1 /*===-------------------------------------------------------------------------- 2 * ATMI (Asynchronous Task and Memory Interface) 3 * 4 * This file is distributed under the MIT License. See LICENSE.txt for details. 5 *===------------------------------------------------------------------------*/ 6 #include <gelf.h> 7 #include <libelf.h> 8 9 #include <cassert> 10 #include <cstdarg> 11 #include <fstream> 12 #include <iomanip> 13 #include <iostream> 14 #include <set> 15 #include <string> 16 17 #include "internal.h" 18 #include "machine.h" 19 #include "rt.h" 20 21 #include "msgpack.h" 22 23 namespace hsa { 24 // Wrap HSA iterate API in a shim that allows passing general callables 25 template <typename C> 26 hsa_status_t executable_iterate_symbols(hsa_executable_t executable, C cb) { 27 auto L = [](hsa_executable_t executable, hsa_executable_symbol_t symbol, 28 void *data) -> hsa_status_t { 29 C *unwrapped = static_cast<C *>(data); 30 return (*unwrapped)(executable, symbol); 31 }; 32 return hsa_executable_iterate_symbols(executable, L, 33 static_cast<void *>(&cb)); 34 } 35 } // namespace hsa 36 37 typedef unsigned char *address; 38 /* 39 * Note descriptors. 40 */ 41 typedef struct { 42 uint32_t n_namesz; /* Length of note's name. */ 43 uint32_t n_descsz; /* Length of note's value. */ 44 uint32_t n_type; /* Type of note. */ 45 // then name 46 // then padding, optional 47 // then desc, at 4 byte alignment (not 8, despite being elf64) 48 } Elf_Note; 49 50 // The following include file and following structs/enums 51 // have been replicated on a per-use basis below. For example, 52 // llvm::AMDGPU::HSAMD::Kernel::Metadata has several fields, 53 // but we may care only about kernargSegmentSize_ for now, so 54 // we just include that field in our KernelMD implementation. We 55 // chose this approach to replicate in order to avoid forcing 56 // a dependency on LLVM_INCLUDE_DIR just to compile the runtime. 57 // #include "llvm/Support/AMDGPUMetadata.h" 58 // typedef llvm::AMDGPU::HSAMD::Metadata CodeObjectMD; 59 // typedef llvm::AMDGPU::HSAMD::Kernel::Metadata KernelMD; 60 // typedef llvm::AMDGPU::HSAMD::Kernel::Arg::Metadata KernelArgMD; 61 // using llvm::AMDGPU::HSAMD::AccessQualifier; 62 // using llvm::AMDGPU::HSAMD::AddressSpaceQualifier; 63 // using llvm::AMDGPU::HSAMD::ValueKind; 64 // using llvm::AMDGPU::HSAMD::ValueType; 65 66 class KernelArgMD { 67 public: 68 enum class ValueKind { 69 HiddenGlobalOffsetX, 70 HiddenGlobalOffsetY, 71 HiddenGlobalOffsetZ, 72 HiddenNone, 73 HiddenPrintfBuffer, 74 HiddenDefaultQueue, 75 HiddenCompletionAction, 76 HiddenMultiGridSyncArg, 77 HiddenHostcallBuffer, 78 Unknown 79 }; 80 81 KernelArgMD() 82 : name_(std::string()), typeName_(std::string()), size_(0), offset_(0), 83 align_(0), valueKind_(ValueKind::Unknown) {} 84 85 // fields 86 std::string name_; 87 std::string typeName_; 88 uint32_t size_; 89 uint32_t offset_; 90 uint32_t align_; 91 ValueKind valueKind_; 92 }; 93 94 class KernelMD { 95 public: 96 KernelMD() : kernargSegmentSize_(0ull) {} 97 98 // fields 99 uint64_t kernargSegmentSize_; 100 }; 101 102 static const std::map<std::string, KernelArgMD::ValueKind> ArgValueKind = { 103 // Including only those fields that are relevant to the runtime. 104 // {"ByValue", KernelArgMD::ValueKind::ByValue}, 105 // {"GlobalBuffer", KernelArgMD::ValueKind::GlobalBuffer}, 106 // {"DynamicSharedPointer", 107 // KernelArgMD::ValueKind::DynamicSharedPointer}, 108 // {"Sampler", KernelArgMD::ValueKind::Sampler}, 109 // {"Image", KernelArgMD::ValueKind::Image}, 110 // {"Pipe", KernelArgMD::ValueKind::Pipe}, 111 // {"Queue", KernelArgMD::ValueKind::Queue}, 112 {"HiddenGlobalOffsetX", KernelArgMD::ValueKind::HiddenGlobalOffsetX}, 113 {"HiddenGlobalOffsetY", KernelArgMD::ValueKind::HiddenGlobalOffsetY}, 114 {"HiddenGlobalOffsetZ", KernelArgMD::ValueKind::HiddenGlobalOffsetZ}, 115 {"HiddenNone", KernelArgMD::ValueKind::HiddenNone}, 116 {"HiddenPrintfBuffer", KernelArgMD::ValueKind::HiddenPrintfBuffer}, 117 {"HiddenDefaultQueue", KernelArgMD::ValueKind::HiddenDefaultQueue}, 118 {"HiddenCompletionAction", KernelArgMD::ValueKind::HiddenCompletionAction}, 119 {"HiddenMultiGridSyncArg", KernelArgMD::ValueKind::HiddenMultiGridSyncArg}, 120 {"HiddenHostcallBuffer", KernelArgMD::ValueKind::HiddenHostcallBuffer}, 121 // v3 122 // {"by_value", KernelArgMD::ValueKind::ByValue}, 123 // {"global_buffer", KernelArgMD::ValueKind::GlobalBuffer}, 124 // {"dynamic_shared_pointer", 125 // KernelArgMD::ValueKind::DynamicSharedPointer}, 126 // {"sampler", KernelArgMD::ValueKind::Sampler}, 127 // {"image", KernelArgMD::ValueKind::Image}, 128 // {"pipe", KernelArgMD::ValueKind::Pipe}, 129 // {"queue", KernelArgMD::ValueKind::Queue}, 130 {"hidden_global_offset_x", KernelArgMD::ValueKind::HiddenGlobalOffsetX}, 131 {"hidden_global_offset_y", KernelArgMD::ValueKind::HiddenGlobalOffsetY}, 132 {"hidden_global_offset_z", KernelArgMD::ValueKind::HiddenGlobalOffsetZ}, 133 {"hidden_none", KernelArgMD::ValueKind::HiddenNone}, 134 {"hidden_printf_buffer", KernelArgMD::ValueKind::HiddenPrintfBuffer}, 135 {"hidden_default_queue", KernelArgMD::ValueKind::HiddenDefaultQueue}, 136 {"hidden_completion_action", 137 KernelArgMD::ValueKind::HiddenCompletionAction}, 138 {"hidden_multigrid_sync_arg", 139 KernelArgMD::ValueKind::HiddenMultiGridSyncArg}, 140 {"hidden_hostcall_buffer", KernelArgMD::ValueKind::HiddenHostcallBuffer}, 141 }; 142 143 ATLMachine g_atl_machine; 144 145 namespace core { 146 147 // Implement memory_pool iteration function 148 static hsa_status_t get_memory_pool_info(hsa_amd_memory_pool_t memory_pool, 149 void *data) { 150 ATLProcessor *proc = reinterpret_cast<ATLProcessor *>(data); 151 hsa_status_t err = HSA_STATUS_SUCCESS; 152 // Check if the memory_pool is allowed to allocate, i.e. do not return group 153 // memory 154 bool alloc_allowed = false; 155 err = hsa_amd_memory_pool_get_info( 156 memory_pool, HSA_AMD_MEMORY_POOL_INFO_RUNTIME_ALLOC_ALLOWED, 157 &alloc_allowed); 158 if (err != HSA_STATUS_SUCCESS) { 159 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 160 "Alloc allowed in memory pool check", get_error_string(err)); 161 return err; 162 } 163 if (alloc_allowed) { 164 uint32_t global_flag = 0; 165 err = hsa_amd_memory_pool_get_info( 166 memory_pool, HSA_AMD_MEMORY_POOL_INFO_GLOBAL_FLAGS, &global_flag); 167 if (err != HSA_STATUS_SUCCESS) { 168 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 169 "Get memory pool info", get_error_string(err)); 170 return err; 171 } 172 if (HSA_AMD_MEMORY_POOL_GLOBAL_FLAG_FINE_GRAINED & global_flag) { 173 ATLMemory new_mem(memory_pool, *proc, ATMI_MEMTYPE_FINE_GRAINED); 174 proc->addMemory(new_mem); 175 } else { 176 ATLMemory new_mem(memory_pool, *proc, ATMI_MEMTYPE_COARSE_GRAINED); 177 proc->addMemory(new_mem); 178 } 179 } 180 181 return err; 182 } 183 184 static hsa_status_t get_agent_info(hsa_agent_t agent, void *data) { 185 hsa_status_t err = HSA_STATUS_SUCCESS; 186 hsa_device_type_t device_type; 187 err = hsa_agent_get_info(agent, HSA_AGENT_INFO_DEVICE, &device_type); 188 if (err != HSA_STATUS_SUCCESS) { 189 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 190 "Get device type info", get_error_string(err)); 191 return err; 192 } 193 switch (device_type) { 194 case HSA_DEVICE_TYPE_CPU: { 195 ATLCPUProcessor new_proc(agent); 196 err = hsa_amd_agent_iterate_memory_pools(agent, get_memory_pool_info, 197 &new_proc); 198 if (err != HSA_STATUS_SUCCESS) { 199 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 200 "Iterate all memory pools", get_error_string(err)); 201 return err; 202 } 203 g_atl_machine.addProcessor(new_proc); 204 } break; 205 case HSA_DEVICE_TYPE_GPU: { 206 hsa_profile_t profile; 207 err = hsa_agent_get_info(agent, HSA_AGENT_INFO_PROFILE, &profile); 208 if (err != HSA_STATUS_SUCCESS) { 209 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 210 "Query the agent profile", get_error_string(err)); 211 return err; 212 } 213 atmi_devtype_t gpu_type; 214 gpu_type = 215 (profile == HSA_PROFILE_FULL) ? ATMI_DEVTYPE_iGPU : ATMI_DEVTYPE_dGPU; 216 ATLGPUProcessor new_proc(agent, gpu_type); 217 err = hsa_amd_agent_iterate_memory_pools(agent, get_memory_pool_info, 218 &new_proc); 219 if (err != HSA_STATUS_SUCCESS) { 220 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 221 "Iterate all memory pools", get_error_string(err)); 222 return err; 223 } 224 g_atl_machine.addProcessor(new_proc); 225 } break; 226 case HSA_DEVICE_TYPE_DSP: { 227 err = HSA_STATUS_ERROR_INVALID_CODE_OBJECT; 228 } break; 229 } 230 231 return err; 232 } 233 234 static hsa_status_t init_compute_and_memory() { 235 hsa_status_t err; 236 237 /* Iterate over the agents and pick the gpu agent */ 238 err = hsa_iterate_agents(get_agent_info, NULL); 239 if (err == HSA_STATUS_INFO_BREAK) { 240 err = HSA_STATUS_SUCCESS; 241 } 242 if (err != HSA_STATUS_SUCCESS) { 243 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, "Getting a gpu agent", 244 get_error_string(err)); 245 return err; 246 } 247 248 /* Init all devices or individual device types? */ 249 std::vector<ATLCPUProcessor> &cpu_procs = 250 g_atl_machine.processors<ATLCPUProcessor>(); 251 std::vector<ATLGPUProcessor> &gpu_procs = 252 g_atl_machine.processors<ATLGPUProcessor>(); 253 /* For CPU memory pools, add other devices that can access them directly 254 * or indirectly */ 255 for (auto &cpu_proc : cpu_procs) { 256 for (auto &cpu_mem : cpu_proc.memories()) { 257 hsa_amd_memory_pool_t pool = cpu_mem.memory(); 258 for (auto &gpu_proc : gpu_procs) { 259 hsa_agent_t agent = gpu_proc.agent(); 260 hsa_amd_memory_pool_access_t access; 261 hsa_amd_agent_memory_pool_get_info( 262 agent, pool, HSA_AMD_AGENT_MEMORY_POOL_INFO_ACCESS, &access); 263 if (access != 0) { 264 // this means not NEVER, but could be YES or NO 265 // add this memory pool to the proc 266 gpu_proc.addMemory(cpu_mem); 267 } 268 } 269 } 270 } 271 272 /* FIXME: are the below combinations of procs and memory pools needed? 