1 /*===-------------------------------------------------------------------------- 2 * ATMI (Asynchronous Task and Memory Interface) 3 * 4 * This file is distributed under the MIT License. See LICENSE.txt for details. 5 *===------------------------------------------------------------------------*/ 6 #include <gelf.h> 7 #include <libelf.h> 8 9 #include <cassert> 10 #include <fstream> 11 #include <iomanip> 12 #include <set> 13 #include <sstream> 14 #include <string> 15 16 #include "internal.h" 17 #include "machine.h" 18 #include "rt.h" 19 20 #include "msgpack.h" 21 22 namespace hsa { 23 // Wrap HSA iterate API in a shim that allows passing general callables 24 template <typename C> 25 hsa_status_t executable_iterate_symbols(hsa_executable_t executable, C cb) { 26 auto L = [](hsa_executable_t executable, hsa_executable_symbol_t symbol, 27 void *data) -> hsa_status_t { 28 C *unwrapped = static_cast<C *>(data); 29 return (*unwrapped)(executable, symbol); 30 }; 31 return hsa_executable_iterate_symbols(executable, L, 32 static_cast<void *>(&cb)); 33 } 34 } // namespace hsa 35 36 typedef unsigned char *address; 37 /* 38 * Note descriptors. 39 */ 40 typedef struct { 41 uint32_t n_namesz; /* Length of note's name. */ 42 uint32_t n_descsz; /* Length of note's value. */ 43 uint32_t n_type; /* Type of note. */ 44 // then name 45 // then padding, optional 46 // then desc, at 4 byte alignment (not 8, despite being elf64) 47 } Elf_Note; 48 49 // The following include file and following structs/enums 50 // have been replicated on a per-use basis below. For example, 51 // llvm::AMDGPU::HSAMD::Kernel::Metadata has several fields, 52 // but we may care only about kernargSegmentSize_ for now, so 53 // we just include that field in our KernelMD implementation. We 54 // chose this approach to replicate in order to avoid forcing 55 // a dependency on LLVM_INCLUDE_DIR just to compile the runtime. 56 // #include "llvm/Support/AMDGPUMetadata.h" 57 // typedef llvm::AMDGPU::HSAMD::Metadata CodeObjectMD; 58 // typedef llvm::AMDGPU::HSAMD::Kernel::Metadata KernelMD; 59 // typedef llvm::AMDGPU::HSAMD::Kernel::Arg::Metadata KernelArgMD; 60 // using llvm::AMDGPU::HSAMD::AccessQualifier; 61 // using llvm::AMDGPU::HSAMD::AddressSpaceQualifier; 62 // using llvm::AMDGPU::HSAMD::ValueKind; 63 // using llvm::AMDGPU::HSAMD::ValueType; 64 65 class KernelArgMD { 66 public: 67 enum class ValueKind { 68 HiddenGlobalOffsetX, 69 HiddenGlobalOffsetY, 70 HiddenGlobalOffsetZ, 71 HiddenNone, 72 HiddenPrintfBuffer, 73 HiddenDefaultQueue, 74 HiddenCompletionAction, 75 HiddenMultiGridSyncArg, 76 HiddenHostcallBuffer, 77 Unknown 78 }; 79 80 KernelArgMD() 81 : name_(std::string()), typeName_(std::string()), size_(0), offset_(0), 82 align_(0), valueKind_(ValueKind::Unknown) {} 83 84 // fields 85 std::string name_; 86 std::string typeName_; 87 uint32_t size_; 88 uint32_t offset_; 89 uint32_t align_; 90 ValueKind valueKind_; 91 }; 92 93 class KernelMD { 94 public: 95 KernelMD() : kernargSegmentSize_(0ull) {} 96 97 // fields 98 uint64_t kernargSegmentSize_; 99 }; 100 101 static const std::map<std::string, KernelArgMD::ValueKind> ArgValueKind = { 102 // Including only those fields that are relevant to the runtime. 103 // {"ByValue", KernelArgMD::ValueKind::ByValue}, 104 // {"GlobalBuffer", KernelArgMD::ValueKind::GlobalBuffer}, 105 // {"DynamicSharedPointer", 106 // KernelArgMD::ValueKind::DynamicSharedPointer}, 107 // {"Sampler", KernelArgMD::ValueKind::Sampler}, 108 // {"Image", KernelArgMD::ValueKind::Image}, 109 // {"Pipe", KernelArgMD::ValueKind::Pipe}, 110 // {"Queue", KernelArgMD::ValueKind::Queue}, 111 {"HiddenGlobalOffsetX", KernelArgMD::ValueKind::HiddenGlobalOffsetX}, 112 {"HiddenGlobalOffsetY", KernelArgMD::ValueKind::HiddenGlobalOffsetY}, 113 {"HiddenGlobalOffsetZ", KernelArgMD::ValueKind::HiddenGlobalOffsetZ}, 114 {"HiddenNone", KernelArgMD::ValueKind::HiddenNone}, 115 {"HiddenPrintfBuffer", KernelArgMD::ValueKind::HiddenPrintfBuffer}, 116 {"HiddenDefaultQueue", KernelArgMD::ValueKind::HiddenDefaultQueue}, 117 {"HiddenCompletionAction", KernelArgMD::ValueKind::HiddenCompletionAction}, 118 {"HiddenMultiGridSyncArg", KernelArgMD::ValueKind::HiddenMultiGridSyncArg}, 119 {"HiddenHostcallBuffer", KernelArgMD::ValueKind::HiddenHostcallBuffer}, 120 // v3 121 // {"by_value", KernelArgMD::ValueKind::ByValue}, 122 // {"global_buffer", KernelArgMD::ValueKind::GlobalBuffer}, 123 // {"dynamic_shared_pointer", 124 // KernelArgMD::ValueKind::DynamicSharedPointer}, 125 // {"sampler", KernelArgMD::ValueKind::Sampler}, 126 // {"image", KernelArgMD::ValueKind::Image}, 127 // {"pipe", KernelArgMD::ValueKind::Pipe}, 128 // {"queue", KernelArgMD::ValueKind::Queue}, 129 {"hidden_global_offset_x", KernelArgMD::ValueKind::HiddenGlobalOffsetX}, 130 {"hidden_global_offset_y", KernelArgMD::ValueKind::HiddenGlobalOffsetY}, 131 {"hidden_global_offset_z", KernelArgMD::ValueKind::HiddenGlobalOffsetZ}, 132 {"hidden_none", KernelArgMD::ValueKind::HiddenNone}, 133 {"hidden_printf_buffer", KernelArgMD::ValueKind::HiddenPrintfBuffer}, 134 {"hidden_default_queue", KernelArgMD::ValueKind::HiddenDefaultQueue}, 135 {"hidden_completion_action", 136 KernelArgMD::ValueKind::HiddenCompletionAction}, 137 {"hidden_multigrid_sync_arg", 138 KernelArgMD::ValueKind::HiddenMultiGridSyncArg}, 139 {"hidden_hostcall_buffer", KernelArgMD::ValueKind::HiddenHostcallBuffer}, 140 }; 141 142 ATLMachine g_atl_machine; 143 144 namespace core { 145 146 // Implement memory_pool iteration function 147 static hsa_status_t get_memory_pool_info(hsa_amd_memory_pool_t memory_pool, 148 void *data) { 149 ATLProcessor *proc = reinterpret_cast<ATLProcessor *>(data); 150 hsa_status_t err = HSA_STATUS_SUCCESS; 151 // Check if the memory_pool is allowed to allocate, i.e. do not return group 152 // memory 153 bool alloc_allowed = false; 154 err = hsa_amd_memory_pool_get_info( 155 memory_pool, HSA_AMD_MEMORY_POOL_INFO_RUNTIME_ALLOC_ALLOWED, 156 &alloc_allowed); 157 if (err != HSA_STATUS_SUCCESS) { 158 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 159 "Alloc allowed in memory pool check", get_error_string(err)); 160 return err; 161 } 162 if (alloc_allowed) { 163 uint32_t global_flag = 0; 164 err = hsa_amd_memory_pool_get_info( 165 memory_pool, HSA_AMD_MEMORY_POOL_INFO_GLOBAL_FLAGS, &global_flag); 166 if (err != HSA_STATUS_SUCCESS) { 167 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 168 "Get memory pool info", get_error_string(err)); 169 return err; 170 } 171 if (HSA_AMD_MEMORY_POOL_GLOBAL_FLAG_FINE_GRAINED & global_flag) { 172 ATLMemory new_mem(memory_pool, *proc, ATMI_MEMTYPE_FINE_GRAINED); 173 proc->addMemory(new_mem); 174 } else { 175 ATLMemory new_mem(memory_pool, *proc, ATMI_MEMTYPE_COARSE_GRAINED); 176 proc->addMemory(new_mem); 177 } 178 } 179 180 return err; 181 } 182 183 static hsa_status_t get_agent_info(hsa_agent_t agent, void *data) { 184 hsa_status_t err = HSA_STATUS_SUCCESS; 185 hsa_device_type_t device_type; 186 err = hsa_agent_get_info(agent, HSA_AGENT_INFO_DEVICE, &device_type); 187 if (err != HSA_STATUS_SUCCESS) { 188 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 189 "Get device type info", get_error_string(err)); 190 return err; 191 } 192 switch (device_type) { 193 case HSA_DEVICE_TYPE_CPU: { 194 ATLCPUProcessor new_proc(agent); 195 err = hsa_amd_agent_iterate_memory_pools(agent, get_memory_pool_info, 196 &new_proc); 197 if (err != HSA_STATUS_SUCCESS) { 198 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 199 "Iterate all memory pools", get_error_string(err)); 200 return err; 201 } 202 g_atl_machine.addProcessor(new_proc); 203 } break; 204 case HSA_DEVICE_TYPE_GPU: { 205 hsa_profile_t profile; 206 err = hsa_agent_get_info(agent, HSA_AGENT_INFO_PROFILE, &profile); 207 if (err != HSA_STATUS_SUCCESS) { 208 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 209 "Query the agent profile", get_error_string(err)); 210 return err; 211 } 212 atmi_devtype_t gpu_type; 213 gpu_type = 214 (profile == HSA_PROFILE_FULL) ? ATMI_DEVTYPE_iGPU : ATMI_DEVTYPE_dGPU; 215 ATLGPUProcessor new_proc(agent, gpu_type); 216 err = hsa_amd_agent_iterate_memory_pools(agent, get_memory_pool_info, 217 &new_proc); 218 if (err != HSA_STATUS_SUCCESS) { 219 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 220 "Iterate all memory pools", get_error_string(err)); 221 return err; 222 } 223 g_atl_machine.addProcessor(new_proc); 224 } break; 225 case HSA_DEVICE_TYPE_DSP: { 226 err = HSA_STATUS_ERROR_INVALID_CODE_OBJECT; 227 } break; 228 } 229 230 return err; 231 } 232 233 static hsa_status_t init_compute_and_memory() { 234 hsa_status_t err; 235 236 /* Iterate over the agents and pick the gpu agent */ 237 err = hsa_iterate_agents(get_agent_info, NULL); 238 if (err == HSA_STATUS_INFO_BREAK) { 239 err = HSA_STATUS_SUCCESS; 240 } 241 if (err != HSA_STATUS_SUCCESS) { 242 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, "Getting a gpu agent", 243 get_error_string(err)); 244 return err; 245 } 246 247 /* Init all devices or individual device types? */ 248 std::vector<ATLCPUProcessor> &cpu_procs = 249 g_atl_machine.processors<ATLCPUProcessor>(); 250 std::vector<ATLGPUProcessor> &gpu_procs = 251 g_atl_machine.processors<ATLGPUProcessor>(); 252 /* For CPU memory pools, add other devices that can access them directly 253 * or indirectly */ 254 for (auto &cpu_proc : cpu_procs) { 255 for (auto &cpu_mem : cpu_proc.memories()) { 256 hsa_amd_memory_pool_t pool = cpu_mem.memory(); 257 for (auto &gpu_proc : gpu_procs) { 258 hsa_agent_t agent = gpu_proc.agent(); 259 hsa_amd_memory_pool_access_t access; 260 hsa_amd_agent_memory_pool_get_info( 261 agent, pool, HSA_AMD_AGENT_MEMORY_POOL_INFO_ACCESS, &access); 262 if (access != 0) { 263 // this means not NEVER, but could be YES or NO 264 // add this memory pool to the proc 265 gpu_proc.addMemory(cpu_mem); 266 } 267 } 268 } 269 } 270 271 /* FIXME: are the below combinations of procs and memory pools needed? 