1 /*===--------------------------------------------------------------------------
2  *              ATMI (Asynchronous Task and Memory Interface)
3  *
4  * This file is distributed under the MIT License. See LICENSE.txt for details.
5  *===------------------------------------------------------------------------*/
6 #include <gelf.h>
7 #include <libelf.h>
8 
9 #include <cassert>
10 #include <cstdarg>
11 #include <fstream>
12 #include <iomanip>
13 #include <iostream>
14 #include <set>
15 #include <string>
16 
17 #include "internal.h"
18 #include "machine.h"
19 #include "rt.h"
20 
21 #include "msgpack.h"
22 
23 namespace hsa {
24 // Wrap HSA iterate API in a shim that allows passing general callables
25 template <typename C>
26 hsa_status_t executable_iterate_symbols(hsa_executable_t executable, C cb) {
27   auto L = [](hsa_executable_t executable, hsa_executable_symbol_t symbol,
28               void *data) -> hsa_status_t {
29     C *unwrapped = static_cast<C *>(data);
30     return (*unwrapped)(executable, symbol);
31   };
32   return hsa_executable_iterate_symbols(executable, L,
33                                         static_cast<void *>(&cb));
34 }
35 } // namespace hsa
36 
37 typedef unsigned char *address;
38 /*
39  * Note descriptors.
40  */
41 typedef struct {
42   uint32_t n_namesz; /* Length of note's name. */
43   uint32_t n_descsz; /* Length of note's value. */
44   uint32_t n_type;   /* Type of note. */
45   // then name
46   // then padding, optional
47   // then desc, at 4 byte alignment (not 8, despite being elf64)
48 } Elf_Note;
49 
50 // The following include file and following structs/enums
51 // have been replicated on a per-use basis below. For example,
52 // llvm::AMDGPU::HSAMD::Kernel::Metadata has several fields,
53 // but we may care only about kernargSegmentSize_ for now, so
54 // we just include that field in our KernelMD implementation. We
55 // chose this approach to replicate in order to avoid forcing
56 // a dependency on LLVM_INCLUDE_DIR just to compile the runtime.
57 // #include "llvm/Support/AMDGPUMetadata.h"
58 // typedef llvm::AMDGPU::HSAMD::Metadata CodeObjectMD;
59 // typedef llvm::AMDGPU::HSAMD::Kernel::Metadata KernelMD;
60 // typedef llvm::AMDGPU::HSAMD::Kernel::Arg::Metadata KernelArgMD;
61 // using llvm::AMDGPU::HSAMD::AccessQualifier;
62 // using llvm::AMDGPU::HSAMD::AddressSpaceQualifier;
63 // using llvm::AMDGPU::HSAMD::ValueKind;
64 // using llvm::AMDGPU::HSAMD::ValueType;
65 
66 class KernelArgMD {
67 public:
68   enum class ValueKind {
69     HiddenGlobalOffsetX,
70     HiddenGlobalOffsetY,
71     HiddenGlobalOffsetZ,
72     HiddenNone,
73     HiddenPrintfBuffer,
74     HiddenDefaultQueue,
75     HiddenCompletionAction,
76     HiddenMultiGridSyncArg,
77     HiddenHostcallBuffer,
78     Unknown
79   };
80 
81   KernelArgMD()
82       : name_(std::string()), typeName_(std::string()), size_(0), offset_(0),
83         align_(0), valueKind_(ValueKind::Unknown) {}
84 
85   // fields
86   std::string name_;
87   std::string typeName_;
88   uint32_t size_;
89   uint32_t offset_;
90   uint32_t align_;
91   ValueKind valueKind_;
92 };
93 
94 class KernelMD {
95 public:
96   KernelMD() : kernargSegmentSize_(0ull) {}
97 
98   // fields
99   uint64_t kernargSegmentSize_;
100 };
101 
102 static const std::map<std::string, KernelArgMD::ValueKind> ArgValueKind = {
103     //    Including only those fields that are relevant to the runtime.
104     //    {"ByValue", KernelArgMD::ValueKind::ByValue},
105     //    {"GlobalBuffer", KernelArgMD::ValueKind::GlobalBuffer},
106     //    {"DynamicSharedPointer",
107     //    KernelArgMD::ValueKind::DynamicSharedPointer},
108     //    {"Sampler", KernelArgMD::ValueKind::Sampler},
109     //    {"Image", KernelArgMD::ValueKind::Image},
110     //    {"Pipe", KernelArgMD::ValueKind::Pipe},
111     //    {"Queue", KernelArgMD::ValueKind::Queue},
112     {"HiddenGlobalOffsetX", KernelArgMD::ValueKind::HiddenGlobalOffsetX},
113     {"HiddenGlobalOffsetY", KernelArgMD::ValueKind::HiddenGlobalOffsetY},
114     {"HiddenGlobalOffsetZ", KernelArgMD::ValueKind::HiddenGlobalOffsetZ},
115     {"HiddenNone", KernelArgMD::ValueKind::HiddenNone},
116     {"HiddenPrintfBuffer", KernelArgMD::ValueKind::HiddenPrintfBuffer},
117     {"HiddenDefaultQueue", KernelArgMD::ValueKind::HiddenDefaultQueue},
118     {"HiddenCompletionAction", KernelArgMD::ValueKind::HiddenCompletionAction},
119     {"HiddenMultiGridSyncArg", KernelArgMD::ValueKind::HiddenMultiGridSyncArg},
120     {"HiddenHostcallBuffer", KernelArgMD::ValueKind::HiddenHostcallBuffer},
121     // v3
122     //    {"by_value", KernelArgMD::ValueKind::ByValue},
123     //    {"global_buffer", KernelArgMD::ValueKind::GlobalBuffer},
124     //    {"dynamic_shared_pointer",
125     //    KernelArgMD::ValueKind::DynamicSharedPointer},
126     //    {"sampler", KernelArgMD::ValueKind::Sampler},
127     //    {"image", KernelArgMD::ValueKind::Image},
128     //    {"pipe", KernelArgMD::ValueKind::Pipe},
129     //    {"queue", KernelArgMD::ValueKind::Queue},
130     {"hidden_global_offset_x", KernelArgMD::ValueKind::HiddenGlobalOffsetX},
131     {"hidden_global_offset_y", KernelArgMD::ValueKind::HiddenGlobalOffsetY},
132     {"hidden_global_offset_z", KernelArgMD::ValueKind::HiddenGlobalOffsetZ},
133     {"hidden_none", KernelArgMD::ValueKind::HiddenNone},
134     {"hidden_printf_buffer", KernelArgMD::ValueKind::HiddenPrintfBuffer},
135     {"hidden_default_queue", KernelArgMD::ValueKind::HiddenDefaultQueue},
136     {"hidden_completion_action",
137      KernelArgMD::ValueKind::HiddenCompletionAction},
138     {"hidden_multigrid_sync_arg",
139      KernelArgMD::ValueKind::HiddenMultiGridSyncArg},
140     {"hidden_hostcall_buffer", KernelArgMD::ValueKind::HiddenHostcallBuffer},
141 };
142 
143 // global variables. TODO: Get rid of these
144 atmi_machine_t g_atmi_machine;
145 ATLMachine g_atl_machine;
146 
147 std::vector<hsa_amd_memory_pool_t> atl_gpu_kernarg_pools;
148 
149 /*
150    atlc is all internal global values.
