1 /*===--------------------------------------------------------------------------
2  *              ATMI (Asynchronous Task and Memory Interface)
3  *
4  * This file is distributed under the MIT License. See LICENSE.txt for details.
5  *===------------------------------------------------------------------------*/
6 #include <gelf.h>
7 #include <libelf.h>
8 
9 #include <cassert>
10 #include <cstdarg>
11 #include <fstream>
12 #include <iomanip>
13 #include <iostream>
14 #include <set>
15 #include <string>
16 
17 #include "internal.h"
18 #include "machine.h"
19 #include "rt.h"
20 
21 #include "msgpack.h"
22 
23 namespace hsa {
24 // Wrap HSA iterate API in a shim that allows passing general callables
25 template <typename C>
26 hsa_status_t executable_iterate_symbols(hsa_executable_t executable, C cb) {
27   auto L = [](hsa_executable_t executable, hsa_executable_symbol_t symbol,
28               void *data) -> hsa_status_t {
29     C *unwrapped = static_cast<C *>(data);
30     return (*unwrapped)(executable, symbol);
31   };
32   return hsa_executable_iterate_symbols(executable, L,
33                                         static_cast<void *>(&cb));
34 }
35 } // namespace hsa
36 
37 typedef unsigned char *address;
38 /*
39  * Note descriptors.
40  */
41 typedef struct {
42   uint32_t n_namesz; /* Length of note's name. */
43   uint32_t n_descsz; /* Length of note's value. */
44   uint32_t n_type;   /* Type of note. */
45   // then name
46   // then padding, optional
47   // then desc, at 4 byte alignment (not 8, despite being elf64)
48 } Elf_Note;
49 
50 // The following include file and following structs/enums
51 // have been replicated on a per-use basis below. For example,
52 // llvm::AMDGPU::HSAMD::Kernel::Metadata has several fields,
53 // but we may care only about kernargSegmentSize_ for now, so
54 // we just include that field in our KernelMD implementation. We
55 // chose this approach to replicate in order to avoid forcing
56 // a dependency on LLVM_INCLUDE_DIR just to compile the runtime.
57 // #include "llvm/Support/AMDGPUMetadata.h"
58 // typedef llvm::AMDGPU::HSAMD::Metadata CodeObjectMD;
59 // typedef llvm::AMDGPU::HSAMD::Kernel::Metadata KernelMD;
60 // typedef llvm::AMDGPU::HSAMD::Kernel::Arg::Metadata KernelArgMD;
61 // using llvm::AMDGPU::HSAMD::AccessQualifier;
62 // using llvm::AMDGPU::HSAMD::AddressSpaceQualifier;
63 // using llvm::AMDGPU::HSAMD::ValueKind;
64 // using llvm::AMDGPU::HSAMD::ValueType;
65 
66 class KernelArgMD {
67 public:
68   enum class ValueKind {
69     HiddenGlobalOffsetX,
70     HiddenGlobalOffsetY,
71     HiddenGlobalOffsetZ,
72     HiddenNone,
73     HiddenPrintfBuffer,
74     HiddenDefaultQueue,
75     HiddenCompletionAction,
76     HiddenMultiGridSyncArg,
77     HiddenHostcallBuffer,
78     Unknown
79   };
80 
81   KernelArgMD()
82       : name_(std::string()), typeName_(std::string()), size_(0), offset_(0),
83         align_(0), valueKind_(ValueKind::Unknown) {}
84 
85   // fields
86   std::string name_;
87   std::string typeName_;
88   uint32_t size_;
89   uint32_t offset_;
90   uint32_t align_;
91   ValueKind valueKind_;
92 };
93 
94 class KernelMD {
95 public:
96   KernelMD() : kernargSegmentSize_(0ull) {}
97 
98   // fields
99   uint64_t kernargSegmentSize_;
100 };
101 
102 static const std::map<std::string, KernelArgMD::ValueKind> ArgValueKind = {
103     //    Including only those fields that are relevant to the runtime.
104     //    {"ByValue", KernelArgMD::ValueKind::ByValue},
105     //    {"GlobalBuffer", KernelArgMD::ValueKind::GlobalBuffer},
106     //    {"DynamicSharedPointer",
107     //    KernelArgMD::ValueKind::DynamicSharedPointer},
108     //    {"Sampler", KernelArgMD::ValueKind::Sampler},
109     //    {"Image", KernelArgMD::ValueKind::Image},
110     //    {"Pipe", KernelArgMD::ValueKind::Pipe},
111     //    {"Queue", KernelArgMD::ValueKind::Queue},
112     {"HiddenGlobalOffsetX", KernelArgMD::ValueKind::HiddenGlobalOffsetX},
113     {"HiddenGlobalOffsetY", KernelArgMD::ValueKind::HiddenGlobalOffsetY},
114     {"HiddenGlobalOffsetZ", KernelArgMD::ValueKind::HiddenGlobalOffsetZ},
115     {"HiddenNone", KernelArgMD::ValueKind::HiddenNone},
116     {"HiddenPrintfBuffer", KernelArgMD::ValueKind::HiddenPrintfBuffer},
117     {"HiddenDefaultQueue", KernelArgMD::ValueKind::HiddenDefaultQueue},
118     {"HiddenCompletionAction", KernelArgMD::ValueKind::HiddenCompletionAction},
119     {"HiddenMultiGridSyncArg", KernelArgMD::ValueKind::HiddenMultiGridSyncArg},
120     {"HiddenHostcallBuffer", KernelArgMD::ValueKind::HiddenHostcallBuffer},
121     // v3
122     //    {"by_value", KernelArgMD::ValueKind::ByValue},
123     //    {"global_buffer", KernelArgMD::ValueKind::GlobalBuffer},
124     //    {"dynamic_shared_pointer",
125     //    KernelArgMD::ValueKind::DynamicSharedPointer},
126     //    {"sampler", KernelArgMD::ValueKind::Sampler},
127     //    {"image", KernelArgMD::ValueKind::Image},
128     //    {"pipe", KernelArgMD::ValueKind::Pipe},
129     //    {"queue", KernelArgMD::ValueKind::Queue},
130     {"hidden_global_offset_x", KernelArgMD::ValueKind::HiddenGlobalOffsetX},
131     {"hidden_global_offset_y", KernelArgMD::ValueKind::HiddenGlobalOffsetY},
132     {"hidden_global_offset_z", KernelArgMD::ValueKind::HiddenGlobalOffsetZ},
133     {"hidden_none", KernelArgMD::ValueKind::HiddenNone},
134     {"hidden_printf_buffer", KernelArgMD::ValueKind::HiddenPrintfBuffer},
135     {"hidden_default_queue", KernelArgMD::ValueKind::HiddenDefaultQueue},
136     {"hidden_completion_action",
137      KernelArgMD::ValueKind::HiddenCompletionAction},
138     {"hidden_multigrid_sync_arg",
139      KernelArgMD::ValueKind::HiddenMultiGridSyncArg},
