1 /*===--------------------------------------------------------------------------
2  *              ATMI (Asynchronous Task and Memory Interface)
3  *
4  * This file is distributed under the MIT License. See LICENSE.txt for details.
5  *===------------------------------------------------------------------------*/
6 #include <gelf.h>
7 #include <libelf.h>
8 
9 #include <cassert>
10 #include <cstdarg>
11 #include <fstream>
12 #include <iomanip>
13 #include <iostream>
14 #include <set>
15 #include <string>
16 
17 #include "internal.h"
18 #include "machine.h"
19 #include "rt.h"
20 
21 #include "msgpack.h"
22 
23 namespace hsa {
24 // Wrap HSA iterate API in a shim that allows passing general callables
25 template <typename C>
26 hsa_status_t executable_iterate_symbols(hsa_executable_t executable, C cb) {
27   auto L = [](hsa_executable_t executable, hsa_executable_symbol_t symbol,
28               void *data) -> hsa_status_t {
29     C *unwrapped = static_cast<C *>(data);
30     return (*unwrapped)(executable, symbol);
31   };
32   return hsa_executable_iterate_symbols(executable, L,
33                                         static_cast<void *>(&cb));
34 }
35 } // namespace hsa
36 
37 typedef unsigned char *address;
38 /*
39  * Note descriptors.
40  */
41 typedef struct {
42   uint32_t n_namesz; /* Length of note's name. */
43   uint32_t n_descsz; /* Length of note's value. */
44   uint32_t n_type;   /* Type of note. */
45   // then name
46   // then padding, optional
47   // then desc, at 4 byte alignment (not 8, despite being elf64)
48 } Elf_Note;
49 
50 // The following include file and following structs/enums
51 // have been replicated on a per-use basis below. For example,
52 // llvm::AMDGPU::HSAMD::Kernel::Metadata has several fields,
53 // but we may care only about kernargSegmentSize_ for now, so
54 // we just include that field in our KernelMD implementation. We
55 // chose this approach to replicate in order to avoid forcing
56 // a dependency on LLVM_INCLUDE_DIR just to compile the runtime.
57 // #include "llvm/Support/AMDGPUMetadata.h"
58 // typedef llvm::AMDGPU::HSAMD::Metadata CodeObjectMD;
59 // typedef llvm::AMDGPU::HSAMD::Kernel::Metadata KernelMD;
60 // typedef llvm::AMDGPU::HSAMD::Kernel::Arg::Metadata KernelArgMD;
61 // using llvm::AMDGPU::HSAMD::AccessQualifier;
62 // using llvm::AMDGPU::HSAMD::AddressSpaceQualifier;
63 // using llvm::AMDGPU::HSAMD::ValueKind;
64 // using llvm::AMDGPU::HSAMD::ValueType;
65 
66 class KernelArgMD {
67 public:
68   enum class ValueKind {
69     HiddenGlobalOffsetX,
70     HiddenGlobalOffsetY,
71     HiddenGlobalOffsetZ,
72     HiddenNone,
73     HiddenPrintfBuffer,
74     HiddenDefaultQueue,
75     HiddenCompletionAction,
76     HiddenMultiGridSyncArg,
77     HiddenHostcallBuffer,
78     Unknown
79   };
80 
81   KernelArgMD()
82       : name_(std::string()), typeName_(std::string()), size_(0), offset_(0),
83         align_(0), valueKind_(ValueKind::Unknown) {}
84 
85   // fields
86   std::string name_;
87   std::string typeName_;
88   uint32_t size_;
89   uint32_t offset_;
90   uint32_t align_;
91   ValueKind valueKind_;
92 };
93 
94 class KernelMD {
95 public:
96   KernelMD() : kernargSegmentSize_(0ull) {}
97 
98   // fields
99   uint64_t kernargSegmentSize_;
100 };
101 
102 static const std::map<std::string, KernelArgMD::ValueKind> ArgValueKind = {
103     //    Including only those fields that are relevant to the runtime.
104     //    {"ByValue", KernelArgMD::ValueKind::ByValue},
105     //    {"GlobalBuffer", KernelArgMD::ValueKind::GlobalBuffer},
106     //    {"DynamicSharedPointer",
107     //    KernelArgMD::ValueKind::DynamicSharedPointer},
108     //    {"Sampler", KernelArgMD::ValueKind::Sampler},
109     //    {"Image", KernelArgMD::ValueKind::Image},
110     //    {"Pipe", KernelArgMD::ValueKind::Pipe},
111     //    {"Queue", KernelArgMD::ValueKind::Queue},
112     {"HiddenGlobalOffsetX", KernelArgMD::ValueKind::HiddenGlobalOffsetX},
113     {"HiddenGlobalOffsetY", KernelArgMD::ValueKind::HiddenGlobalOffsetY},
114     {"HiddenGlobalOffsetZ", KernelArgMD::ValueKind::HiddenGlobalOffsetZ},
115     {"HiddenNone", KernelArgMD::ValueKind::HiddenNone},
116     {"HiddenPrintfBuffer", KernelArgMD::ValueKind::HiddenPrintfBuffer},
117     {"HiddenDefaultQueue", KernelArgMD::ValueKind::HiddenDefaultQueue},
118     {"HiddenCompletionAction", KernelArgMD::ValueKind::HiddenCompletionAction},
119     {"HiddenMultiGridSyncArg", KernelArgMD::ValueKind::HiddenMultiGridSyncArg},
120     {"HiddenHostcallBuffer", KernelArgMD::ValueKind::HiddenHostcallBuffer},
121     // v3
122     //    {"by_value", KernelArgMD::ValueKind::ByValue},
123     //    {"global_buffer", KernelArgMD::ValueKind::GlobalBuffer},
124     //    {"dynamic_shared_pointer",
125     //    KernelArgMD::ValueKind::DynamicSharedPointer},
126     //    {"sampler", KernelArgMD::ValueKind::Sampler},
127     //    {"image", KernelArgMD::ValueKind::Image},
128     //    {"pipe", KernelArgMD::ValueKind::Pipe},
129     //    {"queue", KernelArgMD::ValueKind::Queue},
130     {"hidden_global_offset_x", KernelArgMD::ValueKind::HiddenGlobalOffsetX},
131     {"hidden_global_offset_y", KernelArgMD::ValueKind::HiddenGlobalOffsetY},
132     {"hidden_global_offset_z", KernelArgMD::ValueKind::HiddenGlobalOffsetZ},
133     {"hidden_none", KernelArgMD::ValueKind::HiddenNone},
134     {"hidden_printf_buffer", KernelArgMD::ValueKind::HiddenPrintfBuffer},
135     {"hidden_default_queue", KernelArgMD::ValueKind::HiddenDefaultQueue},
136     {"hidden_completion_action",
137      KernelArgMD::ValueKind::HiddenCompletionAction},
138     {"hidden_multigrid_sync_arg",
139      KernelArgMD::ValueKind::HiddenMultiGridSyncArg},
140     {"hidden_hostcall_buffer", KernelArgMD::ValueKind::HiddenHostcallBuffer},
141 };
142 
143 ATLMachine g_atl_machine;
144 
145 std::vector<hsa_amd_memory_pool_t> atl_gpu_kernarg_pools;
146 
147 /*
148    atlc is all internal global values.
