1 /*===--------------------------------------------------------------------------
2  *              ATMI (Asynchronous Task and Memory Interface)
3  *
4  * This file is distributed under the MIT License. See LICENSE.txt for details.
5  *===------------------------------------------------------------------------*/
6 #include <gelf.h>
7 #include <libelf.h>
8 
9 #include <cassert>
10 #include <cstdarg>
11 #include <fstream>
12 #include <iomanip>
13 #include <iostream>
14 #include <set>
15 #include <string>
16 
17 #include "internal.h"
18 #include "machine.h"
19 #include "rt.h"
20 
21 #include "msgpack.h"
22 
23 namespace hsa {
24 // Wrap HSA iterate API in a shim that allows passing general callables
25 template <typename C>
26 hsa_status_t executable_iterate_symbols(hsa_executable_t executable, C cb) {
27   auto L = [](hsa_executable_t executable, hsa_executable_symbol_t symbol,
28               void *data) -> hsa_status_t {
29     C *unwrapped = static_cast<C *>(data);
30     return (*unwrapped)(executable, symbol);
31   };
32   return hsa_executable_iterate_symbols(executable, L,
33                                         static_cast<void *>(&cb));
34 }
35 } // namespace hsa
36 
37 typedef unsigned char *address;
38 /*
39  * Note descriptors.
40  */
41 typedef struct {
42   uint32_t n_namesz; /* Length of note's name. */
43   uint32_t n_descsz; /* Length of note's value. */
44   uint32_t n_type;   /* Type of note. */
45   // then name
46   // then padding, optional
47   // then desc, at 4 byte alignment (not 8, despite being elf64)
48 } Elf_Note;
49 
50 // The following include file and following structs/enums
51 // have been replicated on a per-use basis below. For example,
52 // llvm::AMDGPU::HSAMD::Kernel::Metadata has several fields,
53 // but we may care only about kernargSegmentSize_ for now, so
54 // we just include that field in our KernelMD implementation. We
55 // chose this approach to replicate in order to avoid forcing
56 // a dependency on LLVM_INCLUDE_DIR just to compile the runtime.
57 // #include "llvm/Support/AMDGPUMetadata.h"
58 // typedef llvm::AMDGPU::HSAMD::Metadata CodeObjectMD;
59 // typedef llvm::AMDGPU::HSAMD::Kernel::Metadata KernelMD;
60 // typedef llvm::AMDGPU::HSAMD::Kernel::Arg::Metadata KernelArgMD;
61 // using llvm::AMDGPU::HSAMD::AccessQualifier;
62 // using llvm::AMDGPU::HSAMD::AddressSpaceQualifier;
63 // using llvm::AMDGPU::HSAMD::ValueKind;
64 // using llvm::AMDGPU::HSAMD::ValueType;
65 
66 class KernelArgMD {
67 public:
68   enum class ValueKind {
69     HiddenGlobalOffsetX,
70     HiddenGlobalOffsetY,
71     HiddenGlobalOffsetZ,
72     HiddenNone,
73     HiddenPrintfBuffer,
74     HiddenDefaultQueue,
75     HiddenCompletionAction,
76     HiddenMultiGridSyncArg,
77     HiddenHostcallBuffer,
78     Unknown
79   };
80 
81   KernelArgMD()
82       : name_(std::string()), typeName_(std::string()), size_(0), offset_(0),
83         align_(0), valueKind_(ValueKind::Unknown) {}
84 
85   // fields
86   std::string name_;
87   std::string typeName_;
88   uint32_t size_;
89   uint32_t offset_;
90   uint32_t align_;
91   ValueKind valueKind_;
92 };
93 
94 class KernelMD {
95 public:
96   KernelMD() : kernargSegmentSize_(0ull) {}
97 
98   // fields
99   uint64_t kernargSegmentSize_;
100 };
101 
102 static const std::map<std::string, KernelArgMD::ValueKind> ArgValueKind = {
103     //    Including only those fields that are relevant to the runtime.
104     //    {"ByValue", KernelArgMD::ValueKind::ByValue},
105     //    {"GlobalBuffer", KernelArgMD::ValueKind::GlobalBuffer},
106     //    {"DynamicSharedPointer",
107     //    KernelArgMD::ValueKind::DynamicSharedPointer},
108     //    {"Sampler", KernelArgMD::ValueKind::Sampler},
109     //    {"Image", KernelArgMD::ValueKind::Image},
110     //    {"Pipe", KernelArgMD::ValueKind::Pipe},
111     //    {"Queue", KernelArgMD::ValueKind::Queue},
112     {"HiddenGlobalOffsetX", KernelArgMD::ValueKind::HiddenGlobalOffsetX},
113     {"HiddenGlobalOffsetY", KernelArgMD::ValueKind::HiddenGlobalOffsetY},
114     {"HiddenGlobalOffsetZ", KernelArgMD::ValueKind::HiddenGlobalOffsetZ},
115     {"HiddenNone", KernelArgMD::ValueKind::HiddenNone},
116     {"HiddenPrintfBuffer", KernelArgMD::ValueKind::HiddenPrintfBuffer},
117     {"HiddenDefaultQueue", KernelArgMD::ValueKind::HiddenDefaultQueue},
118     {"HiddenCompletionAction", KernelArgMD::ValueKind::HiddenCompletionAction},
119     {"HiddenMultiGridSyncArg", KernelArgMD::ValueKind::HiddenMultiGridSyncArg},
120     {"HiddenHostcallBuffer", KernelArgMD::ValueKind::HiddenHostcallBuffer},
121     // v3
122     //    {"by_value", KernelArgMD::ValueKind::ByValue},
123     //    {"global_buffer", KernelArgMD::ValueKind::GlobalBuffer},
124     //    {"dynamic_shared_pointer",
125     //    KernelArgMD::ValueKind::DynamicSharedPointer},
126     //    {"sampler", KernelArgMD::ValueKind::Sampler},
127     //    {"image", KernelArgMD::ValueKind::Image},
128     //    {"pipe", KernelArgMD::ValueKind::Pipe},
129     //    {"queue", KernelArgMD::ValueKind::Queue},
130     {"hidden_global_offset_x", KernelArgMD::ValueKind::HiddenGlobalOffsetX},
131     {"hidden_global_offset_y", KernelArgMD::ValueKind::HiddenGlobalOffsetY},
132     {"hidden_global_offset_z", KernelArgMD::ValueKind::HiddenGlobalOffsetZ},
133     {"hidden_none", KernelArgMD::ValueKind::HiddenNone},
134     {"hidden_printf_buffer", KernelArgMD::ValueKind::HiddenPrintfBuffer},
135     {"hidden_default_queue", KernelArgMD::ValueKind::HiddenDefaultQueue},
136     {"hidden_completion_action",
137      KernelArgMD::ValueKind::HiddenCompletionAction},
138     {"hidden_multigrid_sync_arg",
139      KernelArgMD::ValueKind::HiddenMultiGridSyncArg},
140     {"hidden_hostcall_buffer", KernelArgMD::ValueKind::HiddenHostcallBuffer},
141 };
142 
143 // global variables. TODO: Get rid of these
144 atmi_machine_t g_atmi_machine;
145 ATLMachine g_atl_machine;
146 
147 std::vector<hsa_amd_memory_pool_t> atl_gpu_kernarg_pools;
148 
149 std::vector<std::map<std::string, atl_kernel_info_t>> KernelInfoTable;
150 std::vector<std::map<std::string, atl_symbol_info_t>> SymbolInfoTable;
151 
152 bool g_atmi_initialized = false;
153 bool g_atmi_hostcall_required = false;
154 
155 /*
156    atlc is all internal global values.
