1 //===--- amdgpu/impl/system.cpp ----------------------------------- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 #include <libelf.h> 9 10 #include <cassert> 11 #include <sstream> 12 #include <string> 13 14 #include "internal.h" 15 #include "machine.h" 16 #include "rt.h" 17 18 #include "msgpack.h" 19 20 namespace hsa { 21 // Wrap HSA iterate API in a shim that allows passing general callables 22 template <typename C> 23 hsa_status_t executable_iterate_symbols(hsa_executable_t executable, C cb) { 24 auto L = [](hsa_executable_t executable, hsa_executable_symbol_t symbol, 25 void *data) -> hsa_status_t { 26 C *unwrapped = static_cast<C *>(data); 27 return (*unwrapped)(executable, symbol); 28 }; 29 return hsa_executable_iterate_symbols(executable, L, 30 static_cast<void *>(&cb)); 31 } 32 } // namespace hsa 33 34 typedef unsigned char *address; 35 /* 36 * Note descriptors. 37 */ 38 // FreeBSD already declares Elf_Note (indirectly via <libelf.h>) 39 #if !defined(__FreeBSD__) 40 typedef struct { 41 uint32_t n_namesz; /* Length of note's name. */ 42 uint32_t n_descsz; /* Length of note's value. */ 43 uint32_t n_type; /* Type of note. */ 44 // then name 45 // then padding, optional 46 // then desc, at 4 byte alignment (not 8, despite being elf64) 47 } Elf_Note; 48 #endif 49 50 // The following include file and following structs/enums 51 // have been replicated on a per-use basis below. For example, 52 // llvm::AMDGPU::HSAMD::Kernel::Metadata has several fields, 53 // but we may care only about kernargSegmentSize_ for now, so 54 // we just include that field in our KernelMD implementation. We 55 // chose this approach to replicate in order to avoid forcing 56 // a dependency on LLVM_INCLUDE_DIR just to compile the runtime. 57 // #include "llvm/Support/AMDGPUMetadata.h" 58 // typedef llvm::AMDGPU::HSAMD::Metadata CodeObjectMD; 59 // typedef llvm::AMDGPU::HSAMD::Kernel::Metadata KernelMD; 60 // typedef llvm::AMDGPU::HSAMD::Kernel::Arg::Metadata KernelArgMD; 61 // using llvm::AMDGPU::HSAMD::AccessQualifier; 62 // using llvm::AMDGPU::HSAMD::AddressSpaceQualifier; 63 // using llvm::AMDGPU::HSAMD::ValueKind; 64 // using llvm::AMDGPU::HSAMD::ValueType; 65 66 class KernelArgMD { 67 public: 68 enum class ValueKind { 69 HiddenGlobalOffsetX, 70 HiddenGlobalOffsetY, 71 HiddenGlobalOffsetZ, 72 HiddenNone, 73 HiddenPrintfBuffer, 74 HiddenDefaultQueue, 75 HiddenCompletionAction, 76 HiddenMultiGridSyncArg, 77 HiddenHostcallBuffer, 78 Unknown 79 }; 80 81 KernelArgMD() 82 : name_(std::string()), typeName_(std::string()), size_(0), offset_(0), 83 align_(0), valueKind_(ValueKind::Unknown) {} 84 85 // fields 86 std::string name_; 87 std::string typeName_; 88 uint32_t size_; 89 uint32_t offset_; 90 uint32_t align_; 91 ValueKind valueKind_; 92 }; 93 94 class KernelMD { 95 public: 96 KernelMD() : kernargSegmentSize_(0ull) {} 97 98 // fields 99 uint64_t kernargSegmentSize_; 100 }; 101 102 static const std::map<std::string, KernelArgMD::ValueKind> ArgValueKind = { 103 // Including only those fields that are relevant to the runtime. 104 // {"ByValue", KernelArgMD::ValueKind::ByValue}, 105 // {"GlobalBuffer", KernelArgMD::ValueKind::GlobalBuffer}, 106 // {"DynamicSharedPointer", 107 // KernelArgMD::ValueKind::DynamicSharedPointer}, 108 // {"Sampler", KernelArgMD::ValueKind::Sampler}, 109 // {"Image", KernelArgMD::ValueKind::Image}, 110 // {"Pipe", KernelArgMD::ValueKind::Pipe}, 111 // {"Queue", KernelArgMD::ValueKind::Queue}, 112 {"HiddenGlobalOffsetX", KernelArgMD::ValueKind::HiddenGlobalOffsetX}, 113 {"HiddenGlobalOffsetY", KernelArgMD::ValueKind::HiddenGlobalOffsetY}, 114 {"HiddenGlobalOffsetZ", KernelArgMD::ValueKind::HiddenGlobalOffsetZ}, 115 {"HiddenNone", KernelArgMD::ValueKind::HiddenNone}, 116 {"HiddenPrintfBuffer", KernelArgMD::ValueKind::HiddenPrintfBuffer}, 117 {"HiddenDefaultQueue", KernelArgMD::ValueKind::HiddenDefaultQueue}, 118 {"HiddenCompletionAction", KernelArgMD::ValueKind::HiddenCompletionAction}, 119 {"HiddenMultiGridSyncArg", KernelArgMD::ValueKind::HiddenMultiGridSyncArg}, 120 {"HiddenHostcallBuffer", KernelArgMD::ValueKind::HiddenHostcallBuffer}, 121 // v3 122 // {"by_value", KernelArgMD::ValueKind::ByValue}, 123 // {"global_buffer", KernelArgMD::ValueKind::GlobalBuffer}, 124 // {"dynamic_shared_pointer", 125 // KernelArgMD::ValueKind::DynamicSharedPointer}, 126 // {"sampler", KernelArgMD::ValueKind::Sampler}, 127 // {"image", KernelArgMD::ValueKind::Image}, 128 // {"pipe", KernelArgMD::ValueKind::Pipe}, 129 // {"queue", KernelArgMD::ValueKind::Queue}, 130 {"hidden_global_offset_x", KernelArgMD::ValueKind::HiddenGlobalOffsetX}, 131 {"hidden_global_offset_y", KernelArgMD::ValueKind::HiddenGlobalOffsetY}, 132 {"hidden_global_offset_z", KernelArgMD::ValueKind::HiddenGlobalOffsetZ}, 133 {"hidden_none", KernelArgMD::ValueKind::HiddenNone}, 134 {"hidden_printf_buffer", KernelArgMD::ValueKind::HiddenPrintfBuffer}, 135 {"hidden_default_queue", KernelArgMD::ValueKind::HiddenDefaultQueue}, 136 {"hidden_completion_action", 137 KernelArgMD::ValueKind::HiddenCompletionAction}, 138 {"hidden_multigrid_sync_arg", 139 KernelArgMD::ValueKind::HiddenMultiGridSyncArg}, 140 {"hidden_hostcall_buffer", KernelArgMD::ValueKind::HiddenHostcallBuffer}, 141 }; 142 143 ATLMachine g_atl_machine; 144 145 namespace core { 146 147 // Implement memory_pool iteration function 148 static hsa_status_t get_memory_pool_info(hsa_amd_memory_pool_t memory_pool, 149 void *data) { 150 ATLProcessor *proc = reinterpret_cast<ATLProcessor *>(data); 151 hsa_status_t err = HSA_STATUS_SUCCESS; 152 // Check if the memory_pool is allowed to allocate, i.e. do not return group 153 // memory 154 bool alloc_allowed = false; 155 err = hsa_amd_memory_pool_get_info( 156 memory_pool, HSA_AMD_MEMORY_POOL_INFO_RUNTIME_ALLOC_ALLOWED, 157 &alloc_allowed); 158 if (err != HSA_STATUS_SUCCESS) { 159 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 160 "Alloc allowed in memory pool check", get_error_string(err)); 161 return err; 162 } 163 if (alloc_allowed) { 164 uint32_t global_flag = 0; 165 err = hsa_amd_memory_pool_get_info( 166 memory_pool, HSA_AMD_MEMORY_POOL_INFO_GLOBAL_FLAGS, &global_flag); 167 if (err != HSA_STATUS_SUCCESS) { 168 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 169 "Get memory pool info", get_error_string(err)); 170 return err; 171 } 172 if (HSA_AMD_MEMORY_POOL_GLOBAL_FLAG_FINE_GRAINED & global_flag) { 173 ATLMemory new_mem(memory_pool, *proc, ATMI_MEMTYPE_FINE_GRAINED); 174 proc->addMemory(new_mem); 175 } else { 176 ATLMemory new_mem(memory_pool, *proc, ATMI_MEMTYPE_COARSE_GRAINED); 177 proc->addMemory(new_mem); 178 } 179 } 180 181 return err; 182 } 183 184 static hsa_status_t get_agent_info(hsa_agent_t agent, void *data) { 185 hsa_status_t err = HSA_STATUS_SUCCESS; 186 hsa_device_type_t device_type; 187 err = hsa_agent_get_info(agent, HSA_AGENT_INFO_DEVICE, &device_type); 188 if (err != HSA_STATUS_SUCCESS) { 189 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 190 "Get device type info", get_error_string(err)); 191 return err; 192 } 193 switch (device_type) { 194 case HSA_DEVICE_TYPE_CPU: { 195 ATLCPUProcessor new_proc(agent); 196 err = hsa_amd_agent_iterate_memory_pools(agent, get_memory_pool_info, 197 &new_proc); 198 if (err != HSA_STATUS_SUCCESS) { 199 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 200 "Iterate all memory pools", get_error_string(err)); 201 return err; 202 } 203 g_atl_machine.addProcessor(new_proc); 204 } break; 205 case HSA_DEVICE_TYPE_GPU: { 206 hsa_profile_t profile; 207 err = hsa_agent_get_info(agent, HSA_AGENT_INFO_PROFILE, &profile); 208 if (err != HSA_STATUS_SUCCESS) { 209 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 210 "Query the agent profile", get_error_string(err)); 211 return err; 212 } 213 atmi_devtype_t gpu_type; 214 gpu_type = 215 (profile == HSA_PROFILE_FULL) ? ATMI_DEVTYPE_iGPU : ATMI_DEVTYPE_dGPU; 216 ATLGPUProcessor new_proc(agent, gpu_type); 217 err = hsa_amd_agent_iterate_memory_pools(agent, get_memory_pool_info, 218 &new_proc); 219 if (err != HSA_STATUS_SUCCESS) { 220 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 221 "Iterate all memory pools", get_error_string(err)); 222 return err; 223 } 224 g_atl_machine.addProcessor(new_proc); 225 } break; 226 case HSA_DEVICE_TYPE_DSP: { 227 err = HSA_STATUS_ERROR_INVALID_CODE_OBJECT; 228 } break; 229 } 230 231 return err; 232 } 233 234 static hsa_status_t init_compute_and_memory() { 235 hsa_status_t err; 236 237 /* Iterate over the agents and pick the gpu agent */ 238 err = hsa_iterate_agents(get_agent_info, NULL); 239 if (err == HSA_STATUS_INFO_BREAK) { 240 err = HSA_STATUS_SUCCESS; 241 } 242 if (err != HSA_STATUS_SUCCESS) { 243 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, "Getting a gpu agent", 244 get_error_string(err)); 245 return err; 246 } 247 248 /* Init all devices or individual device types? */ 249 std::vector<ATLCPUProcessor> &cpu_procs = 250 g_atl_machine.processors<ATLCPUProcessor>(); 251 std::vector<ATLGPUProcessor> &gpu_procs = 252 g_atl_machine.processors<ATLGPUProcessor>(); 253 /* For CPU memory pools, add other devices that can access them directly 254 * or indirectly */ 255 for (auto &cpu_proc : cpu_procs) { 256 for (auto &cpu_mem : cpu_proc.memories()) { 257 hsa_amd_memory_pool_t pool = cpu_mem.memory(); 258 for (auto &gpu_proc : gpu_procs) { 259 hsa_agent_t agent = gpu_proc.agent(); 260 hsa_amd_memory_pool_access_t access; 261 hsa_amd_agent_memory_pool_get_info( 262 agent, pool, HSA_AMD_AGENT_MEMORY_POOL_INFO_ACCESS, &access); 263 if (access != 0) { 264 // this means not NEVER, but could be YES or NO 265 // add this memory pool to the proc 266 gpu_proc.addMemory(cpu_mem); 267 } 268 } 269 } 270 } 271 272 /* FIXME: are the below combinations of procs and memory pools needed? 