149    The structure atl_context_t is defined in atl_internal.h
150    Most references will use the global structure prefix atlc.
151 */
152 atl_context_t atlc = {.struct_initialized = false};
153 
154 namespace core {
155 
156 hsa_status_t allow_access_to_all_gpu_agents(void *ptr) {
157   std::vector<ATLGPUProcessor> &gpu_procs =
158       g_atl_machine.processors<ATLGPUProcessor>();
159   std::vector<hsa_agent_t> agents;
160   for (uint32_t i = 0; i < gpu_procs.size(); i++) {
161     agents.push_back(gpu_procs[i].agent());
162   }
163   return hsa_amd_agents_allow_access(agents.size(), &agents[0], NULL, ptr);
164 }
165 
166 static void atmi_init_context_structs() {
167   atlc.struct_initialized = true; /* This only gets called one time */
168   atlc.g_hsa_initialized = false;
169   atlc.g_gpu_initialized = false;
170   atlc.g_tasks_initialized = false;
171 }
172 
173 // Implement memory_pool iteration function
174 static hsa_status_t get_memory_pool_info(hsa_amd_memory_pool_t memory_pool,
175                                          void *data) {
176   ATLProcessor *proc = reinterpret_cast<ATLProcessor *>(data);
177   hsa_status_t err = HSA_STATUS_SUCCESS;
178   // Check if the memory_pool is allowed to allocate, i.e. do not return group
179   // memory
180   bool alloc_allowed = false;
181   err = hsa_amd_memory_pool_get_info(
182       memory_pool, HSA_AMD_MEMORY_POOL_INFO_RUNTIME_ALLOC_ALLOWED,
183       &alloc_allowed);
184   if (err != HSA_STATUS_SUCCESS) {
185     printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
186            "Alloc allowed in memory pool check", get_error_string(err));
187     return err;
188   }
189   if (alloc_allowed) {
190     uint32_t global_flag = 0;
191     err = hsa_amd_memory_pool_get_info(
192         memory_pool, HSA_AMD_MEMORY_POOL_INFO_GLOBAL_FLAGS, &global_flag);
193     if (err != HSA_STATUS_SUCCESS) {
194       printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
195              "Get memory pool info", get_error_string(err));
196       return err;
197     }
198     if (HSA_AMD_MEMORY_POOL_GLOBAL_FLAG_FINE_GRAINED & global_flag) {
199       ATLMemory new_mem(memory_pool, *proc, ATMI_MEMTYPE_FINE_GRAINED);
200       proc->addMemory(new_mem);
201       if (HSA_AMD_MEMORY_POOL_GLOBAL_FLAG_KERNARG_INIT & global_flag) {
202         DEBUG_PRINT("GPU kernel args pool handle: %lu\n", memory_pool.handle);
203         atl_gpu_kernarg_pools.push_back(memory_pool);
204       }
205     } else {
206       ATLMemory new_mem(memory_pool, *proc, ATMI_MEMTYPE_COARSE_GRAINED);
207       proc->addMemory(new_mem);
208     }
209   }
210 
211   return err;
212 }
213 
214 static hsa_status_t get_agent_info(hsa_agent_t agent, void *data) {
215   hsa_status_t err = HSA_STATUS_SUCCESS;
216   hsa_device_type_t device_type;
217   err = hsa_agent_get_info(agent, HSA_AGENT_INFO_DEVICE, &device_type);
218   if (err != HSA_STATUS_SUCCESS) {
219     printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
220            "Get device type info", get_error_string(err));
221     return err;
222   }
223   switch (device_type) {
224   case HSA_DEVICE_TYPE_CPU: {
225     ATLCPUProcessor new_proc(agent);
226     err = hsa_amd_agent_iterate_memory_pools(agent, get_memory_pool_info,
227                                              &new_proc);
228     if (err != HSA_STATUS_SUCCESS) {
229       printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
230              "Iterate all memory pools", get_error_string(err));
231       return err;
232     }
233     g_atl_machine.addProcessor(new_proc);
234   } break;
235   case HSA_DEVICE_TYPE_GPU: {
236     hsa_profile_t profile;
237     err = hsa_agent_get_info(agent, HSA_AGENT_INFO_PROFILE, &profile);
238     if (err != HSA_STATUS_SUCCESS) {
239       printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
240              "Query the agent profile", get_error_string(err));
241       return err;
242     }
243     atmi_devtype_t gpu_type;
244     gpu_type =
245         (profile == HSA_PROFILE_FULL) ? ATMI_DEVTYPE_iGPU : ATMI_DEVTYPE_dGPU;
246     ATLGPUProcessor new_proc(agent, gpu_type);
247     err = hsa_amd_agent_iterate_memory_pools(agent, get_memory_pool_info,
248                                              &new_proc);
249     if (err != HSA_STATUS_SUCCESS) {
250       printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
251              "Iterate all memory pools", get_error_string(err));
252       return err;
253     }
254     g_atl_machine.addProcessor(new_proc);
255   } break;
256   case HSA_DEVICE_TYPE_DSP: {
257     err = HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
258   } break;
259   }
260 
261   return err;
262 }
263 
264 hsa_status_t get_fine_grained_region(hsa_region_t region, void *data) {
265   hsa_region_segment_t segment;
266   hsa_region_get_info(region, HSA_REGION_INFO_SEGMENT, &segment);
267   if (segment != HSA_REGION_SEGMENT_GLOBAL) {
268     return HSA_STATUS_SUCCESS;
269   }
270   hsa_region_global_flag_t flags;
271   hsa_region_get_info(region, HSA_REGION_INFO_GLOBAL_FLAGS, &flags);
272   if (flags & HSA_REGION_GLOBAL_FLAG_FINE_GRAINED) {
273     hsa_region_t *ret = reinterpret_cast<hsa_region_t *>(data);
274     *ret = region;
275     return HSA_STATUS_INFO_BREAK;
276   }
277   return HSA_STATUS_SUCCESS;
278 }
279 
280 /* Determines if a memory region can be used for kernarg allocations.  */
281 static hsa_status_t get_kernarg_memory_region(hsa_region_t region, void *data) {
282   hsa_region_segment_t segment;
283   hsa_region_get_info(region, HSA_REGION_INFO_SEGMENT, &segment);
284   if (HSA_REGION_SEGMENT_GLOBAL != segment) {
285     return HSA_STATUS_SUCCESS;
286   }
287 
288   hsa_region_global_flag_t flags;
289   hsa_region_get_info(region, HSA_REGION_INFO_GLOBAL_FLAGS, &flags);
290   if (flags & HSA_REGION_GLOBAL_FLAG_KERNARG) {
291     hsa_region_t *ret = reinterpret_cast<hsa_region_t *>(data);
292     *ret = region;
293     return HSA_STATUS_INFO_BREAK;
294   }
295 
296   return HSA_STATUS_SUCCESS;
297 }
298 
299 static hsa_status_t init_compute_and_memory() {
300   hsa_status_t err;
301 
