1 /*===--------------------------------------------------------------------------
2  *              ATMI (Asynchronous Task and Memory Interface)
3  *
4  * This file is distributed under the MIT License. See LICENSE.txt for details.
5  *===------------------------------------------------------------------------*/
6 #include <gelf.h>
7 #include <libelf.h>
8 
9 #include <cassert>
10 #include <cstdarg>
11 #include <fstream>
12 #include <iomanip>
13 #include <iostream>
14 #include <set>
15 #include <string>
16 
17 #include "internal.h"
18 #include "machine.h"
19 #include "rt.h"
20 
21 #include "msgpack.h"
22 
23 typedef unsigned char *address;
24 /*
25  * Note descriptors.
26  */
27 typedef struct {
28   uint32_t n_namesz; /* Length of note's name. */
29   uint32_t n_descsz; /* Length of note's value. */
30   uint32_t n_type;   /* Type of note. */
31   // then name
32   // then padding, optional
33   // then desc, at 4 byte alignment (not 8, despite being elf64)
34 } Elf_Note;
35 
36 // The following include file and following structs/enums
37 // have been replicated on a per-use basis below. For example,
38 // llvm::AMDGPU::HSAMD::Kernel::Metadata has several fields,
39 // but we may care only about kernargSegmentSize_ for now, so
40 // we just include that field in our KernelMD implementation. We
41 // chose this approach to replicate in order to avoid forcing
42 // a dependency on LLVM_INCLUDE_DIR just to compile the runtime.
43 // #include "llvm/Support/AMDGPUMetadata.h"
44 // typedef llvm::AMDGPU::HSAMD::Metadata CodeObjectMD;
45 // typedef llvm::AMDGPU::HSAMD::Kernel::Metadata KernelMD;
46 // typedef llvm::AMDGPU::HSAMD::Kernel::Arg::Metadata KernelArgMD;
47 // using llvm::AMDGPU::HSAMD::AccessQualifier;
48 // using llvm::AMDGPU::HSAMD::AddressSpaceQualifier;
49 // using llvm::AMDGPU::HSAMD::ValueKind;
50 // using llvm::AMDGPU::HSAMD::ValueType;
51 
52 class KernelArgMD {
53 public:
54   enum class ValueKind {
55     HiddenGlobalOffsetX,
56     HiddenGlobalOffsetY,
57     HiddenGlobalOffsetZ,
58     HiddenNone,
59     HiddenPrintfBuffer,
60     HiddenDefaultQueue,
61     HiddenCompletionAction,
62     HiddenMultiGridSyncArg,
63     HiddenHostcallBuffer,
64     Unknown
65   };
66 
67   KernelArgMD()
68       : name_(std::string()), typeName_(std::string()), size_(0), offset_(0),
69         align_(0), valueKind_(ValueKind::Unknown) {}
70 
71   // fields
72   std::string name_;
73   std::string typeName_;
74   uint32_t size_;
75   uint32_t offset_;
76   uint32_t align_;
77   ValueKind valueKind_;
78 };
79 
80 class KernelMD {
81 public:
82   KernelMD() : kernargSegmentSize_(0ull) {}
83 
84   // fields
85   uint64_t kernargSegmentSize_;
86 };
87 
88 static const std::map<std::string, KernelArgMD::ValueKind> ArgValueKind = {
89     //    Including only those fields that are relevant to the runtime.
90     //    {"ByValue", KernelArgMD::ValueKind::ByValue},
91     //    {"GlobalBuffer", KernelArgMD::ValueKind::GlobalBuffer},
92     //    {"DynamicSharedPointer",
93     //    KernelArgMD::ValueKind::DynamicSharedPointer},
94     //    {"Sampler", KernelArgMD::ValueKind::Sampler},
95     //    {"Image", KernelArgMD::ValueKind::Image},
96     //    {"Pipe", KernelArgMD::ValueKind::Pipe},
97     //    {"Queue", KernelArgMD::ValueKind::Queue},
98     {"HiddenGlobalOffsetX", KernelArgMD::ValueKind::HiddenGlobalOffsetX},
99     {"HiddenGlobalOffsetY", KernelArgMD::ValueKind::HiddenGlobalOffsetY},
100     {"HiddenGlobalOffsetZ", KernelArgMD::ValueKind::HiddenGlobalOffsetZ},
101     {"HiddenNone", KernelArgMD::ValueKind::HiddenNone},
102     {"HiddenPrintfBuffer", KernelArgMD::ValueKind::HiddenPrintfBuffer},
103     {"HiddenDefaultQueue", KernelArgMD::ValueKind::HiddenDefaultQueue},
104     {"HiddenCompletionAction", KernelArgMD::ValueKind::HiddenCompletionAction},
105     {"HiddenMultiGridSyncArg", KernelArgMD::ValueKind::HiddenMultiGridSyncArg},
106     {"HiddenHostcallBuffer", KernelArgMD::ValueKind::HiddenHostcallBuffer},
107     // v3
108     //    {"by_value", KernelArgMD::ValueKind::ByValue},
109     //    {"global_buffer", KernelArgMD::ValueKind::GlobalBuffer},
110     //    {"dynamic_shared_pointer",
111     //    KernelArgMD::ValueKind::DynamicSharedPointer},
112     //    {"sampler", KernelArgMD::ValueKind::Sampler},
113     //    {"image", KernelArgMD::ValueKind::Image},
114     //    {"pipe", KernelArgMD::ValueKind::Pipe},
115     //    {"queue", KernelArgMD::ValueKind::Queue},
116     {"hidden_global_offset_x", KernelArgMD::ValueKind::HiddenGlobalOffsetX},
117     {"hidden_global_offset_y", KernelArgMD::ValueKind::HiddenGlobalOffsetY},
118     {"hidden_global_offset_z", KernelArgMD::ValueKind::HiddenGlobalOffsetZ},
119     {"hidden_none", KernelArgMD::ValueKind::HiddenNone},
120     {"hidden_printf_buffer", KernelArgMD::ValueKind::HiddenPrintfBuffer},
121     {"hidden_default_queue", KernelArgMD::ValueKind::HiddenDefaultQueue},
122     {"hidden_completion_action",
123      KernelArgMD::ValueKind::HiddenCompletionAction},
124     {"hidden_multigrid_sync_arg",
125      KernelArgMD::ValueKind::HiddenMultiGridSyncArg},
126     {"hidden_hostcall_buffer", KernelArgMD::ValueKind::HiddenHostcallBuffer},
127 };
128 
129 // global variables. TODO: Get rid of these
130 atmi_machine_t g_atmi_machine;
131 ATLMachine g_atl_machine;
132 
133 std::vector<hsa_amd_memory_pool_t> atl_gpu_kernarg_pools;
134 
135 std::map<std::string, std::string> KernelNameMap;
136 std::vector<std::map<std::string, atl_kernel_info_t>> KernelInfoTable;
137 std::vector<std::map<std::string, atl_symbol_info_t>> SymbolInfoTable;
138 
139 bool g_atmi_initialized = false;
140 bool g_atmi_hostcall_required = false;
141 
142 /*
143    atlc is all internal global values.