140     {"hidden_hostcall_buffer", KernelArgMD::ValueKind::HiddenHostcallBuffer},
141 };
142 
143 ATLMachine g_atl_machine;
144 
145 namespace core {
146 
147 hsa_status_t allow_access_to_all_gpu_agents(void *ptr) {
148   std::vector<ATLGPUProcessor> &gpu_procs =
149       g_atl_machine.processors<ATLGPUProcessor>();
150   std::vector<hsa_agent_t> agents;
151   for (uint32_t i = 0; i < gpu_procs.size(); i++) {
152     agents.push_back(gpu_procs[i].agent());
153   }
154   return hsa_amd_agents_allow_access(agents.size(), &agents[0], NULL, ptr);
155 }
156 
157 // Implement memory_pool iteration function
158 static hsa_status_t get_memory_pool_info(hsa_amd_memory_pool_t memory_pool,
159                                          void *data) {
160   ATLProcessor *proc = reinterpret_cast<ATLProcessor *>(data);
161   hsa_status_t err = HSA_STATUS_SUCCESS;
162   // Check if the memory_pool is allowed to allocate, i.e. do not return group
163   // memory
164   bool alloc_allowed = false;
165   err = hsa_amd_memory_pool_get_info(
166       memory_pool, HSA_AMD_MEMORY_POOL_INFO_RUNTIME_ALLOC_ALLOWED,
167       &alloc_allowed);
168   if (err != HSA_STATUS_SUCCESS) {
169     printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
170            "Alloc allowed in memory pool check", get_error_string(err));
171     return err;
172   }
173   if (alloc_allowed) {
174     uint32_t global_flag = 0;
175     err = hsa_amd_memory_pool_get_info(
176         memory_pool, HSA_AMD_MEMORY_POOL_INFO_GLOBAL_FLAGS, &global_flag);
177     if (err != HSA_STATUS_SUCCESS) {
178       printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
179              "Get memory pool info", get_error_string(err));
180       return err;
181     }
182     if (HSA_AMD_MEMORY_POOL_GLOBAL_FLAG_FINE_GRAINED & global_flag) {
183       ATLMemory new_mem(memory_pool, *proc, ATMI_MEMTYPE_FINE_GRAINED);
184       proc->addMemory(new_mem);
185     } else {
186       ATLMemory new_mem(memory_pool, *proc, ATMI_MEMTYPE_COARSE_GRAINED);
187       proc->addMemory(new_mem);
188     }
189   }
190 
191   return err;
192 }
193 
194 static hsa_status_t get_agent_info(hsa_agent_t agent, void *data) {
195   hsa_status_t err = HSA_STATUS_SUCCESS;
196   hsa_device_type_t device_type;
197   err = hsa_agent_get_info(agent, HSA_AGENT_INFO_DEVICE, &device_type);
198   if (err != HSA_STATUS_SUCCESS) {
199     printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
200            "Get device type info", get_error_string(err));
201     return err;
202   }
203   switch (device_type) {
204   case HSA_DEVICE_TYPE_CPU: {
205     ATLCPUProcessor new_proc(agent);
206     err = hsa_amd_agent_iterate_memory_pools(agent, get_memory_pool_info,
207                                              &new_proc);
208     if (err != HSA_STATUS_SUCCESS) {
209       printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
210              "Iterate all memory pools", get_error_string(err));
211       return err;
212     }
213     g_atl_machine.addProcessor(new_proc);
214   } break;
215   case HSA_DEVICE_TYPE_GPU: {
216     hsa_profile_t profile;
217     err = hsa_agent_get_info(agent, HSA_AGENT_INFO_PROFILE, &profile);
218     if (err != HSA_STATUS_SUCCESS) {
219       printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
220              "Query the agent profile", get_error_string(err));
221       return err;
222     }
223     atmi_devtype_t gpu_type;
224     gpu_type =
225         (profile == HSA_PROFILE_FULL) ? ATMI_DEVTYPE_iGPU : ATMI_DEVTYPE_dGPU;
226     ATLGPUProcessor new_proc(agent, gpu_type);
227     err = hsa_amd_agent_iterate_memory_pools(agent, get_memory_pool_info,
228                                              &new_proc);
229     if (err != HSA_STATUS_SUCCESS) {
230       printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
231              "Iterate all memory pools", get_error_string(err));
232       return err;
233     }
234     g_atl_machine.addProcessor(new_proc);
235   } break;
236   case HSA_DEVICE_TYPE_DSP: {
237     err = HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
238   } break;
239   }
240 
241   return err;
242 }
243 
244 static hsa_status_t init_compute_and_memory() {
245   hsa_status_t err;
246 
247   /* Iterate over the agents and pick the gpu agent */
248   err = hsa_iterate_agents(get_agent_info, NULL);
249   if (err == HSA_STATUS_INFO_BREAK) {
250     err = HSA_STATUS_SUCCESS;
251   }
252   if (err != HSA_STATUS_SUCCESS) {
253     printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, "Getting a gpu agent",
254            get_error_string(err));
255     return err;
256   }
257 
258   /* Init all devices or individual device types? */
259   std::vector<ATLCPUProcessor> &cpu_procs =
260       g_atl_machine.processors<ATLCPUProcessor>();
261   std::vector<ATLGPUProcessor> &gpu_procs =
262       g_atl_machine.processors<ATLGPUProcessor>();
263   /* For CPU memory pools, add other devices that can access them directly
264    * or indirectly */
265   for (auto &cpu_proc : cpu_procs) {
266     for (auto &cpu_mem : cpu_proc.memories()) {
267       hsa_amd_memory_pool_t pool = cpu_mem.memory();
268       for (auto &gpu_proc : gpu_procs) {
269         hsa_agent_t agent = gpu_proc.agent();
270         hsa_amd_memory_pool_access_t access;
271         hsa_amd_agent_memory_pool_get_info(
272             agent, pool, HSA_AMD_AGENT_MEMORY_POOL_INFO_ACCESS, &access);
273         if (access != 0) {
274           // this means not NEVER, but could be YES or NO
275           // add this memory pool to the proc
276           gpu_proc.addMemory(cpu_mem);
277         }
278       }
279     }
280   }
281 
282   /* FIXME: are the below combinations of procs and memory pools needed?