273 * all to all compare procs with their memory pools and add those memory 274 * pools that are accessible by the target procs */ 275 for (auto &gpu_proc : gpu_procs) { 276 for (auto &gpu_mem : gpu_proc.memories()) { 277 hsa_amd_memory_pool_t pool = gpu_mem.memory(); 278 for (auto &cpu_proc : cpu_procs) { 279 hsa_agent_t agent = cpu_proc.agent(); 280 hsa_amd_memory_pool_access_t access; 281 hsa_amd_agent_memory_pool_get_info( 282 agent, pool, HSA_AMD_AGENT_MEMORY_POOL_INFO_ACCESS, &access); 283 if (access != 0) { 284 // this means not NEVER, but could be YES or NO 285 // add this memory pool to the proc 286 cpu_proc.addMemory(gpu_mem); 287 } 288 } 289 } 290 } 291 292 size_t num_procs = cpu_procs.size() + gpu_procs.size(); 293 int num_iGPUs = 0; 294 int num_dGPUs = 0; 295 for (uint32_t i = 0; i < gpu_procs.size(); i++) { 296 if (gpu_procs[i].type() == ATMI_DEVTYPE_iGPU) 297 num_iGPUs++; 298 else 299 num_dGPUs++; 300 } 301 assert(num_iGPUs + num_dGPUs == gpu_procs.size() && 302 "Number of dGPUs and iGPUs do not add up"); 303 DEBUG_PRINT("CPU Agents: %lu\n", cpu_procs.size()); 304 DEBUG_PRINT("iGPU Agents: %d\n", num_iGPUs); 305 DEBUG_PRINT("dGPU Agents: %d\n", num_dGPUs); 306 DEBUG_PRINT("GPU Agents: %lu\n", gpu_procs.size()); 307 308 int cpus_begin = 0; 309 int cpus_end = cpu_procs.size(); 310 int gpus_begin = cpu_procs.size(); 311 int gpus_end = cpu_procs.size() + gpu_procs.size(); 312 int proc_index = 0; 313 for (int i = cpus_begin; i < cpus_end; i++) { 314 std::vector<ATLMemory> memories = cpu_procs[proc_index].memories(); 315 int fine_memories_size = 0; 316 int coarse_memories_size = 0; 317 DEBUG_PRINT("CPU memory types:\t"); 318 for (auto &memory : memories) { 319 atmi_memtype_t type = memory.type(); 320 if (type == ATMI_MEMTYPE_FINE_GRAINED) { 321 fine_memories_size++; 322 DEBUG_PRINT("Fine\t"); 323 } else { 324 coarse_memories_size++; 325 DEBUG_PRINT("Coarse\t"); 326 } 327 } 328 DEBUG_PRINT("\nFine Memories : %d", fine_memories_size); 329 DEBUG_PRINT("\tCoarse Memories : %d\n", coarse_memories_size); 330 proc_index++; 331 } 332 proc_index = 0; 333 for (int i = gpus_begin; i < gpus_end; i++) { 334 std::vector<ATLMemory> memories = gpu_procs[proc_index].memories(); 335 int fine_memories_size = 0; 336 int coarse_memories_size = 0; 337 DEBUG_PRINT("GPU memory types:\t"); 338 for (auto &memory : memories) { 339 atmi_memtype_t type = memory.type(); 340 if (type == ATMI_MEMTYPE_FINE_GRAINED) { 341 fine_memories_size++; 342 DEBUG_PRINT("Fine\t"); 343 } else { 344 coarse_memories_size++; 345 DEBUG_PRINT("Coarse\t"); 346 } 347 } 348 DEBUG_PRINT("\nFine Memories : %d", fine_memories_size); 349 DEBUG_PRINT("\tCoarse Memories : %d\n", coarse_memories_size); 350 proc_index++; 351 } 352 if (num_procs > 0) 353 return HSA_STATUS_SUCCESS; 354 else 355 return HSA_STATUS_ERROR_NOT_INITIALIZED; 356 } 357 358 hsa_status_t init_hsa() { 359 DEBUG_PRINT("Initializing HSA..."); 360 hsa_status_t err = hsa_init(); 361 if (err != HSA_STATUS_SUCCESS) { 362 return err; 363 } 364 365 err = init_compute_and_memory(); 366 if (err != HSA_STATUS_SUCCESS) 367 return err; 368 if (err != HSA_STATUS_SUCCESS) { 369 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 370 "After initializing compute and memory", get_error_string(err)); 371 return err; 372 } 373 374 DEBUG_PRINT("done\n"); 375 return HSA_STATUS_SUCCESS; 376 } 377 378 hsa_status_t callbackEvent(const hsa_amd_event_t *event, void *data) { 379 #if (ROCM_VERSION_MAJOR >= 3) || \ 380 (ROCM_VERSION_MAJOR >= 2 && ROCM_VERSION_MINOR >= 3) 381 if (event->event_type == HSA_AMD_GPU_MEMORY_FAULT_EVENT) { 382 #else 383 if (event->event_type == GPU_MEMORY_FAULT_EVENT) { 384 #endif 385 hsa_amd_gpu_memory_fault_info_t memory_fault = event->memory_fault; 386 // memory_fault.agent 387 // memory_fault.virtual_address 388 // memory_fault.fault_reason_mask 389 // fprintf("[GPU Error at %p: Reason is ", memory_fault.virtual_address); 390 std::stringstream stream; 391 stream << std::hex << (uintptr_t)memory_fault.virtual_address; 392 std::string addr("0x" + stream.str()); 393 394 std::string err_string = "[GPU Memory Error] Addr: " + addr; 395 err_string += " Reason: "; 396 if (!