1 /*===-------------------------------------------------------------------------- 2 * ATMI (Asynchronous Task and Memory Interface) 3 * 4 * This file is distributed under the MIT License. See LICENSE.txt for details. 5 *===------------------------------------------------------------------------*/ 6 #include <gelf.h> 7 #include <libelf.h> 8 9 #include <cassert> 10 #include <cstdarg> 11 #include <fstream> 12 #include <iomanip> 13 #include <iostream> 14 #include <set> 15 #include <string> 16 17 #include "internal.h" 18 #include "machine.h" 19 #include "rt.h" 20 21 #include "msgpack.h" 22 23 namespace hsa { 24 // Wrap HSA iterate API in a shim that allows passing general callables 25 template <typename C> 26 hsa_status_t executable_iterate_symbols(hsa_executable_t executable, C cb) { 27 auto L = [](hsa_executable_t executable, hsa_executable_symbol_t symbol, 28 void *data) -> hsa_status_t { 29 C *unwrapped = static_cast<C *>(data); 30 return (*unwrapped)(executable, symbol); 31 }; 32 return hsa_executable_iterate_symbols(executable, L, 33 static_cast<void *>(&cb)); 34 } 35 } // namespace hsa 36 37 typedef unsigned char *address; 38 /* 39 * Note descriptors. 40 */ 41 typedef struct { 42 uint32_t n_namesz; /* Length of note's name. */ 43 uint32_t n_descsz; /* Length of note's value. */ 44 uint32_t n_type; /* Type of note. */ 45 // then name 46 // then padding, optional 47 // then desc, at 4 byte alignment (not 8, despite being elf64) 48 } Elf_Note; 49 50 // The following include file and following structs/enums 51 // have been replicated on a per-use basis below. For example, 52 // llvm::AMDGPU::HSAMD::Kernel::Metadata has several fields, 53 // but we may care only about kernargSegmentSize_ for now, so 54 // we just include that field in our KernelMD implementation. We 55 // chose this approach to replicate in order to avoid forcing 56 // a dependency on LLVM_INCLUDE_DIR just to compile the runtime. 57 // #include "llvm/Support/AMDGPUMetadata.h" 58 // typedef llvm::AMDGPU::HSAMD::Metadata CodeObjectMD; 59 // typedef llvm::AMDGPU::HSAMD::Kernel::Metadata KernelMD; 60 // typedef llvm::AMDGPU::HSAMD::Kernel::Arg::Metadata KernelArgMD; 61 // using llvm::AMDGPU::HSAMD::AccessQualifier; 62 // using llvm::AMDGPU::HSAMD::AddressSpaceQualifier; 63 // using llvm::AMDGPU::HSAMD::ValueKind; 64 // using llvm::AMDGPU::HSAMD::ValueType; 65 66 class KernelArgMD { 67 public: 68 enum class ValueKind { 69 HiddenGlobalOffsetX, 70 HiddenGlobalOffsetY, 71 HiddenGlobalOffsetZ, 72 HiddenNone, 73 HiddenPrintfBuffer, 74 HiddenDefaultQueue, 75 HiddenCompletionAction, 76 HiddenMultiGridSyncArg, 77 HiddenHostcallBuffer, 78 Unknown 79 }; 80 81 KernelArgMD() 82 : name_(std::string()), typeName_(std::string()), size_(0), offset_(0), 83 align_(0), valueKind_(ValueKind::Unknown) {} 84 85 // fields 86 std::string name_; 87 std::string typeName_; 88 uint32_t size_; 89 uint32_t offset_; 90 uint32_t align_; 91 ValueKind valueKind_; 92 }; 93 94 class KernelMD { 95 public: 96 KernelMD() : kernargSegmentSize_(0ull) {} 97 98 // fields 99 uint64_t kernargSegmentSize_; 100 }; 101 102 static const std::map<std::string, KernelArgMD::ValueKind> ArgValueKind = { 103 // Including only those fields that are relevant to the runtime. 104 // {"ByValue", KernelArgMD::ValueKind::ByValue}, 105 // {"GlobalBuffer", KernelArgMD::ValueKind::GlobalBuffer}, 106 // {"DynamicSharedPointer", 107 // KernelArgMD::ValueKind::DynamicSharedPointer}, 108 // {"Sampler", KernelArgMD::ValueKind::Sampler}, 109 // {"Image", KernelArgMD::ValueKind::Image}, 110 // {"Pipe", KernelArgMD::ValueKind::Pipe}, 111 // {"Queue", KernelArgMD::ValueKind::Queue}, 112 {"HiddenGlobalOffsetX", KernelArgMD::ValueKind::HiddenGlobalOffsetX}, 113 {"HiddenGlobalOffsetY", KernelArgMD::ValueKind::HiddenGlobalOffsetY}, 114 {"HiddenGlobalOffsetZ", KernelArgMD::ValueKind::HiddenGlobalOffsetZ}, 115 {"HiddenNone", KernelArgMD::ValueKind::HiddenNone}, 116 {"HiddenPrintfBuffer", KernelArgMD::ValueKind::HiddenPrintfBuffer}, 117 {"HiddenDefaultQueue", KernelArgMD::ValueKind::HiddenDefaultQueue}, 118 {"HiddenCompletionAction", KernelArgMD::ValueKind::HiddenCompletionAction}, 119 {"HiddenMultiGridSyncArg", KernelArgMD::ValueKind::HiddenMultiGridSyncArg}, 120 {"HiddenHostcallBuffer", KernelArgMD::ValueKind::HiddenHostcallBuffer}, 121 // v3 122 // {"by_value", KernelArgMD::ValueKind::ByValue}, 123 // {"global_buffer", KernelArgMD::ValueKind::GlobalBuffer}, 124 // {"dynamic_shared_pointer", 125 // KernelArgMD::ValueKind::DynamicSharedPointer}, 126 // {"sampler", KernelArgMD::ValueKind::Sampler}, 127 // {"image", KernelArgMD::ValueKind::Image}, 128 // {"pipe", KernelArgMD::ValueKind::Pipe}, 129 // {"queue", KernelArgMD::ValueKind::Queue}, 130 {"hidden_global_offset_x", KernelArgMD::ValueKind::HiddenGlobalOffsetX}, 131 {"hidden_global_offset_y", KernelArgMD::ValueKind::HiddenGlobalOffsetY}, 132 {"hidden_global_offset_z", KernelArgMD::ValueKind::HiddenGlobalOffsetZ}, 133 {"hidden_none", KernelArgMD::ValueKind::HiddenNone}, 134 {"hidden_printf_buffer", KernelArgMD::ValueKind::HiddenPrintfBuffer}, 135 {"hidden_default_queue", KernelArgMD::ValueKind::HiddenDefaultQueue}, 136 {"hidden_completion_action", 137 KernelArgMD::ValueKind::HiddenCompletionAction}, 138 {"hidden_multigrid_sync_arg", 139 KernelArgMD::ValueKind::HiddenMultiGridSyncArg}, 140 {"hidden_hostcall_buffer", KernelArgMD::ValueKind::HiddenHostcallBuffer}, 141 }; 142 143 ATLMachine g_atl_machine; 144 145 namespace core { 146 147 hsa_status_t allow_access_to_all_gpu_agents(void *ptr) { 148 std::vector<ATLGPUProcessor> &gpu_procs = 149 g_atl_machine.processors<ATLGPUProcessor>(); 150 std::vector<hsa_agent_t> agents; 151 for (uint32_t i = 0; i < gpu_procs.size(); i++) { 152 agents.push_back(gpu_procs[i].agent()); 153 } 154 return hsa_amd_agents_allow_access(agents.size(), &agents[0], NULL, ptr); 155 } 156 157 // Implement memory_pool iteration function 158 static hsa_status_t get_memory_pool_info(hsa_amd_memory_pool_t memory_pool, 159 void *data) { 160 ATLProcessor *proc = reinterpret_cast<ATLProcessor *>(data); 161 hsa_status_t err = HSA_STATUS_SUCCESS; 162 // Check if the memory_pool is allowed to allocate, i.e. do not return group 163 // memory 164 bool alloc_allowed = false; 165 err = hsa_amd_memory_pool_get_info( 166 memory_pool, HSA_AMD_MEMORY_POOL_INFO_RUNTIME_ALLOC_ALLOWED, 167 &alloc_allowed); 168 if (err != HSA_STATUS_SUCCESS) { 169 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 170 "Alloc allowed in memory pool check", get_error_string(err)); 171 return err; 172 } 173 if (alloc_allowed) { 174 uint32_t global_flag = 0; 175 err = hsa_amd_memory_pool_get_info( 176 memory_pool, HSA_AMD_MEMORY_POOL_INFO_GLOBAL_FLAGS, &global_flag); 177 if (err != HSA_STATUS_SUCCESS) { 178 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 179 "Get memory pool info", get_error_string(err)); 180 return err; 181 } 182 if (HSA_AMD_MEMORY_POOL_GLOBAL_FLAG_FINE_GRAINED & global_flag) { 183 ATLMemory new_mem(memory_pool, *proc, ATMI_MEMTYPE_FINE_GRAINED); 184 proc->addMemory(new_mem); 185 } else { 186 ATLMemory new_mem(memory_pool, *proc, ATMI_MEMTYPE_COARSE_GRAINED); 187 proc->addMemory(new_mem); 188 } 189 } 190 191 return err; 192 } 193 194 static hsa_status_t get_agent_info(hsa_agent_t agent, void *data) { 195 hsa_status_t err = HSA_STATUS_SUCCESS; 196 hsa_device_type_t device_type; 197 err = hsa_agent_get_info(agent, HSA_AGENT_INFO_DEVICE, &device_type); 198 if (err != HSA_STATUS_SUCCESS) { 199 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 200 "Get device type info", get_error_string(err)); 201 return err; 202 } 203 switch (device_type) { 204 case HSA_DEVICE_TYPE_CPU: { 205 ATLCPUProcessor new_proc(agent); 206 err = hsa_amd_agent_iterate_memory_pools(agent, get_memory_pool_info, 207 &new_proc); 208 if (err != HSA_STATUS_SUCCESS) { 209 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 210 "Iterate all memory pools", get_error_string(err)); 211 return err; 212 } 213 g_atl_machine.addProcessor(new_proc); 214 } break; 215 case HSA_DEVICE_TYPE_GPU: { 216 hsa_profile_t profile; 217 err = hsa_agent_get_info(agent, HSA_AGENT_INFO_PROFILE, &profile); 218 if (err != HSA_STATUS_SUCCESS) { 219 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 220 "Query the agent profile", get_error_string(err)); 221 return err; 222 } 223 atmi_devtype_t gpu_type; 224 gpu_type = 225 (profile == HSA_PROFILE_FULL) ? ATMI_DEVTYPE_iGPU : ATMI_DEVTYPE_dGPU; 226 ATLGPUProcessor new_proc(agent, gpu_type); 227 err = hsa_amd_agent_iterate_memory_pools(agent, get_memory_pool_info, 228 &new_proc); 229 if (err != HSA_STATUS_SUCCESS) { 230 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 231 "Iterate all memory pools", get_error_string(err)); 232 return err; 233 } 234 g_atl_machine.addProcessor(new_proc); 235 } break; 236 case HSA_DEVICE_TYPE_DSP: { 237 err = HSA_STATUS_ERROR_INVALID_CODE_OBJECT; 238 } break; 239 } 240 241 return err; 242 } 243 244 static hsa_status_t init_compute_and_memory() { 245 hsa_status_t err; 246 247 /* Iterate over the agents and pick the gpu agent */ 248 err = hsa_iterate_agents(get_agent_info, NULL); 249 if (err == HSA_STATUS_INFO_BREAK) { 250 err = HSA_STATUS_SUCCESS; 251 } 252 if (err != HSA_STATUS_SUCCESS) { 253 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, "Getting a gpu agent", 254 get_error_string(err)); 255 return err; 256 } 257 258 /* Init all devices or individual device types? */ 259 std::vector<ATLCPUProcessor> &cpu_procs = 260 