302   /* Iterate over the agents and pick the gpu agent */
303   err = hsa_iterate_agents(get_agent_info, NULL);
304   if (err == HSA_STATUS_INFO_BREAK) {
305     err = HSA_STATUS_SUCCESS;
306   }
307   if (err != HSA_STATUS_SUCCESS) {
308     printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, "Getting a gpu agent",
309            get_error_string(err));
310     return err;
311   }
312 
313   /* Init all devices or individual device types? */
314   std::vector<ATLCPUProcessor> &cpu_procs =
315       g_atl_machine.processors<ATLCPUProcessor>();
316   std::vector<ATLGPUProcessor> &gpu_procs =
317       g_atl_machine.processors<ATLGPUProcessor>();
318   /* For CPU memory pools, add other devices that can access them directly
319    * or indirectly */
320   for (auto &cpu_proc : cpu_procs) {
321     for (auto &cpu_mem : cpu_proc.memories()) {
322       hsa_amd_memory_pool_t pool = cpu_mem.memory();
323       for (auto &gpu_proc : gpu_procs) {
324         hsa_agent_t agent = gpu_proc.agent();
325         hsa_amd_memory_pool_access_t access;
326         hsa_amd_agent_memory_pool_get_info(
327             agent, pool, HSA_AMD_AGENT_MEMORY_POOL_INFO_ACCESS, &access);
328         if (access != 0) {
329           // this means not NEVER, but could be YES or NO
330           // add this memory pool to the proc
331           gpu_proc.addMemory(cpu_mem);
332         }
333       }
334     }
335   }
336 
337   /* FIXME: are the below combinations of procs and memory pools needed?
338    * all to all compare procs with their memory pools and add those memory
339    * pools that are accessible by the target procs */
340   for (auto &gpu_proc : gpu_procs) {
341     for (auto &gpu_mem : gpu_proc.memories()) {
342       hsa_amd_memory_pool_t pool = gpu_mem.memory();
343       for (auto &cpu_proc : cpu_procs) {
344         hsa_agent_t agent = cpu_proc.agent();
345         hsa_amd_memory_pool_access_t access;
346         hsa_amd_agent_memory_pool_get_info(
347             agent, pool, HSA_AMD_AGENT_MEMORY_POOL_INFO_ACCESS, &access);
348         if (access != 0) {
349           // this means not NEVER, but could be YES or NO
350           // add this memory pool to the proc
351           cpu_proc.addMemory(gpu_mem);
352         }
353       }
354     }
355   }
356 
357   size_t num_procs = cpu_procs.size() + gpu_procs.size();
358   int num_iGPUs = 0;
359   int num_dGPUs = 0;
360   for (uint32_t i = 0; i < gpu_procs.size(); i++) {
361     if (gpu_procs[i].type() == ATMI_DEVTYPE_iGPU)
362       num_iGPUs++;
363     else
364       num_dGPUs++;
365   }
366   assert(num_iGPUs + num_dGPUs == gpu_procs.size() &&
367          "Number of dGPUs and iGPUs do not add up");
368   DEBUG_PRINT("CPU Agents: %lu\n", cpu_procs.size());
369   DEBUG_PRINT("iGPU Agents: %d\n", num_iGPUs);
370   DEBUG_PRINT("dGPU Agents: %d\n", num_dGPUs);
371   DEBUG_PRINT("GPU Agents: %lu\n", gpu_procs.size());
372 
373   int cpus_begin = 0;
374   int cpus_end = cpu_procs.size();
375   int gpus_begin = cpu_procs.size();
376   int gpus_end = cpu_procs.size() + gpu_procs.size();
377   int proc_index = 0;
378   for (int i = cpus_begin; i < cpus_end; i++) {
379     std::vector<ATLMemory> memories = cpu_procs[proc_index].memories();
380     int fine_memories_size = 0;
381     int coarse_memories_size = 0;
382     DEBUG_PRINT("CPU memory types:\t");
383     for (auto &memory : memories) {
384       atmi_memtype_t type = memory.type();
385       if (type == ATMI_MEMTYPE_FINE_GRAINED) {
386         fine_memories_size++;
387         DEBUG_PRINT("Fine\t");
388       } else {
389         coarse_memories_size++;
390         DEBUG_PRINT("Coarse\t");
391       }
392     }
393     DEBUG_PRINT("\nFine Memories : %d", fine_memories_size);
394     DEBUG_PRINT("\tCoarse Memories : %d\n", coarse_memories_size);
395     proc_index++;
396   }
397   proc_index = 0;
398   for (int i = gpus_begin; i < gpus_end; i++) {
399     std::vector<ATLMemory> memories = gpu_procs[proc_index].memories();
400     int fine_memories_size = 0;
401     int coarse_memories_size = 0;
402     DEBUG_PRINT("GPU memory types:\t");
403     for (auto &memory : memories) {
404       atmi_memtype_t type = memory.type();
405       if (type == ATMI_MEMTYPE_FINE_GRAINED) {
406         fine_memories_size++;
407         DEBUG_PRINT("Fine\t");
408       } else {
409         coarse_memories_size++;
410         DEBUG_PRINT("Coarse\t");
411       }
412     }
413     DEBUG_PRINT("\nFine Memories : %d", fine_memories_size);
414     DEBUG_PRINT("\tCoarse Memories : %d\n", coarse_memories_size);
415     proc_index++;
416   }
417   proc_index = 0;
418   hsa_region_t atl_cpu_kernarg_region;
419   atl_cpu_kernarg_region.handle = (uint64_t)-1;
420   if (cpu_procs.size() > 0) {
421     err = hsa_agent_iterate_regions(
422         cpu_procs[0].agent(), get_fine_grained_region, &atl_cpu_kernarg_region);
423     if (err == HSA_STATUS_INFO_BREAK) {
424       err = HSA_STATUS_SUCCESS;
425     }
426     err = (atl_cpu_kernarg_region.handle == (uint64_t)-1) ? HSA_STATUS_ERROR
427                                                           : HSA_STATUS_SUCCESS;
428     if (err != HSA_STATUS_SUCCESS) {
429       printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
430              "Finding a CPU kernarg memory region handle",
431              get_error_string(err));
432       return err;
433     }
434   }
435   hsa_region_t atl_gpu_kernarg_region;
436   /* Find a memory region that supports kernel arguments.  */
437   atl_gpu_kernarg_region.handle = (uint64_t)-1;
438   if (gpu_procs.size() > 0) {
439     hsa_agent_iterate_regions(gpu_procs[0].agent(), get_kernarg_memory_region,
440                               &atl_gpu_kernarg_region);
441     err = (atl_gpu_kernarg_region.handle == (uint64_t)-1) ? HSA_STATUS_ERROR
442                                                           : HSA_STATUS_SUCCESS;
443     if (err != HSA_STATUS_SUCCESS) {
444       printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
445              "Finding a kernarg memory region", get_error_string(err));
446       return err;
447     }
448   }
449   if (num_procs > 0)