273 * all to all compare procs with their memory pools and add those memory 274 * pools that are accessible by the target procs */ 275 for (auto &gpu_proc : gpu_procs) { 276 for (auto &gpu_mem : gpu_proc.memories()) { 277 hsa_amd_memory_pool_t pool = gpu_mem.memory(); 278 for (auto &cpu_proc : cpu_procs) { 279 hsa_agent_t agent = cpu_proc.agent(); 280 hsa_amd_memory_pool_access_t access; 281 hsa_amd_agent_memory_pool_get_info( 282 agent, pool, HSA_AMD_AGENT_MEMORY_POOL_INFO_ACCESS, &access); 283 if (access != 0) { 284 // this means not NEVER, but could be YES or NO 285 // add this memory pool to the proc 286 cpu_proc.addMemory(gpu_mem); 287 } 288 } 289 } 290 } 291 292 size_t num_procs = cpu_procs.size() + gpu_procs.size(); 293 int num_iGPUs = 0; 294 int num_dGPUs = 0; 295 for (uint32_t i = 0; i < gpu_procs.size(); i++) { 296 if (gpu_procs[i].type() == ATMI_DEVTYPE_iGPU) 297 num_iGPUs++; 298 else 299 num_dGPUs++; 300 } 301 assert(num_iGPUs + num_dGPUs == gpu_procs.size() && 302 "Number of dGPUs and iGPUs do not add up"); 303 DEBUG_PRINT("CPU Agents: %lu\n", cpu_procs.size()); 304 DEBUG_PRINT("iGPU Agents: %d\n", num_iGPUs); 305 DEBUG_PRINT("dGPU Agents: %d\n", num_dGPUs); 306 DEBUG_PRINT("GPU Agents: %lu\n", gpu_procs.size()); 307 308 int cpus_begin = 0; 309 int cpus_end = cpu_procs.size(); 310 int gpus_begin = cpu_procs.size(); 311 int gpus_end = cpu_procs.size() + gpu_procs.size(); 312 int proc_index = 0; 313 for (int i = cpus_begin; i < cpus_end; i++) { 314 std::vector<ATLMemory> memories = cpu_procs[proc_index].memories(); 315 int fine_memories_size = 0; 316 int coarse_memories_size = 0; 317 DEBUG_PRINT("CPU memory types:\t"); 318 for (auto &memory : memories) { 319 atmi_memtype_t type = memory.type(); 320 if (type == ATMI_MEMTYPE_FINE_GRAINED) { 321 fine_memories_size++; 322 DEBUG_PRINT("Fine\t"); 323 } else { 324 coarse_memories_size++; 325 DEBUG_PRINT("Coarse\t"); 326 } 327 } 328 DEBUG_PRINT("\nFine Memories : %d", fine_memories_size); 329 DEBUG_PRINT("\tCoarse Memories : %d\n", coarse_memories_size); 330 proc_index++; 331 } 332 proc_index = 0; 333 for (int i = gpus_begin; i < gpus_end; i++) { 334 std::vector<ATLMemory> memories = gpu_procs[proc_index].memories(); 335 int fine_memories_size = 0; 336 int coarse_memories_size = 0; 337 DEBUG_PRINT("GPU memory types:\t"); 338 for (auto &memory : memories) { 339 atmi_memtype_t type = memory.type(); 340 if (type == ATMI_MEMTYPE_FINE_GRAINED) { 341 fine_memories_size++; 342 DEBUG_PRINT("Fine\t"); 343 } else { 344 coarse_memories_size++; 345 DEBUG_PRINT("Coarse\t"); 346 } 347 } 348 DEBUG_PRINT("\nFine Memories : %d", fine_memories_size); 349 DEBUG_PRINT("\tCoarse Memories : %d\n", coarse_memories_size); 350 proc_index++; 351 } 352 if (num_procs > 0) 353 return HSA_STATUS_SUCCESS; 354 else 355 return HSA_STATUS_ERROR_NOT_INITIALIZED; 356 } 357 358 hsa_status_t init_hsa() { 359 DEBUG_PRINT("Initializing HSA..."); 360 hsa_status_t err = hsa_init(); 361 if (err != HSA_STATUS_SUCCESS) { 362 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 363 "Initializing the hsa runtime", get_error_string(err)); 364 return err; 365 } 366 if (err != HSA_STATUS_SUCCESS) 367 return err; 368 369 err = init_compute_and_memory(); 370 if (err != HSA_STATUS_SUCCESS) 371 return err; 372 if (err != HSA_STATUS_SUCCESS) { 373 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 374 "After initializing compute and memory", get_error_string(err)); 375 return err; 376 } 377 378 DEBUG_PRINT("done\n"); 379 return HSA_STATUS_SUCCESS; 380 } 381 382 hsa_status_t callbackEvent(const hsa_amd_event_t *event, void *data) { 383 #if (ROCM_VERSION_MAJOR >= 3) || \ 384 (ROCM_VERSION_MAJOR >= 2 && ROCM_VERSION_MINOR >= 3) 385 if (event->event_type == HSA_AMD_GPU_MEMORY_FAULT_EVENT) { 386 #else 387 if (event->event_type == GPU_MEMORY_FAULT_EVENT) { 388 #endif 389 hsa_amd_gpu_memory_fault_info_t memory_fault = event->memory_fault; 390 // memory_fault.agent 391 // memory_fault.virtual_address 392 // memory_fault.fault_reason_mask 393 // fprintf("[GPU Error at %p: Reason is ", memory_fault.virtual_address); 394 std::stringstream stream; 395 stream << std::hex << (uintptr_t)memory_fault.virtual_address; 396 std::string addr("0x" + stream.str()); 397 398 std::string err_string = "[GPU Memory Error] Addr: " + addr; 399 err_string += " Reason: "; 400 if (!