151    The structure atl_context_t is defined in atl_internal.h
152    Most references will use the global structure prefix atlc.
153 */
154 atl_context_t atlc = {.struct_initialized = false};
155 
156 namespace core {
157 /* Machine Info */
158 atmi_machine_t *Runtime::GetMachineInfo() {
159   if (!atlc.g_hsa_initialized)
160     return NULL;
161   return &g_atmi_machine;
162 }
163 
164 hsa_status_t allow_access_to_all_gpu_agents(void *ptr) {
165   std::vector<ATLGPUProcessor> &gpu_procs =
166       g_atl_machine.processors<ATLGPUProcessor>();
167   std::vector<hsa_agent_t> agents;
168   for (uint32_t i = 0; i < gpu_procs.size(); i++) {
169     agents.push_back(gpu_procs[i].agent());
170   }
171   return hsa_amd_agents_allow_access(agents.size(), &agents[0], NULL, ptr);
172 }
173 
174 static void atmi_init_context_structs() {
175   atlc.struct_initialized = true; /* This only gets called one time */
176   atlc.g_hsa_initialized = false;
177   atlc.g_gpu_initialized = false;
178   atlc.g_tasks_initialized = false;
179 }
180 
181 // Implement memory_pool iteration function
182 static hsa_status_t get_memory_pool_info(hsa_amd_memory_pool_t memory_pool,
183                                          void *data) {
184   ATLProcessor *proc = reinterpret_cast<ATLProcessor *>(data);
185   hsa_status_t err = HSA_STATUS_SUCCESS;
186   // Check if the memory_pool is allowed to allocate, i.e. do not return group
187   // memory
188   bool alloc_allowed = false;
189   err = hsa_amd_memory_pool_get_info(
190       memory_pool, HSA_AMD_MEMORY_POOL_INFO_RUNTIME_ALLOC_ALLOWED,
191       &alloc_allowed);
192   if (err != HSA_STATUS_SUCCESS) {
193     printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
194            "Alloc allowed in memory pool check", get_error_string(err));
195     return err;
196   }
197   if (alloc_allowed) {
198     uint32_t global_flag = 0;
199     err = hsa_amd_memory_pool_get_info(
200         memory_pool, HSA_AMD_MEMORY_POOL_INFO_GLOBAL_FLAGS, &global_flag);
201     if (err != HSA_STATUS_SUCCESS) {
202       printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
203              "Get memory pool info", get_error_string(err));
204       return err;
205     }
206     if (HSA_AMD_MEMORY_POOL_GLOBAL_FLAG_FINE_GRAINED & global_flag) {
207       ATLMemory new_mem(memory_pool, *proc, ATMI_MEMTYPE_FINE_GRAINED);
208       proc->addMemory(new_mem);
209       if (HSA_AMD_MEMORY_POOL_GLOBAL_FLAG_KERNARG_INIT & global_flag) {
210         DEBUG_PRINT("GPU kernel args pool handle: %lu\n", memory_pool.handle);
211         atl_gpu_kernarg_pools.push_back(memory_pool);
212       }
213     } else {
214       ATLMemory new_mem(memory_pool, *proc, ATMI_MEMTYPE_COARSE_GRAINED);
215       proc->addMemory(new_mem);
216     }
217   }
218 
219   return err;
220 }
221 
222 static hsa_status_t get_agent_info(hsa_agent_t agent, void *data) {
223   hsa_status_t err = HSA_STATUS_SUCCESS;
224   hsa_device_type_t device_type;
225   err = hsa_agent_get_info(agent, HSA_AGENT_INFO_DEVICE, &device_type);
226   if (err != HSA_STATUS_SUCCESS) {
227     printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
228            "Get device type info", get_error_string(err));
229     return err;
230   }
231   switch (device_type) {
232   case HSA_DEVICE_TYPE_CPU: {
233     ATLCPUProcessor new_proc(agent);
234     err = hsa_amd_agent_iterate_memory_pools(agent, get_memory_pool_info,
235                                              &new_proc);
236     if (err != HSA_STATUS_SUCCESS) {
237       printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
238              "Iterate all memory pools", get_error_string(err));
239       return err;
240     }
241     g_atl_machine.addProcessor(new_proc);
242   } break;
243   case HSA_DEVICE_TYPE_GPU: {
244     hsa_profile_t profile;
245     err = hsa_agent_get_info(agent, HSA_AGENT_INFO_PROFILE, &profile);
246     if (err != HSA_STATUS_SUCCESS) {
247       printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
248              "Query the agent profile", get_error_string(err));
249       return err;
250     }
251     atmi_devtype_t gpu_type;
252     gpu_type =
253         (profile == HSA_PROFILE_FULL) ? ATMI_DEVTYPE_iGPU : ATMI_DEVTYPE_dGPU;
254     ATLGPUProcessor new_proc(agent, gpu_type);
255     err = hsa_amd_agent_iterate_memory_pools(agent, get_memory_pool_info,
256                                              &new_proc);
257     if (err != HSA_STATUS_SUCCESS) {
258       printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
259              "Iterate all memory pools", get_error_string(err));
260       return err;
261     }
262     g_atl_machine.addProcessor(new_proc);
263   } break;
264   case HSA_DEVICE_TYPE_DSP: {
265     err = HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
266   } break;
267   }
268 
269   return err;
270 }
271 
272 hsa_status_t get_fine_grained_region(hsa_region_t region, void *data) {
273   hsa_region_segment_t segment;
274   hsa_region_get_info(region, HSA_REGION_INFO_SEGMENT, &segment);
275   if (segment != HSA_REGION_SEGMENT_GLOBAL) {
276     return HSA_STATUS_SUCCESS;
277   }
278   hsa_region_global_flag_t flags;
279   hsa_region_get_info(region, HSA_REGION_INFO_GLOBAL_FLAGS, &flags);
280   if (flags & HSA_REGION_GLOBAL_FLAG_FINE_GRAINED) {
281     hsa_region_t *ret = reinterpret_cast<hsa_region_t *>(data);
282     *ret = region;
283     return HSA_STATUS_INFO_BREAK;
284   }
285   return HSA_STATUS_SUCCESS;
286 }
287 
288 /* Determines if a memory region can be used for kernarg allocations.  */
289 static hsa_status_t get_kernarg_memory_region(hsa_region_t region, void *data) {
290   hsa_region_segment_t segment;
291   hsa_region_get_info(region, HSA_REGION_INFO_SEGMENT, &segment);
292   if (HSA_REGION_SEGMENT_GLOBAL != segment) {
293     return HSA_STATUS_SUCCESS;
294   }
295 
296   hsa_region_global_flag_t flags;
297   hsa_region_get_info(region, HSA_REGION_INFO_GLOBAL_FLAGS, &flags);
298   if (flags & HSA_REGION_GLOBAL_FLAG_KERNARG) {
299     hsa_region_t *ret = reinterpret_cast<hsa_region_t *>(data);
300     *ret = region;
301     return HSA_STATUS_INFO_BREAK;
302   }
303 
304   return HSA_STATUS_SUCCESS;
305 }
306 
307 static hsa_status_t init_compute_and_memory() {
308   hsa_status_t err;
309 
310   /* Iterate over the agents and pick the gpu agent */