144    The structure atl_context_t is defined in atl_internal.h
145    Most references will use the global structure prefix atlc.
146 */
147 atl_context_t atlc = {.struct_initialized = false};
148 
149 namespace core {
150 /* Machine Info */
151 atmi_machine_t *Runtime::GetMachineInfo() {
152   if (!atlc.g_hsa_initialized)
153     return NULL;
154   return &g_atmi_machine;
155 }
156 
157 static void atl_set_atmi_initialized() {
158   // FIXME: thread safe? locks?
159   g_atmi_initialized = true;
160 }
161 
162 static void atl_reset_atmi_initialized() {
163   // FIXME: thread safe? locks?
164   g_atmi_initialized = false;
165 }
166 
167 bool atl_is_atmi_initialized() { return g_atmi_initialized; }
168 
169 hsa_status_t allow_access_to_all_gpu_agents(void *ptr) {
170   std::vector<ATLGPUProcessor> &gpu_procs =
171       g_atl_machine.processors<ATLGPUProcessor>();
172   std::vector<hsa_agent_t> agents;
173   for (uint32_t i = 0; i < gpu_procs.size(); i++) {
174     agents.push_back(gpu_procs[i].agent());
175   }
176   return hsa_amd_agents_allow_access(agents.size(), &agents[0], NULL, ptr);
177 }
178 
179 atmi_status_t Runtime::Initialize() {
180   atmi_devtype_t devtype = ATMI_DEVTYPE_GPU;
181   if (atl_is_atmi_initialized())
182     return ATMI_STATUS_SUCCESS;
183 
184   if (devtype == ATMI_DEVTYPE_ALL || devtype & ATMI_DEVTYPE_GPU) {
185     atmi_status_t rc = atl_init_gpu_context();
186     if (rc != ATMI_STATUS_SUCCESS) {
187       printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, "GPU context init",
188              get_atmi_error_string(atl_init_gpu_context()));
189       return rc;
190     }
191   }
192 
193   atl_set_atmi_initialized();
194   return ATMI_STATUS_SUCCESS;
195 }
196 
197 atmi_status_t Runtime::Finalize() {
198   atmi_status_t rc = ATMI_STATUS_SUCCESS;
199   for (uint32_t i = 0; i < SymbolInfoTable.size(); i++) {
200     SymbolInfoTable[i].clear();
201   }
202   SymbolInfoTable.clear();
203   for (uint32_t i = 0; i < KernelInfoTable.size(); i++) {
204     KernelInfoTable[i].clear();
205   }
206   KernelInfoTable.clear();
207 
208   atl_reset_atmi_initialized();
209   hsa_status_t err = hsa_shut_down();
210   if (err != HSA_STATUS_SUCCESS) {
211     printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, "Shutting down HSA",
212            get_error_string(err));
213     rc = ATMI_STATUS_ERROR;
214   }
215 
216   return rc;
217 }
218 
219 static void atmi_init_context_structs() {
220   atlc.struct_initialized = true; /* This only gets called one time */
221   atlc.g_hsa_initialized = false;
222   atlc.g_gpu_initialized = false;
223   atlc.g_tasks_initialized = false;
224 }
225 
226 // Implement memory_pool iteration function
227 static hsa_status_t get_memory_pool_info(hsa_amd_memory_pool_t memory_pool,
228                                          void *data) {
229   ATLProcessor *proc = reinterpret_cast<ATLProcessor *>(data);
230   hsa_status_t err = HSA_STATUS_SUCCESS;
231   // Check if the memory_pool is allowed to allocate, i.e. do not return group
232   // memory
233   bool alloc_allowed = false;
234   err = hsa_amd_memory_pool_get_info(
235       memory_pool, HSA_AMD_MEMORY_POOL_INFO_RUNTIME_ALLOC_ALLOWED,
236       &alloc_allowed);
237   if (err != HSA_STATUS_SUCCESS) {
238     printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
239            "Alloc allowed in memory pool check", get_error_string(err));
240     return err;
241   }
242   if (alloc_allowed) {
243     uint32_t global_flag = 0;
244     err = hsa_amd_memory_pool_get_info(
245         memory_pool, HSA_AMD_MEMORY_POOL_INFO_GLOBAL_FLAGS, &global_flag);
246     if (err != HSA_STATUS_SUCCESS) {
247       printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
248              "Get memory pool info", get_error_string(err));
249       return err;
250     }
251     if (HSA_AMD_MEMORY_POOL_GLOBAL_FLAG_FINE_GRAINED & global_flag) {
252       ATLMemory new_mem(memory_pool, *proc, ATMI_MEMTYPE_FINE_GRAINED);
253       proc->addMemory(new_mem);
254       if (HSA_AMD_MEMORY_POOL_GLOBAL_FLAG_KERNARG_INIT & global_flag) {
255         DEBUG_PRINT("GPU kernel args pool handle: %lu\n", memory_pool.handle);
256         atl_gpu_kernarg_pools.push_back(memory_pool);
257       }
258     } else {
259       ATLMemory new_mem(memory_pool, *proc, ATMI_MEMTYPE_COARSE_GRAINED);
260       proc->addMemory(new_mem);
261     }
262   }
263 
264   return err;
265 }
266 
267 static hsa_status_t get_agent_info(hsa_agent_t agent, void *data) {
268   hsa_status_t err = HSA_STATUS_SUCCESS;
269   hsa_device_type_t device_type;
270   err = hsa_agent_get_info(agent, HSA_AGENT_INFO_DEVICE, &device_type);
271   if (err != HSA_STATUS_SUCCESS) {
272     printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
273            "Get device type info", get_error_string(err));
274     return err;
275   }
276   switch (device_type) {
277   case HSA_DEVICE_TYPE_CPU: {
278     ATLCPUProcessor new_proc(agent);
279     err = hsa_amd_agent_iterate_memory_pools(agent, get_memory_pool_info,
280                                              &new_proc);
281     if (err != HSA_STATUS_SUCCESS) {
282       printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
283              "Iterate all memory pools", get_error_string(err));
284       return err;
285     }
286     g_atl_machine.addProcessor(new_proc);
287   } break;
288   case HSA_DEVICE_TYPE_GPU: {
289     hsa_profile_t profile;
290     err = hsa_agent_get_info(agent, HSA_AGENT_INFO_PROFILE, &profile);
291     if (err != HSA_STATUS_SUCCESS) {