(memory_fault.fault_reason_mask & 0x00111111)) { 401 err_string += "No Idea! "; 402 } else { 403 if (memory_fault.fault_reason_mask & 0x00000001) 404 err_string += "Page not present or supervisor privilege. "; 405 if (memory_fault.fault_reason_mask & 0x00000010) 406 err_string += "Write access to a read-only page. "; 407 if (memory_fault.fault_reason_mask & 0x00000100) 408 err_string += "Execute access to a page marked NX. "; 409 if (memory_fault.fault_reason_mask & 0x00001000) 410 err_string += "Host access only. "; 411 if (memory_fault.fault_reason_mask & 0x00010000) 412 err_string += "ECC failure (if supported by HW). "; 413 if (memory_fault.fault_reason_mask & 0x00100000) 414 err_string += "Can't determine the exact fault address. "; 415 } 416 fprintf(stderr, "%s\n", err_string.c_str()); 417 return HSA_STATUS_ERROR; 418 } 419 return HSA_STATUS_SUCCESS; 420 } 421 422 hsa_status_t atl_init_gpu_context() { 423 hsa_status_t err; 424 err = init_hsa(); 425 if (err != HSA_STATUS_SUCCESS) 426 return HSA_STATUS_ERROR; 427 428 err = hsa_amd_register_system_event_handler(callbackEvent, NULL); 429 if (err != HSA_STATUS_SUCCESS) { 430 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 431 "Registering the system for memory faults", get_error_string(err)); 432 return HSA_STATUS_ERROR; 433 } 434 435 return HSA_STATUS_SUCCESS; 436 } 437 438 static bool isImplicit(KernelArgMD::ValueKind value_kind) { 439 switch (value_kind) { 440 case KernelArgMD::ValueKind::HiddenGlobalOffsetX: 441 case KernelArgMD::ValueKind::HiddenGlobalOffsetY: 442 case KernelArgMD::ValueKind::HiddenGlobalOffsetZ: 443 case KernelArgMD::ValueKind::HiddenNone: 444 case KernelArgMD::ValueKind::HiddenPrintfBuffer: 445 case KernelArgMD::ValueKind::HiddenDefaultQueue: 446 case KernelArgMD::ValueKind::HiddenCompletionAction: 447 case KernelArgMD::ValueKind::HiddenMultiGridSyncArg: 448 case KernelArgMD::ValueKind::HiddenHostcallBuffer: 449 return true; 450 default: 451 return false; 452 } 453 } 454 455 static std::pair<unsigned char *, unsigned char *> 456 find_metadata(void *binary, size_t binSize) { 457 std::pair<unsigned char *, unsigned char *> failure = {nullptr, nullptr}; 458 459 Elf *e = elf_memory(static_cast<char *>(binary), binSize); 460 if (elf_kind(e) != ELF_K_ELF) { 461 return failure; 462 } 463 464 size_t numpHdrs; 465 if (elf_getphdrnum(e, &numpHdrs) != 0) { 466 return failure; 467 } 468 469 for (size_t i = 0; i < numpHdrs; ++i) { 470 GElf_Phdr pHdr; 471 if (gelf_getphdr(e, i, &pHdr) != &pHdr) { 472 continue; 473 } 474 // Look for the runtime metadata note 475 if (pHdr.p_type == PT_NOTE && pHdr.p_align >= sizeof(int)) { 476 // Iterate over the notes in this segment 477 address ptr = (address)binary + pHdr.p_offset; 478 address segmentEnd = ptr + pHdr.p_filesz; 479 480 while (ptr < segmentEnd) { 481 Elf_Note *note = reinterpret_cast<Elf_Note *>(ptr); 482 address name = (address)¬e[1]; 483 484 if (note->n_type == 7 || note->n_type == 8) { 485 return failure; 486 } else if (note->n_type == 10 /* NT_AMD_AMDGPU_HSA_METADATA */ && 487 note->n_namesz == sizeof "AMD" && 488 !memcmp(name, "AMD", note->n_namesz)) { 489 // code object v2 uses yaml metadata, no longer supported 490 return failure; 491 } else if (note->n_type == 32 /* NT_AMDGPU_METADATA */ && 492 note->n_namesz == sizeof "AMDGPU" && 493 !memcmp(name, "AMDGPU", note->n_namesz)) { 494 495 // n_descsz = 485 496 // value is padded to 4 byte alignment, may want to move end up to 497 // match 498 size_t offset = sizeof(uint32_t) * 3 /* fields */ 499 + sizeof("AMDGPU") /* name */ 500 + 1 /* padding to 4 byte alignment */; 501 502 // Including the trailing padding means both pointers are 4 bytes 503 // aligned, which may be useful later. 