1 /*===--------------------------------------------------------------------------
2  *              ATMI (Asynchronous Task and Memory Interface)
3  *
4  * This file is distributed under the MIT License. See LICENSE.txt for details.
5  *===------------------------------------------------------------------------*/
6 #include <gelf.h>
7 #include <libelf.h>
8 
9 #include <cassert>
10 #include <cstdarg>
11 #include <fstream>
12 #include <iomanip>
13 #include <iostream>
14 #include <set>
15 #include <string>
16 
17 #include "internal.h"
18 #include "machine.h"
19 #include "rt.h"
20 
21 #include "msgpack.h"
22 
23 namespace hsa {
24 // Wrap HSA iterate API in a shim that allows passing general callables
25 template <typename C>
26 hsa_status_t executable_iterate_symbols(hsa_executable_t executable, C cb) {
27   auto L = [](hsa_executable_t executable, hsa_executable_symbol_t symbol,
28               void *data) -> hsa_status_t {
29     C *unwrapped = static_cast<C *>(data);
30     return (*unwrapped)(executable, symbol);
31   };
32   return hsa_executable_iterate_symbols(executable, L,
33                                         static_cast<void *>(&cb));
34 }
35 } // namespace hsa
36 
37 typedef unsigned char *address;
38 /*
39  * Note descriptors.
40  */
41 typedef struct {
42   uint32_t n_namesz; /* Length of note's name. */
43   uint32_t n_descsz; /* Length of note's value. */
44   uint32_t n_type;   /* Type of note. */
45   // then name
46   // then padding, optional
47   // then desc, at 4 byte alignment (not 8, despite being elf64)
48 } Elf_Note;
49 
50 // The following include file and following structs/enums
51 // have been replicated on a per-use basis below. For example,
52 // llvm::AMDGPU::HSAMD::Kernel::Metadata has several fields,
53 // but we may care only about kernargSegmentSize_ for now, so
54 // we just include that field in our KernelMD implementation. We
55 // chose this approach to replicate in order to avoid forcing
56 // a dependency on LLVM_INCLUDE_DIR just to compile the runtime.
57 // #include "llvm/Support/AMDGPUMetadata.h"
58 // typedef llvm::AMDGPU::HSAMD::Metadata CodeObjectMD;
59 // typedef llvm::AMDGPU::HSAMD::Kernel::Metadata KernelMD;
60 // typedef llvm::AMDGPU::HSAMD::Kernel::Arg::Metadata KernelArgMD;
61 // using llvm::AMDGPU::HSAMD::AccessQualifier;
62 // using llvm::AMDGPU::HSAMD::AddressSpaceQualifier;
63 // using llvm::AMDGPU::HSAMD::ValueKind;
64 // using llvm::AMDGPU::HSAMD::ValueType;
65 
66 class KernelArgMD {
67 public:
68   enum class ValueKind {
69     HiddenGlobalOffsetX,
70     HiddenGlobalOffsetY,
71     HiddenGlobalOffsetZ,
72     HiddenNone,
73     HiddenPrintfBuffer,
74     HiddenDefaultQueue,
75     HiddenCompletionAction,
76     HiddenMultiGridSyncArg,
77     HiddenHostcallBuffer,
78     Unknown
79   };
80 
81   KernelArgMD()
82       : name_(std::string()), typeName_(std::string()), size_(0), offset_(0),
83         align_(0), valueKind_(ValueKind::Unknown) {}
84 
85   // fields
86   std::string name_;
87   std::string typeName_;
88   uint32_t size_;
89   uint32_t offset_;
90   uint32_t align_;
91   ValueKind valueKind_;
92 };
93 
94 class KernelMD {
95 public:
96   KernelMD() : kernargSegmentSize_(0ull) {}
97 
98   // fields
99   uint64_t kernargSegmentSize_;
100 };
101 
102 static const std::map<std::string, KernelArgMD::ValueKind> ArgValueKind = {
103     //    Including only those fields that are relevant to the runtime.
104     //    {"ByValue", KernelArgMD::ValueKind::ByValue},
105     //    {"GlobalBuffer", KernelArgMD::ValueKind::GlobalBuffer},
106     //    {"DynamicSharedPointer",
107     //    KernelArgMD::ValueKind::DynamicSharedPointer},
108     //    {"Sampler", KernelArgMD::ValueKind::Sampler},
109     //    {"Image", KernelArgMD::ValueKind::Image},
110     //    {"Pipe", KernelArgMD::ValueKind::Pipe},
111     //    {"Queue", KernelArgMD::ValueKind::Queue},
112     {"HiddenGlobalOffsetX", KernelArgMD::ValueKind::HiddenGlobalOffsetX},
113     {"HiddenGlobalOffsetY", KernelArgMD::ValueKind::HiddenGlobalOffsetY},
114     {"HiddenGlobalOffsetZ", KernelArgMD::ValueKind::HiddenGlobalOffsetZ},
115     {"HiddenNone", KernelArgMD::ValueKind::HiddenNone},
116     {"HiddenPrintfBuffer", KernelArgMD::ValueKind::HiddenPrintfBuffer},
117     {"HiddenDefaultQueue", KernelArgMD::ValueKind::HiddenDefaultQueue},
118     {"HiddenCompletionAction", KernelArgMD::ValueKind::HiddenCompletionAction},
119     {"HiddenMultiGridSyncArg", KernelArgMD::ValueKind::HiddenMultiGridSyncArg},
120     {"HiddenHostcallBuffer", KernelArgMD::ValueKind::HiddenHostcallBuffer},
121     // v3
122     //    {"by_value", KernelArgMD::ValueKind::ByValue},
123     //    {"global_buffer", KernelArgMD::ValueKind::GlobalBuffer},
124     //    {"dynamic_shared_pointer",
125     //    KernelArgMD::ValueKind::DynamicSharedPointer},
126     //    {"sampler", KernelArgMD::ValueKind::Sampler},
127     //    {"image", KernelArgMD::ValueKind::Image},
128     //    {"pipe", KernelArgMD::ValueKind::Pipe},
129     //    {"queue", KernelArgMD::ValueKind::Queue},
130     {"hidden_global_offset_x", KernelArgMD::ValueKind::HiddenGlobalOffsetX},
131     {"hidden_global_offset_y", KernelArgMD::ValueKind::HiddenGlobalOffsetY},
132     {"hidden_global_offset_z", KernelArgMD::ValueKind::HiddenGlobalOffsetZ},
133     {"hidden_none", KernelArgMD::ValueKind::HiddenNone},
134     {"hidden_printf_buffer", KernelArgMD::ValueKind::HiddenPrintfBuffer},
135     {"hidden_default_queue", KernelArgMD::ValueKind::HiddenDefaultQueue},