292       printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
293              "Query the agent profile", get_error_string(err));
294       return err;
295     }
296     atmi_devtype_t gpu_type;
297     gpu_type =
298         (profile == HSA_PROFILE_FULL) ? ATMI_DEVTYPE_iGPU : ATMI_DEVTYPE_dGPU;
299     ATLGPUProcessor new_proc(agent, gpu_type);
300     err = hsa_amd_agent_iterate_memory_pools(agent, get_memory_pool_info,
301                                              &new_proc);
302     if (err != HSA_STATUS_SUCCESS) {
303       printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
304              "Iterate all memory pools", get_error_string(err));
305       return err;
306     }
307     g_atl_machine.addProcessor(new_proc);
308   } break;
309   case HSA_DEVICE_TYPE_DSP: {
310     err = HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
311   } break;
312   }
313 
314   return err;
315 }
316 
317 hsa_status_t get_fine_grained_region(hsa_region_t region, void *data) {
318   hsa_region_segment_t segment;
319   hsa_region_get_info(region, HSA_REGION_INFO_SEGMENT, &segment);
320   if (segment != HSA_REGION_SEGMENT_GLOBAL) {
321     return HSA_STATUS_SUCCESS;
322   }
323   hsa_region_global_flag_t flags;
324   hsa_region_get_info(region, HSA_REGION_INFO_GLOBAL_FLAGS, &flags);
325   if (flags & HSA_REGION_GLOBAL_FLAG_FINE_GRAINED) {
326     hsa_region_t *ret = reinterpret_cast<hsa_region_t *>(data);
327     *ret = region;
328     return HSA_STATUS_INFO_BREAK;
329   }
330   return HSA_STATUS_SUCCESS;
331 }
332 
333 /* Determines if a memory region can be used for kernarg allocations.  */
334 static hsa_status_t get_kernarg_memory_region(hsa_region_t region, void *data) {
335   hsa_region_segment_t segment;
336   hsa_region_get_info(region, HSA_REGION_INFO_SEGMENT, &segment);
337   if (HSA_REGION_SEGMENT_GLOBAL != segment) {
338     return HSA_STATUS_SUCCESS;
339   }
340 
341   hsa_region_global_flag_t flags;
342   hsa_region_get_info(region, HSA_REGION_INFO_GLOBAL_FLAGS, &flags);
343   if (flags & HSA_REGION_GLOBAL_FLAG_KERNARG) {
344     hsa_region_t *ret = reinterpret_cast<hsa_region_t *>(data);
345     *ret = region;
346     return HSA_STATUS_INFO_BREAK;
347   }
348 
349   return HSA_STATUS_SUCCESS;
350 }
351 
352 static hsa_status_t init_compute_and_memory() {
353   hsa_status_t err;
354 
355   /* Iterate over the agents and pick the gpu agent */
356   err = hsa_iterate_agents(get_agent_info, NULL);
357   if (err == HSA_STATUS_INFO_BREAK) {
358     err = HSA_STATUS_SUCCESS;
359   }
360   if (err != HSA_STATUS_SUCCESS) {
361     printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, "Getting a gpu agent",
362            get_error_string(err));
363     return err;
364   }
365 
366   /* Init all devices or individual device types? */
367   std::vector<ATLCPUProcessor> &cpu_procs =
368       g_atl_machine.processors<ATLCPUProcessor>();
369   std::vector<ATLGPUProcessor> &gpu_procs =
370       g_atl_machine.processors<ATLGPUProcessor>();
371   /* For CPU memory pools, add other devices that can access them directly
372    * or indirectly */
373   for (auto &cpu_proc : cpu_procs) {
374     for (auto &cpu_mem : cpu_proc.memories()) {
375       hsa_amd_memory_pool_t pool = cpu_mem.memory();
376       for (auto &gpu_proc : gpu_procs) {
377         hsa_agent_t agent = gpu_proc.agent();
378         hsa_amd_memory_pool_access_t access;
379         hsa_amd_agent_memory_pool_get_info(
380             agent, pool, HSA_AMD_AGENT_MEMORY_POOL_INFO_ACCESS, &access);
381         if (access != 0) {
382           // this means not NEVER, but could be YES or NO
383           // add this memory pool to the proc
384           gpu_proc.addMemory(cpu_mem);
385         }
386       }
387     }
388   }
389 
390   /* FIXME: are the below combinations of procs and memory pools needed?
391    * all to all compare procs with their memory pools and add those memory
392    * pools that are accessible by the target procs */
393   for (auto &gpu_proc : gpu_procs) {
394     for (auto &gpu_mem : gpu_proc.memories()) {
395       hsa_amd_memory_pool_t pool = gpu_mem.memory();
396       for (auto &cpu_proc : cpu_procs) {
397         hsa_agent_t agent = cpu_proc.agent();
398         hsa_amd_memory_pool_access_t access;
399         hsa_amd_agent_memory_pool_get_info(
400             agent, pool, HSA_AMD_AGENT_MEMORY_POOL_INFO_ACCESS, &access);
401         if (access != 0) {
402           // this means not NEVER, but could be YES or NO
403           // add this memory pool to the proc
404           cpu_proc.addMemory(gpu_mem);
405         }
406       }
407     }
408   }
409 
410   g_atmi_machine.device_count_by_type[ATMI_DEVTYPE_CPU] = cpu_procs.size();
411   g_atmi_machine.device_count_by_type[ATMI_DEVTYPE_GPU] = gpu_procs.size();
412 
413   size_t num_procs = cpu_procs.size() + gpu_procs.size();
414   // g_atmi_machine.devices = (atmi_device_t *)malloc(num_procs *
415   // sizeof(atmi_device_t));
416   atmi_device_t *all_devices = reinterpret_cast<atmi_device_t *>(
417       malloc(num_procs * sizeof(atmi_device_t)));
418   int num_iGPUs = 0;
419   int num_dGPUs = 0;
420   for (uint32_t i = 0; i < gpu_procs.size(); i++) {
421     if (gpu_procs[i].type() == ATMI_DEVTYPE_iGPU)
422       num_iGPUs++;
423     else
424       num_dGPUs++;
425   }
426   assert(num_iGPUs + num_dGPUs == gpu_procs.size() &&
427          "Number of dGPUs and iGPUs do not add up");
428   DEBUG_PRINT("CPU Agents: %lu\n", cpu_procs.size());
429   DEBUG_PRINT("iGPU Agents: %d\n", num_iGPUs);
430   DEBUG_PRINT("dGPU Agents: %d\n", num_dGPUs);