450     return HSA_STATUS_SUCCESS;
451   else
452     return HSA_STATUS_ERROR_NOT_INITIALIZED;
453 }
454 
455 hsa_status_t init_hsa() {
456   if (atlc.g_hsa_initialized == false) {
457     DEBUG_PRINT("Initializing HSA...");
458     hsa_status_t err = hsa_init();
459     if (err != HSA_STATUS_SUCCESS) {
460       printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
461              "Initializing the hsa runtime", get_error_string(err));
462       return err;
463     }
464     if (err != HSA_STATUS_SUCCESS)
465       return err;
466 
467     err = init_compute_and_memory();
468     if (err != HSA_STATUS_SUCCESS)
469       return err;
470     if (err != HSA_STATUS_SUCCESS) {
471       printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
472              "After initializing compute and memory", get_error_string(err));
473       return err;
474     }
475 
476     atlc.g_hsa_initialized = true;
477     DEBUG_PRINT("done\n");
478   }
479   return HSA_STATUS_SUCCESS;
480 }
481 
482 void init_tasks() {
483   if (atlc.g_tasks_initialized != false)
484     return;
485   std::vector<hsa_agent_t> gpu_agents;
486   int gpu_count = g_atl_machine.processorCount<ATLGPUProcessor>();
487   for (int gpu = 0; gpu < gpu_count; gpu++) {
488     ATLGPUProcessor &proc = get_processor<ATLGPUProcessor>(gpu);
489     gpu_agents.push_back(proc.agent());
490   }
491   atlc.g_tasks_initialized = true;
492 }
493 
494 hsa_status_t callbackEvent(const hsa_amd_event_t *event, void *data) {
495 #if (ROCM_VERSION_MAJOR >= 3) ||                                               \
496     (ROCM_VERSION_MAJOR >= 2 && ROCM_VERSION_MINOR >= 3)
497   if (event->event_type == HSA_AMD_GPU_MEMORY_FAULT_EVENT) {
498 #else
499   if (event->event_type == GPU_MEMORY_FAULT_EVENT) {
500 #endif
501     hsa_amd_gpu_memory_fault_info_t memory_fault = event->memory_fault;
502     // memory_fault.agent
503     // memory_fault.virtual_address
504     // memory_fault.fault_reason_mask
505     // fprintf("[GPU Error at %p: Reason is ", memory_fault.virtual_address);
506     std::stringstream stream;
507     stream << std::hex << (uintptr_t)memory_fault.virtual_address;
508     std::string addr("0x" + stream.str());
509 
510     std::string err_string = "[GPU Memory Error] Addr: " + addr;
511     err_string += " Reason: ";
512     if (!(memory_fault.fault_reason_mask & 0x00111111)) {
513       err_string += "No Idea! ";
514     } else {
515       if (memory_fault.fault_reason_mask & 0x00000001)
516         err_string += "Page not present or supervisor privilege. ";
517       if (memory_fault.fault_reason_mask & 0x00000010)
518         err_string += "Write access to a read-only page. ";
519       if (memory_fault.fault_reason_mask & 0x00000100)
520         err_string += "Execute access to a page marked NX. ";
521       if (memory_fault.fault_reason_mask & 0x00001000)
522         err_string += "Host access only. ";
523       if (memory_fault.fault_reason_mask & 0x00010000)
524         err_string += "ECC failure (if supported by HW). ";
525       if (memory_fault.fault_reason_mask & 0x00100000)
526         err_string += "Can't determine the exact fault address. ";
527     }
528     fprintf(stderr, "%s\n", err_string.c_str());
529     return HSA_STATUS_ERROR;
530   }
531   return HSA_STATUS_SUCCESS;
532 }
533 
534 hsa_status_t atl_init_gpu_context() {
535   if (atlc.struct_initialized == false)
536     atmi_init_context_structs();
537   if (atlc.g_gpu_initialized != false)
538     return HSA_STATUS_SUCCESS;
539 
540   hsa_status_t err;
541   err = init_hsa();
542   if (err != HSA_STATUS_SUCCESS)
543     return HSA_STATUS_ERROR;
544 
545   err = hsa_amd_register_system_event_handler(callbackEvent, NULL);
546   if (err != HSA_STATUS_SUCCESS) {
547     printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
548            "Registering the system for memory faults", get_error_string(err));
549     return HSA_STATUS_ERROR;
550   }
551 
552   init_tasks();
553   atlc.g_gpu_initialized = true;
554   return HSA_STATUS_SUCCESS;
555 }
556 
557 static bool isImplicit(KernelArgMD::ValueKind value_kind) {
558   switch (value_kind) {
559   case KernelArgMD::ValueKind::HiddenGlobalOffsetX:
560   case KernelArgMD::ValueKind::HiddenGlobalOffsetY:
561   case KernelArgMD::ValueKind::HiddenGlobalOffsetZ:
562   case KernelArgMD::ValueKind::HiddenNone:
563   case KernelArgMD::ValueKind::HiddenPrintfBuffer:
564   case KernelArgMD::ValueKind::HiddenDefaultQueue:
565   case KernelArgMD::ValueKind::HiddenCompletionAction:
566   case KernelArgMD::ValueKind::HiddenMultiGridSyncArg:
567   case KernelArgMD::ValueKind::HiddenHostcallBuffer:
568     return true;
569   default:
570     return false;
571   }
572 }
573 
574 static std::pair<unsigned char *, unsigned char *>
575 find_metadata(void *binary, size_t binSize) {
576   std::pair<unsigned char *, unsigned char *> failure = {nullptr, nullptr};
577 
578   Elf *e = elf_memory(static_cast<char *>(binary), binSize);
579   if (elf_kind(e) != ELF_K_ELF) {
580     return failure;
581   }
582 
583   size_t numpHdrs;
584   if (elf_getphdrnum(e, &numpHdrs) != 0) {
585     return failure;
586   }
587 
588   for (size_t i = 0; i < numpHdrs; ++i) {
589     GElf_Phdr pHdr;
590     if (gelf_getphdr(e, i, &pHdr) != &pHdr) {
591       continue;
592     }
593     // Look for the runtime metadata note
594     if (pHdr.p_type == PT_NOTE && pHdr.p_align >= sizeof(int)) {
595       // Iterate over the notes in this segment
596       address ptr = (address)binary + pHdr.p_offset;
597       address segmentEnd = ptr + pHdr.p_filesz;
598 
599       while (ptr < segmentEnd) {
600         Elf_Note *note = reinterpret_cast<Elf_Note *>(ptr);
601         address name = (address)&note[1];
602 
603         if (note->n_type == 7 || note->n_type == 8) {
604           return failure;
605         } else if (note->n_type == 10 /* NT_AMD_AMDGPU_HSA_METADATA */ &&
606                    note->n_namesz == sizeof "AMD" &&
607                    !memcmp(name, "AMD", note->n_namesz)) {
608           // code object v2 uses yaml metadata, no longer supported
609           return failure;