136     {"hidden_completion_action",
137      KernelArgMD::ValueKind::HiddenCompletionAction},
138     {"hidden_multigrid_sync_arg",
139      KernelArgMD::ValueKind::HiddenMultiGridSyncArg},
140     {"hidden_hostcall_buffer", KernelArgMD::ValueKind::HiddenHostcallBuffer},
141 };
142 
143 ATLMachine g_atl_machine;
144 
145 namespace core {
146 
147 // Implement memory_pool iteration function
148 static hsa_status_t get_memory_pool_info(hsa_amd_memory_pool_t memory_pool,
149                                          void *data) {
150   ATLProcessor *proc = reinterpret_cast<ATLProcessor *>(data);
151   hsa_status_t err = HSA_STATUS_SUCCESS;
152   // Check if the memory_pool is allowed to allocate, i.e. do not return group
153   // memory
154   bool alloc_allowed = false;
155   err = hsa_amd_memory_pool_get_info(
156       memory_pool, HSA_AMD_MEMORY_POOL_INFO_RUNTIME_ALLOC_ALLOWED,
157       &alloc_allowed);
158   if (err != HSA_STATUS_SUCCESS) {
159     printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
160            "Alloc allowed in memory pool check", get_error_string(err));
161     return err;
162   }
163   if (alloc_allowed) {
164     uint32_t global_flag = 0;
165     err = hsa_amd_memory_pool_get_info(
166         memory_pool, HSA_AMD_MEMORY_POOL_INFO_GLOBAL_FLAGS, &global_flag);
167     if (err != HSA_STATUS_SUCCESS) {
168       printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
169              "Get memory pool info", get_error_string(err));
170       return err;
171     }
172     if (HSA_AMD_MEMORY_POOL_GLOBAL_FLAG_FINE_GRAINED & global_flag) {
173       ATLMemory new_mem(memory_pool, *proc, ATMI_MEMTYPE_FINE_GRAINED);
174       proc->addMemory(new_mem);
175     } else {
176       ATLMemory new_mem(memory_pool, *proc, ATMI_MEMTYPE_COARSE_GRAINED);
177       proc->addMemory(new_mem);
178     }
179   }
180 
181   return err;
182 }
183 
184 static hsa_status_t get_agent_info(hsa_agent_t agent, void *data) {
185   hsa_status_t err = HSA_STATUS_SUCCESS;
186   hsa_device_type_t device_type;
187   err = hsa_agent_get_info(agent, HSA_AGENT_INFO_DEVICE, &device_type);
188   if (err != HSA_STATUS_SUCCESS) {
189     printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
190            "Get device type info", get_error_string(err));
191     return err;
192   }
193   switch (device_type) {
194   case HSA_DEVICE_TYPE_CPU: {
195     ATLCPUProcessor new_proc(agent);
196     err = hsa_amd_agent_iterate_memory_pools(agent, get_memory_pool_info,
197                                              &new_proc);
198     if (err != HSA_STATUS_SUCCESS) {
199       printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
200              "Iterate all memory pools", get_error_string(err));
201       return err;
202     }
203     g_atl_machine.addProcessor(new_proc);
204   } break;
205   case HSA_DEVICE_TYPE_GPU: {
206     hsa_profile_t profile;
207     err = hsa_agent_get_info(agent, HSA_AGENT_INFO_PROFILE, &profile);
208     if (err != HSA_STATUS_SUCCESS) {
209       printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
210              "Query the agent profile", get_error_string(err));
211       return err;
212     }
213     atmi_devtype_t gpu_type;
214     gpu_type =
215         (profile == HSA_PROFILE_FULL) ? ATMI_DEVTYPE_iGPU : ATMI_DEVTYPE_dGPU;
216     ATLGPUProcessor new_proc(agent, gpu_type);
217     err = hsa_amd_agent_iterate_memory_pools(agent, get_memory_pool_info,
218                                              &new_proc);
219     if (err != HSA_STATUS_SUCCESS) {
220       printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
221              "Iterate all memory pools", get_error_string(err));
222       return err;
223     }
224     g_atl_machine.addProcessor(new_proc);
225   } break;
226   case HSA_DEVICE_TYPE_DSP: {
227     err = HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
228   } break;
229   }
230 
231   return err;
232 }
233 
234 static hsa_status_t init_compute_and_memory() {
235   hsa_status_t err;
236 
237   /* Iterate over the agents and pick the gpu agent */
238   err = hsa_iterate_agents(get_agent_info, NULL);
239   if (err == HSA_STATUS_INFO_BREAK) {
240     err = HSA_STATUS_SUCCESS;
241   }
242   if (err != HSA_STATUS_SUCCESS) {
243     printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, "Getting a gpu agent",
244            get_error_string(err));
245     return err;
246   }
247 
248   /* Init all devices or individual device types? */
249   std::vector<ATLCPUProcessor> &cpu_procs =
250       g_atl_machine.processors<ATLCPUProcessor>();
251   std::vector<ATLGPUProcessor> &gpu_procs =
252       g_atl_machine.processors<ATLGPUProcessor>();
253   /* For CPU memory pools, add other devices that can access them directly
254    * or indirectly */
255   for (auto &cpu_proc : cpu_procs) {
256     for (auto &cpu_mem : cpu_proc.memories()) {
257       hsa_amd_memory_pool_t pool = cpu_mem.memory();
258       for (auto &gpu_proc : gpu_procs) {
259         hsa_agent_t agent = gpu_proc.agent();
260         hsa_amd_memory_pool_access_t access;
261         hsa_amd_agent_memory_pool_get_info(
262             agent, pool, HSA_AMD_AGENT_MEMORY_POOL_INFO_ACCESS, &access);
263         if (access != 0) {
264           // this means not NEVER, but could be YES or NO
265           // add this memory pool to the proc
266           gpu_proc.addMemory(cpu_mem);
267         }
268       }
269     }
270   }
271 
272   /* FIXME: are the below combinations of procs and memory pools needed?