311   err = hsa_iterate_agents(get_agent_info, NULL);
312   if (err == HSA_STATUS_INFO_BREAK) {
313     err = HSA_STATUS_SUCCESS;
314   }
315   if (err != HSA_STATUS_SUCCESS) {
316     printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, "Getting a gpu agent",
317            get_error_string(err));
318     return err;
319   }
320 
321   /* Init all devices or individual device types? */
322   std::vector<ATLCPUProcessor> &cpu_procs =
323       g_atl_machine.processors<ATLCPUProcessor>();
324   std::vector<ATLGPUProcessor> &gpu_procs =
325       g_atl_machine.processors<ATLGPUProcessor>();
326   /* For CPU memory pools, add other devices that can access them directly
327    * or indirectly */
328   for (auto &cpu_proc : cpu_procs) {
329     for (auto &cpu_mem : cpu_proc.memories()) {
330       hsa_amd_memory_pool_t pool = cpu_mem.memory();
331       for (auto &gpu_proc : gpu_procs) {
332         hsa_agent_t agent = gpu_proc.agent();
333         hsa_amd_memory_pool_access_t access;
334         hsa_amd_agent_memory_pool_get_info(
335             agent, pool, HSA_AMD_AGENT_MEMORY_POOL_INFO_ACCESS, &access);
336         if (access != 0) {
337           // this means not NEVER, but could be YES or NO
338           // add this memory pool to the proc
339           gpu_proc.addMemory(cpu_mem);
340         }
341       }
342     }
343   }
344 
345   /* FIXME: are the below combinations of procs and memory pools needed?
346    * all to all compare procs with their memory pools and add those memory
347    * pools that are accessible by the target procs */
348   for (auto &gpu_proc : gpu_procs) {
349     for (auto &gpu_mem : gpu_proc.memories()) {
350       hsa_amd_memory_pool_t pool = gpu_mem.memory();
351       for (auto &cpu_proc : cpu_procs) {
352         hsa_agent_t agent = cpu_proc.agent();
353         hsa_amd_memory_pool_access_t access;
354         hsa_amd_agent_memory_pool_get_info(
355             agent, pool, HSA_AMD_AGENT_MEMORY_POOL_INFO_ACCESS, &access);
356         if (access != 0) {
357           // this means not NEVER, but could be YES or NO
358           // add this memory pool to the proc
359           cpu_proc.addMemory(gpu_mem);
360         }
361       }
362     }
363   }
364 
365   g_atmi_machine.device_count_by_type[ATMI_DEVTYPE_CPU] = cpu_procs.size();
366   g_atmi_machine.device_count_by_type[ATMI_DEVTYPE_GPU] = gpu_procs.size();
367 
368   size_t num_procs = cpu_procs.size() + gpu_procs.size();
369   // g_atmi_machine.devices = (atmi_device_t *)malloc(num_procs *
370   // sizeof(atmi_device_t));
371   atmi_device_t *all_devices = reinterpret_cast<atmi_device_t *>(
372       malloc(num_procs * sizeof(atmi_device_t)));
373   int num_iGPUs = 0;
374   int num_dGPUs = 0;
375   for (uint32_t i = 0; i < gpu_procs.size(); i++) {
376     if (gpu_procs[i].type() == ATMI_DEVTYPE_iGPU)
377       num_iGPUs++;
378     else
379       num_dGPUs++;
380   }
381   assert(num_iGPUs + num_dGPUs == gpu_procs.size() &&
382          "Number of dGPUs and iGPUs do not add up");
383   DEBUG_PRINT("CPU Agents: %lu\n", cpu_procs.size());
384   DEBUG_PRINT("iGPU Agents: %d\n", num_iGPUs);
385   DEBUG_PRINT("dGPU Agents: %d\n", num_dGPUs);
386   DEBUG_PRINT("GPU Agents: %lu\n", gpu_procs.size());
387 
388   g_atmi_machine.device_count_by_type[ATMI_DEVTYPE_iGPU] = num_iGPUs;
389   g_atmi_machine.device_count_by_type[ATMI_DEVTYPE_dGPU] = num_dGPUs;
390 
391   int cpus_begin = 0;
392   int cpus_end = cpu_procs.size();
393   int gpus_begin = cpu_procs.size();
394   int gpus_end = cpu_procs.size() + gpu_procs.size();
395   g_atmi_machine.devices_by_type[ATMI_DEVTYPE_CPU] = &all_devices[cpus_begin];
396   g_atmi_machine.devices_by_type[ATMI_DEVTYPE_GPU] = &all_devices[gpus_begin];
397   g_atmi_machine.devices_by_type[ATMI_DEVTYPE_iGPU] = &all_devices[gpus_begin];
398   g_atmi_machine.devices_by_type[ATMI_DEVTYPE_dGPU] = &all_devices[gpus_begin];
399   int proc_index = 0;
400   for (int i = cpus_begin; i < cpus_end; i++) {
401     all_devices[i].type = cpu_procs[proc_index].type();
402 
403     std::vector<ATLMemory> memories = cpu_procs[proc_index].memories();
404     int fine_memories_size = 0;
405     int coarse_memories_size = 0;
406     DEBUG_PRINT("CPU memory types:\t");
407     for (auto &memory : memories) {
408       atmi_memtype_t type = memory.type();
409       if (type == ATMI_MEMTYPE_FINE_GRAINED) {
410         fine_memories_size++;
411         DEBUG_PRINT("Fine\t");
412       } else {
413         coarse_memories_size++;
414         DEBUG_PRINT("Coarse\t");
415       }
416     }
417     DEBUG_PRINT("\nFine Memories : %d", fine_memories_size);
418     DEBUG_PRINT("\tCoarse Memories : %d\n", coarse_memories_size);
419     proc_index++;
420   }
421   proc_index = 0;
422   for (int i = gpus_begin; i < gpus_end; i++) {
423     all_devices[i].type = gpu_procs[proc_index].type();
424 
425     std::vector<ATLMemory> memories = gpu_procs[proc_index].memories();
426     int fine_memories_size = 0;
427     int coarse_memories_size = 0;
428     DEBUG_PRINT("GPU memory types:\t");
429     for (auto &memory : memories) {
430       atmi_memtype_t type = memory.type();
431       if (type == ATMI_MEMTYPE_FINE_GRAINED) {
432         fine_memories_size++;
433         DEBUG_PRINT("Fine\t");
434       } else {
435         coarse_memories_size++;
436         DEBUG_PRINT("Coarse\t");
437       }
438     }
439     DEBUG_PRINT("\nFine Memories : %d", fine_memories_size);
440     DEBUG_PRINT("\tCoarse Memories : %d\n", coarse_memories_size);
441     proc_index++;
442   }
443   proc_index = 0;
444   hsa_region_t atl_cpu_kernarg_region;
445   atl_cpu_kernarg_region.handle = (uint64_t)-1;
446   if (cpu_procs.size() > 0) {
447     err = hsa_agent_iterate_regions(
448         cpu_procs[0].agent(), get_fine_grained_region, &atl_cpu_kernarg_region);
449     if (err == HSA_STATUS_INFO_BREAK) {
450       err = HSA_STATUS_SUCCESS;
451     }
452     err = (atl_cpu_kernarg_region.handle == (uint64_t)-1) ? HSA_STATUS_ERROR
453                                                           : HSA_STATUS_SUCCESS;
454     if (err != HSA_STATUS_SUCCESS) {
455       printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
456              "Finding a CPU kernarg memory region handle",
457              get_error_string(err));