431   DEBUG_PRINT("GPU Agents: %lu\n", gpu_procs.size());
432 
433   g_atmi_machine.device_count_by_type[ATMI_DEVTYPE_iGPU] = num_iGPUs;
434   g_atmi_machine.device_count_by_type[ATMI_DEVTYPE_dGPU] = num_dGPUs;
435 
436   int cpus_begin = 0;
437   int cpus_end = cpu_procs.size();
438   int gpus_begin = cpu_procs.size();
439   int gpus_end = cpu_procs.size() + gpu_procs.size();
440   g_atmi_machine.devices_by_type[ATMI_DEVTYPE_CPU] = &all_devices[cpus_begin];
441   g_atmi_machine.devices_by_type[ATMI_DEVTYPE_GPU] = &all_devices[gpus_begin];
442   g_atmi_machine.devices_by_type[ATMI_DEVTYPE_iGPU] = &all_devices[gpus_begin];
443   g_atmi_machine.devices_by_type[ATMI_DEVTYPE_dGPU] = &all_devices[gpus_begin];
444   int proc_index = 0;
445   for (int i = cpus_begin; i < cpus_end; i++) {
446     all_devices[i].type = cpu_procs[proc_index].type();
447 
448     std::vector<ATLMemory> memories = cpu_procs[proc_index].memories();
449     int fine_memories_size = 0;
450     int coarse_memories_size = 0;
451     DEBUG_PRINT("CPU memory types:\t");
452     for (auto &memory : memories) {
453       atmi_memtype_t type = memory.type();
454       if (type == ATMI_MEMTYPE_FINE_GRAINED) {
455         fine_memories_size++;
456         DEBUG_PRINT("Fine\t");
457       } else {
458         coarse_memories_size++;
459         DEBUG_PRINT("Coarse\t");
460       }
461     }
462     DEBUG_PRINT("\nFine Memories : %d", fine_memories_size);
463     DEBUG_PRINT("\tCoarse Memories : %d\n", coarse_memories_size);
464     proc_index++;
465   }
466   proc_index = 0;
467   for (int i = gpus_begin; i < gpus_end; i++) {
468     all_devices[i].type = gpu_procs[proc_index].type();
469 
470     std::vector<ATLMemory> memories = gpu_procs[proc_index].memories();
471     int fine_memories_size = 0;
472     int coarse_memories_size = 0;
473     DEBUG_PRINT("GPU memory types:\t");
474     for (auto &memory : memories) {
475       atmi_memtype_t type = memory.type();
476       if (type == ATMI_MEMTYPE_FINE_GRAINED) {
477         fine_memories_size++;
478         DEBUG_PRINT("Fine\t");
479       } else {
480         coarse_memories_size++;
481         DEBUG_PRINT("Coarse\t");
482       }
483     }
484     DEBUG_PRINT("\nFine Memories : %d", fine_memories_size);
485     DEBUG_PRINT("\tCoarse Memories : %d\n", coarse_memories_size);
486     proc_index++;
487   }
488   proc_index = 0;
489   hsa_region_t atl_cpu_kernarg_region;
490   atl_cpu_kernarg_region.handle = (uint64_t)-1;
491   if (cpu_procs.size() > 0) {
492     err = hsa_agent_iterate_regions(
493         cpu_procs[0].agent(), get_fine_grained_region, &atl_cpu_kernarg_region);
494     if (err == HSA_STATUS_INFO_BREAK) {
495       err = HSA_STATUS_SUCCESS;
496     }
497     err = (atl_cpu_kernarg_region.handle == (uint64_t)-1) ? HSA_STATUS_ERROR
498                                                           : HSA_STATUS_SUCCESS;
499     if (err != HSA_STATUS_SUCCESS) {
500       printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
501              "Finding a CPU kernarg memory region handle",
502              get_error_string(err));
503       return err;
504     }
505   }
506   hsa_region_t atl_gpu_kernarg_region;
507   /* Find a memory region that supports kernel arguments.  */
508   atl_gpu_kernarg_region.handle = (uint64_t)-1;
509   if (gpu_procs.size() > 0) {
510     hsa_agent_iterate_regions(gpu_procs[0].agent(), get_kernarg_memory_region,
511                               &atl_gpu_kernarg_region);
512     err = (atl_gpu_kernarg_region.handle == (uint64_t)-1) ? HSA_STATUS_ERROR
513                                                           : HSA_STATUS_SUCCESS;
514     if (err != HSA_STATUS_SUCCESS) {
515       printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
516              "Finding a kernarg memory region", get_error_string(err));
517       return err;
518     }
519   }
520   if (num_procs > 0)
521     return HSA_STATUS_SUCCESS;
522   else
523     return HSA_STATUS_ERROR_NOT_INITIALIZED;
524 }
525 
526 hsa_status_t init_hsa() {
527   if (atlc.g_hsa_initialized == false) {
528     DEBUG_PRINT("Initializing HSA...");
529     hsa_status_t err = hsa_init();
530     if (err != HSA_STATUS_SUCCESS) {
531       printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
532              "Initializing the hsa runtime", get_error_string(err));
533       return err;
534     }
535     if (err != HSA_STATUS_SUCCESS)
536       return err;
537 
538     err = init_compute_and_memory();
539     if (err != HSA_STATUS_SUCCESS)
540       return err;
541     if (err != HSA_STATUS_SUCCESS) {
542       printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
543              "After initializing compute and memory", get_error_string(err));
544       return err;
545     }
546 
547     int gpu_count = g_atl_machine.processorCount<ATLGPUProcessor>();
548     KernelInfoTable.resize(gpu_count);
549     SymbolInfoTable.resize(gpu_count);
550     for (uint32_t i = 0; i < SymbolInfoTable.size(); i++)
551       SymbolInfoTable[i].clear();
552     for (uint32_t i = 0; i < KernelInfoTable.size(); i++)
553       KernelInfoTable[i].clear();
554     atlc.g_hsa_initialized = true;
555     DEBUG_PRINT("done\n");
556   }
557   return HSA_STATUS_SUCCESS;
558 }
559 
560 void init_tasks() {
561   if (atlc.g_tasks_initialized != false)
562     return;
563   std::vector<hsa_agent_t> gpu_agents;
564   int gpu_count = g_atl_machine.processorCount<ATLGPUProcessor>();
565   for (int gpu = 0; gpu < gpu_count; gpu++) {
566     atmi_place_t place = ATMI_PLACE_GPU(0, gpu);