504 unsigned char *metadata_start = (unsigned char *)ptr + offset; 505 unsigned char *metadata_end = 506 metadata_start + core::alignUp(note->n_descsz, 4); 507 return {metadata_start, metadata_end}; 508 } 509 ptr += sizeof(*note) + core::alignUp(note->n_namesz, sizeof(int)) + 510 core::alignUp(note->n_descsz, sizeof(int)); 511 } 512 } 513 } 514 515 return failure; 516 } 517 518 namespace { 519 int map_lookup_array(msgpack::byte_range message, const char *needle, 520 msgpack::byte_range *res, uint64_t *size) { 521 unsigned count = 0; 522 struct s : msgpack::functors_defaults<s> { 523 s(unsigned &count, uint64_t *size) : count(count), size(size) {} 524 unsigned &count; 525 uint64_t *size; 526 const unsigned char *handle_array(uint64_t N, msgpack::byte_range bytes) { 527 count++; 528 *size = N; 529 return bytes.end; 530 } 531 }; 532 533 msgpack::foreach_map(message, 534 [&](msgpack::byte_range key, msgpack::byte_range value) { 535 if (msgpack::message_is_string(key, needle)) { 536 // If the message is an array, record number of 537 // elements in *size 538 msgpack::handle_msgpack<s>(value, {count, size}); 539 // return the whole array 540 *res = value; 541 } 542 }); 543 // Only claim success if exactly one key/array pair matched 544 return count != 1; 545 } 546 547 int map_lookup_string(msgpack::byte_range message, const char *needle, 548 std::string *res) { 549 unsigned count = 0; 550 struct s : public msgpack::functors_defaults<s> { 551 s(unsigned &count, std::string *res) : count(count), res(res) {} 552 unsigned &count; 553 std::string *res; 554 void handle_string(size_t N, const unsigned char *str) { 555 count++; 556 *res = std::string(str, str + N); 557 } 558 }; 559 msgpack::foreach_map(message, 560 [&](msgpack::byte_range key, msgpack::byte_range value) { 561 if (msgpack::message_is_string(key, needle)) { 562 msgpack::handle_msgpack<s>(value, {count, res}); 563 } 564 }); 565 return count != 1; 566 } 567 568 int map_lookup_uint64_t(msgpack::byte_range message, const char *needle, 569 uint64_t *res) { 570 unsigned count = 0; 571 msgpack::foreach_map(message, 572 [&](msgpack::byte_range key, msgpack::byte_range value) { 573 if (msgpack::message_is_string(key, needle)) { 574 msgpack::foronly_unsigned(value, [&](uint64_t x) { 575 count++; 576 *res = x; 577 }); 578 } 579 }); 580 return count != 1; 581 } 582 583 int array_lookup_element(msgpack::byte_range message, uint64_t elt, 584 msgpack::byte_range *res) { 585 int rc = 1; 586 uint64_t i = 0; 587 msgpack::foreach_array(message, [&](msgpack::byte_range value) { 588 if (i == elt) { 589 *res = value; 590 rc = 0; 591 } 592 i++; 593 }); 594 return rc; 595 } 596 597 int populate_kernelArgMD(msgpack::byte_range args_element, 598 KernelArgMD *kernelarg) { 599 using namespace msgpack; 600 int error = 0; 601 foreach_map(args_element, [&](byte_range key, byte_range value) -> void { 602 if (message_is_string(key, ".name")) { 603 foronly_string(value, [&](size_t N, const unsigned char *str) { 604 kernelarg->name_ = std::string(str, str + N); 605 }); 606 } else if (message_is_string(key, ".type_name")) { 607 foronly_string(value, [&](size_t N, const unsigned char *str) { 608 kernelarg->typeName_ = std::string(str, str + N); 609 }); 610 } else if (message_is_string(key, ".size")) { 611 foronly_unsigned(value, [&](uint64_t x) { kernelarg->size_ = x; }); 612 } else if (message_is_string(key, ".offset")) { 613 foronly_unsigned(value, [&](uint64_t x) { kernelarg->offset_ = x; }); 614 } else if (message_is_string(key, ".value_kind")) { 615 foronly_string(value, [&](size_t N, const unsigned char *str) { 616 std::string s = std::string(str, str + N); 617 auto itValueKind = ArgValueKind.find(s); 618 if (itValueKind != ArgValueKind.end()) { 619 kernelarg->valueKind_ = itValueKind->second; 620 } 621 }); 622 } 623 }); 624 return error; 625 } 626 } // namespace 627 628 static hsa_status_t get_code_object_custom_metadata( 629 void *binary, size_t binSize, 630 std::map<std::string, atl_kernel_info_t> &KernelInfoTable) { 631 // parse code object with different keys from v2 632 // also, the kernel name is not the same as the symbol name -- so a 633 // symbol->name map is needed 634 635 std::pair<unsigned char *, unsigned char *> metadata = 636 find_metadata(binary, binSize); 637 if (!metadata.first) { 638 return HSA_STATUS_ERROR_INVALID_CODE_OBJECT; 639 } 640 641 uint64_t kernelsSize = 0; 642 int msgpack_errors = 0; 643 msgpack::byte_range kernel_array; 644 msgpack_errors = 645 map_lookup_array({metadata.first, metadata.second}, "amdhsa.kernels", 646 &kernel_array, &kernelsSize); 647 if (msgpack_errors != 0) { 648 printf("[%s:%d] %s failed\n", __FILE__, __LINE__, 649 "kernels lookup in program metadata"); 650 return HSA_STATUS_ERROR_INVALID_CODE_OBJECT; 651 } 652 653 for (size_t i = 0; i < kernelsSize; i++) { 654 assert(msgpack_errors == 0); 655 std::string kernelName; 656 std::string symbolName; 657 658 msgpack::byte_range element; 659 msgpack_errors += array_lookup_element(kernel_array, i, &element); 660 if (msgpack_errors != 0) { 661 printf("[%s:%d] %s failed\n", __FILE__, __LINE__, 662 "element lookup in kernel metadata"); 663 return HSA_STATUS_ERROR_INVALID_CODE_OBJECT; 664 } 665 666 msgpack_errors += map_lookup_string(element, ".name", &kernelName); 667 msgpack_errors += map_lookup_string(element, ".symbol", &symbolName); 