458       return err;
459     }
460   }
461   hsa_region_t atl_gpu_kernarg_region;
462   /* Find a memory region that supports kernel arguments.  */
463   atl_gpu_kernarg_region.handle = (uint64_t)-1;
464   if (gpu_procs.size() > 0) {
465     hsa_agent_iterate_regions(gpu_procs[0].agent(), get_kernarg_memory_region,
466                               &atl_gpu_kernarg_region);
467     err = (atl_gpu_kernarg_region.handle == (uint64_t)-1) ? HSA_STATUS_ERROR
468                                                           : HSA_STATUS_SUCCESS;
469     if (err != HSA_STATUS_SUCCESS) {
470       printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
471              "Finding a kernarg memory region", get_error_string(err));
472       return err;
473     }
474   }
475   if (num_procs > 0)
476     return HSA_STATUS_SUCCESS;
477   else
478     return HSA_STATUS_ERROR_NOT_INITIALIZED;
479 }
480 
481 hsa_status_t init_hsa() {
482   if (atlc.g_hsa_initialized == false) {
483     DEBUG_PRINT("Initializing HSA...");
484     hsa_status_t err = hsa_init();
485     if (err != HSA_STATUS_SUCCESS) {
486       printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
487              "Initializing the hsa runtime", get_error_string(err));
488       return err;
489     }
490     if (err != HSA_STATUS_SUCCESS)
491       return err;
492 
493     err = init_compute_and_memory();
494     if (err != HSA_STATUS_SUCCESS)
495       return err;
496     if (err != HSA_STATUS_SUCCESS) {
497       printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
498              "After initializing compute and memory", get_error_string(err));
499       return err;
500     }
501 
502     atlc.g_hsa_initialized = true;
503     DEBUG_PRINT("done\n");
504   }
505   return HSA_STATUS_SUCCESS;
506 }
507 
508 void init_tasks() {
509   if (atlc.g_tasks_initialized != false)
510     return;
511   std::vector<hsa_agent_t> gpu_agents;
512   int gpu_count = g_atl_machine.processorCount<ATLGPUProcessor>();
513   for (int gpu = 0; gpu < gpu_count; gpu++) {
514     atmi_place_t place = ATMI_PLACE_GPU(0, gpu);
515     ATLGPUProcessor &proc = get_processor<ATLGPUProcessor>(place);
516     gpu_agents.push_back(proc.agent());
517   }
518   atlc.g_tasks_initialized = true;
519 }
520 
521 hsa_status_t callbackEvent(const hsa_amd_event_t *event, void *data) {
522 #if (ROCM_VERSION_MAJOR >= 3) ||                                               \
523     (ROCM_VERSION_MAJOR >= 2 && ROCM_VERSION_MINOR >= 3)
524   if (event->event_type == HSA_AMD_GPU_MEMORY_FAULT_EVENT) {
525 #else
526   if (event->event_type == GPU_MEMORY_FAULT_EVENT) {
527 #endif
528     hsa_amd_gpu_memory_fault_info_t memory_fault = event->memory_fault;
529     // memory_fault.agent
530     // memory_fault.virtual_address
531     // memory_fault.fault_reason_mask
532     // fprintf("[GPU Error at %p: Reason is ", memory_fault.virtual_address);
533     std::stringstream stream;
534     stream << std::hex << (uintptr_t)memory_fault.virtual_address;
535     std::string addr("0x" + stream.str());
536 
537     std::string err_string = "[GPU Memory Error] Addr: " + addr;
538     err_string += " Reason: ";
539     if (!(memory_fault.fault_reason_mask & 0x00111111)) {
540       err_string += "No Idea! ";
541     } else {
542       if (memory_fault.fault_reason_mask & 0x00000001)
543         err_string += "Page not present or supervisor privilege. ";
544       if (memory_fault.fault_reason_mask & 0x00000010)
545         err_string += "Write access to a read-only page. ";
546       if (memory_fault.fault_reason_mask & 0x00000100)
547         err_string += "Execute access to a page marked NX. ";
548       if (memory_fault.fault_reason_mask & 0x00001000)
549         err_string += "Host access only. ";
550       if (memory_fault.fault_reason_mask & 0x00010000)
551         err_string += "ECC failure (if supported by HW). ";
552       if (memory_fault.fault_reason_mask & 0x00100000)
553         err_string += "Can't determine the exact fault address. ";
554     }
555     fprintf(stderr, "%s\n", err_string.c_str());
556     return HSA_STATUS_ERROR;
557   }
558   return HSA_STATUS_SUCCESS;
559 }
560 
561 hsa_status_t atl_init_gpu_context() {
562   if (atlc.struct_initialized == false)
563     atmi_init_context_structs();
564   if (atlc.g_gpu_initialized != false)
565     return HSA_STATUS_SUCCESS;
566 
567   hsa_status_t err;
568   err = init_hsa();
569   if (err != HSA_STATUS_SUCCESS)
570     return HSA_STATUS_ERROR;
571 
572   err = hsa_amd_register_system_event_handler(callbackEvent, NULL);
573   if (err != HSA_STATUS_SUCCESS) {
574     printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
575            "Registering the system for memory faults", get_error_string(err));
576     return HSA_STATUS_ERROR;
577   }
578 
579   init_tasks();
580   atlc.g_gpu_initialized = true;
581   return HSA_STATUS_SUCCESS;
582 }
583 
584 static bool isImplicit(KernelArgMD::ValueKind value_kind) {
585   switch (value_kind) {
586   case KernelArgMD::ValueKind::HiddenGlobalOffsetX:
587   case KernelArgMD::ValueKind::HiddenGlobalOffsetY:
588   case KernelArgMD::ValueKind::HiddenGlobalOffsetZ:
589   case KernelArgMD::ValueKind::HiddenNone:
590   case KernelArgMD::ValueKind::HiddenPrintfBuffer:
591   case KernelArgMD::ValueKind::HiddenDefaultQueue:
592   case KernelArgMD::ValueKind::HiddenCompletionAction:
593   case KernelArgMD::ValueKind::HiddenMultiGridSyncArg:
594   case KernelArgMD::ValueKind::HiddenHostcallBuffer:
595     return true;
596   default:
597     return false;
598   }
599 }
600 
601 static std::pair<unsigned char *, unsigned char *>
602 find_metadata(void *binary, size_t binSize) {
603   std::pair<unsigned char *, unsigned char *> failure = {nullptr, nullptr};
604 
605   Elf *e = elf_memory(static_cast<char *>(binary), binSize);
606   if (elf_kind(e) != ELF_K_ELF) {
607     return failure;
608   }
609 
610   size_t numpHdrs;
611   if (elf_getphdrnum(e, &numpHdrs) != 0) {
612     return failure;
613   }
614 
615   for (size_t i = 0; i < numpHdrs; ++i) {
616     GElf_Phdr pHdr;
617     if (gelf_getphdr(e, i, &pHdr) != &pHdr) {
618       continue;
619     }
620     // Look for the runtime metadata note
621     if (pHdr.p_type == PT_NOTE && pHdr.p_align >= sizeof(int)) {
622       // Iterate over the notes in this segment