157    The structure atl_context_t is defined in atl_internal.h
158    Most references will use the global structure prefix atlc.
159 */
160 atl_context_t atlc = {.struct_initialized = false};
161 
162 namespace core {
163 /* Machine Info */
164 atmi_machine_t *Runtime::GetMachineInfo() {
165   if (!atlc.g_hsa_initialized)
166     return NULL;
167   return &g_atmi_machine;
168 }
169 
170 static void atl_set_atmi_initialized() {
171   // FIXME: thread safe? locks?
172   g_atmi_initialized = true;
173 }
174 
175 static void atl_reset_atmi_initialized() {
176   // FIXME: thread safe? locks?
177   g_atmi_initialized = false;
178 }
179 
180 bool atl_is_atmi_initialized() { return g_atmi_initialized; }
181 
182 hsa_status_t allow_access_to_all_gpu_agents(void *ptr) {
183   std::vector<ATLGPUProcessor> &gpu_procs =
184       g_atl_machine.processors<ATLGPUProcessor>();
185   std::vector<hsa_agent_t> agents;
186   for (uint32_t i = 0; i < gpu_procs.size(); i++) {
187     agents.push_back(gpu_procs[i].agent());
188   }
189   return hsa_amd_agents_allow_access(agents.size(), &agents[0], NULL, ptr);
190 }
191 
192 atmi_status_t Runtime::Initialize() {
193   atmi_devtype_t devtype = ATMI_DEVTYPE_GPU;
194   if (atl_is_atmi_initialized())
195     return ATMI_STATUS_SUCCESS;
196 
197   if (devtype == ATMI_DEVTYPE_ALL || devtype & ATMI_DEVTYPE_GPU) {
198     atmi_status_t rc = atl_init_gpu_context();
199     if (rc != ATMI_STATUS_SUCCESS) {
200       printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, "GPU context init",
201              get_atmi_error_string(atl_init_gpu_context()));
202       return rc;
203     }
204   }
205 
206   atl_set_atmi_initialized();
207   return ATMI_STATUS_SUCCESS;
208 }
209 
210 atmi_status_t Runtime::Finalize() {
211   atmi_status_t rc = ATMI_STATUS_SUCCESS;
212   for (uint32_t i = 0; i < SymbolInfoTable.size(); i++) {
213     SymbolInfoTable[i].clear();
214   }
215   SymbolInfoTable.clear();
216   for (uint32_t i = 0; i < KernelInfoTable.size(); i++) {
217     KernelInfoTable[i].clear();
218   }
219   KernelInfoTable.clear();
220 
221   atl_reset_atmi_initialized();
222   hsa_status_t err = hsa_shut_down();
223   if (err != HSA_STATUS_SUCCESS) {
224     printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, "Shutting down HSA",
225            get_error_string(err));
226     rc = ATMI_STATUS_ERROR;
227   }
228 
229   return rc;
230 }
231 
232 static void atmi_init_context_structs() {
233   atlc.struct_initialized = true; /* This only gets called one time */
234   atlc.g_hsa_initialized = false;
235   atlc.g_gpu_initialized = false;
236   atlc.g_tasks_initialized = false;
237 }
238 
239 // Implement memory_pool iteration function
240 static hsa_status_t get_memory_pool_info(hsa_amd_memory_pool_t memory_pool,
241                                          void *data) {
242   ATLProcessor *proc = reinterpret_cast<ATLProcessor *>(data);
243   hsa_status_t err = HSA_STATUS_SUCCESS;
244   // Check if the memory_pool is allowed to allocate, i.e. do not return group
245   // memory
246   bool alloc_allowed = false;
247   err = hsa_amd_memory_pool_get_info(
248       memory_pool, HSA_AMD_MEMORY_POOL_INFO_RUNTIME_ALLOC_ALLOWED,
249       &alloc_allowed);
250   if (err != HSA_STATUS_SUCCESS) {
251     printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
252            "Alloc allowed in memory pool check", get_error_string(err));
253     return err;
254   }
255   if (alloc_allowed) {
256     uint32_t global_flag = 0;
257     err = hsa_amd_memory_pool_get_info(
258         memory_pool, HSA_AMD_MEMORY_POOL_INFO_GLOBAL_FLAGS, &global_flag);
259     if (err != HSA_STATUS_SUCCESS) {
260       printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
261              "Get memory pool info", get_error_string(err));
262       return err;
263     }
264     if (HSA_AMD_MEMORY_POOL_GLOBAL_FLAG_FINE_GRAINED & global_flag) {
265       ATLMemory new_mem(memory_pool, *proc, ATMI_MEMTYPE_FINE_GRAINED);
266       proc->addMemory(new_mem);
267       if (HSA_AMD_MEMORY_POOL_GLOBAL_FLAG_KERNARG_INIT & global_flag) {
268         DEBUG_PRINT("GPU kernel args pool handle: %lu\n", memory_pool.handle);
269         atl_gpu_kernarg_pools.push_back(memory_pool);
270       }
271     } else {
272       ATLMemory new_mem(memory_pool, *proc, ATMI_MEMTYPE_COARSE_GRAINED);
273       proc->addMemory(new_mem);
274     }
275   }
276 
277   return err;
278 }
279 
280 static hsa_status_t get_agent_info(hsa_agent_t agent, void *data) {
281   hsa_status_t err = HSA_STATUS_SUCCESS;
282   hsa_device_type_t device_type;
283   err = hsa_agent_get_info(agent, HSA_AGENT_INFO_DEVICE, &device_type);
284   if (err != HSA_STATUS_SUCCESS) {
285     printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
286            "Get device type info", get_error_string(err));
287     return err;
288   }
289   switch (device_type) {
290   case HSA_DEVICE_TYPE_CPU: {
291     ATLCPUProcessor new_proc(agent);
292     err = hsa_amd_agent_iterate_memory_pools(agent, get_memory_pool_info,
293                                              &new_proc);
294     if (err != HSA_STATUS_SUCCESS) {
295       printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
296              "Iterate all memory pools", get_error_string(err));
297       return err;
298     }
299     g_atl_machine.addProcessor(new_proc);
300   } break;
301   case HSA_DEVICE_TYPE_GPU: {
302     hsa_profile_t profile;
303     err = hsa_agent_get_info(agent, HSA_AGENT_INFO_PROFILE, &profile);
304     if (err != HSA_STATUS_SUCCESS) {