668 if (msgpack_errors != 0) { 669 printf("[%s:%d] %s failed\n", __FILE__, __LINE__, 670 "strings lookup in kernel metadata"); 671 return HSA_STATUS_ERROR_INVALID_CODE_OBJECT; 672 } 673 674 // Make sure that kernelName + ".kd" == symbolName 675 if ((kernelName + ".kd") != symbolName) { 676 printf("[%s:%d] Kernel name mismatching symbol: %s != %s + .kd\n", 677 __FILE__, __LINE__, symbolName.c_str(), kernelName.c_str()); 678 return HSA_STATUS_ERROR_INVALID_CODE_OBJECT; 679 } 680 681 atl_kernel_info_t info = {0, 0, 0, 0, 0, 0, 0, 0, 0, {}, {}, {}}; 682 683 uint64_t sgpr_count, vgpr_count, sgpr_spill_count, vgpr_spill_count; 684 msgpack_errors += map_lookup_uint64_t(element, ".sgpr_count", &sgpr_count); 685 if (msgpack_errors != 0) { 686 printf("[%s:%d] %s failed\n", __FILE__, __LINE__, 687 "sgpr count metadata lookup in kernel metadata"); 688 return HSA_STATUS_ERROR_INVALID_CODE_OBJECT; 689 } 690 691 info.sgpr_count = sgpr_count; 692 693 msgpack_errors += map_lookup_uint64_t(element, ".vgpr_count", &vgpr_count); 694 if (msgpack_errors != 0) { 695 printf("[%s:%d] %s failed\n", __FILE__, __LINE__, 696 "vgpr count metadata lookup in kernel metadata"); 697 return HSA_STATUS_ERROR_INVALID_CODE_OBJECT; 698 } 699 700 info.vgpr_count = vgpr_count; 701 702 msgpack_errors += 703 map_lookup_uint64_t(element, ".sgpr_spill_count", &sgpr_spill_count); 704 if (msgpack_errors != 0) { 705 printf("[%s:%d] %s failed\n", __FILE__, __LINE__, 706 "sgpr spill count metadata lookup in kernel metadata"); 707 return HSA_STATUS_ERROR_INVALID_CODE_OBJECT; 708 } 709 710 info.sgpr_spill_count = sgpr_spill_count; 711 712 msgpack_errors += 713 map_lookup_uint64_t(element, ".vgpr_spill_count", &vgpr_spill_count); 714 if (msgpack_errors != 0) { 715 printf("[%s:%d] %s failed\n", __FILE__, __LINE__, 716 "vgpr spill count metadata lookup in kernel metadata"); 717 return HSA_STATUS_ERROR_INVALID_CODE_OBJECT; 718 } 719 720 info.vgpr_spill_count = vgpr_spill_count; 721 722 size_t kernel_explicit_args_size = 0; 723 uint64_t kernel_segment_size; 724 msgpack_errors += map_lookup_uint64_t(element, ".kernarg_segment_size", 725 &kernel_segment_size); 726 if (msgpack_errors != 0) { 727 printf("[%s:%d] %s failed\n", __FILE__, __LINE__, 728 "kernarg segment size metadata lookup in kernel metadata"); 729 return HSA_STATUS_ERROR_INVALID_CODE_OBJECT; 730 } 731 732 bool hasHiddenArgs = false; 733 if (kernel_segment_size > 0) { 734 uint64_t argsSize; 735 size_t offset = 0; 736 737 msgpack::byte_range args_array; 738 msgpack_errors += 739 map_lookup_array(element, ".args", &args_array, &argsSize); 740 if (msgpack_errors != 0) { 741 printf("[%s:%d] %s failed\n", __FILE__, __LINE__, 742 "kernel args metadata lookup in kernel metadata"); 743 return HSA_STATUS_ERROR_INVALID_CODE_OBJECT; 744 } 745 746 info.num_args = argsSize; 747 748 for (size_t i = 0; i < argsSize; ++i) { 749 KernelArgMD lcArg; 750 751 msgpack::byte_range args_element; 752 msgpack_errors += array_lookup_element(args_array, i, &args_element); 753 if (msgpack_errors != 0) { 754 printf("[%s:%d] %s failed\n", __FILE__, __LINE__, 755 "iterate args map in kernel args metadata"); 756 return HSA_STATUS_ERROR_INVALID_CODE_OBJECT; 757 } 758 759 msgpack_errors += populate_kernelArgMD(args_element, &lcArg); 760 if (msgpack_errors != 0) { 761 printf("[%s:%d] %s failed\n", __FILE__, __LINE__, 762 "iterate args map in kernel args metadata"); 763 return HSA_STATUS_ERROR_INVALID_CODE_OBJECT; 764 } 765 // populate info with sizes and offsets 766 info.arg_sizes.push_back(lcArg.size_); 767 // v3 has offset field and not align field 768 size_t new_offset = lcArg.offset_; 769 size_t padding = new_offset - offset; 770 offset = new_offset; 771 info.arg_offsets.push_back(lcArg.offset_); 772 DEBUG_PRINT("Arg[%lu] \"%s\" (%u, %u)\n", i, lcArg.name_.c_str(), 773 lcArg.size_, lcArg.offset_); 774 offset += lcArg.size_; 775 776 // check if the arg is a hidden/implicit arg 777 // this logic assumes that all hidden args are 8-byte aligned 778 if (!isImplicit(lcArg.valueKind_)) { 779 kernel_explicit_args_size += lcArg.size_; 780 } else { 781 hasHiddenArgs = true; 782 } 783 kernel_explicit_args_size += padding; 784 } 785 } 786 787 // add size of implicit args, e.g.: offset x, y and z and pipe pointer, but 788 // in ATMI, do not count the compiler set implicit args, but set your own 789 // implicit args by discounting the compiler set implicit args 790 info.kernel_segment_size = 791 (hasHiddenArgs ? kernel_explicit_args_size : kernel_segment_size) + 792 sizeof(atmi_implicit_args_t); 793 DEBUG_PRINT("[%s: kernarg seg size] (%lu --> %u)\n", kernelName.c_str(), 794 kernel_segment_size, info.kernel_segment_size); 