(memory_fault.fault_reason_mask & 0x00111111)) { 397 err_string += "No Idea! "; 398 } else { 399 if (memory_fault.fault_reason_mask & 0x00000001) 400 err_string += "Page not present or supervisor privilege. "; 401 if (memory_fault.fault_reason_mask & 0x00000010) 402 err_string += "Write access to a read-only page. "; 403 if (memory_fault.fault_reason_mask & 0x00000100) 404 err_string += "Execute access to a page marked NX. "; 405 if (memory_fault.fault_reason_mask & 0x00001000) 406 err_string += "Host access only. "; 407 if (memory_fault.fault_reason_mask & 0x00010000) 408 err_string += "ECC failure (if supported by HW). "; 409 if (memory_fault.fault_reason_mask & 0x00100000) 410 err_string += "Can't determine the exact fault address. "; 411 } 412 fprintf(stderr, "%s\n", err_string.c_str()); 413 return HSA_STATUS_ERROR; 414 } 415 return HSA_STATUS_SUCCESS; 416 } 417 418 hsa_status_t atl_init_gpu_context() { 419 hsa_status_t err; 420 err = init_hsa(); 421 if (err != HSA_STATUS_SUCCESS) 422 return HSA_STATUS_ERROR; 423 424 err = hsa_amd_register_system_event_handler(callbackEvent, NULL); 425 if (err != HSA_STATUS_SUCCESS) { 426 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 427 "Registering the system for memory faults", get_error_string(err)); 428 return HSA_STATUS_ERROR; 429 } 430 431 return HSA_STATUS_SUCCESS; 432 } 433 434 static bool isImplicit(KernelArgMD::ValueKind value_kind) { 435 switch (value_kind) { 436 case KernelArgMD::ValueKind::HiddenGlobalOffsetX: 437 case KernelArgMD::ValueKind::HiddenGlobalOffsetY: 438 case KernelArgMD::ValueKind::HiddenGlobalOffsetZ: 439 case KernelArgMD::ValueKind::HiddenNone: 440 case KernelArgMD::ValueKind::HiddenPrintfBuffer: 441 case KernelArgMD::ValueKind::HiddenDefaultQueue: 442 case KernelArgMD::ValueKind::HiddenCompletionAction: 443 case KernelArgMD::ValueKind::HiddenMultiGridSyncArg: 444 case KernelArgMD::ValueKind::HiddenHostcallBuffer: 445 return true; 446 default: 447 return false; 448 } 449 } 450 451 static std::pair<unsigned char *, unsigned char *> 452 find_metadata(void *binary, size_t binSize) { 453 std::pair<unsigned char *, unsigned char *> failure = {nullptr, nullptr}; 454 455 Elf *e = elf_memory(static_cast<char *>(binary), binSize); 456 if (elf_kind(e) != ELF_K_ELF) { 457 return failure; 458 } 459 460 size_t numpHdrs; 461 if (elf_getphdrnum(e, &numpHdrs) != 0) { 462 return failure; 463 } 464 465 Elf64_Phdr *pHdrs = elf64_getphdr(e); 466 for (size_t i = 0; i < numpHdrs; ++i) { 467 Elf64_Phdr pHdr = pHdrs[i]; 468 469 // Look for the runtime metadata note 470 if (pHdr.p_type == PT_NOTE && pHdr.p_align >= sizeof(int)) { 471 // Iterate over the notes in this segment 472 address ptr = (address)binary + pHdr.p_offset; 473 address segmentEnd = ptr + pHdr.p_filesz; 474 475 while (ptr < segmentEnd) { 476 Elf_Note *note = reinterpret_cast<Elf_Note *>(ptr); 477 address name = (address)¬e[1]; 478 479 if (note->n_type == 7 || note->n_type == 8) { 480 return failure; 481 } else if (note->n_type == 10 /* NT_AMD_AMDGPU_HSA_METADATA */ && 482 note->n_namesz == sizeof "AMD" && 483 !memcmp(name, "AMD", note->n_namesz)) { 484 // code object v2 uses yaml metadata, no longer supported 485 return failure; 486 } else if (note->n_type == 32 /* NT_AMDGPU_METADATA */ && 487 note->n_namesz == sizeof "AMDGPU" && 488 !memcmp(name, "AMDGPU", note->n_namesz)) { 489 490 // n_descsz = 485 491 // value is padded to 4 byte alignment, may want to move end up to 492 // match 493 size_t offset = sizeof(uint32_t) * 3 /* fields */ 494 + sizeof("AMDGPU") /* name */ 495 + 1 /* padding to 4 byte alignment */; 496 497 // Including the trailing padding means both pointers are 4 bytes 498 // aligned, which may be useful later. 499 unsigned char *metadata_start = (unsigned char *)ptr + offset; 500 unsigned char *metadata_end = 501 metadata_start + core::alignUp(note->n_descsz, 4); 502 return {metadata_start, metadata_end}; 503 } 504 ptr += sizeof(*note) + core::alignUp(note->n_namesz, sizeof(int)) + 505 core::alignUp(note->n_descsz, sizeof(int)); 506 } 507 } 508 } 509 510 return failure; 511 } 512 513 namespace { 514 int map_lookup_array(msgpack::byte_range message, const char *needle, 515 msgpack::byte_range *res, uint64_t *size) { 516 unsigned count = 0; 517 struct s : msgpack::functors_defaults<s> { 518 s(unsigned &count, uint64_t *size) : count(count), size(size) {} 519 unsigned &count; 520 uint64_t *size; 521 const unsigned char *handle_array(uint64_t N, msgpack::byte_range bytes) { 522 count++; 523 *size = N; 524 return bytes.end; 525 } 526 }; 527 528 msgpack::foreach_map(message, 529 [&](msgpack::byte_range key, msgpack::byte_range value) { 530 if (msgpack::message_is_string(key, needle)) { 531 // If the message is an array, record number of 532 // elements in *size 533 msgpack::handle_msgpack<s>(value, {count, size}); 534 // return the whole array 535 *res = value; 536 } 537 }); 538 // Only claim success if exactly one key/array pair matched 539 return count != 1; 540 } 541 542 int map_lookup_string(msgpack::byte_range message, const char *needle, 543 std::string *res) { 544 unsigned count = 0; 545 struct s : public msgpack::functors_defaults<s> { 546 s(unsigned &count, std::string *res) : count(count), res(res) {} 547 unsigned &count; 548 std::string *res; 549 void handle_string(size_t N, const unsigned char *str) { 550 count++; 551 *res = std::string(str, str + N); 552 } 553 }; 554 msgpack::foreach_map(message, 555 [&](msgpack::byte_range key, msgpack::byte_range value) { 556 if (msgpack::message_is_string(key, needle)) { 557 msgpack::handle_msgpack<s>(value, {count, res}); 558 } 559 }); 560 return count != 1; 561 } 562 563 int map_lookup_uint64_t(msgpack::byte_range message, const char *needle, 564 uint64_t *res) { 565 unsigned count = 0; 566 msgpack::foreach_map(message, 567 [&](msgpack::byte_range key, msgpack::byte_range value) { 568 if (msgpack::message_is_string(key, needle)) { 569 msgpack::foronly_unsigned(value, [&](uint64_t x) { 570 count++; 571 *res = x; 572 }); 573 } 574 }); 575 return count != 1; 576 } 577 578 int array_lookup_element(msgpack::byte_range message, uint64_t elt, 579 msgpack::byte_range *res) { 580 int rc = 1; 581 uint64_t i = 0; 582 msgpack::foreach_array(message, [&](msgpack::byte_range value) { 583 if (i == elt) { 584 *res = value; 585 rc = 0; 586 } 587 i++; 588 }); 589 return rc; 590 } 591 592 int populate_kernelArgMD(msgpack::byte_range args_element, 593 KernelArgMD *kernelarg) { 594 using namespace msgpack; 595 int error = 0; 596 foreach_map(args_element, [&](byte_range key, byte_range value) -> void { 597 if (message_is_string(key, ".name")) { 598 foronly_string(value, [&](size_t N, const unsigned char *str) { 599 kernelarg->name_ = std::string(str, str + N); 600 }); 601 } else if (message_is_string(key, ".type_name")) { 602 foronly_string(value, [&](size_t N, const unsigned char *str) { 603 kernelarg->typeName_ = std::string(str, str + N); 604 }); 605 } else if (message_is_string(key, ".size")) { 606 foronly_unsigned(value, [&](uint64_t x) { kernelarg->size_ = x; }); 607 } else if (message_is_string(key, ".offset")) { 608 foronly_unsigned(value, [&](uint64_t x) { kernelarg->offset_ = x; }); 609 } else if (message_is_string(key, ".value_kind")) { 610 foronly_string(value, [&](size_t N, const unsigned char *str) { 611 std::string s = std::string(str, str + N); 612 auto itValueKind = ArgValueKind.find(s); 613 if (itValueKind != ArgValueKind.end()) { 614 kernelarg->valueKind_ = itValueKind->second; 615 } 616 }); 617 } 618 }); 619 return error; 620 } 621 } // namespace 622 623 static hsa_status_t get_code_object_custom_metadata( 624 void *binary, size_t binSize, 625 std::map<std::string, atl_kernel_info_t> &KernelInfoTable) { 626 // parse code object with different keys from v2 627 // also, the kernel name is not the same as the symbol name -- so a 628 // symbol->name map is needed 629 630 std::pair<unsigned char *, unsigned char *> metadata = 631 find_metadata(binary, binSize); 632 if (!metadata.first) { 633 return HSA_STATUS_ERROR_INVALID_CODE_OBJECT; 634 } 635 636 uint64_t kernelsSize = 0; 637 int msgpack_errors = 0; 638 msgpack::byte_range kernel_array; 639 msgpack_errors = 640 map_lookup_array({metadata.first, metadata.second}, "amdhsa.kernels", 641 &kernel_array, &kernelsSize); 642 if (msgpack_errors != 0) { 643 printf("[%s:%d] %s failed\n", __FILE__, __LINE__, 644 "kernels lookup in program metadata"); 645 return HSA_STATUS_ERROR_INVALID_CODE_OBJECT; 646 } 647 648 for (size_t i = 0; i < kernelsSize; i++) { 649 assert(msgpack_errors == 0); 650 std::string kernelName; 651 std::string symbolName; 652 653 msgpack::byte_range element; 654 msgpack_errors += array_lookup_element(kernel_array, i, &element); 655 if (msgpack_errors != 0) { 656 printf("[%s:%d] %s failed\n", __FILE__, __LINE__, 657 "element lookup in kernel metadata"); 658 return HSA_STATUS_ERROR_INVALID_CODE_OBJECT; 659 } 660 661 msgpack_errors += map_lookup_string(element, ".name", &kernelName); 662 msgpack_errors += map_lookup_string(element, ".symbol", &symbolName); 663 if (msgpack_errors != 0) { 664 printf("[%s:%d] %s failed\n", __FILE__, __LINE__, 665 "strings lookup in