272 * all to all compare procs with their memory pools and add those memory 273 * pools that are accessible by the target procs */ 274 for (auto &gpu_proc : gpu_procs) { 275 for (auto &gpu_mem : gpu_proc.memories()) { 276 hsa_amd_memory_pool_t pool = gpu_mem.memory(); 277 for (auto &cpu_proc : cpu_procs) { 278 hsa_agent_t agent = cpu_proc.agent(); 279 hsa_amd_memory_pool_access_t access; 280 hsa_amd_agent_memory_pool_get_info( 281 agent, pool, HSA_AMD_AGENT_MEMORY_POOL_INFO_ACCESS, &access); 282 if (access != 0) { 283 // this means not NEVER, but could be YES or NO 284 // add this memory pool to the proc 285 cpu_proc.addMemory(gpu_mem); 286 } 287 } 288 } 289 } 290 291 size_t num_procs = cpu_procs.size() + gpu_procs.size(); 292 int num_iGPUs = 0; 293 int num_dGPUs = 0; 294 for (uint32_t i = 0; i < gpu_procs.size(); i++) { 295 if (gpu_procs[i].type() == ATMI_DEVTYPE_iGPU) 296 num_iGPUs++; 297 else 298 num_dGPUs++; 299 } 300 assert(num_iGPUs + num_dGPUs == gpu_procs.size() && 301 "Number of dGPUs and iGPUs do not add up"); 302 DEBUG_PRINT("CPU Agents: %lu\n", cpu_procs.size()); 303 DEBUG_PRINT("iGPU Agents: %d\n", num_iGPUs); 304 DEBUG_PRINT("dGPU Agents: %d\n", num_dGPUs); 305 DEBUG_PRINT("GPU Agents: %lu\n", gpu_procs.size()); 306 307 int cpus_begin = 0; 308 int cpus_end = cpu_procs.size(); 309 int gpus_begin = cpu_procs.size(); 310 int gpus_end = cpu_procs.size() + gpu_procs.size(); 311 int proc_index = 0; 312 for (int i = cpus_begin; i < cpus_end; i++) { 313 std::vector<ATLMemory> memories = cpu_procs[proc_index].memories(); 314 int fine_memories_size = 0; 315 int coarse_memories_size = 0; 316 DEBUG_PRINT("CPU memory types:\t"); 317 for (auto &memory : memories) { 318 atmi_memtype_t type = memory.type(); 319 if (type == ATMI_MEMTYPE_FINE_GRAINED) { 320 fine_memories_size++; 321 DEBUG_PRINT("Fine\t"); 322 } else { 323 coarse_memories_size++; 324 DEBUG_PRINT("Coarse\t"); 325 } 326 } 327 DEBUG_PRINT("\nFine Memories : %d", fine_memories_size); 328 DEBUG_PRINT("\tCoarse Memories : %d\n", coarse_memories_size); 329 proc_index++; 330 } 331 proc_index = 0; 332 for (int i = gpus_begin; i < gpus_end; i++) { 333 std::vector<ATLMemory> memories = gpu_procs[proc_index].memories(); 334 int fine_memories_size = 0; 335 int coarse_memories_size = 0; 336 DEBUG_PRINT("GPU memory types:\t"); 337 for (auto &memory : memories) { 338 atmi_memtype_t type = memory.type(); 339 if (type == ATMI_MEMTYPE_FINE_GRAINED) { 340 fine_memories_size++; 341 DEBUG_PRINT("Fine\t"); 342 } else { 343 coarse_memories_size++; 344 DEBUG_PRINT("Coarse\t"); 345 } 346 } 347 DEBUG_PRINT("\nFine Memories : %d", fine_memories_size); 348 DEBUG_PRINT("\tCoarse Memories : %d\n", coarse_memories_size); 349 proc_index++; 350 } 351 if (num_procs > 0) 352 return HSA_STATUS_SUCCESS; 353 else 354 return HSA_STATUS_ERROR_NOT_INITIALIZED; 355 } 356 357 hsa_status_t init_hsa() { 358 DEBUG_PRINT("Initializing HSA..."); 359 hsa_status_t err = hsa_init(); 360 if (err != HSA_STATUS_SUCCESS) { 361 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 362 "Initializing the hsa runtime", get_error_string(err)); 363 return err; 364 } 365 if (err != HSA_STATUS_SUCCESS) 366 return err; 367 368 err = init_compute_and_memory(); 369 if (err != HSA_STATUS_SUCCESS) 370 return err; 371 if (err != HSA_STATUS_SUCCESS) { 372 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 373 "After initializing compute and memory", get_error_string(err)); 374 return err; 375 } 376 377 DEBUG_PRINT("done\n"); 378 return HSA_STATUS_SUCCESS; 379 } 380 381 hsa_status_t callbackEvent(const hsa_amd_event_t *event, void *data) { 382 #if (ROCM_VERSION_MAJOR >= 3) || \ 383 (ROCM_VERSION_MAJOR >= 2 && ROCM_VERSION_MINOR >= 3) 384 if (event->event_type == HSA_AMD_GPU_MEMORY_FAULT_EVENT) { 385 #else 386 if (event->event_type == GPU_MEMORY_FAULT_EVENT) { 387 #endif 388 hsa_amd_gpu_memory_fault_info_t memory_fault = event->memory_fault; 389 // memory_fault.agent 390 // memory_fault.virtual_address 391 // memory_fault.fault_reason_mask 392 // fprintf("[GPU Error at %p: Reason is ", memory_fault.virtual_address); 393 std::stringstream stream; 394 stream << std::hex << (uintptr_t)memory_fault.virtual_address; 395 std::string addr("0x" + stream.str()); 396 397 std::string err_string = "[GPU Memory Error] Addr: " + addr; 398 err_string += " Reason: "; 399 if (!