273    * all to all compare procs with their memory pools and add those memory
274    * pools that are accessible by the target procs */
275   for (auto &gpu_proc : gpu_procs) {
276     for (auto &gpu_mem : gpu_proc.memories()) {
277       hsa_amd_memory_pool_t pool = gpu_mem.memory();
278       for (auto &cpu_proc : cpu_procs) {
279         hsa_agent_t agent = cpu_proc.agent();
280         hsa_amd_memory_pool_access_t access;
281         hsa_amd_agent_memory_pool_get_info(
282             agent, pool, HSA_AMD_AGENT_MEMORY_POOL_INFO_ACCESS, &access);
283         if (access != 0) {
284           // this means not NEVER, but could be YES or NO
285           // add this memory pool to the proc
286           cpu_proc.addMemory(gpu_mem);
287         }
288       }
289     }
290   }
291 
292   size_t num_procs = cpu_procs.size() + gpu_procs.size();
293   int num_iGPUs = 0;
294   int num_dGPUs = 0;
295   for (uint32_t i = 0; i < gpu_procs.size(); i++) {
296     if (gpu_procs[i].type() == ATMI_DEVTYPE_iGPU)
297       num_iGPUs++;
298     else
299       num_dGPUs++;
300   }
301   assert(num_iGPUs + num_dGPUs == gpu_procs.size() &&
302          "Number of dGPUs and iGPUs do not add up");
303   DEBUG_PRINT("CPU Agents: %lu\n", cpu_procs.size());
304   DEBUG_PRINT("iGPU Agents: %d\n", num_iGPUs);
305   DEBUG_PRINT("dGPU Agents: %d\n", num_dGPUs);
306   DEBUG_PRINT("GPU Agents: %lu\n", gpu_procs.size());
307 
308   int cpus_begin = 0;
309   int cpus_end = cpu_procs.size();
310   int gpus_begin = cpu_procs.size();
311   int gpus_end = cpu_procs.size() + gpu_procs.size();
312   int proc_index = 0;
313   for (int i = cpus_begin; i < cpus_end; i++) {
314     std::vector<ATLMemory> memories = cpu_procs[proc_index].memories();
315     int fine_memories_size = 0;
316     int coarse_memories_size = 0;
317     DEBUG_PRINT("CPU memory types:\t");
318     for (auto &memory : memories) {
319       atmi_memtype_t type = memory.type();
320       if (type == ATMI_MEMTYPE_FINE_GRAINED) {
321         fine_memories_size++;
322         DEBUG_PRINT("Fine\t");
323       } else {
324         coarse_memories_size++;
325         DEBUG_PRINT("Coarse\t");
326       }
327     }
328     DEBUG_PRINT("\nFine Memories : %d", fine_memories_size);
329     DEBUG_PRINT("\tCoarse Memories : %d\n", coarse_memories_size);
330     proc_index++;
331   }
332   proc_index = 0;
333   for (int i = gpus_begin; i < gpus_end; i++) {
334     std::vector<ATLMemory> memories = gpu_procs[proc_index].memories();
335     int fine_memories_size = 0;
336     int coarse_memories_size = 0;
337     DEBUG_PRINT("GPU memory types:\t");
338     for (auto &memory : memories) {
339       atmi_memtype_t type = memory.type();
340       if (type == ATMI_MEMTYPE_FINE_GRAINED) {
341         fine_memories_size++;
342         DEBUG_PRINT("Fine\t");
343       } else {
344         coarse_memories_size++;
345         DEBUG_PRINT("Coarse\t");
346       }
347     }
348     DEBUG_PRINT("\nFine Memories : %d", fine_memories_size);
349     DEBUG_PRINT("\tCoarse Memories : %d\n", coarse_memories_size);
350     proc_index++;
351   }
352   if (num_procs > 0)
353     return HSA_STATUS_SUCCESS;
354   else
355     return HSA_STATUS_ERROR_NOT_INITIALIZED;
356 }
357 
358 hsa_status_t init_hsa() {
359   DEBUG_PRINT("Initializing HSA...");
360   hsa_status_t err = hsa_init();
361   if (err != HSA_STATUS_SUCCESS) {
362     printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
363            "Initializing the hsa runtime", get_error_string(err));
364     return err;
365   }
366   if (err != HSA_STATUS_SUCCESS)
367     return err;
368 
369   err = init_compute_and_memory();
370   if (err != HSA_STATUS_SUCCESS)
371     return err;
372   if (err != HSA_STATUS_SUCCESS) {
373     printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
374            "After initializing compute and memory", get_error_string(err));
375     return err;
376   }
377 
378   DEBUG_PRINT("done\n");
379   return HSA_STATUS_SUCCESS;
380 }
381 
382 hsa_status_t callbackEvent(const hsa_amd_event_t *event, void *data) {
383 #if (ROCM_VERSION_MAJOR >= 3) ||                                               \
384     (ROCM_VERSION_MAJOR >= 2 && ROCM_VERSION_MINOR >= 3)
385   if (event->event_type == HSA_AMD_GPU_MEMORY_FAULT_EVENT) {
386 #else
387   if (event->event_type == GPU_MEMORY_FAULT_EVENT) {
388 #endif
389     hsa_amd_gpu_memory_fault_info_t memory_fault = event->memory_fault;
390     // memory_fault.agent
391     // memory_fault.virtual_address
392     // memory_fault.fault_reason_mask