283    * all to all compare procs with their memory pools and add those memory
284    * pools that are accessible by the target procs */
285   for (auto &gpu_proc : gpu_procs) {
286     for (auto &gpu_mem : gpu_proc.memories()) {
287       hsa_amd_memory_pool_t pool = gpu_mem.memory();
288       for (auto &cpu_proc : cpu_procs) {
289         hsa_agent_t agent = cpu_proc.agent();
290         hsa_amd_memory_pool_access_t access;
291         hsa_amd_agent_memory_pool_get_info(
292             agent, pool, HSA_AMD_AGENT_MEMORY_POOL_INFO_ACCESS, &access);
293         if (access != 0) {
294           // this means not NEVER, but could be YES or NO
295           // add this memory pool to the proc
296           cpu_proc.addMemory(gpu_mem);
297         }
298       }
299     }
300   }
301 
302   size_t num_procs = cpu_procs.size() + gpu_procs.size();
303   int num_iGPUs = 0;
304   int num_dGPUs = 0;
305   for (uint32_t i = 0; i < gpu_procs.size(); i++) {
306     if (gpu_procs[i].type() == ATMI_DEVTYPE_iGPU)
307       num_iGPUs++;
308     else
309       num_dGPUs++;
310   }
311   assert(num_iGPUs + num_dGPUs == gpu_procs.size() &&
312          "Number of dGPUs and iGPUs do not add up");
313   DEBUG_PRINT("CPU Agents: %lu\n", cpu_procs.size());
314   DEBUG_PRINT("iGPU Agents: %d\n", num_iGPUs);
315   DEBUG_PRINT("dGPU Agents: %d\n", num_dGPUs);
316   DEBUG_PRINT("GPU Agents: %lu\n", gpu_procs.size());
317 
318   int cpus_begin = 0;
319   int cpus_end = cpu_procs.size();
320   int gpus_begin = cpu_procs.size();
321   int gpus_end = cpu_procs.size() + gpu_procs.size();
322   int proc_index = 0;
323   for (int i = cpus_begin; i < cpus_end; i++) {
324     std::vector<ATLMemory> memories = cpu_procs[proc_index].memories();
325     int fine_memories_size = 0;
326     int coarse_memories_size = 0;
327     DEBUG_PRINT("CPU memory types:\t");
328     for (auto &memory : memories) {
329       atmi_memtype_t type = memory.type();
330       if (type == ATMI_MEMTYPE_FINE_GRAINED) {
331         fine_memories_size++;
332         DEBUG_PRINT("Fine\t");
333       } else {
334         coarse_memories_size++;
335         DEBUG_PRINT("Coarse\t");
336       }
337     }
338     DEBUG_PRINT("\nFine Memories : %d", fine_memories_size);
339     DEBUG_PRINT("\tCoarse Memories : %d\n", coarse_memories_size);
340     proc_index++;
341   }
342   proc_index = 0;
343   for (int i = gpus_begin; i < gpus_end; i++) {
344     std::vector<ATLMemory> memories = gpu_procs[proc_index].memories();
345     int fine_memories_size = 0;
346     int coarse_memories_size = 0;
347     DEBUG_PRINT("GPU memory types:\t");
348     for (auto &memory : memories) {
349       atmi_memtype_t type = memory.type();
350       if (type == ATMI_MEMTYPE_FINE_GRAINED) {
351         fine_memories_size++;
352         DEBUG_PRINT("Fine\t");
353       } else {
354         coarse_memories_size++;
355         DEBUG_PRINT("Coarse\t");
356       }
357     }
358     DEBUG_PRINT("\nFine Memories : %d", fine_memories_size);
359     DEBUG_PRINT("\tCoarse Memories : %d\n", coarse_memories_size);
360     proc_index++;
361   }
362   if (num_procs > 0)
363     return HSA_STATUS_SUCCESS;
364   else
365     return HSA_STATUS_ERROR_NOT_INITIALIZED;
366 }
367 
368 hsa_status_t init_hsa() {
369   DEBUG_PRINT("Initializing HSA...");
370   hsa_status_t err = hsa_init();
371   if (err != HSA_STATUS_SUCCESS) {
372     printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
373            "Initializing the hsa runtime", get_error_string(err));
374     return err;
375   }
376   if (err != HSA_STATUS_SUCCESS)
377     return err;
378 
379   err = init_compute_and_memory();
380   if (err != HSA_STATUS_SUCCESS)
381     return err;
382   if (err != HSA_STATUS_SUCCESS) {
383     printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
384            "After initializing compute and memory", get_error_string(err));
385     return err;
386   }
387 
388   DEBUG_PRINT("done\n");
389   return HSA_STATUS_SUCCESS;
390 }
391 
392 hsa_status_t callbackEvent(const hsa_amd_event_t *event, void *data) {
393 #if (ROCM_VERSION_MAJOR >= 3) ||                                               \
394     (ROCM_VERSION_MAJOR >= 2 && ROCM_VERSION_MINOR >= 3)
395   if (event->event_type == HSA_AMD_GPU_MEMORY_FAULT_EVENT) {
396 #else
397   if (event->event_type == GPU_MEMORY_FAULT_EVENT) {
398 #endif
399     hsa_amd_gpu_memory_fault_info_t memory_fault = event->memory_fault;
400     // memory_fault.agent
401     // memory_fault.virtual_address
402     // memory_fault.fault_reason_mask