623       address ptr = (address)binary + pHdr.p_offset;
624       address segmentEnd = ptr + pHdr.p_filesz;
625 
626       while (ptr < segmentEnd) {
627         Elf_Note *note = reinterpret_cast<Elf_Note *>(ptr);
628         address name = (address)&note[1];
629 
630         if (note->n_type == 7 || note->n_type == 8) {
631           return failure;
632         } else if (note->n_type == 10 /* NT_AMD_AMDGPU_HSA_METADATA */ &&
633                    note->n_namesz == sizeof "AMD" &&
634                    !memcmp(name, "AMD", note->n_namesz)) {
635           // code object v2 uses yaml metadata, no longer supported
636           return failure;
637         } else if (note->n_type == 32 /* NT_AMDGPU_METADATA */ &&
638                    note->n_namesz == sizeof "AMDGPU" &&
639                    !memcmp(name, "AMDGPU", note->n_namesz)) {
640 
641           // n_descsz = 485
642           // value is padded to 4 byte alignment, may want to move end up to
643           // match
644           size_t offset = sizeof(uint32_t) * 3 /* fields */
645                           + sizeof("AMDGPU")   /* name */
646                           + 1 /* padding to 4 byte alignment */;
647 
648           // Including the trailing padding means both pointers are 4 bytes
649           // aligned, which may be useful later.
650           unsigned char *metadata_start = (unsigned char *)ptr + offset;
651           unsigned char *metadata_end =
652               metadata_start + core::alignUp(note->n_descsz, 4);
653           return {metadata_start, metadata_end};
654         }
655         ptr += sizeof(*note) + core::alignUp(note->n_namesz, sizeof(int)) +
656                core::alignUp(note->n_descsz, sizeof(int));
657       }
658     }
659   }
660 
661   return failure;
662 }
663 
664 namespace {
665 int map_lookup_array(msgpack::byte_range message, const char *needle,
666                      msgpack::byte_range *res, uint64_t *size) {
667   unsigned count = 0;
668   struct s : msgpack::functors_defaults<s> {
669     s(unsigned &count, uint64_t *size) : count(count), size(size) {}
670     unsigned &count;
671     uint64_t *size;
672     const unsigned char *handle_array(uint64_t N, msgpack::byte_range bytes) {
673       count++;
674       *size = N;
675       return bytes.end;
676     }
677   };
678 
679   msgpack::foreach_map(message,
680                        [&](msgpack::byte_range key, msgpack::byte_range value) {
681                          if (msgpack::message_is_string(key, needle)) {
682                            // If the message is an array, record number of
683                            // elements in *size
684                            msgpack::handle_msgpack<s>(value, {count, size});
685                            // return the whole array
686                            *res = value;
687                          }
688                        });
689   // Only claim success if exactly one key/array pair matched
690   return count != 1;
691 }
692 
693 int map_lookup_string(msgpack::byte_range message, const char *needle,
694                       std::string *res) {
695   unsigned count = 0;
696   struct s : public msgpack::functors_defaults<s> {
697     s(unsigned &count, std::string *res) : count(count), res(res) {}
698     unsigned &count;
699     std::string *res;
700     void handle_string(size_t N, const unsigned char *str) {
701       count++;
702       *res = std::string(str, str + N);
703     }
704   };
705   msgpack::foreach_map(message,
706                        [&](msgpack::byte_range key, msgpack::byte_range value) {
707                          if (msgpack::message_is_string(key, needle)) {
708                            msgpack::handle_msgpack<s>(value, {count, res});
709                          }
710                        });
711   return count != 1;
712 }
713 
714 int map_lookup_uint64_t(msgpack::byte_range message, const char *needle,
715                         uint64_t *res) {
716   unsigned count = 0;
717   msgpack::foreach_map(message,
718                        [&](msgpack::byte_range key, msgpack::byte_range value) {
719                          if (msgpack::message_is_string(key, needle)) {
720                            msgpack::foronly_unsigned(value, [&](uint64_t x) {
721                              count++;
722                              *res = x;
723                            });
724                          }
725                        });
726   return count != 1;
727 }
728 
729 int array_lookup_element(msgpack::byte_range message, uint64_t elt,
730                          msgpack::byte_range *res) {
731   int rc = 1;
732   uint64_t i = 0;
733   msgpack::foreach_array(message, [&](msgpack::byte_range value) {
734     if (i == elt) {
735       *res = value;
736       rc = 0;
737     }
738     i++;
739   });
740   return rc;
741 }
742 
743 int populate_kernelArgMD(msgpack::byte_range args_element,
744                          KernelArgMD *kernelarg) {
745   using namespace msgpack;
746   int error = 0;
747   foreach_map(args_element, [&](byte_range key, byte_range value) -> void {
748     if (message_is_string(key, ".name")) {
749       foronly_string(value, [&](size_t N, const unsigned char *str) {
750         kernelarg->name_ = std::string(str, str + N);
751       });
752     } else if (message_is_string(key, ".type_name")) {
753       foronly_string(value, [&](size_t N, const unsigned char *str) {
754         kernelarg->typeName_ = std::string(str, str + N);
755       });
756     } else if (message_is_string(key, ".size")) {
757       foronly_unsigned(value, [&](uint64_t x) { kernelarg->size_ = x; });
758     } else if (message_is_string(key, ".offset")) {
759       foronly_unsigned(value, [&](uint64_t x) { kernelarg->offset_ = x; });
760     } else if (message_is_string(key, ".value_kind")) {
761       foronly_string(value, [&](size_t N, const unsigned char *str) {
762         std::string s = std::string(str, str + N);
763         auto itValueKind = ArgValueKind.find(s);
764         if (itValueKind != ArgValueKind.end()) {
765           kernelarg->valueKind_ = itValueKind->second;
766         }
767       });
768     }
769   });
770   return error;
771 }
772 } // namespace
773 
774 static hsa_status_t get_code_object_custom_metadata(