(memory_fault.fault_reason_mask & 0x00111111)) { 400 err_string += "No Idea! "; 401 } else { 402 if (memory_fault.fault_reason_mask & 0x00000001) 403 err_string += "Page not present or supervisor privilege. "; 404 if (memory_fault.fault_reason_mask & 0x00000010) 405 err_string += "Write access to a read-only page. "; 406 if (memory_fault.fault_reason_mask & 0x00000100) 407 err_string += "Execute access to a page marked NX. "; 408 if (memory_fault.fault_reason_mask & 0x00001000) 409 err_string += "Host access only. "; 410 if (memory_fault.fault_reason_mask & 0x00010000) 411 err_string += "ECC failure (if supported by HW). "; 412 if (memory_fault.fault_reason_mask & 0x00100000) 413 err_string += "Can't determine the exact fault address. "; 414 } 415 fprintf(stderr, "%s\n", err_string.c_str()); 416 return HSA_STATUS_ERROR; 417 } 418 return HSA_STATUS_SUCCESS; 419 } 420 421 hsa_status_t atl_init_gpu_context() { 422 hsa_status_t err; 423 err = init_hsa(); 424 if (err != HSA_STATUS_SUCCESS) 425 return HSA_STATUS_ERROR; 426 427 err = hsa_amd_register_system_event_handler(callbackEvent, NULL); 428 if (err != HSA_STATUS_SUCCESS) { 429 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 430 "Registering the system for memory faults", get_error_string(err)); 431 return HSA_STATUS_ERROR; 432 } 433 434 return HSA_STATUS_SUCCESS; 435 } 436 437 static bool isImplicit(KernelArgMD::ValueKind value_kind) { 438 switch (value_kind) { 439 case KernelArgMD::ValueKind::HiddenGlobalOffsetX: 440 case KernelArgMD::ValueKind::HiddenGlobalOffsetY: 441 case KernelArgMD::ValueKind::HiddenGlobalOffsetZ: 442 case KernelArgMD::ValueKind::HiddenNone: 443 case KernelArgMD::ValueKind::HiddenPrintfBuffer: 444 case KernelArgMD::ValueKind::HiddenDefaultQueue: 445 case KernelArgMD::ValueKind::HiddenCompletionAction: 446 case KernelArgMD::ValueKind::HiddenMultiGridSyncArg: 447 case KernelArgMD::ValueKind::HiddenHostcallBuffer: 448 return true; 449 default: 450 return false; 451 } 452 } 453 454 static std::pair<unsigned char *, unsigned char *> 455 find_metadata(void *binary, size_t binSize) { 456 std::pair<unsigned char *, unsigned char *> failure = {nullptr, nullptr}; 457 458 Elf *e = elf_memory(static_cast<char *>(binary), binSize); 459 if (elf_kind(e) != ELF_K_ELF) { 460 return failure; 461 } 462 463 size_t numpHdrs; 464 if (elf_getphdrnum(e, &numpHdrs) != 0) { 465 return failure; 466 } 467 468 for (size_t i = 0; i < numpHdrs; ++i) { 469 GElf_Phdr pHdr; 470 if (gelf_getphdr(e, i, &pHdr) != &pHdr) { 471 continue; 472 } 473 // Look for the runtime metadata note 474 if (pHdr.p_type == PT_NOTE && pHdr.p_align >= sizeof(int)) { 475 // Iterate over the notes in this segment 476 address ptr = (address)binary + pHdr.p_offset; 477 address segmentEnd = ptr + pHdr.p_filesz; 478 479 while (ptr < segmentEnd) { 480 Elf_Note *note = reinterpret_cast<Elf_Note *>(ptr); 481 address name = (address)¬e[1]; 482 483 if (note->n_type == 7 || note->n_type == 8) { 484 return failure; 485 } else if (note->n_type == 10 /* NT_AMD_AMDGPU_HSA_METADATA */ && 486 note->n_namesz == sizeof "AMD" && 487 !memcmp(name, "AMD", note->n_namesz)) { 488 // code object v2 uses yaml metadata, no longer supported 489 return failure; 490 } else if (note->n_type == 32 /* NT_AMDGPU_METADATA */ && 491 note->n_namesz == sizeof "AMDGPU" && 492 !memcmp(name, "AMDGPU", note->n_namesz)) { 493 494 // n_descsz = 485 495 // value is padded to 4 byte alignment, may want to move end up to 496 // match 497 size_t offset = sizeof(uint32_t) * 3 /* fields */ 498 + sizeof("AMDGPU") /* name */ 499 + 1 /* padding to 4 byte alignment */; 500 501 // Including the trailing padding means both pointers are 4 bytes 502 // aligned, which may be useful later. 