305       printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
306              "Query the agent profile", get_error_string(err));
307       return err;
308     }
309     atmi_devtype_t gpu_type;
310     gpu_type =
311         (profile == HSA_PROFILE_FULL) ? ATMI_DEVTYPE_iGPU : ATMI_DEVTYPE_dGPU;
312     ATLGPUProcessor new_proc(agent, gpu_type);
313     err = hsa_amd_agent_iterate_memory_pools(agent, get_memory_pool_info,
314                                              &new_proc);
315     if (err != HSA_STATUS_SUCCESS) {
316       printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
317              "Iterate all memory pools", get_error_string(err));
318       return err;
319     }
320     g_atl_machine.addProcessor(new_proc);
321   } break;
322   case HSA_DEVICE_TYPE_DSP: {
323     err = HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
324   } break;
325   }
326 
327   return err;
328 }
329 
330 hsa_status_t get_fine_grained_region(hsa_region_t region, void *data) {
331   hsa_region_segment_t segment;
332   hsa_region_get_info(region, HSA_REGION_INFO_SEGMENT, &segment);
333   if (segment != HSA_REGION_SEGMENT_GLOBAL) {
334     return HSA_STATUS_SUCCESS;
335   }
336   hsa_region_global_flag_t flags;
337   hsa_region_get_info(region, HSA_REGION_INFO_GLOBAL_FLAGS, &flags);
338   if (flags & HSA_REGION_GLOBAL_FLAG_FINE_GRAINED) {
339     hsa_region_t *ret = reinterpret_cast<hsa_region_t *>(data);
340     *ret = region;
341     return HSA_STATUS_INFO_BREAK;
342   }
343   return HSA_STATUS_SUCCESS;
344 }
345 
346 /* Determines if a memory region can be used for kernarg allocations.  */
347 static hsa_status_t get_kernarg_memory_region(hsa_region_t region, void *data) {
348   hsa_region_segment_t segment;
349   hsa_region_get_info(region, HSA_REGION_INFO_SEGMENT, &segment);
350   if (HSA_REGION_SEGMENT_GLOBAL != segment) {
351     return HSA_STATUS_SUCCESS;
352   }
353 
354   hsa_region_global_flag_t flags;
355   hsa_region_get_info(region, HSA_REGION_INFO_GLOBAL_FLAGS, &flags);
356   if (flags & HSA_REGION_GLOBAL_FLAG_KERNARG) {
357     hsa_region_t *ret = reinterpret_cast<hsa_region_t *>(data);
358     *ret = region;
359     return HSA_STATUS_INFO_BREAK;
360   }
361 
362   return HSA_STATUS_SUCCESS;
363 }
364 
365 static hsa_status_t init_compute_and_memory() {
366   hsa_status_t err;
367 
368   /* Iterate over the agents and pick the gpu agent */
369   err = hsa_iterate_agents(get_agent_info, NULL);
370   if (err == HSA_STATUS_INFO_BREAK) {
371     err = HSA_STATUS_SUCCESS;
372   }
373   if (err != HSA_STATUS_SUCCESS) {
374     printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, "Getting a gpu agent",
375            get_error_string(err));
376     return err;
377   }
378 
379   /* Init all devices or individual device types? */
380   std::vector<ATLCPUProcessor> &cpu_procs =
381       g_atl_machine.processors<ATLCPUProcessor>();
382   std::vector<ATLGPUProcessor> &gpu_procs =
383       g_atl_machine.processors<ATLGPUProcessor>();
384   /* For CPU memory pools, add other devices that can access them directly
385    * or indirectly */
386   for (auto &cpu_proc : cpu_procs) {
387     for (auto &cpu_mem : cpu_proc.memories()) {
388       hsa_amd_memory_pool_t pool = cpu_mem.memory();
389       for (auto &gpu_proc : gpu_procs) {
390         hsa_agent_t agent = gpu_proc.agent();
391         hsa_amd_memory_pool_access_t access;
392         hsa_amd_agent_memory_pool_get_info(
393             agent, pool, HSA_AMD_AGENT_MEMORY_POOL_INFO_ACCESS, &access);
394         if (access != 0) {
395           // this means not NEVER, but could be YES or NO
396           // add this memory pool to the proc
397           gpu_proc.addMemory(cpu_mem);
398         }
399       }
400     }
401   }
402 
403   /* FIXME: are the below combinations of procs and memory pools needed?
404    * all to all compare procs with their memory pools and add those memory
405    * pools that are accessible by the target procs */
406   for (auto &gpu_proc : gpu_procs) {
407     for (auto &gpu_mem : gpu_proc.memories()) {
408       hsa_amd_memory_pool_t pool = gpu_mem.memory();
409       for (auto &cpu_proc : cpu_procs) {
410         hsa_agent_t agent = cpu_proc.agent();
411         hsa_amd_memory_pool_access_t access;
412         hsa_amd_agent_memory_pool_get_info(
413             agent, pool, HSA_AMD_AGENT_MEMORY_POOL_INFO_ACCESS, &access);
414         if (access != 0) {
415           // this means not NEVER, but could be YES or NO
416           // add this memory pool to the proc
417           cpu_proc.addMemory(gpu_mem);
418         }
419       }
420     }
421   }
422 
423   g_atmi_machine.device_count_by_type[ATMI_DEVTYPE_CPU] = cpu_procs.size();
424   g_atmi_machine.device_count_by_type[ATMI_DEVTYPE_GPU] = gpu_procs.size();
425 
426   size_t num_procs = cpu_procs.size() + gpu_procs.size();
427   // g_atmi_machine.devices = (atmi_device_t *)malloc(num_procs *
428   // sizeof(atmi_device_t));
429   atmi_device_t *all_devices = reinterpret_cast<atmi_device_t *>(
430       malloc(num_procs * sizeof(atmi_device_t)));
431   int num_iGPUs = 0;
432   int num_dGPUs = 0;
433   for (uint32_t i = 0; i < gpu_procs.size(); i++) {
434     if (gpu_procs[i].type() == ATMI_DEVTYPE_iGPU)
435       num_iGPUs++;
436     else
437       num_dGPUs++;
438   }
439   assert(num_iGPUs + num_dGPUs == gpu_procs.size() &&
440          "Number of dGPUs and iGPUs do not add up");
441   DEBUG_PRINT("CPU Agents: %lu\n", cpu_procs.size());
442   DEBUG_PRINT("iGPU Agents: %d\n", num_iGPUs);
443   DEBUG_PRINT("dGPU Agents: %d\n", num_dGPUs);