610         } else if (note->n_type == 32 /* NT_AMDGPU_METADATA */ &&
611                    note->n_namesz == sizeof "AMDGPU" &&
612                    !memcmp(name, "AMDGPU", note->n_namesz)) {
613 
614           // n_descsz = 485
615           // value is padded to 4 byte alignment, may want to move end up to
616           // match
617           size_t offset = sizeof(uint32_t) * 3 /* fields */
618                           + sizeof("AMDGPU")   /* name */
619                           + 1 /* padding to 4 byte alignment */;
620 
621           // Including the trailing padding means both pointers are 4 bytes
622           // aligned, which may be useful later.
623           unsigned char *metadata_start = (unsigned char *)ptr + offset;
624           unsigned char *metadata_end =
625               metadata_start + core::alignUp(note->n_descsz, 4);
626           return {metadata_start, metadata_end};
627         }
628         ptr += sizeof(*note) + core::alignUp(note->n_namesz, sizeof(int)) +
629                core::alignUp(note->n_descsz, sizeof(int));
630       }
631     }
632   }
633 
634   return failure;
635 }
636 
637 namespace {
638 int map_lookup_array(msgpack::byte_range message, const char *needle,
639                      msgpack::byte_range *res, uint64_t *size) {
640   unsigned count = 0;
641   struct s : msgpack::functors_defaults<s> {
642     s(unsigned &count, uint64_t *size) : count(count), size(size) {}
643     unsigned &count;
644     uint64_t *size;
645     const unsigned char *handle_array(uint64_t N, msgpack::byte_range bytes) {
646       count++;
647       *size = N;
648       return bytes.end;
649     }
650   };
651 
652   msgpack::foreach_map(message,
653                        [&](msgpack::byte_range key, msgpack::byte_range value) {
654                          if (msgpack::message_is_string(key, needle)) {
655                            // If the message is an array, record number of
656                            // elements in *size
657                            msgpack::handle_msgpack<s>(value, {count, size});
658                            // return the whole array
659                            *res = value;
660                          }
661                        });
662   // Only claim success if exactly one key/array pair matched
663   return count != 1;
664 }
665 
666 int map_lookup_string(msgpack::byte_range message, const char *needle,
667                       std::string *res) {
668   unsigned count = 0;
669   struct s : public msgpack::functors_defaults<s> {
670     s(unsigned &count, std::string *res) : count(count), res(res) {}
671     unsigned &count;
672     std::string *res;
673     void handle_string(size_t N, const unsigned char *str) {
674       count++;
675       *res = std::string(str, str + N);
676     }
677   };
678   msgpack::foreach_map(message,
679                        [&](msgpack::byte_range key, msgpack::byte_range value) {
680                          if (msgpack::message_is_string(key, needle)) {
681                            msgpack::handle_msgpack<s>(value, {count, res});
682                          }
683                        });
684   return count != 1;
685 }
686 
687 int map_lookup_uint64_t(msgpack::byte_range message, const char *needle,
688                         uint64_t *res) {
689   unsigned count = 0;
690   msgpack::foreach_map(message,
691                        [&](msgpack::byte_range key, msgpack::byte_range value) {
692                          if (msgpack::message_is_string(key, needle)) {
693                            msgpack::foronly_unsigned(value, [&](uint64_t x) {
694                              count++;
695                              *res = x;
696                            });
697                          }
698                        });
699   return count != 1;
700 }
701 
702 int array_lookup_element(msgpack::byte_range message, uint64_t elt,
703                          msgpack::byte_range *res) {
704   int rc = 1;
705   uint64_t i = 0;
706   msgpack::foreach_array(message, [&](msgpack::byte_range value) {
707     if (i == elt) {
708       *res = value;
709       rc = 0;
710     }
711     i++;
712   });
713   return rc;
714 }
715 
716 int populate_kernelArgMD(msgpack::byte_range args_element,
717                          KernelArgMD *kernelarg) {
718   using namespace msgpack;
719   int error = 0;
720   foreach_map(args_element, [&](byte_range key, byte_range value) -> void {
721     if (message_is_string(key, ".name")) {
722       foronly_string(value, [&](size_t N, const unsigned char *str) {
723         kernelarg->name_ = std::string(str, str + N);
724       });
725     } else if (message_is_string(key, ".type_name")) {
726       foronly_string(value, [&](size_t N, const unsigned char *str) {
727         kernelarg->typeName_ = std::string(str, str + N);
728       });
729     } else if (message_is_string(key, ".size")) {
730       foronly_unsigned(value, [&](uint64_t x) { kernelarg->size_ = x; });
731     } else if (message_is_string(key, ".offset")) {
732       foronly_unsigned(value, [&](uint64_t x) { kernelarg->offset_ = x; });
733     } else if (message_is_string(key, ".value_kind")) {
734       foronly_string(value, [&](size_t N, const unsigned char *str) {
735         std::string s = std::string(str, str + N);
736         auto itValueKind = ArgValueKind.find(s);
737         if (itValueKind != ArgValueKind.end()) {
738           kernelarg->valueKind_ = itValueKind->second;
739         }
740       });
741     }
742   });
743   return error;
744 }
745 } // namespace
746 
747 static hsa_status_t get_code_object_custom_metadata(
748     void *binary, size_t binSize, int gpu,
749     std::map<std::string, atl_kernel_info_t> &KernelInfoTable) {
750   // parse code object with different keys from v2
751   // also, the kernel name is not the same as the symbol name -- so a
752   // symbol->name map is needed
753 
754   std::pair<unsigned char *, unsigned char *> metadata =
755       find_metadata(binary, binSize);
756   if (!metadata.first) {
757     return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
758   }
759 