567     ATLGPUProcessor &proc = get_processor<ATLGPUProcessor>(place);
568     gpu_agents.push_back(proc.agent());
569   }
570   atlc.g_tasks_initialized = true;
571 }
572 
573 hsa_status_t callbackEvent(const hsa_amd_event_t *event, void *data) {
574 #if (ROCM_VERSION_MAJOR >= 3) ||                                               \
575     (ROCM_VERSION_MAJOR >= 2 && ROCM_VERSION_MINOR >= 3)
576   if (event->event_type == HSA_AMD_GPU_MEMORY_FAULT_EVENT) {
577 #else
578   if (event->event_type == GPU_MEMORY_FAULT_EVENT) {
579 #endif
580     hsa_amd_gpu_memory_fault_info_t memory_fault = event->memory_fault;
581     // memory_fault.agent
582     // memory_fault.virtual_address
583     // memory_fault.fault_reason_mask
584     // fprintf("[GPU Error at %p: Reason is ", memory_fault.virtual_address);
585     std::stringstream stream;
586     stream << std::hex << (uintptr_t)memory_fault.virtual_address;
587     std::string addr("0x" + stream.str());
588 
589     std::string err_string = "[GPU Memory Error] Addr: " + addr;
590     err_string += " Reason: ";
591     if (!(memory_fault.fault_reason_mask & 0x00111111)) {
592       err_string += "No Idea! ";
593     } else {
594       if (memory_fault.fault_reason_mask & 0x00000001)
595         err_string += "Page not present or supervisor privilege. ";
596       if (memory_fault.fault_reason_mask & 0x00000010)
597         err_string += "Write access to a read-only page. ";
598       if (memory_fault.fault_reason_mask & 0x00000100)
599         err_string += "Execute access to a page marked NX. ";
600       if (memory_fault.fault_reason_mask & 0x00001000)
601         err_string += "Host access only. ";
602       if (memory_fault.fault_reason_mask & 0x00010000)
603         err_string += "ECC failure (if supported by HW). ";
604       if (memory_fault.fault_reason_mask & 0x00100000)
605         err_string += "Can't determine the exact fault address. ";
606     }
607     fprintf(stderr, "%s\n", err_string.c_str());
608     return HSA_STATUS_ERROR;
609   }
610   return HSA_STATUS_SUCCESS;
611 }
612 
613 atmi_status_t atl_init_gpu_context() {
614   if (atlc.struct_initialized == false)
615     atmi_init_context_structs();
616   if (atlc.g_gpu_initialized != false)
617     return ATMI_STATUS_SUCCESS;
618 
619   hsa_status_t err;
620   err = init_hsa();
621   if (err != HSA_STATUS_SUCCESS)
622     return ATMI_STATUS_ERROR;
623 
624   err = hsa_amd_register_system_event_handler(callbackEvent, NULL);
625   if (err != HSA_STATUS_SUCCESS) {
626     printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
627            "Registering the system for memory faults", get_error_string(err));
628     return ATMI_STATUS_ERROR;
629   }
630 
631   init_tasks();
632   atlc.g_gpu_initialized = true;
633   return ATMI_STATUS_SUCCESS;
634 }
635 
636 static bool isImplicit(KernelArgMD::ValueKind value_kind) {
637   switch (value_kind) {
638   case KernelArgMD::ValueKind::HiddenGlobalOffsetX:
639   case KernelArgMD::ValueKind::HiddenGlobalOffsetY:
640   case KernelArgMD::ValueKind::HiddenGlobalOffsetZ:
641   case KernelArgMD::ValueKind::HiddenNone:
642   case KernelArgMD::ValueKind::HiddenPrintfBuffer:
643   case KernelArgMD::ValueKind::HiddenDefaultQueue:
644   case KernelArgMD::ValueKind::HiddenCompletionAction:
645   case KernelArgMD::ValueKind::HiddenMultiGridSyncArg:
646   case KernelArgMD::ValueKind::HiddenHostcallBuffer:
647     return true;
648   default:
649     return false;
650   }
651 }
652 
653 static std::pair<unsigned char *, unsigned char *>
654 find_metadata(void *binary, size_t binSize) {
655   std::pair<unsigned char *, unsigned char *> failure = {nullptr, nullptr};
656 
657   Elf *e = elf_memory(static_cast<char *>(binary), binSize);
658   if (elf_kind(e) != ELF_K_ELF) {
659     return failure;
660   }
661 
662   size_t numpHdrs;
663   if (elf_getphdrnum(e, &numpHdrs) != 0) {
664     return failure;
665   }
666 
667   for (size_t i = 0; i < numpHdrs; ++i) {
668     GElf_Phdr pHdr;
669     if (gelf_getphdr(e, i, &pHdr) != &pHdr) {
670       continue;
671     }
672     // Look for the runtime metadata note
673     if (pHdr.p_type == PT_NOTE && pHdr.p_align >= sizeof(int)) {
674       // Iterate over the notes in this segment
675       address ptr = (address)binary + pHdr.p_offset;
676       address segmentEnd = ptr + pHdr.p_filesz;
677 
678       while (ptr < segmentEnd) {
679         Elf_Note *note = reinterpret_cast<Elf_Note *>(ptr);
680         address name = (address)&note[1];
681 
682         if (note->n_type == 7 || note->n_type == 8) {
683           return failure;
684         } else if (note->n_type == 10 /* NT_AMD_AMDGPU_HSA_METADATA */ &&
685                    note->n_namesz == sizeof "AMD" &&
686                    !memcmp(name, "AMD", note->n_namesz)) {
687           // code object v2 uses yaml metadata, no longer supported
688           return failure;
689         } else if (note->n_type == 32 /* NT_AMDGPU_METADATA */ &&
690                    note->n_namesz == sizeof "AMDGPU" &&
691                    !memcmp(name, "AMDGPU", note->n_namesz)) {
692 
693           // n_descsz = 485
694           // value is padded to 4 byte alignment, may want to move end up to
695           // match
696           size_t offset = sizeof(uint32_t) * 3 /* fields */
697                           + sizeof("AMDGPU")   /* name */
698                           + 1 /* padding to 4 byte alignment */;
699 
700           // Including the trailing padding means both pointers are 4 bytes
701           // aligned, which may be useful later.