503 unsigned char *metadata_start = (unsigned char *)ptr + offset; 504 unsigned char *metadata_end = 505 metadata_start + core::alignUp(note->n_descsz, 4); 506 return {metadata_start, metadata_end}; 507 } 508 ptr += sizeof(*note) + core::alignUp(note->n_namesz, sizeof(int)) + 509 core::alignUp(note->n_descsz, sizeof(int)); 510 } 511 } 512 } 513 514 return failure; 515 } 516 517 namespace { 518 int map_lookup_array(msgpack::byte_range message, const char *needle, 519 msgpack::byte_range *res, uint64_t *size) { 520 unsigned count = 0; 521 struct s : msgpack::functors_defaults<s> { 522 s(unsigned &count, uint64_t *size) : count(count), size(size) {} 523 unsigned &count; 524 uint64_t *size; 525 const unsigned char *handle_array(uint64_t N, msgpack::byte_range bytes) { 526 count++; 527 *size = N; 528 return bytes.end; 529 } 530 }; 531 532 msgpack::foreach_map(message, 533 [&](msgpack::byte_range key, msgpack::byte_range value) { 534 if (msgpack::message_is_string(key, needle)) { 535 // If the message is an array, record number of 536 // elements in *size 537 msgpack::handle_msgpack<s>(value, {count, size}); 538 // return the whole array 539 *res = value; 540 } 541 }); 542 // Only claim success if exactly one key/array pair matched 543 return count != 1; 544 } 545 546 int map_lookup_string(msgpack::byte_range message, const char *needle, 547 std::string *res) { 548 unsigned count = 0; 549 struct s : public msgpack::functors_defaults<s> { 550 s(unsigned &count, std::string *res) : count(count), res(res) {} 551 unsigned &count; 552 std::string *res; 553 void handle_string(size_t N, const unsigned char *str) { 554 count++; 555 *res = std::string(str, str + N); 556 } 557 }; 558 msgpack::foreach_map(message, 559 [&](msgpack::byte_range key, msgpack::byte_range value) { 560 if (msgpack::message_is_string(key, needle)) { 561 msgpack::handle_msgpack<s>(value, {count, res}); 562 } 563 }); 564 return count != 1; 565 } 566 567 int map_lookup_uint64_t(msgpack::byte_range message, const char *needle, 568 uint64_t *res) { 569 unsigned count = 0; 570 msgpack::foreach_map(message, 571 [&](msgpack::byte_range key, msgpack::byte_range value) { 572 if (msgpack::message_is_string(key, needle)) { 573 msgpack::foronly_unsigned(value, [&](uint64_t x) { 574 count++; 575 *res = x; 576 }); 577 } 578 }); 579 return count != 1; 580 } 581 582 int array_lookup_element(msgpack::byte_range message, uint64_t elt, 583 msgpack::byte_range *res) { 584 int rc = 1; 585 uint64_t i = 0; 586 msgpack::foreach_array(message, [&](msgpack::byte_range value) { 587 if (i == elt) { 588 *res = value; 589 rc = 0; 590 } 591 i++; 592 }); 593 return rc; 594 } 595 596 int populate_kernelArgMD(msgpack::byte_range args_element, 597 KernelArgMD *kernelarg) { 598 using namespace msgpack; 599 int error = 0; 600 foreach_map(args_element, [&](byte_range key, byte_range value) -> void { 601 if (message_is_string(key, ".name")) { 602 foronly_string(value, [&](size_t N, const unsigned char *str) { 603 kernelarg->name_ = std::string(str, str + N); 604 }); 605 } else if (message_is_string(key, ".type_name")) { 606 foronly_string(value, [&](size_t N, const unsigned char *str) { 607 kernelarg->typeName_ = std::string(str, str + N); 608 }); 609 } else if (message_is_string(key, ".size")) { 610 foronly_unsigned(value, [&](uint64_t x) { kernelarg->size_ = x; }); 611 } else if (message_is_string(key, ".offset")) { 612 foronly_unsigned(value, [&](uint64_t x) { kernelarg->offset_ = x; }); 613 } else if (message_is_string(key, ".value_kind")) { 614 foronly_string(value, [&](size_t N, const unsigned char *str) { 615 std::string s = std::string(str, str + N); 616 auto itValueKind = ArgValueKind.find(s); 617 if (itValueKind != ArgValueKind.end()) { 618 kernelarg->valueKind_ = itValueKind->second; 619 } 620 }); 621 } 622 }); 623 return error; 624 } 625 } // namespace 626 627 static hsa_status_t get_code_object_custom_metadata( 628 void *binary, size_t binSize, 629 std::map<std::string, atl_kernel_info_t> &KernelInfoTable) { 630 // parse code object with different keys from v2 631 // also, the kernel name is not the same as the symbol name -- so a 632 // symbol->name map is needed 633 634 std::pair<unsigned char *, unsigned char *> metadata = 635 find_metadata(binary, binSize); 636 if (!metadata.first) { 637 return HSA_STATUS_ERROR_INVALID_CODE_OBJECT; 638 } 639 640 uint64_t kernelsSize = 0; 641 int msgpack_errors = 0; 642 msgpack::byte_range kernel_array; 643 msgpack_errors = 644 map_lookup_array({metadata.first, metadata.second}, "amdhsa.kernels", 645 &kernel_array, &kernelsSize); 646 if (msgpack_errors != 0) { 647 printf("[%s:%d] %s failed\n", __FILE__, __LINE__, 648 "kernels lookup in program metadata"); 649 return HSA_STATUS_ERROR_INVALID_CODE_OBJECT; 650 } 651 652 for (size_t i = 0; i < kernelsSize; i++) { 653 assert(msgpack_errors == 0); 654 std::string kernelName; 655 std::string symbolName; 656 657 msgpack::byte_range element; 658 msgpack_errors += array_lookup_element(kernel_array, i, &element); 659 if (msgpack_errors != 0) { 660 printf("[%s:%d] %s failed\n", __FILE__, __LINE__, 661 "element lookup in kernel metadata"); 662 return HSA_STATUS_ERROR_INVALID_CODE_OBJECT; 663 } 664 665 msgpack_errors += map_lookup_string(element, ".name", &kernelName); 666 msgpack_errors += map_lookup_string(element, ".symbol", &symbolName); 