775     void *binary, size_t binSize, int gpu,
776     std::map<std::string, atl_kernel_info_t> &KernelInfoTable) {
777   // parse code object with different keys from v2
778   // also, the kernel name is not the same as the symbol name -- so a
779   // symbol->name map is needed
780 
781   std::pair<unsigned char *, unsigned char *> metadata =
782       find_metadata(binary, binSize);
783   if (!metadata.first) {
784     return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
785   }
786 
787   uint64_t kernelsSize = 0;
788   int msgpack_errors = 0;
789   msgpack::byte_range kernel_array;
790   msgpack_errors =
791       map_lookup_array({metadata.first, metadata.second}, "amdhsa.kernels",
792                        &kernel_array, &kernelsSize);
793   if (msgpack_errors != 0) {
794     printf("[%s:%d] %s failed\n", __FILE__, __LINE__,
795            "kernels lookup in program metadata");
796     return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
797   }
798 
799   for (size_t i = 0; i < kernelsSize; i++) {
800     assert(msgpack_errors == 0);
801     std::string kernelName;
802     std::string symbolName;
803 
804     msgpack::byte_range element;
805     msgpack_errors += array_lookup_element(kernel_array, i, &element);
806     if (msgpack_errors != 0) {
807       printf("[%s:%d] %s failed\n", __FILE__, __LINE__,
808              "element lookup in kernel metadata");
809       return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
810     }
811 
812     msgpack_errors += map_lookup_string(element, ".name", &kernelName);
813     msgpack_errors += map_lookup_string(element, ".symbol", &symbolName);
814     if (msgpack_errors != 0) {
815       printf("[%s:%d] %s failed\n", __FILE__, __LINE__,
816              "strings lookup in kernel metadata");
817       return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
818     }
819 
820     // Make sure that kernelName + ".kd" == symbolName
821     if ((kernelName + ".kd") != symbolName) {
822       printf("[%s:%d] Kernel name mismatching symbol: %s != %s + .kd\n",
823              __FILE__, __LINE__, symbolName.c_str(), kernelName.c_str());
824       return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
825     }
826 
827     atl_kernel_info_t info = {0, 0, 0, 0, 0, 0, 0, 0, 0, {}, {}, {}};
828 
829     uint64_t sgpr_count, vgpr_count, sgpr_spill_count, vgpr_spill_count;
830     msgpack_errors += map_lookup_uint64_t(element, ".sgpr_count", &sgpr_count);
831     if (msgpack_errors != 0) {
832       printf("[%s:%d] %s failed\n", __FILE__, __LINE__,
833              "sgpr count metadata lookup in kernel metadata");
834       return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
835     }
836 
837     info.sgpr_count = sgpr_count;
838 
839     msgpack_errors += map_lookup_uint64_t(element, ".vgpr_count", &vgpr_count);
840     if (msgpack_errors != 0) {
841       printf("[%s:%d] %s failed\n", __FILE__, __LINE__,
842              "vgpr count metadata lookup in kernel metadata");
843       return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
844     }
845 
846     info.vgpr_count = vgpr_count;
847 
848     msgpack_errors +=
849         map_lookup_uint64_t(element, ".sgpr_spill_count", &sgpr_spill_count);
850     if (msgpack_errors != 0) {
851       printf("[%s:%d] %s failed\n", __FILE__, __LINE__,
852              "sgpr spill count metadata lookup in kernel metadata");
853       return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
854     }
855 
856     info.sgpr_spill_count = sgpr_spill_count;
857 
858     msgpack_errors +=
859         map_lookup_uint64_t(element, ".vgpr_spill_count", &vgpr_spill_count);
860     if (msgpack_errors != 0) {
861       printf("[%s:%d] %s failed\n", __FILE__, __LINE__,
862              "vgpr spill count metadata lookup in kernel metadata");
863       return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
864     }
865 
866     info.vgpr_spill_count = vgpr_spill_count;
867 
868     size_t kernel_explicit_args_size = 0;
869     uint64_t kernel_segment_size;
870     msgpack_errors += map_lookup_uint64_t(element, ".kernarg_segment_size",
871                                           &kernel_segment_size);
872     if (msgpack_errors != 0) {
873       printf("[%s:%d] %s failed\n", __FILE__, __LINE__,
874              "kernarg segment size metadata lookup in kernel metadata");
875       return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
876     }
877 
878     bool hasHiddenArgs = false;
879     if (kernel_segment_size > 0) {
880       uint64_t argsSize;
881       size_t offset = 0;
882 
883       msgpack::byte_range args_array;
884       msgpack_errors +=
885           map_lookup_array(element, ".args", &args_array, &argsSize);
886       if (msgpack_errors != 0) {
887         printf("[%s:%d] %s failed\n", __FILE__, __LINE__,
888                "kernel args metadata lookup in kernel metadata");
889         return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
890       }
891 
892       info.num_args = argsSize;
893 
894       for (size_t i = 0; i < argsSize; ++i) {
895         KernelArgMD lcArg;
896 
897         msgpack::byte_range args_element;
898         msgpack_errors += array_lookup_element(args_array, i, &args_element);
899         if (msgpack_errors != 0) {
900           printf("[%s:%d] %s failed\n", __FILE__, __LINE__,
901                  "iterate args map in kernel args metadata");
902           return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
903         }
904 
905         msgpack_errors += populate_kernelArgMD(args_element, &lcArg);
906         if (msgpack_errors != 0) {
907           printf("[%s:%d] %s failed\n", __FILE__, __LINE__,
908                  "iterate args map in kernel args metadata");
909           return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
910         }
911         // populate info with sizes and offsets
912         info.arg_sizes.push_back(lcArg.size_);
913         // v3 has offset field and not align field
914         size_t new_offset = lcArg.offset_;
915         size_t padding = new_offset - offset;
916         offset = new_offset;
917         info.arg_offsets.push_back(lcArg.offset_);
918         DEBUG_PRINT("Arg[%lu] \"%s\" (%u, %u)\n", i, lcArg.name_.c_str(),
919                     lcArg.size_, lcArg.offset_);