760   uint64_t kernelsSize = 0;
761   int msgpack_errors = 0;
762   msgpack::byte_range kernel_array;
763   msgpack_errors =
764       map_lookup_array({metadata.first, metadata.second}, "amdhsa.kernels",
765                        &kernel_array, &kernelsSize);
766   if (msgpack_errors != 0) {
767     printf("[%s:%d] %s failed\n", __FILE__, __LINE__,
768            "kernels lookup in program metadata");
769     return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
770   }
771 
772   for (size_t i = 0; i < kernelsSize; i++) {
773     assert(msgpack_errors == 0);
774     std::string kernelName;
775     std::string symbolName;
776 
777     msgpack::byte_range element;
778     msgpack_errors += array_lookup_element(kernel_array, i, &element);
779     if (msgpack_errors != 0) {
780       printf("[%s:%d] %s failed\n", __FILE__, __LINE__,
781              "element lookup in kernel metadata");
782       return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
783     }
784 
785     msgpack_errors += map_lookup_string(element, ".name", &kernelName);
786     msgpack_errors += map_lookup_string(element, ".symbol", &symbolName);
787     if (msgpack_errors != 0) {
788       printf("[%s:%d] %s failed\n", __FILE__, __LINE__,
789              "strings lookup in kernel metadata");
790       return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
791     }
792 
793     // Make sure that kernelName + ".kd" == symbolName
794     if ((kernelName + ".kd") != symbolName) {
795       printf("[%s:%d] Kernel name mismatching symbol: %s != %s + .kd\n",
796              __FILE__, __LINE__, symbolName.c_str(), kernelName.c_str());
797       return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
798     }
799 
800     atl_kernel_info_t info = {0, 0, 0, 0, 0, 0, 0, 0, 0, {}, {}, {}};
801 
802     uint64_t sgpr_count, vgpr_count, sgpr_spill_count, vgpr_spill_count;
803     msgpack_errors += map_lookup_uint64_t(element, ".sgpr_count", &sgpr_count);
804     if (msgpack_errors != 0) {
805       printf("[%s:%d] %s failed\n", __FILE__, __LINE__,
806              "sgpr count metadata lookup in kernel metadata");
807       return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
808     }
809 
810     info.sgpr_count = sgpr_count;
811 
812     msgpack_errors += map_lookup_uint64_t(element, ".vgpr_count", &vgpr_count);
813     if (msgpack_errors != 0) {
814       printf("[%s:%d] %s failed\n", __FILE__, __LINE__,
815              "vgpr count metadata lookup in kernel metadata");
816       return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
817     }
818 
819     info.vgpr_count = vgpr_count;
820 
821     msgpack_errors +=
822         map_lookup_uint64_t(element, ".sgpr_spill_count", &sgpr_spill_count);
823     if (msgpack_errors != 0) {
824       printf("[%s:%d] %s failed\n", __FILE__, __LINE__,
825              "sgpr spill count metadata lookup in kernel metadata");
826       return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
827     }
828 
829     info.sgpr_spill_count = sgpr_spill_count;
830 
831     msgpack_errors +=
832         map_lookup_uint64_t(element, ".vgpr_spill_count", &vgpr_spill_count);
833     if (msgpack_errors != 0) {
834       printf("[%s:%d] %s failed\n", __FILE__, __LINE__,
835              "vgpr spill count metadata lookup in kernel metadata");
836       return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
837     }
838 
839     info.vgpr_spill_count = vgpr_spill_count;
840 
841     size_t kernel_explicit_args_size = 0;
842     uint64_t kernel_segment_size;
843     msgpack_errors += map_lookup_uint64_t(element, ".kernarg_segment_size",
844                                           &kernel_segment_size);
845     if (msgpack_errors != 0) {
846       printf("[%s:%d] %s failed\n", __FILE__, __LINE__,
847              "kernarg segment size metadata lookup in kernel metadata");
848       return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
849     }
850 
851     bool hasHiddenArgs = false;
852     if (kernel_segment_size > 0) {
853       uint64_t argsSize;
854       size_t offset = 0;
855 
856       msgpack::byte_range args_array;
857       msgpack_errors +=
858           map_lookup_array(element, ".args", &args_array, &argsSize);
859       if (msgpack_errors != 0) {
860         printf("[%s:%d] %s failed\n", __FILE__, __LINE__,
861                "kernel args metadata lookup in kernel metadata");
862         return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
863       }
864 
865       info.num_args = argsSize;
866 
867       for (size_t i = 0; i < argsSize; ++i) {
868         KernelArgMD lcArg;
869 
870         msgpack::byte_range args_element;
871         msgpack_errors += array_lookup_element(args_array, i, &args_element);
872         if (msgpack_errors != 0) {
873           printf("[%s:%d] %s failed\n", __FILE__, __LINE__,
874                  "iterate args map in kernel args metadata");
875           return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
876         }
877 
878         msgpack_errors += populate_kernelArgMD(args_element, &lcArg);
879         if (msgpack_errors != 0) {
880           printf("[%s:%d] %s failed\n", __FILE__, __LINE__,
881                  "iterate args map in kernel args metadata");
882           return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
883         }
884         // populate info with sizes and offsets
885         info.arg_sizes.push_back(lcArg.size_);
886         // v3 has offset field and not align field
887         size_t new_offset = lcArg.offset_;
888         size_t padding = new_offset - offset;
889         offset = new_offset;
890         info.arg_offsets.push_back(lcArg.offset_);
891         DEBUG_PRINT("Arg[%lu] \"%s\" (%u, %u)\n", i, lcArg.name_.c_str(),
892                     lcArg.size_, lcArg.offset_);
893         offset += lcArg.size_;
894 
895         // check if the arg is a hidden/implicit arg
896         // this logic assumes that all hidden args are 8-byte aligned
897         if (!isImplicit(lcArg.valueKind_)) {
898           kernel_explicit_args_size += lcArg.size_;
899         } else {