795 796 // kernel received, now add it to the kernel info table 797 KernelInfoTable[kernelName] = info; 798 } 799 800 return HSA_STATUS_SUCCESS; 801 } 802 803 static hsa_status_t 804 populate_InfoTables(hsa_executable_symbol_t symbol, 805 std::map<std::string, atl_kernel_info_t> &KernelInfoTable, 806 std::map<std::string, atl_symbol_info_t> &SymbolInfoTable) { 807 hsa_symbol_kind_t type; 808 809 uint32_t name_length; 810 hsa_status_t err; 811 err = hsa_executable_symbol_get_info(symbol, HSA_EXECUTABLE_SYMBOL_INFO_TYPE, 812 &type); 813 if (err != HSA_STATUS_SUCCESS) { 814 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 815 "Symbol info extraction", get_error_string(err)); 816 return err; 817 } 818 DEBUG_PRINT("Exec Symbol type: %d\n", type); 819 if (type == HSA_SYMBOL_KIND_KERNEL) { 820 err = hsa_executable_symbol_get_info( 821 symbol, HSA_EXECUTABLE_SYMBOL_INFO_NAME_LENGTH, &name_length); 822 if (err != HSA_STATUS_SUCCESS) { 823 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 824 "Symbol info extraction", get_error_string(err)); 825 return err; 826 } 827 char *name = reinterpret_cast<char *>(malloc(name_length + 1)); 828 err = hsa_executable_symbol_get_info(symbol, 829 HSA_EXECUTABLE_SYMBOL_INFO_NAME, name); 830 if (err != HSA_STATUS_SUCCESS) { 831 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 832 "Symbol info extraction", get_error_string(err)); 833 return err; 834 } 835 // remove the suffix .kd from symbol name. 836 name[name_length - 3] = 0; 837 838 atl_kernel_info_t info; 839 std::string kernelName(name); 840 // by now, the kernel info table should already have an entry 841 // because the non-ROCr custom code object parsing is called before 842 // iterating over the code object symbols using ROCr 843 if (KernelInfoTable.find(kernelName) == KernelInfoTable.end()) { 844 if (HSA_STATUS_ERROR_INVALID_CODE_OBJECT != HSA_STATUS_SUCCESS) { 845 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 846 "Finding the entry kernel info table", 847 get_error_string(HSA_STATUS_ERROR_INVALID_CODE_OBJECT)); 848 exit(1); 849 } 850 } 851 // found, so assign and update 852 info = KernelInfoTable[kernelName]; 853 854 /* Extract dispatch information from the symbol */ 855 err = hsa_executable_symbol_get_info( 856 symbol, HSA_EXECUTABLE_SYMBOL_INFO_KERNEL_OBJECT, 857 &(info.kernel_object)); 858 if (err != HSA_STATUS_SUCCESS) { 859 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 860 "Extracting the symbol from the executable", 861 get_error_string(err)); 862 return err; 863 } 864 err = hsa_executable_symbol_get_info( 865 symbol, HSA_EXECUTABLE_SYMBOL_INFO_KERNEL_GROUP_SEGMENT_SIZE, 866 &(info.group_segment_size)); 867 if (err != HSA_STATUS_SUCCESS) { 868 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 869 "Extracting the group segment size from the executable", 870 get_error_string(err)); 871 return err; 872 } 873 err = hsa_executable_symbol_get_info( 874 symbol, HSA_EXECUTABLE_SYMBOL_INFO_KERNEL_PRIVATE_SEGMENT_SIZE, 875 &(info.private_segment_size)); 876 if (err != HSA_STATUS_SUCCESS) { 877 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 878 "Extracting the private segment from the executable", 879 get_error_string(err)); 880 return err; 881 } 882 883 DEBUG_PRINT( 884 "Kernel %s --> %lx symbol %u group segsize %u pvt segsize %u bytes " 885 "kernarg\n", 886 kernelName.c_str(), info.kernel_object, info.group_segment_size, 887 info.private_segment_size, info.kernel_segment_size); 888 889 // assign it back to the kernel info table 890 KernelInfoTable[kernelName] = info; 891 free(name); 892 } else if (type == HSA_SYMBOL_KIND_VARIABLE) { 893 err = hsa_executable_symbol_get_info( 894 symbol, HSA_EXECUTABLE_SYMBOL_INFO_NAME_LENGTH, &name_length); 895 if (err != HSA_STATUS_SUCCESS) { 896 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 897 "Symbol info extraction", get_error_string(err)); 898 return err; 899 } 900 char *name = reinterpret_cast<char *>(malloc(name_length + 1)); 901 err = hsa_executable_symbol_get_info(symbol, 902 HSA_EXECUTABLE_SYMBOL_INFO_NAME, name); 903 if (err != HSA_STATUS_SUCCESS) { 904 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 905 "Symbol info extraction", get_error_string(err)); 906 return err; 907 } 908 name[name_length] = 0; 909 910 atl_symbol_info_t info; 911 912 err = hsa_executable_symbol_get_info( 913 symbol, HSA_EXECUTABLE_SYMBOL_INFO_VARIABLE_ADDRESS, &(info.addr)); 914 if (err != HSA_STATUS_SUCCESS) { 915 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 916 "Symbol info address extraction", get_error_string(err)); 917 return err; 918 } 919 920 err = hsa_executable_symbol_get_info( 921 