920         offset += lcArg.size_;
921 
922         // check if the arg is a hidden/implicit arg
923         // this logic assumes that all hidden args are 8-byte aligned
924         if (!isImplicit(lcArg.valueKind_)) {
925           kernel_explicit_args_size += lcArg.size_;
926         } else {
927           hasHiddenArgs = true;
928         }
929         kernel_explicit_args_size += padding;
930       }
931     }
932 
933     // add size of implicit args, e.g.: offset x, y and z and pipe pointer, but
934     // in ATMI, do not count the compiler set implicit args, but set your own
935     // implicit args by discounting the compiler set implicit args
936     info.kernel_segment_size =
937         (hasHiddenArgs ? kernel_explicit_args_size : kernel_segment_size) +
938         sizeof(atmi_implicit_args_t);
939     DEBUG_PRINT("[%s: kernarg seg size] (%lu --> %u)\n", kernelName.c_str(),
940                 kernel_segment_size, info.kernel_segment_size);
941 
942     // kernel received, now add it to the kernel info table
943     KernelInfoTable[kernelName] = info;
944   }
945 
946   return HSA_STATUS_SUCCESS;
947 }
948 
949 static hsa_status_t
950 populate_InfoTables(hsa_executable_symbol_t symbol, int gpu,
951                     std::map<std::string, atl_kernel_info_t> &KernelInfoTable,
952                     std::map<std::string, atl_symbol_info_t> &SymbolInfoTable) {
953   hsa_symbol_kind_t type;
954 
955   uint32_t name_length;
956   hsa_status_t err;
957   err = hsa_executable_symbol_get_info(symbol, HSA_EXECUTABLE_SYMBOL_INFO_TYPE,
958                                        &type);
959   if (err != HSA_STATUS_SUCCESS) {
960     printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
961            "Symbol info extraction", get_error_string(err));
962     return err;
963   }
964   DEBUG_PRINT("Exec Symbol type: %d\n", type);
965   if (type == HSA_SYMBOL_KIND_KERNEL) {
966     err = hsa_executable_symbol_get_info(
967         symbol, HSA_EXECUTABLE_SYMBOL_INFO_NAME_LENGTH, &name_length);
968     if (err != HSA_STATUS_SUCCESS) {
969       printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
970              "Symbol info extraction", get_error_string(err));
971       return err;
972     }
973     char *name = reinterpret_cast<char *>(malloc(name_length + 1));
974     err = hsa_executable_symbol_get_info(symbol,
975                                          HSA_EXECUTABLE_SYMBOL_INFO_NAME, name);
976     if (err != HSA_STATUS_SUCCESS) {
977       printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
978              "Symbol info extraction", get_error_string(err));
979       return err;
980     }
981     // remove the suffix .kd from symbol name.
982     name[name_length - 3] = 0;
983 
984     atl_kernel_info_t info;
985     std::string kernelName(name);
986     // by now, the kernel info table should already have an entry
987     // because the non-ROCr custom code object parsing is called before
988     // iterating over the code object symbols using ROCr
989     if (KernelInfoTable.find(kernelName) == KernelInfoTable.end()) {
990       if (HSA_STATUS_ERROR_INVALID_CODE_OBJECT != HSA_STATUS_SUCCESS) {
991         printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
992                "Finding the entry kernel info table",
993                get_error_string(HSA_STATUS_ERROR_INVALID_CODE_OBJECT));
994         exit(1);
995       }
996     }
997     // found, so assign and update
998     info = KernelInfoTable[kernelName];
999 
1000     /* Extract dispatch information from the symbol */
1001     err = hsa_executable_symbol_get_info(
1002         symbol, HSA_EXECUTABLE_SYMBOL_INFO_KERNEL_OBJECT,
1003         &(info.kernel_object));
1004     if (err != HSA_STATUS_SUCCESS) {
1005       printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
1006              "Extracting the symbol from the executable",
1007              get_error_string(err));
1008       return err;
1009     }
1010     err = hsa_executable_symbol_get_info(
1011         symbol, HSA_EXECUTABLE_SYMBOL_INFO_KERNEL_GROUP_SEGMENT_SIZE,
1012         &(info.group_segment_size));
1013     if (err != HSA_STATUS_SUCCESS) {
1014       printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
1015              "Extracting the group segment size from the executable",
1016              get_error_string(err));
1017       return err;
1018     }
1019     err = hsa_executable_symbol_get_info(
1020         symbol, HSA_EXECUTABLE_SYMBOL_INFO_KERNEL_PRIVATE_SEGMENT_SIZE,
1021         &(info.private_segment_size));
1022     if (err != HSA_STATUS_SUCCESS) {
1023       printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
1024              "Extracting the private segment from the executable",
1025              get_error_string(err));
1026       return err;
1027     }
1028 
1029     DEBUG_PRINT(
1030         "Kernel %s --> %lx symbol %u group segsize %u pvt segsize %u bytes "
1031         "kernarg\n",
1032         kernelName.c_str(), info.kernel_object, info.group_segment_size,
1033         info.private_segment_size, info.kernel_segment_size);
1034 
1035     // assign it back to the kernel info table
1036     KernelInfoTable[kernelName] = info;
1037     free(name);
1038   } else if (type == HSA_SYMBOL_KIND_VARIABLE) {
1039     err = hsa_executable_symbol_get_info(
1040         symbol, HSA_EXECUTABLE_SYMBOL_INFO_NAME_LENGTH, &name_length);
1041     if (err != HSA_STATUS_SUCCESS) {
1042       printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
1043              "Symbol info extraction", get_error_string(err));
1044       return err;
1045     }
1046     char *name = reinterpret_cast<char *>(malloc(name_length + 1));
1047     err = hsa_executable_symbol_get_info(symbol,
1048                                          HSA_EXECUTABLE_SYMBOL_INFO_NAME, name);
1049     if (err != HSA_STATUS_SUCCESS) {
1050       printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
1051              "Symbol info extraction", get_error_string(err));
1052       return err;
1053     }
1054     name[name_length] = 0;
1055 
1056     atl_symbol_info_t info;
1057 
1058     err = hsa_executable_symbol_get_info(
1059         symbol, HSA_EXECUTABLE_SYMBOL_INFO_VARIABLE_ADDRESS, &(info.addr));
1060     if (err != HSA_STATUS_SUCCESS) {