393     // fprintf("[GPU Error at %p: Reason is ", memory_fault.virtual_address);
394     std::stringstream stream;
395     stream << std::hex << (uintptr_t)memory_fault.virtual_address;
396     std::string addr("0x" + stream.str());
397 
398     std::string err_string = "[GPU Memory Error] Addr: " + addr;
399     err_string += " Reason: ";
400     if (!(memory_fault.fault_reason_mask & 0x00111111)) {
401       err_string += "No Idea! ";
402     } else {
403       if (memory_fault.fault_reason_mask & 0x00000001)
404         err_string += "Page not present or supervisor privilege. ";
405       if (memory_fault.fault_reason_mask & 0x00000010)
406         err_string += "Write access to a read-only page. ";
407       if (memory_fault.fault_reason_mask & 0x00000100)
408         err_string += "Execute access to a page marked NX. ";
409       if (memory_fault.fault_reason_mask & 0x00001000)
410         err_string += "Host access only. ";
411       if (memory_fault.fault_reason_mask & 0x00010000)
412         err_string += "ECC failure (if supported by HW). ";
413       if (memory_fault.fault_reason_mask & 0x00100000)
414         err_string += "Can't determine the exact fault address. ";
415     }
416     fprintf(stderr, "%s\n", err_string.c_str());
417     return HSA_STATUS_ERROR;
418   }
419   return HSA_STATUS_SUCCESS;
420 }
421 
422 hsa_status_t atl_init_gpu_context() {
423   hsa_status_t err;
424   err = init_hsa();
425   if (err != HSA_STATUS_SUCCESS)
426     return HSA_STATUS_ERROR;
427 
428   err = hsa_amd_register_system_event_handler(callbackEvent, NULL);
429   if (err != HSA_STATUS_SUCCESS) {
430     printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
431            "Registering the system for memory faults", get_error_string(err));
432     return HSA_STATUS_ERROR;
433   }
434 
435   return HSA_STATUS_SUCCESS;
436 }
437 
438 static bool isImplicit(KernelArgMD::ValueKind value_kind) {
439   switch (value_kind) {
440   case KernelArgMD::ValueKind::HiddenGlobalOffsetX:
441   case KernelArgMD::ValueKind::HiddenGlobalOffsetY:
442   case KernelArgMD::ValueKind::HiddenGlobalOffsetZ:
443   case KernelArgMD::ValueKind::HiddenNone:
444   case KernelArgMD::ValueKind::HiddenPrintfBuffer:
445   case KernelArgMD::ValueKind::HiddenDefaultQueue:
446   case KernelArgMD::ValueKind::HiddenCompletionAction:
447   case KernelArgMD::ValueKind::HiddenMultiGridSyncArg:
448   case KernelArgMD::ValueKind::HiddenHostcallBuffer:
449     return true;
450   default:
451     return false;
452   }
453 }
454 
455 static std::pair<unsigned char *, unsigned char *>
456 find_metadata(void *binary, size_t binSize) {
457   std::pair<unsigned char *, unsigned char *> failure = {nullptr, nullptr};
458 
459   Elf *e = elf_memory(static_cast<char *>(binary), binSize);
460   if (elf_kind(e) != ELF_K_ELF) {
461     return failure;
462   }
463 
464   size_t numpHdrs;
465   if (elf_getphdrnum(e, &numpHdrs) != 0) {
466     return failure;
467   }
468 
469   for (size_t i = 0; i < numpHdrs; ++i) {
470     GElf_Phdr pHdr;
471     if (gelf_getphdr(e, i, &pHdr) != &pHdr) {
472       continue;
473     }
474     // Look for the runtime metadata note
475     if (pHdr.p_type == PT_NOTE && pHdr.p_align >= sizeof(int)) {
476       // Iterate over the notes in this segment
477       address ptr = (address)binary + pHdr.p_offset;
478       address segmentEnd = ptr + pHdr.p_filesz;
479 
480       while (ptr < segmentEnd) {
481         Elf_Note *note = reinterpret_cast<Elf_Note *>(ptr);
482         address name = (address)&note[1];
483 
484         if (note->n_type == 7 || note->n_type == 8) {
485           return failure;
486         } else if (note->n_type == 10 /* NT_AMD_AMDGPU_HSA_METADATA */ &&
487                    note->n_namesz == sizeof "AMD" &&
488                    !memcmp(name, "AMD", note->n_namesz)) {
489           // code object v2 uses yaml metadata, no longer supported
490           return failure;
491         } else if (note->n_type == 32 /* NT_AMDGPU_METADATA */ &&
492                    note->n_namesz == sizeof "AMDGPU" &&
493                    !memcmp(name, "AMDGPU", note->n_namesz)) {
494 
495           // n_descsz = 485
496           // value is padded to 4 byte alignment, may want to move end up to
497           // match
498           size_t offset = sizeof(uint32_t) * 3 /* fields */
499                           + sizeof("AMDGPU")   /* name */
500                           + 1 /* padding to 4 byte alignment */;
501 
502           // Including the trailing padding means both pointers are 4 bytes
503           // aligned, which may be useful later.