900           hasHiddenArgs = true;
901         }
902         kernel_explicit_args_size += padding;
903       }
904     }
905 
906     // add size of implicit args, e.g.: offset x, y and z and pipe pointer, but
907     // in ATMI, do not count the compiler set implicit args, but set your own
908     // implicit args by discounting the compiler set implicit args
909     info.kernel_segment_size =
910         (hasHiddenArgs ? kernel_explicit_args_size : kernel_segment_size) +
911         sizeof(atmi_implicit_args_t);
912     DEBUG_PRINT("[%s: kernarg seg size] (%lu --> %u)\n", kernelName.c_str(),
913                 kernel_segment_size, info.kernel_segment_size);
914 
915     // kernel received, now add it to the kernel info table
916     KernelInfoTable[kernelName] = info;
917   }
918 
919   return HSA_STATUS_SUCCESS;
920 }
921 
922 static hsa_status_t
923 populate_InfoTables(hsa_executable_symbol_t symbol, int gpu,
924                     std::map<std::string, atl_kernel_info_t> &KernelInfoTable,
925                     std::map<std::string, atl_symbol_info_t> &SymbolInfoTable) {
926   hsa_symbol_kind_t type;
927 
928   uint32_t name_length;
929   hsa_status_t err;
930   err = hsa_executable_symbol_get_info(symbol, HSA_EXECUTABLE_SYMBOL_INFO_TYPE,
931                                        &type);
932   if (err != HSA_STATUS_SUCCESS) {
933     printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
934            "Symbol info extraction", get_error_string(err));
935     return err;
936   }
937   DEBUG_PRINT("Exec Symbol type: %d\n", type);
938   if (type == HSA_SYMBOL_KIND_KERNEL) {
939     err = hsa_executable_symbol_get_info(
940         symbol, HSA_EXECUTABLE_SYMBOL_INFO_NAME_LENGTH, &name_length);
941     if (err != HSA_STATUS_SUCCESS) {
942       printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
943              "Symbol info extraction", get_error_string(err));
944       return err;
945     }
946     char *name = reinterpret_cast<char *>(malloc(name_length + 1));
947     err = hsa_executable_symbol_get_info(symbol,
948                                          HSA_EXECUTABLE_SYMBOL_INFO_NAME, name);
949     if (err != HSA_STATUS_SUCCESS) {
950       printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
951              "Symbol info extraction", get_error_string(err));
952       return err;
953     }
954     // remove the suffix .kd from symbol name.
955     name[name_length - 3] = 0;
956 
957     atl_kernel_info_t info;
958     std::string kernelName(name);
959     // by now, the kernel info table should already have an entry
960     // because the non-ROCr custom code object parsing is called before
961     // iterating over the code object symbols using ROCr
962     if (KernelInfoTable.find(kernelName) == KernelInfoTable.end()) {
963       if (HSA_STATUS_ERROR_INVALID_CODE_OBJECT != HSA_STATUS_SUCCESS) {
964         printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
965                "Finding the entry kernel info table",
966                get_error_string(HSA_STATUS_ERROR_INVALID_CODE_OBJECT));
967         exit(1);
968       }
969     }
970     // found, so assign and update
971     info = KernelInfoTable[kernelName];
972 
973     /* Extract dispatch information from the symbol */
974     err = hsa_executable_symbol_get_info(
975         symbol, HSA_EXECUTABLE_SYMBOL_INFO_KERNEL_OBJECT,
976         &(info.kernel_object));
977     if (err != HSA_STATUS_SUCCESS) {
978       printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
979              "Extracting the symbol from the executable",
980              get_error_string(err));
981       return err;
982     }
983     err = hsa_executable_symbol_get_info(
984         symbol, HSA_EXECUTABLE_SYMBOL_INFO_KERNEL_GROUP_SEGMENT_SIZE,
985         &(info.group_segment_size));
986     if (err != HSA_STATUS_SUCCESS) {
987       printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
988              "Extracting the group segment size from the executable",
989              get_error_string(err));
990       return err;
991     }
992     err = hsa_executable_symbol_get_info(
993         symbol, HSA_EXECUTABLE_SYMBOL_INFO_KERNEL_PRIVATE_SEGMENT_SIZE,
994         &(info.private_segment_size));
995     if (err != HSA_STATUS_SUCCESS) {
996       printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
997              "Extracting the private segment from the executable",
998              get_error_string(err));
999       return err;
1000     }
1001 
1002     DEBUG_PRINT(
1003         "Kernel %s --> %lx symbol %u group segsize %u pvt segsize %u bytes "
1004         "kernarg\n",
1005         kernelName.c_str(), info.kernel_object, info.group_segment_size,
1006         info.private_segment_size, info.kernel_segment_size);
1007 
1008     // assign it back to the kernel info table
1009     KernelInfoTable[kernelName] = info;
1010     free(name);
1011   } else if (type == HSA_SYMBOL_KIND_VARIABLE) {
1012     err = hsa_executable_symbol_get_info(
1013         symbol, HSA_EXECUTABLE_SYMBOL_INFO_NAME_LENGTH, &name_length);
1014     if (err != HSA_STATUS_SUCCESS) {
1015       printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
1016              "Symbol info extraction", get_error_string(err));
1017       return err;
1018     }
1019     char *name = reinterpret_cast<char *>(malloc(name_length + 1));
1020     err = hsa_executable_symbol_get_info(symbol,
1021                                          HSA_EXECUTABLE_SYMBOL_INFO_NAME, name);
1022     if (err != HSA_STATUS_SUCCESS) {
1023       printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
1024              "Symbol info extraction", get_error_string(err));
1025       return err;
1026     }
1027     name[name_length] = 0;
1028 
1029     atl_symbol_info_t info;
1030 
1031     err = hsa_executable_symbol_get_info(
1032         symbol, HSA_EXECUTABLE_SYMBOL_INFO_VARIABLE_ADDRESS, &(info.addr));
1033     if (err != HSA_STATUS_SUCCESS) {
1034       printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
1035              "Symbol info address extraction", get_error_string(err));
1036       return err;