702           unsigned char *metadata_start = (unsigned char *)ptr + offset;
703           unsigned char *metadata_end =
704               metadata_start + core::alignUp(note->n_descsz, 4);
705           return {metadata_start, metadata_end};
706         }
707         ptr += sizeof(*note) + core::alignUp(note->n_namesz, sizeof(int)) +
708                core::alignUp(note->n_descsz, sizeof(int));
709       }
710     }
711   }
712 
713   return failure;
714 }
715 
716 namespace {
717 int map_lookup_array(msgpack::byte_range message, const char *needle,
718                      msgpack::byte_range *res, uint64_t *size) {
719   unsigned count = 0;
720   struct s : msgpack::functors_defaults<s> {
721     s(unsigned &count, uint64_t *size) : count(count), size(size) {}
722     unsigned &count;
723     uint64_t *size;
724     const unsigned char *handle_array(uint64_t N, msgpack::byte_range bytes) {
725       count++;
726       *size = N;
727       return bytes.end;
728     }
729   };
730 
731   msgpack::foreach_map(message,
732                        [&](msgpack::byte_range key, msgpack::byte_range value) {
733                          if (msgpack::message_is_string(key, needle)) {
734                            // If the message is an array, record number of
735                            // elements in *size
736                            msgpack::handle_msgpack<s>(value, {count, size});
737                            // return the whole array
738                            *res = value;
739                          }
740                        });
741   // Only claim success if exactly one key/array pair matched
742   return count != 1;
743 }
744 
745 int map_lookup_string(msgpack::byte_range message, const char *needle,
746                       std::string *res) {
747   unsigned count = 0;
748   struct s : public msgpack::functors_defaults<s> {
749     s(unsigned &count, std::string *res) : count(count), res(res) {}
750     unsigned &count;
751     std::string *res;
752     void handle_string(size_t N, const unsigned char *str) {
753       count++;
754       *res = std::string(str, str + N);
755     }
756   };
757   msgpack::foreach_map(message,
758                        [&](msgpack::byte_range key, msgpack::byte_range value) {
759                          if (msgpack::message_is_string(key, needle)) {
760                            msgpack::handle_msgpack<s>(value, {count, res});
761                          }
762                        });
763   return count != 1;
764 }
765 
766 int map_lookup_uint64_t(msgpack::byte_range message, const char *needle,
767                         uint64_t *res) {
768   unsigned count = 0;
769   msgpack::foreach_map(message,
770                        [&](msgpack::byte_range key, msgpack::byte_range value) {
771                          if (msgpack::message_is_string(key, needle)) {
772                            msgpack::foronly_unsigned(value, [&](uint64_t x) {
773                              count++;
774                              *res = x;
775                            });
776                          }
777                        });
778   return count != 1;
779 }
780 
781 int array_lookup_element(msgpack::byte_range message, uint64_t elt,
782                          msgpack::byte_range *res) {
783   int rc = 1;
784   uint64_t i = 0;
785   msgpack::foreach_array(message, [&](msgpack::byte_range value) {
786     if (i == elt) {
787       *res = value;
788       rc = 0;
789     }
790     i++;
791   });
792   return rc;
793 }
794 
795 int populate_kernelArgMD(msgpack::byte_range args_element,
796                          KernelArgMD *kernelarg) {
797   using namespace msgpack;
798   int error = 0;
799   foreach_map(args_element, [&](byte_range key, byte_range value) -> void {
800     if (message_is_string(key, ".name")) {
801       foronly_string(value, [&](size_t N, const unsigned char *str) {
802         kernelarg->name_ = std::string(str, str + N);
803       });
804     } else if (message_is_string(key, ".type_name")) {
805       foronly_string(value, [&](size_t N, const unsigned char *str) {
806         kernelarg->typeName_ = std::string(str, str + N);
807       });
808     } else if (message_is_string(key, ".size")) {
809       foronly_unsigned(value, [&](uint64_t x) { kernelarg->size_ = x; });
810     } else if (message_is_string(key, ".offset")) {
811       foronly_unsigned(value, [&](uint64_t x) { kernelarg->offset_ = x; });
812     } else if (message_is_string(key, ".value_kind")) {
813       foronly_string(value, [&](size_t N, const unsigned char *str) {
814         std::string s = std::string(str, str + N);
815         auto itValueKind = ArgValueKind.find(s);
816         if (itValueKind != ArgValueKind.end()) {
817           kernelarg->valueKind_ = itValueKind->second;
818         }
819       });
820     }
821   });
822   return error;
823 }
824 } // namespace
825 
826 static hsa_status_t get_code_object_custom_metadata(void *binary,
827                                                     size_t binSize, int gpu) {
828   // parse code object with different keys from v2
829   // also, the kernel name is not the same as the symbol name -- so a
830   // symbol->name map is needed
831 
832   std::pair<unsigned char *, unsigned char *> metadata =
833       find_metadata(binary, binSize);
834   if (!metadata.first) {
835     return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
836   }
837 
838   uint64_t kernelsSize = 0;
839   int msgpack_errors = 0;
840   msgpack::byte_range kernel_array;
841   msgpack_errors =
842       map_lookup_array({metadata.first, metadata.second}, "amdhsa.kernels",
843                        &kernel_array, &kernelsSize);
844   if (msgpack_errors != 0) {
845     printf("[%s:%d] %s failed\n", __FILE__, __LINE__,
846            "kernels lookup in program metadata");
847     return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
848   }
849 
850   for (size_t i = 0; i < kernelsSize; i++) {
851     assert(msgpack_errors == 0);
852     std::string kernelName;
853     std::string symbolName;
854 
855     msgpack::byte_range element;
856     msgpack_errors += array_lookup_element(kernel_array, i, &element);
857     if (msgpack_errors != 0) {
858       printf("[%s:%d] %s failed\n", __FILE__, __LINE__,
859              "element lookup in kernel metadata");
860       return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
861     }
862 
863     msgpack_errors += map_lookup_string(element, ".name", &kernelName);
864     msgpack_errors += map_lookup_string(element, ".symbol", &symbolName);
865     if (msgpack_errors != 0) {
866       printf("[%s:%d] %s failed\n", __FILE__, __LINE__,
867              "strings lookup in kernel metadata");
868       return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
869     }
870 
871     atl_kernel_info_t info = {0, 0, 0, 0, 0, 0, 0, 0, 0, {}, {}, {}};
872 
873     uint64_t sgpr_count, vgpr_count, sgpr_spill_count, vgpr_spill_count;
874     msgpack_errors += map_lookup_uint64_t(element, ".sgpr_count", &sgpr_count);
875     if (msgpack_errors != 0) {
876       printf("[%s:%d] %s failed\n", __FILE__, __LINE__,
877              "sgpr count metadata lookup in kernel metadata");
878       return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
879     }
880 
881     info.sgpr_count = sgpr_count;
882 
883     msgpack_errors += map_lookup_uint64_t(element, ".vgpr_count", &vgpr_count);
884     if (msgpack_errors != 0) {
885       printf("[%s:%d] %s failed\n", __FILE__, __LINE__,
886              "vgpr count metadata lookup in kernel metadata");
887       return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
888     }
889 
890     info.vgpr_count = vgpr_count;
891 
892     msgpack_errors +=
893         map_lookup_uint64_t(element, ".sgpr_spill_count", &sgpr_spill_count);
894     if (msgpack_errors != 0) {
895       printf("[%s:%d] %s failed\n", __FILE__, __LINE__,