kernel metadata"); 666 return HSA_STATUS_ERROR_INVALID_CODE_OBJECT; 667 } 668 669 // Make sure that kernelName + ".kd" == symbolName 670 if ((kernelName + ".kd") != symbolName) { 671 printf("[%s:%d] Kernel name mismatching symbol: %s != %s + .kd\n", 672 __FILE__, __LINE__, symbolName.c_str(), kernelName.c_str()); 673 return HSA_STATUS_ERROR_INVALID_CODE_OBJECT; 674 } 675 676 atl_kernel_info_t info = {0, 0, 0, 0, 0, 0, 0, 0, 0, {}, {}, {}}; 677 678 uint64_t sgpr_count, vgpr_count, sgpr_spill_count, vgpr_spill_count; 679 msgpack_errors += map_lookup_uint64_t(element, ".sgpr_count", &sgpr_count); 680 if (msgpack_errors != 0) { 681 printf("[%s:%d] %s failed\n", __FILE__, __LINE__, 682 "sgpr count metadata lookup in kernel metadata"); 683 return HSA_STATUS_ERROR_INVALID_CODE_OBJECT; 684 } 685 686 info.sgpr_count = sgpr_count; 687 688 msgpack_errors += map_lookup_uint64_t(element, ".vgpr_count", &vgpr_count); 689 if (msgpack_errors != 0) { 690 printf("[%s:%d] %s failed\n", __FILE__, __LINE__, 691 "vgpr count metadata lookup in kernel metadata"); 692 return HSA_STATUS_ERROR_INVALID_CODE_OBJECT; 693 } 694 695 info.vgpr_count = vgpr_count; 696 697 msgpack_errors += 698 map_lookup_uint64_t(element, ".sgpr_spill_count", &sgpr_spill_count); 699 if (msgpack_errors != 0) { 700 printf("[%s:%d] %s failed\n", __FILE__, __LINE__, 701 "sgpr spill count metadata lookup in kernel metadata"); 702 return HSA_STATUS_ERROR_INVALID_CODE_OBJECT; 703 } 704 705 info.sgpr_spill_count = sgpr_spill_count; 706 707 msgpack_errors += 708 map_lookup_uint64_t(element, ".vgpr_spill_count", &vgpr_spill_count); 709 if (msgpack_errors != 0) { 710 printf("[%s:%d] %s failed\n", __FILE__, __LINE__, 711 "vgpr spill count metadata lookup in kernel metadata"); 712 return HSA_STATUS_ERROR_INVALID_CODE_OBJECT; 713 } 714 715 info.vgpr_spill_count = vgpr_spill_count; 716 717 size_t kernel_explicit_args_size = 0; 718 uint64_t kernel_segment_size; 719 msgpack_errors += map_lookup_uint64_t(element, ".kernarg_segment_size", 720 &kernel_segment_size); 721 if (msgpack_errors != 0) { 722 printf("[%s:%d] %s failed\n", __FILE__, __LINE__, 723 "kernarg segment size metadata lookup in kernel metadata"); 724 return HSA_STATUS_ERROR_INVALID_CODE_OBJECT; 725 } 726 727 bool hasHiddenArgs = false; 728 if (kernel_segment_size > 0) { 729 uint64_t argsSize; 730 size_t offset = 0; 731 732 msgpack::byte_range args_array; 733 msgpack_errors += 734 map_lookup_array(element, ".args", &args_array, &argsSize); 735 if (msgpack_errors != 0) { 736 printf("[%s:%d] %s failed\n", __FILE__, __LINE__, 737 "kernel args metadata lookup in kernel metadata"); 738 return HSA_STATUS_ERROR_INVALID_CODE_OBJECT; 739 } 740 741 info.num_args = argsSize; 742 743 for (size_t i = 0; i < argsSize; ++i) { 744 KernelArgMD lcArg; 745 746 msgpack::byte_range args_element; 747 msgpack_errors += array_lookup_element(args_array, i, &args_element); 748 if (msgpack_errors != 0) { 749 printf("[%s:%d] %s failed\n", __FILE__, __LINE__, 750 "iterate args map in kernel args metadata"); 751 return HSA_STATUS_ERROR_INVALID_CODE_OBJECT; 752 } 753 754 msgpack_errors += populate_kernelArgMD(args_element, &lcArg); 755 if (msgpack_errors != 0) { 756 printf("[%s:%d] %s failed\n", __FILE__, __LINE__, 757 "iterate args map in kernel args metadata"); 758 return HSA_STATUS_ERROR_INVALID_CODE_OBJECT; 759 } 760 // populate info with sizes and offsets 761 info.arg_sizes.push_back(lcArg.size_); 762 // v3 has offset field and not align field 763 size_t new_offset = lcArg.offset_; 764 size_t padding = new_offset - offset; 765 offset = new_offset; 766 info.arg_offsets.push_back(lcArg.offset_); 767 DEBUG_PRINT("Arg[%lu] \"%s\" (%u, %u)\n", i, lcArg.name_.c_str(), 768 lcArg.size_, lcArg.offset_); 769 offset += lcArg.size_; 770 771 // check if the arg is a hidden/implicit arg 772 // this logic assumes that all hidden args are 8-byte aligned 773 if (!isImplicit(lcArg.valueKind_)) { 774 kernel_explicit_args_size += lcArg.size_; 775 } else { 776 hasHiddenArgs = true; 777 } 778 kernel_explicit_args_size += padding; 779 } 780 } 781 782 // add size of implicit args, e.g.: offset x, y and z and pipe pointer, but 783 // in ATMI, do not count the compiler set implicit args, but set your own 784 // implicit args by discounting the compiler set implicit args 785 info.kernel_segment_size = 786 (hasHiddenArgs ? kernel_explicit_args_size : kernel_segment_size) + 787 sizeof(atmi_implicit_args_t); 788 DEBUG_PRINT("[%s: kernarg seg size] (%lu --> %u)\n", kernelName.c_str(), 789 kernel_segment_size, info.kernel_segment_size); 790 791 // kernel received, now add it to the kernel info