444   DEBUG_PRINT("GPU Agents: %lu\n", gpu_procs.size());
445 
446   g_atmi_machine.device_count_by_type[ATMI_DEVTYPE_iGPU] = num_iGPUs;
447   g_atmi_machine.device_count_by_type[ATMI_DEVTYPE_dGPU] = num_dGPUs;
448 
449   int cpus_begin = 0;
450   int cpus_end = cpu_procs.size();
451   int gpus_begin = cpu_procs.size();
452   int gpus_end = cpu_procs.size() + gpu_procs.size();
453   g_atmi_machine.devices_by_type[ATMI_DEVTYPE_CPU] = &all_devices[cpus_begin];
454   g_atmi_machine.devices_by_type[ATMI_DEVTYPE_GPU] = &all_devices[gpus_begin];
455   g_atmi_machine.devices_by_type[ATMI_DEVTYPE_iGPU] = &all_devices[gpus_begin];
456   g_atmi_machine.devices_by_type[ATMI_DEVTYPE_dGPU] = &all_devices[gpus_begin];
457   int proc_index = 0;
458   for (int i = cpus_begin; i < cpus_end; i++) {
459     all_devices[i].type = cpu_procs[proc_index].type();
460 
461     std::vector<ATLMemory> memories = cpu_procs[proc_index].memories();
462     int fine_memories_size = 0;
463     int coarse_memories_size = 0;
464     DEBUG_PRINT("CPU memory types:\t");
465     for (auto &memory : memories) {
466       atmi_memtype_t type = memory.type();
467       if (type == ATMI_MEMTYPE_FINE_GRAINED) {
468         fine_memories_size++;
469         DEBUG_PRINT("Fine\t");
470       } else {
471         coarse_memories_size++;
472         DEBUG_PRINT("Coarse\t");
473       }
474     }
475     DEBUG_PRINT("\nFine Memories : %d", fine_memories_size);
476     DEBUG_PRINT("\tCoarse Memories : %d\n", coarse_memories_size);
477     proc_index++;
478   }
479   proc_index = 0;
480   for (int i = gpus_begin; i < gpus_end; i++) {
481     all_devices[i].type = gpu_procs[proc_index].type();
482 
483     std::vector<ATLMemory> memories = gpu_procs[proc_index].memories();
484     int fine_memories_size = 0;
485     int coarse_memories_size = 0;
486     DEBUG_PRINT("GPU memory types:\t");
487     for (auto &memory : memories) {
488       atmi_memtype_t type = memory.type();
489       if (type == ATMI_MEMTYPE_FINE_GRAINED) {
490         fine_memories_size++;
491         DEBUG_PRINT("Fine\t");
492       } else {
493         coarse_memories_size++;
494         DEBUG_PRINT("Coarse\t");
495       }
496     }
497     DEBUG_PRINT("\nFine Memories : %d", fine_memories_size);
498     DEBUG_PRINT("\tCoarse Memories : %d\n", coarse_memories_size);
499     proc_index++;
500   }
501   proc_index = 0;
502   hsa_region_t atl_cpu_kernarg_region;
503   atl_cpu_kernarg_region.handle = (uint64_t)-1;
504   if (cpu_procs.size() > 0) {
505     err = hsa_agent_iterate_regions(
506         cpu_procs[0].agent(), get_fine_grained_region, &atl_cpu_kernarg_region);
507     if (err == HSA_STATUS_INFO_BREAK) {
508       err = HSA_STATUS_SUCCESS;
509     }
510     err = (atl_cpu_kernarg_region.handle == (uint64_t)-1) ? HSA_STATUS_ERROR
511                                                           : HSA_STATUS_SUCCESS;
512     if (err != HSA_STATUS_SUCCESS) {
513       printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
514              "Finding a CPU kernarg memory region handle",
515              get_error_string(err));
516       return err;
517     }
518   }
519   hsa_region_t atl_gpu_kernarg_region;
520   /* Find a memory region that supports kernel arguments.  */
521   atl_gpu_kernarg_region.handle = (uint64_t)-1;
522   if (gpu_procs.size() > 0) {
523     hsa_agent_iterate_regions(gpu_procs[0].agent(), get_kernarg_memory_region,
524                               &atl_gpu_kernarg_region);
525     err = (atl_gpu_kernarg_region.handle == (uint64_t)-1) ? HSA_STATUS_ERROR
526                                                           : HSA_STATUS_SUCCESS;
527     if (err != HSA_STATUS_SUCCESS) {
528       printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
529              "Finding a kernarg memory region", get_error_string(err));
530       return err;
531     }
532   }
533   if (num_procs > 0)
534     return HSA_STATUS_SUCCESS;
535   else
536     return HSA_STATUS_ERROR_NOT_INITIALIZED;
537 }
538 
539 hsa_status_t init_hsa() {
540   if (atlc.g_hsa_initialized == false) {
541     DEBUG_PRINT("Initializing HSA...");
542     hsa_status_t err = hsa_init();
543     if (err != HSA_STATUS_SUCCESS) {
544       printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
545              "Initializing the hsa runtime", get_error_string(err));
546       return err;
547     }
548     if (err != HSA_STATUS_SUCCESS)
549       return err;
550 
551     err = init_compute_and_memory();
552     if (err != HSA_STATUS_SUCCESS)
553       return err;
554     if (err != HSA_STATUS_SUCCESS) {
555       printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
556              "After initializing compute and memory", get_error_string(err));
557       return err;
558     }
559 
560     int gpu_count = g_atl_machine.processorCount<ATLGPUProcessor>();
561     KernelInfoTable.resize(gpu_count);
562     SymbolInfoTable.resize(gpu_count);
563     for (uint32_t i = 0; i < SymbolInfoTable.size(); i++)
564       SymbolInfoTable[i].clear();
565     for (uint32_t i = 0; i < KernelInfoTable.size(); i++)
566       KernelInfoTable[i].clear();
567     atlc.g_hsa_initialized = true;
568     DEBUG_PRINT("done\n");
569   }
570   return HSA_STATUS_SUCCESS;
571 }
572 
573 void init_tasks() {
574   if (atlc.g_tasks_initialized != false)
575     return;
576   std::vector<hsa_agent_t> gpu_agents;
577   int gpu_count = g_atl_machine.processorCount<ATLGPUProcessor>();
578   for (int gpu = 0; gpu < gpu_count; gpu++) {
579     atmi_place_t place = ATMI_PLACE_GPU(0, gpu);