504           unsigned char *metadata_start = (unsigned char *)ptr + offset;
505           unsigned char *metadata_end =
506               metadata_start + core::alignUp(note->n_descsz, 4);
507           return {metadata_start, metadata_end};
508         }
509         ptr += sizeof(*note) + core::alignUp(note->n_namesz, sizeof(int)) +
510                core::alignUp(note->n_descsz, sizeof(int));
511       }
512     }
513   }
514 
515   return failure;
516 }
517 
518 namespace {
519 int map_lookup_array(msgpack::byte_range message, const char *needle,
520                      msgpack::byte_range *res, uint64_t *size) {
521   unsigned count = 0;
522   struct s : msgpack::functors_defaults<s> {
523     s(unsigned &count, uint64_t *size) : count(count), size(size) {}
524     unsigned &count;
525     uint64_t *size;
526     const unsigned char *handle_array(uint64_t N, msgpack::byte_range bytes) {
527       count++;
528       *size = N;
529       return bytes.end;
530     }
531   };
532 
533   msgpack::foreach_map(message,
534                        [&](msgpack::byte_range key, msgpack::byte_range value) {
535                          if (msgpack::message_is_string(key, needle)) {
536                            // If the message is an array, record number of
537                            // elements in *size
538                            msgpack::handle_msgpack<s>(value, {count, size});
539                            // return the whole array
540                            *res = value;
541                          }
542                        });
543   // Only claim success if exactly one key/array pair matched
544   return count != 1;
545 }
546 
547 int map_lookup_string(msgpack::byte_range message, const char *needle,
548                       std::string *res) {
549   unsigned count = 0;
550   struct s : public msgpack::functors_defaults<s> {
551     s(unsigned &count, std::string *res) : count(count), res(res) {}
552     unsigned &count;
553     std::string *res;
554     void handle_string(size_t N, const unsigned char *str) {
555       count++;
556       *res = std::string(str, str + N);
557     }
558   };
559   msgpack::foreach_map(message,
560                        [&](msgpack::byte_range key, msgpack::byte_range value) {
561                          if (msgpack::message_is_string(key, needle)) {
562                            msgpack::handle_msgpack<s>(value, {count, res});
563                          }
564                        });
565   return count != 1;
566 }
567 
568 int map_lookup_uint64_t(msgpack::byte_range message, const char *needle,
569                         uint64_t *res) {
570   unsigned count = 0;
571   msgpack::foreach_map(message,
572                        [&](msgpack::byte_range key, msgpack::byte_range value) {
573                          if (msgpack::message_is_string(key, needle)) {
574                            msgpack::foronly_unsigned(value, [&](uint64_t x) {
575                              count++;
576                              *res = x;
577                            });
578                          }
579                        });
580   return count != 1;
581 }
582 
583 int array_lookup_element(msgpack::byte_range message, uint64_t elt,
584                          msgpack::byte_range *res) {
585   int rc = 1;
586   uint64_t i = 0;
587   msgpack::foreach_array(message, [&](msgpack::byte_range value) {
588     if (i == elt) {
589       *res = value;
590       rc = 0;
591     }
592     i++;
593   });
594   return rc;
595 }
596 
597 int populate_kernelArgMD(msgpack::byte_range args_element,
598                          KernelArgMD *kernelarg) {
599   using namespace msgpack;
600   int error = 0;
601   foreach_map(args_element, [&](byte_range key, byte_range value) -> void {
602     if (message_is_string(key, ".name")) {
603       foronly_string(value, [&](size_t N, const unsigned char *str) {
604         kernelarg->name_ = std::string(str, str + N);
605       });
606     } else if (message_is_string(key, ".type_name")) {
607       foronly_string(value, [&](size_t N, const unsigned char *str) {
608         kernelarg->typeName_ = std::string(str, str + N);
609       });
610     } else if (message_is_string(key, ".size")) {
611       foronly_unsigned(value, [&](uint64_t x) { kernelarg->size_ = x; });
612     } else if (message_is_string(key, ".offset")) {
613       foronly_unsigned(value, [&](uint64_t x) { kernelarg->offset_ = x; });
614     } else if (message_is_string(key, ".value_kind")) {
615       foronly_string(value, [&](size_t N, const unsigned char *str) {
616         std::string s = std::string(str, str + N);
617         auto itValueKind = ArgValueKind.find(s);
618         if (itValueKind != ArgValueKind.end()) {
619           kernelarg->valueKind_ = itValueKind->second;
620         }
621       });
622     }
623   });
624   return error;
625 }
626 } // namespace
627 
628 static hsa_status_t get_code_object_custom_metadata(
629     void *binary, size_t binSize,
630     std::map<std::string, atl_kernel_info_t> &KernelInfoTable) {
631   // parse code object with different keys from v2
632   // also, the kernel name is not the same as the symbol name -- so a
633   // symbol->name map is needed
634 
635   std::pair<unsigned char *, unsigned char *> metadata =
636       find_metadata(binary, binSize);
637   if (!metadata.first) {
638     return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
639   }
640 
641   uint64_t kernelsSize = 0;
642   int msgpack_errors = 0;
643   msgpack::byte_range kernel_array;
644   msgpack_errors =
645       map_lookup_array({metadata.first, metadata.second}, "amdhsa.kernels",
646                        &kernel_array, &kernelsSize);
647   if (msgpack_errors != 0) {
648     printf("[%s:%d] %s failed\n", __FILE__, __LINE__,