table 792 KernelInfoTable[kernelName] = info; 793 } 794 795 return HSA_STATUS_SUCCESS; 796 } 797 798 static hsa_status_t 799 populate_InfoTables(hsa_executable_symbol_t symbol, 800 std::map<std::string, atl_kernel_info_t> &KernelInfoTable, 801 std::map<std::string, atl_symbol_info_t> &SymbolInfoTable) { 802 hsa_symbol_kind_t type; 803 804 uint32_t name_length; 805 hsa_status_t err; 806 err = hsa_executable_symbol_get_info(symbol, HSA_EXECUTABLE_SYMBOL_INFO_TYPE, 807 &type); 808 if (err != HSA_STATUS_SUCCESS) { 809 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 810 "Symbol info extraction", get_error_string(err)); 811 return err; 812 } 813 DEBUG_PRINT("Exec Symbol type: %d\n", type); 814 if (type == HSA_SYMBOL_KIND_KERNEL) { 815 err = hsa_executable_symbol_get_info( 816 symbol, HSA_EXECUTABLE_SYMBOL_INFO_NAME_LENGTH, &name_length); 817 if (err != HSA_STATUS_SUCCESS) { 818 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 819 "Symbol info extraction", get_error_string(err)); 820 return err; 821 } 822 char *name = reinterpret_cast<char *>(malloc(name_length + 1)); 823 err = hsa_executable_symbol_get_info(symbol, 824 HSA_EXECUTABLE_SYMBOL_INFO_NAME, name); 825 if (err != HSA_STATUS_SUCCESS) { 826 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 827 "Symbol info extraction", get_error_string(err)); 828 return err; 829 } 830 // remove the suffix .kd from symbol name. 831 name[name_length - 3] = 0; 832 833 atl_kernel_info_t info; 834 std::string kernelName(name); 835 // by now, the kernel info table should already have an entry 836 // because the non-ROCr custom code object parsing is called before 837 // iterating over the code object symbols using ROCr 838 if (KernelInfoTable.find(kernelName) == KernelInfoTable.end()) { 839 if (HSA_STATUS_ERROR_INVALID_CODE_OBJECT != HSA_STATUS_SUCCESS) { 840 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 841 "Finding the entry kernel info table", 842 get_error_string(HSA_STATUS_ERROR_INVALID_CODE_OBJECT)); 843 exit(1); 844 } 845 } 846 // found, so assign and update 847 info = KernelInfoTable[kernelName]; 848 849 /* Extract dispatch information from the symbol */ 850 err = hsa_executable_symbol_get_info( 851 symbol, HSA_EXECUTABLE_SYMBOL_INFO_KERNEL_OBJECT, 852 &(info.kernel_object)); 853 if (err != HSA_STATUS_SUCCESS) { 854 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 855 "Extracting the symbol from the executable", 856 get_error_string(err)); 857 return err; 858 } 859 err = hsa_executable_symbol_get_info( 860 symbol, HSA_EXECUTABLE_SYMBOL_INFO_KERNEL_GROUP_SEGMENT_SIZE, 861 &(info.group_segment_size)); 862 if (err != HSA_STATUS_SUCCESS) { 863 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 864 "Extracting the group segment size from the executable", 865 get_error_string(err)); 866 return err; 867 } 868 err = hsa_executable_symbol_get_info( 869 symbol, HSA_EXECUTABLE_SYMBOL_INFO_KERNEL_PRIVATE_SEGMENT_SIZE, 870 &(info.private_segment_size)); 871 if (err != HSA_STATUS_SUCCESS) { 872 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 873 "Extracting the private segment from the executable", 874 get_error_string(err)); 875 return err; 876 } 877 878 DEBUG_PRINT( 879 "Kernel %s --> %lx symbol %u group segsize %u pvt segsize %u bytes " 880 "kernarg\n", 881 kernelName.c_str(), info.kernel_object, info.group_segment_size, 882 info.private_segment_size, info.kernel_segment_size); 883 884 // assign it back to the kernel info table 885 KernelInfoTable[kernelName] = info; 886 free(name); 887 } else if (type == HSA_SYMBOL_KIND_VARIABLE) { 888 err = hsa_executable_symbol_get_info( 889 symbol, HSA_EXECUTABLE_SYMBOL_INFO_NAME_LENGTH, &name_length); 890 if (err != HSA_STATUS_SUCCESS) { 891 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 892 "Symbol info extraction", get_error_string(err)); 893 return err; 894 } 895 char *name = reinterpret_cast<char *>(malloc(name_length + 1)); 896 err = hsa_executable_symbol_get_info(symbol, 897 HSA_EXECUTABLE_SYMBOL_INFO_NAME, name); 898 if (err != HSA_STATUS_SUCCESS) { 899 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 900 "Symbol info extraction", get_error_string(err)); 901 return err; 902 } 903 name[name_length] = 0; 904 905 atl_symbol_info_t info; 906 907 err = hsa_executable_symbol_get_info( 908 symbol, HSA_EXECUTABLE_SYMBOL_INFO_VARIABLE_ADDRESS, &(info.addr)); 909 if (err != HSA_STATUS_SUCCESS) { 910 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 911 "Symbol info address extraction", get_error_string(err)); 912 return err; 913 } 914 915 err = hsa_executable_symbol_get_info( 916 symbol, HSA_EXECUTABLE_SYMBOL_INFO_VARIABLE_SIZE, &(info.size)); 