403     // fprintf("[GPU Error at %p: Reason is ", memory_fault.virtual_address);
404     std::stringstream stream;
405     stream << std::hex << (uintptr_t)memory_fault.virtual_address;
406     std::string addr("0x" + stream.str());
407 
408     std::string err_string = "[GPU Memory Error] Addr: " + addr;
409     err_string += " Reason: ";
410     if (!(memory_fault.fault_reason_mask & 0x00111111)) {
411       err_string += "No Idea! ";
412     } else {
413       if (memory_fault.fault_reason_mask & 0x00000001)
414         err_string += "Page not present or supervisor privilege. ";
415       if (memory_fault.fault_reason_mask & 0x00000010)
416         err_string += "Write access to a read-only page. ";
417       if (memory_fault.fault_reason_mask & 0x00000100)
418         err_string += "Execute access to a page marked NX. ";
419       if (memory_fault.fault_reason_mask & 0x00001000)
420         err_string += "Host access only. ";
421       if (memory_fault.fault_reason_mask & 0x00010000)
422         err_string += "ECC failure (if supported by HW). ";
423       if (memory_fault.fault_reason_mask & 0x00100000)
424         err_string += "Can't determine the exact fault address. ";
425     }
426     fprintf(stderr, "%s\n", err_string.c_str());
427     return HSA_STATUS_ERROR;
428   }
429   return HSA_STATUS_SUCCESS;
430 }
431 
432 hsa_status_t atl_init_gpu_context() {
433   hsa_status_t err;
434   err = init_hsa();
435   if (err != HSA_STATUS_SUCCESS)
436     return HSA_STATUS_ERROR;
437 
438   err = hsa_amd_register_system_event_handler(callbackEvent, NULL);
439   if (err != HSA_STATUS_SUCCESS) {
440     printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
441            "Registering the system for memory faults", get_error_string(err));
442     return HSA_STATUS_ERROR;
443   }
444 
445   return HSA_STATUS_SUCCESS;
446 }
447 
448 static bool isImplicit(KernelArgMD::ValueKind value_kind) {
449   switch (value_kind) {
450   case KernelArgMD::ValueKind::HiddenGlobalOffsetX:
451   case KernelArgMD::ValueKind::HiddenGlobalOffsetY:
452   case KernelArgMD::ValueKind::HiddenGlobalOffsetZ:
453   case KernelArgMD::ValueKind::HiddenNone:
454   case KernelArgMD::ValueKind::HiddenPrintfBuffer:
455   case KernelArgMD::ValueKind::HiddenDefaultQueue:
456   case KernelArgMD::ValueKind::HiddenCompletionAction:
457   case KernelArgMD::ValueKind::HiddenMultiGridSyncArg:
458   case KernelArgMD::ValueKind::HiddenHostcallBuffer:
459     return true;
460   default:
461     return false;
462   }
463 }
464 
465 static std::pair<unsigned char *, unsigned char *>
466 find_metadata(void *binary, size_t binSize) {
467   std::pair<unsigned char *, unsigned char *> failure = {nullptr, nullptr};
468 
469   Elf *e = elf_memory(static_cast<char *>(binary), binSize);
470   if (elf_kind(e) != ELF_K_ELF) {
471     return failure;
472   }
473 
474   size_t numpHdrs;
475   if (elf_getphdrnum(e, &numpHdrs) != 0) {
476     return failure;
477   }
478 
479   for (size_t i = 0; i < numpHdrs; ++i) {
480     GElf_Phdr pHdr;
481     if (gelf_getphdr(e, i, &pHdr) != &pHdr) {
482       continue;
483     }
484     // Look for the runtime metadata note
485     if (pHdr.p_type == PT_NOTE && pHdr.p_align >= sizeof(int)) {
486       // Iterate over the notes in this segment
487       address ptr = (address)binary + pHdr.p_offset;
488       address segmentEnd = ptr + pHdr.p_filesz;
489 
490       while (ptr < segmentEnd) {
491         Elf_Note *note = reinterpret_cast<Elf_Note *>(ptr);
492         address name = (address)&note[1];
493 
494         if (note->n_type == 7 || note->n_type == 8) {
495           return failure;
496         } else if (note->n_type == 10 /* NT_AMD_AMDGPU_HSA_METADATA */ &&
497                    note->n_namesz == sizeof "AMD" &&
498                    !memcmp(name, "AMD", note->n_namesz)) {
499           // code object v2 uses yaml metadata, no longer supported
500           return failure;
501         } else if (note->n_type == 32 /* NT_AMDGPU_METADATA */ &&
502                    note->n_namesz == sizeof "AMDGPU" &&
503                    !memcmp(name, "AMDGPU", note->n_namesz)) {
504 
505           // n_descsz = 485
506           // value is padded to 4 byte alignment, may want to move end up to
507           // match
508           size_t offset = sizeof(uint32_t) * 3 /* fields */
509                           + sizeof("AMDGPU")   /* name */
510                           + 1 /* padding to 4 byte alignment */;
511 
512           // Including the trailing padding means both pointers are 4 bytes
513           // aligned, which may be useful later.