649            "kernels lookup in program metadata");
650     return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
651   }
652 
653   for (size_t i = 0; i < kernelsSize; i++) {
654     assert(msgpack_errors == 0);
655     std::string kernelName;
656     std::string symbolName;
657 
658     msgpack::byte_range element;
659     msgpack_errors += array_lookup_element(kernel_array, i, &element);
660     if (msgpack_errors != 0) {
661       printf("[%s:%d] %s failed\n", __FILE__, __LINE__,
662              "element lookup in kernel metadata");
663       return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
664     }
665 
666     msgpack_errors += map_lookup_string(element, ".name", &kernelName);
667     msgpack_errors += map_lookup_string(element, ".symbol", &symbolName);
668     if (msgpack_errors != 0) {
669       printf("[%s:%d] %s failed\n", __FILE__, __LINE__,
670              "strings lookup in kernel metadata");
671       return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
672     }
673 
674     // Make sure that kernelName + ".kd" == symbolName
675     if ((kernelName + ".kd") != symbolName) {
676       printf("[%s:%d] Kernel name mismatching symbol: %s != %s + .kd\n",
677              __FILE__, __LINE__, symbolName.c_str(), kernelName.c_str());
678       return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
679     }
680 
681     atl_kernel_info_t info = {0, 0, 0, 0, 0, 0, 0, 0, 0, {}, {}, {}};
682 
683     uint64_t sgpr_count, vgpr_count, sgpr_spill_count, vgpr_spill_count;
684     msgpack_errors += map_lookup_uint64_t(element, ".sgpr_count", &sgpr_count);
685     if (msgpack_errors != 0) {
686       printf("[%s:%d] %s failed\n", __FILE__, __LINE__,
687              "sgpr count metadata lookup in kernel metadata");
688       return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
689     }
690 
691     info.sgpr_count = sgpr_count;
692 
693     msgpack_errors += map_lookup_uint64_t(element, ".vgpr_count", &vgpr_count);
694     if (msgpack_errors != 0) {
695       printf("[%s:%d] %s failed\n", __FILE__, __LINE__,
696              "vgpr count metadata lookup in kernel metadata");
697       return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
698     }
699 
700     info.vgpr_count = vgpr_count;
701 
702     msgpack_errors +=
703         map_lookup_uint64_t(element, ".sgpr_spill_count", &sgpr_spill_count);
704     if (msgpack_errors != 0) {
705       printf("[%s:%d] %s failed\n", __FILE__, __LINE__,
706              "sgpr spill count metadata lookup in kernel metadata");
707       return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
708     }
709 
710     info.sgpr_spill_count = sgpr_spill_count;
711 
712     msgpack_errors +=
713         map_lookup_uint64_t(element, ".vgpr_spill_count", &vgpr_spill_count);
714     if (msgpack_errors != 0) {
715       printf("[%s:%d] %s failed\n", __FILE__, __LINE__,
716              "vgpr spill count metadata lookup in kernel metadata");
717       return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
718     }
719 
720     info.vgpr_spill_count = vgpr_spill_count;
721 
722     size_t kernel_explicit_args_size = 0;
723     uint64_t kernel_segment_size;
724     msgpack_errors += map_lookup_uint64_t(element, ".kernarg_segment_size",
725                                           &kernel_segment_size);
726     if (msgpack_errors != 0) {
727       printf("[%s:%d] %s failed\n", __FILE__, __LINE__,
728              "kernarg segment size metadata lookup in kernel metadata");
729       return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
730     }
731 
732     bool hasHiddenArgs = false;
733     if (kernel_segment_size > 0) {
734       uint64_t argsSize;
735       size_t offset = 0;
736 
737       msgpack::byte_range args_array;
738       msgpack_errors +=
739           map_lookup_array(element, ".args", &args_array, &argsSize);
740       if (msgpack_errors != 0) {
741         printf("[%s:%d] %s failed\n", __FILE__, __LINE__,
742                "kernel args metadata lookup in kernel metadata");
743         return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
744       }
745 
746       info.num_args = argsSize;
747 
748       for (size_t i = 0; i < argsSize; ++i) {
749         KernelArgMD lcArg;
750 
751         msgpack::byte_range args_element;
752         msgpack_errors += array_lookup_element(args_array, i, &args_element);
753         if (msgpack_errors != 0) {
754           printf("[%s:%d] %s failed\n", __FILE__, __LINE__,
755                  "iterate args map in kernel args metadata");
756           return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
757         }
758 
759         msgpack_errors += populate_kernelArgMD(args_element, &lcArg);
760         if (msgpack_errors != 0) {
761           printf("[%s:%d] %s failed\n", __FILE__, __LINE__,
762                  "iterate args map in kernel args metadata");
763           return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
764         }
765         // populate info with sizes and offsets
766         info.arg_sizes.push_back(lcArg.size_);
767         // v3 has offset field and not align field
768         size_t new_offset = lcArg.offset_;
769         size_t padding = new_offset - offset;
770         offset = new_offset;
771         info.arg_offsets.push_back(lcArg.offset_);
772         DEBUG_PRINT("Arg[%lu] \"%s\" (%u, %u)\n", i, lcArg.name_.c_str(),
773                     lcArg.size_, lcArg.offset_);
774         offset += lcArg.size_;
775 
776         // check if the arg is a hidden/implicit arg
777         // this logic assumes that all hidden args are 8-byte aligned
778         if (!isImplicit(lcArg.valueKind_)) {
779           kernel_explicit_args_size += lcArg.size_;
780         } else {
781           hasHiddenArgs = true;
782         }
