment_size)); 632 if (err != HSA_STATUS_SUCCESS) { 633 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 634 "Extracting the private segment from the executable", 635 get_error_string(err)); 636 return err; 637 } 638 639 DP("Kernel %s --> %lx symbol %u group segsize %u pvt segsize %u bytes " 640 "kernarg\n", 641 kernelName.c_str(), info.kernel_object, info.group_segment_size, 642 info.private_segment_size, info.kernel_segment_size); 643 644 // assign it back to the kernel info table 645 KernelInfoTable[kernelName] = info; 646 free(name); 647 } else if (type == HSA_SYMBOL_KIND_VARIABLE) { 648 err = hsa_executable_symbol_get_info( 649 symbol, HSA_EXECUTABLE_SYMBOL_INFO_NAME_LENGTH, &name_length); 650 if (err != HSA_STATUS_SUCCESS) { 651 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 652 "Symbol info extraction", get_error_string(err)); 653 return err; 654 } 655 char *name = reinterpret_cast<char *>(malloc(name_length + 1)); 656 err = hsa_executable_symbol_get_info(symbol, 657 HSA_EXECUTABLE_SYMBOL_INFO_NAME, name); 658 if (err != HSA_STATUS_SUCCESS) { 659 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 660 "Symbol info extraction", get_error_string(err)); 661 return err; 662 } 663 name[name_length] = 0; 664 665 atl_symbol_info_t info; 666 667 err = hsa_executable_symbol_get_info( 668 symbol, HSA_EXECUTABLE_SYMBOL_INFO_VARIABLE_ADDRESS, &(info.addr)); 669 if (err != HSA_STATUS_SUCCESS) { 670 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 671 "Symbol info address extraction", get_error_string(err)); 672 return err; 673 } 674 675 err = hsa_executable_symbol_get_info( 676 symbol, HSA_EXECUTABLE_SYMBOL_INFO_VARIABLE_SIZE, &(info.size)); 677 if (err != HSA_STATUS_SUCCESS) { 678 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 679 "Symbol info size extraction", get_error_string(err)); 680 return err; 681 } 682 683 DP("Symbol %s = %p (%u bytes)\n", name, (void *)info.addr, info.size); 684 SymbolInfoTable[std::string(name)] = info; 685 free(name); 686 } else { 687 DP("Symbol is an indirect function\n"); 688 } 689 return HSA_STATUS_SUCCESS; 690 } 691 692 hsa_status_t RegisterModuleFromMemory( 693 std::map<std::string, atl_kernel_info_t> &KernelInfoTable, 694 std::map<std::string, atl_symbol_info_t> &SymbolInfoTable, 695 void *module_bytes, size_t module_size, hsa_agent_t agent, 696 hsa_status_t (*on_deserialized_data)(void *data, size_t size, 697 void *cb_state), 698 void *cb_state, std::vector<hsa_executable_t> &HSAExecutables) { 699 hsa_status_t err; 700 hsa_executable_t executable = {0}; 701 hsa_profile_t agent_profile; 702 703 err = hsa_agent_get_info(agent, HSA_AGENT_INFO_PROFILE, &agent_profile); 704 if (err != HSA_STATUS_SUCCESS) { 705 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 706 "Query the agent profile", get_error_string(err)); 707 return HSA_STATUS_ERROR; 708 } 709 // FIXME: Assume that every profile is FULL until we understand how to build 710 // GCN with base profile 711 agent_profile = HSA_PROFILE_FULL; 712 /* Create the empty executable. */ 713 err = hsa_executable_create(agent_profile, HSA_EXECUTABLE_STATE_UNFROZEN, "", 714 &executable); 715 if (err != HSA_STATUS_SUCCESS) { 716 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 717 "Create the executable", get_error_string(err)); 718 return HSA_STATUS_ERROR; 719 } 720 721 bool module_load_success = false; 722 do // Existing control flow used continue, preserve that for this patch 723 { 724 { 725 // Some metadata info is not available through ROCr API, so use custom 726 // code object metadata parsing to collect such metadata info 727 728 err = get_code_object_custom_metadata(module_bytes, module_size, 729 KernelInfoTable); 730 if (err != HSA_STATUS_SUCCESS) { 731 DP("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 732 "Getting custom code object metadata", get_error_string(err)); 733 continue; 734 } 735 736 // Deserialize code object. 737 hsa_code_object_t code_object = {0}; 738 err = hsa_code_object_deserialize(module_bytes, module_size, NULL, 739 &code_object); 740 if (err != HSA_STATUS_SUCCESS) { 741 DP("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 742 "Code Object Deserialization", get_error_string(err)); 743 continue; 744 } 745 assert(0 != code_object.handle); 746 747 // Mutating the device image here avoids another allocation & memcpy 748 void *code_object_alloc_data = 749 reinterpret_cast<void *>(code_object.handle); 750 hsa_status_t impl_err = 751 on_deserialized_data(code_object_alloc_data, module_size, cb_state); 752 if (impl_err != HSA_STATUS_SUCCESS) { 753 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 754 "Error in deserialized_data callback", 755 get_error_string(impl_err)); 756 return impl_err; 757 } 758 759 /* Load the code object. */ 760 err = 761 hsa_executable_load_code_object(executable, agent, code_object, NULL); 762 if (err != HSA_STATUS_SUCCESS) { 763 DP("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 764 "Loading the code object", get_error_string(err)); 765 continue; 766 } 767 768 // cannot iterate over symbols until executable is frozen 769 } 770 module_load_success = true; 771 } while (0); 772 DP("Modules loaded successful? %d\n", module_load_success); 773 if (module_load_success) { 774 /* Freeze the executable; it can now be queried for symbols. */ 775 err = hsa_executable_freeze(executable, ""); 776 if (err != HSA_STATUS_SUCCESS) { 777 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 778 "Freeze the executable", get_error_string(err)); 779 return HSA_STATUS_ERROR; 780 } 781 782 err = hsa::executable_iterate_symbols( 783 executable, 784 [&](hsa_executable_t, hsa_executable_symbol_t symbol) -> hsa_status_t { 785 return populate_InfoTables(symbol, KernelInfoTable, SymbolInfoTable); 786 }); 787 if (err != HSA_STATUS_SUCCESS) { 788 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 789 "Iterating over symbols for execuatable", get_error_string(err)); 790 return HSA_STATUS_ERROR; 791 } 792 793 // save the executable and destroy during finalize 794 HSAExecutables.push_back(executable); 795 return HSA_STATUS_SUCCESS; 796 } else { 797 return HSA_STATUS_ERROR; 798 } 799 } 800 801 } // namespace core 802