g_atl_machine.processors<ATLCPUProcessor>(); 261 std::vector<ATLGPUProcessor> &gpu_procs = 262 g_atl_machine.processors<ATLGPUProcessor>(); 263 /* For CPU memory pools, add other devices that can access them directly 264 * or indirectly */ 265 for (auto &cpu_proc : cpu_procs) { 266 for (auto &cpu_mem : cpu_proc.memories()) { 267 hsa_amd_memory_pool_t pool = cpu_mem.memory(); 268 for (auto &gpu_proc : gpu_procs) { 269 hsa_agent_t agent = gpu_proc.agent(); 270 hsa_amd_memory_pool_access_t access; 271 hsa_amd_agent_memory_pool_get_info( 272 agent, pool, HSA_AMD_AGENT_MEMORY_POOL_INFO_ACCESS, &access); 273 if (access != 0) { 274 // this means not NEVER, but could be YES or NO 275 // add this memory pool to the proc 276 gpu_proc.addMemory(cpu_mem); 277 } 278 } 279 } 280 } 281 282 /* FIXME: are the below combinations of procs and memory pools needed? 283 * all to all compare procs with their memory pools and add those memory 284 * pools that are accessible by the target procs */ 285 for (auto &gpu_proc : gpu_procs) { 286 for (auto &gpu_mem : gpu_proc.memories()) { 287 hsa_amd_memory_pool_t pool = gpu_mem.memory(); 288 for (auto &cpu_proc : cpu_procs) { 289 hsa_agent_t agent = cpu_proc.agent(); 290 hsa_amd_memory_pool_access_t access; 291 hsa_amd_agent_memory_pool_get_info( 292 agent, pool, HSA_AMD_AGENT_MEMORY_POOL_INFO_ACCESS, &access); 293 if (access != 0) { 294 // this means not NEVER, but could be YES or NO 295 // add this memory pool to the proc 296 cpu_proc.addMemory(gpu_mem); 297 } 298 } 299 } 300 } 301 302 size_t num_procs = cpu_procs.size() + gpu_procs.size(); 303 int num_iGPUs = 0; 304 int num_dGPUs = 0; 305 for (uint32_t i = 0; i < gpu_procs.size(); i++) { 306 if (gpu_procs[i].type() == ATMI_DEVTYPE_iGPU) 307 num_iGPUs++; 308 else 309 num_dGPUs++; 310 } 311 assert(num_iGPUs + num_dGPUs == gpu_procs.size() && 312 "Number of dGPUs and iGPUs do not add up"); 313 DEBUG_PRINT("CPU Agents: %lu\n", cpu_procs.size()); 314 DEBUG_PRINT("iGPU Agents: %d\n", num_iGPUs); 315 DEBUG_PRINT("dGPU Agents: %d\n", num_dGPUs); 316 DEBUG_PRINT("GPU Agents: %lu\n", gpu_procs.size()); 317 318 int cpus_begin = 0; 319 int cpus_end = cpu_procs.size(); 320 int gpus_begin = cpu_procs.size(); 321 int gpus_end = cpu_procs.size() + gpu_procs.size(); 322 int proc_index = 0; 323 for (int i = cpus_begin; i < cpus_end; i++) { 324 std::vector<ATLMemory> memories = cpu_procs[proc_index].memories(); 325 int fine_memories_size = 0; 326 int coarse_memories_size = 0; 327 DEBUG_PRINT("CPU memory types:\t"); 328 for (auto &memory : memories) { 329 atmi_memtype_t type = memory.type(); 330 if (type == ATMI_MEMTYPE_FINE_GRAINED) { 331 fine_memories_size++; 332 DEBUG_PRINT("Fine\t"); 333 } else { 334 coarse_memories_size++; 335 DEBUG_PRINT("Coarse\t"); 336 } 337 } 338 DEBUG_PRINT("\nFine Memories : %d", fine_memories_size); 339 DEBUG_PRINT("\tCoarse Memories : %d\n", coarse_memories_size); 340 proc_index++; 341 } 342 proc_index = 0; 343 for (int i = gpus_begin; i < gpus_end; i++) { 344 std::vector<ATLMemory> memories = gpu_procs[proc_index].memories(); 345 int fine_memories_size = 0; 346 int coarse_memories_size = 0; 347 DEBUG_PRINT("GPU memory types:\t"); 348 for (auto &memory : memories) { 349 atmi_memtype_t type = memory.type(); 350 if (type == ATMI_MEMTYPE_FINE_GRAINED) { 351 fine_memories_size++; 352 DEBUG_PRINT("Fine\t"); 353 } else { 354 coarse_memories_size++; 355 DEBUG_PRINT("Coarse\t"); 356 } 357 } 358 DEBUG_PRINT("\nFine Memories : %d", fine_memories_size); 359 DEBUG_PRINT("\tCoarse Memories : %d\n", coarse_memories_size); 360 proc_index++; 361 } 362 if (num_procs > 0) 363 return HSA_STATUS_SUCCESS; 364 else 365 return HSA_STATUS_ERROR_NOT_INITIALIZED; 366 } 367 368 hsa_status_t init_hsa() { 369 DEBUG_PRINT("Initializing HSA..."); 370 hsa_status_t err = hsa_init(); 371 if (err != HSA_STATUS_SUCCESS) { 372 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 373 "Initializing the hsa runtime", get_error_string(err)); 374 return err; 375 } 376 if (err != HSA_STATUS_SUCCESS) 377 return err; 378 379 err = init_compute_and_memory(); 380 if (err != HSA_STATUS_SUCCESS) 381 return err; 382 if (err != HSA_STATUS_SUCCESS) { 383 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 384 "After initializing compute and memory", get_error_string(err)); 385 return err; 386 } 387 388 DEBUG_PRINT("done\n"); 389 return HSA_STATUS_SUCCESS; 390 } 391 392 hsa_status_t callbackEvent(const hsa_amd_event_t *event, void *data) { 393 #if (ROCM_VERSION_MAJOR >= 3) || \ 394 (ROCM_VERSION_MAJOR >= 2 && ROCM_VERSION_MINOR >= 3) 395 if (event->event_type == HSA_AMD_GPU_MEMORY_FAULT_EVENT) { 396 #else 397 if (event->event_type == GPU_MEMORY_FAULT_EVENT) { 398 #endif 399 hsa_amd_gpu_memory_fault_info_t memory_fault = event->memory_fault; 400 // memory_fault.agent 401 // memory_fault.virtual_address 402 // memory_fault.fault_reason_mask 403 // fprintf("[GPU Error at %p: Reason is ", memory_fault.virtual_address); 404 std::stringstream stream; 405 stream << std::hex << (uintptr_t)memory_fault.virtual_address; 406 std::string addr("0x" + stream.str()); 407 408 std::string err_string = "[GPU Memory Error] Addr: " + addr; 409 err_string += " Reason: "; 410 if (!