580     ATLGPUProcessor &proc = get_processor<ATLGPUProcessor>(place);
581     gpu_agents.push_back(proc.agent());
582   }
583   atlc.g_tasks_initialized = true;
584 }
585 
586 hsa_status_t callbackEvent(const hsa_amd_event_t *event, void *data) {
587 #if (ROCM_VERSION_MAJOR >= 3) ||                                               \
588     (ROCM_VERSION_MAJOR >= 2 && ROCM_VERSION_MINOR >= 3)
589   if (event->event_type == HSA_AMD_GPU_MEMORY_FAULT_EVENT) {
590 #else
591   if (event->event_type == GPU_MEMORY_FAULT_EVENT) {
592 #endif
593     hsa_amd_gpu_memory_fault_info_t memory_fault = event->memory_fault;
594     // memory_fault.agent
595     // memory_fault.virtual_address
596     // memory_fault.fault_reason_mask
597     // fprintf("[GPU Error at %p: Reason is ", memory_fault.virtual_address);
598     std::stringstream stream;
599     stream << std::hex << (uintptr_t)memory_fault.virtual_address;
600     std::string addr("0x" + stream.str());
601 
602     std::string err_string = "[GPU Memory Error] Addr: " + addr;
603     err_string += " Reason: ";
604     if (!(memory_fault.fault_reason_mask & 0x00111111)) {
605       err_string += "No Idea! ";
606     } else {
607       if (memory_fault.fault_reason_mask & 0x00000001)
608         err_string += "Page not present or supervisor privilege. ";
609       if (memory_fault.fault_reason_mask & 0x00000010)
610         err_string += "Write access to a read-only page. ";
611       if (memory_fault.fault_reason_mask & 0x00000100)
612         err_string += "Execute access to a page marked NX. ";
613       if (memory_fault.fault_reason_mask & 0x00001000)
614         err_string += "Host access only. ";
615       if (memory_fault.fault_reason_mask & 0x00010000)
616         err_string += "ECC failure (if supported by HW). ";
617       if (memory_fault.fault_reason_mask & 0x00100000)
618         err_string += "Can't determine the exact fault address. ";
619     }
620     fprintf(stderr, "%s\n", err_string.c_str());
621     return HSA_STATUS_ERROR;
622   }
623   return HSA_STATUS_SUCCESS;
624 }
625 
626 atmi_status_t atl_init_gpu_context() {
627   if (atlc.struct_initialized == false)
628     atmi_init_context_structs();
629   if (atlc.g_gpu_initialized != false)
630     return ATMI_STATUS_SUCCESS;
631 
632   hsa_status_t err;
633   err = init_hsa();
634   if (err != HSA_STATUS_SUCCESS)
635     return ATMI_STATUS_ERROR;
636 
637   err = hsa_amd_register_system_event_handler(callbackEvent, NULL);
638   if (err != HSA_STATUS_SUCCESS) {
639     printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
640            "Registering the system for memory faults", get_error_string(err));
641     return ATMI_STATUS_ERROR;
642   }
643 
644   init_tasks();
645   atlc.g_gpu_initialized = true;
646   return ATMI_STATUS_SUCCESS;
647 }
648 
649 static bool isImplicit(KernelArgMD::ValueKind value_kind) {
650   switch (value_kind) {
651   case KernelArgMD::ValueKind::HiddenGlobalOffsetX:
652   case KernelArgMD::ValueKind::HiddenGlobalOffsetY:
653   case KernelArgMD::ValueKind::HiddenGlobalOffsetZ:
654   case KernelArgMD::ValueKind::HiddenNone:
655   case KernelArgMD::ValueKind::HiddenPrintfBuffer:
656   case KernelArgMD::ValueKind::HiddenDefaultQueue:
657   case KernelArgMD::ValueKind::HiddenCompletionAction:
658   case KernelArgMD::ValueKind::HiddenMultiGridSyncArg:
659   case KernelArgMD::ValueKind::HiddenHostcallBuffer:
660     return true;
661   default:
662     return false;
663   }
664 }
665 
666 static std::pair<unsigned char *, unsigned char *>
667 find_metadata(void *binary, size_t binSize) {
668   std::pair<unsigned char *, unsigned char *> failure = {nullptr, nullptr};
669 
670   Elf *e = elf_memory(static_cast<char *>(binary), binSize);
671   if (elf_kind(e) != ELF_K_ELF) {
672     return failure;
673   }
674 
675   size_t numpHdrs;
676   if (elf_getphdrnum(e, &numpHdrs) != 0) {
677     return failure;
678   }
679 
680   for (size_t i = 0; i < numpHdrs; ++i) {
681     GElf_Phdr pHdr;
682     if (gelf_getphdr(e, i, &pHdr) != &pHdr) {
683       continue;
684     }
685     // Look for the runtime metadata note
686     if (pHdr.p_type == PT_NOTE && pHdr.p_align >= sizeof(int)) {
687       // Iterate over the notes in this segment
688       address ptr = (address)binary + pHdr.p_offset;
689       address segmentEnd = ptr + pHdr.p_filesz;
690 
691       while (ptr < segmentEnd) {
692         Elf_Note *note = reinterpret_cast<Elf_Note *>(ptr);
693         address name = (address)&note[1];
694 
695         if (note->n_type == 7 || note->n_type == 8) {
696           return failure;
697         } else if (note->n_type == 10 /* NT_AMD_AMDGPU_HSA_METADATA */ &&
698                    note->n_namesz == sizeof "AMD" &&
699                    !memcmp(name, "AMD", note->n_namesz)) {
700           // code object v2 uses yaml metadata, no longer supported
701           return failure;
702         } else if (note->n_type == 32 /* NT_AMDGPU_METADATA */ &&
703                    note->n_namesz == sizeof "AMDGPU" &&
704                    !memcmp(name, "AMDGPU", note->n_namesz)) {
705 
706           // n_descsz = 485
707           // value is padded to 4 byte alignment, may want to move end up to
708           // match
709           size_t offset = sizeof(uint32_t) * 3 /* fields */
710                           + sizeof("AMDGPU")   /* name */
711                           + 1 /* padding to 4 byte alignment */;
712 
713           // Including the trailing padding means both pointers are 4 bytes
714           // aligned, which may be useful later.