514           unsigned char *metadata_start = (unsigned char *)ptr + offset;
515           unsigned char *metadata_end =
516               metadata_start + core::alignUp(note->n_descsz, 4);
517           return {metadata_start, metadata_end};
518         }
519         ptr += sizeof(*note) + core::alignUp(note->n_namesz, sizeof(int)) +
520                core::alignUp(note->n_descsz, sizeof(int));
521       }
522     }
523   }
524 
525   return failure;
526 }
527 
528 namespace {
529 int map_lookup_array(msgpack::byte_range message, const char *needle,
530                      msgpack::byte_range *res, uint64_t *size) {
531   unsigned count = 0;
532   struct s : msgpack::functors_defaults<s> {
533     s(unsigned &count, uint64_t *size) : count(count), size(size) {}
534     unsigned &count;
535     uint64_t *size;
536     const unsigned char *handle_array(uint64_t N, msgpack::byte_range bytes) {
537       count++;
538       *size = N;
539       return bytes.end;
540     }
541   };
542 
543   msgpack::foreach_map(message,
544                        [&](msgpack::byte_range key, msgpack::byte_range value) {
545                          if (msgpack::message_is_string(key, needle)) {
546                            // If the message is an array, record number of
547                            // elements in *size
548                            msgpack::handle_msgpack<s>(value, {count, size});
549                            // return the whole array
550                            *res = value;
551                          }
552                        });
553   // Only claim success if exactly one key/array pair matched
554   return count != 1;
555 }
556 
557 int map_lookup_string(msgpack::byte_range message, const char *needle,
558                       std::string *res) {
559   unsigned count = 0;
560   struct s : public msgpack::functors_defaults<s> {
561     s(unsigned &count, std::string *res) : count(count), res(res) {}
562     unsigned &count;
563     std::string *res;
564     void handle_string(size_t N, const unsigned char *str) {
565       count++;
566       *res = std::string(str, str + N);
567     }
568   };
569   msgpack::foreach_map(message,
570                        [&](msgpack::byte_range key, msgpack::byte_range value) {
571                          if (msgpack::message_is_string(key, needle)) {
572                            msgpack::handle_msgpack<s>(value, {count, res});
573                          }
574                        });
575   return count != 1;
576 }
577 
578 int map_lookup_uint64_t(msgpack::byte_range message, const char *needle,
579                         uint64_t *res) {
580   unsigned count = 0;
581   msgpack::foreach_map(message,
582                        [&](msgpack::byte_range key, msgpack::byte_range value) {
583                          if (msgpack::message_is_string(key, needle)) {
584                            msgpack::foronly_unsigned(value, [&](uint64_t x) {
585                              count++;
586                              *res = x;
587                            });
588                          }
589                        });
590   return count != 1;
591 }
592 
593 int array_lookup_element(msgpack::byte_range message, uint64_t elt,
594                          msgpack::byte_range *res) {
595   int rc = 1;
596   uint64_t i = 0;
597   msgpack::foreach_array(message, [&](msgpack::byte_range value) {
598     if (i == elt) {
599       *res = value;
600       rc = 0;
601     }
602     i++;
603   });
604   return rc;
605 }
606 
607 int populate_kernelArgMD(msgpack::byte_range args_element,
608                          KernelArgMD *kernelarg) {
609   using namespace msgpack;
610   int error = 0;
611   foreach_map(args_element, [&](byte_range key, byte_range value) -> void {
612     if (message_is_string(key, ".name")) {
613       foronly_string(value, [&](size_t N, const unsigned char *str) {
614         kernelarg->name_ = std::string(str, str + N);
615       });
616     } else if (message_is_string(key, ".type_name")) {
617       foronly_string(value, [&](size_t N, const unsigned char *str) {
618         kernelarg->typeName_ = std::string(str, str + N);
619       });
620     } else if (message_is_string(key, ".size")) {
621       foronly_unsigned(value, [&](uint64_t x) { kernelarg->size_ = x; });
622     } else if (message_is_string(key, ".offset")) {
623       foronly_unsigned(value, [&](uint64_t x) { kernelarg->offset_ = x; });
624     } else if (message_is_string(key, ".value_kind")) {
625       foronly_string(value, [&](size_t N, const unsigned char *str) {
626         std::string s = std::string(str, str + N);
627         auto itValueKind = ArgValueKind.find(s);
628         if (itValueKind != ArgValueKind.end()) {
629           kernelarg->valueKind_ = itValueKind->second;
630         }
631       });
632     }
633   });
634   return error;
635 }
636 } // namespace
637 
638 static hsa_status_t get_code_object_custom_metadata(
639     void *binary, size_t binSize,
640     std::map<std::string, atl_kernel_info_t> &KernelInfoTable) {
641   // parse code object with different keys from v2
642   // also, the kernel name is not the same as the symbol name -- so a
643   // symbol->name map is needed
644 
645   std::pair<unsigned char *, unsigned char *> metadata =
646       find_metadata(binary, binSize);
647   if (!metadata.first) {
648     return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
649   }
650 
651   uint64_t kernelsSize = 0;
652   int msgpack_errors = 0;
653   msgpack::byte_range kernel_array;
654   msgpack_errors =
655       map_lookup_array({metadata.first, metadata.second}, "amdhsa.kernels",
656                        &kernel_array, &kernelsSize);
657   if (msgpack_errors != 0) {
658     printf("[%s:%d] %s failed\n", __FILE__, __LINE__,
659            "kernels lookup in program metadata");