667 if (msgpack_errors != 0) { 668 printf("[%s:%d] %s failed\n", __FILE__, __LINE__, 669 "strings lookup in kernel metadata"); 670 return HSA_STATUS_ERROR_INVALID_CODE_OBJECT; 671 } 672 673 // Make sure that kernelName + ".kd" == symbolName 674 if ((kernelName + ".kd") != symbolName) { 675 printf("[%s:%d] Kernel name mismatching symbol: %s != %s + .kd\n", 676 __FILE__, __LINE__, symbolName.c_str(), kernelName.c_str()); 677 return HSA_STATUS_ERROR_INVALID_CODE_OBJECT; 678 } 679 680 atl_kernel_info_t info = {0, 0, 0, 0, 0, 0, 0, 0, 0, {}, {}, {}}; 681 682 uint64_t sgpr_count, vgpr_count, sgpr_spill_count, vgpr_spill_count; 683 msgpack_errors += map_lookup_uint64_t(element, ".sgpr_count", &sgpr_count); 684 if (msgpack_errors != 0) { 685 printf("[%s:%d] %s failed\n", __FILE__, __LINE__, 686 "sgpr count metadata lookup in kernel metadata"); 687 return HSA_STATUS_ERROR_INVALID_CODE_OBJECT; 688 } 689 690 info.sgpr_count = sgpr_count; 691 692 msgpack_errors += map_lookup_uint64_t(element, ".vgpr_count", &vgpr_count); 693 if (msgpack_errors != 0) { 694 printf("[%s:%d] %s failed\n", __FILE__, __LINE__, 695 "vgpr count metadata lookup in kernel metadata"); 696 return HSA_STATUS_ERROR_INVALID_CODE_OBJECT; 697 } 698 699 info.vgpr_count = vgpr_count; 700 701 msgpack_errors += 702 map_lookup_uint64_t(element, ".sgpr_spill_count", &sgpr_spill_count); 703 if (msgpack_errors != 0) { 704 printf("[%s:%d] %s failed\n", __FILE__, __LINE__, 705 "sgpr spill count metadata lookup in kernel metadata"); 706 return HSA_STATUS_ERROR_INVALID_CODE_OBJECT; 707 } 708 709 info.sgpr_spill_count = sgpr_spill_count; 710 711 msgpack_errors += 712 map_lookup_uint64_t(element, ".vgpr_spill_count", &vgpr_spill_count); 713 if (msgpack_errors != 0) { 714 printf("[%s:%d] %s failed\n", __FILE__, __LINE__, 715 "vgpr spill count metadata lookup in kernel metadata"); 716 return HSA_STATUS_ERROR_INVALID_CODE_OBJECT; 717 } 718 719 info.vgpr_spill_count = vgpr_spill_count; 720 721 size_t kernel_explicit_args_size = 0; 722 uint64_t kernel_segment_size; 723 msgpack_errors += map_lookup_uint64_t(element, ".kernarg_segment_size", 724 &kernel_segment_size); 725 if (msgpack_errors != 0) { 726 printf("[%s:%d] %s failed\n", __FILE__, __LINE__, 727 "kernarg segment size metadata lookup in kernel metadata"); 728 return HSA_STATUS_ERROR_INVALID_CODE_OBJECT; 729 } 730 731 bool hasHiddenArgs = false; 732 if (kernel_segment_size > 0) { 733 uint64_t argsSize; 734 size_t offset = 0; 735 736 msgpack::byte_range args_array; 737 msgpack_errors += 738 map_lookup_array(element, ".args", &args_array, &argsSize); 739 if (msgpack_errors != 0) { 740 printf("[%s:%d] %s failed\n", __FILE__, __LINE__, 741 "kernel args metadata lookup in kernel metadata"); 742 return HSA_STATUS_ERROR_INVALID_CODE_OBJECT; 743 } 744 745 info.num_args = argsSize; 746 747 for (size_t i = 0; i < argsSize; ++i) { 748 KernelArgMD lcArg; 749 750 msgpack::byte_range args_element; 751 msgpack_errors += array_lookup_element(args_array, i, &args_element); 752 if (msgpack_errors != 0) { 753 printf("[%s:%d] %s failed\n", __FILE__, __LINE__, 754 "iterate args map in kernel args metadata"); 755 return HSA_STATUS_ERROR_INVALID_CODE_OBJECT; 756 } 757 758 msgpack_errors += populate_kernelArgMD(args_element, &lcArg); 759 if (msgpack_errors != 0) { 760 printf("[%s:%d] %s failed\n", __FILE__, __LINE__, 761 "iterate args map in kernel args metadata"); 762 return HSA_STATUS_ERROR_INVALID_CODE_OBJECT; 763 } 764 // populate info with sizes and offsets 765 info.arg_sizes.push_back(lcArg.size_); 766 // v3 has offset field and not align field 767 size_t new_offset = lcArg.offset_; 768 size_t padding = new_offset - offset; 769 offset = new_offset; 770 info.arg_offsets.push_back(lcArg.offset_); 771 DEBUG_PRINT("Arg[%lu] \"%s\" (%u, %u)\n", i, lcArg.name_.c_str(), 772 lcArg.size_, lcArg.offset_); 773 offset += lcArg.size_; 774 775 // check if the arg is a hidden/implicit arg 776 // this logic assumes that all hidden args are 8-byte aligned 777 if (!isImplicit(lcArg.valueKind_)) { 778 kernel_explicit_args_size += lcArg.size_; 779 } else { 780 hasHiddenArgs = true; 781 } 782 kernel_explicit_args_size += padding; 783 } 784 } 785 786 // add size of implicit args, e.g.: offset x, y and z and pipe pointer, but 787 // in ATMI, do not count the compiler set implicit args, but set your own 788 // implicit args by discounting the compiler set implicit args 789 info.kernel_segment_size = 790 (hasHiddenArgs ? kernel_explicit_args_size : kernel_segment_size) + 791 sizeof(atmi_implicit_args_t); 792 DEBUG_PRINT("[%s: kernarg seg size] (%lu --> %u)\n", kernelName.c_str(), 793 kernel_segment_size, info.kernel_segment_size); 