1061       printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
1062              "Symbol info address extraction", get_error_string(err));
1063       return err;
1064     }
1065 
1066     err = hsa_executable_symbol_get_info(
1067         symbol, HSA_EXECUTABLE_SYMBOL_INFO_VARIABLE_SIZE, &(info.size));
1068     if (err != HSA_STATUS_SUCCESS) {
1069       printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
1070              "Symbol info size extraction", get_error_string(err));
1071       return err;
1072     }
1073 
1074     DEBUG_PRINT("Symbol %s = %p (%u bytes)\n", name, (void *)info.addr,
1075                 info.size);
1076     err = register_allocation(reinterpret_cast<void *>(info.addr),
1077                               (size_t)info.size, ATMI_DEVTYPE_GPU);
1078     if (err != HSA_STATUS_SUCCESS) {
1079       return err;
1080     }
1081     SymbolInfoTable[std::string(name)] = info;
1082     free(name);
1083   } else {
1084     DEBUG_PRINT("Symbol is an indirect function\n");
1085   }
1086   return HSA_STATUS_SUCCESS;
1087 }
1088 
1089 hsa_status_t RegisterModuleFromMemory(
1090     std::map<std::string, atl_kernel_info_t> &KernelInfoTable,
1091     std::map<std::string, atl_symbol_info_t> &SymbolInfoTable,
1092     void *module_bytes, size_t module_size, atmi_place_t place,
1093     hsa_status_t (*on_deserialized_data)(void *data, size_t size,
1094                                          void *cb_state),
1095     void *cb_state, std::vector<hsa_executable_t> &HSAExecutables) {
1096   hsa_status_t err;
1097   int gpu = place.device_id;
1098   assert(gpu >= 0);
1099 
1100   DEBUG_PRINT("Trying to load module to GPU-%d\n", gpu);
1101   ATLGPUProcessor &proc = get_processor<ATLGPUProcessor>(place);
1102   hsa_agent_t agent = proc.agent();
1103   hsa_executable_t executable = {0};
1104   hsa_profile_t agent_profile;
1105 
1106   err = hsa_agent_get_info(agent, HSA_AGENT_INFO_PROFILE, &agent_profile);
1107   if (err != HSA_STATUS_SUCCESS) {
1108     printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
1109            "Query the agent profile", get_error_string(err));
1110     return HSA_STATUS_ERROR;
1111   }
1112   // FIXME: Assume that every profile is FULL until we understand how to build
1113   // GCN with base profile
1114   agent_profile = HSA_PROFILE_FULL;
1115   /* Create the empty executable.  */
1116   err = hsa_executable_create(agent_profile, HSA_EXECUTABLE_STATE_UNFROZEN, "",
1117                               &executable);
1118   if (err != HSA_STATUS_SUCCESS) {
1119     printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
1120            "Create the executable", get_error_string(err));
1121     return HSA_STATUS_ERROR;
1122   }
1123 
1124   bool module_load_success = false;
1125   do // Existing control flow used continue, preserve that for this patch
1126   {
1127     {
1128       // Some metadata info is not available through ROCr API, so use custom
1129       // code object metadata parsing to collect such metadata info
1130 
1131       err = get_code_object_custom_metadata(module_bytes, module_size, gpu,
1132                                             KernelInfoTable);
1133       if (err != HSA_STATUS_SUCCESS) {
1134         DEBUG_PRINT("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
1135                     "Getting custom code object metadata",
1136                     get_error_string(err));
1137         continue;
1138       }
1139 
1140       // Deserialize code object.
1141       hsa_code_object_t code_object = {0};
1142       err = hsa_code_object_deserialize(module_bytes, module_size, NULL,
1143                                         &code_object);
1144       if (err != HSA_STATUS_SUCCESS) {
1145         DEBUG_PRINT("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
1146                     "Code Object Deserialization", get_error_string(err));
1147         continue;
1148       }
1149       assert(0 != code_object.handle);
1150 
1151       // Mutating the device image here avoids another allocation & memcpy
1152       void *code_object_alloc_data =
1153           reinterpret_cast<void *>(code_object.handle);
1154       hsa_status_t atmi_err =
1155           on_deserialized_data(code_object_alloc_data, module_size, cb_state);
1156       if (atmi_err != HSA_STATUS_SUCCESS) {
1157         printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
1158                "Error in deserialized_data callback",
1159                get_atmi_error_string(atmi_err));
1160         return atmi_err;
1161       }
1162 
1163       /* Load the code object.  */
1164       err =
1165           hsa_executable_load_code_object(executable, agent, code_object, NULL);
1166       if (err != HSA_STATUS_SUCCESS) {
1167         DEBUG_PRINT("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
1168                     "Loading the code object", get_error_string(err));
1169         continue;
1170       }
1171 
1172       // cannot iterate over symbols until executable is frozen
1173     }
1174     module_load_success = true;
1175   } while (0);
1176   DEBUG_PRINT("Modules loaded successful? %d\n", module_load_success);
1177   if (module_load_success) {
1178     /* Freeze the executable; it can now be queried for symbols.  */
1179     err = hsa_executable_freeze(executable, "");
1180     if (err != HSA_STATUS_SUCCESS) {
1181       printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
1182              "Freeze the executable", get_error_string(err));
1183       return HSA_STATUS_ERROR;
1184     }
1185 
1186     err = hsa::executable_iterate_symbols(
1187         executable,
1188         [&](hsa_executable_t, hsa_executable_symbol_t symbol) -> hsa_status_t {
1189           return populate_InfoTables(symbol, gpu, KernelInfoTable,
1190                                      SymbolInfoTable);
1191         });
1192     if (err != HSA_STATUS_SUCCESS) {
1193       printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
1194              "Iterating over symbols for execuatable", get_error_string(err));
1195       return HSA_STATUS_ERROR;
1196     }
1197 
1198     // save the executable and destroy during finalize
1199     HSAExecutables.push_back(executable);
1200     return HSA_STATUS_SUCCESS;
1201   } else {
1202     return HSA_STATUS_ERROR;
1203   }
1204 }
1205 
1206 } // namespace core
1207