917 if (err != HSA_STATUS_SUCCESS) { 918 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 919 "Symbol info size extraction", get_error_string(err)); 920 return err; 921 } 922 923 DEBUG_PRINT("Symbol %s = %p (%u bytes)\n", name, (void *)info.addr, 924 info.size); 925 SymbolInfoTable[std::string(name)] = info; 926 free(name); 927 } else { 928 DEBUG_PRINT("Symbol is an indirect function\n"); 929 } 930 return HSA_STATUS_SUCCESS; 931 } 932 933 hsa_status_t RegisterModuleFromMemory( 934 std::map<std::string, atl_kernel_info_t> &KernelInfoTable, 935 std::map<std::string, atl_symbol_info_t> &SymbolInfoTable, 936 void *module_bytes, size_t module_size, hsa_agent_t agent, 937 hsa_status_t (*on_deserialized_data)(void *data, size_t size, 938 void *cb_state), 939 void *cb_state, std::vector<hsa_executable_t> &HSAExecutables) { 940 hsa_status_t err; 941 hsa_executable_t executable = {0}; 942 hsa_profile_t agent_profile; 943 944 err = hsa_agent_get_info(agent, HSA_AGENT_INFO_PROFILE, &agent_profile); 945 if (err != HSA_STATUS_SUCCESS) { 946 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 947 "Query the agent profile", get_error_string(err)); 948 return HSA_STATUS_ERROR; 949 } 950 // FIXME: Assume that every profile is FULL until we understand how to build 951 // GCN with base profile 952 agent_profile = HSA_PROFILE_FULL; 953 /* Create the empty executable. */ 954 err = hsa_executable_create(agent_profile, HSA_EXECUTABLE_STATE_UNFROZEN, "", 955 &executable); 956 if (err != HSA_STATUS_SUCCESS) { 957 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 958 "Create the executable", get_error_string(err)); 959 return HSA_STATUS_ERROR; 960 } 961 962 bool module_load_success = false; 963 do // Existing control flow used continue, preserve that for this patch 964 { 965 { 966 // Some metadata info is not available through ROCr API, so use custom 967 // code object metadata parsing to collect such metadata info 968 969 err = get_code_object_custom_metadata(module_bytes, module_size, 970 KernelInfoTable); 971 if (err != HSA_STATUS_SUCCESS) { 972 DEBUG_PRINT("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 973 "Getting custom code object metadata", 974 get_error_string(err)); 975 continue; 976 } 977 978 // Deserialize code object. 979 hsa_code_object_t code_object = {0}; 980 err = hsa_code_object_deserialize(module_bytes, module_size, NULL, 981 &code_object); 982 if (err != HSA_STATUS_SUCCESS) { 983 DEBUG_PRINT("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 984 "Code Object Deserialization", get_error_string(err)); 985 continue; 986 } 987 assert(0 != code_object.handle); 988 989 // Mutating the device image here avoids another allocation & memcpy 990 void *code_object_alloc_data = 991 reinterpret_cast<void *>(code_object.handle); 992 hsa_status_t atmi_err = 993 on_deserialized_data(code_object_alloc_data, module_size, cb_state); 994 if (atmi_err != HSA_STATUS_SUCCESS) { 995 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 996 "Error in deserialized_data callback", 997 get_error_string(atmi_err)); 998 return atmi_err; 999 } 1000 1001 /* Load the code object. */ 1002 err = 1003 hsa_executable_load_code_object(executable, agent, code_object, NULL); 1004 if (err != HSA_STATUS_SUCCESS) { 1005 DEBUG_PRINT("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 1006 "Loading the code object", get_error_string(err)); 1007 continue; 1008 } 1009 1010 // cannot iterate over symbols until executable is frozen 1011 } 1012 module_load_success = true; 1013 } while (0); 1014 DEBUG_PRINT("Modules loaded successful? %d\n", module_load_success); 1015 if (module_load_success) { 1016 /* Freeze the executable; it can now be queried for symbols. */ 1017 err = hsa_executable_freeze(executable, ""); 1018 if (err != HSA_STATUS_SUCCESS) { 1019 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 1020 "Freeze the executable", get_error_string(err)); 1021 return HSA_STATUS_ERROR; 1022 } 1023 1024 err = hsa::executable_iterate_symbols( 1025 executable, 1026 [&](hsa_executable_t, hsa_executable_symbol_t symbol) -> hsa_status_t { 1027 return populate_InfoTables(symbol, KernelInfoTable, SymbolInfoTable); 1028 }); 1029 if (err != HSA_STATUS_SUCCESS) { 1030 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 1031 "Iterating over symbols for execuatable", get_error_string(err)); 1032 return HSA_STATUS_ERROR; 1033 } 1034 1035 // save the executable and destroy during finalize 1036 HSAExecutables.push_back(executable); 1037 return HSA_STATUS_SUCCESS; 1038 } else { 1039 return HSA_STATUS_ERROR; 1040 } 1041 } 1042 1043 } // namespace core 1044