896              "sgpr spill count metadata lookup in kernel metadata");
897       return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
898     }
899 
900     info.sgpr_spill_count = sgpr_spill_count;
901 
902     msgpack_errors +=
903         map_lookup_uint64_t(element, ".vgpr_spill_count", &vgpr_spill_count);
904     if (msgpack_errors != 0) {
905       printf("[%s:%d] %s failed\n", __FILE__, __LINE__,
906              "vgpr spill count metadata lookup in kernel metadata");
907       return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
908     }
909 
910     info.vgpr_spill_count = vgpr_spill_count;
911 
912     size_t kernel_explicit_args_size = 0;
913     uint64_t kernel_segment_size;
914     msgpack_errors += map_lookup_uint64_t(element, ".kernarg_segment_size",
915                                           &kernel_segment_size);
916     if (msgpack_errors != 0) {
917       printf("[%s:%d] %s failed\n", __FILE__, __LINE__,
918              "kernarg segment size metadata lookup in kernel metadata");
919       return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
920     }
921 
922     // create a map from symbol to name
923     DEBUG_PRINT("Kernel symbol %s; Name: %s; Size: %lu\n", symbolName.c_str(),
924                 kernelName.c_str(), kernel_segment_size);
925     KernelNameMap[symbolName] = kernelName;
926 
927     bool hasHiddenArgs = false;
928     if (kernel_segment_size > 0) {
929       uint64_t argsSize;
930       size_t offset = 0;
931 
932       msgpack::byte_range args_array;
933       msgpack_errors +=
934           map_lookup_array(element, ".args", &args_array, &argsSize);
935       if (msgpack_errors != 0) {
936         printf("[%s:%d] %s failed\n", __FILE__, __LINE__,
937                "kernel args metadata lookup in kernel metadata");
938         return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
939       }
940 
941       info.num_args = argsSize;
942 
943       for (size_t i = 0; i < argsSize; ++i) {
944         KernelArgMD lcArg;
945 
946         msgpack::byte_range args_element;
947         msgpack_errors += array_lookup_element(args_array, i, &args_element);
948         if (msgpack_errors != 0) {
949           printf("[%s:%d] %s failed\n", __FILE__, __LINE__,
950                  "iterate args map in kernel args metadata");
951           return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
952         }
953 
954         msgpack_errors += populate_kernelArgMD(args_element, &lcArg);
955         if (msgpack_errors != 0) {
956           printf("[%s:%d] %s failed\n", __FILE__, __LINE__,
957                  "iterate args map in kernel args metadata");
958           return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
959         }
960         // populate info with sizes and offsets
961         info.arg_sizes.push_back(lcArg.size_);
962         // v3 has offset field and not align field
963         size_t new_offset = lcArg.offset_;
964         size_t padding = new_offset - offset;
965         offset = new_offset;
966         info.arg_offsets.push_back(lcArg.offset_);
967         DEBUG_PRINT("Arg[%lu] \"%s\" (%u, %u)\n", i, lcArg.name_.c_str(),
968                     lcArg.size_, lcArg.offset_);
969         offset += lcArg.size_;
970 
971         // check if the arg is a hidden/implicit arg
972         // this logic assumes that all hidden args are 8-byte aligned
973         if (!isImplicit(lcArg.valueKind_)) {
974           kernel_explicit_args_size += lcArg.size_;
975         } else {
976           hasHiddenArgs = true;
977         }
978         kernel_explicit_args_size += padding;
979       }
980     }
981 
982     // add size of implicit args, e.g.: offset x, y and z and pipe pointer, but
983     // in ATMI, do not count the compiler set implicit args, but set your own
984     // implicit args by discounting the compiler set implicit args
985     info.kernel_segment_size =
986         (hasHiddenArgs ? kernel_explicit_args_size : kernel_segment_size) +
987         sizeof(atmi_implicit_args_t);
988     DEBUG_PRINT("[%s: kernarg seg size] (%lu --> %u)\n", kernelName.c_str(),
989                 kernel_segment_size, info.kernel_segment_size);
990 
991     // kernel received, now add it to the kernel info table
992     KernelInfoTable[gpu][kernelName] = info;
993   }
994 
995   return HSA_STATUS_SUCCESS;
996 }
997 
998 static hsa_status_t populate_InfoTables(hsa_executable_t executable,
999                                         hsa_executable_symbol_t symbol,
1000                                         void *data) {
1001   int gpu = *static_cast<int *>(data);
1002   hsa_symbol_kind_t type;
1003 
1004   uint32_t name_length;
1005   hsa_status_t err;
1006   err = hsa_executable_symbol_get_info(symbol, HSA_EXECUTABLE_SYMBOL_INFO_TYPE,
1007                                        &type);
1008   if (err != HSA_STATUS_SUCCESS) {
1009     printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
1010            "Symbol info extraction", get_error_string(err));
1011     return err;
1012   }
1013   DEBUG_PRINT("Exec Symbol type: %d\n", type);
1014   if (type == HSA_SYMBOL_KIND_KERNEL) {
1015     err = hsa_executable_symbol_get_info(
1016         symbol, HSA_EXECUTABLE_SYMBOL_INFO_NAME_LENGTH, &name_length);
1017     if (err != HSA_STATUS_SUCCESS) {
1018       printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
1019              "Symbol info extraction", get_error_string(err));
1020       return err;
1021     }
1022     char *name = reinterpret_cast<char *>(malloc(name_length + 1));
1023     err = hsa_executable_symbol_get_info(symbol,
1024                                          HSA_EXECUTABLE_SYMBOL_INFO_NAME, name);
1025     if (err != HSA_STATUS_SUCCESS) {
1026       printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
1027              "Symbol info extraction", get_error_string(err));
1028       return err;
1029     }
1030     name[name_length] = 0;
1031 
1032     if (KernelNameMap.find(std::string(name)) == KernelNameMap.end()) {
1033       // did not find kernel name in the kernel map; this can happen only
1034       // if the ROCr API for getting symbol info (name) is different from
1035       // the comgr method of getting symbol info
1036       return HSA_STATUS_ERROR;
1037     }
1038     atl_kernel_info_t info;
1039     std::string kernelName = KernelNameMap[std::string(name)];
1040     // by now, the kernel info table should already have an entry
1041     // because the non-ROCr custom code object parsing is called before
1042     // iterating over the code object symbols using ROCr
1043     if (KernelInfoTable[gpu].find(kernelName) == KernelInfoTable[gpu].end()) {
1044       return HSA_STATUS_ERROR;
1045     }
1046     // found, so assign and update
1047     info = KernelInfoTable[gpu][kernelName];
1048 
1049     /* Extract dispatch information from the symbol */
1050     err = hsa_executable_symbol_get_info(
1051         symbol, HSA_EXECUTABLE_SYMBOL_INFO_KERNEL_OBJECT,
1052         &(info.kernel_object));
1053     if (err != HSA_STATUS_SUCCESS) {
1054       printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
1055              "Extracting the symbol from the executable",
1056              get_error_string(err));
1057       return err;
1058     }
1059     err = hsa_executable_symbol_get_info(
1060         symbol, HSA_EXECUTABLE_SYMBOL_INFO_KERNEL_GROUP_SEGMENT_SIZE,
1061         &(info.group_segment_size));
1062     if (err != HSA_STATUS_SUCCESS) {
1063       printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
1064              "Extracting the group segment size from the executable",
1065              get_error_string(err));
1066       return err;
1067     }
1068     err = hsa_executable_symbol_get_info(
1069         symbol, HSA_EXECUTABLE_SYMBOL_INFO_KERNEL_PRIVATE_SEGMENT_SIZE,
1070         &(info.private_segment_size));