1037     }
1038 
1039     err = hsa_executable_symbol_get_info(
1040         symbol, HSA_EXECUTABLE_SYMBOL_INFO_VARIABLE_SIZE, &(info.size));
1041     if (err != HSA_STATUS_SUCCESS) {
1042       printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
1043              "Symbol info size extraction", get_error_string(err));
1044       return err;
1045     }
1046 
1047     DEBUG_PRINT("Symbol %s = %p (%u bytes)\n", name, (void *)info.addr,
1048                 info.size);
1049     err = register_allocation(reinterpret_cast<void *>(info.addr),
1050                               (size_t)info.size, ATMI_DEVTYPE_GPU);
1051     if (err != HSA_STATUS_SUCCESS) {
1052       return err;
1053     }
1054     SymbolInfoTable[std::string(name)] = info;
1055     free(name);
1056   } else {
1057     DEBUG_PRINT("Symbol is an indirect function\n");
1058   }
1059   return HSA_STATUS_SUCCESS;
1060 }
1061 
1062 hsa_status_t RegisterModuleFromMemory(
1063     std::map<std::string, atl_kernel_info_t> &KernelInfoTable,
1064     std::map<std::string, atl_symbol_info_t> &SymbolInfoTable,
1065     void *module_bytes, size_t module_size, int gpu,
1066     hsa_status_t (*on_deserialized_data)(void *data, size_t size,
1067                                          void *cb_state),
1068     void *cb_state, std::vector<hsa_executable_t> &HSAExecutables) {
1069   hsa_status_t err;
1070   assert(gpu >= 0);
1071 
1072   DEBUG_PRINT("Trying to load module to GPU-%d\n", gpu);
1073   ATLGPUProcessor &proc = get_processor<ATLGPUProcessor>(gpu);
1074   hsa_agent_t agent = proc.agent();
1075   hsa_executable_t executable = {0};
1076   hsa_profile_t agent_profile;
1077 
1078   err = hsa_agent_get_info(agent, HSA_AGENT_INFO_PROFILE, &agent_profile);
1079   if (err != HSA_STATUS_SUCCESS) {
1080     printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
1081            "Query the agent profile", get_error_string(err));
1082     return HSA_STATUS_ERROR;
1083   }
1084   // FIXME: Assume that every profile is FULL until we understand how to build
1085   // GCN with base profile
1086   agent_profile = HSA_PROFILE_FULL;
1087   /* Create the empty executable.  */
1088   err = hsa_executable_create(agent_profile, HSA_EXECUTABLE_STATE_UNFROZEN, "",
1089                               &executable);
1090   if (err != HSA_STATUS_SUCCESS) {
1091     printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
1092            "Create the executable", get_error_string(err));
1093     return HSA_STATUS_ERROR;
1094   }
1095 
1096   bool module_load_success = false;
1097   do // Existing control flow used continue, preserve that for this patch
1098   {
1099     {
1100       // Some metadata info is not available through ROCr API, so use custom
1101       // code object metadata parsing to collect such metadata info
1102 
1103       err = get_code_object_custom_metadata(module_bytes, module_size, gpu,
1104                                             KernelInfoTable);
1105       if (err != HSA_STATUS_SUCCESS) {
1106         DEBUG_PRINT("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
1107                     "Getting custom code object metadata",
1108                     get_error_string(err));
1109         continue;
1110       }
1111 
1112       // Deserialize code object.
1113       hsa_code_object_t code_object = {0};
1114       err = hsa_code_object_deserialize(module_bytes, module_size, NULL,
1115                                         &code_object);
1116       if (err != HSA_STATUS_SUCCESS) {
1117         DEBUG_PRINT("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
1118                     "Code Object Deserialization", get_error_string(err));
1119         continue;
1120       }
1121       assert(0 != code_object.handle);
1122 
1123       // Mutating the device image here avoids another allocation & memcpy
1124       void *code_object_alloc_data =
1125           reinterpret_cast<void *>(code_object.handle);
1126       hsa_status_t atmi_err =
1127           on_deserialized_data(code_object_alloc_data, module_size, cb_state);
1128       if (atmi_err != HSA_STATUS_SUCCESS) {
1129         printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
1130                "Error in deserialized_data callback",
1131                get_atmi_error_string(atmi_err));
1132         return atmi_err;
1133       }
1134 
1135       /* Load the code object.  */
1136       err =
1137           hsa_executable_load_code_object(executable, agent, code_object, NULL);
1138       if (err != HSA_STATUS_SUCCESS) {
1139         DEBUG_PRINT("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
1140                     "Loading the code object", get_error_string(err));
1141         continue;
1142       }
1143 
1144       // cannot iterate over symbols until executable is frozen
1145     }
1146     module_load_success = true;
1147   } while (0);
1148   DEBUG_PRINT("Modules loaded successful? %d\n", module_load_success);
1149   if (module_load_success) {
1150     /* Freeze the executable; it can now be queried for symbols.  */
1151     err = hsa_executable_freeze(executable, "");
1152     if (err != HSA_STATUS_SUCCESS) {
1153       printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
1154              "Freeze the executable", get_error_string(err));
1155       return HSA_STATUS_ERROR;
1156     }
1157 
1158     err = hsa::executable_iterate_symbols(
1159         executable,
1160         [&](hsa_executable_t, hsa_executable_symbol_t symbol) -> hsa_status_t {
1161           return populate_InfoTables(symbol, gpu, KernelInfoTable,
1162                                      SymbolInfoTable);
1163         });
1164     if (err != HSA_STATUS_SUCCESS) {
1165       printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
1166              "Iterating over symbols for execuatable", get_error_string(err));
1167       return HSA_STATUS_ERROR;
1168     }
1169 
1170     // save the executable and destroy during finalize
1171     HSAExecutables.push_back(executable);
1172     return HSA_STATUS_SUCCESS;
1173   } else {
1174     return HSA_STATUS_ERROR;
1175   }
1176 }
1177 
1178 } // namespace core
1179