783         kernel_explicit_args_size += padding;
784       }
785     }
786 
787     // add size of implicit args, e.g.: offset x, y and z and pipe pointer, but
788     // in ATMI, do not count the compiler set implicit args, but set your own
789     // implicit args by discounting the compiler set implicit args
790     info.kernel_segment_size =
791         (hasHiddenArgs ? kernel_explicit_args_size : kernel_segment_size) +
792         sizeof(atmi_implicit_args_t);
793     DEBUG_PRINT("[%s: kernarg seg size] (%lu --> %u)\n", kernelName.c_str(),
794                 kernel_segment_size, info.kernel_segment_size);
795 
796     // kernel received, now add it to the kernel info table
797     KernelInfoTable[kernelName] = info;
798   }
799 
800   return HSA_STATUS_SUCCESS;
801 }
802 
803 static hsa_status_t
804 populate_InfoTables(hsa_executable_symbol_t symbol,
805                     std::map<std::string, atl_kernel_info_t> &KernelInfoTable,
806                     std::map<std::string, atl_symbol_info_t> &SymbolInfoTable) {
807   hsa_symbol_kind_t type;
808 
809   uint32_t name_length;
810   hsa_status_t err;
811   err = hsa_executable_symbol_get_info(symbol, HSA_EXECUTABLE_SYMBOL_INFO_TYPE,
812                                        &type);
813   if (err != HSA_STATUS_SUCCESS) {
814     printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
815            "Symbol info extraction", get_error_string(err));
816     return err;
817   }
818   DEBUG_PRINT("Exec Symbol type: %d\n", type);
819   if (type == HSA_SYMBOL_KIND_KERNEL) {
820     err = hsa_executable_symbol_get_info(
821         symbol, HSA_EXECUTABLE_SYMBOL_INFO_NAME_LENGTH, &name_length);
822     if (err != HSA_STATUS_SUCCESS) {
823       printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
824              "Symbol info extraction", get_error_string(err));
825       return err;
826     }
827     char *name = reinterpret_cast<char *>(malloc(name_length + 1));
828     err = hsa_executable_symbol_get_info(symbol,
829                                          HSA_EXECUTABLE_SYMBOL_INFO_NAME, name);
830     if (err != HSA_STATUS_SUCCESS) {
831       printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
832              "Symbol info extraction", get_error_string(err));
833       return err;
834     }
835     // remove the suffix .kd from symbol name.
836     name[name_length - 3] = 0;
837 
838     atl_kernel_info_t info;
839     std::string kernelName(name);
840     // by now, the kernel info table should already have an entry
841     // because the non-ROCr custom code object parsing is called before
842     // iterating over the code object symbols using ROCr
843     if (KernelInfoTable.find(kernelName) == KernelInfoTable.end()) {
844       if (HSA_STATUS_ERROR_INVALID_CODE_OBJECT != HSA_STATUS_SUCCESS) {
845         printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
846                "Finding the entry kernel info table",
847                get_error_string(HSA_STATUS_ERROR_INVALID_CODE_OBJECT));
848         exit(1);
849       }
850     }
851     // found, so assign and update
852     info = KernelInfoTable[kernelName];
853 
854     /* Extract dispatch information from the symbol */
855     err = hsa_executable_symbol_get_info(
856         symbol, HSA_EXECUTABLE_SYMBOL_INFO_KERNEL_OBJECT,
857         &(info.kernel_object));
858     if (err != HSA_STATUS_SUCCESS) {
859       printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
860              "Extracting the symbol from the executable",
861              get_error_string(err));
862       return err;
863     }
864     err = hsa_executable_symbol_get_info(
865         symbol, HSA_EXECUTABLE_SYMBOL_INFO_KERNEL_GROUP_SEGMENT_SIZE,
866         &(info.group_segment_size));
867     if (err != HSA_STATUS_SUCCESS) {
868       printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
869              "Extracting the group segment size from the executable",
870              get_error_string(err));
871       return err;
872     }
873     err = hsa_executable_symbol_get_info(
874         symbol, HSA_EXECUTABLE_SYMBOL_INFO_KERNEL_PRIVATE_SEGMENT_SIZE,
875         &(info.private_segment_size));
876     if (err != HSA_STATUS_SUCCESS) {
877       printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
878              "Extracting the private segment from the executable",
879              get_error_string(err));
880       return err;
881     }
882 
883     DEBUG_PRINT(
884         "Kernel %s --> %lx symbol %u group segsize %u pvt segsize %u bytes "
885         "kernarg\n",
886         kernelName.c_str(), info.kernel_object, info.group_segment_size,
887         info.private_segment_size, info.kernel_segment_size);
888 
889     // assign it back to the kernel info table
890     KernelInfoTable[kernelName] = info;
891     free(name);
892   } else if (type == HSA_SYMBOL_KIND_VARIABLE) {
893     err = hsa_executable_symbol_get_info(
894         symbol, HSA_EXECUTABLE_SYMBOL_INFO_NAME_LENGTH, &name_length);
895     if (err != HSA_STATUS_SUCCESS) {
896       printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
897              "Symbol info extraction", get_error_string(err));
898       return err;
899     }
900     char *name = reinterpret_cast<char *>(malloc(name_length + 1));
901     err = hsa_executable_symbol_get_info(symbol,
902                                          HSA_EXECUTABLE_SYMBOL_INFO_NAME, name);
903     if (err != HSA_STATUS_SUCCESS) {
904       printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
905              "Symbol info extraction", get_error_string(err));
906       return err;
907     }
908     name[name_length] = 0;
909 
910     atl_symbol_info_t info;
911 
912     err = hsa_executable_symbol_get_info(
913         symbol, HSA_EXECUTABLE_SYMBOL_INFO_VARIABLE_ADDRESS, &(info.addr));