660     return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
661   }
662 
663   for (size_t i = 0; i < kernelsSize; i++) {
664     assert(msgpack_errors == 0);
665     std::string kernelName;
666     std::string symbolName;
667 
668     msgpack::byte_range element;
669     msgpack_errors += array_lookup_element(kernel_array, i, &element);
670     if (msgpack_errors != 0) {
671       printf("[%s:%d] %s failed\n", __FILE__, __LINE__,
672              "element lookup in kernel metadata");
673       return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
674     }
675 
676     msgpack_errors += map_lookup_string(element, ".name", &kernelName);
677     msgpack_errors += map_lookup_string(element, ".symbol", &symbolName);
678     if (msgpack_errors != 0) {
679       printf("[%s:%d] %s failed\n", __FILE__, __LINE__,
680              "strings lookup in kernel metadata");
681       return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
682     }
683 
684     // Make sure that kernelName + ".kd" == symbolName
685     if ((kernelName + ".kd") != symbolName) {
686       printf("[%s:%d] Kernel name mismatching symbol: %s != %s + .kd\n",
687              __FILE__, __LINE__, symbolName.c_str(), kernelName.c_str());
688       return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
689     }
690 
691     atl_kernel_info_t info = {0, 0, 0, 0, 0, 0, 0, 0, 0, {}, {}, {}};
692 
693     uint64_t sgpr_count, vgpr_count, sgpr_spill_count, vgpr_spill_count;
694     msgpack_errors += map_lookup_uint64_t(element, ".sgpr_count", &sgpr_count);
695     if (msgpack_errors != 0) {
696       printf("[%s:%d] %s failed\n", __FILE__, __LINE__,
697              "sgpr count metadata lookup in kernel metadata");
698       return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
699     }
700 
701     info.sgpr_count = sgpr_count;
702 
703     msgpack_errors += map_lookup_uint64_t(element, ".vgpr_count", &vgpr_count);
704     if (msgpack_errors != 0) {
705       printf("[%s:%d] %s failed\n", __FILE__, __LINE__,
706              "vgpr count metadata lookup in kernel metadata");
707       return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
708     }
709 
710     info.vgpr_count = vgpr_count;
711 
712     msgpack_errors +=
713         map_lookup_uint64_t(element, ".sgpr_spill_count", &sgpr_spill_count);
714     if (msgpack_errors != 0) {
715       printf("[%s:%d] %s failed\n", __FILE__, __LINE__,
716              "sgpr spill count metadata lookup in kernel metadata");
717       return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
718     }
719 
720     info.sgpr_spill_count = sgpr_spill_count;
721 
722     msgpack_errors +=
723         map_lookup_uint64_t(element, ".vgpr_spill_count", &vgpr_spill_count);
724     if (msgpack_errors != 0) {
725       printf("[%s:%d] %s failed\n", __FILE__, __LINE__,
726              "vgpr spill count metadata lookup in kernel metadata");
727       return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
728     }
729 
730     info.vgpr_spill_count = vgpr_spill_count;
731 
732     size_t kernel_explicit_args_size = 0;
733     uint64_t kernel_segment_size;
734     msgpack_errors += map_lookup_uint64_t(element, ".kernarg_segment_size",
735                                           &kernel_segment_size);
736     if (msgpack_errors != 0) {
737       printf("[%s:%d] %s failed\n", __FILE__, __LINE__,
738              "kernarg segment size metadata lookup in kernel metadata");
739       return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
740     }
741 
742     bool hasHiddenArgs = false;
743     if (kernel_segment_size > 0) {
744       uint64_t argsSize;
745       size_t offset = 0;
746 
747       msgpack::byte_range args_array;
748       msgpack_errors +=
749           map_lookup_array(element, ".args", &args_array, &argsSize);
750       if (msgpack_errors != 0) {
751         printf("[%s:%d] %s failed\n", __FILE__, __LINE__,
752                "kernel args metadata lookup in kernel metadata");
753         return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
754       }
755 
756       info.num_args = argsSize;
757 
758       for (size_t i = 0; i < argsSize; ++i) {
759         KernelArgMD lcArg;
760 
761         msgpack::byte_range args_element;
762         msgpack_errors += array_lookup_element(args_array, i, &args_element);
763         if (msgpack_errors != 0) {
764           printf("[%s:%d] %s failed\n", __FILE__, __LINE__,
765                  "iterate args map in kernel args metadata");
766           return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
767         }
768 
769         msgpack_errors += populate_kernelArgMD(args_element, &lcArg);
770         if (msgpack_errors != 0) {
771           printf("[%s:%d] %s failed\n", __FILE__, __LINE__,
772                  "iterate args map in kernel args metadata");
773           return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
774         }
775         // populate info with sizes and offsets
776         info.arg_sizes.push_back(lcArg.size_);
777         // v3 has offset field and not align field
778         size_t new_offset = lcArg.offset_;
779         size_t padding = new_offset - offset;
780         offset = new_offset;
781         info.arg_offsets.push_back(lcArg.offset_);
782         DEBUG_PRINT("Arg[%lu] \"%s\" (%u, %u)\n", i, lcArg.name_.c_str(),
783                     lcArg.size_, lcArg.offset_);
784         offset += lcArg.size_;
785 
786         // check if the arg is a hidden/implicit arg
787         // this logic assumes that all hidden args are 8-byte aligned
788         if (!isImplicit(lcArg.valueKind_)) {
789           kernel_explicit_args_size += lcArg.size_;
790         } else {
791           hasHiddenArgs = true;
792         }
793         kernel_explicit_args_size += padding;
794       }
795     }
796 
797     // add size of implicit args, e.g.: offset x, y and z and pipe pointer, but