(memory_fault.fault_reason_mask & 0x00111111)) { 411 err_string += "No Idea! "; 412 } else { 413 if (memory_fault.fault_reason_mask & 0x00000001) 414 err_string += "Page not present or supervisor privilege. "; 415 if (memory_fault.fault_reason_mask & 0x00000010) 416 err_string += "Write access to a read-only page. "; 417 if (memory_fault.fault_reason_mask & 0x00000100) 418 err_string += "Execute access to a page marked NX. "; 419 if (memory_fault.fault_reason_mask & 0x00001000) 420 err_string += "Host access only. "; 421 if (memory_fault.fault_reason_mask & 0x00010000) 422 err_string += "ECC failure (if supported by HW). "; 423 if (memory_fault.fault_reason_mask & 0x00100000) 424 err_string += "Can't determine the exact fault address. "; 425 } 426 fprintf(stderr, "%s\n", err_string.c_str()); 427 return HSA_STATUS_ERROR; 428 } 429 return HSA_STATUS_SUCCESS; 430 } 431 432 hsa_status_t atl_init_gpu_context() { 433 hsa_status_t err; 434 err = init_hsa(); 435 if (err != HSA_STATUS_SUCCESS) 436 return HSA_STATUS_ERROR; 437 438 err = hsa_amd_register_system_event_handler(callbackEvent, NULL); 439 if (err != HSA_STATUS_SUCCESS) { 440 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 441 "Registering the system for memory faults", get_error_string(err)); 442 return HSA_STATUS_ERROR; 443 } 444 445 return HSA_STATUS_SUCCESS; 446 } 447 448 static bool isImplicit(KernelArgMD::ValueKind value_kind) { 449 switch (value_kind) { 450 case KernelArgMD::ValueKind::HiddenGlobalOffsetX: 451 case KernelArgMD::ValueKind::HiddenGlobalOffsetY: 452 case KernelArgMD::ValueKind::HiddenGlobalOffsetZ: 453 case KernelArgMD::ValueKind::HiddenNone: 454 case KernelArgMD::ValueKind::HiddenPrintfBuffer: 455 case KernelArgMD::ValueKind::HiddenDefaultQueue: 456 case KernelArgMD::ValueKind::HiddenCompletionAction: 457 case KernelArgMD::ValueKind::HiddenMultiGridSyncArg: 458 case KernelArgMD::ValueKind::HiddenHostcallBuffer: 459 return true; 460 default: 461 return false; 462 } 463 } 464 465 static std::pair<unsigned char *, unsigned char *> 466 find_metadata(void *binary, size_t binSize) { 467 std::pair<unsigned char *, unsigned char *> failure = {nullptr, nullptr}; 468 469 Elf *e = elf_memory(static_cast<char *>(binary), binSize); 470 if (elf_kind(e) != ELF_K_ELF) { 471 return failure; 472 } 473 474 size_t numpHdrs; 475 if (elf_getphdrnum(e, &numpHdrs) != 0) { 476 return failure; 477 } 478 479 for (size_t i = 0; i < numpHdrs; ++i) { 480 GElf_Phdr pHdr; 481 if (gelf_getphdr(e, i, &pHdr) != &pHdr) { 482 continue; 483 } 484 // Look for the runtime metadata note 485 if (pHdr.p_type == PT_NOTE && pHdr.p_align >= sizeof(int)) { 486 // Iterate over the notes in this segment 487 address ptr = (address)binary + pHdr.p_offset; 488 address segmentEnd = ptr + pHdr.p_filesz; 489 490 while (ptr < segmentEnd) { 491 Elf_Note *note = reinterpret_cast<Elf_Note *>(ptr); 492 address name = (address)¬e[1]; 493 494 if (note->n_type == 7 || note->n_type == 8) { 495 return failure; 496 } else if (note->n_type == 10 /* NT_AMD_AMDGPU_HSA_METADATA */ && 497 note->n_namesz == sizeof "AMD" && 498 !memcmp(name, "AMD", note->n_namesz)) { 499 // code object v2 uses yaml metadata, no longer supported 500 return failure; 501 } else if (note->n_type == 32 /* NT_AMDGPU_METADATA */ && 502 note->n_namesz == sizeof "AMDGPU" && 503 !memcmp(name, "AMDGPU", note->n_namesz)) { 504 505 // n_descsz = 485 506 // value is padded to 4 byte alignment, may want to move end up to 507 // match 508 size_t offset = sizeof(uint32_t) * 3 /* fields */ 509 + sizeof("AMDGPU") /* name */ 510 + 1 /* padding to 4 byte alignment */; 511 512 // Including the trailing padding means both pointers are 4 bytes 513 // aligned, which may be useful later. 