715           unsigned char *metadata_start = (unsigned char *)ptr + offset;
716           unsigned char *metadata_end =
717               metadata_start + core::alignUp(note->n_descsz, 4);
718           return {metadata_start, metadata_end};
719         }
720         ptr += sizeof(*note) + core::alignUp(note->n_namesz, sizeof(int)) +
721                core::alignUp(note->n_descsz, sizeof(int));
722       }
723     }
724   }
725 
726   return failure;
727 }
728 
729 namespace {
730 int map_lookup_array(msgpack::byte_range message, const char *needle,
731                      msgpack::byte_range *res, uint64_t *size) {
732   unsigned count = 0;
733   struct s : msgpack::functors_defaults<s> {
734     s(unsigned &count, uint64_t *size) : count(count), size(size) {}
735     unsigned &count;
736     uint64_t *size;
737     const unsigned char *handle_array(uint64_t N, msgpack::byte_range bytes) {
738       count++;
739       *size = N;
740       return bytes.end;
741     }
742   };
743 
744   msgpack::foreach_map(message,
745                        [&](msgpack::byte_range key, msgpack::byte_range value) {
746                          if (msgpack::message_is_string(key, needle)) {
747                            // If the message is an array, record number of
748                            // elements in *size
749                            msgpack::handle_msgpack<s>(value, {count, size});
750                            // return the whole array
751                            *res = value;
752                          }
753                        });
754   // Only claim success if exactly one key/array pair matched
755   return count != 1;
756 }
757 
758 int map_lookup_string(msgpack::byte_range message, const char *needle,
759                       std::string *res) {
760   unsigned count = 0;
761   struct s : public msgpack::functors_defaults<s> {
762     s(unsigned &count, std::string *res) : count(count), res(res) {}
763     unsigned &count;
764     std::string *res;
765     void handle_string(size_t N, const unsigned char *str) {
766       count++;
767       *res = std::string(str, str + N);
768     }
769   };
770   msgpack::foreach_map(message,
771                        [&](msgpack::byte_range key, msgpack::byte_range value) {
772                          if (msgpack::message_is_string(key, needle)) {
773                            msgpack::handle_msgpack<s>(value, {count, res});
774                          }
775                        });
776   return count != 1;
777 }
778 
779 int map_lookup_uint64_t(msgpack::byte_range message, const char *needle,
780                         uint64_t *res) {
781   unsigned count = 0;
782   msgpack::foreach_map(message,
783                        [&](msgpack::byte_range key, msgpack::byte_range value) {
784                          if (msgpack::message_is_string(key, needle)) {
785                            msgpack::foronly_unsigned(value, [&](uint64_t x) {
786                              count++;
787                              *res = x;
788                            });
789                          }
790                        });
791   return count != 1;
792 }
793 
794 int array_lookup_element(msgpack::byte_range message, uint64_t elt,
795                          msgpack::byte_range *res) {
796   int rc = 1;
797   uint64_t i = 0;
798   msgpack::foreach_array(message, [&](msgpack::byte_range value) {
799     if (i == elt) {
800       *res = value;
801       rc = 0;
802     }
803     i++;
804   });
805   return rc;
806 }
807 
808 int populate_kernelArgMD(msgpack::byte_range args_element,
809                          KernelArgMD *kernelarg) {
810   using namespace msgpack;
811   int error = 0;
812   foreach_map(args_element, [&](byte_range key, byte_range value) -> void {
813     if (message_is_string(key, ".name")) {
814       foronly_string(value, [&](size_t N, const unsigned char *str) {
815         kernelarg->name_ = std::string(str, str + N);
816       });
817     } else if (message_is_string(key, ".type_name")) {
818       foronly_string(value, [&](size_t N, const unsigned char *str) {
819         kernelarg->typeName_ = std::string(str, str + N);
820       });
821     } else if (message_is_string(key, ".size")) {
822       foronly_unsigned(value, [&](uint64_t x) { kernelarg->size_ = x; });
823     } else if (message_is_string(key, ".offset")) {
824       foronly_unsigned(value, [&](uint64_t x) { kernelarg->offset_ = x; });
825     } else if (message_is_string(key, ".value_kind")) {
826       foronly_string(value, [&](size_t N, const unsigned char *str) {
827         std::string s = std::string(str, str + N);
828         auto itValueKind = ArgValueKind.find(s);
829         if (itValueKind != ArgValueKind.end()) {
830           kernelarg->valueKind_ = itValueKind->second;
831         }
832       });
833     }
834   });
835   return error;
836 }
837 } // namespace
838 
839 static hsa_status_t get_code_object_custom_metadata(void *binary,
840                                                     size_t binSize, int gpu) {
841   // parse code object with different keys from v2
842   // also, the kernel name is not the same as the symbol name -- so a
843   // symbol->name map is needed
844 
845   std::pair<unsigned char *, unsigned char *> metadata =
846       find_metadata(binary, binSize);
847   if (!metadata.first) {
848     return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
849   }
850 
851   uint64_t kernelsSize = 0;
852   int msgpack_errors = 0;
853   msgpack::byte_range kernel_array;
854   msgpack_errors =
855       map_lookup_array({metadata.first, metadata.second}, "amdhsa.kernels",
856                        &kernel_array, &kernelsSize);
857   if (msgpack_errors != 0) {
858     printf("[%s:%d] %s failed\n", __FILE__, __LINE__,
859            "kernels lookup in program metadata");
860     return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
861   }
862 
863   for (size_t i = 0; i < kernelsSize; i++) {
864     assert(msgpack_errors == 0);
865     std::string kernelName;
866     std::string symbolName;
867 
868     msgpack::byte_range element;
869     msgpack_errors += array_lookup_element(kernel_array, i, &element);
870     if (msgpack_errors != 0) {
871       printf("[%s:%d] %s failed\n", __FILE__, __LINE__,
872              "element lookup in kernel metadata");
873       return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
874     }
875 
876     msgpack_errors += map_lookup_string(element, ".name", &kernelName);
877     msgpack_errors += map_lookup_string(element, ".symbol", &symbolName);
878     if (msgpack_errors != 0) {
879       printf("[%s:%d] %s failed\n", __FILE__, __LINE__,
880              "strings lookup in kernel metadata");
881       return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
882     }
883 
884     // Make sure that kernelName + ".kd" == symbolName
885     if ((kernelName + ".kd") != symbolName) {
886       printf("[%s:%d] Kernel name mismatching symbol: %s != %s + .kd\n",
887              __FILE__, __LINE__, symbolName.c_str(), kernelName.c_str());
888       return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
889     }
890 
891     atl_kernel_info_t info = {0, 0, 0, 0, 0, 0, 0, 0, 0, {}, {}, {}};
892 
893     uint64_t sgpr_count, vgpr_count, sgpr_spill_count, vgpr_spill_count;
894     msgpack_errors += map_lookup_uint64_t(element, ".sgpr_count", &sgpr_count);
895     if (msgpack_errors != 0) {
896       printf("[%s:%d] %s failed\n", __FILE__, __LINE__,
897              "sgpr count metadata lookup in kernel metadata");
898       return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
899     }
900 
901     info.sgpr_count = sgpr_count;
902 
903     msgpack_errors += map_lookup_uint64_t(element, ".vgpr_count", &vgpr_count);
904     if (msgpack_errors != 0) {