798     // in ATMI, do not count the compiler set implicit args, but set your own
799     // implicit args by discounting the compiler set implicit args
800     info.kernel_segment_size =
801         (hasHiddenArgs ? kernel_explicit_args_size : kernel_segment_size) +
802         sizeof(atmi_implicit_args_t);
803     DEBUG_PRINT("[%s: kernarg seg size] (%lu --> %u)\n", kernelName.c_str(),
804                 kernel_segment_size, info.kernel_segment_size);
805 
806     // kernel received, now add it to the kernel info table
807     KernelInfoTable[kernelName] = info;
808   }
809 
810   return HSA_STATUS_SUCCESS;
811 }
812 
813 static hsa_status_t
814 populate_InfoTables(hsa_executable_symbol_t symbol,
815                     std::map<std::string, atl_kernel_info_t> &KernelInfoTable,
816                     std::map<std::string, atl_symbol_info_t> &SymbolInfoTable) {
817   hsa_symbol_kind_t type;
818 
819   uint32_t name_length;
820   hsa_status_t err;
821   err = hsa_executable_symbol_get_info(symbol, HSA_EXECUTABLE_SYMBOL_INFO_TYPE,
822                                        &type);
823   if (err != HSA_STATUS_SUCCESS) {
824     printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
825            "Symbol info extraction", get_error_string(err));
826     return err;
827   }
828   DEBUG_PRINT("Exec Symbol type: %d\n", type);
829   if (type == HSA_SYMBOL_KIND_KERNEL) {
830     err = hsa_executable_symbol_get_info(
831         symbol, HSA_EXECUTABLE_SYMBOL_INFO_NAME_LENGTH, &name_length);
832     if (err != HSA_STATUS_SUCCESS) {
833       printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
834              "Symbol info extraction", get_error_string(err));
835       return err;
836     }
837     char *name = reinterpret_cast<char *>(malloc(name_length + 1));
838     err = hsa_executable_symbol_get_info(symbol,
839                                          HSA_EXECUTABLE_SYMBOL_INFO_NAME, name);
840     if (err != HSA_STATUS_SUCCESS) {
841       printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
842              "Symbol info extraction", get_error_string(err));
843       return err;
844     }
845     // remove the suffix .kd from symbol name.
846     name[name_length - 3] = 0;
847 
848     atl_kernel_info_t info;
849     std::string kernelName(name);
850     // by now, the kernel info table should already have an entry
851     // because the non-ROCr custom code object parsing is called before
852     // iterating over the code object symbols using ROCr
853     if (KernelInfoTable.find(kernelName) == KernelInfoTable.end()) {
854       if (HSA_STATUS_ERROR_INVALID_CODE_OBJECT != HSA_STATUS_SUCCESS) {
855         printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
856                "Finding the entry kernel info table",
857                get_error_string(HSA_STATUS_ERROR_INVALID_CODE_OBJECT));
858         exit(1);
859       }
860     }
861     // found, so assign and update
862     info = KernelInfoTable[kernelName];
863 
864     /* Extract dispatch information from the symbol */
865     err = hsa_executable_symbol_get_info(
866         symbol, HSA_EXECUTABLE_SYMBOL_INFO_KERNEL_OBJECT,
867         &(info.kernel_object));
868     if (err != HSA_STATUS_SUCCESS) {
869       printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
870              "Extracting the symbol from the executable",
871              get_error_string(err));
872       return err;
873     }
874     err = hsa_executable_symbol_get_info(
875         symbol, HSA_EXECUTABLE_SYMBOL_INFO_KERNEL_GROUP_SEGMENT_SIZE,
876         &(info.group_segment_size));
877     if (err != HSA_STATUS_SUCCESS) {
878       printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
879              "Extracting the group segment size from the executable",
880              get_error_string(err));
881       return err;
882     }
883     err = hsa_executable_symbol_get_info(
884         symbol, HSA_EXECUTABLE_SYMBOL_INFO_KERNEL_PRIVATE_SEGMENT_SIZE,
885         &(info.private_segment_size));
886     if (err != HSA_STATUS_SUCCESS) {
887       printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
888              "Extracting the private segment from the executable",
889              get_error_string(err));
890       return err;
891     }
892 
893     DEBUG_PRINT(
894         "Kernel %s --> %lx symbol %u group segsize %u pvt segsize %u bytes "
895         "kernarg\n",
896         kernelName.c_str(), info.kernel_object, info.group_segment_size,
897         info.private_segment_size, info.kernel_segment_size);
898 
899     // assign it back to the kernel info table
900     KernelInfoTable[kernelName] = info;
901     free(name);
902   } else if (type == HSA_SYMBOL_KIND_VARIABLE) {
903     err = hsa_executable_symbol_get_info(
904         symbol, HSA_EXECUTABLE_SYMBOL_INFO_NAME_LENGTH, &name_length);
905     if (err != HSA_STATUS_SUCCESS) {
906       printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
907              "Symbol info extraction", get_error_string(err));
908       return err;
909     }
910     char *name = reinterpret_cast<char *>(malloc(name_length + 1));
911     err = hsa_executable_symbol_get_info(symbol,
912                                          HSA_EXECUTABLE_SYMBOL_INFO_NAME, name);
913     if (err != HSA_STATUS_SUCCESS) {
914       printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
915              "Symbol info extraction", get_error_string(err));
916       return err;
917     }
918     name[name_length] = 0;
919 
920     atl_symbol_info_t info;
921 
922     err = hsa_executable_symbol_get_info(
923         symbol, HSA_EXECUTABLE_SYMBOL_INFO_VARIABLE_ADDRESS, &(info.addr));
924     if (err != HSA_STATUS_SUCCESS) {
925       printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
926              "Symbol info address extraction", get_error_string(err));