514 unsigned char *metadata_start = (unsigned char *)ptr + offset; 515 unsigned char *metadata_end = 516 metadata_start + core::alignUp(note->n_descsz, 4); 517 return {metadata_start, metadata_end}; 518 } 519 ptr += sizeof(*note) + core::alignUp(note->n_namesz, sizeof(int)) + 520 core::alignUp(note->n_descsz, sizeof(int)); 521 } 522 } 523 } 524 525 return failure; 526 } 527 528 namespace { 529 int map_lookup_array(msgpack::byte_range message, const char *needle, 530 msgpack::byte_range *res, uint64_t *size) { 531 unsigned count = 0; 532 struct s : msgpack::functors_defaults<s> { 533 s(unsigned &count, uint64_t *size) : count(count), size(size) {} 534 unsigned &count; 535 uint64_t *size; 536 const unsigned char *handle_array(uint64_t N, msgpack::byte_range bytes) { 537 count++; 538 *size = N; 539 return bytes.end; 540 } 541 }; 542 543 msgpack::foreach_map(message, 544 [&](msgpack::byte_range key, msgpack::byte_range value) { 545 if (msgpack::message_is_string(key, needle)) { 546 // If the message is an array, record number of 547 // elements in *size 548 msgpack::handle_msgpack<s>(value, {count, size}); 549 // return the whole array 550 *res = value; 551 } 552 }); 553 // Only claim success if exactly one key/array pair matched 554 return count != 1; 555 } 556 557 int map_lookup_string(msgpack::byte_range message, const char *needle, 558 std::string *res) { 559 unsigned count = 0; 560 struct s : public msgpack::functors_defaults<s> { 561 s(unsigned &count, std::string *res) : count(count), res(res) {} 562 unsigned &count; 563 std::string *res; 564 void handle_string(size_t N, const unsigned char *str) { 565 count++; 566 *res = std::string(str, str + N); 567 } 568 }; 569 msgpack::foreach_map(message, 570 [&](msgpack::byte_range key, msgpack::byte_range value) { 571 if (msgpack::message_is_string(key, needle)) { 572 msgpack::handle_msgpack<s>(value, {count, res}); 573 } 574 }); 575 return count != 1; 576 } 577 578 int map_lookup_uint64_t(msgpack::byte_range message, const char *needle, 579 uint64_t *res) { 580 unsigned count = 0; 581 msgpack::foreach_map(message, 582 [&](msgpack::byte_range key, msgpack::byte_range value) { 583 if (msgpack::message_is_string(key, needle)) { 584 msgpack::foronly_unsigned(value, [&](uint64_t x) { 585 count++; 586 *res = x; 587 }); 588 } 589 }); 590 return count != 1; 591 } 592 593 int array_lookup_element(msgpack::byte_range message, uint64_t elt, 594 msgpack::byte_range *res) { 595 int rc = 1; 596 uint64_t i = 0; 597 msgpack::foreach_array(message, [&](msgpack::byte_range value) { 598 if (i == elt) { 599 *res = value; 600 rc = 0; 601 } 602 i++; 603 }); 604 return rc; 605 } 606 607 int populate_kernelArgMD(msgpack::byte_range args_element, 608 KernelArgMD *kernelarg) { 609 using namespace msgpack; 610 int error = 0; 611 foreach_map(args_element, [&](byte_range key, byte_range value) -> void { 612 if (message_is_string(key, ".name")) { 613 foronly_string(value, [&](size_t N, const unsigned char *str) { 614 kernelarg->name_ = std::string(str, str + N); 615 }); 616 } else if (message_is_string(key, ".type_name")) { 617 foronly_string(value, [&](size_t N, const unsigned char *str) { 618 kernelarg->typeName_ = std::string(str, str + N); 619 }); 620 } else if (message_is_string(key, ".size")) { 621 foronly_unsigned(value, [&](uint64_t x) { kernelarg->size_ = x; }); 622 } else if (message_is_string(key, ".offset")) { 623 foronly_unsigned(value, [&](uint64_t x) { kernelarg->offset_ = x; }); 624 } else if (message_is_string(key, ".value_kind")) { 625 foronly_string(value, [&](size_t N, const unsigned char *str) { 626 std::string s = std::string(str, str + N); 627 auto itValueKind = ArgValueKind.find(s); 628 if (itValueKind != ArgValueKind.end()) { 629 kernelarg->valueKind_ = itValueKind->second; 630 } 631 }); 632 } 633 }); 634 return error; 635 } 636 } // namespace 637 638 static hsa_status_t get_code_object_custom_metadata( 639 void *binary, size_t binSize, 640 std::map<std::string, atl_kernel_info_t> &KernelInfoTable) { 641 // parse code object with different keys from v2 642 // also, the kernel name is not the same as the symbol name -- so a 643 // symbol->name map is needed 644 645 std::pair<unsigned char *, unsigned char *> metadata = 646 find_metadata(binary, binSize); 647 if (!metadata.first) { 648 return HSA_STATUS_ERROR_INVALID_CODE_OBJECT; 649 } 650 651 uint64_t kernelsSize = 0; 652 int msgpack_errors = 0; 653 msgpack::byte_range kernel_array; 654 msgpack_errors = 655 map_lookup_array({metadata.first, metadata.second}, "amdhsa.kernels", 656 &kernel_array, &kernelsSize); 657 if (msgpack_errors != 0) { 658 printf("[%s:%d] %s failed\n", __FILE__, __LINE__, 659 "kernels lookup in program metadata"); 660 return HSA_STATUS_ERROR_INVALID_CODE_OBJECT; 661 } 662 663 for (size_t i = 0; i < kernelsSize; i++) { 664 assert(msgpack_errors == 0); 665 std::string kernelName; 666 std::string symbolName; 667 668 msgpack::byte_range element; 669 msgpack_errors += array_lookup_element(kernel_array, i, &element); 670 if (msgpack_errors != 0) { 671 printf("[%s:%d] %s failed\n", __FILE__, __LINE__, 672 "element lookup in kernel metadata"); 673 return HSA_STATUS_ERROR_INVALID_CODE_OBJECT; 674 } 675 676 msgpack_errors += map_lookup_string(element, ".name", &kernelName); 677 msgpack_errors += map_lookup_string(element, ".symbol", &symbolName); 678 if (msgpack_errors != 0) { 679 printf("[%s:%d] %s failed\n", __FILE__, __LINE__, 680 "strings lookup in kernel metadata"); 681 return HSA_STATUS_ERROR_INVALID_CODE_OBJECT; 682 } 683 684 // Make sure that kernelName + ".kd" == symbolName 685 if ((kernelName + ".kd") != symbolName) { 686 printf("[%s:%d] Kernel name mismatching symbol: %s != %s + .kd\n", 687 __FILE__, __LINE__, symbolName.c_str(), kernelName.c_str()); 688 return HSA_STATUS_ERROR_INVALID_CODE_OBJECT; 689 } 690 691 atl_kernel_info_t info = {0, 0, 0, 0, 0, 0, 0, 0, 0, {}, {}, {}}; 692 693 uint64_t sgpr_count, vgpr_count, sgpr_spill_count, vgpr_spill_count; 694 msgpack_errors += map_lookup_uint64_t(element, ".sgpr_count", &sgpr_count); 695 if (msgpack_errors != 0) { 696 printf("[%s:%d] %s failed\n", __FILE__, __LINE__, 697 "sgpr count metadata lookup in kernel metadata"); 698 return HSA_STATUS_ERROR_INVALID_CODE_OBJECT; 699 } 700 701 info.sgpr_count = sgpr_count; 702 703 msgpack_errors += map_lookup_uint64_t(element, ".vgpr_count", &vgpr_count); 704 if (msgpack_errors != 0) { 705 printf("[%s:%d] %s failed\n", __FILE__, __LINE__, 706 "vgpr count metadata lookup in kernel metadata"); 707 return HSA_STATUS_ERROR_INVALID_CODE_OBJECT; 708 } 709 710 info.vgpr_count = vgpr_count; 711 712 msgpack_errors += 713 map_lookup_uint64_t(element, ".sgpr_spill_count", &sgpr_spill_count); 714 if (msgpack_errors != 0) { 715 printf("[%s:%d] %s failed\n", __FILE__, __LINE__, 716 "sgpr spill count metadata lookup in kernel metadata"); 717 return HSA_STATUS_ERROR_INVALID_CODE_OBJECT; 718 } 719 720 info.sgpr_spill_count = sgpr_spill_count; 721 722 msgpack_errors += 723 map_lookup_uint64_t(element, ".vgpr_spill_count", &vgpr_spill_count); 724 if (msgpack_errors != 0) { 725 printf("[%s:%d] %s failed\n", __FILE__, __LINE__, 726 "vgpr spill count metadata lookup in kernel metadata"); 727 return HSA_STATUS_ERROR_INVALID_CODE_OBJECT; 728 } 729 730 info.vgpr_spill_count = vgpr_spill_count; 731 732 size_t kernel_explicit_args_size = 0; 733 uint64_t kernel_segment_size; 734 msgpack_errors += map_lookup_uint64_t(element, ".kernarg_segment_size", 735 &kernel_segment_size); 736 if (msgpack_errors != 0) { 737 printf("[%s:%d] %s failed\n", __FILE__, __LINE__, 738 "kernarg segment size metadata lookup in kernel metadata"); 739 return HSA_STATUS_ERROR_INVALID_CODE_OBJECT; 740 } 741 742 bool hasHiddenArgs = false; 743 if (kernel_segment_size > 0) { 744 uint64_t argsSize; 745 size_t offset = 0; 746 747 msgpack::byte_range args_array; 748 msgpack_errors += 749 map_lookup_array(element, ".args", &args_array, &argsSize); 750 if (msgpack_errors != 0) { 751 printf("[%s:%d] %s failed\n", __FILE__, __LINE__, 752 "kernel args metadata lookup in kernel metadata"); 753 return HSA_STATUS_ERROR_INVALID_CODE_OBJECT; 754 } 755 756 info.num_args = argsSize; 757 758 for (size_t i = 0; i < argsSize; ++i) { 759 KernelArgMD lcArg; 760 761 msgpack::byte_range args_element; 762 msgpack_errors += array_lookup_element(args_array, i, &args_element); 763 if (msgpack_errors != 0) { 764 printf("[%s:%d] %s failed\n", __FILE__, __LINE__, 765 "iterate args map in kernel args metadata"); 766 return HSA_STATUS_ERROR_INVALID_CODE_OBJECT; 767 } 768 769 msgpack_errors += populate_kernelArgMD(args_element, &lcArg); 770 if (msgpack_errors != 0) { 771 printf("[%s:%d] %s failed\n", __FILE__, __LINE__, 772 "iterate args map in kernel args metadata"); 773 return HSA_STATUS_ERROR_INVALID_CODE_OBJECT; 774 } 775 // populate info with sizes and offsets 776 info.arg_sizes.push_back(lcArg.size_); 777 // v3 has offset field and not align field 778 size_t new_offset = lcArg.offset_; 779 size_t padding = new_offset - offset; 780 offset = new_offset; 781 info.arg_offsets.push_back(lcArg.offset_); 782 DEBUG_PRINT("Arg[%lu] \"%s\" (%u, %u)\n", i, lcArg.name_.c_str(), 783 lcArg.size_, lcArg.offset_); 784 offset += lcArg.size_; 785 786 // check if the arg is a hidden/implicit arg 787 // this logic assumes that all hidden args are 8-byte aligned 788 if (!isImplicit(lcArg.valueKind_)) { 789 kernel_explicit_args_size += lcArg.size_; 790 } else { 791 hasHiddenArgs = true; 792 } 793 kernel_explicit_args_size += padding; 794 } 795 } 796 797 // add size of implicit args, e.g.: offset x, y and z and pipe pointer, but 798 // in ATMI, do not count the compiler set implicit args, but set your own 799 // implicit args by discounting the compiler set implicit args 800 info.kernel_segment_size = 801 (hasHiddenArgs ? kernel_explicit_args_size : kernel_segment_size) + 802 sizeof(atmi_implicit_args_t); 803 DEBUG_PRINT("[%s: kernarg seg size] (%lu --> %u)\n", kernelName.c_str(), 804 kernel_segment_size, info.kernel_segment_size); 805 806 // kernel