905       printf("[%s:%d] %s failed\n", __FILE__, __LINE__,
906              "vgpr count metadata lookup in kernel metadata");
907       return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
908     }
909 
910     info.vgpr_count = vgpr_count;
911 
912     msgpack_errors +=
913         map_lookup_uint64_t(element, ".sgpr_spill_count", &sgpr_spill_count);
914     if (msgpack_errors != 0) {
915       printf("[%s:%d] %s failed\n", __FILE__, __LINE__,
916              "sgpr spill count metadata lookup in kernel metadata");
917       return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
918     }
919 
920     info.sgpr_spill_count = sgpr_spill_count;
921 
922     msgpack_errors +=
923         map_lookup_uint64_t(element, ".vgpr_spill_count", &vgpr_spill_count);
924     if (msgpack_errors != 0) {
925       printf("[%s:%d] %s failed\n", __FILE__, __LINE__,
926              "vgpr spill count metadata lookup in kernel metadata");
927       return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
928     }
929 
930     info.vgpr_spill_count = vgpr_spill_count;
931 
932     size_t kernel_explicit_args_size = 0;
933     uint64_t kernel_segment_size;
934     msgpack_errors += map_lookup_uint64_t(element, ".kernarg_segment_size",
935                                           &kernel_segment_size);
936     if (msgpack_errors != 0) {
937       printf("[%s:%d] %s failed\n", __FILE__, __LINE__,
938              "kernarg segment size metadata lookup in kernel metadata");
939       return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
940     }
941 
942     bool hasHiddenArgs = false;
943     if (kernel_segment_size > 0) {
944       uint64_t argsSize;
945       size_t offset = 0;
946 
947       msgpack::byte_range args_array;
948       msgpack_errors +=
949           map_lookup_array(element, ".args", &args_array, &argsSize);
950       if (msgpack_errors != 0) {
951         printf("[%s:%d] %s failed\n", __FILE__, __LINE__,
952                "kernel args metadata lookup in kernel metadata");
953         return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
954       }
955 
956       info.num_args = argsSize;
957 
958       for (size_t i = 0; i < argsSize; ++i) {
959         KernelArgMD lcArg;
960 
961         msgpack::byte_range args_element;
962         msgpack_errors += array_lookup_element(args_array, i, &args_element);
963         if (msgpack_errors != 0) {
964           printf("[%s:%d] %s failed\n", __FILE__, __LINE__,
965                  "iterate args map in kernel args metadata");
966           return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
967         }
968 
969         msgpack_errors += populate_kernelArgMD(args_element, &lcArg);
970         if (msgpack_errors != 0) {
971           printf("[%s:%d] %s failed\n", __FILE__, __LINE__,
972                  "iterate args map in kernel args metadata");
973           return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
974         }
975         // populate info with sizes and offsets
976         info.arg_sizes.push_back(lcArg.size_);
977         // v3 has offset field and not align field
978         size_t new_offset = lcArg.offset_;
979         size_t padding = new_offset - offset;
980         offset = new_offset;
981         info.arg_offsets.push_back(lcArg.offset_);
982         DEBUG_PRINT("Arg[%lu] \"%s\" (%u, %u)\n", i, lcArg.name_.c_str(),
983                     lcArg.size_, lcArg.offset_);
984         offset += lcArg.size_;
985 
986         // check if the arg is a hidden/implicit arg
987         // this logic assumes that all hidden args are 8-byte aligned
988         if (!isImplicit(lcArg.valueKind_)) {
989           kernel_explicit_args_size += lcArg.size_;
990         } else {
991           hasHiddenArgs = true;
992         }
993         kernel_explicit_args_size += padding;
994       }
995     }
996 
997     // add size of implicit args, e.g.: offset x, y and z and pipe pointer, but
998     // in ATMI, do not count the compiler set implicit args, but set your own
999     // implicit args by discounting the compiler set implicit args
1000     info.kernel_segment_size =
1001         (hasHiddenArgs ? kernel_explicit_args_size : kernel_segment_size) +
1002         sizeof(atmi_implicit_args_t);
1003     DEBUG_PRINT("[%s: kernarg seg size] (%lu --> %u)\n", kernelName.c_str(),
1004                 kernel_segment_size, info.kernel_segment_size);
1005 
1006     // kernel received, now add it to the kernel info table
1007     KernelInfoTable[gpu][kernelName] = info;
1008   }
1009 
1010   return HSA_STATUS_SUCCESS;
1011 }
1012 
1013 static hsa_status_t populate_InfoTables(hsa_executable_symbol_t symbol,
1014                                         int gpu) {
1015   hsa_symbol_kind_t type;
1016 
1017   uint32_t name_length;
1018   hsa_status_t err;
1019   err = hsa_executable_symbol_get_info(symbol, HSA_EXECUTABLE_SYMBOL_INFO_TYPE,
1020                                        &type);
1021   if (err != HSA_STATUS_SUCCESS) {
1022     printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
1023            "Symbol info extraction", get_error_string(err));
1024     return err;
1025   }
1026   DEBUG_PRINT("Exec Symbol type: %d\n", type);
1027   if (type == HSA_SYMBOL_KIND_KERNEL) {
1028     err = hsa_executable_symbol_get_info(
1029         symbol, HSA_EXECUTABLE_SYMBOL_INFO_NAME_LENGTH, &name_length);
1030     if (err != HSA_STATUS_SUCCESS) {
1031       printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
1032              "Symbol info extraction", get_error_string(err));
1033       return err;
1034     }
1035     char *name = reinterpret_cast<char *>(malloc(name_length + 1));
1036     err = hsa_executable_symbol_get_info(symbol,
1037                                          HSA_EXECUTABLE_SYMBOL_INFO_NAME, name);
1038     if (err != HSA_STATUS_SUCCESS) {
1039       printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
1040              "Symbol info extraction", get_error_string(err));
1041       return err;
1042     }
1043     // remove the suffix .kd from symbol name.
1044     name[name_length - 3] = 0;
1045 
1046     atl_kernel_info_t info;
1047     std::string kernelName(name);
1048     // by now, the kernel info table should already have an entry
1049     // because the non-ROCr custom code object parsing is called before
1050     // iterating over the code object symbols using ROCr
1051     if (KernelInfoTable[gpu].find(kernelName) == KernelInfoTable[gpu].end()) {
1052       return HSA_STATUS_ERROR;
1053     }
1054     // found, so assign and update
1055     info = KernelInfoTable[gpu][kernelName];
1056 
1057     /* Extract dispatch information from the symbol */
1058     err = hsa_executable_symbol_get_info(
1059         symbol, HSA_EXECUTABLE_SYMBOL_INFO_KERNEL_OBJECT,
1060         &(info.kernel_object));
1061     if (err != HSA_STATUS_SUCCESS) {
1062       printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
1063              "Extracting the symbol from the executable",
1064              get_error_string(err));
1065       return err;
1066     }
1067     err = hsa_executable_symbol_get_info(
1068         symbol, HSA_EXECUTABLE_SYMBOL_INFO_KERNEL_GROUP_SEGMENT_SIZE,
1069         &(info.group_segment_size));
1070     if (err != HSA_STATUS_SUCCESS) {
1071       printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
1072              "Extracting the group segment size from the executable",
1073              get_error_string(err));
1074       return err;
1075     }
1076     err = hsa_executable_symbol_get_info(
1077         symbol, HSA_EXECUTABLE_SYMBOL_INFO_KERNEL_PRIVATE_SEGMENT_SIZE,
1078         &(info.private_segment_size));
1079     if (err != HSA_STATUS_SUCCESS) {
1080       printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
1081              "Extracting the private segment from the executable",