1071     if (err != HSA_STATUS_SUCCESS) {
1072       printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
1073              "Extracting the private segment from the executable",
1074              get_error_string(err));
1075       return err;
1076     }
1077 
1078     DEBUG_PRINT(
1079         "Kernel %s --> %lx symbol %u group segsize %u pvt segsize %u bytes "
1080         "kernarg\n",
1081         kernelName.c_str(), info.kernel_object, info.group_segment_size,
1082         info.private_segment_size, info.kernel_segment_size);
1083 
1084     // assign it back to the kernel info table
1085     KernelInfoTable[gpu][kernelName] = info;
1086     free(name);
1087   } else if (type == HSA_SYMBOL_KIND_VARIABLE) {
1088     err = hsa_executable_symbol_get_info(
1089         symbol, HSA_EXECUTABLE_SYMBOL_INFO_NAME_LENGTH, &name_length);
1090     if (err != HSA_STATUS_SUCCESS) {
1091       printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
1092              "Symbol info extraction", get_error_string(err));
1093       return err;
1094     }
1095     char *name = reinterpret_cast<char *>(malloc(name_length + 1));
1096     err = hsa_executable_symbol_get_info(symbol,
1097                                          HSA_EXECUTABLE_SYMBOL_INFO_NAME, name);
1098     if (err != HSA_STATUS_SUCCESS) {
1099       printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
1100              "Symbol info extraction", get_error_string(err));
1101       return err;
1102     }
1103     name[name_length] = 0;
1104 
1105     atl_symbol_info_t info;
1106 
1107     err = hsa_executable_symbol_get_info(
1108         symbol, HSA_EXECUTABLE_SYMBOL_INFO_VARIABLE_ADDRESS, &(info.addr));
1109     if (err != HSA_STATUS_SUCCESS) {
1110       printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
1111              "Symbol info address extraction", get_error_string(err));
1112       return err;
1113     }
1114 
1115     err = hsa_executable_symbol_get_info(
1116         symbol, HSA_EXECUTABLE_SYMBOL_INFO_VARIABLE_SIZE, &(info.size));
1117     if (err != HSA_STATUS_SUCCESS) {
1118       printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
1119              "Symbol info size extraction", get_error_string(err));
1120       return err;
1121     }
1122 
1123     atmi_mem_place_t place = ATMI_MEM_PLACE(ATMI_DEVTYPE_GPU, gpu, 0);
1124     DEBUG_PRINT("Symbol %s = %p (%u bytes)\n", name, (void *)info.addr,
1125                 info.size);
1126     err = register_allocation(reinterpret_cast<void *>(info.addr),
1127                               (size_t)info.size, place);
1128     if (err != HSA_STATUS_SUCCESS) {
1129       return err;
1130     }
1131     SymbolInfoTable[gpu][std::string(name)] = info;
1132     if (strcmp(name, "needs_hostcall_buffer") == 0)
1133       g_atmi_hostcall_required = true;
1134     free(name);
1135   } else {
1136     DEBUG_PRINT("Symbol is an indirect function\n");
1137   }
1138   return HSA_STATUS_SUCCESS;
1139 }
1140 
1141 atmi_status_t Runtime::RegisterModuleFromMemory(
1142     void *module_bytes, size_t module_size, atmi_place_t place,
1143     atmi_status_t (*on_deserialized_data)(void *data, size_t size,
1144                                           void *cb_state),
1145     void *cb_state, std::vector<hsa_executable_t> &HSAExecutables) {
1146   hsa_status_t err;
1147   int gpu = place.device_id;
1148   assert(gpu >= 0);
1149 
1150   DEBUG_PRINT("Trying to load module to GPU-%d\n", gpu);
1151   ATLGPUProcessor &proc = get_processor<ATLGPUProcessor>(place);
1152   hsa_agent_t agent = proc.agent();
1153   hsa_executable_t executable = {0};
1154   hsa_profile_t agent_profile;
1155 
1156   err = hsa_agent_get_info(agent, HSA_AGENT_INFO_PROFILE, &agent_profile);
1157   if (err != HSA_STATUS_SUCCESS) {
1158     printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
1159            "Query the agent profile", get_error_string(err));
1160     return ATMI_STATUS_ERROR;
1161   }
1162   // FIXME: Assume that every profile is FULL until we understand how to build
1163   // GCN with base profile
1164   agent_profile = HSA_PROFILE_FULL;
1165   /* Create the empty executable.  */
1166   err = hsa_executable_create(agent_profile, HSA_EXECUTABLE_STATE_UNFROZEN, "",
1167                               &executable);
1168   if (err != HSA_STATUS_SUCCESS) {
1169     printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
1170            "Create the executable", get_error_string(err));
1171     return ATMI_STATUS_ERROR;
1172   }
1173 
1174   bool module_load_success = false;
1175   do // Existing control flow used continue, preserve that for this patch
1176   {
1177     {
1178       // Some metadata info is not available through ROCr API, so use custom
1179       // code object metadata parsing to collect such metadata info
1180 
1181       err = get_code_object_custom_metadata(module_bytes, module_size, gpu);
1182       if (err != HSA_STATUS_SUCCESS) {
1183         DEBUG_PRINT("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
1184                     "Getting custom code object metadata",
1185                     get_error_string(err));
1186         continue;
1187       }
1188 
1189       // Deserialize code object.
1190       hsa_code_object_t code_object = {0};
1191       err = hsa_code_object_deserialize(module_bytes, module_size, NULL,
1192                                         &code_object);
1193       if (err != HSA_STATUS_SUCCESS) {
1194         DEBUG_PRINT("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
1195                     "Code Object Deserialization", get_error_string(err));
1196         continue;
1197       }
1198       assert(0 != code_object.handle);
1199 
1200       // Mutating the device image here avoids another allocation & memcpy
1201       void *code_object_alloc_data =
1202           reinterpret_cast<void *>(code_object.handle);
1203       atmi_status_t atmi_err =
1204           on_deserialized_data(code_object_alloc_data, module_size, cb_state);
1205       if (atmi_err != ATMI_STATUS_SUCCESS) {
1206         printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
1207                "Error in deserialized_data callback",
1208                get_atmi_error_string(atmi_err));
1209         return atmi_err;
1210       }
1211 
1212       /* Load the code object.  */
1213       err =
1214           hsa_executable_load_code_object(executable, agent, code_object, NULL);
1215       if (err != HSA_STATUS_SUCCESS) {
1216         DEBUG_PRINT("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
1217                     "Loading the code object", get_error_string(err));
1218         continue;
1219       }
1220 
1221       // cannot iterate over symbols until executable is frozen
1222     }
1223     module_load_success = true;
1224   } while (0);
1225   DEBUG_PRINT("Modules loaded successful? %d\n", module_load_success);
1226   if (module_load_success) {
1227     /* Freeze the executable; it can now be queried for symbols.  */
1228     err = hsa_executable_freeze(executable, "");
1229     if (err != HSA_STATUS_SUCCESS) {
1230       printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
1231              "Freeze the executable", get_error_string(err));
1232       return ATMI_STATUS_ERROR;
1233     }
1234 
1235     err = hsa_executable_iterate_symbols(executable, populate_InfoTables,
1236                                          static_cast<void *>(&gpu));
1237     if (err != HSA_STATUS_SUCCESS) {
1238       printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
1239              "Iterating over symbols for execuatable", get_error_string(err));
1240       return ATMI_STATUS_ERROR;
1241     }
1242 
1243     // save the executable and destroy during finalize
1244     HSAExecutables.push_back(executable);
1245     return ATMI_STATUS_SUCCESS;
1246   } else {
1247     return ATMI_STATUS_ERROR;
1248   }
1249 }
1250 
1251 } // namespace core
1252