received, now add it to the kernel info table 807 KernelInfoTable[kernelName] = info; 808 } 809 810 return HSA_STATUS_SUCCESS; 811 } 812 813 static hsa_status_t 814 populate_InfoTables(hsa_executable_symbol_t symbol, 815 std::map<std::string, atl_kernel_info_t> &KernelInfoTable, 816 std::map<std::string, atl_symbol_info_t> &SymbolInfoTable) { 817 hsa_symbol_kind_t type; 818 819 uint32_t name_length; 820 hsa_status_t err; 821 err = hsa_executable_symbol_get_info(symbol, HSA_EXECUTABLE_SYMBOL_INFO_TYPE, 822 &type); 823 if (err != HSA_STATUS_SUCCESS) { 824 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 825 "Symbol info extraction", get_error_string(err)); 826 return err; 827 } 828 DEBUG_PRINT("Exec Symbol type: %d\n", type); 829 if (type == HSA_SYMBOL_KIND_KERNEL) { 830 err = hsa_executable_symbol_get_info( 831 symbol, HSA_EXECUTABLE_SYMBOL_INFO_NAME_LENGTH, &name_length); 832 if (err != HSA_STATUS_SUCCESS) { 833 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 834 "Symbol info extraction", get_error_string(err)); 835 return err; 836 } 837 char *name = reinterpret_cast<char *>(malloc(name_length + 1)); 838 err = hsa_executable_symbol_get_info(symbol, 839 HSA_EXECUTABLE_SYMBOL_INFO_NAME, name); 840 if (err != HSA_STATUS_SUCCESS) { 841 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 842 "Symbol info extraction", get_error_string(err)); 843 return err; 844 } 845 // remove the suffix .kd from symbol name. 846 name[name_length - 3] = 0; 847 848 atl_kernel_info_t info; 849 std::string kernelName(name); 850 // by now, the kernel info table should already have an entry 851 // because the non-ROCr custom code object parsing is called before 852 // iterating over the code object symbols using ROCr 853 if (KernelInfoTable.find(kernelName) == KernelInfoTable.end()) { 854 if (HSA_STATUS_ERROR_INVALID_CODE_OBJECT != HSA_STATUS_SUCCESS) { 855 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 856 "Finding the entry kernel info table", 857 get_error_string(HSA_STATUS_ERROR_INVALID_CODE_OBJECT)); 858 exit(1); 859 } 860 } 861 // found, so assign and update 862 info = KernelInfoTable[kernelName]; 863 864 /* Extract dispatch information from the symbol */ 865 err = hsa_executable_symbol_get_info( 866 symbol, HSA_EXECUTABLE_SYMBOL_INFO_KERNEL_OBJECT, 867 &(info.kernel_object)); 868 if (err != HSA_STATUS_SUCCESS) { 869 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 870 "Extracting the symbol from the executable", 871 get_error_string(err)); 872 return err; 873 } 874 err = hsa_executable_symbol_get_info( 875 symbol, HSA_EXECUTABLE_SYMBOL_INFO_KERNEL_GROUP_SEGMENT_SIZE, 876 &(info.group_segment_size)); 877 if (err != HSA_STATUS_SUCCESS) { 878 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 879 "Extracting the group segment size from the executable", 880 get_error_string(err)); 881 return err; 882 } 883 err = hsa_executable_symbol_get_info( 884 symbol, HSA_EXECUTABLE_SYMBOL_INFO_KERNEL_PRIVATE_SEGMENT_SIZE, 885 &(info.private_segment_size)); 886 if (err != HSA_STATUS_SUCCESS) { 887 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 888 "Extracting the private segment from the executable", 889 get_error_string(err)); 890 return err; 891 } 892 893 DEBUG_PRINT( 894 "Kernel %s --> %lx symbol %u group segsize %u pvt segsize %u bytes " 895 "kernarg\n", 896 kernelName.c_str(), info.kernel_object, info.group_segment_size, 897 info.private_segment_size, info.kernel_segment_size); 898 899 // assign it back to the kernel info table 900 KernelInfoTable[kernelName] = info; 901 free(name); 902 } else if (type == HSA_SYMBOL_KIND_VARIABLE) { 903 err = hsa_executable_symbol_get_info( 904 symbol, HSA_EXECUTABLE_SYMBOL_INFO_NAME_LENGTH, &name_length); 905 if (err != HSA_STATUS_SUCCESS) { 906 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 907 "Symbol info extraction", get_error_string(err)); 908 return err; 909 } 910 char *name = reinterpret_cast<char *>(malloc(name_length + 1)); 911 err = hsa_executable_symbol_get_info(symbol, 912 HSA_EXECUTABLE_SYMBOL_INFO_NAME, name); 913 if (err != HSA_STATUS_SUCCESS) { 914 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 915 "Symbol info extraction", get_error_string(err)); 916 return err; 917 } 918 name[name_length] = 0; 919 920 atl_symbol_info_t info; 921 922 err = hsa_executable_symbol_get_info( 923 symbol, HSA_EXECUTABLE_SYMBOL_INFO_VARIABLE_ADDRESS, &(info.addr)); 924 if (err != HSA_STATUS_SUCCESS) { 925 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 926 "Symbol info address extraction", get_error_string(err)); 927 return err; 928 } 929 930 err = hsa_executable_symbol_get_info( 931 symbol, HSA_EXECUTABLE_SYMBOL_INFO_VARIABLE_SIZE, &(info.size)); 932 if (err != HSA_STATUS_SUCCESS) { 933 