1082              get_error_string(err));
1083       return err;
1084     }
1085 
1086     DEBUG_PRINT(
1087         "Kernel %s --> %lx symbol %u group segsize %u pvt segsize %u bytes "
1088         "kernarg\n",
1089         kernelName.c_str(), info.kernel_object, info.group_segment_size,
1090         info.private_segment_size, info.kernel_segment_size);
1091 
1092     // assign it back to the kernel info table
1093     KernelInfoTable[gpu][kernelName] = info;
1094     free(name);
1095   } else if (type == HSA_SYMBOL_KIND_VARIABLE) {
1096     err = hsa_executable_symbol_get_info(
1097         symbol, HSA_EXECUTABLE_SYMBOL_INFO_NAME_LENGTH, &name_length);
1098     if (err != HSA_STATUS_SUCCESS) {
1099       printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
1100              "Symbol info extraction", get_error_string(err));
1101       return err;
1102     }
1103     char *name = reinterpret_cast<char *>(malloc(name_length + 1));
1104     err = hsa_executable_symbol_get_info(symbol,
1105                                          HSA_EXECUTABLE_SYMBOL_INFO_NAME, name);
1106     if (err != HSA_STATUS_SUCCESS) {
1107       printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
1108              "Symbol info extraction", get_error_string(err));
1109       return err;
1110     }
1111     name[name_length] = 0;
1112 
1113     atl_symbol_info_t info;
1114 
1115     err = hsa_executable_symbol_get_info(
1116         symbol, HSA_EXECUTABLE_SYMBOL_INFO_VARIABLE_ADDRESS, &(info.addr));
1117     if (err != HSA_STATUS_SUCCESS) {
1118       printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
1119              "Symbol info address extraction", get_error_string(err));
1120       return err;
1121     }
1122 
1123     err = hsa_executable_symbol_get_info(
1124         symbol, HSA_EXECUTABLE_SYMBOL_INFO_VARIABLE_SIZE, &(info.size));
1125     if (err != HSA_STATUS_SUCCESS) {
1126       printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
1127              "Symbol info size extraction", get_error_string(err));
1128       return err;
1129     }
1130 
1131     atmi_mem_place_t place = ATMI_MEM_PLACE(ATMI_DEVTYPE_GPU, gpu, 0);
1132     DEBUG_PRINT("Symbol %s = %p (%u bytes)\n", name, (void *)info.addr,
1133                 info.size);
1134     err = register_allocation(reinterpret_cast<void *>(info.addr),
1135                               (size_t)info.size, place);
1136     if (err != HSA_STATUS_SUCCESS) {
1137       return err;
1138     }
1139     SymbolInfoTable[gpu][std::string(name)] = info;
1140     if (strcmp(name, "needs_hostcall_buffer") == 0)
1141       g_atmi_hostcall_required = true;
1142     free(name);
1143   } else {
1144     DEBUG_PRINT("Symbol is an indirect function\n");
1145   }
1146   return HSA_STATUS_SUCCESS;
1147 }
1148 
1149 atmi_status_t Runtime::RegisterModuleFromMemory(
1150     void *module_bytes, size_t module_size, atmi_place_t place,
1151     atmi_status_t (*on_deserialized_data)(void *data, size_t size,
1152                                           void *cb_state),
1153     void *cb_state, std::vector<hsa_executable_t> &HSAExecutables) {
1154   hsa_status_t err;
1155   int gpu = place.device_id;
1156   assert(gpu >= 0);
1157 
1158   DEBUG_PRINT("Trying to load module to GPU-%d\n", gpu);
1159   ATLGPUProcessor &proc = get_processor<ATLGPUProcessor>(place);
1160   hsa_agent_t agent = proc.agent();
1161   hsa_executable_t executable = {0};
1162   hsa_profile_t agent_profile;
1163 
1164   err = hsa_agent_get_info(agent, HSA_AGENT_INFO_PROFILE, &agent_profile);
1165   if (err != HSA_STATUS_SUCCESS) {
1166     printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
1167            "Query the agent profile", get_error_string(err));
1168     return ATMI_STATUS_ERROR;
1169   }
1170   // FIXME: Assume that every profile is FULL until we understand how to build
1171   // GCN with base profile
1172   agent_profile = HSA_PROFILE_FULL;
1173   /* Create the empty executable.  */
1174   err = hsa_executable_create(agent_profile, HSA_EXECUTABLE_STATE_UNFROZEN, "",
1175                               &executable);
1176   if (err != HSA_STATUS_SUCCESS) {
1177     printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
1178            "Create the executable", get_error_string(err));
1179     return ATMI_STATUS_ERROR;
1180   }
1181 
1182   bool module_load_success = false;
1183   do // Existing control flow used continue, preserve that for this patch
1184   {
1185     {
1186       // Some metadata info is not available through ROCr API, so use custom
1187       // code object metadata parsing to collect such metadata info
1188 
1189       err = get_code_object_custom_metadata(module_bytes, module_size, gpu);
1190       if (err != HSA_STATUS_SUCCESS) {
1191         DEBUG_PRINT("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
1192                     "Getting custom code object metadata",
1193                     get_error_string(err));
1194         continue;
1195       }
1196 
1197       // Deserialize code object.
1198       hsa_code_object_t code_object = {0};
1199       err = hsa_code_object_deserialize(module_bytes, module_size, NULL,
1200                                         &code_object);
1201       if (err != HSA_STATUS_SUCCESS) {
1202         DEBUG_PRINT("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
1203                     "Code Object Deserialization", get_error_string(err));
1204         continue;
1205       }
1206       assert(0 != code_object.handle);
1207 
1208       // Mutating the device image here avoids another allocation & memcpy
1209       void *code_object_alloc_data =
1210           reinterpret_cast<void *>(code_object.handle);
1211       atmi_status_t atmi_err =
1212           on_deserialized_data(code_object_alloc_data, module_size, cb_state);
1213       if (atmi_err != ATMI_STATUS_SUCCESS) {
1214         printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
1215                "Error in deserialized_data callback",
1216                get_atmi_error_string(atmi_err));
1217         return atmi_err;
1218       }
1219 
1220       /* Load the code object.  */
1221       err =
1222           hsa_executable_load_code_object(executable, agent, code_object, NULL);
1223       if (err != HSA_STATUS_SUCCESS) {
1224         DEBUG_PRINT("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
1225                     "Loading the code object", get_error_string(err));
1226         continue;
1227       }
1228 
1229       // cannot iterate over symbols until executable is frozen
1230     }
1231     module_load_success = true;
1232   } while (0);
1233   DEBUG_PRINT("Modules loaded successful? %d\n", module_load_success);
1234   if (module_load_success) {
1235     /* Freeze the executable; it can now be queried for symbols.  */
1236     err = hsa_executable_freeze(executable, "");
1237     if (err != HSA_STATUS_SUCCESS) {
1238       printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
1239              "Freeze the executable", get_error_string(err));
1240       return ATMI_STATUS_ERROR;
1241     }
1242 
1243     err = hsa::executable_iterate_symbols(
1244         executable,
1245         [&](hsa_executable_t, hsa_executable_symbol_t symbol) -> hsa_status_t {
1246           return populate_InfoTables(symbol, gpu);
1247         });
1248 
1249     if (err != HSA_STATUS_SUCCESS) {
1250       printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
1251              "Iterating over symbols for execuatable", get_error_string(err));
1252       return ATMI_STATUS_ERROR;
1253     }
1254 
1255     // save the executable and destroy during finalize
1256     HSAExecutables.push_back(executable);
1257     return ATMI_STATUS_SUCCESS;
1258   } else {
1259     return ATMI_STATUS_ERROR;
1260   }
1261 }
1262 
1263 } // namespace core
1264