794 795 // kernel received, now add it to the kernel info table 796 KernelInfoTable[kernelName] = info; 797 } 798 799 return HSA_STATUS_SUCCESS; 800 } 801 802 static hsa_status_t 803 populate_InfoTables(hsa_executable_symbol_t symbol, 804 std::map<std::string, atl_kernel_info_t> &KernelInfoTable, 805 std::map<std::string, atl_symbol_info_t> &SymbolInfoTable) { 806 hsa_symbol_kind_t type; 807 808 uint32_t name_length; 809 hsa_status_t err; 810 err = hsa_executable_symbol_get_info(symbol, HSA_EXECUTABLE_SYMBOL_INFO_TYPE, 811 &type); 812 if (err != HSA_STATUS_SUCCESS) { 813 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 814 "Symbol info extraction", get_error_string(err)); 815 return err; 816 } 817 DEBUG_PRINT("Exec Symbol type: %d\n", type); 818 if (type == HSA_SYMBOL_KIND_KERNEL) { 819 err = hsa_executable_symbol_get_info( 820 symbol, HSA_EXECUTABLE_SYMBOL_INFO_NAME_LENGTH, &name_length); 821 if (err != HSA_STATUS_SUCCESS) { 822 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 823 "Symbol info extraction", get_error_string(err)); 824 return err; 825 } 826 char *name = reinterpret_cast<char *>(malloc(name_length + 1)); 827 err = hsa_executable_symbol_get_info(symbol, 828 HSA_EXECUTABLE_SYMBOL_INFO_NAME, name); 829 if (err != HSA_STATUS_SUCCESS) { 830 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 831 "Symbol info extraction", get_error_string(err)); 832 return err; 833 } 834 // remove the suffix .kd from symbol name. 835 name[name_length - 3] = 0; 836 837 atl_kernel_info_t info; 838 std::string kernelName(name); 839 // by now, the kernel info table should already have an entry 840 // because the non-ROCr custom code object parsing is called before 841 // iterating over the code object symbols using ROCr 842 if (KernelInfoTable.find(kernelName) == KernelInfoTable.end()) { 843 if (HSA_STATUS_ERROR_INVALID_CODE_OBJECT != HSA_STATUS_SUCCESS) { 844 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 845 "Finding the entry kernel info table", 846 get_error_string(HSA_STATUS_ERROR_INVALID_CODE_OBJECT)); 847 exit(1); 848 } 849 } 850 // found, so assign and update 851 info = KernelInfoTable[kernelName]; 852 853 /* Extract dispatch information from the symbol */ 854 err = hsa_executable_symbol_get_info( 855 symbol, HSA_EXECUTABLE_SYMBOL_INFO_KERNEL_OBJECT, 856 &(info.kernel_object)); 857 if (err != HSA_STATUS_SUCCESS) { 858 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 859 "Extracting the symbol from the executable", 860 get_error_string(err)); 861 return err; 862 } 863 err = hsa_executable_symbol_get_info( 864 symbol, HSA_EXECUTABLE_SYMBOL_INFO_KERNEL_GROUP_SEGMENT_SIZE, 865 &(info.group_segment_size)); 866 if (err != HSA_STATUS_SUCCESS) { 867 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 868 "Extracting the group segment size from the executable", 869 get_error_string(err)); 870 return err; 871 } 872 err = hsa_executable_symbol_get_info( 873 symbol, HSA_EXECUTABLE_SYMBOL_INFO_KERNEL_PRIVATE_SEGMENT_SIZE, 874 &(info.private_segment_size)); 875 if (err != HSA_STATUS_SUCCESS) { 876 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 877 "Extracting the private segment from the executable", 878 get_error_string(err)); 879 return err; 880 } 881 882 DEBUG_PRINT( 883 "Kernel %s --> %lx symbol %u group segsize %u pvt segsize %u bytes " 884 "kernarg\n", 885 kernelName.c_str(), info.kernel_object, info.group_segment_size, 886 info.private_segment_size, info.kernel_segment_size); 887 888 // assign it back to the kernel info table 889 KernelInfoTable[kernelName] = info; 890 free(name); 891 } else if (type == HSA_SYMBOL_KIND_VARIABLE) { 892 err = hsa_executable_symbol_get_info( 893 symbol, HSA_EXECUTABLE_SYMBOL_INFO_NAME_LENGTH, &name_length); 894 if (err != HSA_STATUS_SUCCESS) { 895 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 896 "Symbol info extraction", get_error_string(err)); 897 return err; 898 } 899 char *name = reinterpret_cast<char *>(malloc(name_length + 1)); 900 err = hsa_executable_symbol_get_info(symbol, 901 HSA_EXECUTABLE_SYMBOL_INFO_NAME, name); 902 if (err != HSA_STATUS_SUCCESS) { 903 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 904 "Symbol info extraction", get_error_string(err)); 905 return err; 906 } 907 name[name_length] = 0; 908 909 atl_symbol_info_t info; 910 911 err = hsa_executable_symbol_get_info( 912 symbol, HSA_EXECUTABLE_SYMBOL_INFO_VARIABLE_ADDRESS, &(info.addr)); 913 if (err != HSA_STATUS_SUCCESS) { 914 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 915 "Symbol info address extraction", get_error_string(err)); 916 return err; 917 } 918 919 err = hsa_executable_symbol_get_info( 920 