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 934 "Symbol info size extraction", get_error_string(err)); 935 return err; 936 } 937 938 DEBUG_PRINT("Symbol %s = %p (%u bytes)\n", name, (void *)info.addr, 939 info.size); 940 err = register_allocation(reinterpret_cast<void *>(info.addr), 941 (size_t)info.size, ATMI_DEVTYPE_GPU); 942 if (err != HSA_STATUS_SUCCESS) { 943 return err; 944 } 945 SymbolInfoTable[std::string(name)] = info; 946 free(name); 947 } else { 948 DEBUG_PRINT("Symbol is an indirect function\n"); 949 } 950 return HSA_STATUS_SUCCESS; 951 } 952 953 hsa_status_t RegisterModuleFromMemory( 954 std::map<std::string, atl_kernel_info_t> &KernelInfoTable, 955 std::map<std::string, atl_symbol_info_t> &SymbolInfoTable, 956 void *module_bytes, size_t module_size, hsa_agent_t agent, 957 hsa_status_t (*on_deserialized_data)(void *data, size_t size, 958 void *cb_state), 959 void *cb_state, std::vector<hsa_executable_t> &HSAExecutables) { 960 hsa_status_t err; 961 hsa_executable_t executable = {0}; 962 hsa_profile_t agent_profile; 963 964 err = hsa_agent_get_info(agent, HSA_AGENT_INFO_PROFILE, &agent_profile); 965 if (err != HSA_STATUS_SUCCESS) { 966 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 967 "Query the agent profile", get_error_string(err)); 968 return HSA_STATUS_ERROR; 969 } 970 // FIXME: Assume that every profile is FULL until we understand how to build 971 // GCN with base profile 972 agent_profile = HSA_PROFILE_FULL; 973 /* Create the empty executable. */ 974 err = hsa_executable_create(agent_profile, HSA_EXECUTABLE_STATE_UNFROZEN, "", 975 &executable); 976 if (err != HSA_STATUS_SUCCESS) { 977 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 978 "Create the executable", get_error_string(err)); 979 return HSA_STATUS_ERROR; 980 } 981 982 bool module_load_success = false; 983 do // Existing control flow used continue, preserve that for this patch 984 { 985 { 986 // Some metadata info is not available through ROCr API, so use custom 987 // code object metadata parsing to collect such metadata info 988 989 err = get_code_object_custom_metadata(module_bytes, module_size, 990 KernelInfoTable); 991 if (err != HSA_STATUS_SUCCESS) { 992 DEBUG_PRINT("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 993 "Getting custom code object metadata", 994 get_error_string(err)); 995 continue; 996 } 997 998 // Deserialize code object. 999 hsa_code_object_t code_object = {0}; 1000 err = hsa_code_object_deserialize(module_bytes, module_size, NULL, 1001 &code_object); 1002 if (err != HSA_STATUS_SUCCESS) { 1003 DEBUG_PRINT("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 1004 "Code Object Deserialization", get_error_string(err)); 1005 continue; 1006 } 1007 assert(0 != code_object.handle); 1008 1009 // Mutating the device image here avoids another allocation & memcpy 1010 void *code_object_alloc_data = 1011 reinterpret_cast<void *>(code_object.handle); 1012 hsa_status_t atmi_err = 1013 on_deserialized_data(code_object_alloc_data, module_size, cb_state); 1014 if (atmi_err != HSA_STATUS_SUCCESS) { 1015 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 1016 "Error in deserialized_data callback", 1017 get_atmi_error_string(atmi_err)); 1018 return atmi_err; 1019 } 1020 1021 /* Load the code object. */ 1022 err = 1023 hsa_executable_load_code_object(executable, agent, code_object, NULL); 1024 if (err != HSA_STATUS_SUCCESS) { 1025 DEBUG_PRINT("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 1026 "Loading the code object", get_error_string(err)); 1027 continue; 1028 } 1029 1030 // cannot iterate over symbols until executable is frozen 1031 } 1032 module_load_success = true; 1033 } while (0); 1034 DEBUG_PRINT("Modules loaded successful? %d\n", module_load_success); 1035 if (module_load_success) { 1036 /* Freeze the executable; it can now be queried for symbols. */ 1037 err = hsa_executable_freeze(executable, ""); 1038 if (err != HSA_STATUS_SUCCESS) { 1039 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 1040 "Freeze the executable", get_error_string(err)); 1041 return HSA_STATUS_ERROR; 1042 } 1043 1044 err = hsa::executable_iterate_symbols( 1045 executable, 1046 [&](hsa_executable_t, hsa_executable_symbol_t symbol) -> hsa_status_t { 1047 return populate_InfoTables(symbol, KernelInfoTable, SymbolInfoTable); 1048 }); 1049 if (err != HSA_STATUS_SUCCESS) { 1050 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 1051 "Iterating over symbols for execuatable", get_error_string(err)); 1052 return HSA_STATUS_ERROR; 1053 } 1054 1055 // save the executable and destroy during finalize 1056 HSAExecutables.push_back(executable); 1057 return HSA_STATUS_SUCCESS; 1058 } else { 1059 return HSA_STATUS_ERROR; 1060 } 1061 } 1062 1063 } // namespace core 1064