927       return err;
928     }
929 
930     err = hsa_executable_symbol_get_info(
931         symbol, HSA_EXECUTABLE_SYMBOL_INFO_VARIABLE_SIZE, &(info.size));
932     if (err != HSA_STATUS_SUCCESS) {
933       printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
934              "Symbol info size extraction", get_error_string(err));
935       return err;
936     }
937 
938     DEBUG_PRINT("Symbol %s = %p (%u bytes)\n", name, (void *)info.addr,
939                 info.size);
940     err = register_allocation(reinterpret_cast<void *>(info.addr),
941                               (size_t)info.size, ATMI_DEVTYPE_GPU);
942     if (err != HSA_STATUS_SUCCESS) {
943       return err;
944     }
945     SymbolInfoTable[std::string(name)] = info;
946     free(name);
947   } else {
948     DEBUG_PRINT("Symbol is an indirect function\n");
949   }
950   return HSA_STATUS_SUCCESS;
951 }
952 
953 hsa_status_t RegisterModuleFromMemory(
954     std::map<std::string, atl_kernel_info_t> &KernelInfoTable,
955     std::map<std::string, atl_symbol_info_t> &SymbolInfoTable,
956     void *module_bytes, size_t module_size, hsa_agent_t agent,
957     hsa_status_t (*on_deserialized_data)(void *data, size_t size,
958                                          void *cb_state),
959     void *cb_state, std::vector<hsa_executable_t> &HSAExecutables) {
960   hsa_status_t err;
961   hsa_executable_t executable = {0};
962   hsa_profile_t agent_profile;
963 
964   err = hsa_agent_get_info(agent, HSA_AGENT_INFO_PROFILE, &agent_profile);
965   if (err != HSA_STATUS_SUCCESS) {
966     printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
967            "Query the agent profile", get_error_string(err));
968     return HSA_STATUS_ERROR;
969   }
970   // FIXME: Assume that every profile is FULL until we understand how to build
971   // GCN with base profile
972   agent_profile = HSA_PROFILE_FULL;
973   /* Create the empty executable.  */
974   err = hsa_executable_create(agent_profile, HSA_EXECUTABLE_STATE_UNFROZEN, "",
975                               &executable);
976   if (err != HSA_STATUS_SUCCESS) {
977     printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
978            "Create the executable", get_error_string(err));
979     return HSA_STATUS_ERROR;
980   }
981 
982   bool module_load_success = false;
983   do // Existing control flow used continue, preserve that for this patch
984   {
985     {
986       // Some metadata info is not available through ROCr API, so use custom
987       // code object metadata parsing to collect such metadata info
988 
989       err = get_code_object_custom_metadata(module_bytes, module_size,
990                                             KernelInfoTable);
991       if (err != HSA_STATUS_SUCCESS) {
992         DEBUG_PRINT("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
993                     "Getting custom code object metadata",
994                     get_error_string(err));
995         continue;
996       }
997 
998       // Deserialize code object.
999       hsa_code_object_t code_object = {0};
1000       err = hsa_code_object_deserialize(module_bytes, module_size, NULL,
1001                                         &code_object);
1002       if (err != HSA_STATUS_SUCCESS) {
1003         DEBUG_PRINT("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
1004                     "Code Object Deserialization", get_error_string(err));
1005         continue;
1006       }
1007       assert(0 != code_object.handle);
1008 
1009       // Mutating the device image here avoids another allocation & memcpy
1010       void *code_object_alloc_data =
1011           reinterpret_cast<void *>(code_object.handle);
1012       hsa_status_t atmi_err =
1013           on_deserialized_data(code_object_alloc_data, module_size, cb_state);
1014       if (atmi_err != HSA_STATUS_SUCCESS) {
1015         printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
1016                "Error in deserialized_data callback",
1017                get_atmi_error_string(atmi_err));
1018         return atmi_err;
1019       }
1020 
1021       /* Load the code object.  */
1022       err =
1023           hsa_executable_load_code_object(executable, agent, code_object, NULL);
1024       if (err != HSA_STATUS_SUCCESS) {
1025         DEBUG_PRINT("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
1026                     "Loading the code object", get_error_string(err));
1027         continue;
1028       }
1029 
1030       // cannot iterate over symbols until executable is frozen
1031     }
1032     module_load_success = true;
1033   } while (0);
1034   DEBUG_PRINT("Modules loaded successful? %d\n", module_load_success);
1035   if (module_load_success) {
1036     /* Freeze the executable; it can now be queried for symbols.  */
1037     err = hsa_executable_freeze(executable, "");
1038     if (err != HSA_STATUS_SUCCESS) {
1039       printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
1040              "Freeze the executable", get_error_string(err));
1041       return HSA_STATUS_ERROR;
1042     }
1043 
1044     err = hsa::executable_iterate_symbols(
1045         executable,
1046         [&](hsa_executable_t, hsa_executable_symbol_t symbol) -> hsa_status_t {
1047           return populate_InfoTables(symbol, KernelInfoTable, SymbolInfoTable);
1048         });
1049     if (err != HSA_STATUS_SUCCESS) {
1050       printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
1051              "Iterating over symbols for execuatable", get_error_string(err));
1052       return HSA_STATUS_ERROR;
1053     }
1054 
1055     // save the executable and destroy during finalize
1056     HSAExecutables.push_back(executable);
1057     return HSA_STATUS_SUCCESS;
1058   } else {
1059     return HSA_STATUS_ERROR;
1060   }
1061 }
1062 
1063 } // namespace core
1064