symbol, HSA_EXECUTABLE_SYMBOL_INFO_VARIABLE_SIZE, &(info.size)); 922 if (err != HSA_STATUS_SUCCESS) { 923 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 924 "Symbol info size extraction", get_error_string(err)); 925 return err; 926 } 927 928 DEBUG_PRINT("Symbol %s = %p (%u bytes)\n", name, (void *)info.addr, 929 info.size); 930 SymbolInfoTable[std::string(name)] = info; 931 free(name); 932 } else { 933 DEBUG_PRINT("Symbol is an indirect function\n"); 934 } 935 return HSA_STATUS_SUCCESS; 936 } 937 938 hsa_status_t RegisterModuleFromMemory( 939 std::map<std::string, atl_kernel_info_t> &KernelInfoTable, 940 std::map<std::string, atl_symbol_info_t> &SymbolInfoTable, 941 void *module_bytes, size_t module_size, hsa_agent_t agent, 942 hsa_status_t (*on_deserialized_data)(void *data, size_t size, 943 void *cb_state), 944 void *cb_state, std::vector<hsa_executable_t> &HSAExecutables) { 945 hsa_status_t err; 946 hsa_executable_t executable = {0}; 947 hsa_profile_t agent_profile; 948 949 err = hsa_agent_get_info(agent, HSA_AGENT_INFO_PROFILE, &agent_profile); 950 if (err != HSA_STATUS_SUCCESS) { 951 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 952 "Query the agent profile", get_error_string(err)); 953 return HSA_STATUS_ERROR; 954 } 955 // FIXME: Assume that every profile is FULL until we understand how to build 956 // GCN with base profile 957 agent_profile = HSA_PROFILE_FULL; 958 /* Create the empty executable. */ 959 err = hsa_executable_create(agent_profile, HSA_EXECUTABLE_STATE_UNFROZEN, "", 960 &executable); 961 if (err != HSA_STATUS_SUCCESS) { 962 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 963 "Create the executable", get_error_string(err)); 964 return HSA_STATUS_ERROR; 965 } 966 967 bool module_load_success = false; 968 do // Existing control flow used continue, preserve that for this patch 969 { 970 { 971 // Some metadata info is not available through ROCr API, so use custom 972 // code object metadata parsing to collect such metadata info 973 974 err = get_code_object_custom_metadata(module_bytes, module_size, 975 KernelInfoTable); 976 if (err != HSA_STATUS_SUCCESS) { 977 DEBUG_PRINT("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 978 "Getting custom code object metadata", 979 get_error_string(err)); 980 continue; 981 } 982 983 // Deserialize code object. 984 hsa_code_object_t code_object = {0}; 985 err = hsa_code_object_deserialize(module_bytes, module_size, NULL, 986 &code_object); 987 if (err != HSA_STATUS_SUCCESS) { 988 DEBUG_PRINT("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 989 "Code Object Deserialization", get_error_string(err)); 990 continue; 991 } 992 assert(0 != code_object.handle); 993 994 // Mutating the device image here avoids another allocation & memcpy 995 void *code_object_alloc_data = 996 reinterpret_cast<void *>(code_object.handle); 997 hsa_status_t atmi_err = 998 on_deserialized_data(code_object_alloc_data, module_size, cb_state); 999 if (atmi_err != HSA_STATUS_SUCCESS) { 1000 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 1001 "Error in deserialized_data callback", 1002 get_atmi_error_string(atmi_err)); 1003 return atmi_err; 1004 } 1005 1006 /* Load the code object. */ 1007 err = 1008 hsa_executable_load_code_object(executable, agent, code_object, NULL); 1009 if (err != HSA_STATUS_SUCCESS) { 1010 DEBUG_PRINT("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 1011 "Loading the code object", get_error_string(err)); 1012 continue; 1013 } 1014 1015 // cannot iterate over symbols until executable is frozen 1016 } 1017 module_load_success = true; 1018 } while (0); 1019 DEBUG_PRINT("Modules loaded successful? %d\n", module_load_success); 1020 if (module_load_success) { 1021 /* Freeze the executable; it can now be queried for symbols. */ 1022 err = hsa_executable_freeze(executable, ""); 1023 if (err != HSA_STATUS_SUCCESS) { 1024 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 1025 "Freeze the executable", get_error_string(err)); 1026 return HSA_STATUS_ERROR; 1027 } 1028 1029 err = hsa::executable_iterate_symbols( 1030 executable, 1031 [&](hsa_executable_t, hsa_executable_symbol_t symbol) -> hsa_status_t { 1032 return populate_InfoTables(symbol, KernelInfoTable, SymbolInfoTable); 1033 }); 1034 if (err != HSA_STATUS_SUCCESS) { 1035 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 1036 "Iterating over symbols for execuatable", get_error_string(err)); 1037 return HSA_STATUS_ERROR; 1038 } 1039 1040 // save the executable and destroy during finalize 1041 HSAExecutables.push_back(executable); 1042 return HSA_STATUS_SUCCESS; 1043 } else { 1044 return HSA_STATUS_ERROR; 1045 } 1046 } 1047 1048 } // namespace core 1049