symbol, HSA_EXECUTABLE_SYMBOL_INFO_VARIABLE_SIZE, &(info.size)); 921 if (err != HSA_STATUS_SUCCESS) { 922 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 923 "Symbol info size extraction", get_error_string(err)); 924 return err; 925 } 926 927 DEBUG_PRINT("Symbol %s = %p (%u bytes)\n", name, (void *)info.addr, 928 info.size); 929 SymbolInfoTable[std::string(name)] = info; 930 free(name); 931 } else { 932 DEBUG_PRINT("Symbol is an indirect function\n"); 933 } 934 return HSA_STATUS_SUCCESS; 935 } 936 937 hsa_status_t RegisterModuleFromMemory( 938 std::map<std::string, atl_kernel_info_t> &KernelInfoTable, 939 std::map<std::string, atl_symbol_info_t> &SymbolInfoTable, 940 void *module_bytes, size_t module_size, hsa_agent_t agent, 941 hsa_status_t (*on_deserialized_data)(void *data, size_t size, 942 void *cb_state), 943 void *cb_state, std::vector<hsa_executable_t> &HSAExecutables) { 944 hsa_status_t err; 945 hsa_executable_t executable = {0}; 946 hsa_profile_t agent_profile; 947 948 err = hsa_agent_get_info(agent, HSA_AGENT_INFO_PROFILE, &agent_profile); 949 if (err != HSA_STATUS_SUCCESS) { 950 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 951 "Query the agent profile", get_error_string(err)); 952 return HSA_STATUS_ERROR; 953 } 954 // FIXME: Assume that every profile is FULL until we understand how to build 955 // GCN with base profile 956 agent_profile = HSA_PROFILE_FULL; 957 /* Create the empty executable. */ 958 err = hsa_executable_create(agent_profile, HSA_EXECUTABLE_STATE_UNFROZEN, "", 959 &executable); 960 if (err != HSA_STATUS_SUCCESS) { 961 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 962 "Create the executable", get_error_string(err)); 963 return HSA_STATUS_ERROR; 964 } 965 966 bool module_load_success = false; 967 do // Existing control flow used continue, preserve that for this patch 968 { 969 { 970 // Some metadata info is not available through ROCr API, so use custom 971 // code object metadata parsing to collect such metadata info 972 973 err = get_code_object_custom_metadata(module_bytes, module_size, 974 KernelInfoTable); 975 if (err != HSA_STATUS_SUCCESS) { 976 DEBUG_PRINT("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 977 "Getting custom code object metadata", 978 get_error_string(err)); 979 continue; 980 } 981 982 // Deserialize code object. 983 hsa_code_object_t code_object = {0}; 984 err = hsa_code_object_deserialize(module_bytes, module_size, NULL, 985 &code_object); 986 if (err != HSA_STATUS_SUCCESS) { 987 DEBUG_PRINT("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 988 "Code Object Deserialization", get_error_string(err)); 989 continue; 990 } 991 assert(0 != code_object.handle); 992 993 // Mutating the device image here avoids another allocation & memcpy 994 void *code_object_alloc_data = 995 reinterpret_cast<void *>(code_object.handle); 996 hsa_status_t atmi_err = 997 on_deserialized_data(code_object_alloc_data, module_size, cb_state); 998 if (atmi_err != HSA_STATUS_SUCCESS) { 999 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 1000 "Error in deserialized_data callback", 1001 get_error_string(atmi_err)); 1002 return atmi_err; 1003 } 1004 1005 /* Load the code object. */ 1006 err = 1007 hsa_executable_load_code_object(executable, agent, code_object, NULL); 1008 if (err != HSA_STATUS_SUCCESS) { 1009 DEBUG_PRINT("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 1010 "Loading the code object", get_error_string(err)); 1011 continue; 1012 } 1013 1014 // cannot iterate over symbols until executable is frozen 1015 } 1016 module_load_success = true; 1017 } while (0); 1018 DEBUG_PRINT("Modules loaded successful? %d\n", module_load_success); 1019 if (module_load_success) { 1020 /* Freeze the executable; it can now be queried for symbols. */ 1021 err = hsa_executable_freeze(executable, ""); 1022 if (err != HSA_STATUS_SUCCESS) { 1023 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 1024 "Freeze the executable", get_error_string(err)); 1025 return HSA_STATUS_ERROR; 1026 } 1027 1028 err = hsa::executable_iterate_symbols( 1029 executable, 1030 [&](hsa_executable_t, hsa_executable_symbol_t symbol) -> hsa_status_t { 1031 return populate_InfoTables(symbol, KernelInfoTable, SymbolInfoTable); 1032 }); 1033 if (err != HSA_STATUS_SUCCESS) { 1034 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 1035 "Iterating over symbols for execuatable", get_error_string(err)); 1036 return HSA_STATUS_ERROR; 1037 } 1038 1039 // save the executable and destroy during finalize 1040 HSAExecutables.push_back(executable); 1041 return HSA_STATUS_SUCCESS; 1042 } else { 1043 return HSA_STATUS_ERROR; 1044 } 1045 } 1046 1047 } // namespace core 1048