914     if (err != HSA_STATUS_SUCCESS) {
915       printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
916              "Symbol info address extraction", get_error_string(err));
917       return err;
918     }
919 
920     err = hsa_executable_symbol_get_info(
921         symbol, HSA_EXECUTABLE_SYMBOL_INFO_VARIABLE_SIZE, &(info.size));
922     if (err != HSA_STATUS_SUCCESS) {
923       printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
924              "Symbol info size extraction", get_error_string(err));
925       return err;
926     }
927 
928     DEBUG_PRINT("Symbol %s = %p (%u bytes)\n", name, (void *)info.addr,
929                 info.size);
930     SymbolInfoTable[std::string(name)] = info;
931     free(name);
932   } else {
933     DEBUG_PRINT("Symbol is an indirect function\n");
934   }
935   return HSA_STATUS_SUCCESS;
936 }
937 
938 hsa_status_t RegisterModuleFromMemory(
939     std::map<std::string, atl_kernel_info_t> &KernelInfoTable,
940     std::map<std::string, atl_symbol_info_t> &SymbolInfoTable,
941     void *module_bytes, size_t module_size, hsa_agent_t agent,
942     hsa_status_t (*on_deserialized_data)(void *data, size_t size,
943                                          void *cb_state),
944     void *cb_state, std::vector<hsa_executable_t> &HSAExecutables) {
945   hsa_status_t err;
946   hsa_executable_t executable = {0};
947   hsa_profile_t agent_profile;
948 
949   err = hsa_agent_get_info(agent, HSA_AGENT_INFO_PROFILE, &agent_profile);
950   if (err != HSA_STATUS_SUCCESS) {
951     printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
952            "Query the agent profile", get_error_string(err));
953     return HSA_STATUS_ERROR;
954   }
955   // FIXME: Assume that every profile is FULL until we understand how to build
956   // GCN with base profile
957   agent_profile = HSA_PROFILE_FULL;
958   /* Create the empty executable.  */
959   err = hsa_executable_create(agent_profile, HSA_EXECUTABLE_STATE_UNFROZEN, "",
960                               &executable);
961   if (err != HSA_STATUS_SUCCESS) {
962     printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
963            "Create the executable", get_error_string(err));
964     return HSA_STATUS_ERROR;
965   }
966 
967   bool module_load_success = false;
968   do // Existing control flow used continue, preserve that for this patch
969   {
970     {
971       // Some metadata info is not available through ROCr API, so use custom
972       // code object metadata parsing to collect such metadata info
973 
974       err = get_code_object_custom_metadata(module_bytes, module_size,
975                                             KernelInfoTable);
976       if (err != HSA_STATUS_SUCCESS) {
977         DEBUG_PRINT("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
978                     "Getting custom code object metadata",
979                     get_error_string(err));
980         continue;
981       }
982 
983       // Deserialize code object.
984       hsa_code_object_t code_object = {0};
985       err = hsa_code_object_deserialize(module_bytes, module_size, NULL,
986                                         &code_object);
987       if (err != HSA_STATUS_SUCCESS) {
988         DEBUG_PRINT("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
989                     "Code Object Deserialization", get_error_string(err));
990         continue;
991       }
992       assert(0 != code_object.handle);
993 
994       // Mutating the device image here avoids another allocation & memcpy
995       void *code_object_alloc_data =
996           reinterpret_cast<void *>(code_object.handle);
997       hsa_status_t atmi_err =
998           on_deserialized_data(code_object_alloc_data, module_size, cb_state);
999       if (atmi_err != HSA_STATUS_SUCCESS) {
1000         printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
1001                "Error in deserialized_data callback",
1002                get_atmi_error_string(atmi_err));
1003         return atmi_err;
1004       }
1005 
1006       /* Load the code object.  */
1007       err =
1008           hsa_executable_load_code_object(executable, agent, code_object, NULL);
1009       if (err != HSA_STATUS_SUCCESS) {
1010         DEBUG_PRINT("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
1011                     "Loading the code object", get_error_string(err));
1012         continue;
1013       }
1014 
1015       // cannot iterate over symbols until executable is frozen
1016     }
1017     module_load_success = true;
1018   } while (0);
1019   DEBUG_PRINT("Modules loaded successful? %d\n", module_load_success);
1020   if (module_load_success) {
1021     /* Freeze the executable; it can now be queried for symbols.  */
1022     err = hsa_executable_freeze(executable, "");
1023     if (err != HSA_STATUS_SUCCESS) {
1024       printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
1025              "Freeze the executable", get_error_string(err));
1026       return HSA_STATUS_ERROR;
1027     }
1028 
1029     err = hsa::executable_iterate_symbols(
1030         executable,
1031         [&](hsa_executable_t, hsa_executable_symbol_t symbol) -> hsa_status_t {
1032           return populate_InfoTables(symbol, KernelInfoTable, SymbolInfoTable);
1033         });
1034     if (err != HSA_STATUS_SUCCESS) {
1035       printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
1036              "Iterating over symbols for execuatable", get_error_string(err));
1037       return HSA_STATUS_ERROR;
1038     }
1039 
1040     // save the executable and destroy during finalize
1041     HSAExecutables.push_back(executable);
1042     return HSA_STATUS_SUCCESS;
1043   } else {
1044     return HSA_STATUS_ERROR;
1045   }
1046 }
1047 
1048 } // namespace core
1049